
1.  Introduction
This paper considers directional sensitivity aspects of distributed fiber-optic acoustic sensing (DAS) cables em-
ployed to probe seismic waves. We provide a unified framework that bridges classical array seismology with DAS 
array processing to be applied by experts as well as novices from these disciplines.

Array-based methods have been used in seismology since the late 1950s and were adapted from radio astronomy, 
radar, acoustics, and sonar (Schweitzer, 2014). Seismic arrays (e.g., Rost & Thomas, 2002, 2009; Schweitzer 
et al., 2021) have the benefit of both improving the signal-to-noise ratio (SNR) of a seismic phase onset, whilst 
also providing information on the direction-of-arrival for an incoming signal. Applications of seismic arrays are 
wide ranging and include the monitoring of nuclear explosions, analyzing volcanic tremors, determining earth 
structure, and more recently, monitoring of induced seismicity (Oye et al., 2021).

Abstract  Distributed Acoustic Sensing (DAS) involves the transmission of laser pulses along a fiber-optic 
cable. These pulses are backscattered at fiber inhomogeneities and again detected by the same interrogator unit 
that emits the pulses. Elastic deformation along the fiber causes phase shifts in the backscattered laser pulses 
which are converted to spatially averaged strain measurements, typically at regular fiber intervals. DAS systems 
provide the potential to employ array processing algorithms. However, there are certain differences between 
DAS and conventional sensors. While seismic sensors typically record the directional particle displacement, 
velocity, or acceleration, the DAS axial strain is inherently proportional to the spatial gradient of the axial 
cable displacement. DAS is therefore insensitive to broadside displacement, for example, broadside P-waves. 
In classical delay-and-sum beamforming, the array response function is the far-field response on a horizontal 
slowness (or wavenumber) grid. However, for geometrically non-linear DAS layouts, the angle between 
wavefront and cable varies, requiring the analysis of a steered response that varies with the direction of arrival. 
This contrasts with the traditional array response function which is given in terms of slowness difference 
between arrival and steering. This paper provides a framework for DAS steered response estimation accounting 
also for cable directivity and gauge-length averaging – hereby demonstrating the applicability of DAS in array 
seismology and to assess DAS design aspects. It bridges a gap between DAS and array theory frameworks and 
communities, facilitating increased employment of DAS as a seismic array, while providing building blocks for 
the development of DAS array design tools.

Plain Language Summary  This study considers optical fiber sensors to probe seismic waves. Laser 
light is emitted into the cable. Processing the signals encoded in the light returning back to the transmitter, 
we can resolve the effect of seismic waves on the cable. However, the optical cable is insensitive to waves 
arriving from broadside to the cable and the sensitivity is reduced for waves not arriving along the cable axis. 
Hence, there is a directional sensitivity to consider in the signal processing and in assessing the wavefield 
probing capability. This sensitivity depends on the cable layout geometry. In classical array processing with 
conventional sensors, the directivity is typically equal for all sensors. Here, the array response – a function of 
the array sensor layout – can be utilized to estimate the array's capability to resolve the direction of arrival of 
seismic waves. We demonstrate how to take this cable directivity into account when assessing the distributed 
optical sensing system direction of arrival resolution. Our tools can be applied when assessing cable layouts. 
In this work, we bridge the gap between classical array signal processing and the emerging field of distributed 
acoustical sensing system signal processing, allowing well-established processing tools to be applied.
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A seismic array is a collection of spatially distributed sensors. Typically, the array element traces are processed 
collectively through a stacking procedure, rather than treated as individual signals. For a distant source, the in-
coming wavefield should be spatially coherent across the array, lending itself to advantageous signal processing 
routines that can serve as spatial filters to focus the reception toward a preferred direction-of-arrival. Array-based 
signal processing techniques include variations of delay-and-sum beamforming (implemented in either the tem-
poral or frequency domain) including the evaluation of the array output as a function of direction-of-arrival (often 
mapped to its corresponding horizontal slowness components, wavenumber components, or using a backazimuth 
and trace velocity parameterization). These methods typically extract both the coherency and the directivity 
information that can be derived from array observations (see, e.g., Krim & Viberg, 1996; Uncini,  2015; van 
Trees, 2004, for overviews and fundamental array signal processing theory). From a processing efficiency per-
spective, it is often convenient to implement the algorithms in the frequency-wavenumber (f–k) domain where 
time-delaying a signal corresponds to multiplication by a phase factor, rather than performing the calculations in 
the time domain (Capon, 1969). The f–k family of implementations have also been extended to allow for broad-
band signal analysis (Gal et al., 2014; Kvaerna & Doornbos, 1986). In array seismology, the term f–k analysis is 
sometimes used in a more general sense to refer to any estimation of array output as a function of slowness and 
its display on a two-dimensional (sx, sy) grid.

The instrumentation used for seismic arrays have traditionally been single or three-component broadband seis-
mometers. In the case of targeting higher frequency signals with a requirement for portability, geophone arrays 
have proved a cheaper and more flexible alternative. For single-component instruments, the sensor directly meas-
ures changes in ground motion along one direction, at a specific location. For three-component instruments the 
combination of sensors probe the ground motion in all directions, also at a specific location.

DAS is an alternative type of instrumentation based on detecting localized deformation of a fiber-optic cable, 
which in the context of seismology could be caused by a passing seismic wave. A laser pulse is transmitted along 
the fiber, where randomly distributed inhomogeneities cause Rayleigh backscattering, which are then detected 
by an interrogator unit. Changes in the phase of the backscattered light are proportional to any fiber deformation 
that occurs, allowing the strain-rate to be measured at high spatial and temporal resolution along the length of the 
fiber (Zhan, 2020). At present, measurements have been made up to 171 km along a fiber (Waagaard et al., 2021), 
demonstrating the potential for cable deployments capable of monitoring a broad range of length scales.

Although single-mode optical fibers have been in use since the early 1960s, the use of Rayleigh-backscattered 
light for the purposes of DAS was established only within the last two decades. DAS has a diverse set of applica-
tions which extend beyond traditional seismological monitoring. These include borehole monitoring of subsur-
face reservoirs using active seismic (Daley et al., 2016), microseismic monitoring of hydraulic fracture stimula-
tions (Baird et al., 2020), glacial microseismicity (Hudson et al., 2021; Walter et al., 2020), time-lapse monitoring 
using the ambient noise field (Dou et al., 2017), urban ambient noise characterization (Zhao & Li, 2020), border 
control and security applications (Juarez & Taylor, 2007), onshore pipeline monitoring (Tejedor et al., 2017) and 
railway and highway monitoring (e.g., Chambers, 2020; Peng et al., 2014).

Moreover, the extensive infrastructure of unutilized telecommunication fiber provides huge potential for various 
geophysical monitoring applications (e.g., Ajo-Franklin et al., 2019) with even existing underwater cables able 
to be repurposed for monitoring in challenging marine environments (Lior et al., 2021; Williams et al., 2019). 
Optical cable-based systems have also been employed in atmospheric acoustics related studies, for example, 
looking at thunder-induced ground motion using DAS (Zhu & Stensrud, 2019). Even without exploiting the array 
sensing opportunities offered by DAS, optical cables can be used for a wide range of geophysical investigations, 
for example, as demonstrated in atmospheric infrasound studies (Costley et al., 2013; Zumberge et al., 2003) and 
in detecting ocean waves and seismic shaking (Zhan et al., 2021).

Given the great flexibility in how and where a fiber-optic cable can be deployed, the extent along a cable for 
which measurements can be made, and that the sensors are distributed along its length, there is significant poten-
tial for using DAS for seismic array processing. As such, several very recent studies have analyzed various aspects 
of applying beamforming algorithms to DAS array measurements. van den Ende and Ampuero (2021) compared 
the beamforming performance for a DAS array to the performance of a co-located conventional array, finding that 
the DAS array provided excellent localization of a regional earthquake, albeit with a decreased waveform coher-
ence compared to the conventional array. Nayak et al. (2021) exploited a large-aperture DAS configuration, which 
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in the signal processing pipeline was forked into several sub-arrays, for which individual beamforming recipes 
were applied to generate one short-term/long-term average detection statistic for each sub-array. These were then 
piped into a voting detector that was capable of detecting minor earthquakes with great accuracy. Further, it was 
shown by Nayak et al. (2021) that DAS beam-power could be used to discriminate between phase arrivals using 
time-slowness vespagrams for 2 km aperture sub-arrays. Paitz et al. (2019) investigated the relations between the 
wave equation solution and interferograms based on displacement, strain, or rotation. Their theory is applicable to 
the DAS context and can also incorporate gauge length averaging effects. Moreover, Martin et al. (2021) analyze 
key differences between DAS and geophone plane-wave measurements, highlighting, for example, ambient noise 
interferometry and inter-receiver correlation aspects. Recently, Klaasen et al. (2021) used a DAS deployment to 
study an active volcanic complex. They applied a beamforming recipe where only sensors with an SNR above 
half the maximum sensor SNR were included in the stacking, hence excluding cable segments with unfavorable 
direction-dependent sensitivity.

In considering array applications for DAS, one must first consider its unique signal characteristics and the im-
plications therein. As underlined above, DAS measures the relative deformation between two material points, 
that is, the strain, or its temporal derivative which is the strain-rate (Rodriguez & Wuestefeld, 2020). This is 
fundamentally different from the single point measurements of pressure, displacement or velocity provided by 
microbarometers, seismometers or geophones (see Section 2) typically used for array processing. Consequently, 
because a DAS cable can only sense the axial component of the displacement gradient (the directional derivative), 
it is only sensitive to the component of propagating P-waves that is parallel to the local orientation of the cable. 
This sensitivity renders DAS blind for P-waves arriving broadside to the cable as well as for S-waves arriving 
along the axial direction.

In practice, the strain is measured over a pre-selected gauge length (Mateeva et al., 2014), which corresponds to 
an effective sensor length over which the average strain is estimated. Longer gauge lengths increase the signal-
to-noise ratio, while a shorter gauge length reduces the spatial smearing (see Section 2.1.2) while also allowing 
for higher frequency waves to be recorded. The spacing of these virtual sensors, typically referred to as channels, 
is determined by the length of the laser pulse. Since their spacing can be smaller than the gauge length, it is also 
possible to have overlapping channels defined along the fiber.

Thus, to apply array processing techniques to DAS data, we must account for the inherent differences in signal 
type and measurement principle. The sensitivity and resolution of a seismic array to plane waves of different 
frequencies and slowness is traditionally assessed in terms of the array response function which is controlled 
by the aperture, sensor spacing, number of sensors, and overall geometry of the array. In this paper we look in 
detail at how DAS signals will influence the array response function. The three key features specific to DAS that 
determine the directional response to ground motion are: (a) the spatial layout of the virtual sensors of the array; 
(b) the directional sensitivity of the fiber; (c) the gauge length averaging of the strain rate measurements. This 
paper formulates a consolidated theory which takes these three effects into account, using well-established array 
processing frameworks. This allows for designing optimum array geometries and other processing and configu-
ration aspects for DAS systems.

There are several well-established principles for design of the geometric configuration of conventional seismic 
arrays for coherent array signal processing. These are typically based on optimizing the array response function 
in terms of mainlobe and sidelobe structure for a given frequency range and set of seismic wave types (Kennett 
et al., 2015; Mykkeltveit et al., 1983; Mykkeltveit, Ringdal, et al., 1990; Schweitzer et al., 2012). The width of the 
mainlobe is related to how closely separated two impinging wavefronts can be while still being resolved by the 
array measurements. The sidelobe levels are typically related to the contrast resolution of the array measurements 
(see also Section S4 in Supporting Information S1). The goal is often to obtain high resolution in the estimated 
wavefront parameters, which are tightly related to resolving the directions-of-arrival of interest. Array design 
constraints typically lay in the number of sensors available, land access, the seismic noise characteristics, and 
the inter-sensor signal coherence as function of distance. The current work lays out a framework for developing 
mainlobe and sidelobe based analyses also in DAS array design optimization.

Incoherent processing approaches can to some extent mitigate limitations coming from decorrelation of high-
er-frequency arrivals (Gibbons, 2014; Gibbons et al., 2008; Kvaerna et al., 2021). Recently, efforts also have 
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been made to mitigate slowness estimation uncertainties due to, for example, 
array geometry and noise structure using a sensor bootstrapping approach 
(Ward et al., 2021).

In the following Background Theory Section 2, we highlight key aspects of 
DAS-based probing and underline central array signal processing and beam-
forming concepts. Two sections then follow with the main novelties of this 
work: Section 3, Methods Developed, describes a consolidated approach to 
predict the total directional sensitivity of a DAS cable layout and a recipe to 
calculate this numerically, while the Results Section 4, applies these methods 
to a set of idealized DAS cable layouts, as well as to an optical fiber lay-
out that is co-located with the NORES conventional 3-component regional 
seismic array in central Norway (located at 60.75°N, 11.54°E). Since the 
late 1980s, multi-mode optical communication fibers have been deployed 
at NORES in a 9-arm geometry, stretching out from the central acquisition 
hub to different seismic sensor sites, see Figure 1. The paper closes with a 
Discussion and Conclusions Section 5 where the results are put into context 
and suggestions for further investigations are provided. There are plans for 
upgrading the NORES layout to serve as a dedicated DAS array and this sec-
tion discusses approaches upon which DAS array layout design rules could 
be developed in the future.

2.  Background Theory
2.1.  Distributed Acoustic Sensing Concepts

In this section, we describe fundamental distributed acoustic sensing con-
cepts, in particular highlighting aspects important when applying beamform-

ing recipes to DAS datasets. Cable directivity and gauge length averaging effects can be incorporated into array 
signal processing theory, as is later shown in Sections 3 and 4.

2.1.1.  Directivity in DAS Cable Sensitivity to Strain and Particle Displacement

DAS systems measure strain or strain rate (Jousset et al., 2018), with the strain rate being the temporal deriva-
tive of strain. The infinitesimal strain tensor ϵij is symmetric and is given from the spatial gradients of particle 
displacement:

𝜖𝜖𝑖𝑖𝑖𝑖 =
1

2

(

𝜕𝜕𝜕𝜕𝑖𝑖
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)

,� (1)

where ui is the displacement along the ith unit vector direction, and xi are the spatial coordinates see, for example, 
Aki and Richards (2009), chapter 2.1. Consequently, the temporal derivative of strain, or the strain rate, is
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For a DAS cable elongated along the direction xi, the system measures the (locally axial) strain ϵii, or the associ-
ated strain rate:
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where vi is the particle velocity in the xi direction. Similarly, by applying the chain rule to the equation above, the 
axial strain rate can be expressed in terms of axial acceleration and slowness components as (Baird et al., 2020; 
Daley et al., 2016)

𝜕𝜕
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Figure 1.  Map of the NORES conventional array as well as the co-located 
shallow buried optical fiber cable layout. The seismometer locations are shown 
as black triangles. Seismometers in the outer (”D-”) ring (at around 1.5 km 
distance from the center) are currently decommissioned.
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where ai is the acceleration and si the slowness in the xi direction.

Hence, the DAS system allows for probing the particle velocity in the xi direction by integrating over a finite cable 
length—the strain gauge length G. Likewise, the displacement can be extracted after integration in time.

For cable layouts that are not of a linear geometry, this sensitivity varies along the array of virtual sensors, as 
opposed to, for example, a conventional vertical-component array. We will show in this paper how to consider 
these effects when designing and processing DAS-arrays.

For P-waves in isotropic media, the particle motion is parallel to the wave propagation direction. The directional 
sensitivity of a DAS cable to particle motion and to P-waves is (Mateeva et al., 2014)

𝐷𝐷particle(𝛾𝛾0) = cos2(𝛾𝛾0),� (5)

where γ0 is the local incidence angle of the impinging wave, relative to the cable axis. This sensitivity is hence 
zero for broadside arrivals (γ0 = 90°). Conversely, the sensitivity is equal to one for particle motion along the ca-
ble axis. Note that Equation 5 is a linearized expression valid only for long enough wavelengths (≳4×) compared 
to the gauge length (Bóna et al., 2017).

For S-wave polarization, the associated particle motion is perpendicular to the wave propagation direction. The 
strain sensitivity depends on the angle of the cable axis from both the propagation vector and the polarization 
vector. If the propagation, polarization and cable axis vectors are all co-planar the angular dependence becomes

𝐷𝐷𝑆𝑆 (𝛾𝛾0) = sin(2𝛾𝛾0).� (6)

Hence, this scaling factor can be negative, causing a polarity reversal when detecting S-waves.

Helically wound cables (HWC) offer a possibility to reduce this angular dependence. Kuvshinov (2016) pro-
vided the theoretical background for this approach, while Wuestefeld and Wilks (2019) demonstrated how this 
can be used for DAS acquisition design within microseismic applications. However, Baird (2020) demonstrated 
that HWCs are poorly suited for detecting S-waves as they reduce the sensitivity to S-waves for all propagation 
directions relative to straight fibers, while for tightly wound wrapping angles the apparent polarization will, in 
addition, completely reverse.

The analysis in the current paper focuses on the particle motion direction, making the interpretations most appli-
cable for P-waves, but future generalizations can also account for the polarization effects required for interpreting 
S-waves.

2.1.2.  DAS Gauge Length and the Highest Resolvable Frequency

In practical DAS signal processing, the time-series produced by the interrogator has been averaged over a time 
window, which corresponds to a spatial extent along the DAS cable: the gauge length. This averaging inherently 
results in a maximum temporal frequency (or minimum spatial wavelength) that the system can resolve. Moreo-
ver, the averaging introduces an additional directivity component in the sensitivity of the system, independent of 
the directivity of the cable sensitivity, as is further analyzed in Section 2.2.2.

For strain data to be acquired, there inherently needs to be a defined gauge length, that is, a spatial extent within 
the fiber over which deformation is determined. This gauge length is chosen in most systems prior to acquisi-
tion, and typical values for earth science applications are between 5 and 40 m, with 10 m being commonly used. 
Longer gauge lengths are more accurate in amplitude, but the signal is smoothed. An increase in gauge length 
typically increases the SNR in the measurements, while too long a gauge length will introduce additional direc-
tivity due to the effective spatial extent of the virtual array element given by the gauge length, hence reducing the 
amplitude of signals impinging from most directions.

With the possibility of setting the spacing Δx of (virtual) sensors along a fiber to be very dense, typically every 
1 m or less, the gauge length is in effect a moving average, which can be seen as the spatial extent of a virtual 
array element, and which determines the spatial Nyquist frequency (Dean et al., 2017). Note that if the gauge 
length is reduced to smaller than the light pulse width, the relation between phase and strain becomes non-linear. 
Essentially, the strain sensed by a DAS system is thus the average strain over a section of fiber whose length 
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is referred to as the gauge length, G. In the frequency domain, a moving average corresponds to a sinc-related 
function Smith (1997), Ch. 15:

𝑅𝑅(𝜔𝜔) =
1

𝑁𝑁

sin(𝜔𝜔𝜔𝜔∕2)

sin(𝜔𝜔∕2)
,� (7)

where N = G/Δx is the number of samples average, and ω = 2π(kΔx), with wavenumber k and spatial sampling 
interval Δx. Furthermore, substituting k = 1/λ, where λ is the wavelength, yields

𝑅𝑅(𝜆𝜆) =
Δ𝑥𝑥
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.� (8)

The DAS cable response for a certain gauge length Rgl(λ) can thus be determined (Dean & Correa, 2017) by:

𝑅𝑅gl(𝜆𝜆) =
Δ𝑥𝑥
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In the regime of small arguments, sin(x) ≈ x and the above can be approximated to

𝑅𝑅gl(𝜆𝜆) =
1
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.� (10)

Gauge averaging increases the SNR, and it can be shown (Dean et al., 2017) that the fiber strain SNR is maxi-
mized when the gauge length is

𝐺𝐺opt = 𝜆𝜆∕
√

3,� (11)

and in practical implementations the ratio G/λ is often between 0.4 and 0.54, selected based on a trade-off be-
tween SNR optimization, temporal resolution, and spatial resolution of the DAS system.

Figure 2 shows the response for a set of typical gauge lengths and a medium velocity of V = 1,000 m/s. As the 
DAS measurement is a result of a coherent summation of wave contributions along a section of fiber, destructive 
interference can occur, yielding a zero-amplitude strain estimate. Such notches in the response are inherent prop-
erties of moving average filters (Smith, 1997). These occur if the denominator in Equation 8 is zero, and thus at 
frequencies where the wavelength is an integer multiple of the gauge length:

𝑘𝑘notch = 𝑛𝑛𝑛𝑛∕𝜆𝜆𝜆 𝜆𝜆 ∈ ℕ.� (12)

Figure 2.  Amplitude response for several typical gauge lengths as a function of frequency (bottom x axis) and wavelength 
(top x axis).
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This relationship can guide the choice of gauge length prior to acquisition. Section S2 in Supporting Infor-
mation S1 provides more background on the relation between wave velocity, gauge length, and the resolvable 
frequency.

2.2.  Classical Array Signal Processing Concepts

In this section, we describe some basic concepts used in array processing, which are fundamental when consider-
ing the design and processing of DAS arrays. First, we introduce the method of beamforming and how a steered 
signal can help to identify coherent energy across an array. We then demonstrate how beamforming is related to 
the array response function, which can be used to optimize the design of an array as well as to understand its lim-
itations. From these concepts, we incorporate the effects of directivity which are pertinent for DAS arrays. From 
the array response function, we describe how to estimate the array resolution and how to be aware of potential 
aliasing artifacts. We show how beam steering and power estimation as a function of horizontal slowness can 
be used to identify the direction and apparent velocity of the impinging wavefronts, before finally providing an 
explanation for SNR gain achieved from a sensor array.

2.2.1.  Delay-and-Sum Beamforming and the Array Response Function

We assume that in an array of M sensors, each sensor, with spatial coordinates r, records a time-series ym(t; i.e., 
the seismic trace), which sample the physical wavefield a(r, t). In array signal processing, beamforming is a 
technique where a set of sensor traces are delayed, weighted, and stacked. See, for example, Johnson and Dudg-
eon (1992) for a general delay-and-sum concept description, or Schweitzer (2014); Rost and Thomas (2009) and 
the references therein for seismology-oriented introductions.

After applying a delay and a weight to each of the sensor traces, the summed (stacked) traces give the beamformer 
output, which is often simply denoted as the beam, which is:

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀−1
∑

𝑚𝑚=0

𝑤𝑤𝑚𝑚𝑦𝑦𝑚𝑚(𝑡𝑡 − Δ𝑚𝑚),� (13)

where Δm are the applied time delays and wm are the sensor weights (often denoted apodization weights, tapering, 
or shading) which in the simplest case are all set to one. The effect of applying non-uniform apodization weights 
is illustrated in Section S7 of Supporting Information S1.

In conventional delay-and-sum beamforming, the time-delays Δm are extracted from a pre-determined model, 
typically based on either a plane wave (far-field) or a spherical wavefront (near-field) assumption, see also Sec-
tion S3 in Supporting Information S1 for explanations regarding the far-field limit.

Consider an ideal monochromatic (single-frequency) plane wavefield. Then the physical field that the sensors 
probe is 𝐴𝐴 𝐴𝐴(𝐫𝐫, 𝑡𝑡) = 𝐴𝐴0exp (𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝐬𝐬0 ⋅ 𝐫𝐫)) , where the wave has slowness s0, amplitude A0, and angular frequency 
ω. Note that in the linear wave-propagation regime, any wavefield can be decomposed as a linear sum of such 
monochromatic plane waves using the Fourier transform. A time-delay applied to a monochromatic plane wave 
corresponds to a multiplication by a phase factor (a phase delay). Then, the delayed signal sensed by sensor m at 
location rm becomes

𝑦𝑦𝑚𝑚(𝑡𝑡 − Δ𝑚𝑚) = 𝑒𝑒−𝑖𝑖𝑖𝑖Δ𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡−𝐬𝐬0⋅𝐫𝐫𝑚𝑚) = 𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡−Δ𝑚𝑚−𝐬𝐬0⋅𝐫𝐫𝑚𝑚),� (14)

where for simplicity the amplitude is normalized to A0 = 1. The beamformer output stack, Equation 13, can then 
be written as

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑒𝑒
𝑖𝑖𝑖𝑖(𝑡𝑡−Δ𝑚𝑚−𝐬𝐬0⋅𝐫𝐫𝑚𝑚).� (15)

In the array signal processing literature (e.g., Johnson & Dudgeon, 1992; van Trees, 2004), this beamformer out-
put as well as its expected power, are often expressed using a steering-vector based formalism, as further outlined 
in Section S5 of Supporting Information S1.
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The delays on each sensor trace can be freely set, and an obvious choice is 
to let Δm = − s ⋅ rm with the goal of stacking the sensor traces coherently (in 
phase), which corresponds to steering toward the impinging wavefront with 
slowness vector s. Then the beamformer output stack becomes

�(�) = 1
�

�
∑

�=1
�����(�+(�−�0)⋅��)

= ����

�

�
∑

�=1

���−��(�0−�)⋅��

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≜�(�,�0−�)

.� (16)

This summation is a discrete spatial Fourier transform given by the sensor lo-
cations rm, the angular frequency ω, and a plane wave slowness. In the litera-
ture, A(ωs) is denoted with various terms such as the array response function, 
array transfer function, wavenumber-frequency response, or occasionally the 
array pattern. In the following, we use the term array response function.

The array response function is hence an inherent property given from the 
array geometry and it carries information about the frequency-dependent res-

olution characteristics as a function of angular frequency ω and slowness vector s. The array response function is 
therefore often analyzed when designing and optimizing array geometries. As the slowness is related to the wave 
vector according to k = ωs, the array response function can also be expressed in terms of k0 − k:

𝐴𝐴(𝐤𝐤 − 𝐤𝐤0) =
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑒𝑒
𝑖𝑖𝐫𝐫𝑚𝑚⋅(𝐤𝐤0−𝐤𝐤).� (17)

The array response function hence varies with frequency and additional sidelobes due to spatial aliasing can ap-
pear in the array response function if the inter-sensor spacing is greater than λ/2. For an optimized array response 
function, the amplitude of these side-lobes should be small compared to the main-lobe to reduce ambiguity 
effects in direction-of-arrival based analyses. This delay-and-sum signal processing can be seen as a spatial fil-
tering which aims to reject signals from unwanted directions while keeping waves impinging from a given arrival 
direction (i.e., a given moveout signature characterized by the choice of Δm sensor trace delays).

Several key aspects of arrays are most straightforwardly illustrated by considering a uniform linear array (ULA) 
with uniform weights wm = 1. Figure 3 displays a uniform linear array with sensor spacing d and a wavefront 
impinging at an angle γ0. Using trigonometric identities and geometric series summation for an array of sensors 
located along the x axis separated by a uniform distance d, the array response function of an ULA is given by 
close-form expression (e.g., Johnson & Dudgeon, 1992, p. 117):

�(�) = 1
�

�
∑

�=1
�� �(�−�∕2) ��

= 1
�

�−� ���∕2
�
∑

�=1
����� � = 1

�
sin(����∕2)
sin(���∕2)

.
� (18)

As a plane wavefront hits a ULA sensor m, it has traveled the additional length md sin(γ0) compared to the 
distance traveled to the reference sensor. Hence, the beamforming procedure which applies the weights 
Δm = 𝐴𝐴 − 𝐬𝐬 ⋅ 𝐫𝐫𝑚𝑚  = − md sin(γ0), seeks to compensate for this inter-sensor propagation time difference in order to 
align the signal traces in phase. When evaluating Equation 18 in terms of difference between the beam steering 
direction corresponding to k—that is the direction corresponding to the moveout that the applied time-delays 
represent—and the wavenumber k0 of an incoming wave, we get

𝐴𝐴(𝐤𝐤 − 𝐤𝐤0) =
1

𝑀𝑀

sin {(𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑥𝑥0)𝑀𝑀𝑀𝑀∕2}

sin {(𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑥𝑥0)𝑑𝑑∕2}
,� (19)

or equivalently in terms of direction-of-arrival γ0 and steering direction γ

Figure 3.  A uniform linear array with a sensor distance d and a wavefront 
impinging with the angle γ0 from the cable axis.
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𝐴𝐴(𝜃𝜃𝜃 𝜃𝜃0) =
1

𝑀𝑀

sin {(sin𝛾𝛾 − sin𝛾𝛾0)𝜋𝜋𝜋𝜋𝜋𝜋∕𝜆𝜆}

sin {(sin𝛾𝛾 − sin𝛾𝛾0)𝜋𝜋𝜋𝜋∕𝜆𝜆}
,� (20)

where kx0 is the wavenumber component x of the impinging wave (coming from the angle γ0) and kx is the wave-
number component x toward which the beam is steered (angle γ).

In the classical delay-and-sum context, the array response function can be parameterized in terms of s0 − s, which 
is the difference between the impinging wave slowness and the slowness corresponding to the applied steering 
delay moveout from Equation 16. Hence, for a given wave with slowness s0, the steered response pattern of a 
conventional array is the same, but translated, when evaluating over a s grid—the array response pattern is in this 
sense equivalent to the steered response (see, e.g., Johnson & Dudgeon, 1992, Section 4.2.3). However, in DAS 
systems the array elements have non-equal directional sensitivity and the corresponding steered response depends 
on s and s0. This is hence in general not equal to an array response parameterized in terms of s − s0, as is further 
elaborated in Section 3.1.

2.2.2.  Incorporating Sensor-Extent Related Directivity

For arrays where each sensor averages the wavefield over a certain spatial footprint, a directivity (which in the 
DAS case comes in addition to the fiber directivity of Equations 5 and 6) is introduced into the array response 
function (Johnson & Dudgeon, 1992; van Trees, 2004).

In the most general case, the inherent effect of averaging the wave over a physical element can be described using 
a spatial convolution integral to give the sensor signal

𝑦𝑦𝑚𝑚(𝑡𝑡 − Δ𝑡𝑡) = ∫
∞

−∞

ℎ𝑚𝑚(𝝌𝝌)𝑎𝑎(𝐫𝐫 − 𝝌𝝌 , 𝑡𝑡 − Δ𝑡𝑡)𝑑𝑑𝝌𝝌 ,� (21)

where hm(χ) is equal to one on the sensor m surface and zero otherwise. Hence, hm(χ) is the physical extent over 
which the sensor is integrating the wavefield. Because a convolution corresponds to a multiplication in the fre-
quency domain, for a unit amplitude monochromatic plane wave a(r, t) = exp(iω(𝐴𝐴 𝐴𝐴 − 𝐬𝐬0 ⋅ 𝐫𝐫 )) with wavenumber 
k0 = ωs0, the spatial convolution in Equation 21 turns into a sum. This yields

𝑦𝑦𝑚𝑚(𝑡𝑡 − Δ𝑡𝑡) = 𝐻𝐻𝑚𝑚(𝐤𝐤0)𝑒𝑒
𝑖𝑖𝑖𝑖(𝑡𝑡−Δ𝑚𝑚−𝐬𝐬0⋅𝐫𝐫),� (22)

where Hm(k0) is the spatial Fourier transform of the sensor extent hm(χ). Note that Hm(k0) remains the same also 
when time-delays are applied to the sensor trace. The beamformer output is then

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝐻𝐻𝑚𝑚(𝐬𝐬0)𝑒𝑒
𝑖𝑖𝑖𝑖(𝑡𝑡−Δ𝑚𝑚−𝐬𝐬0⋅𝐫𝐫𝑚𝑚).� (23)

For the special case of identical element shapes and element directivities (which for the DAS case would corre-
spond to identical gauge length and identical spatial orientation of each virtual element), Hm(k0) = H(k0) for all 
m, the beamformer output can be simplified into

𝑧𝑧(𝑡𝑡) =
𝐻𝐻(𝐤𝐤0)

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑒𝑒
𝑖𝑖𝑖𝑖(𝑡𝑡−Δ𝑚𝑚−𝐬𝐬0⋅𝐫𝐫𝑚𝑚).� (24)

Therefore, the total array response function now has two factors: one based on the array pattern and one based on 
the spatial filter due to the element extent and the associated directivity:

𝐴𝐴tot(𝐤𝐤 − 𝐤𝐤0) = 𝐻𝐻(𝐤𝐤0)𝐴𝐴(𝐤𝐤 − 𝐤𝐤0).� (25)

We observe that for a straight DAS cable layout, Equation 25 can be applied to explain the directivity effect due 
to the gauge length averaging for array processing.

In array signal processing, the waves must be well-sampled in both space and time to avoid aliasing. To avoid 
the sidelobes (grating lobes) resulting from spatial aliasing, the array sensors have to sample the wavefield at 
intervals shorter than the spatial wavelength (see Sections S4 and S6 in Supporting Information S1 for further 
explanations of these well-established array signal processing concepts).
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Aliasing hence occurs when the array is spatially undersampled, that is when the sensor spacing is too large 
compared to the wavelength. For DAS systems it is thus necessary to follow the Nyquist sampling theorem, and 
to avoid aliasing effects by selecting a sensor spacing which is equal to or less than half the shortest wavelength 
of the wave. See Section S4 in Supporting Information S1 for an illustration of spatial undersampling effects with 
a planar wave impinging a uniform linear array.

2.2.3.  Resolution and Uncertainty From the Array Response Function

The size of a surface array, that is, its aperture, is the horizontal extent of the array. Because the array response 
function is a discrete spatial Fourier transform of the sensor layout (Equation 16), a wider aperture yields a nar-
rower mainlobe as long as the signals are coherent at the sensors. The mainlobe width hence describes the array 
resolution, that is, its capability to resolve two nearby sources. Rost and Thomas (2009) list several rules of thumb 
regarding the array response function and the array resolution.

The mainlobe width is often measured at −3 dB compared to the maximum (the full-width at half maximum 
point) and describes the array resolution. For a uniform linear array with the aperture width D, the −3 dB limit 
is approximately at 0.89λ/D. For a linear array with the sensor spacing d = λ/2, this corresponds to an azimuthal 
mainlobe width (or opening angle) of Δγ3dB = 2/N.

Another parameter to consider is the contrast resolution of the system: This is determined by the array response 
sidelobe structure. Larger sidelobes reduce the SNR in the presence of omnidirectional noise, or when competing 
sources arrive at a horizontal slowness coinciding with a sidelobe. The sidelobe level can be characterized by for 
example, its maximum value or the average level outside of the mainlobe. The sidelobe level describes the array 
performance in terms of SNR and artifacts due to aliasing.

In DAS systems, the spatial sampling rate can be set very densely compared to the case of conventional seismic 
arrays. As further analyzed in Section 2.2.5, this DAS capability can be a great advantage when suppressing inco-
herent noise in the signal stack. Still, it may be decided in the processing to down-sample the data due to limita-
tions in data storage. We emphasize here that aliasing effects should be considered in deciding the down-sampling 
for DAS array acquisitions.

2.2.4.  Signal Power Estimate in Slowness Space, Steered Response and f–k Analysis

For a horizontal-planar array, the beam steering can be seen as an sx and sy projection of s, where each (sx, sy) 
coordinate corresponds to a steering direction. It can be convenient to interpret the horizontal slowness in terms 
of backazimuth ϕ and apparent velocity vapp. The incidence angle θ and horizontal slowness have the following 
relation:

|�horizontal| =
sin �
��

,� (26)

where vc is the wave velocity.

The apparent velocity, also denoted trace velocity or ground speed, is the inverse of the horizontal slowness: 
vapp = 1/|shorizontal|. The backazimuth ϕ is the horizontal direction-of-arrival measured clockwise from the north, 
is given from the relation

tan� = ��
��
.� (27)

Hence, using Equations 26 and 27 and the inverse trigonometric functions, we can map from (sx, sy) to incidence 
angle θ and backazimuth angle ϕ.

See Section S9 in Supporting Information S1 for a synthetic illustration of the steered response as a function of 
horizontal slowness on the NORES array. The inverse length of the vector 𝐴𝐴 1∕

√

𝑠𝑠2𝑥𝑥 + 𝑠𝑠2𝑦𝑦 from the origin of the slow-
ness space to the maximum power and depicted in red is equal to the apparent velocity. The angle   arctan(sy /sx) is 
the backazimuth estimate for the dominating wavefront in the analyzed data time window. The (sx, sy) location of 
maximum power maps to the wave parameters of the dominating wavefront, as illustrated in Section S9 of Sup-
porting Information S1 also for real recordings of a regional earthquake recorded at NORES. The phase arrival 
times together with estimated backazimuth and apparent velocity can then be used to locate the epicenter of the 
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earthquake. Such array-derived parameters are exploited routinely by earthquake analysis centers worldwide and 
also in more detailed regional research studies (e.g., Jerkins et al., 2020), and are also becoming used in micro-
seismic monitoring (e.g., Oye et al., 2021). For large DAS layouts the processing can be made over sub-arrays 
which each provide a direction-of-arrival and precise onset time which can be piped into seismic event location 
algorithms together with readings from other arrays, 3-component stations, or single-component stations.

2.2.5.  White Noise Array-Gain

The array signal processing is able to filter out directional waves that interfere (or “jam”) the wave of interest 
and the array response function can be regarded as a spatial filter which illustrates to what extent plane waves 
with a given wavenumber k can be resolved. In addition, by adding signals coherently and spatially white noise 
incoherently, the array signal processing can increase the SNR (see, e.g., van Trees, 2004, Section 2.6, or John-
son & Dudgeon, 1992, Section 4.5). This theoretical increase in SNR resulting from the array signal stacking is 
determined by the number of sensors deployed in the array as well as by the extent to which the signal traces are 
coherent between the sensors compared to the spatial coherence of the noise field. Following the derivation in 
Section S8 of Supporting Information S1, the array gain, AG, which is the SNR for the array divided by the SNR 
for a single sensor in terms of expected power becomes:

AG ≜ SNRarray

SNRsensor

=

|

|

|

|

|

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚

|

|

|

|

|

2

𝑀𝑀
∑

𝑚𝑚=1

|𝑤𝑤𝑚𝑚|
2

.� (28)

For uniform weights wm = 1, the array gain becomes M2/M = M independent of the element positions, as long as 
the noise is uncorrelated between the sensor traces. Our analysis in the following section will show that the direc-
tional sensitivity of DAS can be mapped into a non-uniform wm weight framework. The array signal processing 
hence increases the SNR in terms of power by a factor M, which corresponds to a factor 𝐴𝐴

√

𝑀𝑀  in terms of signal 
amplitude. In circumstances where the spatial correlation length of the noise, the capability of DAS to sample 
the wavefield with a large number of virtual sensors, can hence be a great advantage in terms of white-nose gain, 
compared to conventional arrays with a smaller number of sensors.

3.  Methods Developed
3.1.  Adapting the Array Signal Processing Framework to a DAS Context

We now seek to incorporate the effects of DAS cable directivity and gauge length averaging into the array signal 
processing framework. This will lead to equations that explain the steered response of a DAS array. As we will 
show, these are straightforward to implement numerically.

Recognizing that the cable directional sensitivity of a DAS system can be regarded as a direction-dependent 
amplitude weight on the particle motion recorded by each virtual sensor, we generalize the beamformer output 
expression Equation 13 to not only include the user-selected apodization weights wm (see Section 2.2), but also 
an additional DAS cable directivity weight qm(s0) on each sensor. Note that when the full channel data is acces-
sible in the processing chain, the apodization weights wm can, just like the sensor trace time-delays Δm be varied 
freely by the processing pipeline algorithm (each trace can freely both be multiplied by a constant and shifted 
by a chosen delay before all traces are stacked). This is exploited in several adaptive beamforming algorithms 
where also the spatial structure of the recorded wavefield is taken into account instead of (or in addition to) using 
a pre-defined plane-wave or spherical-wave model for the time delays and a pre-selected apodization function for 
the weights wm. In the most straightforward setting the weights are uniform and wm = 1 for all m.

The additional sensor amplitude weight qm(s0, r) is hence due to the intrinsic physical directivity in sensitivity 
to particle motion of each DAS virtual sensor which depends on the local direction-of-arrival in relation to the 
broadside of the cable elongation (cf., Section 2.1.1. This is the sensitivity Dparticle(γ0) of Equation 5), which in 
this DAS cable directivity context gives

𝑞𝑞(𝐬𝐬0, 𝐫𝐫) = cos2(𝛾𝛾0),� (29)
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where 𝐴𝐴 𝐴𝐴0 = atan (𝛾𝛾𝑖𝑖(𝐫𝐫) − 𝛾𝛾𝑠𝑠(𝐬𝐬)) denotes the angle between broadside of the virtual DAS sensor and the particle 
motion associated with the impinging wavefront and for P waves in isotropic media, the particle motion is along 
the direction of propagation. Here, γi(r) is the local direction of the DAS cable elongation, and γs(s) = atan(sx/sy). 
The virtual sensor weight q is hence a function of horizontal slowness and the local cable orientation, which in 
turn can vary with the spatial coordinate r.

Taking the user-selected weights wm, the direction-dependent sensitivity q(s0, r), and the spatial wave integra-
tion over the virtual gauge-length element extent hm(r) (see Equation 21), the time-domain beamformer output 
becomes

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀−1
∑

𝑚𝑚=0

𝑤𝑤𝑚𝑚 ∫
∞

−∞

ℎ𝑚𝑚(𝐫𝐫) 𝑞𝑞(𝐬𝐬0, 𝐫𝐫)𝑎𝑎(𝐫𝐫, 𝑡𝑡 − Δ𝑚𝑚)𝑑𝑑𝐫𝐫,� (30)

where the spatial function hm(r) is equal to one for all sensor points covered by the gauge length of virtual sensor 
m, and zero otherwise.

For a sufficiently short gauge length, it can be reasonable to assume that the travel-time difference due to the 
shape curvature over the virtual element is negligible compared to the planar wavefront and the associated phase-
shift. For cases when this approximation is appropriate, the direction-dependent weights can be assumed to be 
constant over each element and depend only on the center position of the virtual element. Then, the beamformer 
output (30) can be simplified to

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀−1
∑

𝑚𝑚=0

𝑤𝑤𝑚𝑚𝑞𝑞𝑚𝑚(𝐬𝐬0)∫
∞

−∞

ℎ𝑚𝑚(𝐫𝐫) 𝑎𝑎(𝐫𝐫, 𝑡𝑡 − Δ𝑚𝑚)𝑑𝑑𝐫𝐫,� (31)

where qm(s0) is the amplitude weight due to cable directivity of virtual element m given a wave with horizontal 
slowness s0. For a monochromatic plane wave, we hence get a generalized delay-and-sum beamformer output:

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑞𝑞𝑚𝑚(𝐬𝐬0)𝐻𝐻𝑚𝑚(𝐤𝐤0) 𝑒𝑒
𝑖𝑖𝑖𝑖(𝑡𝑡−Δ𝑚𝑚−𝐬𝐬0⋅𝐫𝐫𝑚𝑚),� (32)

where Hm(k0) is the spatial Fourier transform of hm(r), akin to the factor in Equation 23 for array processing with 
conventional directional elements. In the DAS context, the spatial extent of this integral over each virtual element 
is hence decided by the gauge length setting.

For the standard choice of focusing delay to align the sensor traces, 𝐴𝐴 Δ𝑚𝑚 = −𝐬𝐬 ⋅ 𝐫𝐫𝑚𝑚 , we get

𝑧𝑧(𝑡𝑡) =
𝑒𝑒𝜔𝜔𝜔𝜔

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑞𝑞𝑚𝑚(𝐬𝐬0)𝐻𝐻𝑚𝑚(𝐬𝐬0) 𝑒𝑒
−𝑖𝑖𝑖𝑖(𝐬𝐬0−𝐬𝐬)⋅𝐫𝐫𝑚𝑚 .� (33)

In Equation 33, we see that it is not possible to parameterize the expression in terms of s − s0, as is the definition 
of the array response function (Equation 16). Instead, (33) has to be re-evaluated for each impinging wave direc-
tion s0 and the steered response for a given s0 is found by sweeping s and calculating the beamformer output for 
each relevant (sx, sy) value. Hence, in order to get a comprehensive understanding of the array's capabilities, we 
have to evaluate the steered response for all relevant s0.

We note that, since the weights wm can be freely selected, for each sensor element these are possible to ad-
just to compensate for the qm factor. Independent from the current work, the conference presentation Bowden 
et al. (2021) presents an approach which essentially is similar to balancing wm so that wmqm = 1.

A straightforward approach would hence be to let wm = 1/qm based on the slowness s of the beam steering: 
wm = wm(s). However, this method would break down whenever qm = 0, so it could be advised to instead apply 
some stabilized manner which does not blow up the amplitude of wm to infinity. For example, wm could be set to 
zero in order to disregard all virtual elements which are insensitive to the slowness s0.
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3.2.  Numerical Workflow to Estimate the Full DAS System Steered Response

To assess the array processing capabilities of an existing or planned array given an impinging wavefront with 
horizontal slowness vector s0, we seek to estimate Equation 30 numerically.

Hence, in order to estimate the consolidated directional sensitivity (the steered response for multiple directions) 
of a DAS system for waves impinging from the far-field at a given horizontal slowness (sx0, sy0), the gauge length 
G, the geometrical layout, the virtual sensor separation d, and the wave frequency f need to be taken into account. 
We assume a locally homogeneous medium with phase velocity V.

A numerical estimate of Equation 30 can be achieved by discretization of the DAS layout into N closely-spaced, 
equidistant sampling points, with K points distributed on each virtual sensor. We denote the sampling element 
with indices corresponding to sensor m as km1, …, kmK. Hence, N = M ⋅ K and the beamformer output is estimated, 
using a numerical average over the virtual elements instead of an integral, numerically as

𝑧𝑧(𝑡𝑡) =
1

𝑀𝑀𝑀𝑀

𝑀𝑀−1
∑

𝑚𝑚=0

𝑤𝑤𝑚𝑚

𝐾𝐾
∑

𝑘𝑘=1

𝑞𝑞(𝐬𝐬0, 𝐫𝐫𝑚𝑚𝑚𝑚) 𝑎𝑎(𝐫𝐫𝑚𝑚𝑚𝑚, 𝑡𝑡 − Δ𝑚𝑚),� (34)

where rmk is the location of sampling element k of virtual element m. The following numerical workflow based 
on Equation 34 can hence be used to estimate the DAS system steered response as a function of steering slowness 
s to a wave slowness s0. First, synthetic data traces are generated:

1.	 �A set of K closely spaced sampling points are distributed along the cable. These are equidistant and separated 
less than half the wavelength

2.	 �A synthetic time-signal a′(t′) is generated for a time axis starting at t′ = 0, sampled well below the temporal 
Nyquist frequency. In the current study, we employ a single-frequency sinusoid. Still, the method allows for 
using other wave models, for example, extracted from data recordings, empirically modeled wavetrains, or 
idealized pulses like Ricker wavelets.

3.	 �Given the slowness s0 of the impinging wave under consideration, the relative propagation time τmk is calculat-
ed for all K sampling points. This relative propagation time can also be estimated for more complex velocity 
distributions as long as models for the relative time-delays between the sensors can be found.
�Then follow the beamforming-related steps:

4.	 �Given the analyzed steering slowness s, and the location rmk of each virtual element we apply the plane-wave 
steering delays Δm = − 𝐴𝐴 𝐬𝐬 ⋅ 𝐫𝐫𝑚𝑚 , to the K sampling points of virtual sensor m, located within one gauge length.

5.	 �Shifting the time-signal a(rmk, t) given in (2) by the delay τk given in (3) yields the following model for the 
delayed signal trace at the location rmk:

𝑎𝑎(𝐫𝐫𝑚𝑚𝑚𝑚, 𝑡𝑡 − Δ𝑚𝑚) = 𝑎𝑎′(𝑡𝑡′ − 𝜏𝜏𝑚𝑚𝑚𝑚 + 𝐬𝐬0 ⋅ 𝐫𝐫𝑚𝑚).� (35)

6.	 �Then, the time-shifted synthetic signals are stacked: first over each set of K sample elements and then over 
each virtual element m:

𝑧𝑧′(𝑡𝑡) =
1

𝑀𝑀𝑀𝑀

𝑀𝑀−1
∑

𝑚𝑚=0

𝑤𝑤𝑚𝑚

𝐾𝐾
∑

𝑘𝑘=1

𝑞𝑞(𝐬𝐬0, 𝐫𝐫𝑚𝑚𝑚𝑚) 𝑎𝑎
′(𝑡𝑡′ − 𝜏𝜏𝑚𝑚𝑚𝑚 + 𝐬𝐬0 ⋅ 𝐫𝐫𝑚𝑚),� (36)

�We apply the weights wm = 1, but underline that other apodization, or directivity-compensating weights can 
be applied.

7.	 �Finally, the beamformer output power corresponding to s is found as the temporal average of |z′(t)|2.

This workflow is applied for all steering horizontal slowness points of interest s to yield an estimate of the steered 
response, which is applied in the case studies and analyses following in Section 4.

We note that these estimates may also be found from the frequency-domain variant Equation 33 for cases when 
the template waveform approximates a continuous single-frequency (monochromatic) sinusoid and the gauge 
length is short enough to have the same directional sensitivity over each virtual element.
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The methods developed highlight that in DAS array performance analysis, the steered response for the set of di-
rection-of-arrival of interest for a particular design has to be taken into account. The steered response is a function 
of both s and s0, but cannot in general be parameterized in terms of the difference s − s0 like the conventional 
array response function.

4.  Results
4.1.  Illuminating Gauge Length Effects Using a Linear Layout Example

A key question when applying array signal processing recipes to DAS data is: how long can the gauge length 
be without degenerating the array resolution? To illustrate gauge length influence on the array directivity, here 
we assess steered responses for a linear DAS layout of length 40λ for a set of gauge lengths between G = 0.5λ 
and G = 10λ. For simplicity, this analysis disregards the effect of the cable directivity, which is equivalent to 
setting q(s0, rmk) = 1 in Equation 36. Hence, for this case with equidistant virtual elements, of the equal size and 
orientation, the effects due to gauge-length averaging can be modeled using Equation 25. The size of the virtual 
element spanned by the gauge length is then associated with a response directly related to the element directivity. 
Following Equation 24, this can then be multiplied by the steered array response of a set of conventional sensors 
located at the same sites as the center of each DAS virtual element to generate the total steered response.

Figure 4 displays the total response when varying the gauge length both for an impinging wavefront parallel to 
the cable axis and for a wavefront with kx = 0.1/λ. The greater the gauge length, the narrower is this element 
response (Figure 4, top panel). The analysis in this figure confirms that for G ≤ λ/2, the gauge-length averaging 
causes negligible directional distortion (top panel, the flat orange dashed line) on the total response. This is valid 
for wavefronts parallel as well as for wavefronts which are not parallel to the cable axis.

For wavefronts parallel to the cable axis, we also note that even for large gauge lengths, for example, G = 10λ, 
the effects on the main lobe and the first sidelobes is small or negligible. On the contrary, for wavefronts not 
parallel to the cable axis, the gauge element response cannot be adjusted by applying beam steering delays and 
hence always has its mainlobe toward kx = 0. Hence, the element responses affect the total steered response sig-
nificantly – typically to a greater extent for greater kx of the impinging wave. In the bottom panel of Figure 4, the 
steered response (with gauge length effects included) features a mainlobe relative unaffected at G = 5λ. But as 
G increases, the first zero in the element response approaches the steering kx, and for G = 10λ there is a null in 

Figure 4.  The effect of gauge length averaging on the response of a uniform linear array, evaluated as a function of 
normalized x component of the wavenumber. Examples are given for the gauge lengths 0, 0.5λ, 5λ, 10λ. The cable directivity 
is neglected. (a) the directional effect due to the different gauge-lengths for G = 0.5λ (red dashed line), G = 5λ (solid purple 
line), and G = 10λ (dash-dotted gray line). (b) The array steered responses when the wavefronts are parallel to the DAS axis. 
(c) The array steered responses when the wavefronts are impinging with kx = 0.1/λ. All responses are normalized to their 
respective individual maximum.

a)   Gauge element response

b)  Non-steered array response
     with gauge averaging

c)  Steered array response
     with gauge averaging
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the element response at kx = 0.1/λ, which even splits the total steered response mainlobe to severely degrade the 
beamforming performance.

For DAS layouts that are not linear, the spatial Fourier transform of each virtual gauge-length element is not uni-
form and the simplifications of Equations 24 and 25 are not valid. Instead, the total effect of gauge length-induced 
directivity, array layout steered response, and cable directivity have to be evaluated separately for each impinging 
wavefront slowness s0 as given by Equation 33. A take-away message of the gauge length analysis in the current 
section is that for G ≤ λ/2, there are no additional steered response directivity effects due to gauge length averag-
ing to be expected for any direction of arrival. This G criterion is more relaxed than the G ≤ λ/4 limit for which 
the cable directivity can be written as Dparticle(γ0) = cos2(γ0) (see Section 2.1.1 and Equation 5), but we note that 
including additional terms in the Taylor expansion of the exponentials in Bóna et al. (2017, Equation 7) can allow 
for a refined Dparticle(γ0) expression.

4.2.  Comparing Fundamental DAS Deployment Layouts

Expanding the analysis of linear DAS array steered response using Section 3.2 framework, we explore how this 
depends on the incidence angle of a plane wave impinging at 45° backazimuth. Figure 5 compares the steered 
response when the cable directivity is neglected to cases when the cable directivity is taken into account and the 
incidence angle is varied. This confirms that a linear east–west layout provides no resolution in the sy slowness 
direction.

Figures 6, 7, and 8, analyze steered responses calculated for L-shaped, triangular, and spiral DAS layouts with 
wavefronts impinging from three different backazimuth directions, with and without taking the cable directivity 
into account.

The L-shape geometry (Figure 6) naturally features a significant angular dependence in the response. Notably, 
when the cable directivity is taken into account, the steered response features this for waves arriving parallel 

Figure 5.  Linear DAS fiber array response to P-wave with frequency 10 Hz crossing the cable at 45° from broadside in 
a medium with 4,000 m/s P-phase velocity. The cable aperture is 4 km, spanning a straight line between x = − 2 km and 
x = 2 km. (a) Sensitivity due to the cable directivity for each sensor to a wave impinging at 45° from broadside, either 
horizontally or at 35° from vertical. (b) steered response to the same wave as a function of horizontal slowness. (c) Sx 
component of the steered response to a wavefront moving horizontally (red) and at an angle of of 35° from broadside (blue). 
The steered response when the cable directivity is neglected is shown in black.
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to an axis of the DAS cable. Triangle shaped layouts (Figure 7, e.g., Hudson et al., 2021), are hence expected 
generate a more homogeneous response if all backazimuth directions are of equal interest. Both the L-shaped 
and the triangular arrays can still be well-suited for missions where a homogeneous steered response is of less 
importance. Spiral-shaped layouts like in Figure 8 feature cable segment axes distributed in all directions and thus 
give a more homogeneous steered response as function of backazimuth. Note that by varying the number of loops, 
loop radius, and spacing the steered responses can be tuned. However, this geometry also results in greater cable 
elongation which would be associated with increased costs.

4.3.  Steered Response for the NORES Array Experimental DAS Deployment

The NORES regional seismic array in southern Norway currently has 16 3-component broadband sites distrib-
uted over an aperture of around 1.4 km with its central sensor site at 60.7353°N, 11.5414°E (Kværna, 1989; 
Schweitzer et al., 2021). Although not explicitly a part of the International Monitoring System (IMS) for the 
Comprehensive Nuclear-Test-Ban Treaty, this array partly overlaps with the large-aperture IMS primary seismic 
array NOA (Dahlman et al., 2011). Nine stations in the NORES array are also equipped with microbarometers 
designed to register atmospheric infrasound (Gibbons, Asming, et al., 2015; Gibbons, Kværna, & Mykkeltve-
it, 2015). The site also features a 9-arm optical cable network that connect the central site to the array elements, 
including an additional 9 array elements in the ’D-ring’ which are no longer operational (Figure 1). This estab-
lished infrastructure makes the NORES site an excellent laboratory for validation and assessment of DAS array 

Figure 6.  Steered responses to impinging P-waves, calculated for an L-shaped DAS geometry for V = 2.5 km/s and 
f = 20 Hz., corresponding to |k| = f/V = 0.008 m−1. Top row: the directional sensitivity for each cable virtual sensor when 
the wavefront impinges from (a) west with (kx0, ky0) = (−0.008, 0) m−1, (b) north with (kx0, ky0) = (0, 0.008) m−1, and (c) 
northwest with (kx0, ky0) = (−0.0057, 0.0057) m−1. Middle row, (d), (e), and (f) Steered response for waves from the same 
three directions, calculated without taking the cable directivity into account. Bottom row, (g), (h), and (i) Steered response for 
waves from the same three directions, calculated with the cable directivity taken into account.

a) b) c)

d) e) f)

g) h) i)
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measurements. Figure 9 shows the steered response for each NORES DAS arm individually, with and without 
taking the cable directivity into account, for a wavefront crossing at 315° with high apparent velocity. The re-
spective combined responses of the full fiber layout are then displayed in the bottom row. We note that, given this 
direction of arrival, the steered response of individual arms can differ significantly when the cable directivity is 
taken into account (arms 2, 5, 6, 8). Still, the steered response of the full layout features similar main lobe width 
and sidelobe shapes of similar amplitude with and without taking the cable directivity into account.

5.  Discussion and Conclusions
This study has analyzed DAS array signal processing, in particular highlighting the importance in DAS analysis 
to take the steered response array signal processing concept into account — in contrast with the more general 
array response function concept valid for conventional arrays. A key underlying aspect is that the DAS cable is 
blind to broadside particle motion but has maximum sensitivity along the cable axis is taken into account. For 
cable layouts that are not linear in shape, this directivity varies between the virtual DAS sensors. The gauge-
length averaging can also introduce spatial wavefield filtering effects. Our analysis based on the incorporation of 
element responses into array signal processing theory highlights that as long as the gauge length is below half the 
wavelength, gauge length averaging effects are not expected to degrade the array steered response.

Employing concepts from well-established array signal processing theory we have developed equations and a 
numerical framework to estimate the steered response to particle motion of seismic wave arrivals on DAS arrays: 
For each given impinging wave slowness, our methodology maps the DAS cable layout, the gauge length, and the 

Figure 7.  Steered responses to impinging P-waves, calculated for a triangular DAS layout for V = 3.5 km/s and f = 20 Hz, 
corresponding to |k| = f/V = 0.0057 m−1. Top row: the directional sensitivity for each cable virtual sensor when the wavefront 
impinges from (a) west, (b) north, and (c) northwest. Middle row, (d), (e), and (f) Steered response for waves from the 
three different directions, calculated without taking the cable directivity into account. Bottom row, (g), (h), and (i) Steered 
responses calculated with the cable directivity taken into account.
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cable directivity effects into the framework of steered response. Effects due to a finite gauge length are handled 
in the same manner as directional sensors of finite spatial extent are taken into account in classical array signal 
processing. Spatial filtering due to the directional sensitivity of the cable are taken into account as virtual sensor 
weights in a similar manner as sensor apodization (aperture shading or tapering) is incorporated in array signal 
processing theory.

DAS layout design principles and spatial filtering capability estimation frameworks have previously not been 
established in a similar manner as for conventional seismic arrays. Our finding that we cannot form an array re-
sponse function like is done for conventional arrays but that instead the steered response has to be analyzed for the 
directions of arrival of interest (the horizontal slowness regime) of the relevant DAS array monitoring missions, 
is an important aspect when developing DAS array layout design principles. Another aspect is that the very nature 
of the DAS technology requires a continuous cable line, while still connecting segments or even return loops in 
the same cable might be considered.

We note that our theoretical framework of Section 3.1 confirms the findings of Bowden et al. (2021) that cable di-
rectivity effects can to some extent be compensated for when the curvature over each gauge length is short enough 
compared to the seismic signal wavelength. On the other hand, neither van den Ende and Ampuero (2021) nor 
Nayak et al. (2021) take into account all direction-dependent sensitivity aspects discussed in the current paper. 
Future extensions of these works might hence benefit from the frameworks presented.

Figure 8.  Steered responses calculated for a spiral shaped DAS fiber layout for V = 3.5 km/s and f = 20 Hz, corresponding 
to |k| = f/V = 0.0057 1/m and P-waves impinging from three different directions. Top row: the directional sensitivity for each 
cable virtual sensor when the wavefront impinges from (a) west, (b) north, and (c) northwest. Middle row, (d), (e), and (f) 
Steered response for waves from the three different directions, calculated without taking the cable directivity into account. 
Bottom row, (g), (h), and (i) Steered responses calculated with the cable directivity taken into account.

a) b) c)

d) e) f)

g) h) i)
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An interesting opportunity in the extended wavefield sampling opportunities provided by the prospects of using 
closely spaced virtual sensors along the DAS cables lays in the fact that under ideal spatially white-noise con-
ditions of non-correlated noise between the virtual DAS sensors, even sub-Nyquist spaced DAS sensors will in-
crease the array white-noise gain, as shown by Equation S18 in Supporting Information S1. Still, a key limitation 
in array signal processing for real-world wavefields is that the noise is not necessarily spatially white but is also 
partly correlated between sensors. Moreover, the seismic signal wavefield coherence generally decreases with 
increased sensor separation, in particular when waves propagate in complex inhomogeneous media. Naturally, 
this is a key constraint for the maximum useful aperture size when designing seismic arrays (Gibbons, 2014; 
Mykkeltveit et al., 1983; Mykkeltveit, Fyen, et al., 1990).

These signal-decorrelation and noise-correlation effects can be taken into account when estimating the array gain 
following the recipe in Section S8 of Supporting Information S1. Regarding these aspects, we note that van den 
Ende and Ampuero (2021) observed a signal decorrelation over the DAS array which was larger than for conven-
tional sensors and we call upon further studies on the signal coherence in real-world deployments and for various 
DAS signal processing settings. In array signal processing, there are several beamforming approaches based on 
maximizing the cross-correlation between the signal traces, rather than maximizing the beamformer output, when 

Figure 9.  NORES DAS deployment steered response to a wave impinging from 315° backazimuth, evaluated for each of the 
9 cable arms of the array. Left panels (a): the steered response for each individual arm and for the full array as it would have 
appeared without taking the cable directivity into account. The individual arm response plots are positioned corresponding to 
the different DAS array arm locations, for which the layout is shown in the background. The total response is displayed in the 
bottom panel. Right panels (b): the steered response for each individual arm and for the full array when also taking the cable 
directivity into account.

b)a)
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determining the dominating horizontal slowness of an impinging wavefield (e.g., Gibbons et al., 2018; Ruigrok 
et  al.,  2017). Such approaches can be seen as performing a trace normalization before estimating the spatial 
covariance matrix R (see Section S5 of Supporting Information S1). This may to an extent compensate for the 
direction-dependent virtual element sensitivity of a DAS cable.

The current work does not provide rules for DAS array layout design, but we analyze a set of aspects that can be 
taken into account when elaborating such design rules based on the steered responses. In Section 4.2, we first 
visualized the steered responses as function of impinging wave slowness for a set of simplified DAS layouts, 
illustrating the effect of DAS sensor directivity on the steered response. Given its co-located conventional and 
DAS cable arrays, the NORES array in southeastern Norway is a suitable laboratory for the analysis of DAS 
array properties. The NORES DAS array consists of a set of cable “arms” stretching out from the array center. 
In Section 4.3, the steered response was assessed for each of the cable arms for a given direction of arrival. It 
was found that when the full DAS layout is exploited, its steered response for the direction-of-arrival set of 
interest will be comparable to the associated array response of the NORES conventional seismic array. Now 
further discussing the NORES DAS array and analyzing the calculated steered responses for all s0 of a given 
grid, Figure 10 provides a set of consolidated displays summarizing key parameters derived from the calculated 
steered response. It shows steered response characteristics estimated for the NORES DAS array geometry. First, 
it compares the mainlobe average width, and compares this to a triangular and to a spiral shaped DAS array of 
similar aperture size. We also estimate and display the mainlobe-to-sidelobe ratio for all directions-of-arrival 
over a given slowness grid, calculated using the following recipe: (a) For each single horizontal slowness grid 
point (which corresponds to a single direction-of-arrival), we calculate the steered response over the horizontal 
slowness grid; (b) From the steered response we extract the total mainlobe energy as well as the energy outside of 
the mainlobe – here for simplicity denoted sidelobe energy; (c) The ratio between mainlobe and sidelobe energy 
is calculated. The mainlobe energy, its average width, and the corresponding mainlobe-to-sidelobe ratio are then 
plotted for impinging waves with slowness given by the horizontal slowness grid. For source directions not well 
probed due to a narrow aperture, a larger mainlobe is naturally expected. For directions perpendicular to regions 
where the array layout is not sufficiently sampled in space, grating lobes appear and the mainlobe-to-sidelobe 
energy decreases (see also Sections S4 and S6 in Supporting Information S1). All in all, the analyzed triangu-
lar, spiral, and NORES experimental DAS geometries feature comparable performance in this steered-response 
based analysis. Still, the spiral array features the most homogeneous properties in terms of mainlobe width and 
mainlobe-to-sidelobe ratio as function of backazimuth. The NORES DAS layout also features quite equal steered 
response mainlobe width and mainlobe-to-sidelobe ratio direction of arrival, although the performance is slightly 
degraded for waves impinging approximately from the northwest. The triangle layout features poor mainlobe-to-
sidelobe ratio for vertical arrival, for the three bands of backazimuths where the cable directivity and the array 
layout interplay to give a reduced ratio. The spiral layout shows a dipole of reduced mainlobe-to-sidelobe ratio for 
NW–SE directions, while the NORES cable layout gives high mainlobe-to-sidelobe ratio for NE–SW directions. 
The bottom row of Figure 10 displays the beamwidth as function of horizontal slowness. The triangular layout 
features three distinct lines of narrow beamwidth (i.e., high slowness resolution). These are aligned with direc-
tions perpendicular to the axis of the triangle legs. The spiral features best resolution in the NW–SE directions. 
In contrast, the NORES DAS layout mostly features high resolution for all slownesses, with only a minor region 
of wider mainlobe width in slownesses corresponding to steep arrivals from NE. In Section S9 of Supporting 
Information S1, we discuss and analyze additional aspects regarding DAS array design and provide further elab-
orations regarding the NORES DAS array.

The current study has focused on DAS array directional sensitivity to particle displacement, and the analysis 
is most straightforwardly mapped to P-wave arrivals. The strain sensitivity pattern observed on an array in the 
horizontal plane depends largely on the horizontal projections of their propagation and polarization vectors (Mar-
tin, 2018). When these are aligned (i.e., wave motion is in the direction of propagation) as in P, SV and Rayleigh 
waves we expect maximum sensitivity in-line. Conversely, when they are orthogonal as in SH and Love waves, 
we expect maximum sensitivity in the directions bisecting them (i.e., at ±45° from the propagation direction) 
with alternating signs (e.g., Baird et al., 2020). Prospective future studies are in expanding the current study to 
S-, Rayleigh, and Love waves. This would also include elaborations regarding SH- and SV-wave polarization.

The frameworks developed can be applied in further studies where combinations of conventional, borehole, and 
DAS arrays are elaborated, providing guidance toward optimal cost-benefit in DAS array design. The paper has 
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sought to convey concepts and nomenclature from array signal processing to the DAS community. Likewise, for 
an array signal processing expert audience, the ambition is that we have provided an accessible description of 
fundamental DAS concepts. Prospectively, the current work can help paving the way for cross-pollination of ideas 

Figure 10.  Consolidated steered response comparisons, evaluated on a [−0.25, 0.25] s/km slowness range grid and velocity 
3.5 km/s, for 100 m gauge length. The virtual sources are located in the far-field and the analysis is performed at 20 Hz. 
Fiber cable layout geometries: (a) triangular DAS, (b) spiral DAS, (c) NORES DAS. Second row: Sensitivity distribution 
in terms of total steered response power as function of horizontal slowness for (d) triangular, (e) spiral, and (f) NORES 
DAS geometries. This is lowest when wavefront crosses the fiber array vertically and highest when the wavefront impinges 
horizontally. Third row: mainlobe-to-sidelobe energy ratio (for sidelobes down to 30 dB below the maximum mainlobe level), 
for (g) triangular, (h) spiral, (i) NORES DAS geometries. Fourth row: average beamwidth for (j) triangular, (k) spiral, (l) 
NORES DAS geometries. For the triangular DAS, the mainlobe-to-sidelobe energy ratio and beamwidth varies depending on 
the angular difference between impinging wavefront and triangle edge. The mainlobe-to-sidelobe ratio is highest for waves 
crossing the array at an angle of 30° and its multiples, while lowest at 60° and its multiples whereas, for the beamwidth this is 
reversed. Symmetrical response is also observed for the spiral layout although with less variation because of better azimuthal 
coverage. For NORES, the highest mainlobe-to-sidelobe energy is observed in north-west to south-east direction whereas the 
smallest beamwidth is in the east-west direction.
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between these complimentary fields that can lead to new discoveries, enhanced signal processing, and optimized 
array designs for DAS applications and enhanced wavefield probing.

Data Availability Statement
The Supporting Information includes a textfile table with the layout for each of the NORES 9-arm fiber-optic 
cables (see also Section  4.3 and Figure  9). The NORES conventional sensor coordinates are available from 
Schweitzer et al. (2021).
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