1	
-	

Ancient genomes reveal early Andean farmers selected common beans while preserving diversity

- Trucchi Emiliano(1,2)*#, Benazzo Andrea(2)*, Lari Martina(3)*, Iob Alice(2), Vai Stefania(3), Nanni Laura(4), 8 Bellucci Elisa(4), Bitocchi Elena(4), Francesca Raffini(2), Xu Chunming(5), Jackson A Scott(5), Lema Verónica 9
- (6,7), Babot Pilar(7,8), Oliszewski Nurit(7), Gil Adolfo(9,10), Neme Gustavo(9,10), Michieli Catalina
- 10 Teresa(11), De Lorenzi Monica(12), Calcagnile Lucio(13), Caramelli David(3), Star Bastiaan(14), de Boer
- 11 Hugo(15), Boessenkool Sanne(14)\$, Papa Roberto(4)\$, Bertorelle Giorgio(2)\$#. 12
- 13
- 14 (1) Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- 15 (2) Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- 16 (3) Department of Biology, University of Firenze, Firenze, Italy
- 17 (4) Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Ancona, 18 Italy
- 19 (5) Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
- 20 (6) Universidad Nacional de Córdoba, Córdoba, Argentina
- 21 (7) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- 22 (8) Instituto de Arqueología y Museo, Universidad Nacional de Tucumán, Tucumán, Argentina
- 23 (9) Instituto de Evolución, Ecología Histórica y Ambiente (CONICET & UTN FRSR), San Rafael, Argentina
- 24 (10) Museo de Historia Natural de San Rafael, Argentina
- 25 (11) Instituto de Investigaciones Arqueológicas y Museo "Prof. Mariano Gambier" - UNSJ, San Juan, Argentina
- 26 (12) Museo Arqueológico de Cachi, Cachi, Argentina
- 27 (13) Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Italy
- 28 (14) Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 29 Norway
- 30 (15) Natural History Museum, University of Oslo, Norway
- 31
- 32 * Contribution equally
- 33 \$ Contribution equally
- 34 # Corresponding authors: ggb@unife.it; e.trucchi@staff.univpm.it
- 35
- 36

37 **Keywords**

- 38 Ancient DNA, domestication, genetic erosion, plant genomics, selection scan, sustainable agriculture
- 39
- 40
- 41

42 Introductory paragraph

43 All crops are the product of a domestication process that started less than 12,000 years ago from 44 one or more wild populations [1, 2]. Farmers selected desirable phenotypic traits, such as 45 improved energy accumulation, palatability of seeds and reduced natural shattering [3], while 46 leading domesticated populations through several more or less gradual demographic contractions 47 [2, 4]. As a consequence, erosion of wild genetic variation [5] is typical of modern cultivars making 48 them highly susceptible to pathogens, pests and environmental change [6,7]. The loss of genetic 49 diversity hampers further crop improvement programs to increase food production in a changing 50 world, posing serious threats to food security [8,9]. Using both ancient and modern seeds, we 51 analyzed the temporal dynamic of genetic variation and selection during the domestication 52 process of the common bean (Phaseolus vulgaris) that occurred in the southern Andes. Here we 53 show that most domestic traits were selected for prior to 2,500 years ago, with no or only minor 54 loss of whole-genome heterozygosity. In fact, i) the majority of changes at coding genes and linked 55 regions that differentiate wild and domestic genomes are already present in the ancient genomes 56 analyzed here; ii) all ancient domestic genomes dated between 600 and 2,500 years ago are highly 57 variable - at least as variable as modern genomes from the wild, and single seeds from modern 58 cultivars show reduced variation when compared to ancient seeds, indicating that intensive 59 selection within cultivars in the last centuries likely partitioned ancestral variation within different 60 genetically homogenous cultivars. When cultivars from different Andean regions are pooled, 61 genomic variation of the pool is higher than that observed in the pool of ancient seeds from north 62 and central western Argentina. Considering that most desirable phenotypic traits are likely 63 controlled by multiple polymorphic genes [10], a plausible explanation of this decoupling of 64 selection and genetic erosion is that early farmers applied a relatively weak selection pressure [2] 65 by using many phenotypically similar but genetically diverse individuals as parents. Our results 66 imply that selection strategies during the last few centuries, as compared to earlier times, more 67 intensively reduced genetic variation within cultivars, and produced further improvements 68 focusing on few plants carrying the traits of interest at the cost of marked genetic erosion within

69 Andean landraces.

70

71 Main text

The onset of domestication by early farmers has been suggested as the period during which the most intense genetic bottleneck affecting genome-wide diversity occurred [4,11]. Yet, artificial

selection, possibly at different rates in different times, was likely a continuous process that

- 75 produced both landraces and, more recently under modern breeding programs, high-yielding and
- 76 more resistant elite cultivars [2,12,13]. Understanding when the majority of genetic diversity was
- 177 lost, and how such loss is related with the intensity of the selection process, is not only relevant
- 78 from an evolutionary perspective but it will also help planning more sustainable breeding options
- 79 to revert or mitigate crop genetic erosion [14,15]. We directly address these questions by analyzing
- 80 both modern and ancient genomes of common bean from South America.
- 81
- Common bean constitutes one of the major sources of vegetable proteins worldwide. The wild
 progenitor of common bean originated in Mesoamerica and colonized South America along the
- 84 Andes [16,17]. This natural colonization process, dated by whole genome analysis between
- 85 146,000 and 184,000 years ago [17], was accompanied by an intense and long bottleneck, as
- 86 supported by the higher genetic diversity observed in the Mesoamerican as compared to the
- 87 Andean gene pool [18]. Domestication of common bean occurred independently more or less
- 88 simultaneously in both Mesoamerica and the Andes ca. 8,000 years ago, followed by divergence
- 89 into distinct landraces due to drift, local selection, and adaptation [16].
- 90

91 We here obtained the first whole genome *shotgun* data from 30 ancient common bean seeds 92 representing nine archaeological sites in north and central western Argentina (Supplementary 93 Information S1-2,4, Supplementary Figure S1, Supplementary Table S1). All 30 seeds were dated 94 between 2500 and 600 years before present (yrs BP) by AMS radiocarbon dating (Supplementary 95 Information S3). Initial screening showed remarkable DNA preservation, with on average 44% (SD = 96 12%) endogenous DNA mapped to the common bean reference genome [17] (Supplementary 97 Table S1). Unimodal length distributions with short fragment lengths (average = 65, SD = 22 bp) 98 and purines enrichment upstream of break points were consistent with those expected for 99 degraded DNA (Supplementary Table S1, Supplementary Figures S3 an S4). The presence of 100 deamination patterns at the end of the reads varied from 0.76% to 32.75% C to T and G to A 101 misincorporations, with half of the seeds showing percentages below 10% (Supplementary Table 102 S1, Supplementary Figure S5). Damage patterns were partially explained by the location of the 103 archaeological sites: all seeds from sites at >2,500 meters above sea level showed less than 10% 104 base misincorporations (with many lower than 5%), whereas the majority of seeds from lower 105 altitude exhibited levels above 15% (Supplementary Figure S6). The observed pattern shows that 106 both favorable environmental conditions and the structure of the seed (e.g., presence of an 107 external cuticle) likely resulted in good DNA preservation, as previously suggested for quinoa seeds 108 from the same sites [19]. A subset of the specimens (Figure 1a,b) was selected for further 109 sequencing based on DNA preservation and representation of age and locations, resulting in a final 110 dataset of 15 ancient bean genomes with coverage from 4.2X to 23.2X in the non-repeated regions 111 (Supplementary Table S1). Whole-genome data from modern common bean accessions 112 (domesticated landraces/cultivars: 9 Andean, 3 Mesoamerican; wild: 1 Andean, 1 Mesoamerican) 113 and a closely related species (P. hintonii, 1 accession) were also included in the analyses 114 (Supplementary Information S6; Supplementary Table S3). All statistical analyses (excluding the 115 selection test where only mutations observed in all ancient seeds are considered) were performed 116 on transversions to avoid the bias introduced by post-mortem deamination [e.g., 20]. 117

118 Individual heterozygosity (probabilistically estimated as the variation parameter θ every thousand 119 nucleotides; Supplementary Information S7) is higher in all ancient seeds than in each of nine 120 modern landraces/cultivars from the Andean gene pool (Figure 1c, Supplementary Table S4), and 121 the average heterozygosity is more than ten times higher in ancient than in modern seeds (0.144 122 vs. 0.013 θ /kbp, respectively, Mann-Whitney U, *P*<0.001). This difference remains high (0.110 vs. 123 0.013 θ /kbp) and highly significant when the ancient seeds with the lowest coverage are excluded 124 (see Supplementary Information 7). The effect of decreased heterozygosity due to the selfing 125 procedure applied to modern accessions in seed banks was tested in two ways: by pooling pairs of 126 modern seeds and estimating θ /kbp in different seeds pairs, and by increasing the heterozygosity 127 values in modern seeds as a function of the number of selfing cycles to which they were subjected 128 (Supplementary Information S8). As expected, variation in modern pairs increased compared to 129 single seeds, but it is on average still significantly smaller (at least 2.5 times) than that observed in 130 ancient seeds (Mann-Whitney U test, P<0.005, Supplementary Figure S9; Supplementary Table S5). 131 It is possible that our pairing strategy did not entirely recover the heterozygosity just before the 132 implementation of the seed bank protocol. A more exact estimate cannot be obtained since the 133 detailed protocols applied to each modern Andean cultivar in seed banks are not known, and some 134 level of outcrossing during this procedure cannot be excluded. Furthermore, the average θ /kbp is 135 likely increased in modern seed pairs because our paired seeds belong to different landraces (i.e., 136 the increase in the seed pairs is inflated by the genetic structure among landraces). When single 137 seed heterozygosity was conservatively doubled or quadrupled in modern seeds subjected to one 138 or two cycles of selfing, respectively, average variation remained significantly higher in the ancient

139 seeds (see Supplementary Information S8). We therefore conclude that single modern seeds

- 140 representative of modern landraces have lower genetic variation than single ancient seeds.
- 141
- 142 The modern genome available from a wild Andean seed [21], and two publicly released but
- 143 unpublished genomes from wild Argentinean seeds (Supplementary Information S7), have a lower
- 144 heterozygosity than the wild Mesoamerican seed in our dataset but comparable to that observed
- 145 in the ancient Argentinean seeds (Figure 1c, Supplementary Figure S7). This result is a) consistent
- 146 with the bottleneck that occurred during the natural colonization of the Andes from Mesoamerica
- 147 [18], b) it indirectly supports the finding that modern Andean domestic seeds have lower diversity
- 148 than ancient domestic seeds, because otherwise we should exclude any decrease of heterozygosity
- 149 throughout the whole domestication process up to the modern cultivars, and c) it appears 150 compatible with a minor effect of the initial Andean domestication on bean genetic diversity. With
- 151 the current dataset, it cannot be excluded that heterozygosity was initially reduced following
- 152 domestication, but subsequently restored by mutation. Such an effect would, however, require a
- 153 ten times higher mutation rate than that estimated on the basis of the divergence time between *P*.
- 154 vulgaris and P. hintonii (Supplementary Information S10. These findings challenge the conventional
- 155 view of the domestication bottleneck resulting in severe genetic erosion [3] and is consistent with
- 156 recent observations in maize, sorghum and barley [22].
- 157

The lack of a temporal trend across ancient seeds of different age (Figure 1c) indicates that genome-wide diversity was largely maintained between 2,500 and 600 years ago by agricultural practices of Andean societies. Therefore, loss of diversity within each cultivar occurred more recently, certainly less than 600 years ago and likely in the last century [13]. A similar loss of diversity characterizes the recent domestication history of horses [20]. The absence of data on seeds from the last 600 years currently hinders a direct reconstruction of the temporal dynamic of genomic diversity during the last six centuries.

165

168 169 170
Figure 1. Diversity in ancient and modern common bean. A) Pictures of the 15 common bean seeds sequenced for whole-genome analyses: sample ID with two letters referring to the archaeological site of origin as shown in panel B is reported in the top-left corner of the pictures (see Supplementary Information S1); AMS radiocarbon age in yrs BP is reported in the bottom-right corner. B) Map

- 171 showing the locations of the archaeological sites where the seeds were retrieved (red) and the country of origin of the modern 172 domesticated cultivars from South and Central America (blue and green, respectively) and the wild specimens (pale blue, pale green). 173 Modern seed locations are only indicative of the country of origin C) Whole-genome diversity estimated as θ kbp⁻¹ in individual seeds 174 (solid circles), average of individual estimates per group (solid line), and in groups of seeds (dashed line) using only transversions in 175 callable regions (see Supplementary Information S5 for details); only domesticated cultivars are included in the group estimates. D) 176 Neighbor-Joining tree based on genetic distances and Admixture analysis both based on transversions only (one SNPs every 50 kb was used in the Admixture analysis) in callable regions; note that modern seeds from Chile cluster together with the ancient seeds.
- 178

179 When estimating genetic variation in groups of modern Andean (0.294 θ /kbp) or Mesoamerican 180 seeds (0.860 θ /kbp), we observe a substantial increase compared to the average individual 181 estimates (Figure 1c), indicating that modern genomic diversity is highly structured in different, 182 highly homogeneous, cultivars. The abandonment and extinction of any modern cultivar would 183 therefore result in the significant loss of its private fraction of the whole crop diversity [8,23]. On 184 the contrary, the estimate of genetic diversity obtained by pooling all ancient individuals is very 185 similar to the average of the 15 individual estimates (0.134 θ /kbp; Figure 1c), implying that these 186 ancient genomes represent a single genomic pool. Ancient seeds, as a group, do not reach the 187 level of variation observed in the pooled modern cultivars. This is not unexpected considering that 188 a) the latter have a long, complex and partially independent history of recent landrace 189 establishment, and b) the former (the ancient domestic seeds) were used during the Holocene by 190 human populations with shared subsistence practices, which included the use of wild beans [24]. A 191 large fraction of the ancient seeds could individually recover most of the ancient crop diversity in 192 that area, while modern seeds never reach individual heterozygosity values close to the pooled 193 group from Chile, Bolivia, Argentina and Peru, or the groups obtained by separately pooling the 194 Chilean (0.045 θ /kbp), the Bolivian (0.102 θ /kbp), or the Argentinean (0.198 θ /kbp) landraces. A 195 more widespread sample of ancient beans might also reveal that ancient populations harbored 196 more genetic diversity than pooled cultivars.

197

198 Three main genetic groups were revealed by different clustering methods (Supplementary 199 Information S9) and a whole-genome NJ tree (Figure 1b; Supplementary Figures S10-S11). The 200 largest divergence is observed between Mesoamerican and Andean genomes, while the Andean 201 seeds are further partitioned into two less differentiated groups. All ancient seeds belong to the 202 same genomic clade, indicating that the same or similar ancient landraces were in use in Argentina 203 for about 2,000 years. - This clade also includes modern landraces used today on the other side of 204 the Andes, in Chile. The so-called Chilean race [25] therefore appears to be the direct descendants 205 of the seeds used in Argentina before the Incaic conquest of the area occurred at the end of the 206 15th century [26]. We interpret this result as a consequence of the trade of goods, including crop, 207 between the eastern (in Argentina) and western (in Chile) slopes of the Andes, with early farmers 208 relying on Llama caravans for regular-long distance exchanges [27]. Modern Argentinian cultivars, 209 instead, do not trace their ancestry back to the local ancient cultivar but were likely introduced in 210 the area some time during the last 600 years.

211

212 A gene-by-gene selection scan (Figure 2a) was performed to discriminate early (>2,500 years ago) 213 from late (<600 years ago) selection targets, by taking into account the different levels of genetic 214 drift expected in the two time periods of different length (Supplementary Information S11). We 215 found that: i) a selection signature is present in 443 out of 27,000 genes tested (FDR<0.001); ii) 216 selection affected many more genes (ca. 4.2 times more) in the early compared to the late phase 217 (Fig. 2b), suggesting that recent improvement of cultivars strongly affected few genes, but the 218 main genomic turnover occurred several thousand years ago; if adjacent genes are merged in 219 "sweep blocks", thus considering that genes under selection may produce selection signals also in 220 adjacent genes, the ratio between ancient and recent sweeps remains larger than 3 (see 221 Supplementary Information S11); iii) genes selected in the early phase belong to functional clusters

- 222 mainly related to glycerol metabolism, carbohydrate and sugar transport and metabolism,
- 223 intracellular transport (endosome membrane), regulatory elements (nucleotide binding),
- 224 modification of proteins and glycosylation, whereas recent selection primarily targeted traits
- involved in immunity and defense, regulatory elements and transmembrane transport (Figure 2c;
- 226 Supplementary Table S7). Evidence for selection on sugar biosynthesis genes at the early stages of
- domestication has also been found in ancient maize from 2,000 and 750 years ago [28]. One of the
- functional clusters identified in the early selected genes includes the MYB-domain genes that are
- 229 important regulatory elements of development, metabolism and responses to biotic and abiotic
- 230 stresses [29], and have been suggested as causative of different phenotypic changes associated to
- the shattering trait in common bean [30], maize and rice [4,31].
- 232

233 Genomic studies of ancient DNA are much less numerous in plants compared to animals remains 234 [32-33], but have already provided fundamental insights into the process of domestication [28,34-235 38]. Our results show that common bean seeds, and likely legume seeds in general, can be an 236 excellent source of high quality ancient DNA, especially if seeds are preserved in favorable climatic 237 conditions (i.e., cold and dry environments). The dynamic of domestication is still debated [22], 238 but, as recently summarized [2], the consensus is that domestication was slow and gradual, with 239 selected traits emerging in association with population decline and loss of genetic variation. Here, 240 we contribute to this debate with the first study on ancient bean genomics, and provide an 241 alternative example in which selection and loss of variation are decoupled during the process of 242 domestication. Our data reveals that in common bean early agriculture in the Andes genomic 243 diversity was preserved within single seeds, whereas more recent breeding practices produced 244 structured landraces that are internally more homogenous. At the same time, however, assuming 245 that the genetic changes we infer correspond at least in part to phenotypic changes, early 246 agriculture was also very efficient in selecting most of the desirable traits now typical of this crop. 247 We hypothesize that these patterns are the result of the larger number of seeds used by early 248 farmers as founders in each generation, all likely displaying the selected trait(s) but heterogeneous 249 in the rest of the genome. Initial improvement of the common bean was therefore based on serial 250 soft sweeps, as has also been suggested for the domestication of maize [10]. Encompassing several 251 thousand years, and likely assisted by cultivar exchanges and hybridization with wild plants 252 [2,25,39-40], such breeding practice allowed many traits to be selected for, without the significant 253 loss of genomic variation that has likely occurred in more recent times within landraces and 254 cultivars.

Figure 2. Timing of selection in common bean from South America. All genes (27,000) in the common bean genome were tested for a significant enrichment of fixed alternative alleles according to the topologies described below, taking into account the different level of drift expected in periods of time of different length (see Supplementary Information S11 for details). A) Alternative topologies for a SNP: on the left (AS: ancient selection) the SNP is fixed for an alternative variant in both the ancient seeds from Argentina (red circles) and the modern cultivars from Chile (blue circles) as compared with the wild Andean P. vulgaris seed (pale blue circle) and the outgroup (Phaseolus hintonii, yellow circle); on the right (RS: recent selection) the SNP is fixed for an alternative variant in the modern cultivars from Chile only as compared with the ancient seeds, the wild Andean and the outgroup; the gray shade represents the temporal fixation of an alternative allele; ancient seeds age as well as the putative divergence time between Andean domesticated and wild P. vulgaris is reported. Using the genome of the wild Mesoamerican P. vulgaris as outgroup instead of P. hintonii produced largely similar results (see Supplementary Table S7). B) Number of genes significantly enriched with SNPs in RS (blue) and/or AS (red) topology (FDR<0.001, top 1% for the proportion of SNPs within gene ± 1kb, and with an Arabidopsis thaliana ortholog). C) Functional gene clusters (see Supplementary Information S11) in RS (blue) or AS (red) enriched groups (the complete list of genes can be found in Supplementary Table S7). Filled bars: max gene count in the cluster; empty bars: enrichment score of the cluster (only scores >1 are reported).

Acknowledgments

- 255 This study was supported by the University of Ferrara, the CUIA (Consorzio Universitario Italiano
- 256 per l'Argentina, 5[^] Research Program), the ERA-CAPS project Bean_Adapt, the internal grants from
- 257 the Marche Polytechnic University and the University of Firenze, the Italian Ministry of Education,
- 258 University and Research (project "Dipartimenti di Eccellenza 2018-2022"), the Swedish Research
- 259 Council grant VR-UF E0347601 and the Norwegian Research Council grant 262777. We also thank
- 260 CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas) and the Institutions and
- 261 Museums in Argentina for their support in the fieldwork, and in particular for recovering the
- 262 archaeo-botanical specimens and studying the archaeological sites.
- 263

264 Data accessibility

- 265 Sequenced raw reads from ancient samples are publicly available as NCBI Bioproject (ID:
- 266 PRJNA574560). Unpublished modern sample genomic data are available with the following NCBI
- 267 Accession Codes: SRR10161640; SRR10161629; SRR10161767; SRR10161647; SRR10161646;
- 268 SRR10161645; SRR10161601; SRR10161592; SRR10161584; SRR10161684; SRR10161683;
- 269 SRR10161697; SRR10161690; SRR10161688.
- 270

271 Competing Interests statement

- 272 The authors declare no competing interests.
- 273

274 References

- 1. Diamond, J. Evolution, consequences and future of plant and animal domestication. *Nature* **418**, 700-707
 (2002).
- 2. Purugganan, M. D. Evolutionary Insights into the Nature of Plant Domestication. *Curr. Biol.* 29, 705-714
 (2019).
- 3 Meyer, R. S., & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification.
 Nat. Rev. Genet. 14, 840-852 (2013).
- 4. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. *Cell* **127**, 13091321 (2006).
- 5. Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R. & Visser, B. Genetic erosion in crops: concept,
 research results and challenges. *Plant. Genet. Resour.* 8, 1-15 (2010).
- 6 Babiker E. M. et al. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring
 wheat landrace. *Theor. Appl. Genet.* **128**, 605-612 (2015).
- 7. Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. *Nat. Comm.*8, 1496 (2017).
- 8. Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical
 challenges. *Nat. Rev. Genet.* 6, 946 (2005).
- 291 9. Gepts, P. Plant genetic resources conservation and utilization. *Crop. Sci.* 46, 2278-2292 (2006).
- 292 10. Beissinger, T. M. et al. Recent demography drives changes in linked selection across the maize genome.
 293 *Nat. Plants* 2, 16084 (2016).
- 11. Hyten, D. L. et al. Impacts of genetic bottlenecks on soybean genome diversity. *Proc. Natl Acad. Sci. USA*103, 16666-16671 (2006).
- 12. Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding
 archaeological record. *Proc. Natl Acad. Sci. USA* 111, 6147-6152 (2014).
- 298 13. Khush, G. S. Green revolution: the way forward. *Nat. Rev. Genet.* **2**, 815-822 (2001).
- 14. Fu, Y. B. Understanding crop genetic diversity under modern plant breeding. *Theor. Appl. Genet.* 128, 300 2131-2142 (2015).
- 301 15. Bevan, M. W. et al. Genomic innovation for crop improvement. *Nature* **543**, 346-354 (2017).
- 302 16. Bitocchi, E. et al. Mesoamerican origin of the common bean (*Phaseolus vulgaris* L.) is revealed by
 303 sequence data. *Proc. Natl Acad. Sci. USA*, **109**, E788-E796 (2012).
- 304 17. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual
 305 domestications. *Nat. Genet.* 46, 707-713 (2014).
- 306 18. Bitocchi, E. et al. Beans (*Phaseolus* ssp.) as a model for understanding crop evolution. *Front. Plant Sci*, 8,
 307 722 (2017).
- 308 19. Winkel, T. et al. Discontinuities in quinoa biodiversity in the dry Andes: An 18-century perspective based 309 on allelic genotyping. *PLoS One* **13**, e0207519 (2018).
- 20. Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series.
 Cell, **177**, 1419-1435 (2019).
- 312 21. Rendón-Anaya, M. et al. Genomic history of the origin and domestication of common bean unveils its
 313 closest sister species. *Genome Biol.* 18, 60 (2017).
- 22. Allaby, R. G., Ware, R. L. & Kistler, L. A re-evaluation of the domestication bottleneck from
- 315 archaeogenomic evidence. *Evol appl*, **12**, 29-37 (2019).

- 316 23. Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. *Nat. Plants* 2, 16022
 317 (2016).
- 318 24. Pochettino, M. L. & Scattolin M. C. Identificación y significado de frutos y semillas carbonizados de sitios
- arqueológicos de la ladera occidental del Aconquija, Prov. Catamarca, Rca. Argentina. *Rev. Mus. La Plata, Antropol.* 9: 169-181 (1991).
- 321 25. Singh, S. P., Gepts P. & Debouck D. G. Races of common bean (*Phaseolus vulgaris*, Fabaceae). *Econ. Bot.*322 45, 379-396 (1991).
- 323 26. Williams, V.I. Formaciones sociales en el noroeste argentino: variabilidad prehispánica en el surandino 324 durante el Periodo de Desarrollos Regionales y el estado Inca. Rev. Haucaypata **9**, 62-76 (2015).
- 325 27. Núñez, L. & Nielsen A.E. *En ruta: Arquelogía, Historia y Etnografía del Tráfico Surandino* (Encuentro
 326 Grupo Editor, Córdoba, 2011).
- 327 28. Da Fonseca, R. R. et al. The origin and evolution of maize in the Southwestern United States. *Nat. Plants*328 1, 14003 (2015).
- 329 29. Dubos, C. et al. MYB transcription factors in Arabidopsis. *Trends. Plant Sci.* **15**, 573-581 (2010).
- 330 30. Rau, D. et al. Genomic dissection of pod shattering in common bean: mutations at non-orthologous loci
- at the basis of convergent phenotypic evolution under domestication of leguminous species. *Plant J.* 97,
 693-714 (2019).
- 333 31. Saitoh, K., Onishi, K., Mikami, I., Thidar, K. & Sano, Y. Allelic diversification at the C (OsC1) locus of wild 334 and cultivated rice: nucleotide changes associated with phenotypes. *Genetics* **168**, 997-1007 (2004).
- 335 32. Estrada, O., Breen, J., Richards, S. M. & Cooper, A. Ancient plant DNA in the genomic era. *Nat. Plants* 4,
 336 394 (2018).
- 33. Brunson, K. & Reich, D. The promise of paleogenomics beyond our own species. *Trends Genet.* 35, 319338 329 (2019).
- 339 34. Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication
 340 history of barley. *Nature Genet.* 48, 1089-1093(2016).
- 341 35. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the
 342 early stages of maize domestication. *Curr. Biol.* 26, 3195-3201 (2016).
- 343 36. Wagner, S. et al. High Throughput DNA sequencing of ancient wood. *Mol.Ecol.* 27, 1138-1154 (2018).
- 344 37. Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America.
 345 *Science*, **362**, 1309-1313 (2018).
- 346 38. Smith, O. et al. A domestication history of dynamic adaptation and genomic deterioration in sorghum.
 347 *Nat. Plants* 5, 369-379 (2019).
- 348 39. Lema, V. Non domestication cultivation in the Andes: plant management and nurturing in the
 349 Argentinean Northwest. *Veg hist archaeobot*, **24**, 143-150 (2015).
- 40. Oliszewski, N. & Babot P. Procesos de selección del poroto común en los valles altos del noroeste argentino
- 351 en tiempos prehispánicos. Análisis micro y macroscópico de especímenes arqueobotánicos. In: Avances y
- 352 desafíos metodológicos en arqueobotánica: miradas consensuadas y diálogos compartidos desde Sudamérica
- (eds. Belmar C. & Lema, V.) 301-324 (Facultad de Patrimonio Cultural y Educación Universidad SEK Chile,
 2015).

SUPPLEMENTARY METHODS AND RESULTS 355

- 356
- 357 TABLE OF CONTENTS
- 358
- 359 S1. Ancient beans collection and archaeological context
- 360 S2. Seed selection
- 361 S3. AMS radiocarbon dating
- 362 S4. Ancient DNA extraction and sequencing
- 363 S5. DNA damage assessment and mapping to the reference genome
- 364 S6. Modern accessions genomic data
- 365 S7. Analysis of genomic diversity
- 366 S8. Re-calibrating estimates of modern genomic diversity
- 367 S9. Structure of genomic diversity in ancient beans
- 368 S10. Loss and recovery of variation after domestication?
- 369 S11. Genes-focused scan for signature of ancient and/or recent selection
- 370 S12. References
- 371
- 372 Figure S1. Pictures of all 30 seeds (15 seeds for deep sequencing are also shown in Figure1, main text)
- 373 Figure S2. Bioanalyzer profiles
- 374 Figure S3. Fragment length distributions
- 375 Figure S4. Fragmentation plot
- 376 Figure S5. Misincorporation pattern
- 377 Figure S6. Endogenous DNA versus age site location
- 378 Figure S7. Estimates of individual θ
- 379 Figure S8. Scatterplots of individual θ values and coverage
- 380 Figure S9. Estimates of whole-genome diversity in pairs of modern seeds
- 381 Figure S10. Structure of genetic diversity in ancient and modern seeds as inferred by Admixture
- 382 Figure S11. Structure of genetic diversity in ancient and modern seeds as inferred by FineStructure
- 383 Figure S12. Distribution of proportion of SNPs per gene in AS and RS topologies
- 384 Figure S13. Distribution of selected genes along chromosomes
- 385 386

387 Table S1. Ancient seed information: AMS dates and basic sequencing statistics (provided as Supplementary 388 Excel file)

- 389 Table S2. Chloroplast genome coverages
- 390 Table S3. Modern genome samples
- 391 Table S4. Estimates of whole-genome diversity in ancient and modern individuals
- 392 Table S5. Estimates of whole-genome diversity in pairs of modern seeds
- 393 Table S6. Fraction of missing calls after haploid calling in ancient and modern seeds
- 394

395 Table S7. Results of selection scan using different accessions as outgroup (provided as Supplementary Excel file)

- 396
- 397 398

399 S1. Ancient beans collections and archaeological context

400

401 Ancient bean seeds were selected from five museum collections in Argentina: Museo de La Plata (La Plata,

402 Buenos Aires, Argentina); Museo de Historia Natural de San Rafael (Parque Mariano Moreno, San Rafael,

403 Argentina); Instituto de Investigaciones y Museo Arqueológico "Prof. Mariano Gambier", Universidad

404 Nacional de San Juan (San Juan, Argentina); Instituto de Arqueología y Museo, Universidad Nacional de

405 Tucumán (Tucumán, Argentina); Museo Arqueológico Pio Pablo Díaz (Cachi, Salta, Argentina).

406

Seeds were originally collected from nine archaeological sites located in different geographical regions of
north and central-western Argentina (Figure 1a, main text). A brief description of each site is reported
below. Codes for each seed, referring to Figure 1b (main text) and Figure S1, are reported in Table S1.

410

411 Puente del Diablo

Puente del Diablo (SSalLap20) archaeological site is a cave situated in the northern sector of the Calchaqui
 Valleys in a pre-puna landscape (Salta province). It was excavated in the 1970s and includes both domestic

Valleys in a pre-puna landscape (Salta province). It was excavated in the 1970s and includes both domestic and funerary contexts. This is a multicomponent site with burials dating back to 10,000 yrs BP, remains

415 corresponding to burials and temporal occupations of hunter gatherers of ca. 3,000 yrs BP and also from ca.

416 2,000 yrs BP corresponding to the first agro-pastoralist societies in the area. From these last occupations,

417 remains of *Cucurbita maxima*, *Prosopis* spp. and cactaceae were recovered together with remains of

418 rodents (*Lagidium* sp.), *Cervidae* sp. and camelids (*Lama* sp.) (Lema, 2009, 2015).

419420 Gruta del Indio

421 Gruta del Indio is an archaeological site located in Central Western Argentina, close to San Rafael city, in 422 Monte phytogeographic province, at 700 m asl. Gruta del Indio was occupied by hunter-gatherers since the 423 Pleistocene-Holocene transition ca. 10,500 years ago (Semper and Lagiglia 1968, Long et al 1998). Hunter-424 gatherers occupied the cave until at least ca. 1,900 yrs BP, when a strong domestic plant record appears in 425 the archaeological record. This domestic archaeobotanical record include Zea mays, Chenopodium quinoa, 426 Cucurbita, and Phaseolus vulgaris seeds, and Zea mays remains, such as canes and starches (Semper and 427 Lagilia 1968, Lagiglia 1999). This domestic plant context (the oldest in the region) is isolated in time and 428 space, and is associated to human bone remains, indicating the use of the cave as a cemetery. This 429 archaeological context was called "Atuel II culture" (Semper and Lagiglia 1968) and all radiocarbon dates are 430 between 2,100 and 1,900 yrs BP (Gil et al 2014). Stable isotopes analyses from human bone suggest that 431 the Zea mays was probably part of the diet but not as major component (Gil et al 2010). The Phaseolus 432 vulgaris beans were found in a grass container holding ca. 500 grs. of seeds. Another grass container was 433 full of Chenopodium quinoa seeds in the same archaeological mortuary context. After Atuel II, there is little

434 evidence of human occupation and temporally close to the arrival of the Spanish (ca. 500 yrs BP).

435

436 Los Morrillos, Río Salado, Cerro Calvario and Punta del Barro (San Juan sites)

The San Juan sites are in the two western Departments of the Province of San Juan, Iglesia (to the north) and Calingasta (to the south). They are in a southern Andean area that extends between 28°25'S and 32°33'S on the arid eastern slope of the Andes. This territory includes (from west to east) the "Cordillera de los Andes", two wide valleys between 1,900 and 1,600 m asl and another system of high altitude but of older age than the mountain range called "Precordillera of La Rioja, San Juan and Mendoza"; its maximum summits constitute the eastern limit of these Departments.

443

444 Los Morrillos (caves 2 and 3) and Río Salado cave

The first evidence of agricultural and breeding (*Lama glama*) activity in the eastern slope of the Andes in San Juan province did not originate in the area, but were introduced together with the domesticated species. The human groups that introduced and developed agriculture were located in favorable small sites corresponding to the exit of the cordilleran streams in the great plain of the high foothills (approximately 2,900 m asl). Such human groups cultivated in summer, gathered wild fruits and ñandu eggs, and entered the high Andean

450 valleys for the hunt of the guanaco (*Lama guanicoe*). They mostly inhabited natural caves in the area. 451 Examples of such caves are Los Morrillos (caves 2 and 3). In the Los Morrillos caves, the thick layer with

452 agriculture evidence overlapped with an older layer of hunter gatherers. By contrast, in the Río Salado cave

- 453 there is only a thick level with agricultural remains (Gambier 1977, 1988, 2000, Roig 1977). Los Morrillos caves
- 454 were excavated in seven long seasons between 1969 and 1977, while the Río Salado cave was excavated in
- 455 1972. The three caves correspond to habitation sites without specific areas of activity. The botanical remains
- 456 were found among the anthropic sediments with diverse remains: lithic, ceramic, artifacts in wood and bone,
- 457 textiles, etc.).
- 458
- 459 <u>Cerro Calvario sites (Calingasta Valley) and Punta del Barro site (Iglesia Valley)</u>
- The same agricultural and breeder groups described previously, with some foreign influences, later descended from the "Cordillera de Los Andes" towards the valleys at lower altitude and settled in open areas with the possibility of irrigation from small springs or streams. This is the case for the Cerro Calvario sites in the Calingasta Valley and Punta del Barro in the north of the Iglesia Valley (Basurero Norte, Basurero 3) (Gambier 1988, 2000; Michieli 2016).
- 465

466 <u>Punta del Barro "1º canal" site</u>

467 Around 1200 AD the local groups settled in the valleys of the Eastern slope of Los Andes in the current 468 province of San Juan developed a large-scale agricultural system based on irrigation by means of large 469 channels connected to the rivers. The agricultural sites of Punta del Barro "1º canal" represent a residential 470 area, excavated in 2011, which included an occupational floor almost at surface level with storage and 471 combustion wells. Various cultivated botanical remains were found in one of the storage wells: corn, squash, 472 quinoa and beans. It was related to a large hydraulic channel and three tombs with excellent preservation of 473 both the bodies and the woven garments that enveloped them and other items (ceramics, pumpkin 474 containers, wooden objects, etc.) (Michieli 2015).

475

476 Punta de la Peña

- 477 Punta de la Peña 9 is a residential site with stone-walled structures, blocky shelters, bedrock mortars,
- 478 caches, open air activity areas, and rock art that was continuously occupied by agro-pastoralist farmers
- 479 between ca. 2,000 to 400 yrs BP -post-Hispanic time (Babot et al 2006, López Campeny et al 2017, Somonte
- 480 and Cohen 2006). It comprises processing, discard, workshop, funerary and ritual areas spatially segregated.
- 481 The site is located on the southern margin of the Las Pitas River at an elevation of 3,665 m asl in the Salty
- 482 Puna desert (Catamarca province). Subsistence was based on llama (Lama glama) herding, vicuña (Vicugna
- 483 vicugna) hunting, small-scale cultivation, and plant gathering and exchange. Wild, domesticated and weed
- 484 plant macro and micro-remains belong to a number of native and foreign taxa as *Chenopodium quinoa*,
- 485 Solanum tuberosum, Oxalis tuberosa, Phaseolus vulgaris, Prosopis sp., Geoffroea decorticans, Zea mays,
- 486 Amaranthus caudatus/A. mantegazzianus, Lagenaria siceraria, Cucurbita sp., Canna edulis and Cyperace
- 487 and Cactaceae species (Babot 2009, Rodríguez 2013). Alero 1 is a blocky shelter rich in well preserved plant
- remains from the first millennium DC, placed in the sector I of the Punta de la Peña 9 site (Babot et al 2013). 489

490 Pampa Grande

- 491 Pampa Grande is an archaeological locality including seven caves explored in the 1970s. It is located in the 492 Las Pirguas mountain range (Salta province), between 2,500 and 3,000 m asl in a montane grassland and
- Las Pirguas mountain range (Salta province), between 2,500 and 3,000 m asl in a montane grassland and
 forest landscape corresponding to the highest zone of the *Yunga* biogeographical province. Ancient remains
- 494 are mainly related to funerary contexts and few occupational areas, corresponding to Candelaria groups.
- 495 The age of these occupations range between 400 3,000 yrs BP and corresponds to the first agro-
- 496 pastoralist societies in the area. Remains related with subsistence include domestic, wild and hybrid plant
- 497 species of *Cucurbita maxima* and *Phaseolus vulgaris*. *Phaseolus lunatus*, *Lagenaria siceraria*, *Zea mays*,
- 498 Arachis hypogaea, Prosopis spp., Geoffroeae decorticans, tubers, Capsicum spp. and other wild and weed
- 499 forms were recovered. Remains of wild and domestic camelids were also recovered together with fish,
- 500~ rodent and bird bones (Baldini et al 2003, Lema 2010).
- 501

502 Cueva de los Corrales

- 503 Cueva de Los Corrales 1 is an archaeological site located in the Quebrada de Los Corrales (El Infiernillo,
- 504 Tucumán) at 3,000 m asl in a dry shrub / grassland landscape, corresponding to the highest zone of the
- 505 Yunga biogeographical province (Oliszewski et al 2008). It is a cave that was occupied at different times
- 506 throughout 2,400 years (ca. 3,000-600 yrs BP), from transitional time between hunter-gatherer groups to

- 507 agro-pastoralist groups until purely agro-pastoralist time (Oliszewski et al. 2018). Remains related to
- 508 subsistence include domestic camelids and dasiphodids; wild plants: *Prosopis nigra*, *Geoffroeae decorticans*,
- 509 Celtis tala and Trichocereus sp.; cultivated plants: Phaseolus vulgaris, Zea mays and Chenopodium quinoa
- 510 and wild *Cucurbita maxima* (Oliszewski and Arreguez 2015, Oliszewski and Babot 2015, Lema 2017).

511 S2. Seeds selection

512

513 Thirty ancient bean seeds (Figure S1) were selected for preliminary screening based on the site locations

514 and archaeological context. All seeds had a clear domestic phenotype. After visual inspection, we selected

515 seeds with different morphological features (e.g. coat color and dimension) and good preservation (e.g.,

516 less visible cracks or damages in the outer coat).

517

1 cm

Figure S1. Pictures of the 30 seeds sequenced at low coverage for preliminary screening of aDNA content and preservation. Archaeological site information for each seed is reported in Supplementary Table S1.

523 S3. AMS radiocarbon dating

524

A fragment of ca. ¼ of the cotyledon was removed from each seed and used for AMS radiocarbon dating at CEDAD, Center of Applied Physics, Dating and Diagnostics, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento. Conventional radiocarbon ages and calibrated ranges for 30 seeds are reported in Table S1. Calibration was performed using OxCal Ver. 3.10 based on atmospheric data (Reimer et al 2009). Distribution curves of the calibrated age for each seed, and additional details on the dating procedure are available on request.

531 532

533 S4. Ancient DNA extraction and sequencing

534

535 DNA extraction and library preparation were performed at the Molecular Anthropology and Paleogenetic 536 Laboratory of the Department of Biology, University of Florence, using facilities that are exclusively 537 dedicated to processing ancient DNA and following all the necessary precautions to minimize contamination 538 from exogenous DNA. One sample (09-CM) was extracted and a library built at the ancient DNA laboratory 539 of the University of Oslo. Negative controls were included in each step of the molecular analysis. All seeds 540 were photographed prior to sampling (Figure S1). After removing the cuticle, each seed was UV irradiated in 541 a crosslinker for 45 minutes. The embryo and a portion of cotyledon were then pulverized by hand with 542 mortar and pestle that had been decontaminated with bleach and UV. Half of the powder, was used for DNA 543 extraction following a high-salt CTAB extraction protocol according to the Small Fragment Protocol of 544 Qiagen DNeasy mericon Food Handbook. The amount of powder used in the DNA extraction ranged 545 between 48 and 240 mg, depending on the size of the seed. Food Lysis Buffer was substituted with a 546 homemade CTAB high salt extraction buffer according to the following recipe: 100mM Tris-HCl pH 8, 25mM 547 EDTA pH 8, 4M NaCl, 2% CTAB, 0.3% β-mercaptoethanol. An aliquot of each extract was converted into a 548 sequencing library with 7 bp P7 indexes according to Meyer & Kircher 2010. No UDG treatment was 549 performed. The fill-in reaction was split in 4 aliquots that were amplified separately in 100µl reaction mixes 550 with 0.25mM dNTPs mix (New England Biolabs), 0.30 mg/ml BSA (New England Biolabs), 2.5U Agilent Pfu 551 Turbo Polymerase (Agilent Technologies) and 0.4µM of each primer. The following indexing PCR profile was 552 performed by default on each library: 95°C 2', [95°C 30'', 58°c 30'', 72°C 1'] x 14, 72°C 10'. DNA 553 quantification and quality control were performed on a Agilent 2100 Bioanalyzer using the Agilent DNA 554 1000 kit, following manufacturer's instructions. All libraries and extraction blanks showed flat BioAnalyzer 555 profiles (see Figure S2), but were included in the pool of the first sequencing round (see below). The 556 libraries were sequenced at the Norwegian Sequencing Centre, University of Oslo, Norway, where all 557 samples were pooled in equimolar ratios and paired-end sequenced on the Illumina HiSeg 2500. First, 558 samples were screened for DNA preservation by low-coverage sequencing. Based on the results of this first 559 sequencing run and on sample characteristics (age, location, phenotype, mapping quality, age-related 560 damage patterns), a subset of 18 samples was re-pooled and sequenced further on four Hiseq2500 lanes. 561 Additionally, one sample (O1-PD) was sequenced on one lane each on the HiSeq 4000 platform. One sample 562 (09-CM) was sequenced on the Hiseq 2500 in a different pool from all other beans. Based on the final 563 results we further selected 15 samples with coverage higher than 4X for downstream population genomic 564 analyses (Table S1).

566 567 Figure S2. BioAnalyzer profiles of library (k-1, k-3, k-5) and extraction (k-2, k-4. k-6) blanks.

569 570 S5. DNA damage assessment and mapping to the reference genome

571 572 Paleomix v.1.2.12 (Schubert et al 2014), a pipeline specifically designed for aDNA, was employed for the 573 filtering and mapping of aDNA data. Adapter trimming, collapsing of overlapping mate-pairs, trimming of 574 low-quality bases and removal of reads shorter than 25 bp was performed with AdapterRemoval (Lindgreen 575 et al 2012). Filtered reads were aligned to the Phaseolus vulgaris reference genome v2.1 (Schmutz et al 576 2014), downloaded from Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) using bwa aln (Li and 577 Durbin 2009) and retaining reads with mapping quality >= 25. PCR duplicates were filtered using the 578 Paleomix rmdup_duplicates option. Fragment length distributions, break point and misincorporation 579 patterns were explored in each sample (Figures S3, S4, S5) using MapDamage2.0 (Jónsson et al 2013)... 580 Indel-realigned bams were generated using the GATK Indel realigner (McKenna et al 2010). Realigned and 581 filtered bam files were then indexed and sorted with Samtools-0.1.19 (Li et al 2009). The percentage 582 endogenous DNA and coverage were determined from these realigned and filtered bam files. 583 584 An evaluation of the DNA preservation (percentage of endogenous DNA and deamination pattern) in the

585 ancient bean seeds as a function of sample age and site location is reported in Figure S6. Altitude, and not 586 age, seems to be a good predictor of deamination patterns.

587 588 Almost all of the following analyses including both ancient and modern (see section "Modern accessions 589 genomic data) samples were based on transversions, since transitions are more affected by post-mortem 590 damages than transversion and could reflect DNA damage rather than true DNA variation (e.g., Hofreiter et 591 al 2012). Only the selection test (Supplementary Information S11) considered both transitions and 592 transversions because in this test only changes observed in all the 15 ancient seeds are used. We estimate 593 that these simultaneous changes are very unlikely related to post-mortem damages. The following regions 594 were analyzed separately for the Admixture and Neighbor-Joining analyses (see below): i) callable regions, 595 defined as the whole genome excluding repeated regions; ii) neutral regions defined as callable regions 596 excluding genes (both exons and introns) and 10kb upstream and downstream each gene and *iii*) exons. The 597 estimation of Wattersons Theta (θ_w) and the FineStructure analysis were performed on *callable* regions only 598 (see below).

Figure S3. Fragment length (bp) distributions for the 30 ancient seeds. Labels present the original sample ID and the manuscript ID (see Table S1). Plots were generated using MapDamage 2.0.

604 605 606

Figure S4. aDNA fragmentation plots for ancient bean seeds. Labels present the original sample ID and the manuscript ID (see Table S1). Plots were generated using MapDamage 2.

Figure S5. Frequency of C to T (red) and G to A (blu) misincorporation at 5' and 3' ends for the 30 ancient seeds. Plots were generated using MapDamage 2.0. Labels present the original sample ID and the manuscript ID (see Table S1).

612 613

Figure S6. Endogenous DNA preservation in the 30 ancient bean seeds of the preliminary screening. a) Proportion of reads mapping to the common bean reference genome vs. age of the samples; b) Average read length vs. age of the samples; c) Misincorporation pattern at 5' end vs. age of the samples; d) Misincorporation pattern at 5' and 3' ends vs. site locations.

618 The fragments lengths and the fragmentation and deamination patterns of our data concur with what could 619 be expected from these kinds of samples and we are confident about the authenticity of our ancient 620 genomes. To further support the absence of contamination in our ancient DNA data, we estimated the 621 heterozygosity level in the chloroplast calls. Contamination can introduce additional chloroplast haplotypes 622 in the original library resulting in the presence of heterozygous sites. We performed a SNP calling analysis in 623 chloroplast reads extracted from 14 ancient seeds (one seed was excluded because of low chloroplast 624 coverage. The complete chloroplast sequence from the Negro Jamapa cultivar (accession: NC 009259, Guo 625 et al, 2007) was added to the nuclear reference, and the bioinformatic approach described above was used 626 to align the sequencing data from ancient samples to this new reference genome. Each resulting bam file was 627 processed using ANGSD v0.916 (Korneliussen et al 2014) and the chloroplast consensus sequences were 628 called for each seed setting the "-doFasta 2" option. The analysis was restricted to reads having a mapping 629 quality score higher than 20 and to nucleotides showing a minimum base quality score of 20. The mean 630 coverage ranges from 69X to 633X, and approximately 40% of the chloroplast genome was recovered in each 631 sample (Table S2). This fraction is expected considering that several short chloroplast fragments (as those 632 obtained from our samples), have multiple mapping position on the nuclear genome and were therefore 633 excluded from further analyses. Each bam file was independently analysed with the mpileup/call commands 634 from BCFtools, calling both monomorphic and polymorphic sites of the chloroplast, setting the ploidy of the 635 region to 2. The following flags were added: a minimum base quality score of 20 (-Q 20), a minimum mapping 636 quality score of 30 (-q 30) and the mapping quality of reads with two mismatches compared to the reference 637 was adjusted (-C 50). Indels were not called. The resulting vcf files were filtered and only sites having a QUAL 638 field > 30 were retained. The number of called heterozygous seeds was very small: 0 in 11 seeds, 1 in two 639 seeds (13-CM and 03-GI), and 2 in one seed (02-CM). The total number of high quality/mapping base pairs 640 used varied in different seeds between 45448 and 61699. The three ancient seeds with one or two 641 heterozygous sites in the chloroplast genome do not show any significant pattern of increased nuclear 642 heterozygosity when compared to other seeds.

644 Table S2. Chloroplast genomes coverage.

645

MANUSCRIPT ID	MEAN COVERAGE	FRACTION OF CALLED (NON-MISSING) BASE PAIRS
15-CC	167.7	0.42
01-PD	633.1	0.40
03-GI	151.4	0.37
07-PP	475.1	0.43
04_CM	290.6	0.38
10-CM	153.7	0.37
14-CM	102.4	0.35
12-CM	511.9	0.41
11-CM	752.4	0.43
13-CM	369.3	0.42
08-CM	450.3	0.41
06-PB	79.5	0.38
02-CM	627.7	0.42
05-CM	336.8	0.43

646

- 647
- 648
- 649

650 S6. Modern accessions genomic data

651

652 Genomic data from modern domesticated and wild common bean samples were included in our analyses 653 (Table S3). In particular, we included: i) 12 modern domestic common bean genomes from both Andean and 654 Mesoamerican domestication gene pools, sequenced by the ERA-CAPS funded project "BeanAdapt: The 655 Genomics of Adaptation during Crop Expansion in Bean" (unpublished; provided by the coordinator of the 656 project, Prof. Roberto Papa, Marche Polytechnic University); ii) two published genomes from wild P. vulgaris 657 (G19901 from Argentina and G24594 from Chiapas, Mexico; Rendòn-Anaya et al 2017); iii) one published 658 genome of the wild relative P. hintonii to be used as outgroup in our selection scan (Rendòn-Anaya et al 659 2017). Trimmomatic v0.36 (Bolger et al 2014) was used to remove poor-quality regions from downloaded 660 Illumina reads, discarding nucleotides having an average base quality score less than 20 across a 5bp 661 window. Reads longer than 35bp were mapped to the P. vulgaris reference genome v2.1 in the paired-end 662 mode using bwa mem (Li and Durbin 2009) with the parameter "-M". The quality of bam alignments was 663 improved removing PCR duplicates with Picard (software.broadinstitute.org) and performing the Indel 664 realignment procedure, as described above for ancient samples. Depth of coverage was estimated in each 665 sample using Samtools depth. Two publicly available but unpublished genomes from Argentinean wild 666 seeds, G16798 and G18705 in the SRA archive and obtained from 2x150 bp libraries sequenced on an 667 Illumina Hiseq 3000 platform, were used to confirm that the global pattern of variation of ancient seeds is 668 compatible with the pattern of variation observed in modern seeds form the same geographic area. The 669 mean coverage of these genomes was estimated at 9.9X and 8.8X, respectively.

670

671 Table S3. Modern genomes included in our analyses. Gene pool indicates to which gene pool the sample belongs; AD: Andean
672 domesticated, MD: Mesoamerican domesticated, AW: Andean wild, MW: Mesoamerican wild. Sequencing mode was 2x125 bp for all
673 Bean Adapt samples and 2x100 for the other samples.

Sample ID	Manuscript ID	Species	Wild/ Domestic	Gene pool	Country/Sampling site	Mean coverage (genome / callable regions)	Source
ECa005	CHI1	P. vulgaris	D	AD	Chile	11.6 / 13.0	Bean Adapt Project
ECa006	BOL1	P. vulgaris	D	AD	Bolivia	24.9 / 27.7	Bean Adapt Project
ECa016	CHI2	P. vulgaris	D	AD	Chile	9.1/9.8	Bean Adapt Project
ECa038	PER1	P. vulgaris	D	AD	Perú	8.9 / 9.9	Bean Adapt Project
ECa040	ARG1	P. vulgaris	D	AD	Argentina	16.6 / 19.5	Bean Adapt Project
ECa041	ARG2	P. vulgaris	D	AD	Argentina	6.1 / 6.7	Bean Adapt Project

ECa095MEX2P. vulgarisDMDMéxico6.2 / 6.7Bean Adapt PrECa104MEX3P. vulgarisDMDMéxico10.1 / 11.2Bean Adapt PrECa332ARG3P. vulgarisDADArgentina5.3 / 5.8Bean Adapt PrECa330ARG4P. vulgarisDADArgentina13.9 / 13.9Bean Adapt PrECa333BOL2P. vulgarisDADBolivia7.9 / 8.9Bean Adapt PrG24594MEX-WP. vulgarisWMWMéxico19.6 / 22.52017G19901ARG-WP. vulgarisWAWArgentina16.6 / 15.52017P. hintonii-P. hintoniiW-México9.5 / 10.62017	ECa086	MEX1	P. vulgaris	D	MD	México	10.5 / 11.6	Bean Adapt Project
ECa104MEX3P. vulgarisDMDMéxico10.1 / 11.2Bean Adapt PrECa332ARG3P. vulgarisDADArgentina5.3 / 5.8Bean Adapt PrECa330ARG4P. vulgarisDADArgentina13.9 / 13.9Bean Adapt PrECa333BOL2P. vulgarisDADBolivia7.9 / 8.9Bean Adapt PrG24594MEX-WP. vulgarisWMWMéxico19.6 / 22.52017G19901ARG-WP. vulgarisWAWArgentina16.6 / 15.52017P. hintonii-P. hintoniiW-México9.5 / 10.62017	ECa095	MEX2	P. vulgaris	D	MD	México	6.2 / 6.7	Bean Adapt Project
ECa332ARG3P. vulgarisDADArgentina5.3 / 5.8Bean Adapt PrECa330ARG4P. vulgarisDADArgentina13.9 / 13.9Bean Adapt PrECa333BOL2P. vulgarisDADBolivia7.9 / 8.9Bean Adapt PrG24594MEX-WP. vulgarisWMWMéxico19.6 / 22.52017G19901ARG-WP. vulgarisWAWArgentina16.6 / 15.52017P. hintonii-P. hintoniiW-México9.5 / 10.62017	ECa104	MEX3	P. vulgaris	D	MD	México	10.1 / 11.2	Bean Adapt Project
ECa330ARG4P. vulgarisDADArgentina13.9 / 13.9Bean Adapt PrECa333BOL2P. vulgarisDADBolivia7.9 / 8.9Bean Adapt PrG24594MEX-WP. vulgarisWMWMéxico19.6 / 22.52017G19901ARG-WP. vulgarisWAWArgentina16.6 / 15.52017P. hintonii-P. hintoniiW-México9.5 / 10.62017	ECa332	ARG3	P. vulgaris	D	AD	Argentina	5.3 / 5.8	Bean Adapt Project
ECa333 BOL2 P. vulgaris D AD Bolivia 7.9 / 8.9 Bean Adapt Properties G24594 MEX-W P. vulgaris W MW México 19.6 / 22.5 2017 G19901 ARG-W P. vulgaris W AW Argentina 16.6 / 15.5 2017 P. hintonii - P. hintonii W - México 9.5 / 10.6 2017	ECa330	ARG4	P. vulgaris	D	AD	Argentina	13.9 / 13.9	Bean Adapt Project
G24594 MEX-W P. vulgaris W MW México Rendòn-Anaya G19901 ARG-W P. vulgaris W AW Argentina 19.6 / 22.5 2017 Rendòn-Anaya Rendòn-Anaya 16.6 / 15.5 2017 Rendòn-Anaya P. hintonii - P. hintonii W - México 9.5 / 10.6 2017	ECa333	BOL2	P. vulgaris	D	AD	Bolivia	7.9 / 8.9	Bean Adapt Project
G19901 ARG-W <i>P. vulgaris</i> W AW Argentina <i>R. hintonii</i> - <i>P. hintonii</i> W - México <i>R. hintonii</i> - <i>P. hintonii</i> W - México <i>R. hintonii</i> 9.5 / 10.6 2017	G24594	MEX-W	P. vulgaris	W	MW	México	19.6 / 22.5	Rendòn-Anaya et al 2017
P. hintonii - P. hintonii W - México 9.5 / 10.6 2017	G19901	ARG-W	P. vulgaris	W	AW	Argentina	16.6 / 15.5	Rendòn-Anaya et al 2017
	P. hintonii	-	P. hintonii	W	-	México	9.5 / 10.6	Rendòn-Anaya et al 2017

677 S7. Analysis of genomic diversity

678

679 To test whether there has been a decrease in genetic diversity due to the history of domestication, we 680 compared levels of diversity between ancient and modern common bean seeds both as individual- and as 681 population-level diversity. Genetic diversity was measured (using only transversions) estimating Watterson's 682 Theta (θ_w) in non-overlapping windows of 10kb, taking into account per-individual inbreeding coefficients 683 and hence accounting for possible deviations from Hardy-Weinberg equilibrium, as proposed by Vieira et al 684 2013. This is a two-step procedure: first, ANGSD v0.916 (Korneliussen et al 2014) was used to call a high 685 confidence SNP set based on GATK genotype likelihoods (-GL 2) including only alignment positions having an 686 associated base and mapping quality score equal or higher than 20 and 30, respectively. To increase the 687 reliability of the called set, we set the bag computation (-bag 1), adjusted the mapping quality in case of 688 excessive mismatches (-C 50), and only retained positions having a high probability to be polymorphic (-689 SNP_pvalue 1e-6), without any missing data. From this set, we randomly sampled 2,000 SNPs without 690 replacement and we used ANGSD to recompute the genotype likelihoods at these positions (-doGlf 3) 691 applying the same quality filters. The program ngsF (Vieira et al 2013) was then used to estimate the 692 individual genome-wide inbreeding coefficient for each accession using default parameters, except for the -693 min_epsilon option that was decreased to 10⁻⁹. The SNP sampling and the estimation of inbreeding 694 processes were repeated five times in order to obtain five independent estimates of the inbreeding 695 coefficient for each individual. The average across replicates was then used as point estimate of each 696 individual inbreeding coefficient.

697

698 We then estimated a site frequency spectrum, using the command -doSaf 2 in ANGSD, to calculate the per-699 site posterior probabilities of the site allele frequencies based on individual genotype likelihoods accounting 700 for the previously estimated inbreeding coefficients. Genotype likelihoods were calculated with the GATK 701 method (-GL 2 option), and a folded spectrum was used (*i.e.*, unknown ancestral state, option -fold 1). 702 Options -minQ 20 -minMapQ 30 -setMaxDepth 50 were applied to filter low quality bases and positions 703 showing excessive coverage, while the option -sites was set to filter for *callable* regions. The option -noTrans 704 1 was applied to all the above steps to systematically remove transitions from the analysis. The output of 705 this command line was then used as input for the calculation of per-site thetas, using the command -706 doThetas 1. Window-based theta estimates were calculated using the command thetaStat do stat. 707 Windows having a proportion of usable sites less than 50% were discarded.

708

Table S4. Estimates of diversity in ancient and modern accession of common bean from Central (Meso) and South (Andean) America.
 The number of 10kb-windows with at least 50% of the region covered is reported.

Manuscript ID	Gene pool	Country	10kb-windows	Θ_w mean	Θ_w median
CHI1	Andean	Chile	24486	1.29E-05	9.62E-08
BOL1	Andean	Bolivia	24686	1.56E-05	0
CHI2	Andean	Chile	24493	1.18E-05	1.73E-07
PER1	Andean	Perú	24597	9.62E-06	8.87E-08
ARG1	Andean	Argentina	24636	1.51E-05	1.18E-08

APC2	Andoan	Argontina	72027	7 445 06	2 005 07
ANGZ	Anuean	Argentina	25027	7.442-00	2.965-07
MEX1	Meso	Mexico	21/49	4.66E-05	9.05E-07
MEX2	Meso	México	20071	2.42E-05	1.06E-06
MEX3	Meso	México	20965	3.86E-05	5.76E-07
ARG3	Andean	Argentina	23674	8.96E-06	1.40E-06
ARG4	Andean	Argentina	24272	1.67E-05	2.35E-06
BOL2	Andean	Bolivia	24491	1.99E-05	4.43E-07
15-CC	Andean	Argentina	15865	3.02E-05	1.72E-05
09-CM	Andean	Argentina	13284	3.78E-04	3.44E-04
01-PD	Andean	Argentina	20897	5.48E-05	5.41E-07
03-GI	Andean	Argentina	15241	1.79E-04	1.50E-04
07-PP	Andean	Argentina	15303	3.40E-05	1.03E-05
14-CM	Andean	Argentina	9372	1.12E-04	9.15E-05
04-CM	Andean	Argentina	9892	8.31E-05	6.10E-05
10-CM	Andean	Argentina	8422	1.80E-04	1.50E-04
08-CM	Andean	Argentina	13130	6.91E-05	4.27E-05
12-CM	Andean	Argentina	16859	1.15E-04	9.23E-05
11-CM	Andean	Argentina	18346	5.08E-05	1.25E-05
13-CM	Andean	Argentina	22600	8.76E-05	3.10E-05
02-CM	Andean	Argentina	21224	4.99E-05	8.47E-06
06-PB	Andean	Argentina	19426	5.51E-04	5.17E-04
05-CM	Andean	Argentina	17519	1.85E-04	1.58E-04
ARG-W	Andean wild	Argentina	24255	4.08E-05	1.93E-06
MEX-W	Meso wild	México	22583	1.51E-03	9.25E-04
G16798 (unpublished)	Andean wild	Argentina	23982	5,38E-05	1,91E-05
G18705 (unpublished)	Andean wild	Argentina	23960	5,33E-05	2,00E-05

713 The genomic variation in ancient beans is compatible with the variation observed in modern wild Argentinean

714 seeds (see also Figure 1b in the main text), larger than that observed in modern domestic seeds with Andean

715 gene pool, and smaller than that found in the Meso-American wild seed (Figure S7).

	THETA VALUES (MEANS)																												
7,44E-06	8,96E-06	- 9,62E-06	1,18E-05	1,51E-05	1,56E-05	1,67E-05	1,99E-05	2,42E-05	 3,02E-05 	a,40E-05	3,86E-05	4,08E-05	4,66E-05	4,99E-05	5,08E-05	5,33E-05	5,38E-05	5,48E-05	6,91E-05	8,31E-05	8,76E-05	1,12E-04	1,15E-04	1,79E-04	1,80E-04	1,85E-04	3,78E-04	5,51E-04	
ARG2	ARG3	PER1	CH12	ARG1	BOL1	ARG4	BOL2	M E X 2	15 - CC	07-PP	M E X 3	ARG-W	M E X 1	02 - CM	11-CM	ARG-W-UNPUB2	ARG-W-UNPUB1	01-PD	08 - CM	04 - CM	13 - CM	14 - CM	12 - CM	03 - G I	10-CM	05 - CM	09 - CM	06-PB	MEX-W

THETA VALUES (MEDIAN) 9 9.25E 5,17E-04 3,44E-04 1,58E-04 1,50E-04 1,50E-04 9,15E-05 9,23E-05 6,10E-05 4,27E-05 3,10E-05 1,40E-06 2,35E-06 8,47E-06 1,03E-05 1,25E-05 1,72E-05 1,91E-05 2,00E-05 1,93E-06 0.00E+00 1,18E-08 8,87E-08 1,73E-07 2,98E-07 4,43E-07 5,41E-07 5,76E-07 9,05E-07 1,06E-06 BOL1 ARG2 B0L2 01-PD M E X 3 MEX2 ARG-W 07-PP 15-CC 05-CM PER1 CH12 MEX1 ARG3 ARG4 SCM S 12-CM 03-GI 11-CM -W-UNPUB1 -UNPUB2 08-CM S 14-CM 10-CM 09-CM 06-PB MEX-W ARG1 02-13-04 -Š ARG -ARG -

Figure S7. Mean (upper panel) and median (lower panel) values of Theta estimates for modern and ancient seeds, in ascending order. Seed codes as in Table S4.

726 The impact of coverage (in callable regions) on heterozygosity estimates cannot be excluded. However, we 727 note that a) the range of coverage in these regions is very similar in the ancient (4.2X - 23.2X); average: 9,0X) 728 as compared to modern (5.8X - 27.7X, average: 12.7X) genomes; b) in the modern genomes data set, 729 excluding the wild Mexican sample (typed at high coverage, and where genomic variation is expected to be 730 much higher than the Andean samples for biological reasons), the increase of coverage from the smaller value 731 (which is >5) does not seems to affect genetic variation in different cultivars (Figure S8, left panel); b) in the 732 ancient genomes data set, 6 seeds with coverage>10 have, on average, a heterozygosity that is one third 733 smaller than the remaining seed at coverage <10 (Figure S8, right panel). There might be therefore a small 734 bias, probably due to the overestimation of theta by the probabilistic ANGSD approach when the coverage is 735 low. Nevertheless, using only the 6 ancient seeds at coverage >10, or only the 10 ancient seeds at coverage >5, 736 the average theta results equal to 1.10E-4 and 1.09E-4, respectively, which is only 23% smaller than the global 737 (15 seeds) average reported in the main text. Most importantly, this value of theta does not change the main 738 pattern identified in our study: 1.1E-4 (or 1.09E-4) is still 8.5 times larger than the average variation in the 739 modern Andean cultivars (1.3E-5), and these differences are highly significant (Mann-Whitney, U<0.001).

720 721 722

723

724 725

741 742

Figure S8. Plots of Theta estimated in modern (left panel) and ancient (right panel) seeds, as a function of the coverage in callableregions.

746 S8. Re-calibrating estimates of modern genomic diversity

747

748 Genomic diversity of each modern accession was likely reduced by the protocols commonly used before 749 whole-genome sequencing, which included a selfing protocol after collecting the seeds from the seed bank. 750 In addition, previous maintenance practices applied at each seed bank could have also affected genome-751 wide diversity. To test whether such very recent events could be the cause of the observed pattern of lower 752 diversity in modern seeds as compared to ancient seeds, we re-estimated whole-genome diversity in pairs 753 of seeds from closely related cultivars. The rationale behind this test is the following. Diversity loss caused 754 by recent seed bank or sequencing protocols occurred at random along the genome in each cultivar, so that 755 each cultivar should have lost a different fraction of its diversity. Taking together two (or more) closely 756 related cultivars should restore most of the variation prior to the stocking into the seed banks. Of course, 757 this estimate is also affected by the possible genetic divergence between the cultivars used in each pair. 758 759 Estimates of diversity (θ_{ν}) in pairs of cultivars should better represent the single cultivar variation before 760 seed bank and sequencing protocols (or even over-estimate, due to cultivar genetic divergence). We 761 selected the two modern Chilean cultivars, already included in all our analyses (see Table S3) and added 762 three cultivars from the same country sequenced within the ERA-CAPS funded project "BeanAdapt: The 763 Genomics of Adaptation during Crop Expansion in Bean" (unpublished; provided by the coordinator of the 764 project, Prof. Roberto Papa, Marche Polytechnic University). We estimated ϑ_w in ten random pairs of seeds. 765 Specifically, we compared average θ_w estimated in three groups of accessions: 10 pairs of Chilean 766 accessions, 12 single modern accessions from South America, and in 15 ancient seeds. Alongside individual

variation, we also compared the distribution of θ_w across all 10kb-windows from each group.

As expected, genome wide diversity in pairs of seeds is higher than in single seeds (Table S5). However,
average modern seed pairs diversity is still more than three times lower (Mann-Whitney U test, *P* = 0.003)
than that estimated in ancient seeds (Table S4). The same pattern appears when considering the
summarized diversity across all 10kb-windows in each group (Figure S5).

Table S5. Estimates of diversity in five accessions from Chile (two of them were also used in the main analyses) and in the ten pairs of Chilean samples. The number of 10kb-windows with at least 50% of the region covered is reported.

7	7	7
7	7	8

10kb-windows	Θ_w mean	Θ_w median
24486	1.29E-05	0.96E-07
24493	1.18E-05	1.73E-07
24524	1.37E-05	0.62E-07
24609	1.57E-05	0.33E-07
24541	1.47E-05	0.94-07
27870	4.33E-05	2.89E-07
27875	4.24E-05	4.43E-07
27912	3.96E-05	1.95E-07
27891	4.63E-05	3.46E-07
27856	4.47E-05	4.89E-07
27903	5.32E-05	3.14E-07
27889	4.32E-05	3.69E-07
27916	4.57E-05	4.07E-07
27888	3.59E-05	4.49E-07
27930	5.61E-05	4.56E-07
	10kb-windows 24486 24493 24524 24609 24541 27870 27875 27912 27891 27856 27903 27889 27916 27888 27930	10kb-windows Θ _w mean 24486 1.29E-05 24493 1.18E-05 24524 1.37E-05 24609 1.57E-05 24541 1.47E-05 27870 4.33E-05 27891 4.63E-05 27893 5.32E-05 27893 5.32E-05 27889 4.32E-05 27889 4.32E-05 27888 3.59E-05 27830 5.61E-05

782Figure S9. Estimates of whole-genome diversity in 15 ancient seeds (Ancient), in 12 modern accession from South America (Andean),783and in 10 pairs of cultivars from the same region (Chile). Distribution of ϑ_w are based on all 10kb-windows across all samples in each784group.

785

786 In order to exclude major effects of selfing before sequencing, we also applied a conservative procedure and 787 increased the heterozygosity values of modern seeds as a function of the number of selfing cycles. We note 788 that our modern cultivar samples are a subsample of the cultivars sequenced during the ERA-CAPS project 789 "BeanAdapt" (see Data accessibility in the main text), used here for comparison. Notably, not all the modern 790 seeds followed in that project the same selfing protocol: some of them were sequenced directly after the 791 collection at the CIAT seed bank, where one cycle of selfing was performed, whereas the other seeds were 792 subjected to two cycles of selfing. More specifically, some modern Andean seeds in our sample (ARG3, ARG4, 793 and BOL2) were subjected to one cycle of selfing, and others (BOL1, CHI1, CHI2, PER1, ARG1, and ARG2) were 794 subjected to two cycles of selfing. Two additional Andean seeds sequenced for the BeanAdapt project (two 795 cultivars from Argentina) were selfed only once, and we included them in this analysis (ARG5 and ARG6). 796 Considering only modern seeds with Andean ancestry, we have therefore 15 ancient seeds (no selfing before 797 sequencing) and 11 modern seeds (5 and 6 with one and two cycles of selfing, respectively).

798

Four out of five modern seeds subjected to one cycle of selfing have a mean θ_w higher than all the modern seeds subjected to two cycles of selfing, and five out five modern seeds subjected to one cycle of selfing have a median θ_w higher than all the modern seeds subjected to two cycles of selfing. This is consistent with the expectation that selfing is reducing heterozygosity as a function of selfing cycles.

803

The original θ_w values for the modern seeds were then doubled or quadrupled (depending on the number of selfing cycles) to conservatively (some level of outcrossing during the procedure cannot be excluded) account for the reduction of variation before sequencing, allowing for a more robust comparison between ancient and modern seeds. Considering the means, 10 out of 15 ancient seeds have a θ_w value larger than the 11 modern seeds. This produces a significant difference between θ_w values (p<0.01, Mann-Whitney U test). Considering the medians, 14 out of 15 ancient seeds have a θ_w value larger than the 11 modern seeds. This produces a significant difference between θ_w value larger than the 11 modern seeds. This

- 811
- 812

813 <u>S9. Structure of the genomic diversity in ancient beans</u>814

815 A haploid calling on all samples (15 ancients, 14 modern) was performed on each chromosome, separately,

816 using ANGSD 0.916 (Korneliussen et al 2014). We set -minQ 20 and -minMapQ 30 to exclude low quality

817 bases and low mapping quality bases; -only_proper_pairs 0 to use all reads (not only reads with both

818 mapping pairs); -dohaplocall 2 to select the most frequent base in the haploid calling (*i.e.*, not a random

819 one); -doCounts 1 to count the bases at each sites after filters; -minMinor 2 to exclude singletons and -

820 noTrans 1 to exclude transitions. The output of the haploid calling was then masked according to the three

821 genomic regions as defined above (*callable, neutral* and *exons*) using *Bedtools intersect* (Quinlan and Hall

822 2010). The fraction of missing calls (after haploid calling) and the total number on variable sites is reported

in Table S6. Higher values in ancient compared to modern genomes can be attributed to the shorted readlength.

825 826

TableS6. Proportion of missing calls after haploid calling in neutral, exons and callable regions. The total number of variable positions across samples is indicated within brackets.

827 828

Manuscript ID	Neutral (500,580)	Exons (335,124)	Callable (3,517,565)
15-CC	0.29	0.09	0.29
09-CM	0.41	0.13	0.33
03-GI	0.30	0.10	0.30
10-CM	0.45	0.13	0.45
02-CM	0.17	0.07	0.15
05-CM	0.27	0.10	0.26
04-CM	0.42	0.11	0.41
14-CM	0.41	0.14	0.41
08-CM	0.33	0.09	0.34
01-PD	0.14	0.06	0.12
07-PP	0.29	0.07	0.30
06-PB	0.25	0.11	0.21
12-CM	0.29	0.09	0.27
11-CM	0.24	0.06	0.23
13-CM	0.13	0.07	0.11
CHI1	0.04	0.03	0.03
BOL1	0.03	0.02	0.02
CHI2	0.05	0.04	0.03
PER1	0.04	0.03	0.02
ARG1	0.04	0.03	0.02
ARG2	0.06	0.04	0.04
MEX1	0.09	0.04	0.05
MEX2	0.11	0.06	0.07
MEX3	0.09	0.03	0.05
ARG4	0.04	0.02	0.02
ARG3	0.07	0.06	0.05
BOL2	0.05	0.04	0.03
ARG-W	0.04	0.03	0.03
MEX-W	0.07	0.03	0.04

829

830

831 The main components of the genetic diversity and the eventual admixture proportion in all samples were 832 inferred by Admixture analyses (Alexander and Novembre 2009; Supplementary Figure S10). This analysis 833 was performed using the haploid data after combining all chromosomes in one file. As Admixture input is 834 binary Plink (.bed) or ordinary Plink (.ped), the haploid data was converted in tped format (Plink transposed 835 text genotype table), using the haploToPlink function implemented in ANGSD. Non biallelic sites were 836 excluded. This file was then converted to bed format, using –make-bed option in plink-1.90 (Chang et al 837 2015). The option –bp-space 50000 was added in order to select one SNP every 50kb (thinning) and 838 minimize the effect of linkage disequilibrium in the Admixture analysis. We tested k values from 1 to 15, and 839 cross validation error (Alexander and Lange 2011) was calculated for each k value, adding --cv flag to the 840 command line. Cross validation plots and admixture plots (for each K value) were created in R 841 (Supplementary Figure S10).

844Figure S10. Structure of the genetic diversity and cross-validation error inferred using three different genomic regions (*callable:* solid845line, *exons:* large dashed line, *neutral:* small dashed line). For all genomic regions k = 3 represented the nest fitting model. Ancient846domesticated Andean (red), modern domesticated Andean (blue) and Mesoamerican (green), wild Andean (pale blue) and847Mesoamerican (pale green).

848

849 The output of the haploid calling masked according to the three genomic regions was also used to calculate 850 per chromosome pairwise genetic distances across all modern and ancient individuals using a custom *awk*

script (available at https://github.com/anbena/ancient-beans). Per-chromosome distances were then
 combined into a single genome-wide distance matrix, which was used to reconstruct a Neighbor-Joining

853 tree using the *ape* package in *R* (Paradis et al 2004). Trees were visualized with FigTree

854 (http://tree.bio.ed.ac.uk/software/figtree). As in the Admixture analysis, the three genomic regions

produced almost identical results (the Neighbor-Joining tree based on callable region only is presented inFigure 1d in the main text).

857

858 Population structure was also inferred using the method implemented in FineStructure (Lawson et al 2012; 859 Figure S11). The pattern of similarity and dissimilarity between haploidized individuals can be visualized by 860 a distance matrix, and discrete populations can be separated by a cladogram. This method is able to capture 861 at least as much information as that captured by other exploratory analyses such as PCA and Structure, but 862 it also has the advantage to help identifying the pattern of population structure and to combine the 863 information at linked markers. The latter advantage is of course reduced, or absent, in our haploidized data 864 set. We used Plink to filter the dataset in order to exclude any variable position with missing data (not 865 allowed in FineStructure) and the plink2chromopainter.pl conversion script to prepare the input file to run 866 the FineStructure pipeline. In the first step of the pipeline, haplotype blocks are "painted" (Li and Stephens 867 2003) according to the nearest (in terms of genetic distance) individual in the sample (chromosome painting 868 step). Painting results are then employed to build a distance matrix summarizing the blocks similarity 869 between all pairs of individuals. The distance matrix is, in turn, the basis of a Bayesian clustering approach

aiming at partitioning the sample into *K* homogeneous groups (Supplementary Figure S11).

Figure S11. Finestructure analysis based on callable genomic region (483885 SNPs). Ancient domesticated Andean (red), modern
 domesticated Andean (blue) and Mesoamerican (green), wild Andean (pale blue) and Mesoamerican (pale green).

874

875 **S10.** Loss and recovery of variation after domestication?

876 Here we briefly support the view that the heterozygosity in the ancient seeds is comparable to that observed 877 in the wild seeds because of a smaller or negligible drift effect during the initial phases of domestication, and 878 not as a consequence of a strong bottleneck during domestication and subsequent recovery by mutation. 879 Let's assume an individual heterozygosity of 1/10000 in an ancient seed at 2500 BP (the order of magnitude 880 we observe). If a severe bottleneck occurred around the initial phases of domestication (say 8000 BP), 881 followed by expansion, the coalescence tree of two homologous bases in the ancient seed would likely 882 coalesce at 8000 BP, i.e, 5500 year earlier. Then, if we equate individual heterozygosity with the expected 883 difference between the two bases (10-4), the transversion rate per base pair per year should take a value of 884 almost 10-8/base/year (10-4/(2x5500) = 0.91x10-8). This rate is more than one order of magnitude larger 885 than what can be estimated by, for example, comparing P. vulgaris with P. hintonii (separated 5MYA, Delgado-886 Salinas et al., 2006), which we estimated at 0.72x10-9/base/year using only transversions in a pairwise 887 comparison between P. hintonii and the Mexican reference genome for P. vulgaris). In other words, it seems 888 very unlikely that if a bottleneck occurred, a significant fraction of the variation was recovered after 5500 889 years, unless a much higher transversion rate than currently estimated is assumed.

- 890
- 891
- 892

- 893
- 894
- 895
- 896

897 <u>S11. Gene-focused scan for signature of ancient and/or recent selection</u>

A gene-by-gene selection scan was performed to identify genes targeted by artificial selection during early and/or late stages of domestication. A gene underlying a desirable trait is expected to have undergone one or more selective sweeps targeting specific alleles coupled with recurrent hitchhiking at linked neutral sites. Selected genes will then accumulate variants which are either directly advantageous or got fixed because of locally low effective population size due to linked selection (Slotte 2014, Renaut and Rieseberg 2015, Beissinger et al 2016). We then expect to find an excess of fixed differences at genes under selection when samples of pre (*i.e.*, wild) and post domestication populations are compared.

906

907 Leveraging our ancient data, we tested each of the 27,000 genes for a significant enrichment of fixed 908 alternative alleles in two possible configurations. The first configuration is AS (Ancient Selection), indicated 909 by the topology in the left panel in Figure 2A (main text), where all the ancient + modern Chilean samples 910 have the same allele, and the wild samples (one wild Andean P. vulgaris and one P. hintonii as wild 911 outgroup) have the alternative allele. We expect AS to be frequent within genes that experienced changes 912 before 2,500 years ago. The second configuration is RS (Recent Selection), indicated by the topology in the 913 right panel in Figure 2B (main text), where all modern Chilean samples have the same allele, and all the 914 other samples (ancient + wild samples) have the alternative alleles. We expect RS to be frequent within 915 genes that experienced changes in last 600 years, i.e., more recently than the estimated age interval for the

- 916 ancient seeds.
- 917

918 Clearly, the enrichment of AS or RS allelic configurations (corresponding to the different topologies based 919 on fixed differences) depends on many factors beside the selection dynamic, such as the sample sizes and 920 the drift intensity in different time intervals. We therefore used a randomization procedure that keeps 921 constant the groups, their sample sizes, and the total number of SNPs, but randomly assigns the SNPs to the 922 genes. The relative frequency of SNPs with fixed differences in AS and RS topologies, computed after this 923 randomization, becomes our null hypothesis, which is used to test if the observed frequencies of such 924 topologies in each gene are higher than expected by chance.

925

926 In particular, we applied the following protocol: 1) for 27,000 genomic region each identified by a gene and 927 10 kb before and after it, we counted the proportion of fixed differences in the AS and the RS configuration; 928 2) we randomly re-assigned each SNP found in the real dataset (including the modern seeds from Chile, the 929 ancient seeds from Argentina, the wild seed and the outgroup) to the 27,000 regions; 3) we estimated from 930 different random assignment runs the proportion of AS and RS configurations expected by chance in a 931 "average" genomic region; 4) we used the proportion estimated in point 3 as the null hypothesis, and 932 applied a binomial test to each proportion observed in the real genes (point 1) to compute a p-value of 933 significant enrichment of that particular configuration; 5) we converted the *p*-values in *q*-values (False 934 Discovery Rate, FDR) using the *python* function qvalue.py

- 935 (https://github.com/nfusi/qvalue/blob/master/qvalue/qvalue.py) based on (Storey and Tibshirani, 2003); 6)
- only genomic regions with a FDR<0.001 were initially considered as genes significantly enriched in a
 particular topology (see Supplementary Figure S12); 7) finally, we applied an additional conservative
- 938 criterion to filter each list of AS and RS enriched genes, and retained only those genes with numbers of fixed
- 939 differences within the coding region and a 1kb region upstream and downstream the gene higher than a
- 940 threshold defined by the 99-percentile of all the 27,000 genes.
- 941

942 The procedure we applied is highly conservative, and we likely missed genes where the selection process 943 may have modified the allelic compositions. It allows however to significantly reduce the rate of false 944 positives, and to correctly estimate the relative proportion of genes with relevant modifications before and 945 after the time interval defined by the ages of the seeds we analyzed, respectively.

- 947 We found 360 and 86 genes with a significant enrichment of SNPs in the AS and RS topology, respectively,
- 948 with a AS/RS ratio = 4.2. We also estimated the ratio of ancient vs. modern sweeps considering the
- 949 hypothesis that different genes on the same linkage block may produce a signal of selection without being
- 950 effectively selected. Partially following the approach used by Schmutz et al (2014), we merged all AS or RS
- 951 genes in our study if they were separated by less than 40kb, and we considered these extended regions as
- 952 anciently selected regions (ASR, i.e., ancient sweeps) or recently selected regions (RSR, i.e., recent sweeps).
- 953 The number of ASR and RSR is of course smaller than AS and RS, but the ratio between ancient and recent
- 954 sweeps is very similar:161 vs. 46 for ASR and RSR, respectively, with a ratio of 3.5. If the maximum distance 955 allowed to merge genes was increased from 40kb to up to 150kp, the ratio ASR/RSR remains larger than 3.1.
- 956
- 957 Considering the ancient seeds as a single population, we estimated Tajima's D (Tajima, 1989) along the
- 958 genome and compared it with the position of ancient selection signals (AS) identified by our previous test.
- 959 Using the same pipeline applied in section S7 to estimate genomic diversity in groups of seeds (i.e, 960
- command thetaStat do stat in ANGSD 0.916), we computed Tajima's D in non-overlapping 10kb genomic 961 windows. This is a one-sample test (i.e., it is not based on the divergence among groups), and negative
- 962 values from this test can be therefore considered as additional evidence of selection which is independent
- 963 from the results of the ad hoc test we developed. Using a threshold of -1.25 to identify Tajima's D values
- 964 supporting a sweep (this threshold was chosen so to have a comparable numbers of candidate
- 965 windows/genes in both tests), we found that 66 out of 360 (18.3%) genes (including 50Kb before and after
- 966 the gene) show both a signature of ancient selection in our test and a Tajima's D score smaller than -1.25.
- 967 As a comparison, 73 out of 678 (10.8%) Andean domestication genes identified in Schmutz et al (2014)
- 968 show also a Tajima's D score smaller than -1.25. When blocks around AS genes are defined including 50 kb 969 upstream and downstream of the gene, and the same is done for the genes identified in Schmutz et al
- 970 (2014), 25 blocks are shared among studies and also overlap with the windows with reduced Tajima's D 971 (<1.25).
- 972 The chromosomal position of the selective sweeps that may result from domestication found in our data 973 was visually compared in Supplementary Figure S13 with those inferred in Schmutz et al, (2014) and with 974 the Tajima's D candidate windows Several chromosomal regions (e.g, beginning of chromosome 1; between 975 46 and 48 Mb in chromosome 2; between 36 and 38 Mb in chromosome 7; end and beginning of 976 chromosome 8) show co-localization of the selection signals, pointing to regions that deserve specific 977 attention in further studies. The ASR/RSR ratio considering only the blocks that overlap with the sweeps
- 978 inferred in Schmutz et al, (2014) is 12.5 (25/2) and 5.9 (41/7) applying a strict overlap criterion or extending 979
- the blocks to 50kb upstream and downstream, respectively.
- 980 The two final lists of genes showing signature of AS and/or RS were grouped into functional clusters using 981 the web-based software David (Huang et al 2009). For this analysis, we could only use genes with a known 982 ortholog in A. thaliana (317 and 72 for the ancient and the recent selection targets, respectively, excluding 983 multiple matches with the same A. thaliana orthologs). We used the functional enrichment score estimated 984 by David only to rank the functional clusters found in the two lists of genes without excluding any cluster. 985 Analyses were also replicated using the genome of a wild Mesoamerican P. vulgaris as outgroup instead of 986 P. hintonii (Table S7), with 65% and 68% of the genes in the first set (with P. hintonii as outgroup) found as 987 AS and RS in the second set (using Mesoamerican P. vulgaris as outgroup). In this case, the ratios AS/RS and 988 ASR/RSR reduced to 2.3 and 2.1 respectively, still indicating that at least twice as many selection events 989 occurred before the time period covered by the ancient seeds. The reduction of this ratio is almost entirely 990 due to an increase of genes classified as RS (147) or RSR (75), whereas AS genes and ASR regions remain 991 approximately constant (333 and 160, respectively). If RS (and RSR) topologies with the P. hintonii outgroup 992 are likely related to real changes occurring in genes in recent centuries (because modern seeds are 993 genetically differentiated from genes conserved in wild and ancient beans, which are still similar to the 994 distantly related outgroup P. hintonii), RS (and RSR) topologies may increase when a wild Mesoamerican P. 995 vulgaris is used as outgroup because of incomplete lineage sorting within the P. vulgaris species. When the 996 wild Mesoamerican P.vulgaris is used as outgroup, the ASR/RSR ratio for the blocks that overlap with 997 sweeps inferred in Schmutz et al, (2014) becomes 6.5 (26/4) and 4.1 (45/11) applying a strict overlap 998 criterion or extending the blocks to 50kb upstream and downstream, respectively.
- 999
- 1000

absolute number of SNPs, see above) is indicated as a solid line in each panel.

Figure S12. Observed (in color) and null (gray) distribution of proportion of SNPs per gene in AS (red, top panel) or RS (blue, bottom

panel) topology used as summary statistics in the selection scan. The lowest fraction of AS or RS topologies in the selected genes

(after using the FDR threshold of q<0.001, and before the implementation of the additional conservative filter based on the

1010
1011Figure S13. Candidate genes as selected during ancient (AS, red) and recent (RS, blue) domestication stages identified by our test,
and genes suggested as candidates for selection during domestication in the Andes (Schmutz et al 2014, dark green). Genomic
windows with a Tajima's D smaller than -1.25 are also shown (red dots)

1015

1016 **<u>S12. References</u>**

- 1017
- Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation.
 BMC Bioinform. 12, 246 (2011).
- Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals.
 Genome Res. 19, 1655-1664 (2009).
- 1022 Babot, P., Aguirre, M.G. & Hocsman, S. Aportes del sitio Punta de la Peña 9 (Puna de Catamarca) acerca de la
- 1023 producción y usos prehispánicos de quinua. In: *Libro de Resùmenes del Simposio Internacional de la Quinua*.

1024 Universidad Nacional de Jujuy, Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones y
 1025 Transferencia de Jujuy, 65-66, (CONICET, 2013).

- 1026 Babot, P., et al.Ocupaciones agropastoriles en los sectores intermedios de Antofagasta de la Sierra
- 1027 (Catamarca): un análisis desde Punta de la Peña 9.1. *Comechingonia* **9**,57-78 (2006).
- 1028Babot, P. La cocina, el taller y el ritual: explorando las trayectorias del procesamiento vegetal en el Noroeste1029argentino. Darwiniana 47, 7-30 (2009).
- Baldini, M., Baffi, E., Salaberry, M.&Torres, M. Candelaria: una aproximación desde un conjunto de sitios
- 1031 localizados entre los cerros de Las Pirguas y El Alto del Rodeo (Dto. Guachitas, Salta, Argentina). In: La mitad
- 1032 verde del mundo andino. Investigaciones arqueológicas en la vertiente oriental de los Andes y las Tierras
- 1033 Bajas de Bolivia y Argentina (eds. Ortiz, G. & Ventura, B.)131-151 (Universidad Nacional de Jujuy,, 2003)
- Beissinger, T. M., et al. Recent demography drives changes in linked selection across the maize genome. *Nat. Plants* 2, 16084 (2016).
- Bolger, A. M., Lohse, M., & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114-2120 (2014).
- 1038 Chang, C. C., et al. Second-generation PLINK: rising to the challenge of larger and richer datasets.1039 *Gigascience* 4, 7 (2015).
- Delgado-Salinas, A., Bibler, R., & Lavin, M. Phylogeny of the Genus Phaseolus (Leguminosae): A Recent
 Diversification in an Ancient Landscape. *Systematic Botany* **31**, 779-791 (2006).
- 1042 Gambier, M. *La cultura de Ansilta* (San Juan, Instituto de Investigaciones Arqueológicas y Museo UNSJ,1043 1977).
- Gambier, M. *La fase cultural Punta del Barro* (Instituto de Investigaciones Arqueológicas y Museo, Facultad
 de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan, 1988)
- 1046 Gambier, M. *Prehistoria de San Juan*. (Ansilta, 2000).
- Gil, A. F., Neme, G.A & Tykot, R. H. Isótopos estables y consumo de maíz en el Centro Occidente Argentino:
 Tendencias temporales y espaciales. *Chungara* 42, 497–513 (2020).
- Gil, A. F., Giardina, M. A., Neme G. A. & and Ugan A. Demografía humana e incorporación de cultígenos en
 el centro occidente argentino: Explorando tendencias en las fechas radiocarbónicas. *Rev. Esp. de Antropol. Am.* 44,523–553 (2014).
- Guo, X., et al. Rapid evolutionary change of common bean (*Phaseolus vulgaris L*) plastome, and the genomic
 diversification of legume chloroplasts. *BMC Genomics* 8, 228 (2007)
- Hofreiter, M., Collins, M., & Stewart, J. R. Ancient biomolecules in Quaternary palaeoecology. *Quat. Sci. Rev.* **33**, 1-13 (2012).
- Huang, D.W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID
 Bioinformatics Resources. *Nat. Protoc.* 4, 44-57 (2009).

- 1059 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L., & Orlando, L. mapDamage2. 0: fast approximate 1060 Bayesian estimates of ancient DNA damage parameters. *Bioinformatics* **29**, 1682-1684 (2013).
- Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. ANGSD: analysis of next generation sequencing data. *BMC Bioinform*.15, 356 (2014).
- 1063 Lagiglia, H. Nuevos fechados radiocarbónicos para los agricultores incipientes del Atuel. In: Actas del XII
- 1064 *Congreso Nacional de Arqueología Argentina*(ed.Marín, C. D.), **3**,239-250 (Universidad Nacional de La 1065 Plata,1999).
- Lawson, D. J., Hellenthal, G., Myers, S., & Falush, D. Inference of population structure using dense haplotypedata. *PLoS Genet.* 8, e1002453 (2012).
- Lema, V. Domesticación vegetal y grados de dependencia ser humano-planta en el desarrollo cultural pre
 hispánico del Noroeste argentino. PhD Thesis at Universidad Nacional de La Plata, Argentina, 2009.
- 1070 Lema, V. Confluencia y emergencia: domesticación y prácticas de manejo del entorno vegetal en la
- 1071 frontera. In: Actas del XVII Congreso Nacional de Arqueología Argentina Arqueología Argentina en el
- 1072 *Centenario de la Revolución de Mayo* (eds. Bárcena, R. & Chiavazza, H.), **3**, 1043-1048 (2010).
- 1073 Lema, V. Non domestication cultivation in the Andes: plant management and nurturing in the Argentinean1074 Northwest. *Veg. Hist. Archaeobot.* 24, 143-150 (2015).
- 1075 Lema, V. Geografías y prácticas: plantas que circulan, que se quedan y que se van para no volver. In
- 1076 Arqueología de la vertiente oriental surandina: interacción macro-regional, materialidades, economía y
- *ritualidad* (eds.Ventura, B.,Ortiz G. & Cremonte, B.) 267-276 (Sociedad Argentina de Antropología, BuenosAires, 2017).
- 1079 Li, H., & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. *Bioinformatics*1080 **25**, 1754-1760 (2009).
- 1081 Li, H., et al. The sequence alignment/map format and SAMtools. *Bioinformatics* **25**, 2078-2079 (2009)..
- Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single nucleotide polymorphism data. *Genetics* 165, 2213-2233 (2003).
- 1084 Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. *BMC Res. Notes* 5, 3371085 (2012).
- Long, A., Martin, P. & Lagiglia, H. Ground sloth extintion and human occupation at Gruta del Indio,
 Argentina. *Radiocarbon* 40, 693-700 (1988).
- 1088 López Campeny, S.M.L., Romano, A.S. & Aschero, C.A. Remodelando el Formativo. Aportes para una
- 1089 discusión de los procesos locales en las comunidades agropastoriles tempranas de Antofagasta de la Sierra
- 1090 (Catamarca, Argentina). In: Crónicas materiales precolombinas. Arqueología de los primeros pobladores del
- 1091 *Noroeste argentino*, 313-353 (Sociedad Argentina de Antropología, Buenos Aires, 2017)
- 1092 McKenna, A., Hanna, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-1093 generation DNA sequencing data. *Genome Res.*, **20**, 1297-1303 (2010).
- 1094 Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and 1095 sequencing. *Cold Spring Harb. Protoc.*, 2010, pdb-prot5448 (2020).
- 1096 Michieli, C. T.. *Arqueología de Angualasto: historia, ruinas y cóndores* (Facultad de Filosofía, Humanidades y
 1097 Artes Universidad Nacional deSan Juan, 2015).
- 1098 Michieli, C. T. Aprovechamiento del agua en las instalaciones "Aguada" de la Provincia de San Juan: nuevas
- 1099 evidencias. Anti, perspectivas y proyectos culturales de América. 85-98 (Inter-American Committee on Ports
- 1100 Buenos Aires, 2016).

- 1101 Oliszewski, N., Martínez, J.G., Arreguez, G., Gramajo Bühler, M. & Naharro, E. "La transición" vista desde los
- 1102 valles intermontanos del noroeste argentino: nuevos datos de la Quebrada de Los Corrales (El Infiernillo,
- 1103 Tucumán, Argentina). *Chungara Revista de antropología Chilena* **50**,71-86 (2018).
- Oliszewski, N., Martínez, J. & Caria M. Ocupaciones prehispánicas de altura: el caso de Cueva de los
 Corrales 1 (El Infiernillo, Tafí del Valle, Tucumán). *Relac. Soc. Argent. Antropol.* 33, 209-221 (2008).
- Oliszewski, N. & Arreguez G. Los recursos vegetales alimenticios de la Quebrada de Los Corrales en El
 Infiernillo, Tucumán, durante el 1° milenio d.C. *Comechingonia* 19111-140 (2015).
- 1108 Oliszewski, N. & Babot P. Procesos de selección del poroto común en los valles altos del noroeste argentino
- 1109 en tiempos prehispánicos. Análisis micro y macroscópico de especímenes arqueobotánicos. In: Avances y
- 1110 desafíos metodológicos en arqueobotánica: miradas consensuadas y diálogos compartidos desde
- *Sudamérica* (eds.Belmar C. & Lema, V.) 301-324 (Facultad de Patrimonio Cultural y Educación Universidad
 SEK Chile, 2015).
- Paradis, E., Claude, J., & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. *Bioinformatics* 20, 289-290 (2004).
- 1115 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
 1116 *Bioinformatics* 26, 841-842 (2010).
- Reimer, P.J., et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP.
 Radiocarbon 51,1111–50 (2009).
- 1119 Renaut, S. & Rieseberg, L. H. The accumulation of deleterious mutations as a consequence of domestication 1120 and improvement in sunflowers and other compositae crops. *Mol. Biol. Evol.* **32**, 2273-2283 (2015).
- 1121 Rendón-Anaya, M., et al. Genomic history of the origin and domestication of common bean unveils its 1122 closest sister species. *Genome Biol* **18**, 60 (2017)..
- Rodríguez, M.F. Los grupos humanos y las plantas en la Puna meridional argentina: arqueobotánica de
 Antofagasta de la Sierra. *Intersecciones en Antropología* 14, 315-339 (2013).
- Roig, Fidel A. Frutos y semillas arqueológicos de Calingasta, San Juan. In: *La cultura de Ansilta*.(ed. Gambier,
 M.) 216-250 (Instituto de Investigaciones Arqueológicas y Museo San Juan, 1977).
- Schmutz, J., et al. A reference genome for common bean and genome-wide analysis of dual domestications.
 Nat. Genet., 46, 707 (2014).
- Schubert, M., et al. Characterization of ancient and modern genomes by SNP detection and phylogenomicand metagenomic analysis using PALEOMIX.*Nat. Prot.* 9, 1056 (2014).
- Semper, J. & Lagiglia, H. Excavaciones arqueológicas en el Rincón del Atuel. *Revista Científica de Investigaciones* 1,89-158 (1968).
- Slotte, T. The impact of linked selection on plant genomic variation. *Brief. Funct. Genom.*, 13, 268-275(2014).
- 1135 Somonte, C. & Cohen, M. L. Reocupación y Producción Lítica: un aporte a la historia ocupacional de los
- recintos 3 y 4 del sitio agropastoril Punta de la Peña 9 Sector III (Antofagasta de la Sierra, Catamarca,
 Argentina). *Revista Werken* 9,135-158 (2006).
- Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. *Proc. Natl. Acad. Sci. U.S.A.* 100,
 9440-9445 (2003).
- Tajima, F. "Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism." *Genetics* **123**: 585–95 (1989).
- 1142 Vieira, F. G., Fumagalli, M., Albrechtsen, A., & Nielsen, R. Estimating inbreeding coefficients from NGS data:
- 1143 impact on genotype calling and allele frequency estimation. *Genome Res.* 23, 1852-1861 (2013)