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Abstract. Shortly after its discovery, General Relativity (GR) was applied to predict the
behavior of our Universe on the largest scales, and later became the foundation of modern
cosmology. Its validity has been verified on a range of scales and environments from the
Solar system to merging black holes. However, experimental confirmations of GR on cos-
mological scales have so far lacked the accuracy one would hope for — its applications on
those scales being largely based on extrapolation and its validity there sometimes questioned
in the shadow of the discovery of the unexpected cosmic acceleration. Future astronomical
instruments surveying the distribution and evolution of galaxies over substantial portions
of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will
be able to measure the fingerprints of gravity and their statistical power will allow strong
constraints on alternatives to GR.

In this paper, based on a set of N -body simulations and mock galaxy catalogs, we
study the predictions of a number of traditional and novel summary statistics beyond linear
redshift distortions in two well-studied modified gravity models — chameleon f(R) gravity
and a braneworld model — and the potential of testing these deviations from GR using DESI.
These summary statistics employ a wide array of statistical properties of the galaxy and the
underlying dark matter field, including two-point and higher-order statistics, environmental
dependence, redshift space distortions and weak lensing. We find that they hold promising
power for testing GR to unprecedented precision. The major future challenge is to make
realistic, simulation-based mock galaxy catalogs for both GR and alternative models to fully
exploit the statistic power of the DESI survey (by matching the volumes and galaxy number
densities of the mocks to those in the real survey) and to better understand the impact of key
systematic effects. Using these, we identify future simulation and analysis needs for gravity
tests using DESI.

Keywords: cosmological simulations, galaxy clustering, modified gravity, redshift surveys
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1 Introduction

Since its discovery over a century ago, General Relativity (GR) has been established as our
standard theory of gravity, thanks to the many experimental and observational tests of its
various predictions. Most of these tests have been laboratory and Solar System tests in the
weak-field limit, and its predicted effects from strong gravitational fields have also been de-
tected, through the orbital decay of binary pulsars [1] and gravitational waves from merging
binary compact objects [2, 3]. It has passed yet another test recently by the further detection
of gravitational waves from a binary neutron star merger (GW170817) associated with a short
Gamma-ray burst [3] and various other electromagnetic counterparts [4], which confirmed the
equivalence between the speeds of gravity and light with high accuracy. Its application to
cosmology involves a huge extrapolation from length scales at which it has been tested ac-
curately to the Universe as a whole, but this was rarely questioned given the success of GR
in predicting a diverse set of observations: the Hubble expansion, Big Bang Nucleosynthesis
(BBN) and the Cosmic Microwave Background (CMB). The observations of an accelerated
rate of the Hubble expansion based on the dimming of distant type Ia supernovae (SNIe) in
1998 [5, 6], which have since then been supported by various independent probes, however,
raised the possibility that GR might have to be replaced by an alternative model on cosmo-
logical scales. This is not the only possibility, because the cosmic acceleration may well be
driven by a positive cosmological constant Λ (as in the standard ΛCDM paradigm), or some
dynamical dark energy component motivated by beyond-standard-model particle physics [7].
However, given that there is currently not a widely-accepted theoretical explanation, these
different possibilities have all been kept open, and there has been a great body of research
on modified gravity (MG) models in recent years (see, e.g., [8–11] for some recent reviews).
From a practical point of view, the studies of modified gravity and dark energy models can
be considered as different faces of a common theme: testing GR-based ΛCDM in cosmology.
This field has now matured enough, thanks to developments of both theoretical frameworks,
which tells us what happens in cosmology, if there is a deviation from GR, and observational
techniques, which tells us whether such a deviation is supported by the data.

DESI (Dark Energy Spectroscopic Instrument) will perform one of these advanced wide-
area galaxy and quasar redshift surveys. It is a stage-IV ground-based experiment designed
to have a sky coverage of 14,000 deg2, using four different classes of spectroscopic targets
— luminous red galaxies (LRGs) up to z ' 1, emission line galaxies (ELGs) up to z ' 1.7,
quasars and Ly-α features up to z ' 3.5, and bright galaxies at low redshifts (zmedian ' 0.2) —
as tracers of the underlying dark matter field. It will measure ∼ 30 million galaxy and quasar
redshifts to obtain precise measurements of the Baryon Acoustic Oscillation (BAO) features,
Redshift-Space Distortions (RSD), as well as the full galaxy power spectrum, increasing the
Dark Energy Task Force (DETF) [12] Figure of Merit (FoM) to above 700 when all these
measurements are used [13]. Such unprecedented measurement will make DESI an ideal
experiment to study fundamental sciences, such as constraints on neutrino mass, parameters
of inflation, understanding of the cosmic acceleration, and finally, cosmological tests of gravity
theories.

In this paper, we consider two representative examples of modified gravity models:
chameleon f(R) gravity [14, 15] and the 5D brane-world Dvali-Gabadadze-Porrati (DGP)
model [16] (we look at the normal branch of the DGP model, nDGP). Those models can
be consider as a subclass of a general class of modified gravity models, named as Actions of
Effective Field Theories [17]. However, the chosen models serve as ideal testbeds of gravity

– 1 –
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on cosmological scales for a few reasons: (i) they can potentially realise the screening mech-
anisms [18–20] to pass local gravity tests and leave observable signatures on much larger,
cosmological, scales — indeed, each of them represents a class of screening mechanisms, the
chameleon and Vainshtein mechanism, (ii) the cosmological behavior of these models — with
varying parameters — qualitatively represents that of various other classes of models, (iii)
these models have been studied in great details to date, and simulations for them, which are
essential to test them using galaxy surveys, have been developed and matured (see below). As
a result, by studying them in detail, we hope to understand and to quantify the constraints
that future astronomical observations would place on deviations from GR at astrophysical
and cosmological scales, and therefore test the validity of GR in a completely different regime
from traditional tests.

In the standard cosmological scenario, the formation and growth of structure is driven by
hierarchical gravitational collapse: small structures collapse first, which over time merge and
grow larger and more nonlinear. The galaxies that we observe today mostly reside in regions
with highly nonlinear density, which cannot be adequately described using linear perturbation
theory. Numerical simulations are a more reliable tool for predicting the clustering of matter
in such regimes. In the MG models studied here, the enhanced gravity means that structures
become more nonlinear. However, as far as simulations are concerned, the main effect these
models introduce is screening, which is an inherently nonlinear phenomenon. This is reflected
in the highly nonlinear equations governing the behavior of the fifth force, that need to be
solved accurately in simulations. For example, linearizing the equations can cause non-
negligible errors on length scales as large as k ∼ O(10−2) hMpc−1 [21] in an otherwise fully
consistent simulation. Other approximations that allow to simplify simulations significantly,
such as the quasi-static approximation, were shown to be valid in the cosmological regime [22].
Such considerations have motivated the developments of a wide array of numerical tools to
simulate the structure formation in modified gravity models, including complete simulation
codes [23–37] (see [38] for a detailed comparison of different modified codes) and approximate
methods [39–42].

Recent progresses in optimizing the simulation codes [43, 44] and in developing faster
substitutes [42] have largely been motivated by the desire to keep up with the rapidly in-
creasing demand to match the size, resolution and variety of observables of ongoing and
future galaxy surveys, including DESI. However, to compare theoretical studies with the real
observations of galaxy catalogs, there are various intermediate steps, all of which could affect
the reliability of the final tests of gravity by introducing sources of uncertainty.

The main objective of this paper is to identify the key issues in using DESI observations
to constrain gravity models, which can help us move to the next stage of preparation for
DESI science cases. Redshift-pace distortions provide a promising way to constrain modified
gravity models through the measurement of the growth rate. The two MG models considered
in this paper have been constrained by RSD measurements from Baryon Oscillation Spectro-
scopic Survey (BOSS) [45–47]. We consider model parameters that are consistent on the 2σ
level with these measurements. In this paper, we will focus on novel summary statistics to
constrain modified gravity models exploiting information on non-linear scales. A main ob-
jective is to quantitatively assess the potential constraining power of these various summary
statistics in testing the two classes of modified gravity models mentioned above. To this end
we consider three main categories of summary statistics: (i) two-point and N-point statis-
tics and marked statistics of galaxy catalogs, (ii) statistics that employ velocity information,
including redshift space distortions (RSD) and escape velocity, and (iii) statistics relying on

– 2 –
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synergy with weak gravitational lensing (WL) data. This enables us to make theoretical
predictions of various summary statistics based on the same set of mock galaxy catalogs,
and hence allows a like-for-like comparison. Where possible, we consider different designs in
the same class of summary statistics; an example is the marked galaxy 2-point correlation
function (2PCF), which quantifies the correlations of galaxy internal and external properties
(marks) [48], where we will test different definitions of marks. Following this philosophy, we
have made public the mock galaxy data used in this paper and encourage the community to
use these data in their analyses so that their results can be compared with those from this
work.1

The second main objective is to provide a guidance on future simulations and mock
requirements for modified gravity tests using galaxy clustering data from the likes of DESI and
Euclid. In this paper we will mainly use two sets of simulations: (i) the elephant simulations
described in [49] with a simulation box size Lbox = 1024h−1Mpc and particle number Np =
10243, and (ii) the liminality simulation described in [50] with Lbox = 64h−1Mpc and Np =
5123. The former have been used to construct halo occupation distribution (HOD) galaxy
mocks which match the number densities of luminous red galaxies (LRGs) in current galaxy
surveys, while the latter is used to build mock galaxies with similar number densities as DESI
bright galaxy survey (BGS), using subhalo abundance matching (SHAM). The simulations
considered in this paper do not cover the volume of the full DESI survey, however they do
have number densities that are comparable to the full BOSS LRG sample.2 Recognizing
the high cost of large volume, high resolution simulations, this paper is a preliminary study
to determine the statistical potential to test gravity for data with the richness of DESI, to
help frame simulation specifications and model choices, before embarking on future, heavy
computational efforts for survey-tailored full scale simulations.

The final objective is to make an assessment of the statistical and, where possible, sys-
tematical uncertainties associated with the individual summary statistics. For most summary
statistics, we use five independent realizations of simulations and mock galaxy catalogs to
estimate the sample variance, while theoretical covariance matrices are used in other cases
(e.g., galaxy galaxy lensing). This analysis is intended to set the stage for more compre-
hensive, quantitative estimate of the impact of systematic errors, beyond the scope of this
paper.

The plan of this paper is as follows. In section 2 we briefly review the modified gravity
models studied in this work, focusing on their key differences from ΛCDM, the simulations for
these models, and the dark matter halo and galaxy catalogs used for the analyses. In section 3
we have a number of subsections, each of which focuses on a particular estimator and studies
the potential of using such summary statistics from DESI galaxy survey data to constrain the
theoretical models. In section 4, the conclusions of the analyses and implications for future
work are summarized.

2 Models, simulations and galaxy catalogs

In this section we introduce the modified gravity models that are exemplified in this paper
— f(R) gravity and the nDGP model. These are two of the most well-studied modified
gravity models, and they represent two main classes of screening mechanisms, thin-shell
chameleon [18, 19] and Vainshtein [20] screening. Cosmological simulations for these models

1Data can be downloaded here.
2Figure 3.8 DESI Technical Design Report Part I: Science,Targeting, and Survey Design, July 27, 2015.
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have been carried out by various groups, and we will briefly review the simulations to be
used in this paper. Then we will introduce the mock galaxy catalogs constructed using these
simulations, which will be used in the calculation of the various summary statistics in the
next section. More details of these models, along with the simulation techniques for them,
can be found in [38], and more comprehensive reviews of these models and their cosmological
tests can be found in the recent review papers, e.g., [10, 51].

2.1 Modified gravity models

Ever since the discovery of the accelerated expansion of the Universe, many dark energy and
modified gravity models have been proposed, [8–11]. The recent detection of a binary neutron
star merger by gravitational waves (GW170817) associated with various electromagnetic
counterparts [3, 4] has had a substantial impact on this field [52–55]. In the four-dimensional
scalar tensor theory, the high-precision measurement of the equivalence between the speeds
of photons and gravitational waves leaves very limited scope for a modified gravity model
that naturally produces self-acceleration without a cosmological constant [52] while being
compatible with other observations such as the integrated Sachs Wolfe effect (ISW; e.g., [56–
59]). The two models that we consider in this paper — f(R) gravity and nDGP model — are
compatible with this measurement. The former is a leading example of the class of models in
which gravity is modified by a scalar field that has a self-interaction described by a nonlinear
potential and interactions with other matter species, while the latter belongs to the category
of models where the self-interaction of the scalar field is caused by derivative couplings.

Before moving on to the details of these models, it is worthwhile to make a couple of
comments:

1. in both models, the accelerated expansion of the Universe is not driven by the modifica-
tion of gravity itself, but has to be explained by an extra cosmological constant or dark
energy species. The models may lose some of their original appeals as a consequence.
However, they provide useful testbeds for cosmological tests of gravity, which is the
prevailing topic of this paper.

2. while representative, the two models cannot be expected to cover all behaviors of po-
tential MG models. As a few examples, in both models gravity can only be enhanced
rather than weakened, and in f(R) gravity the maximum of this enhancement (which is
1/3) cannot be tuned freely; the expansion history of f(R) models has to be practically
indistinguishable from that of ΛCDM for the model to pass stringent Solar System tests
of gravity [60–62]. Our choices of models are therefore inflexible in some aspects, and
such inflexibility is the price to pay for having a manageable number of models to study
in greater depth. We believe that an analysis of various summary statistics predicted
by these two models could offer insight into the cosmological tests of more general
models and therefore serve as a starting point to prepare for the tests of gravity using
galaxy surveys such as DESI. One alternative to the model-by-model approach here is
to use a general parameterization of MG models (see, e.g., [63], for a review), but this
has the disadvantages of having a significantly larger parameter space to explore and
— more importantly — some of the popular parameterization schemes only mimic the
full models in certain (e.g., linear perturbation) regimes and therefore can not be relied
on for a fully nonlinear study. Nevertheless, when describing the models below, it is
useful to know their links to and position in certain parameterization schemes which
are widely used in the literature, for qualitative comparisons.
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A popular parameterization scheme for modified gravity is the µ-γ parameterization,
which we briefly introduce here as we shall try to make connections to the two MG models
studied in this paper. In the Newtonian gauge, the line element is given by

ds2 = − [1 + 2Ψ(x, t)] dt2 + a2 [1− 2Φ(x, t)] δijdxidxj , (2.1)

where a = a(t) is the scale factor, δij is the Kronecker δ and Ψ,Φ, which are functions of
space and time, denote the gravitational potentials. We introduce paramtrization functions,
µ(k, t) and γ(k, t), in the following linearized Einstein equations, now written in k space,

k2Ψ = −4πµ(k, t)Gρ̄ma2δm, (2.2)
Ψ = γ(k, t)−1Φ (2.3)

where δm is the matter density contrast and ρ̄m is the mean matter density (δρm = ρ̄mδm);
these equations are written in Fourier space so that Φ,Ψ, δm should be understood as the
Fourier transforms of the corresponding fields. Notice that µ = γ = 1 for GR and deviations
of these functions from 1 could be signatures of modified gravity. This model has been
constructed under the assumption of statistical cosmic homogeneity and isotropy. This is a
well motivated assumption, since even though we cannot prove it, there are good observational
evidences [64, 65].

2.1.1 f(R) gravity
In this model, the standard Einstein-Hilbert action is extended to include an additional
function of the Ricci curvature f(R) (see [66] for a review). This theory is equivalent to the
scalar-tensor theory with a potential for the scalar field that is determined by the function
f(R), and which realizes the chameleon screening mechanism [18, 19] (see [51] for a recent
review). Deviations from standard GR can be suppressed in regions with deep gravitational
potential by the chameleon mechanism. In regions where the potential is shallow, the theory
is in the unscreened regime, in which massive particles experience an additional fifth force
mediated by the scalar field fR ≡ df(R)/dR, whose strength can be comparable to that
of standard gravity. In f(R) gravity, the maximum strength of the fifth force is 1/3 of
Newtonian gravity, while in general chameleon models this can be a free model parameter.

In the quasi-static3 and weak-field limits, the equations for the Newtonian potential Φ
and the scalar field fR are given by

∇2Φ = 4πGa2δρm −
1
2∇

2fR, (2.4)

∇2fR = −a
2

3 δR−
8πGa2

3 δρm, (2.5)

where δρm and δR are the matter density perturbations and the perturbation of the Ricci
curvature respectively. δR can be written as a function of fR, which plays the role of the
potential for fR. As a specific example, we consider one of the models proposed by Hu &
Sawicki (HS) [67], in which the functional form of f(R) is given by

f(R) = −6ΩΛH
2
0 + |fR0|

R̄2

R
, (2.6)

3This means that the time evolution of the gravitational potentials is assumed to be small compared to the
Hubble time so one can assume the derivatives of the potentials to be zero for sub-Hubble-horizon scales. For
scalar-tensor theories, this approximation also means that one neglects the time derivatives of the fluctuations
in the scalar field at scales below the scalar perturbation sound horizon.
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where H0 is the present-day Hubble parameter and fR0 < 0 is the value of fR today. Note
that the HS f(R) model has another free model parameter, an integer n, which has been set
to 1 in this paper; having different values of n could lead to quantitative differences in the
model behaviour, but we expect the case of n = 1 to be representative for the qualitative
properties of the fifth force and screening. fR0 is conventionally used as a parameter of
this model to describe the deviation from ΛCDM, with smaller |fR0| values denoting weaker
deviation from GR, as can be seen from eqs. (2.4), (2.6). For small |fR0| the background
expansion history can be approximated by that in ΛCDM and R̄ can be identified with the
background Ricci curvature today in ΛCDM,

R̄ = 3ΩmH
2
0

(
1 + 4 ΩΛ

Ωm

)
. (2.7)

Hereafter we will use this approximation so that there is no difference between f(R) and
ΛCDM in the background. As mentioned above, f(R) gravity models, and chameleon models
in general, have to closely resemble ΛCDM background expansion history in order to have a
sufficiently efficient chameleon screening mechanism to pass the solar system tests of gravity.

The chameleon screening mechanism works because the scalar field has a position-
dependent mass m, give by

m2 ' 1
3fRR

≡ 1
3

∣∣∣∣∣d2f(R)
dR2

∣∣∣∣∣
−1

, (2.8)

so that the fifth force it mediates is of Yukawa type with its potential of the form ∼
exp(−mr)/r, where r is the distance between two bodies. In other words, unlike the standard
Newtonian force, the fifth force has a finite range characterized by the Compton wavelength
m−1, beyond which it decays exponentially. In high-density regions, m is large and the fifth
force is exponentially suppressed, causing the screening. An important property of f(R)
gravity is its prediction of scale-dependent linear growth rate: this is because even in the
linear regime, where m can be replaced by its background value m̄(a), the fifth force still has
a finite range within which the growth of matter density perturbations is suppressed.

In the µ-γ parameterization framework described in eqs. (2.2), (2.3), f(R) gravity can
be described as

µ = 4 + 2ω
3 + 2ω , (2.9)

γ = 1 + ω

2 + ω
. (2.10)

with
ω = ω(k, a) = 3a2m̄2

2k2 , (2.11)

where m̄ = m̄(a) is the background scalar field mass mentioned above. These equations
indicate that, in the large-scale limit where am̄� k or ω � 1, µ, γ → 1 and GR is recovered,
while µ→ 4/3 in the opposite limit (therefore the scale dependence). As mentioned earlier,
this paramterization only works for the linear perturbations regime. For models with larger
|fR0|, such as |fR0| = 10−4 used in this paper, chameleon screening is inefficient and this
parameterization can be a good description, but for smaller values of |fR0| we expect it to
miss some important effects of screening [28].
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2.1.2 DGP model
The DGP model [16] is a braneworld model where standard model particles are confined to
a four-dimensional brane in a five-dimensional spacetime. This model has one parameter rc
of length dimension, below which gravity becomes four dimensional. On scales smaller than
rc and in the quasi-static and weak-field limits, the equations for the Newtonian potential
and the scalar field ϕ that represents the brane-bending mode is given by

∇2Φ = 4πGa2δρm + 1
2∇

2ϕ, (2.12)

∇2ϕ+ r2
c

3βa2

[
(∇2ϕ)2 − (∇i∇jϕ)2

]
= 8πGa2

3β δρm, (2.13)

where

β = β(a) = 1 + 2Hrc
(

1 + Ḣ

3H2

)
. (2.14)

Note that we assumed the normal branch of the DGP model. This branch requires an
additional dark energy to explain the cosmic acceleration, but does not suffer from the
instabilities of the self-accelerating branch, see, e.g., [68–70]. In order to make the comparison
between ΛCDM and f(R) models easier, we tune the dark energy equation of state so that
the background expansion history is identical with that of ΛCDM [71].

In the DGP model, massive particles also feel a fifth force — as can be seen from
eq. (2.12) — whose potential is governed by the scalar field ϕ. The model realizes the so-
called Vainshtein screening mechanism [20], by which the fifth force can be suppressed in
regions where the second derivatives of the scalar field ϕ (∇2ϕ) is large. This can be seen
from eq. (2.13): in regions where ∇2ϕ is small, nonlinear terms such as (∇2ϕ)2 and (∇i∇jϕ)2

are subdominant so that ∇2ϕ ∼ ∇2Φ for β ∼ O(1); while in regions where ∇2ϕ is large, the
nonlinear terms are dominant and so |∇2ϕ| � |∇2Φ|.

Unlike in f(R) gravity, in the DGP model the linear growth rate is scale-independent
as the scalar field is massless. Detailed comparisons between nDGP and f(R) gravity, in
particular Vainshtein and chameleon screening mechanisms can be found in [72, 73]. This
feature can again be seen if we map this model to the µ-γ parameterization above, which
corresponds to eqs. (2.2), (2.3), (2.9), (2.10) with

ω = ω(a) = 3
2 [β(a)− 1] . (2.15)

2.2 N-body simulations and halo/galaxy catalogs

In this subsection we outline the simulations used in the analysis and present some of the
statistics derived from the simulated dark matter halo and mock galaxy catalogs.

2.2.1 N-body simulations
The f(R) simulations were performed using an optimized version of the ecosmog code [30,
44], and the nDGP simulations were done using an optimized version of the ecosmog-v
code [32, 43]. Both codes are extensions to the publicly-available N -body and hydrody-
namical simulation code ramses [74], with new routines added to solve the scalar field and
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parameter physical meaning value
Ωm present fractional matter density 0.281
ΩΛ 1− Ωm 0.719
h H0/(100 km s−1Mpc−1) 0.697
ns primordial power spectral index 0.971
σ8 r.m.s. linear density fluctuation 0.820
|fR0| Hu & Sawicki f(R) parameter 0 (GR) 10−6 (F6), 10−5 (F5), 10−4 (F4)
H0rc nDGP parameter 5.0 (N5), 1.0 (N1)
Lbox simulation box size 1024 h−1Mpc
Np simulation particle number 10243

mp simulation particle mass 7.78× 1010h−1M�

Ndc domain grid cell number 10243

Nref refinement criterion 8

Table 1. The parameters and technical specifications of the N-body simulations of this work. Note
that the refinement criterion Nref is the same for refinement levels, and that σ8 is for the ΛCDM
model and only used to generate the initial conditions — its value for f(R) gravity is different but is
irrelevant here.

modified Einstein equations in the MG models. These codes are parallelized using mpi and
use the adaptive-mesh-refinement (AMR) technical to achieve high resolution in overdense
regions where the requirement for the force resolution is high and the screening effect is
strong. The simulations start with a uniform (domain) grid with N

1/3
dc cells a side which

covers a cubic box of size Lbox. The cells are refined (split into eight daughter cells) if the
number of particles contained in them grows over some pre-set threshold (Nref), in such a
way as to hierarchically refine the domain grid by adding higher-resolution meshes.

The cosmological and technical parameters of the simulations are given in table 1. The
former are chosen as the best-fit ΛCDM parameters of the WMAP9 cosmology [75]. The
simulations were started at zini = 49, from initial conditions generated using Zel’dovich
approximation4 with the publicly available Mpgrafic code [77]. Because the f(R) and
nDGP model parameters are chosen such that they only deviate from ΛCDM non-negligibly
at late times, at zini the modified gravity effect can be neglected, and so all our simulations
started from exactly the same initial condition. In order to estimate the effect of sample
variance, we have used five independent realizations of boxes, whose initial conditions differ
only in their random phases of the density field. We shall refer to these different realizations as
‘Box 1’ to ‘Box 5’. For f(R) gravity we ran three variants of the HS model, with log (|fR0|) =
−6,−5,−4 (with increasing deviation from GR), which we shall refer to as F6, F5 and F4
respectively in what follows; note that GR, or ΛCDM, is a special subcase of f(R) gravity
with fR0 = 0. For nDGP we consider two variants with H0rc = 5.0, 1.0 (again with increasing

4We note that at zini = 49 the Zel’dovich approximation can lead to an error of a few percent in the
generated initial condition, e.g., for the power spectrum of the density field we find the measured P (k) from
our initial conditions agrees better with the linear theory prediction with σ8 = 0.842. This suggests that future
simulations should use initial conditions generated either at higher zini or using the second-order Lagrangian
perturbation theory [76]. For this work, we simply note that the small inaccuracy should not affect our main
conclusions since we are mainly looking at relative differences from ΛCDM.
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Figure 1. (Color Online) The matter power spectra of the different models compared in this work
(upper panels) and their relative differences of the modified gravity models with respect to ΛCDM
(lower panels). Left panels: results at z = 0. Right panels: results at z = 0.5, for all five boxes. This
plot sets the convention of line styles that will be used in the rest of this paper: black, blue, green, red,
magenta and orange respectively represent GR, F6, F5, F4, N5 and N1, while solid, dashed, dotted,
dash-dotted and long-dash-dotted lines represent results from Boxes 1, 2, 3, 4 and 5. This convention
will be used in other plots unless otherwise stated. Note that for z = 0 we only show the results for
Box 1, while for z = 0.5 we show all five boxes — the upper panel shows the average P (k) from these
boxes, while in the lower panel we plot individual curves of ∆P/PGR for the five boxes, in order to
show the agreement between the different realizations. All power spectra have been measured using
the publicly-available code powmes [78]

deviation from GR) and refer to them as N5 and N1 respectively; ΛCDM is a special case of
nDGP with H0rc =∞.

To gain some quick insight into the qualitative behavior of the different models, we show
the predictions of some cosmological quantities here.

Figure 1 shows the matter power spectra of the MG models at two redshifts, z = 0
(left) and z = 0.5 (right), as well as their relative difference with respect to ΛCDM (bottom
subpanels). For z = 0, we show the results for Box 1 only, while for z = 0.5 we show the
results for all boxes (the different line styles are for individual realizations, to highlight the
good agreement between them). The line styles and color scheme in figure 1 (see the legend
and caption for more details) will be used in other plots across this paper.

Figure 1 confirms that in f(R) gravity the linear growth rate is scale dependent while in
nDGP it is scale independent, as can be seen from the bottom subpanels at k . 0.1hMpc−1,
where linear theory works relatively well for both models. The amount of deviation from
ΛCDM in the MG models follows the expected order, and in all models it increases with
time as the effect of enhanced gravity accumulates. In both F4 and N1, the enhancement
of P (k) starts to decrease at k ∼ 0.8hMpc−1. For F4 this is not a signature of chameleon
screening — but is related to the internal structures of halos [21] — as can be realized from
the facts that F5 and F6, which both have stronger screening effect, actually do not show a
similar decrease of ∆P/PGR at that scale. For N1, in contrast, the decrease of ∆P/PGR is a
real signal of Vainshtein screening, which very efficiently suppresses the fifth force near and
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Figure 2. (Color Online) The cumulative halo mass function for the various models simulated here,
at z = 0.0 (left panel) and z = 0.5 (right panel). The bottom panels show the relative difference
between the various modified gravity models and ΛCDM. For the z = 0.5 plot we have used all 5
realizations, and it shows that the model differences are not sensitive to the specific realization. For
the z = 0 plot we only used Box 1. The line colors and styles are the same as in figure 1.

inside halos.

2.2.2 Halo catalogs and halo mass functions
Dark matter halos and the self-bound substructures associated with them are identified using
the publicly-available rockstar halo finder5 [79]. rockstar uses the six-dimensional phase-
space information from the dark matter particles to identify halos. Note that, in principle,
the presence of the fifth force in f(R) gravity6 would require a modification to the unbinding
procedure in rockstar, but the effect is expected to be small [80] and so we use identical
versions of rockstar for GR and MG simulations, and we also use the same halo mass
definition, M200c, which is the mass enclosed in R200c, the radius from halo center within
which the mean mass density is 200 times the critical density ρcrit(z). In this paper, we make
use of only independent (‘main’) halos, and not their substructures, partly because of the
relatively low resolution of our simulations.

Figure 2 shows the cumulative halo mass function (HMF) of all models at z = 0 (left
panel) and z = 0.5 (right panel). The bottom subpanels show the relative differences between
the MG models and GR. In the case of z = 0.5, there is good agreement between the five real-
izations (the different line styles) again. For both redshifts we have compared the simulation
HMF with the analytical fitting formula of ref. [81] and found very good agreements above
1013h−1M�; this comparison is not shown here to avoid the plot becoming two crowded.

As the halo catalogs are the starting point of the mock galaxy catalogs to be described
below, it is useful to note some main features and their physical origins. Although ∆n/nGR
is smaller at higher redshift, the qualitative features are the same in both redshifts. Of the
f(R) variants, in F6 the difference is strongly suppressed by the chameleon mechanism except

5https://bitbucket.org/gfcstanford/rockstar.
6In nDGP, the fifth force is strongly suppressed in halos and we can safely neglect its effect.
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for the smallest halos for which the screening is weak; this feature remains in F5, though
the deviation from GR now starts at higher halo mass; for F4, the screening is essentially
non-existent, leading to a significant increase in the number density of the most massive halos
resolved in the simulations (M200c > 1014.5h−1M�). Due to the faster mergers of small halos
to form larger ones, F4 actually produces fewer halos in the mass range 1013 ∼ 1013.5h−1M�
than F5. The nDGP models are qualitatively similar to F4, but with smaller differences
from GR. The Vainshtein mechanism does not prevent more massive halos from forming in
N1 and N5 as compared with GR, because the growth of halos is largely determined by how
much matter the halos can accrete from their surroundings: while the Vainshtein mechanism
is efficient in suppressing the fifth force close to and inside the halos, gravity can still be
stronger than in GR within regions of size O(10)h−1Mpc from halos, which means that the
largest structures end up growing more by accreting more matter from further away.

As will be discussed next, the differences in the HMFs of the different models means
that we have to slightly tune the galaxy populating scheme to obtain galaxy catalogs with
the same desired clustering properties.

2.2.3 Mock HOD galaxy catalogs

To map the halo catalogs to a corresponding galaxy distribution, we populate halos with
galaxies using the Halo Occupation Distribution (HOD) method [82, 83], in which it is
assumed that the probability for a halo to host a certain number of galaxies can be computed
through a simple functional dependence on the mass of the host halo. We use the form of
the HOD suggested by [84], in which the mean number of central galaxies, 〈Ncen(M)〉, and
the mean number of satellite galaxies, 〈Nsat(M)〉, in a halo of massM , are given respectively
by:

〈Ncen(M)〉 = 1
2

[
1 + erf

(
logM − logMmin

σlogM

)]
,

〈Nsat(M)〉 = 〈Ncen〉
(
M −M0
M1

)α
, (2.16)

where Mmin, M0, M1, σlogM and α are free parameters of the HOD model. Once their
values have been specified, the mean number of galaxies in a halo of mass M is then given
by 〈N(M)〉 = 〈Ncen(M)〉 + 〈Nsat(M)〉. From eq. (2.16), it can be seen that Mmin and
M0, respectively, denote the threshold halo mass required to host at least one central or
one satellite galaxy. When placing HOD galaxies in halos, central galaxies are assumed
to reside at the center of potential of their host halo. Satellites, on the other hand, are
distributed between [0, R200c] of the host halo center, according to a Nararro-Frenk-White
(NFW, [85, 86]) profile with the concentration of the host halo computed by rockstar. This
naturally takes into account the effect of the fifth force on halo density profiles, which can be
substantial for f(R) gravity [87]; for the DGP model, though, the effect on halo concentration
is quite small [e.g., 88] but still taken into account. Furthermore, central galaxies are assigned
the center-of-mass velocity of the host halo, VCM; the velocity of a satellite galaxy is VCM
plus a perturbation along the x, y and z axes sampled from a 3D Gaussian distribution with
a dispersion equal to the root-mean-squared (RMS) velocity dispersion of the host halo as
calculated by rockstar, which again takes into account of the modified gravity effects in
the f(R) and DGP models. We note that this way of modelling satellite galaxies necessarily
incurs approximations, not least because in reality the satellite velocity distribution is more
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complicated [e.g., 89]; this could also suppress the correlation between central and satellite
galaxies which encodes the memory of the infall history of the latter. Other methods to set
up satellite velocities are possible, e.g., by assigning the velocity of a dark matter particle
randomly selected near the satellite position to the said satellite, but this is beyond the scope
of this work and deserves a dedicated study using future high-resolution simulations.

If the HOD catalogs in the MG models had been constructed using the same HOD
parameters as in the ΛCDM model, there would generally be a difference of order 10-20% in
the resulting number density and two-point correlation function (2PCF) of HOD galaxies,
reflecting the MG effects on the halo abundance and clustering. Since there is only one
observed Universe, if we do not know which cosmological model is the correct one, a more
conservative way is to demand that all models make predictions that are consistent with
observations. For this consideration, we have tuned the HOD parameters for the MG models
to ensure that their resulting galaxy catalogs have roughly the same number densities and
clustering properties as the corresponding ΛCDM catalogs. The assumption that MG models
have different HOD parameters from GR is reasonable, because the evolution of the matter
field and the assembly histories of galaxies are generally different in these models. This
tuning of HOD parameters to fix galaxy clustering actually can help to remove one source
of contamination when it comes to the model differences predicted by the various summary
statistics to be studied below. As a result of this tuning, some summary statistics, such as
the projected two point correlation functions, by construction cannot be used to discriminate
the MG models from GR, and we need to find other ways to use the galaxy catalogs.

In practice, our tuning of MG HOD parameters was carried out using a Nelder-Mead
simplex search through the 5-dimensional HOD parameter space. From a MG and a ΛCDM
HOD catalogs, the projected galaxy 2PCFs, wp(rp), were measured7 with the comoving pro-
jected separation range of 0.1 < rp < 50h−1Mpc. The RMS difference between two models
was calculated with an identical weight of 1.0 for all log (rp) bins. To ensure that the two
models have similar galaxy number density n(z), the fractional difference in the respective
n(z) values was also used in the calculation of the RMS difference, with a (somewhat arbi-
trary) weight of 8.0. The code then walked through the 5D HOD parameter space to look
for the smallest RMS difference, and the search stopped if the value dropped below 1.5%
(with the exception of N1 for which the minimum value the code found was 2.2%). As the
summary statistics to be studied later in this paper are all evaluated at z = 0.5, we only did
this tuning to produce z = 0.5 HOD galaxy catalogs.

This is a simplified and less rigorous approach in several ways. First, unlike a Markov
chain Monte Carlo approach, the search only led to the ‘best-fit’ HOD parameters rather than
their posterior distributions. Second, the fitting of HOD parameters did not involve real data;
instead, we adopted the best-fit HOD parameter values taken from [91] for the CMASS data
in the GR halo catalogs (all five realizations) to produce the ΛCDM HOD catalogs, and then
tuned the HOD parameters for the MG models to match the ΛCDM results. Finally, often
the HOD parameters are constrained simultaneously with cosmological parameters using a
combination of different probes, while here we used a single probe (the projected galaxy

7This was obtained by projecting the 3D redshift-space 2PCF ξ(rp, rπ), with rp, rπ being respectively the
galaxy pair separations transverse and parallel to the line of sight, using a projection depth of 90h−1Mpc.
ξ(rp, rπ) was measured using the Correlation Utilities and Two-point Estimation (cute) code [90], with the
distant-observer approximation. For the main results in this paper we have used the z axis of the simulation
box as the line-of-sight direction, but we have checked the HOD tuning when using the x and y axes as the
lines of sight, and found very similar values of the best-fit HOD parameters.
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Figure 3. (Color Online) Left panel: the mean galaxy number as a function of host halo mass for
central (dashed), satellite (dotted) and all (solid) galaxies for ΛCDM and the five MG models. The
figure is made using eq. (2.16) with the tuned HOD parameters (cf. table 2) for the individual models.
Right panel: histograms of galaxy numbers as a function of the host halo mass for all models and
all realizations; this is essentially the product of the mean occupancy number (as shown in the left
panel) and the halo mass function. The line colors and styles in the right panel are the same as in
figure 1. All results are at z = 0.5.

2PCF) to fix the HOD parameters and study other probes afterwards, as we wanted to use
the same HOD catalogs to study a variety of probes. Note that for each MG model a single
set of ‘best-fit’ HOD parameters were tuned and used in producing the HOD catalogs for
all five realizations. To check the sensitivity of the physical results presented below to the
way in which the best-fit HOD parameters were obtained, we made two additional checks by:
(1) tuning the parameters so that the MG models match the ΛCDM prediction of the real-
space 3D galaxy 2PCF ξgg(r) instead of the projected 2PCF, and (2) tuning the parameters
individually for each simulation realization of each MG model. In both cases, we found little
difference from the default case in terms of the halo occupancy properties and the physical
results of the various cosmological probes.

The left panel of figure 3 shows the mean halo occupancy numbers for the different
models in Box 1 (with other boxes being in good agreement), where a complicated pattern
can be observed. For example, in F4 Ncen is substantially higher than in other all models at
1013 . M/(h−1M�) . 1013.5 but decays much faster at M . 1013h−1M�. Ncen in the two
nDGP variants both agree very well with that in ΛCDM, because for massive halos Ncen is
equal to 1 anyway, while for smaller halos these models have very similar HMFs, cf. figure 2.
The right panel of figure 3 shows the histograms of the numbers of HOD galaxies in host
halos of different masses, which is essentially the product of the mean occupancy number
multiplied by the host halo mass function. We have plotted the results from all five boxes
using different line styles, and a good agreement among them (for a given model) is visible.
As expected, more galaxies reside in more massive halos in F4 and F5 than in the other
models.

The right panel of figure 4 shows the projected galaxy 2PCFs wp(rp) of the HOD galaxies
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Figure 4. (Color Online) Left panels: the 3D halo two-point correlation functions, ξhh(r), for the six
models, averaged over all five realizations, as a function of halo separation r (upper panel) and the
relative differences with respect to ΛCDM (lower panel; the five simulation realizations are shown indi-
vidually using different line styles as in figure 1). Note that only halos more massive than 1013h−1M�
are used, so that the halo number densities are different in the different models. Right panels: the
same as the left panels, but for the projected correlation functions of HOD galaxies, wp(rp). All
results are at z = 0.5. The error bars in the top panels and the shaded regions in the bottom panels
are the standard deviation of 5 ΛCDM realizations.

Gravity
Model log(Mmin/[h−1M�]) log(M1/[h−1M�]) log(M0/[h−1M�]) σlogM α ng/

[
h−1Mpc

]−3
fsat

GR 13.09 14.00 13.077 0.596 1.0127 3.196× 10−4 10.88%
F6 13.090 14.011 13.035 0.552 1.0766 3.192× 10−4 10.88%
F5 13.132 14.049 13.061 0.512 1.1008 3.215× 10−4 11.18%
F4 13.030 14.132 12.939 0.260 1.2393 3.177× 10−4 11.24%
N5 13.098 14.017 13.054 0.610 0.9930 3.204× 10−4 10.90%
N1 13.126 14.036 13.111 0.633 0.8967 3.204× 10−4 11.20%

Table 2. The tuned HOD parameter values (columns 2-6) for the GR, f(R) (F6, F5, F4) and nDGP
(N5, N1) models at z = 0.5 and different realizations (Boxes 1-5). Note that all GR simulations
use the same set of HOD parameters, which are taken from the best-fit parameters using CMASS
data [91]. The galaxy number density for all HOD catalogs is around ng = 3.2 × 10−4[h−1Mpc]−3,
and the number densities for each model, averaged over all 5 realizations, are shown in the second
last column. The last column shows the satellite fractions for all models, fsat, again averaged over all
5 realizations.

for all models (top subpanel; average over five boxes), and the relative differences of the MG
models from GR (bottom subpanel; individual boxes). This verifies that the HOD parameter
tuning for the different MG models has served its purpose of making wp(rp) in the different
models agree within ∼ 1.5-2.5%, and that the same HOD parameters applied to different
simulation realizations do give convergent results of wp(rp).

As a comparison, we also show, in the left panel of figure 4, the same results but the
2PCFs of dark matter halos with M200c ≥ 1013h−1M�. Here we see that f(R) models

– 14 –



J
C
A
P
1
1
(
2
0
2
1
)
0
5
0

generally have weaker clustering than GR, since for the same M200c,min the model with
stronger gravity would have a higher halo number density. This means that some of its halos
correspond to initial density peaks too small to form halos with M ≥ M200c,min in a weaker
gravity model. Note again the good agreement of halo 2PCFs in the different realizations.

It is interesting to see that very different gravity models can give nearly identical HOD
galaxy number densities and clustering, showing the flexibility of the 5-parameter HOD model
used here. This highlights the fact that galaxy-halo connection can bring a main theoretical
uncertainty in using galaxy clustering to test models.

Note also that in screened MG models one may expect an additional assembly bias as
the strength of gravity can vary from region to region, and that might lead to correspond-
ing variations of Ncen and Nsat. For example, ref. [92] found a comparable redshift-space
distortion signal due to assembly bias, modelled by galaxy color reshuffling, of the order
of 10-20% in the galaxy cluster environments, ' 1-10h−1Mpc, which is comparable to the
signal predicted by f(R) models as shown below. However, ref. [93] find that the matter
2-point correlation function in the presence of assembly bias can be recovered at 2% us-
ing matter-galaxy cross-correlation modelling in galaxy-galaxy lensing at scales larger than
r ≥ 1 h−1Mpc. Therefore, we shall not pursue this extra complication here, but will leave a
dedicated study of the assembly bias effect in modified gravity models to future work.

2.2.4 Additional mock galaxy catalogs used in this work

Due to the relatively low resolution of the elephant simulations used in the previous sub-
section (section 2.2.3), the halo catalogs are incomplete for halos of small mass (e.g., below
1012.5–1013h−1M�), which makes them not ideal for building mock HOD galaxies with num-
ber densities above a few times 10−4[ h−1Mpc]−3 (such as the ones described in section 2.2.3
and used for most of the analyses in this paper). In addition, the low force resolution of
the simulations also means that the spatial clustering of halos and HOD galaxies could be
inaccurate below a few Mpc. As a complementation, therefore, we have employed some addi-
tional mock galaxy catalogs in this work. These additional mocks are from simulations with
much higher resolutions, which means that they offer the possibility to study the effect of
modified gravity in high-density galaxy catalogs (up to 10−2[ h−1Mpc]−3); they also employ
more realistic methods of assigning satellite galaxies that can be important for small scales
(∼ 1 h−1Mpc and smaller).

The first set of additional mock galaxy catalogs are constructed by using the subhalo
abundance matching (SHAM) technique [94–96], and these are described in ref. [97]. The
SHAM technique assumes that galaxies reside in subhalos, and that through a monotonic
relation between a property of a subhalo and an observed property of a galaxy, subhalos
selected in a simulation correspond to galaxies observed in a galaxy survey. The clustering of
subhalos from the simulation therefore can be compared to the observed clustering of galaxies
directly. An advantage of SHAM is that there is no ambiguity of galaxy bias. Moreover, the
method can fully explore nonlinear effects, such as the FoG, on small scales as it utilizes
N-body simulations directly. However, straightforward as the SHAM method may seem to
be, it is indeed non-trivial to practically implement it and effectively control systematics.

On the observational side, instead of photometrically selected samples in optical bands,
stellar-mass-selected samples should be used. State-of-the-art hydrodynamic simulations
(e.g., [98, 99]) suggest that it is the stellar mass of a galaxy, rather than its r-band luminosity,
that has a tighter correlation with vpeak (the peak value of the maximum circular velocity
over a subhalo’s merger history) of a subhalo. However, unlike its luminosity, a galaxy’s
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stellar mass cannot be directly measured but has to be derived from a stellar population
synthesis model. A challenge we face here is the uncertainty in the estimation of stellar
mass. There are two main sources of the systematics: one is in theory, especially the stellar
initial mass function (IMF); the other is the uncertainty in determining the total flux of a
galaxy. In order to mitigate these systematics, we have constructed volume-limited samples
that are complete in stellar mass, with galaxies being selected in terms of number densities
rather than stellar mass cut. The idea here is to keep the ranking orders of galaxies, and as
demonstrated in [97] this method can effectively minimize the impact of systematics in the
estimation of stellar mass on the measured RSD multipoles, particularly for samples with
higher number densities, ng & 1× 10−2[ h−1Mpc]−3.

On the theoretical side, a high mass resolution of the simulation is crucial for SHAM.
A satellite subhalo close to the host halo center may substantially lose mass due to tidal
stripping. Sometimes even a massive halo at an earlier time in a simulation can be completely
disrupted by tidal stripping and can not be resolved at a later time, leading to a phenomenon
called “orphan galaxies” [96], which can result in an under-estimation of the galaxy clustering
on small scales [96].

We only have SHAM mock galaxy catalogs for the GR and F6 models [97]. These are
constructed on halo/subhalo catalogs and merger history obtained by applying the rockstar
halo finder on GR and F6 simulations run with the ecosmog code. The simulations follow
5123 dark matter particles in a cubic box of size 64h−1Mpc, with a mass resolution of '
1.52 × 108h−1M�. The domain grid size used here is 5123 cells, but the code adaptively
refines this grid so that in dense regions the mesh cell size can be as small as ' 1h−1kpc.
These lead to a high force resolution that allows us to look at the clustering of SHAM
galaxies down to ' 1h−1Mpc, and the force resolution enables the SHAM mocks to reach
a number density of 10−2[ h−1Mpc]−3, which is impossible for the HOD catalogs described
above. Further details of these mock catalogs can be found in ref. [97].

Our second set of additional mock galaxy catalogs are obtained from full hydrodynamical
simulations of galaxy formation in modified gravity models [the shybone simulations; 36, 37].
These simulations employ the IllustrisTNG galaxy formation model [100, 101] and include
runs for both GR and modified models (F6, F5, N5, N1). The simulations have been run using
the highly parallel and optimised hydrodynamical cosmological simulation code arepo [102],
which has been suitably adapted to include a modified gravity solver, for the HS f(R) gravity
and the DGP model respectively, that accurately calculates the fifth force in high-density
regions using adaptive mesh refinement. The simulations took place in a box of side length
62h−1Mpc, following 5123 dark matter particles and the same number of initial gas resolution
elements (which are Voronoi cells in arepo); all runs begin at redshift z = 127, from the same
initial condition for all gravity models. The cosmological parameters are (h, ΩM, ΩB, ΩΛ,
ns, σ8) = (0.6774, 0.3089, 0.0486, 0.6911, 0.9667, 0.8159), where note that the σ8 value is for
ΛCDM at z = 0. The mass resolution for DM particles is mDM = 1.28× 108h−1M� and the
average gas cell mass is mgas ≈ 2.5× 107h−1M�. The group catalogs were constructed using
the subfind code [103] inbuilt in arepo, which uses the friends-of-friends (FOF) algorithm
combined with an unbinding method to identify bound structures within a FOF group.

The IllustrisTNG model used in the shybone simulations is a realistic and highly
sophisticated description of the simplified galaxy formation physics, including star formation,
cooling, and stellar and black hole (BH) feedback. It adopts the Eddington ratio as the
criterion for deciding the accretion state of BHs, and employs a kinetic AGN feedback model
that produces a BH-driven wind, which is responsible for the quenching of star formation
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Figure 5. (Color Online) Left panels: the HOD of the stellar-mass-selected galaxies from the shybone
hydrodynamical simulations for GR (blue), F6 (blue), F5 (green), N5 (magenta) and N1 (orange). The
dashed lines are for central galaxies (Nc), dotted lines for satellite galaxies (Ns) and solid lines the sum
of the two (Nt). Right panels: the real-space galaxy correlation functions (ξ(r)) of the GR (black) and
F6 (blue) models, as predicted from SHAM (dashed lines) and the shybone simulations (solid lines)
for stellar-mass-selected galaxies. In all cases the mock galaxy number density is 10−2[ h−1Mpc]−3.

in galaxies residing in high- and intermediate-mass halos, and for the production of red and
passive galaxies at late times. The standard IllustrisTNG subgrid model has been used in the
f(R) and nDGP simulations without any further tuning — although in principle a retuning
is needed for any new cosmological model, it has been checked explicitly that the default
IllustrisTNG model still predicts baryonic observables in good agreement with observations
even for stronger MG models such as F5 and N1.

The left panel of figure 5 shows the halo occupancy numbers for different gravity models
as predicted by the shybone simulations, which indicate that galaxies in these simulations
occupy halos of mass down to 1011.7–1012h−1M�. The right panel of the figure compares the
real-space galaxy correlation function ξ(r) (which is multiplied by r to increase readability)
for GR and F6, as predicted by SHAM and the shybone simulations. We can see that the
two approaches give very different predictions of ξ(r), as well as very different predictions
in the relative difference between F6 and GR, though both of them predict that F6 has a
smaller ξ(r) than GR. We will comment on this again later in section 3.1.2.

These additional mock galaxy catalogs, based on SHAM and the shybone simulations
respectively, will only be used to study the small-scale clustering of galaxies in section 3.1.2
below, but not for other summary statistics analysed in the next section. This is because
their box sizes (62–64h−1Mpc) are very small and so they offer very little statistical power.
In contrast, the other summary statistics to be studied below mostly involve: large length
scales, which are beyond the probe of these small boxes; or large cosmological objects such as
galaxy clusters and cosmic voids, for which there are few in the box; or higher-order statistics,
for which a larger sample size is even more important; or smoothed (galaxy) density fields
with large smoothing lengths. These summary statistics will be more reliably studied using
larger (yet still high-resolution) simulations than used in this paper, and we hope to revisit
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them in future works.

2.2.5 Fast simulations and mocks
A rigorous analysis of the summary statistics and their capability to constrain models re-
quires to generate a substantial number of realizations of simulations to explore the statistical
properties of the summary statistics and characterize the significance of the differences ob-
served. Furthermore, for comparing models one also needs the covariance matrices for the
different summary statistics. Since full MG simulations introduced above are expensive, it is
not practical to use them for that purpose. Thus, it is helpful to use approximate methods
to generate a large number of simulations.

One of the existing fast simulation codes is mg-cola (COmoving Lagrangian Accelera-
tion) [42], which is an approximation method based on second order Lagrangian Perturbation
Theory (2LPT), to generate quick mock catalogs for the different MG models considered. mg-
cola has flexibility to allow a simulation to be run with varying numbers of time steps: the
use of very few time steps gives the predictions of 2LPT, while the use of more time steps can
improve the accuracy towards that of a full simulation. This flexibility, however, means that
a priori we do not know the smallest number of time steps to be used in order to meet our
target accuracy. Therefore, in order to use mg-cola simulations, we need to calibrate them
using full simulations to make sure that the setup can reproduce the results of the latter
on the scales of interest, and this step should be performed separately for each summary
statistic of interest to us. Apparently, this will be a substantial effort that goes beyond the
scope of this paper.

As a quick check, we have run 20 simulations for each of the six models considered in this
paper, using the same specifications as given in table 1 except that the particle number is 8
times higher (20483). With 50 code time steps (30 steps for 30 ≤ z ≤ 0.5 and 20 up to z = 0),
each mg-cola simulation takes about 300 core hours, which is a factor of O(100) faster than
full simulations which take about 350 coarse and ∼ 10, 000 fine time steps. The huge saving of
computing time partly comes from the fact that full simulations spend a substantial fraction
of their running time solving the nonlinear field equations for the scalar fields on refinements.
The HMFs of these fast simulations agree with those from the full simulations within ∼ 20%
between 1012.5 ∼ 1014.5h−1M�, but the agreement worsens rapidly at > 1014.5h−1M�. The
two-point correlation functions of halos from the fast simulations agree with those of the full
simulations within 15% between 3 ∼ 30h−1Mpc, and the discrepancy increases quickly for
r > 30h−1Mpc. The disagreements between 3 ∼ 30 h−1Mpc are at a similar level to the
model differences that we are interested in tests, and so are not suitable for estimating the
observables or their covariances. This suggests that the fast simulations may need to be run
at higher time, space or mass resolutions in order to agree with full simulations, especially
for probes that employ small-scale information such as within dark matter halos. Future
developments in this area, e.g., in optimising existing codes, developing possible new fast
codes, or proposing (semi)analytical methods for covariance estimation, will therefore be of
great importance and much welcomed effort.

3 Summary statistics

Having introduced the theoretical models, simulations, and halo and mock galaxy catalogs
in the previous section, we can now move on to showing how the various summary statistics
studied in this paper predict different signals for the different gravity models. Because of the
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restrictions in the number densities and volumes of our mock galaxies, and due to the various
systematic effects which are not accounted for, we shall not conduct a rigorous statistical
analysis of the future constraints from DESI, but instead focus on understanding the model
behaviors and signatures, quantifying roughly the significance at which different models can
be statistically distinguished, and identifying future simulation and analysis needs.

In this section we consider a diverse range of summary statistics. In 3.1, we consider
the use of redshift-space clustering on large and small scales. In 3.2, we investigate how
clustering in under-dense and over-dense regions can be contrasted through both the explicit
consideration of statistics in dense and void environments and the application of environment-
dependent, or “marked” statistics. In 3.3, the applications of a range of real- and Fourier-
space statistics beyond the two-point correlation function are studied, including the three-
point correlation function, the bispectrum, hierarchical clustering, Minkowski functionals
and phase space statistics. In 3.4, the use of lensing information in addition to spectroscopic
clustering information is considered both in clustered and void environments.

3.1 Redshift-space galaxy clustering

Peculiar velocities of galaxies induce anisotropies in redshift space and leave distinctive im-
prints on the clustering pattern at different regimes. On large and linear scales, galaxies infall
into high-density regions such as clusters, producing a squashing effect of these regions along
the line-of-sight: this is the Kaiser effect [104]. On smaller (nonlinear) scales, the random
motions of galaxies in virialized objects produce the Fingers-of-God (FoG) effect where the
density field becomes stretched and structures appear elongated along the line of sight [105].

In this section we consider the potential constraints from redshift space distortions
(RSD) on large scales, section 3.1.1, and small scales, in section 3.1.2.

3.1.1 Large-scale RSD
In linear theory, the amplitude of the RSD is related to the distortion parameter β, defined as

β(z) ≡ f(z)
b(z) , (3.1)

where f is the linear growth rate and b is the linear galaxy bias, as functions of redshift.
The linear growth for the matter fluctuations in different gravity models can be obtained

by solving the equation of the linear growth factor, D+,

D′′+ +
[
2− 3

2Ωm(a)
]
D′+ −

3
2µ(k, a)Ωm(a)D+ = 0 , (3.2)

where ′ denotes a derivative with respect to ln a and µ, introduced in eq. (2.9), is the ratio
between the effective Newton constant Geff and the true one G:

µ(k, a) = Geff
G

=


1 for GR,
1 + k2

3(k2+a2m2
fR

) for f(R) gravity,

1 + 1
3βDGP(a) for nDGP,

(3.3)

where k is the wavenumber of a perturbation mode, mfR is the mass of the scalaron field
defined bym2

fR
' [3|fRR|]−1 and βDGP(a) is given by eq. (2.14). Note that Gf(R)

eff is a function
of time and scale, which means that the linear growth of structure for f(R) gravity is scale
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Figure 6. Left panel: the two dimensional galaxy correlation function ξ(rp, rπ) measured from our
mock catalogues at z = 0.5 as a function of separation across (rp) and along (rπ) the line-of-sight.
Contours show lines of constant ξ(rp, rπ) at ξ(rp, rπ) = 5, 2, 1, 0.5, 0.25. The correlation functions
correspond to the average of fifteen measurements obtained by projecting five realizations over the
three LOS directions. The black dashed contours correspond to the real-space measurements of the
correlation function at the same values of its counterpart in redshift-space, for simplicity we show the
GR case only for these contours. Right panel: monopole, quadrupole and hexadecapole moments of
the correlation function, eq. (3.6), for our six gravity models at z = 0.5. The moments have been
shifted by a factor of 100, 50 and −150 for better visualization. The error bars correspond to the
standard deviation over fifteen GR measurements. Different colour line correspond to different gravity
model as specified in the legend.

dependent, while for GR and nDGP is scale independent. The linear growth rate, f , is
defined as

f ≡ d lnD+
d ln a . (3.4)

Large-scale redshift distortions have been studied with a large variety of tracers, includ-
ing luminous red galaxies, e.g., [106, 107], cosmic voids [108–110] and quasi-stellar-objects
(QSOs) [111–113], and been successfully used to extract cosmological information by assum-
ing a standard cosmological model, ΛCDM, based on GR. Current studies of modified gravity
have used redshift-space distortions to put constraints on the β parameter, eq. (3.1), see, e.g.,
ref. [114]. In ref. [115], the authors studied a coupled model of f(R) gravity and massive
neutrinos to break the degeneracy between the enhancement of the growth of large-scale
structure produced by MG models and the suppression due to the free-streaming of massive
neutrinos at late times.

The effects of redshift-space distortions can be measured using the redshift-space cor-
relation function of galaxies, ξ(rp, rπ), which is the excess probability of finding a pair of
galaxies at separations transverse (rp) and parallel (rπ) to the line of sight (LOS). The left
panel of figure 6 shows ξ(rp, rπ) as a function of separation (rp, rπ) at z = 0.5, using the HOD
catalogs described in 2.2.3 for the different gravity models. For comparison, the black dashed
curve corresponds to the spherical two-dimensional correlation function in real-space of the
ΛCDM (GR) model. We clearly see that along the LOS at rp . 2 h−1Mpc the clustering is
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enhanced by the FoG effect, while at rp > 2 h−1Mpc the clustering pattern is squashed by
the Kaiser effect.

Given the symmetry along the line of sight, the transverse and parallel separations,
(rp, rπ), can be expressed as a distance in redshift space, s, and the cosine of the angle
between s and the LOS direction,

s =
√
r2
π + r2

p , µ = rπ
s
. (3.5)

The resulting anisotropic correlation function, ξ(s, µ), can then be decomposed into multipole
moments,

ξl(s) = (2l + 1)
∫ 1

0
ξ(s, µ)Pl(µ) dµ , (3.6)

where Pl(µ) are the Legendre polynomials. In linear theory, the l = 0, 2 and 4 moments are
non-zero with P0(µ) = 1, P2(µ) = (3µ2 + 1)/2, P4(µ) = (35µ4 − 30µ2 + 3)/8, corresponding
to the monopole, quadrupole and hexadecapole moments.

The right panel of figure 6 shows the multipole moments, ξl(s), of the correlation func-
tions measured from the same galaxy catalogues. From the monopole, ξ0(s), we observe
that the position of the baryon acoustic oscillations (BAO) peak, at sBAO ' 105 h−1Mpc or
150 Mpc, is not affected by modified gravity. Higher-order multipole moments such as the
quadrupole ξ2(s) and the hexadecapole ξ4(s) encode the anisotropies induced by redshift dis-
tortions. In the case of the quadrupole, ξ2(s), N1 shows the strongest deviation with respect
to GR, especially on scales s > 20 h−1Mpc, followed by F4 and N5. Our measurements of
the hexadecapole are almost indistinguishable among all models studied here. Comparing
the plot with the left panel of figure 4 of [114], in which the HOD parameters were tuned to
match the real-space galaxy two point correlation functions in MG and GR, we can see that
the results are almost identical.

To investigate the impact of MG on RSD more quantitatively, we discuss two methods
to constrain the distortion parameter, β. The first is based on the Kaiser linear model [104],
considering summary statistic, Q(s), to obtain the distortion parameter β as usually done in
the literature, [see e.g., 123]:

Q(s) ≡ ξ2(s)
ξ0(s)− ξ̄0(s)

= (4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2 (3.7)

The second method is based on an extension of the Galilean-invariant renormalized perturba-
tion theory [gRPT; 124], where the anisotropic correlation function is obtained as the inverse
Fourier transform of the power spectrum.

To estimate β(z) fromQ(s) using the linear theory model, we use a χ2-test by minimizing
the χ2 defined as

χ2(β) =
∑
i

[
Q(si)−Qth(si;β)

σQi

]2

, (3.8)

where Q(s) is the average of the linear summary statistic given by eq. (3.7) from the 15
redshift-space HOD catalogues constructed from the 5 real-space HOD catalogs, σQ is the
standard deviation in the same catalogs, and Qth(s;β) is the theoretical prediction of Q(s)
given by the third expression of eq. (3.7). We searched in a grid of values in β ∈ [0, 1],
with a step size of ∆β = 10−4, for the theoretical summary statistic and identified the value
of β that minimizes χ2 as χ2

min = χ2(βfit). As we vary only one parameter, the 1σ error
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Figure 7. Evolution of β as a function of redshift. The curves show the theoretical predictions for
the gravity models as shown in the legend, for f(R) gravity models the theoretical predictions are
shown as a shaded region for wavenumbers 0.01 ≤ k/[hMpc−1] ≤ 0.1. Open coloured symbols corre-
spond to current constraints from observational galaxy survey data: 6dFGRS [116], SDSS MGS [117],
2dFGRS [118], GAMA [119], Wiggle Z [120], SDSS LRG [121] and BOSS DR12 [122]. Filled symbols,
at z = 0.5, denote the β estimates obtained from the simulations using the summary statistics—Left
panel: Q(s) eq. (3.7) using linear theory; Right panel: ξl(s) eq. (3.6) using non-linear theory with
smin = 42.5h−1Mpc at z = 0.5. The lower subpanels show the relative difference between the modified
gravity models and GR. Error bars correspond to the 1σ confidence level.

on β corresponds to ∆χ2 ≡ χ2 − χ2
min = 1. The fit was performed in the range of scales

s = 42.5 − 147.5 h−1Mpc, to avoid contamination due to non-linear effects and potential
assembly bias that would complicate the measurements.

To obtain the constraints of β using the gRPT model, we used Bayesian statistics and
maximize the likelihood,

L(ξ|λ) ∝ exp
[
−1

2 (ξ − ξmodel(λ))T Ψ (ξ − ξmodel(λ))
]
, (3.9)

where the Ψ = C−1 is the inverse of the covariance matrix. We applied the Gaussian
recipe [125] to estimate the covariance matrix, which is then rescaled by the number of
simulations. The parameters that enter the default fitting are {f, b1, b2, γ−3 , avir}, where b1
and b2 are local galaxy biases to linear and second order; γ−3 is a non-local bias coefficient, see,
e.g. [126]; and avir is a free parameter that describes the kurtosis of the velocity distribution
on small scales. Two additional parameters, {q‖, q⊥}, relating fiducial and real distances,
are needed when applying the Alcock-Paczynski (AP) test [127]. However, we fixed the AP
parameters to make a fair comparison with the linear Kaiser model. We marginalize over the
nuisance parameters to find the probability distribution of the distortion parameter β = f/b1.
For more details of the method, we refer the readers to [114, 128].

In the upper panels of figure 7, we compare the theoretical predictions for β(z) to current
observational measurements of the distortion parameter from galaxy surveys, including the
6dFGRS at z ' 0.067 [116], the SDSS MGS at z ' 0.15 [117], the 2dFGRS at z ' 0.17 [118],

– 22 –



J
C
A
P
1
1
(
2
0
2
1
)
0
5
0

GAMA at z ' 0.18 and 0.38 [119], Wiggle Z at z ' 0.22, 0.41 and 0.6 [120], the SDSS LRG
at z ' 0.25 and 0.37 [121] and BOSS DR12 at z ' 0.32 and 0.57 [122].

In the left-hand panel, we also include the best-fit β values for all gravity models ex-
tracted from the simulations at z = 0.5 using the linear Kaiser method, with 1σ error bars.
The extracted estimates consistently underestimate the β value for all gravity models com-
pared with the theoretical prediction. This is due non-linearities that produce smaller values
of Q(s). In general, the linear Kaiser model fails to model RSD in configuration space even
on large scales (smin = 42.5 h−1Mpc). In the right-hand panel of figure 7, the constraints on
β using the gRPT model are shown, where we observe a good agreement between the best-fit
values and the theoretical predictions for all models, and the additional details of the RSD
model corrects the inaccuracy of the Kaiser model on linear scales.

In the lower subpanels of figure 7, we plot the relative differences of the MG models with
respect to GR. Despite the different best-fit β values in the linear and non-linear methods,
the relative differences between models predicted by them are almost the same. However,
the difference of the F6 and F5 models with respect to GR is . 1%, making these three
models statistically indistinguishable from each other, while F4 keeps a difference of ∼ 5%
with respect to GR; this reflects the fact that the growth of structure in f(R) gravity is not
enhanced on large scales, beyond the Compton wavelength of the scalaron field. On the other
hand, N5 and N1 models show a difference of respectively ∼ 2.5% and ∼ 12% with respect
to GR, due to the long-range nature of the fifth force.

We conclude that with current data it is difficult to distinguish between the various
gravity models simply by using constraints on β. Future data from surveys like DESI will
likely improve on this situation, though tests of models like F5, N5 and F6 may still remain
a challenge [see e.g. 129]. As an example, we can rescale our error size by the square root
of the inverse volume ratio, σ′ = σ

√
Vmock/VDESI, where VDESI = 20 (Gpc/h)3 and Vmock =

(1.024 Gpc/h)3. This would lead to a new error size of σ′ = 0.23σ which would help to
distinguish between gravity models on large scales. As we discuss next, the power of RSD
to distinguish between gravity models can also be improved by the inclusion of smaller scale
information.

3.1.2 Small-scale redshift-space galaxy clustering

We have seen in the previous subsection that large-scale RSD can be a useful tool to test
gravity theories which strongly affect structure formation on large scales, such as nDGP,
while for models such as f(R) gravity, where gravity is modified on small nonlinear scales,
the constraints are generally weaker. However, this conclusion should be read with the
particular context of the analysis in mind. Neither the perturbative theoretical templates for
RSD nor the numerical results from our HOD catalogs are accurate enough for the highly
nonlinear regime, where the FoG effect due to the virial motions of small galaxies dominates
the anisotropies in galaxy clustering and can potentially be affected by an enhanced gravity
force. For this reason, it is important to explore this regime in greater details using different
techniques. In this subsection, we visit this topic by using two alternative approaches, subhalo
abundance matching (SHAM) technique [94–96] and hydrodynamical simulations of galaxy
formation in modified gravity models [36, 37] (cf. section 2.2.4), to predict galaxy clustering,
in particular small-scale RSD, in the f(R) and nDGP models studied above. Part of this
subsection consists of a review of the results presented in ref. [97]. We note that, in considering
halo catalogs generated by HOD, SHAM and hydrodynamical simulations, our intention in
this paper is not to explicitly undertake apple-to-apple comparisons of the various simulations,
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i.e., it is rather to enumerate and present the possible summary statistics that can be derived
from upcoming galaxy clustering survey data to test gravity, than to conduct a rigorous
quantitative comparison of different summary statistics under exactly the same controlled
conditions. The latter will be left for future works.

Figure 8 shows a comparison between the observed redshift space galaxy clustering and
the predictions in ΛCDM for galaxy samples with ng = 1 × 10−2[h−1Mpc]−3. The SHAM
predictions in ΛCDM agree very well with the observation especially for the Fingers-of-God
on small scales. To demonstrate the robustness of SHAM in constraining MG models, we
also present its predictions for the F6 model in figure 8. The predictions are based on set
of high-resolution f(R) and GR simulations presented in ref. [50], using the “effective halo”
technique developed in refs. [130–132]. As we can observe from this figure, the f(R) result
deviates substantially from both the ΛCDM predictions and observational data for all three
RSD multipoles.

To further understand the substantial differences between F6 and GR in figure 8, we
have plotted in figure 9 the real space 2PCFs of the SHAM mock galaxies, for two sample
number densities: ng = 1×10−2[ h−1Mpc]−3 (left) and 2×10−2[ h−1Mpc]−3 (right). In both
cases there is a 20 ∼ 40% difference at r . 6 h−1Mpc, which partially explains the behavior of
figure 8 (note the difference in the galaxy velocities between the two models also contributes
to the model difference in redshift space in figure 8). The clustering is actually weaker in
F6, which is because on small scales the enhanced gravitational force makes structures grow
faster, which means that lower initial density peaks, which would not have become massive
enough to host halos for the chosen ng cutoff in GR, have indeed become galaxy bearing.
These halos are intrinsically less clustered than the ones which form from higher initial density
peaks. This is clearly a feature that can only be probed in the nonlinear regime due to the
short-range nature of the fifth force in this model.

While the above result seems to suggest that small-scale RSD can be a promising tool
to constrain gravity models, the SHAM prediction for F6 is based on an assumption on
the relationship between the peak circular velocity and the effective mass of a halo. In
obtaining figures 8 and 9, it is assumed that the circular velocity profile vcirc(r) is related
to the effective mass Meff by the usual v2

circ = GMeff(< r)/r. This relation is applicable
for relaxed halos with constant (effective) masses and density profiles. However, in f(R)
gravity, the chameleon screening efficiency becomes weaker with time,8 and so the effective
mass of a halo, Meff , will change from the true halo mass M in the fully-screened regime
to 4M/3 when the halo becomes unscreened. Such a change could happen rapidly, and so
the above relationship does not always hold: when Meff has changed, it will take time for
vcirc to adapt, which means that using Meff to estimate vcirc can lead to overestimate of
the modified gravity effect. Note that in this way the SHAM approach will have a different
halo population in F6 from in GR, because even for halos of the same mass, their effective
massesMeff can be different depending on the environments (a consequence of the chameleon
screening). This can naturally lead to different clustering predictions between F6 and F5.
Furthermore, in low-density regions where chameleon screening is inefficient, small halos are
likely to be unscreened and have higher effective masses than their GR counterparts, but this
does not necessarily translate into higher stellar masses, since there is less baryonic matter
in these regions to start with. All these complicated effects cannot be expected to be fully
accounted for in the simple SHAM approach.

8This is because as time progresses, the background value of the scalar field increases, so that screening a
halo of the same mass becomes harder.
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Figure 8. A comparison of RSD measurements using three different stellar mass models: a template-
fit method adopted in the NYU catalog with the SDSS model magnitude (stars with dashed line), the
same template-fit method but with the SDSS Petrosian magnitude (circles with dashed lines), and a
single-color method (triangles with dashed lines). Different stellar mass models give rise to convergent
results. The error-bars in the above plot are estimated using a jackknife re-sampling technique with
133 realizations. Here the error-bars represent 3σ statistical error. The predicted RSD multipoles
(monopole ξ0, quadrupole ξ2 and hexadecapole ξ4) in ΛCDM from SHAM mock are in good agreement
with observations. Note that the SHAM mock is based on the SMDPL simulation [133] and has the
same geometry as the real data. The plot is reproduced from [97]. The green and red lines show the
predicted RSD multipoles for ΛCDM and f(R) gravity using a suite of simulations with 64[ h−1Mpc]3
box size. The shaded regions give the 1σ uncertainty around the expectation value, derived from 500
realizations with line-of-sight along different directions of the simulation box. Despite the deficit of
power in the monopole due to the small box size of the simulations, the higher order multipoles, such
as quadrupole ξ2 and hexadecapole ξ4, show significant differences, indicating that even a model like
F6 can be testable given the accuracy of the clustering measurement of DESI.

Therefore, as a cross comparison of the different approaches to model small-scale RSD,
we have measured the small-scale redshift space clustering of the shybone simulations [36,
37], which are the first realistic full-physics hydrodynamical galaxy formation simulations of
MG (f(R) gravity and nDGP) models, employing the IllustrisTNG subgrid physics
model [101] (see section 2.2.4 and [36, 37] for more details). We select galaxies accord-
ing to their stellar masses, to match the number density of the SHAM catalogs (ng =
1 × 10−2[ h−1Mpc]−3). Figure 10 shows the measurements of the redshift space cluster-
ing multipoles of the f(R) gravity (left panel) and nDGP (right panel) models, and we have
also included the SHAM RSD measurements in the left panel of figure 10 for comparison.

Of the three multipoles, we can see that the monopole (solid lines) is least affected by
MG effects, we find a difference of around 5% on most scales for the F6, F5 and N1 models;
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Figure 9. The predicted three-dimensional two-point galaxy correlation functions from the SHAM
model (upper panels). The shaded regions represent the 1σ Poisson errors. The lower panels show
the fractional differences between the f(R) model and ΛCDM. The left panels show the results for
a galaxy density 〈ng〉 = 0.01[ h−1Mpc]−3 and the right panels are for 〈ng〉 = 0.02[ h−1Mpc]−3. For
comparison, the dashed lines show the results obtained using the current maximum circular velocity
vmax. The plot is reproduced from ref. [132]

the N5 model is almost indistinguishable from GR. On the other hand, MG effects on the
quadrupole (dashed lines) and the hexadecapole (dash-dotted lines) can produce difference of
'20%–30% on scales s = 2–8 h−1Mpc for the F5 and N1 models. This trend is not surprising,
given that the monopole is largely determined by the real-space galaxy correlation function,
while the quadrupole and hexadecapole depend more sensitively on the pairwise velocity
fields, and a modified gravity force is expected to affect the velocity field first and more,
since it is the first integral of the acceleration field while the position is the second integral.

Interestingly, the predictions by the galaxy formation simulations differ significantly
from those by SHAM (for F6), suggesting that the complications mentioned above can bear
a non-negligible systematic impact on the SHAM predictions. This observation is consistent
with the right panel of figure 5, which indicates the differences between these two approaches
already appear in the real-space clustering, is not completely down to different mappings
from real to redshift space. Of course, even hydrodynamical simulations are not immune
of systematic effects, e.g., different subgrid physics models can give quantitatively different
results. Nevertheless, the results of figure 10 confirm that RSD on small scales (.10h−1Mpc)
can be strongly modified in models such as f(R) gravity, for which the effect on larger
scales is generally small, (figure 6; right panel). In particular, because the quadrupole and
hexadecapole are mostly sensitive to the velocity field (e.g., [134]), we expect them to be less
affected by the complications caused by baryonic effects (e.g., [135]).

Small-scale RSD can thus be a promising tool when using future galaxy surveys such as
DESI, in particular its Bright Galaxy Survey (BGS), to constrain gravity models. The BGS
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Figure 10. Small-scale redshift space galaxy clustering measured from the full-hydrodynamical
shybone simulations [36, 37] for the F6 and F5 models (left panel), and the N5 and N1 models (right
panel). In the left panel we additionally show the measurements from the SHAM catalog (dotted
lines) for comparison. The lower subpanels show the relative difference of the measurements from the
MG full-physics simulations with respect to their GR counterpart.

can obtain redshifts of “bright” galaxies up to two magnitudes fainter than the limit of the
Sloan Digital Sky Survey (SDSS) main galaxy redshift survey [136]. In its current design, the
BGS will observe approximately 17 million galaxies over 14,000 deg2, in two completeness
tiers: r < 19.5 galaxies with completeness of ≈ 90% and 19.5 < r < 20.0 galaxies with
completeness of ≈ 75%. The exceptionally high sampling density allows the best achievable
measurements of RSD with unparalleled accuracy.

3.1.3 Redshift-space distortions around voids

Cosmic voids are regions in our Universe that are underdense in terms of tracer numbers
and matter. Redshift space distortions around voids can be used to probe the growth rate of
structures around these regions [110, 137]. The void-galaxy correlation function is distorted
in redshift space because of the peculiar motions of galaxies. While such peculiar motions
respond only to the Newtonian potential in GR, in MG models they can also be affected by
the fifth force, causing the distortion patterns to change — a diagnostic that can then be
used to distinguish the model from GR. Since the fifth force is expected to be unscreened in
voids [138–141], the effect should be larger around voids.

We conduct an analysis for the redshift-space distortions around voids using the redshift-
space void-galaxy correlation function ξsvg, using the mock galaxy catalogs from the GR and
modified gravity simulations described in previous section. Voids are identified in the redshift-
space galaxy fields using the zobov void finder, which makes use of Voronoi tessellation of
the galaxy field [142] (details for the definitions of zobov voids including void center and
radius are described in section 3.3 of [49]). We then measure the void-galaxy correlation
function ξsvg in redshift space. An example for the GR model is shown in the left panel of
figure 11. The extracted monopole ξs0 and quadrupole ξs2 moments are shown in the top of
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the right panel of figure 11. All voids with radius rv greater than 20h−1Mpc are used for the
analysis.

In GR, Following the linear model of [110], the ratio between the quadrupole and
monopole is a constant G = 2β/(3 + β), where β = f/b is the distortion parameter in-
troduced above. We can estimate β using the summary statistic

G̃(β) = ξs2(r)
ξs0(r)− 3

r3
∫ r

0 ξ
s
0(r′)r′2dr′

= 2β
3 + β

. (3.10)

The multipoles of the redshift-space correlation function can be obtained by

ξs` (r) =
∫ 1

0
ξsvg(r, µ)(1 + 2`)P`(µ)dµ, (3.11)

where P0(µ) = 1 and P2(µ) = 1
2(3µ2 − 1), and µ = cos θ where θ is the the angle between

the line connecting a galaxy-void pair and the LOS. In linear theory, the model has only one
free parameter, β.

We follow the same procedure as in [110] for constructing the covariance matrix and for
the parameter fitting. The correlation functions from all the 5 boxes of simulation at z = 0.5
are treated as independent and used for the fitting. We have also viewed the simulation box
along three different major axes of the box to further increase the data size, although we do
not expect the volume to increase by three times since they are not independent.

We appreciate that the growth rate in non-GR models may be scale dependent even
in the linear regime. In this study, we do not explore this subtlety and simply recover the
effective growth rate parameters βeffective for all models. We have also treated the linear
bias as scale independent and taken the measurement from the galaxy 2PCF versus the
dark matter correlation function between 20 to 50 h−1Mpc. The linear galaxy biases for all
different models are very close to each other, b ∼ 1.9 at z = 0.5.

We find that the best-fit growth rate parameter for the GR model agrees with the true
answer within the 1σ range. However, with the same fitting procedure, we recover similar
growth rates for F6 and N5, not distinguishable from GR. Both the F5 and N1 models may
be distinguished from GR at the 2-3σ level, with the F5 model having a slightly lower best-
fit value of β and the N1 model having a higher value of β than GR, which is somewhat
unexpected as the linear growth rate in both these two models should be higher than in
the GR model with the same expansion history. This may have been complicated by non-
linearity and scale-dependent galaxy bias being different among different models. To fully
exploit the information from these measurements, more accurate models of RSD which work
in the non-linear regime are needed, e.g., [143, 144].

We have also found that error budget for β does not goes down with the square root
of the volume, which suggests that viewing the simulation along three different axes does
not give us more independent data. Having a higher number density of galaxies will help to
resolve smaller voids and increase their number for a fixed volume. This will be guaranteed
for the DESI BGS survey, where the number density of galaxies will be at least an order
of magnitude higher than the current CMASS mocks. This may help to further reduce the
errors and increase the distinguishing power between the MG models and GR. Void RSD
is a relatively unexplored probe, and its potential in testing gravity will require further
investigations in the future.

Another interesting avenue to explore with voids is to compare the distribution func-
tions for the sizes of voids (VSD) among different models. In theory, this has been shown
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Figure 11. Left: the void-galaxy correlation function in redshift space for the GR model for voids
identified by zobov with the HOD galaxies in 5 boxes of the 1024h−1Mpc-aside simulation. Voids
with effective radius rv > 20h−1Mpc are used.Right: the upper panel shows the monopole (blue)
and quadrupole (orange) moments of the redshift-space correlation function. Thin lines indicate
the absolute values of negative parts. The lower panel shows the ratio of the quadrupole versus
monopole. The black curve is from taking all measurements of voids along three different major axes
of the simulation box, with the error bars showing the error on the mean. The dotted line is the true
answer for the growth rate parameter G given by the cosmology and galaxy bias. The black shaded
region shows the 1σ range around the best-fit value.

to be powerful for distinguishing gravity models with chameleon screening mechanism (see,
e.g., [139–141]). However, we do not find the VSDs found with our galaxy samples distin-
guishable among different models (see, e.g., [49] for a study of the VSD in different models
that used HOD catalogues similar to the ones used in this paper). The main reason for this
is that we have made sure that the clustering of our HOD galaxy samples are similar to
each other, which has forced the VSDs to be similar, as VSDs are correlated with galaxy
clustering. Also, we note that a fraction of the CMASS-like HOD galaxies are hosted by
massive halos, which are likely to live in high-density regions where the fifth force in MG is
screened: this may again indicate the benefit of using denser/fainter galaxy samples to find
voids, which will be left for future studies.

3.1.4 Discussion
Redshift-space distortions, through combining information from both large and small scales,
can be a potentially powerful tool to discriminate between different gravity scenarios. Nu-
merical, semi-analytic and analytic techniques may each be valuable to accurately predict
RSD in gravity models that deviate from GR. In the ΛCDM model, various RSD models
have been proposed. Substantial progress has been made based on perturbation theory such
as the one given by [145, 146], and the Taruya-Nishimichi-Saito model [147] and the effective
theory of large-scale structure [148] (see [149–151] for comparisons of these models). These
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need to be combined with perturbative galaxy bias models such as the one studied in [126]
(see [152] for a review).

In configuration space, the redshift-space correlation function is often modelled by the
Gaussian streaming model (GSM) [153] combined with Lagrangian perturbation theory [154].
GSM models assume the pairwise velocity distribution of galaxies can be modelled as a
Gaussian. However, N-body simulations have demonstrated that gravitational clustering
introduces non-negligible skewness and kurtosis [146], that play an important role in shaping
the redshift-space galaxy clustering multipoles on small scales. Various models aimed at
incorporating these properties have been proposed in recent years, e.g., [134, 155–158], which
can improve the accuracy of redshift-space clustering predictions on smaller scales (e.g.,
. 20h−1Mpc) than the Gaussian case, but their accuracy is often limited by the ability
of perturbation theory to reproduce the pairwise velocity moments accurately. In the near
future, this limitation might be overcome by calibrating non-Gaussian models to N-body
simulations.

More generally, N-body simulations are being used extensively not only to test the
accuracy of perturbation theory approaches, but also to directly constrain gravity by means
of either hybrid techniques, such as the one presented in [159] where the redshift-space power
spectrum is computed on large scales using perturbation theory and a template approach
is taken for the small scales, or by taking simulations a step further to create emulators for
clustering summary statistics [160, 161]. The main challenges for emulator approaches are
their expensive computational requirements, and their reliability on accurate models of the
galaxy-halo connection to produce unbiased constrains of gravity from data.

The advantage of the perturbation-theory-based RSD models is that they can be ex-
tended to different gravity models. This has been done for several MG models including
f(R) gravity and nDGP models [162–167]. This enables one to directly constrain modified
gravity parameters such as |fR0| by taking into account consistently the scale dependence
of the growth rate and non-linear interactions due to screening [45]. The disadvantage is
that perturbative approaches are not able to model the RSD effect accurately on small scales
and a careful analysis is required to determine the scales that can be used using galaxy
mocks (as we shall discuss in the following subsection). On the other hand, the emulator ap-
proaches can exploit the information on much smaller scales but they require a large number
of high-resolution N-body simulations in a given gravity model, although cola approaches
have brought some alleviation to such a requirement [168, 169]. It is important to develop
more efficient and optimal RSD models to distinguish different gravity models for surveys
like DESI.

3.2 Density-dependent environmental effects on galaxy clustering

We have seen above that many MG models have environmentally-dependent behaviors, such
as stronger deviation from GR in under dense regions. The mock galaxy catalogs used for this
paper have been produced using HOD parameters tuned for galaxies from all environments
and so, while the different gravity models match each other in their overall projected 2PCFs, it
is natural to ask whether stronger differences can be found in subsets of galaxies from specific
environments. In this section, we investigate this possibility through a variety of statistics
in contrasting environments. We consider statistics that utilize density transformations, or
“marked tracers”, to test modified gravity with simulated data.
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Figure 12. (Color Online) The tracer-number-density marked correlation statistic for halos (left)
and galaxies (right) with ρ∗ = 4, p = 10, for GR (black), f(R) with |fR0| = 10−4 (red), |fR0| = 10−5

(green), |fR0| = 10−6 (blue) and nDGP with rcH0 = 1 (orange), rcH0 = 5 (magenta). The curves
correspond to the averages over the 5 realizations of HOD catalogs, while the bottom panels are the
fractional deviation ∆M/M = MMG/MGR − 1 for each MG model. The error bars correspond to
the standard deviations over the 5 boxes. The results shown are all in real space.

A general marked correlation function can be defined as [48]:

M(r) ≡ 1
n(r)m̄2

∑
ij

mimj = 1 +W (r)
1 + ξ(r) , (3.12)

where the sum is over all tracer pairs with a given separation, r, n(r) is the number of such
pairs, mi the mark for the ith tracer and m̄ the mean mark for the entire sample. In the
second equality, ξ(r) denotes the standard two-point correlation function and W (r) is the
‘weighted’ correlation function at a separation r.

In the following discussion we consider summary statistics based on number counts of
halos and galaxies in 3.2.1 and the gravitational potential that accentuate under-dense regions
in 3.2.2. In addition to the summary statistics derived from the simulations, we also discuss
how marked correlation functions can be predicted from analytical estimates in section 3.2.3.
Finally we consider correlation functions that highlight over-dense regions, in 3.2.4.

3.2.1 Marks defined using tracer number densities
Screening in modified gravity models, which occurs in regions of high density, has led to the
consideration of density transformations that up-weight lower density, unscreened, regimes as
a mechanism to enhance the modified gravity signatures. Such transformations include: the
logarithmic transform of the density field [170–172], for which the transformed field becomes
more Gaussian, facilitating easier information extraction from the 2-point function; a clipped
density field [173–175] in which density peaks are all allocated a common value δ0,

δ′ = δc =
{
δ if δ < δ0
δ0 if δ > δ0.

(3.13)
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Figure 13. (Color Online) Comparison of the tracer-number-density marked correlation statistic
for dark matter halos (left) and galaxies (right) for the case of up-weighting high density regions
(ρ∗ = 1, p = −1), for GR (black), f(R) with |fR0| = 10−4 (red), |fR0| = 10−5 (green), |fR0| = 10−6

(blue) and nDGP with rcH0 = 1 (orange), rcH0 = 5 (magenta). The curves correspond to the averages
over the 5 realizations. The bottom panels show the fractional deviation ∆M/M =MMG/MGR− 1
for each MG model. The error bars correspond to the standard deviations over the 5 boxes.

and more general “marked” density transformations that up-weight low densities. An example
of such a mark is the one proposed in [176],

δ′ = m(δ) =
(
ρ∗ + 1
ρ∗ + ρ

)p
=
(

ρ∗ + 1
ρ∗ + (δ + 1)

)p
, (3.14)

where ρ∗ and p are free parameters and ρ the dark matter mass or tracer number density
field in a grid cell, in units of the mean density ρ̄. Marked statistics have been previously
explored in the context of MG in [177], using CDM simulations produced in [41], and in [178,
179]. Tested on the f(R) and symmetron [180, 181] MG models, the density-marked statistic
was found to boost the signal-to-noise ratio encoded in the two-point statistics, providing
thus additional discriminatory power with respect to ΛCDM.

To calculate the marked correlation function for our models, we measure the galaxy
number density using the nearest-grid-point scheme, by dividing the simulation box into
cells of the same size, and then counting the number of galaxies inside each cell and using
this to assign a density to the cell. Hence, we can compute the overdensity, δ, as

1 + δ ≡ ng
n̄g

, (3.15)

where ng is the number of galaxies in each cell and n̄g is the mean number of galaxies in cells
of a given size over the simulation volume. To compute the galaxy density, we have used 603

cells of size ∼ 17 h−1 Mpc. We have checked that the relative model differences are stable
against the number of cells, provided that we use at least 303–403 cells (see appendix A for
details).
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Figure 14. (Color Online) Comparison of the galaxy-number-density marked correlation statistic for
galaxies with ρ∗ = 4, p = 10, for GR (black), f(R) with |fR0| = 10−4 (red), |fR0| = 10−5 (green),
|fR0| = 10−6 (blue) and nDGP with rcH0 = 1 (orange), rcH0 = 5 (magenta) when using SPH
spline kernel interpolation for density estimate in real space (left) and redshift space (right). The
curves correspond to the averages over the 5 realizations (in redshift space we consider 3 directions
of each realization as independent samples), while the bottom panels show the fractional deviation
∆M/M =MMG/MGR−1 for each MG model. The error bars correspond to the standard deviations
over the 5 boxes.

In the left-hand panel of figure 12, we show the marked correlation statistic eq. (3.12)
for halos of mass M200c > 1013h−1M�, evaluated using galaxy-number-weighted density
estimates in eq. (3.14), with ρ∗ = 4, p = 10, for GR and all the modified gravity models
considered. In addition, the right-hand panel of figure 12 shows the same marked statistic,
for the same models using the same parameters for the mark (ρ∗, p), but calculated using the
simulated galaxy catalogs as described in section 2.2. The correlation function calculations
were performed using the publicly available code Super W Of Theta (swot) [182].

For the halo marked correlation functions, the fractional deviations from GR are more
pronounced for the F4 and F5 models, as expected, reaching ' 20% in the lowest r bin.
The deviations in the F6, N5 and N1 cases are at the (sub)percent level at all scales. The
predicted differences are overall less pronounced in the marked correlations of galaxies, with
the various models predicting deviations not larger than ' 5% even on the smallest scales.
This is possibly a consequence of the HOD parameters used to populate galaxies in each halo
being tuned to match the unmarked correlation functions. An explanation of this behavior
is presented in section 3.2.5.

For completeness, we also studied the case with negative p. Figure 13 shows the marked
correlation using the galaxy-number-weighted density estimate for halos and galaxies with
ρ∗ = 1, p = −1. For dark matter halos, the deviations from GR are much smaller compared
with the case with ρ∗ = 4, p = 10, confirming our expectation that up-weighting low-density
regions enhances MG signals. On the other hand, the galaxy marked correlation function
shows similar small deviations to the case with ρ∗ = 4, p = 10, with no clear trend among the
MG models in their relative difference to GR. This, together with figure 12, implies that if
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we use the galaxy number density with the mark of eq. (3.14), it is difficult to substantially
enhance the model differences, at least for low-density galaxy samples as used here. This
difficulty may be alleviated if one uses external information such as the gravitational potential
to define marks as discussed in section 3.2.2, or if the tracer number density is higher (which
will be left for future investigations when higher-resolution simulations become available), or
if other definitions of marks are used (which is beyond the scope of this work). However,
even if some other mark definitions can lead to stronger model difference, we still need to
ensure that their predictions are stable, and not too sensitive to modelling systematics such
as the galaxy-halo connection.

In the discussion so far, we have used the NGP assignment scheme to calculate the galaxy
density field. We have also checked that the conclusions for figures 12 and 13 also apply if we
use the matter density to define the marks in eq. (3.14). For completeness, we further checked
if the results are sensitive to the details of the density assignment method used. To this end
we have tested two other ways to estimate the density, smoothed particle hydrodynamics
(SPH) and space tessellation, respectively. Since their results are again consistent with each
other, here we only discuss the results from the former case.

In figure 14, we estimate the local galaxy number density ng at each galaxy’s position
by the spline kernel interpolation [183],

ρR =
20∑
1
W (ri, h),

where W (ri, h) is the SPH spline kernel, ri is the distance to ith galaxy and the smoothing
length h being the distance to the 20th nearest galaxy [184],

W (r, h) = 8
πh3


1− 6

(
r
h

)2 + 6
(
r
h

)3
, 0 ≤ r

h ≤
1
2 ,

2
(
1− r

h

)3
, 1

2 <
r
h ≤ 1,

0, r
h > 1.

The smoothing scale h for density estimation in this method is varying across the simulation
box.

The left panel of figure 14 shows the galaxy-number-density-weighted marked correlation
functions for HOD galaxies in real space at z = 0.5, using the same parameters (ρ∗, p) as in
figure 12. The deviations from GR show the same trend as in figure 12, but the amplitudes
are slightly larger, now reaching ∼ 10% for F4 on small scales; for the two DGP variants
the deviation from GR is negligible. The right panel of figure 14 represents the monopole of
galaxy marked correlation functions in redshift space. Rather than averaging the nominator
and denominator of eq. (3.12) over five boxes and taking the ratio, we directly measure
the marked correlation function by eq. (3.12) and then take the average. There are some
quantitative differences from the real-space case, with the deviations from GR generally
slightly larger, but the overall behaviors are similar to the left panel. The only MG model
that is significantly different from GR is F4. This shows that the result of marked correlation
functions could be sensitive to the scheme of the mark evaluation, adding to the complexity
in making theoretical predictions.

3.2.2 Marked correlation function with gravitational potential summary statis-
tics

In the above we have used the galaxy density field, calculated in various ways, to define the
mark. Due to the projected galaxy 2PCFs in the different models all matching each other,
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Figure 15. Gravitational potential marked correlation function with Φ∗ = −5.295 and σΦ = 0.1 at
z = 0.5 for halos (left panel) and galaxies (right panel). The curves correspond to the averages over
the 5 realizations. Different colors and line styles correspond to different models as labeled. The lower
panels show the relative difference between the MG models and GR, and the error bars correspond
to the standard deviation over the 5 realizations.

we have seen that the resulting marked 2PCFs show very mild difference which is generally
of the same order as the residual mismatch in the projected galaxy 2PCFs, making it hard to
be tied to any MG effect. This implies that a better definition of the mark may be obtained
using quantities other than the density field. In the mean time, we know that in the MG
models studied here, whether strong deviations from GR happen for a galaxy depends on
certain properties of its environment. Here we try a mark defined using the Newtonian
gravitational potential, ΦN , of the galaxy’s host dark matter halo, which is one measure of
this environment (e.g., [185–187]). As eq. (3.17) below shows, ΦN is closely related to the
halo mass M200c; the abundance and clustering of the latter are strongly affected by MG
(cf. figures 2), (4), and the way galaxies populate in halos of different masses is also sensitive
to gravity (cf. figure 3).

In many cosmological models, dark matter halos follow a NFW density profile [85, 86]:

ρNFW = ρs
(r/rs)(1 + r/rs)2 , (3.16)

where rs is the characteristic radius where the profile has a slope of −2 and ρs is the density
at rs. The NFW profile also works well for many MG models, including those studied
here (e.g., [50, 87, 188–190]). The gravitational potential at r = r200c is accordingly given
by [86, 191, 192]:

ΦN = −GM200c
r200c

ln(1 + c)
ln(1 + c)− c/(1 + c) , (3.17)

where G is Newton’s gravitational constant and c is the concentration parameter defined as
c ≡ r200c/rs.
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The new mark we define here is a Gaussian function of ΦN ,

m = 1√
2πσΦ

exp
[
−(log10(|ΦN |)− Φ∗)2

2σ2
Φ

]
, (3.18)

where Φ∗ and σΦ are free parameters which control the amplitude and width of the Gaussian.
This mark allows one to up-weight galaxies hosted by halos of certain mass, and as an
illustration here we choose host halos with M200c/[h−1M�] ∈ [1013, 1014], which is where
most of the galaxies in our HOD catalogues reside and where the different gravity models
differ most substantially (cf. the right panel of figure 3). As above, we consider the marked
2PCFs for halos and galaxies separately, using parameter values Φ∗ = −5.295 and σΦ = 0.1
for both tracers: halos and galaxies.

The results for halos are shown in the left-hand panel of figure 15 where we find that
F5 differs most strongly from GR, with a maximum positive difference of ∼ 7%, whereas the
other MG models all produce a negative difference with respect to GR. The distinct behavior
of F5 is likely a consequence of the MG effect on the halo mass function (cf. right panel of
figure 2) — the halo catalogs for all models shown in this plot are cut at 1013h−1M�, so
that the numbers of halos in the different models are quite different. The result (shown in
figure 34 of appendix B) is qualitatively different if one cuts the halo catalogs to have the
same halo number in all models, with the differences from the GR prediction becoming less
pronounced in the case of the two largest deviation f(R) models, F4 and F5. Nevertheless,
for the rest of the models we find that the fractional deviation w.r.t. to the GR mCF does
not change by more than 1% compared to when using a fixed halo mass cut.

The right panel of figure 15 shows the gravitational potential marked correlation function
at z = 0.5 for galaxies. We note that F4 differs most from GR, giving a maximum difference
of ∼ 36%, while F6 and F5 give a monotonically increasing difference of ∼ 3% and ∼ 12%,
respectively. The nDGP models (N1 and N5) are both very close to GR with a relative
difference of < 2%. We have measured the marked 2PCFs in redshift space, and found
very similar result. We have also checked the HOD catalogs for which the HOD parameters
were tuned so that the 3D galaxy 2PCFs ξgg(r) match between the MG and GR models,
and they again showed very similar features, with slightly smaller (larger) differences of f(R)
gravity (nDGP) from GR. While accurately measure the Newtonian potentials of galaxy host
halos is nontrivial, methods to estimate halo masses from observations do exist and have
been constantly improved (e.g,. [193–197]). The result here suggests that using information
other than the density field itself to define the mark can be a potential way to increase
the constraining power of the marked CF, and it will be worthwhile to pursue this direction
further. In particular, it will be interesting to investigate how the results presented in figure 15
are affected by uncertainties in the halo mass or potential estimation.

3.2.3 Analytical predictions for the marked correlation function
In the discussion of marked correlation functions so far, the results have been obtained
numerically from mock galaxy catalogs. It would be useful to have a theoretical template to
make analytical predictions, for example based on perturbation theory, which can be used to
check consistency at large scales and to more efficiently explore the model parameter space.

In this subsection we compute the White marked correlation function [eq. (3.14)] using
the MG Lagrangian Perturbation Theory (LPT) of [198–200]. Since we are up-weighting
low-density regions it is expected that higher than linear order corrections will be highly
suppressed, and therefore we focus on the Zel’dovich approximation. The LPT considers the
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mapping x(t) = q + Ψ(q, t) between initial (Lagrangian) and final (Eulerian) coordinates,
and performs a formal expansion on the Lagrangian displacement Ψ. To linear order

Ψ(1)(k, t) = i
k
k2D+(k, t)δL(k, t0), (3.19)

with δL(k, t0) the linear overdensity field, evaluated at t0, and D+ the linear growth factor
introduced in eq. (3.2). Remember that while D+ is scale-independent in ΛCDM, it can have
a scale dependence in general MG models.

In the majority of MG models which are viable to explain the accelerated expansion
of the Universe, including those considered in this work, the evolution of perturbations at a
sufficiently early time is indistinguishable from GR, hence the linear power spectrum in MG
can be obtained by the relation PMG

L (k, t) = [D+(k, t)/D+(k, t0)]2PGR
L (k, t0). Otherwise, it

can be obtained from an Einstein-Boltzmann code.
To model halos, we use the biasing prescription of refs. [154, 201] that evolves initially

Lagrangian biased tracers, and consider linear b1 and second order b2 local biases. However,
the k dependence of the µ function in eqs. (2.9), (3.2) implies that even linear local bias
becomes scale dependent. In order to model this, one can perform an expansion of the
function µ in powers of k2 and substitute the linear local bias by b1 −→ b1 + b∇2δk

2 + · · ·
with ∇2δ the curvature bias operator [152]. In addition to the biasing expansion, we expand
the mark as m(δR) ' 1 + B1δR + 1

2B2δ
2
R, with δR(q) obtained by convolving the matter

density field with a Gaussian kernel WR ∝ e−|q|
2/2R2 , and we choose the smoothing scale as

R = 6h−1Mpc.
The analytical prediction is obtained following the standard methods of Convolution

Lagrangian Perturbation Theory [154, 176, 202, 203]

1 +W (r) =
∫

d3q

(2π)3/2(detA)1/2 e
− 1

2 (ri−qi)(rj−qj)A−1
ij

{
1 + b21ξL − 2b1Uigi − (b2 + b21)UiUjGij

− 2b1b2ξLUigi +B2
1ξRR − 2B1U

R
i gi − (B2 +B2

1)URi URj Gij − 2B1B2ξRRU
R
i gi + 2b1B1ξR

− 4b1B1UiU
R
j Gij − 2b21B1ξLU

R
i g1 − 2B2

1b1ξRRUigi − 2(b2 + b21)B1ξRUigi

− 2(B2 +B2
1)b1ξRURi gi + 2(1 + b1 +B1)b∇2δ∇2ξL(q) + b2∇2δ∇

4ξL(q)
}
. (3.20)

Here, ∆i = Ψi(q)−Ψi(0), and

Aij(q) = 〈∆i∆j〉, Ui(q) = 〈δ(q)∆i〉, URi (q) = 〈δR(q)∆i〉
ξL(q) = 〈δ(q)δ(0)〉, ξR(q) = 〈δR(q)δ(0)〉, ξRR(q) = 〈δR(q)δR(0)〉, (3.21)

and the tensors are defined as gi = A−1
ij (qj−rj), Gij = A−1

ij −gigj . The (unmarked) correlation
function for tracer type X is given by ξX(r) = W (r;Bi = 0). Eqs. (3.12), (3.20) provide a
good approximation for large scales as long as the RMS of matter Lagrangian displacements
is smaller than the smoothing scale R. In other words, as larger the smoothing scale is, or
as higher the evaluation redshift is, more accurate predictions are expected [203].

By applying the above formalism to ΛCDM and the three variants of f(R) gravity
considered here, we find that the trends of the marked correlation function for matter and
biased tracers are qualitatively different, as shown in figure 16. In the matter case, the F4,
F5, and F6 marked correlation functions fall below that of GR, a behavior that has been
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Figure 16. The Zel’dovich-approximation prediction of the marked correlation function eq. (3.14)
with ρ∗ = 4 and p = 10, for models F4 (shown in dashed red curves), F5 (dot-dashed green), F6
(dotted blue), and GR (solid black) at redshift z = 0.5. The data points are the simulation results
taken from figure 12: black data points with error bars are for GR, blue for F6, green for F5, and red
for F4. The lower panel shows the relative differences in the marked correlation function for tracers
(and the data) with respect to the Zel’dovich approximation in GR.

observed recently in simulations [177]. This can be interpreted by considering the mean mark
m̄ = (1 + b1)B1σ

2
R, which shows that for the unbiased case m̄MG < m̄GR, simply because

σMG
R > σGR

R and B1 < 0. For the biased tracer case, we have used halos instead of HOD
galaxies. A key factor here is to identify the halo bias, because its effect is to reduce the
marked correlations [176] — the larger the bias the larger the reduction. A local bias is
typically controlled by two parameters, the density threshold for collapse, δc(M), and the
variance σ(M) (roughly through their ratio). The former (latter) is smaller (bigger) in f(R)
gravity, resulting in smaller bias values for our MG models than for GR [199]. As a result,
the halo bias may bring the marked correlation above that of GR, as is the case for the halo
masses interval presented here. These results can be understood on physical grounds as even
though low density regions in GR correspond to even more underdense regions in f(R), the
halos are more efficiently formed due to a larger gravitational strength.

To compare with simulations, we let free the bias parameters and fit them on scales
r > 20h−1Mpc, finding a good agreement within the error bars of the data. Our best fit is
given by linear local Lagrangian biases bGR

1 = 1.15, bF6
1 = 1.12, bF5

1 = 1.07, and bF4
1 = 0.90,

and second order biases bGR
2 = 0.8, bF6

2 = 0.7, bF5
2 = 0.5, and bF4

2 = 0.3, while the curvature
bias does not contribute significantly over this region. In figure 16, we also show the number
weighted density estimates, as presented in the left panel of figure 12. This analysis suggests
the Lagrangian perturbation approach may serve to construct theoretical templates for future
gravity tests against survey data, as it has been observed also in [203]. However, even at
large scales our modeling accuracy is very sensitive to the expansion of the mark, and in
some applications one needs to go to very high perturbative order [204, 205]. This becomes
prohibitive for an analytical treatment, at least one is able to construct semi-analytical
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templates valid at any order in PT, as it is done in [205] for the marked power spectrum.

3.2.4 Clustering in over-dense environments

The idea behind using marked correlation function to test models is that different gravity
models can show clustering patterns that are density dependent in different ways. Actually,
instead of estimating the marked correlation functions as done above, one can more directly
estimate the clustering in different density environments and compare them to distinguish
between different gravity models. Although our simulation have matched the overall projected
2PCFs, we may still find the signature of different gravity models and screening mechanisms
by looking at wp(rp) for galaxies in various environments.

Figure 17 shows the projected correlation functions computed for the GR galaxy catalogs
in different δ8 percentile bins, where δ8 is the environmental density contrast averaged over
a 8 h−1Mpc scale using a modified tessellation scheme. Although the results here are for
periodic boxes, the method can account for survey mask and have been applied for real
surveys [206]. Briefly, we count the number of randoms nearest to each galaxy and turn
that into an estimate of volume occupied by the galaxy. This automatically accounts for the
survey mask and incompleteness (see [206] for more details). This only requires a random
catalog sampling the volume of the survey which will be anyway produced as part of the
standard survey pipeline and does not require any extra information. One should think of δ8
as over-density of galaxy field here. Once the over-density is assigned for each galaxy, we rank
the galaxies based on their δ8 values and split the catalog into 10 sub-samples each containing
10% of the whole sample. We then measure the two-point correlation functions using the
Landy-Szalay estimator and project out the line-of-sight information to obtain projected
correlation functions. The measurement of projected correlation function (wp) is obtained
with 20 logarithmic bins in rp covering 0.1 − 30 h−1Mpc. We then define the ‘amplitude’
as the ratio of projected correlation function between a MG model and GR, averaged over a
range of scale above a chosen rp.

Figure 18 shows the mean amplitude as the function of δ8 percentile for all the MG
models at z = 0.5 and with minimum rp of 4 h−1Mpc. The curves is the mean of the
amplitude values from the five simulation boxes, and the errorbar denotes the error on the
mean of five boxes. One can see that in high-density environments (i.e., the five largest
values of δ8) the different models all agree with each other very well, confirming the effect
of screening. For smaller values of δ8, the amplitude generally show more deviations from 1:
there are large scatters for the three f(R) variants, making it hard to see any clear trend, while
nDGP shows a clearer pattern. This is a consequence of the range of scale ([4, 30] h−1Mpc)
used to calculate the amplitude, because the effect of f(R) gravity — especially for F6 and F5
— is restricted to smaller scales not used in the calculation, while the nDGP model deviates
from ΛCDM on larger scales which are covered by the calculation. We show the results for
rp > 4 h−1Mpc in figure 18 here because, as discussed below, this is the optimal choice for
N1, but we have checked other minimum values of rp and found that decreasing it generally
leads to larger amplitude values for the f(R) variants, as we show more quantitatively next.

In order to combine the information from all the δ8 subsamples, we also need to estimate
the covariance between the amplitude. We generate 100 jackknife realizations for each model
and each δ8 subsample, and use these jackknife realizations to estimate the correlation matrix
of the mean amplitude with δ8. The correlation matrix is then scaled by the error estimated
from the mean of 5 boxes to get the covariance matrix C(i, j), where i, j represent the
different δ8 subsamples. This covariance matrix is then employed to estimate the χ2 for each
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Figure 17. The projected correlation function, wp(rp), estimated for GR HOD catalogues at redshift
z = 0.5. The different colored line show the wp for over-density (δ8) percentiles indicated by the
colorbar. At small scale (rp < 5 h−1Mpc) the clustering amplitude increases with δ8 monotonically.
At larger scale the clustering amplitude shows non-monotonic behavior with δ8 as expected [206].
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Figure 18. The mean amplitude as a function of over-density (δ8). The different MG models are
shown with different colors, and the 1-σ errors are computed as the error on the mean of the 5 HOD
catalogs. The F4, F5, and N1 models show large χ2 values and should be detectable at better than
3σ significance but F6 and N5 are very close to GR and do not show any statistically significant
difference. Note the points representing different models at same over-density are slightly shifted
horizontally to avoid clutter and increase visibility.
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model rp > 0.5h−1Mpc rp > 1h−1Mpc rp > 4h−1Mpc rp > 8h−1Mpc
F4 355 106 191 81
F5 854 52 25 30
F6 16 28 13 18
N1 28 26 67 42
N5 12 15 18 23

Table 3. The χ2 with 10 degrees of freedom for the mean amplitude as a function of the minimum
rp used in the calculation. The different rows corresponds to different MG models and the different
columns for different minimum scale. See the text for more details and discussion.

MG model with respect to GR, according to

χ2 =
10∑

i,j=1

(
Ai −AGR

i

)
C(i, j)

(
Aj −AGR

j

)
, (3.22)

where Ai denotes the amplitude value of the ith δ8 subsample, calculated using the projected
2PCFs measured in the range of rp between a varying minimum value and 30 h−1Mpc. Our
estimated χ2 for different models and different choices of the minimum rp are given on table 3.
As mentioned above, the f(R) models show increases in χ2 as we include smaller scales. F4,
which is the model with very little screening and the largest Compton wavelength of the
background scalar field, can be detected with high confidence independent of choice of scale;
F5 can be detected with high confidence if at least scales up to 1 h−1Mpc is used and F6
can not be detected independent of scale used. We note that for nDGP models, including
smaller scales first increases the χ2 up to an optimal scale and then decreases it: N1 can be
detected with an optimal choice of minimum scale as 4 h−1Mpc while N5 can not be detected
independent of scale used.

Given that the number density of galaxies in future surveys such as DESI will be higher
and the volume will be much larger than the simulations used, the statistical error from DESI
will be much smaller. However, at the same time the real data also have systematic errors
not included in the analysis here. For this particular test, the most important systematics
will come from fibre collision and completeness uncertainty, both of which are major concerns
for DESI main science cases and huge amounts of work have been put in to keep them under
control. These conclusions about detecting the difference should hold for DESI in presence
of systematics as long as they do not dominate the total error budget.

We have checked this summary statistic using the mock galaxy catalogs where the
HOD parameters were tuned to match the real space 3D galaxy 2PCFs in different models,
and found the results change slightly for the lowest five bins of δ8, which suggests that the
uncertainty associated with HOD modelling can be a theoretical systematic which needs
better control. On the other hand, we also note the MG models can be distinguished from
GR using the scales above ∼ 1 h−1Mpc, and hence these detection should be largely free
from the baryonic effects.

3.2.5 Discussion

While the halo and HOD galaxy catalogs might be several steps away from the dark matter
distribution, the behavior of the marked correlation functions above can be qualitatively
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understood. A marked correlation function quantifies the correlation between the marks. In
the case of the mark in eq. (3.14), for a tracer i — which can be a galaxy or a halo — with
mi < m̄, it is likely to find another tracer j nearby with mj < m̄ because these tracers are
in dense regions; for a tracer i with mi > m̄, which means that it is in a low-density region,
it is less likely to find a neighbor j. This leads to M < 1. A similar reasoning can explain
whyM > 1 in the case of gravitational potential mark.

The model differences between f(R) gravity and ΛCDM can be explained as follows.
An enhanced gravity means that more halos can form in regions where these tracers have
low densities in the ΛCDM counterpart, while in high-density regions the increase in halo
number density is less significant due to either more efficient screening (e.g., in F5 and F6)
or more frequent mergers (e.g., in F4). For the mark in eq. (3.14), this means that for a halo
i with mi > m̄ (i.e., in a low-density region), it is more likely to find neighbors with mj > m̄
either from the same cell or from a neighboring cell, leading to a larger M(r) in MG than
in GR. In the cases of F5 and F4, the difference is significant and can be observed to larger
halo separations (cf. figure 12). For the gravitational potential mark, again, the enhanced
gravity produces more halos with M200c > 1013h−1M� which correspond to smaller halos in
GR; these halos are less biased and more uniformly distributed; they also have relatively low
marks, so that they increase the likelihood of finding a halo i with mi < m̄ near a halo j
with mj > m̄, thereby reducing M(r). The strange behavior of F5 (left panel of figure 15)
is probably a consequence of this model having many more halos of M ∼ 1013h−1M�, which
significantly decreases m̄, leading to an overall increase inM(r). This suggests that it may
possible or even preferrable to define marks in ways so to pick out the region of the HMF
with the most significant model differences.

We also noticed above that for the mark in eq. (3.14) the marked correlation functions
for galaxies show much smaller model differences, and a less clear trend, than for the gravita-
tional potential mark. This is probably because in the former case the marks themselves are
obtained from the galaxy field, which has been tuned to match in all the different models. In
other words, with a similar galaxy number density and spatial distribution, the marks for the
HOD galaxies in the various models are similar, and so are their correlations. In contrast, for
the gravitational potential mark, the mark itself encodes external information beyond what
is contained in the galaxy distribution, and what we see in the right panel of figure 15 is
the correlation of this information. This suggests that it can prove useful to study the many
possible ways to define the marks for marked correlation functions, by using complementary
observational information and by varying the parameter values of the marks.

The nDGPmodels are very difficult to be distinguished from ΛCDM either using halos or
galaxies by the marked correlation function. In these models, deviations from ΛCDM appear
only at the high-mass end of the mass function (figure 2). In addition, the halo correlation
function is very close to ΛCDM (figure 4), despite the fact that the underlying dark matter
clustering is enhanced (figure 1). The difference of the HOD parameters is less prominent
and the galaxy numbers as a function of the host halo mass is also very similar to ΛCDM
(figure 3). As a consequence, irrespective of tracers and marks, the difference between nDGP
and ΛCDM is always small. The environmentally-dependent clustering of galaxies shown in
figures 17 and 18, and table 3, on the other hand, seems to be more promising than the
marked statistics for both the f(R) and nDGP models: a possible explanation to this is that
here we have singled out the subsamples of tracers from low-density regions — where the
effect of modified gravity is strongest — for clustering measurement, while in the marked
statistics analysis the tracers from high-density environments still contribute, though with a
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smaller weight, which weakens the model difference.

3.3 Beyond two-point statistics

In cosmological perturbation theory, see, e.g., [207], the velocity-velocity and density-velocity
couplings render the evolution equations nonlinear, generating non-Gaussian late-time den-
sity fields from a Gaussian random field as the initial condition, and the non-Gaussianities
may be enhanced in models with a stronger gravity. Furthermore, primordial non-Gaussiani-
ties due to the detailed properties of inflation are generically expected at some level. Both of
these features indicate that the galaxy distribution cannot be fully characterized by the two-
point correlation function. Higher-order correlation functions contain additional information
regarding the nature of gravitational interactions, making them useful to test deviations from
GR (see, e.g., [208, 209]), in particular for theories where nonlinear interactions play a sig-
nificant role in screening modifications at short scales. Although there are several theoretical
and observational studies showing the potential of such summary statistics for LSS analysis
(see, for example, the review [207] or the studies summarized in [210–213]), it is still relatively
poorly explored compared to its lower order cousin, the 2PCF.

In 3.3.1 and 3.3.2 we respectively discuss the information to investigate modifications to
gravity in the three-point correlation function (3PCF) and its Fourier space counterpart, the
bispectrum. For the former we focus on real space while for the latter on the monopole in
redshift space (see refs. [212, 213] for complementary studies of the bispectrum). In 3.3.3 we
consider constraints using hierarchical clustering, while in 3.3.4 we discussed the application
of Minkowski functionals, and in 3.3.5 we close with a consideration of the use of phase space
information from stacked clusters.

3.3.1 Three-point correlation functions
Although three-point statistics in configuration and Fourier spaces have theoretically the
same information, in practice their implementations are different. Measurement in configu-
ration space is conceptually more straightforward, and does not require special effort to deal
with gridding, numerical Fourier transforms or shot noise corrections [214]. Moreover, large
surveys such as BOSS and DESI bias the clustering due to the targeting algorithm. There
are methods to mitigate this effect, which may be more easily implemented in configuration
space than Fourier space (e.g., [215–218], though this is still a subject under study. Therefore
in this subsection we focus on the three-point correlation function (3PCF) first.

Large surveys such as DESI will render a brute-force 3PCF calculation computationally
challenging. However, a few efficient algorithms have lately been developed that should help
surmount this obstacle (for example [219–226]); of particular interest is the one recently
proposed by Slepian and Eisenstein [222], which scales as O(N2) for the isotropic case, with
N the number of objects. The isotropic 3PCF, ξ(3), which does not track the line of sight,
accounts for triangular configurations parametrized by 3 variables, which can be chosen to
be the two sides of the triangle, |~r1| = r1 and |~r2| = r2, and the opening angle between those
sides, cos θ12 = r̂1 · r̂2. The key idea to reduce the computational load is to use a Legendre
polynomial basis [227], namely

ξ(3)(r1, r2, r̂1 · r̂2) =
∑
`

ξ
(3)
` (r1, r2)P`(r̂1 · r̂2), (3.23)

with P` the Legendre polynomials. While this basis does not have a straightforward geomet-
rical interpretation, one should bear in mind that each multipole contains information about
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all possible shapes because the coefficients are averages over all triangles weighted by the
Legendre polynomials. For example, the monopole contribution is averaged over all triangles
of sides r1 and r2 with an equal (constant) weight on r̂1 · r̂2. The multipole basis reduces
the computational cost because the Legendre polynomial can be factored into spherical har-
monics of one unit vector each, avoiding the need to explicitly construct the opening angle
between the two galaxies at ~r1 and ~r2 from the vertex.

The multipole representation has additional benefits beyond the computational acceler-
ation it offers. For instance, it displays more information on the isotropic 3PCF than using
particular shapes (such as the equilateral or specific triangles with two sides fixed). In the
case of a converging series, only a few multipole moments ξ(3)

` are needed to capture most
of the 3PCF (studied in [222], seen in figure 8 for a triangle with r1, r2 = 70, 40h−1Mpc,
and further discussed in [228]). Numerical estimates suggest that the series easily converges
away from the diagonal (r1 6= r2), while for r1 = r2 it converges on scales larger than a
given value, which for our catalogs is around 10 h−1Mpc by using the first 10 multipoles.
Therefore, it is expected that the first ten multipoles capture most of the information up to
some small regions in the r1-r2 plane. Another benefit of this Legendre basis is the simplicity
of calculating the edge corrections due to the survey boundary (for details see [222]).

For these reasons, in this subsection we shall mostly focus on the algorithm for the
isotropic 3PCF proposed in ref. [222].9 However, for completeness we will also show some
results from considering a few triangle configurations using a full 3PCF algorithm near the
end. One can indeed calculate the full 3PCF for any triangular shape using the multipole
expansion eq. (3.23). For fixed values in r1 and r2, all the remaining 3PCF data can be
compressed into a single-valued function of the opening angle between ~r1 and ~r2 (or equiva-
lently the side ~r3). This approach of arbitrarily choosing two sides of the triangle has often
been followed in the literature to compare three point statistics. However, each coefficient
ξ

(3)
` (r1, r2) is a function of two independent scales, and thus contains all the relevant in-
formation about interactions in a particular gravitational theory. In practice, the largest
deviations of alternative models to GR may not be found where the strongest 3PCF signal
is. Therefore, it is wise to study both the full 3PCF and particular triangular shapes when
testing gravity. Moreover, we find that the previous Legendre expansion contains interesting
information about gravitational clustering at each multipole, suggesting that a comparison
between GR and modified gravity models for each multipole may be more useful than using
the full correlation function, where often the lower multipoles comprise the dominant portion
of the signal.

We run the 3PCF algorithm, up to a maximum multipole of ` = 9, over the five
realizations of each of the different models described in section 2. For all models we use the
same random catalogs based on an equal box size as the data, and 600,000 random points.
To avoid Poisson noise due to the randoms yet also elude the need to compute a large number
of random pairs, we use 50 realizations of the random catalogs and average them over the
data using the Szapudi-Szalay estimator for the 3PCF [230]

ξ(3) = NNN

RRR
, (3.24)

where N = D − R and once the product is expanded, the XXX (with X either D or R)
refer to the histogram of distances of triplets where each vertex belongs to the corresponding
X-space. The overbar denotes an average over the different random catalog realizations.

9The code is publicly available in the n-body kit [229].
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Figure 19. 3PCF comparison of the models using the variable ∆(3)
σ ξ` defined in eq. (3.25) and the

multipole decomposition. Saturated regions may reach values beyond the colorbar shown. We use 18
bins of 10h−1Mpc each for the triangle sides.

To compare the correlation function coefficients ξ(3)
` between models, we use the variable

∆σξ
(3)
` = ξ

(3)
` (X)− ξ(3)

` (GR)√
σ2
` (X) + σ2

` (GR)
, (3.25)

where we have taken the mean over the 5 realizations of the modified gravity models, X,
and General Relativity, GR, to obtain ξ(3)

` (X) and ξ(3)
` (GR) respectively, together with their

standard deviations σ2
` (X) and σ2

` (GR), which we have assumed to be uncorrelated. This
expression is the square root contribution of each bin to the overall χ2, using GR as our
fiducial model. The results for the 5 models are shown in figure 19. To compare the complete
3PCF, ξ(3), we use a similar expression to eq. (3.25), but with the complete 3PCFs and their
propagated errors in place of the expressions with `’s.

There is a complex structure in the resulting values for the variable ∆(3)
σ ξ`, showing

departures of each modified gravity model from GR on all scales and multipoles. Although
each model shows a different pattern, there are some generic features shared by all. In most
of the parameter space explored in figure 19, the differences are roughly of the same order as
the scatter between model realizations, which translates into ∆ξ(3)

` ∼ 1. However, there are
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departures with ∆ξ(3)
` > 1 in different regions of the r1-r2 plane (see the high intensity or

strongly saturated regions of figure 19). These regions come in two classes: isolated (almost
point-like) areas where at least one of the scales (r1 or r2) is large, and the small-scale sector
where both sides of the triangle are smaller than roughly 40h−1Mpc. In the later case, we
expect these strong departures from GR due to the nonlinear evolution of modes, hence all
models (and multipoles) have some degree of departure from GR on these scales, which are
better appreciated for F4 and N1. In contrast, for the case of the isolated points, these regions
only show up in particular multipoles and models, and one would need more realizations of
each model to assess whether they are physical. Actually, if one constructs the HOD catalogs
differently (for examples, by choosing the HOD parameters independently for each model
realization, or by matching the full 2PCF between ΛCDM and the MG models) these highly-
saturated points of figure 19 on large scales may change their saturation, suggesting that
some of them are not truly physical. However, under these different HOD prescriptions the
overall patterns remain invariant, supporting evidence for using the 3PCF to test gravity. It
is important to stress that using an equivalent expression to eq. (3.25) for the 2PCF, we find
that all models depart from GR with significance less than ∆ξ(2) < 0.4 on scales between
10 and 150h−1Mpc.10 This suggests strong departures of the 3PCF compared with those
found in the 2PCF; however, further tests are needed to check if the 3PCF offers additional
or complementary information for testing the gravity models.

The 3PCF monopole is slightly suppressed with respect to the higher multipoles, al-
though one should have in mind that each multipole contribution to the full 3PCF is weighted
by the Legendre polynomials, hence the full 3PCF is usually dominated by the first few mul-
tipoles. Moreover, largest departures from GR are found for F4, F5, and N1, as expected
(see figure 19), and are particularly noticeable in the quadrupole. For these three models, in
the small-scale region of the plots (where both sides of the triangle are smaller than roughly
40h−1Mpc), the monopole and dipole show less clustering with respect to GR, manifested
by a redder color, but an enhancement of clustering (bluer color) in the same regions for the
higher multipoles. As expected, models F6 and N5 are generically closer to GR in the whole
parameter space. However, for particular shape configurations, specially in the small-scale
region, their departures from GR may be larger than for other models, as we will discuss
later. Furthermore, for certain multipoles there is no monotonic trend in the different MG
models in certain regions of r1-r2, e.g., at r1, r2 < 50h−1Mpc the quadrupole is stronger in
F4, F5, but weaker in F6, than in GR, which is possibly a residual of the HOD tuning; this
implies that understanding the impact of the uncertainties in the galaxy-halo connection will
be important for using the 3PCF multipoles to test models.

We calculate particular cases of the full 3PCF using the Legendre basis to exemplify in
a different way its complex dependence on the triangle sides r1, r2 and the opening angle
θ12. When computing the full 3PCF for a specific bin pair, the signal shows convergence in
the Legendre Series in most of the parameter space, except for the first couple of bins along
the diagonal. The 3PCF reaches the highest values often when θ = 0, and in a few other
cases when θ = π, points where the Legendre polynomials also peak (taking on values ±1 for
all `). The propagated error, coming from the standard deviation among realizations, grows
towards θ = 0, implying that for small angles our measurement of the deviation with respect
to GR (the ∆ξ(3) variable) would shrink to zero while for larger angles it would be enhanced.
Moreover, one should bare in mind that the strength of the signal in ∆ξ(3) depends on a

10Note that this range is different from the one within which the 2PCFs are used for the tuning of the HOD
parameters.
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Figure 20. Full 3PCFs for r1 = 100h−1Mpc and r2 = r1 (Left) or r2 = 30h−1Mpc (Right). The
top panels show differences of the MG 3PCF with respect to GR as a function of the third triangle
side r3, or equivalently, the opening angle θ12 between r1 and r2. The bottom panels show the model
differences using the analog of the variable ∆σξ

(3)
` but for the full 3PCF. We use the first ` < 10

multipole moments in figure 19 to construct the complete 3PCF.

large difference in the 3PCFs and a small combined variance, hence tiny fluctuations in the
variance using the multipole basis may lead to larger changes in ∆ξ(3). As a result, this
would either enlarge or reduce the significance of the departure from GR, or introduce a
small shift on the angle θ where the departure occurs. Therefore, further realizations (and
possibly higher multipoles) may be needed to increase the stability of our summary statistic
∆ξ(3) for large scales. While bearing this in mind, we explore some triangle configurations.

Figure 20 shows the dependence on the opening angle (or equivalently the distance r3
to close the triangle) by the full 3PCF, for cases where at least one of the sides is around
the BAO scale (r1 = 100h−1Mpc). For the other side, r2, we consider two cases: one along
the diagonal (r2 = r1), and another far from the diagonal (r2 = 30h−1Mpc). In both cases,
the MG departures from GR show an oscillatory behavior, which is remnant of the multipole
expansion, affecting both the signal and the error bars. In the diagonal case, the largest dif-
ferences amongst models are found at certain values of the opening angle, with a particularly
strong enhancement for the equilateral shape (θ = π/3). Actually, for other bin pairs along
the diagonal (r2 = r1) away from the BAO scale, we often find stronger departures from GR
around the equilateral shape. In agreement with these findings, it is worth mentioning that
for the diagonal and in the non-BAO region the authors of [213] show that the 3PCF exhibits
a trough in the gravitational shift and tidal force terms. In contrast, the off-diagonal cases
show a non-trivial small-to-large scale mixing with no particular features over the different
MG models. Further realizations would be desirable to assess strong departures from GR. A
careful exploration of the non-diagonal regions may shed more light on the correlations be-
tween overdensities and underdensities, which should strongly differ from GR when screening
mechanisms are at work.

For all MG models, the small-scale region (where all triangle sides are . 40h−1Mpc)
contain important deviations from GR, as one would expect due to the nonlinear evolution
of matter perturbations. This is clearly shown in figure 19, especially for the F4 model.
Consequently, in the remaining part of this subsection we focus on the small-scale limit for
both r1 and r2, where the overall variation with respect to GR is larger and the structure
is richer. However, here we are reaching scales where the density of objects, together with
the simulation resolution and the multipole truncation, disfavors the convergence of the
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Legendre series eq. (3.23), especially in the diagonal case (r1 = r2). Regardless of the
convergence behavior, the multipole moments of the 3PCF nonetheless remain well-defined
in and of themselves, hence one may still employ this decomposition truncated at a given
` as a discriminator to compare models. The behaviors are now rather particular to each
pair of bins, with drastic changes from adjacent cells. This rapid variation implies the need
for a careful choice of bin size, simulation resolution, and HOD properties. Again, further
studies with higher simulation resolution, larger volume or more realizations of each model,
and different HOD constructions may be required to fully assess the physical significance of
the 3PCF structures due to MG on the shortest scales using the multipole expansion.

One may worry that the MG signal is degenerated with certain systematics, such as
the allocation algorithm used by the DESI instrument which artificially modifies the clus-
tering [13]. However, given the complexity in the structures of the 3PCF, it is hard for
other effects to mimic a true MG signal such as the ones reviewed here. For example, in
the case of previously mentioned DESI assignment effect, by using a subsample of the mocks
described in refs. [215, 231], the 3PCF was computed and compared with the full sample
without allocation with the yearly passes, and a very strong difference was found along the
diagonal in the multipole basis for modes higher than the monopole (details will be found in a
future publication). The signal is clearly stronger than the MG one, but with a very different
structure from the one appreciated in figure 19. Therefore, it is advisable to consider the full
3PCF information, and not particular shapes, where there could be degeneracies.

Given the poor convergence of the series on small scales, one may also try to run
algorithms calculating the full 3PCF. Even though they are computationally more costly
with respect to the code presented previously, for triangular configurations below 10 h−1Mpc,
they can indeed be realistically run even for large surveys such as DESI. Therefore, following
ref. [211], we focus on the small-scale 3PCF in redshift space, using a parallel kd-tree
algorithm11 for efficient neighbor matching. We computed all triplets in various triangular
configurations without using any approximation. Using a random catalog 20 times larger
than the galaxy data, we measured all possible triangular configurations with scales 0 < r1 <
r2 < r3 < 20 h−1Mpc. In figure 21, we show the differences between the 3PCFs of GR and the
various MG models, focusing in three particular triangular configurations. One may notice
that apart from the closest models to GR (F6 and N5), all others deviate significantly. The
difference with respect to GR tends to decrease for larger values of r1, r2 and r3, consistent
with the discussion above on the 3PCF multipoles. We also checked these results for mock
galaxy catalogs where the HOD parameters were tuned by matching the 3D galaxy 2PCFs
of the different models, and found them to be very insensitive to the HOD details, which
confirms that the 3PCFs encode important information useful for testing gravity. The big
challenges in this regime are those shared by the 2PCF on the same small scales, namely to
model the signal and to clearly understand the involved systematics.

The analysis in this subsection has demonstrated that the 3PCF of galaxies contains
independent information to the traditional 2-point statistics, and has the capacity to distin-
guish MG from GR and break degeneracies on a wide range of scales. The use of the fast
algorithm in [222] allows for an efficient analysis of DESI-like surveys and simulations, with
an easy-to-picture comparison of models based on the Legendre series coefficients. Moreover,
based on this algorithm, some authors have constructed and optimized the anisotropic 3PCF
in redshift space [232, 233], which could be used in large galaxy surveys such as DESI, and

11We use the public code, KSTAT, https://bitbucket.org/csabiu/kstat2.
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Figure 21. The 3-point correlation function difference between GR and several modified gravity
scenarios. Left: a triangular configuration with r1 = r2 = 3 h−1Mpc. Center: with r1 = 3 h−1Mpc
and r2 = 5 h−1Mpc. Right: r1 = r2 = 6 h−1Mpc. The shaded regions are the standard deviations of
the five realizations of the HOD catalogs for GR. All results are for z = 0.5.

capture the RSD physics to further test gravity. Other ideas, such as the recent squeezed
3PCF construction [234], may be worth exploring to test gravity in galaxy surveys as well.
Finally, the potential of the 3PCF goes beyond the models and conditions explored here, and
may be used to characterize other possible deviations from ΛCDM and, given the richness
in the pattern of differences, it may also provide a platform to understand other systematics
such as fibre collision.

3.3.2 Galaxy bispectrum

The galaxy bispectrum is the counteraprt of the 3PCF of the galaxy field in Fourier space,
and forms a Fourier transform pair with the configuration-space 3PCF that was discussed
in section 3.3.1. In principle, these two measures would carry the same information, but in
practice this is not guaranteed as our analyses are restricted to a finite range of scales, and
configuration- and Fourier-space statistics are impacted differently by systematic effects. In
addition, modelling approaches of configuration- and Fourier-space quantities tend to differ
and come with their own unique challenges, but models of the bispectrum have received
more attention in the recent literature, putting them generally into a more mature state
(see, e.g., [209, 212, 213, 235–238]). For these reasons, the bispectrum can provide us with a
valuable complementary point of view when studying the impacts of the MG dynamics in the
f(R) and DGP models, and our aim of this subsection is therefore to present measurements
of the bispectrum from the various galaxy mock catalogs introduced in section 2.2, both in
real and in redshift space.

The bispectrum B(k1,k2,k3) is defined as the correlation of three density modes,

〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π)3B(k1,k2,k3) δD(k1 + k2 + k3) , (3.26)

where the three wave vectors k1, k2 and k3) form a closed triangle. In the absence of redshift-
space distortions (or statistical anisotropies in general), the bispectrum is fully defined in
terms of the length of the three triangle sides, otherwise two additional variables are required
to capture the orientation of the triangle with respect to the LOS (or the direction along which
isotropy is broken). We still lack a thorough understanding of whether particular triangle
configurations are prominently affected in theories of modified gravity, and so in the following
we are going to consider all possible triangles between the two extreme scales kmin and kmax,
given a specified bin width ∆k for each side. A detection of a strong configuration dependence
could be regarded as compelling motivation to further investigate higher-order statistics, as
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Figure 22. Upper panels: real-space bispectrum measurements for f(R) models (left) and nDGP
models (right) compared to GR. Each data point corresponds to one of the 2825 triangle configurations,
ordered according to when they appear in the measurement loop. Vertical lines are spaced by the bin
width ∆k ≈ 0.025h/Mpc and indicate the value of k1, i.e., the largest triangle side. Lower panels:
difference between modified gravity models and GR quantified in terms of the variable ∆B given in
eq. (3.27). The grey band marks the 1-σ area where deviations are compatible with the combined
standard deviation of GR and a given modified gravity model.

this would allow us to disentangle the MG signal from other potential cosmological effects,
which might be degenerate in two-point statistics and other alternative measures.

For our measurements we use an implementation of the bispectrum estimator presented
in ref. [221] with fourth-order density interpolation on two interlaced cubic grids [239] of
N = 380 cells per side. Starting from kmin = 0.025h/Mpc, we loop through all configurations
satisfying k1 ≥ k2 ≥ k3 and k1 ≤ k2 +k3 (the triangle closure condition) with bin width ∆k =
4kf ≈ 0.025h/Mpc, where kf denotes the fundamental mode. We correct each measurement
for Poissonian shot noise, finding that for the galaxy catalogs studied here the redshift-space
bispectrum becomes shot noise dominated for scales k > 0.75h/Mpc, which is why we choose
that value for kmax. This procedure yields a total of 2825 distinct triangle configurations.

In the upper-left and upper-right panels of figure 22, we show the raw real-space mea-
surements for the f(R) and nDGP models, compared to GR. The x-axis of the plots reflects
the ordering of the triangle configurations corresponding to when they appear in the loop,
while vertical lines and axis labels indicate the increasing values of k1 from the left- to the
right-hand side. The lower panels show the difference between the modified gravity models
and GR in terms of the variable defined in eq. (3.25), i.e.,

∆B(k1, k2, k3) ≡ BX(k1, k2, k3)−BGR(k1, k2, k3)√
σ2
X(k1, k2, k3) + σ2

GR(k1, k2, k3)
, (3.27)

where σX and σGR are the standard deviations obtained from the five HOD catalogs for either
a MGmodel or GR. A general trend revealed by the plots is an enhancement of the bispectrum
signal for the f(R) models relative to GR, whereas the modified dynamics in nDGP lead to
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Figure 23. Configuration dependence of the real-space bispectrum, obtained by integrating the
raw measurements over k1 (see eq. (3.28)) between k1 = 0.3h/Mpc and 0.75h/Mpc. Configurations
outside of the triangular area are forbidden according to the closure condition and the top left, top
right and bottom corners correspond to squeezed, equilateral and folded configurations, respectively.

a suppression. These effects are growing towards smaller, more non-linear scales, and the
deviations from GR are strongest for the F4 and N1 models, for which ∆B takes values of ∼ 3
and −1.8 when averaged over all configurations in the interval k1 ∈ [0.3, 0.75]h/Mpc where
the effect is most significant. However, even for the F6 model we get ∆B ∼ 1.6 in the same
interval, which is a factor ∼ 25 larger than the analogue quantity we would instead obtain
for the power spectrum. The behaviour of the F5 model, on the other hand, is qualitatively
different from F4 and F6, and the deviations from GR are noticeably smaller. We do not find
the same trend when measuring the bispectrum from the underlying halo catalogs, where we
have used either all identified halos in the simulation boxes, or the 340,000 most massive ones,
so that their number density is kept fixed across the various gravity models (see figure 35).
This implies that the difference between F5 and F4/F6 is likely driven by the HOD modelling.
It is interesting to note that the 3PCF analysis in section 3.3.1 does not give an indication
of suppressed deviations between GR and F5 compared to F6 (see, e.g., figures 19 and 21),
while our findings here (sign and relative strength of deviations) are qualitatively consistent
with the measurements of the reduced cumulants in section 3.3.3 below (in particular, cf.
figure 26). A more detailed future investigation is needed to check if this non-monotonic
behavior is sensitive to the HOD model employed. Since the galaxy 2PCFs in the different
models have been matched to each other by the HOD tuning, the strong difference in their
bispectrum hints that the latter can offer independent information of and constraints on the
MG dynamics, consistent with the findings of the 3PCF subsection above.

In order to highlight the configuration dependence of the difference between modified
gravity models and GR, we average the bispectrum (or ∆B) over the largest triangle side k1,
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while keeping the ratios x2 = k2/k1 and x3 = k3/k1 fixed:

B(x2, x3) = 1
ku − kl

∫ ku

kl

B(k, kx2, kx3) dk , (3.28)

where we again use ku = 0.75h/Mpc and kl = 0.3h/Mpc for the upper and lower limits,
respectively, which yields the results shown in figure 23 — note that in case of GR we plot
B(x2, x3), while all other panels display the difference ∆B(x2, x3). The overall amplitude
and sign of ∆B can readily identified from figure 22, but now we see more clearly that for
the three models with the strongest deviations from GR, i.e., F4, N1 and F6, differences are
maximized for configurations that are mostly equilateral (towards x2 = 1 = x3), whereas
collinear configurations (k1 = k2 + k3 or x2 + x3 = 1), which include squeezed and folded
triangles, tend to be less affected. Again, F5 is qualitatively different from the other two f(R)
models with a preference for nearly squeezed configurations, and for N5 we do not identify
any clear configuration dependence.

As discussed in section 3.1, modified gravity not only impacts the clustering of galaxies,
but also their infall and virial velocities, and as such alters the redshift-space distortions of
clustering statistics. These distortions are present in any real measurement, so it is interesting
to explore the difference between GR and MG models for the bispectrum in redshift space.
For that we use the distant observer approximation, adopting the same LOS for all galaxies
in the simulation volume, and focus on the bispectrum monopole, which averages over all
orientations of the triangle with respect to the LOS, i.e.,

B
(s)
0 (k1, k2, k3) =

∫ 2π

0

dφ
2π

∫ 1

0
dµB(s)(k1,k2,k3) , (3.29)

where µ = cos θ, and φ and θ are the angles describing the orientation. Figure 36 in ap-
pendix C offers a quick visualization of the configuration dependence of the redshift-space
bispectrum monopole, i.e., the z-space counterpart of figure 23.

In figure 24 we present the results of these measurements in a very similar fashion to
figure 22. Compared with the real-space case, the behavior of ∆B(s)

0 for the f(R) models
has changed qualitatively: a suppression now takes the place of the previously enhanced
bispectrum relative to GR with the amplitude of deviations being strongest for F4, followed
by F5. They are weakest for the F6 model, which is mostly consistent with GR within
the combined 1-σ scatter of the GR and F6 measurements. Furthermore, we find that
the deviations from GR are no longer maximized for equilateral triangles, but display an
overall reduced configuration dependence with only slightly larger differences for collinear
shapes. To understand the origin of this change in behaviour, we plot the ratio of the
redshift-space monopole and real-space bispectrum in the bottom panels of figure 24, which
show an increased redshift-space signal on large scales that becomes heavily damped for
triangles involving small-scale sides. This is simply a reflection of the two expected effects:
on large scales the infall velocities of galaxies lead to a (configuration-space) squashing and
thus enhanced clustering. On small scales, however, the FoG effect smears out the galaxy
positions, which translates into a damping of the signal in Fourier space. In case of the f(R)
model, the FoG effect is significantly stronger than in GR, particularly for F4, which reverses
the real-space enhancement in clustering and explains the reduced configuration dependence
seen in the GR deviations ofB(s)

0 . The fact that there is no appreciable dependence on triangle
shape in differences of the ratio B(s)

0 /B either, and that we find very similar differences in the
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Figure 24. Measurements of the bispectrum monopole in redshift-space. The panels in the upper
two rows are the same as those in figure 22, while the bottom panels show the ratio between the
redshift-space monopole and the real-space bispectrum.

damping of the power spectrum, further points to an increased velocity dispersion in the f(R)
models. We also note that in case of F6 the real-space enhancement and the FoG damping
have nearly equal but opposite amplitudes, which makes the signal consistent with GR (a
similar effect has been observed previously for the power spectrum, e.g., [240]), and we have
checked that this cancellation happens independently of whether we include satellite galaxies
in the HOD sample or not. For the nDGP models, on the other hand, the ratio B(s)

0 /B
is mostly identical to GR on small scales, but we find a slight enhancement on large scales
because of the increased growth rate, as already noted in section 3.1.1. In total this means
that the GR deviations of the bispectrum monopole tend to be similar to those observed in
the real-space case, but with somewhat diminished significance because the reduced overall
signal raises the relative importance of the shot noise.

In summary, our results indicate that the bispectrum can be a potentially powerful
and complementary measure for discriminating theories of modified gravity. For the HOD
galaxy catalogs used in this work we have found that the real-space clustering probed by the
bispectrum can deviate significantly from GR on scales k > 0.3h/Mpc and these deviations
tend to be at least a factor of a few larger than what an equivalent analysis implies for the
power spectrum in all cases. In addition, we have seen that the difference between GR and
modified gravity displays a clear dependence on triangle shape, which can further be exploited
to break degeneracies with other cosmological and systematical effects. In redshift space, the
small-scale bispectrum is heavily damped by the Finger-of-God effect, which leads to an
increased impact of shot noise and thus less significant deviations from GR. This however is
partly remedied for f(R) models, which additionally differ from GR by having higher velocity
dispersion.
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Finally, we stress that all results shown here are based on uncertainties that correspond
to the volume of a single simulation box, ∼ 1 (h/Gpc)3. DESI will observe a much larger
volume and, moreover, will have a higher number density of tracers, so that we expect all of
our reported deviations from GR to grow. However, we also note that the analysis here is
only based on a small number of realizations and a single HOD prescription. A future, more
detailed, study is needed to assess the robustness of our results and to which degree they
depend on the adopted HOD model. In addition, differentiating between GR and a given
model of modified gravity using measurements such as those above will critically depend
on our ability to make robust predictions in the non-linear regime. While recent progresses
on the modelling of the bispectrum have been reported for chameleon and Vainshtein type
models [209, 237, 241], further developments will be vital for a successful application.

3.3.3 Hierarchical clustering

The full information of all one-point correlations of cosmic density field (of matter or galaxies)
is encoded in the shape and amplitude of the density probability distribution function, pdf(δ).
If the density field is a Gaussian random field, then the pdf can be described simply by
two numbers: the mean δ and the variance σ2. However, as we have seen above, in the
gravitational instability scenario, the growth of cosmic structures gives rise to significant
deviations of the evolved matter distribution from the initial Gaussianity. An alternative
summary statistic to accurately capture this information is the growth of higher-order central
moments of the pdf [242–244].

If we sample N-point correlations in a big enough volume, so the fair-sample hypoth-
esis is satisfied, then the central moments can be expressed as volume-averaged correlation
functions [242]:

ξn(R) ≡ 〈δnR〉c =
∫

d3x1 . . . d3xnξ(x1 . . .xn)W (x1/R) . . .W (xn/R) . (3.30)

HereW () is the smoothing window (usually a top-hat or a Gaussian) and R is the smoothing
scale. By 〈δnR〉c we denote here the n-th cumulants, which can be expressed in terms of central
moments, 〈δn〉, of the underlying density pdf(δR). The first few cumulants are given by

〈δ〉c = 0, (the mean)
〈δ2〉c = 〈δ2〉 ≡ σ2, (the variance)
〈δ3〉c = 〈δ3〉, (the skewness)
〈δ4〉c = 〈δ4〉 − 3〈δ2〉2c , (the kurtosis)
〈δ5〉c = 〈δ5〉 − 10〈δ3〉c〈δ2〉c (the hyperskewness) . (3.31)

In reality it is very hard to reliably estimate the full density pdf from a set of discrete field
tracers (such as galaxies). However, it was established that the very first few cumulants al-
ready provide a robust characterization of the underlying density field and associated 1-point
correlation statistics [244, 245]. This was extensively exploited for the benefit of cosmological
analysis, since the central moments of the pdf can be readily extracted from observations.
In this context, the particularly useful concept is the reduced cumulants or the so-called
hierarchical amplitudes Sn’s, which are given by [246, 247]

〈δn〉(c) = Sn〈δ2〉n−1
(c) = Snσ

2n−2. (3.32)
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Considerations from cosmic perturbation theory (PT) have shown that in the classical gravi-
tational clustering scenario the higher-order cumulants are strong functions of the field vari-
ance, σ2. By rescaling the cumulants using the variance in a proper power to define the
reduced cumulants, one can remove most of this dependence, and what is left is a statistic
that is very sensitive to the higher-order and nonlinear effects of gravitational clustering.
Calculations from perturbation theory [246, 248] have shown that for smoothed fields (such
as count-in-cell for galaxy counts) the reduced cumulants become weak functions of the
smoothing scale R and this effect is accurately captured by various combinations (set for
a given cumulant order) of the logarithmic slope of the mass field variance, the so-called
gamma-factors defined as

γn(R) ≡ dn log σ2
M (R)

d lognR . (3.33)

For the first three cumulants the PT prediction yields

S3 = 34
7 + γ1 , (3.34)

S4 = 60712
1323 + 62

3 γ1 + 7
3γ

2
1 + 2

3γ2 , (3.35)

S5 = 200575880
305613 + 1847200

3969 γ1 + 6940
63 γ2

1 + 235
27 γ

2
1 + 1490

63 γ2 + 50
9 γ1γ2 + 10

27γ3 . (3.36)

As we can see, the logarithmic slope of the matter variance field affects the predicted ampli-
tude of cumulants. We expect that the effect of screening enhancing the nonlinearity of the
matter filed, as illustrated, e.g., by the bottom panel of figure 1, should be reflected in the
changed values of γ factors.

The above properties of the reduced cumulants in principle make them a very promising
and suitable tool for testing the nature of gravitational instability [207, 249] or the nature of
the initial conditions [250–252]. For the same reasons it was put forward that using Sn’s can
be beneficial for testing GR and MG on cosmic scales [253–256].

In what follows we focus on the galaxy catalogs in configuration space split into two
samples — all galaxies and centrals only — to be able to compare the magnitude of differ-
ences and scales at which they are attained between the samples. This will be useful for
understanding the impact of satellites and one-halo term for the reduced cumulants.

We use the count-in-cell method to measure the central moments of the HOD galaxy
distributions, employing the algorithm presented in [255, 256]. The count-in-cell method gives
good results when the expected number counts 〈N〉 in a cell of a given size is large. Given
the number density of our HOD catalogs, ng ∼ 3.2 × 10−4( h−1Mpc)−3, this is guaranteed
for a large enough smoothing scale, R & 8 h−1Mpc. At smaller scales we might expect to
have a significant contamination by shot noise. To overcome this we performed the shot-noise
correction for all our central moments. The method uses the moment-generating function
of the Poisson model to calculate the net contribution by discrete noise (see details in [254,
257]). On the other hand, the higher-order moments are severely affected by finite volume
effects [258]. The effect scales with the order n of the moment. For the simulation box size
we used, the cosmic variance becomes significant at R ∼ 60 h−1Mpc for the skewness (S3),
while for S7 this scale drops to only ∼ 10 h−1Mpc. We expect that in a DESI-like survey
both the shot noise and the cosmic variance will affect the measured cumulants to much less
extent than can be noticed in our simulations.

In figure 25 we plot the full hierarchy of reduced cumulants from n = 3 (the skewness)
up to seventh order (S7). This gives us a general impression of the shapes and the amplitudes
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Figure 25. The hierarchy of galaxy clustering reduced cumulants Sn’s for all models. The shaded
regions represent 1σ scatters around the GR ensemble mean. The groups of lines from the bottom
(S3 or skewness) to the top (S7) correspond to increasing cumulant order.

of these statistics. The solid black lines mark the fiducial GR case, while associated shaded
regions delimit 1σ dispersion around the mean from the ensemble of five GR realizations. The
scatters for all the other models have an amplitude and scale dependence that is very close
to that of the GR case, and for clarity we do not plot them. This figure already illustrates a
couple of interesting points. First, we can observe that the higher-order moments (starting
from n = 5) show a clear downturn of amplitudes at R . 2.5 h−1Mpc. This is possibly
caused by the limitations of the HOD scheme, which is not designed to accurately capture
the galaxy clustering in the one-halo term regime [259–261]. We shall not attempt to study
this in greater details, since this is beyond the scope of this work. Reassuringly, the scale
and the shape of this effect seems to be very similar in all the inquired models with F4 being
exception, where the effect seems to much milder. Since this regime is strongly affected by
both sampling noise and HOD accuracy, we shall stop at noting the exceptional behavior of
F4 here.

Another observation is that the deviations from the GR grow with the increasing statis-
tic’s order n. Therefore, the higher-order cumulants would appear as better observables to
discriminate between the models. Alas, the stronger MG signal comes at a price of greatly
increased scatter, which is illustrated by much larger 1σ contours at small and large scales
for higher-order cumulants. In practice, we have assessed that reduced cumulants from S6
and higher are subjects to a scatter too large to be suitable for our analysis. Thus in our
further considerations we will limit ourselves to only the first three reduced cumulants.

Figure 26 shows the differences for S3, S4, and S5 in the “all galaxies” sample. The
upper panels show the relative difference with respect to GR, Sn/SGR

n − 1, for n = 3, 4, 5, as
a function of the smoothing scale R The shaded regions delimit the 1σ scatters of this ratio.
The bottom row illustrated error-weighted cumulants difference, ∆S defined in an analogues
way as it was for the bispectrum, ∆B, in eq. (3.27). For nearly all scales, F4 appears to
be the model deviating most strongly from GR, with the signal reaching ∼ 20% for the
skewness, ∼ 100% for the kurtosis, and up to ∼ 200% for S5 at R . 10 h−1Mpc. The next
two standing-out models are N1 and F6: for all three Sn’s their deviations from GR show
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Figure 26. Top row: the relative differences of the skewness (left panel), kurtosis (central panel) and
hyperskenwess (right panel) taken with respect to the fiducial GR case. The shaded regions mark the
error round the ratio of ensemble averages. Bottom row: the equivalent error-weighted differences,
∆S, similarly defined as in eq. (3.27), for each statistics.

Figure 27. The same as the previous figure, but for central galaxies only.

similar shape and amplitude, but differ by the signs N1 promotes lower values of amplitudes
than GR, while F6, like the other f(R) models, fosters higher values. The absolute effects of
these two models are ∼ 10% for the skewness, up to 40% for the kurtosis and even & 50%
for S5. The remaining two MG models (F5 and N5) exhibits considerably weaker deviations
from GR, with N5 being mostly consistent with the latter.

The facts that F4 and N1 deviate most strongly from GR while N5 is close to it are as
expected given that the screening effect is weaker in the former but stronger in the latter. The
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behavior of F6 and F5, on the other hand, is opposite to expectation, since the fifth force is
more efficiently suppressed in F6. However, we note that, due to the additional complication
of HOD modelling, the properties of the galaxy field may not follow exactly those of the
matter field, making a physical interpretation more difficult: for example, figure 3 shows
that the galaxies may be hosted by different halo populations in these two models. Also
note that the exceptional behavior of F5 here is consistent with the findings of the real-space
galaxy bispectra in the previous subsection.

In figure 27, we present statistics analogues to the one just discussed above, but for
central galaxies only. This plot demonstrates that, for centrals, the typical differences between
GR and our MG models are much smaller than what we observed for the “all galaxies”
catalogs; the associated scatter is also larger, as can be strongly visible at small scales (R ≤
3h−1Mpc). This might be somewhat surprising given that our HOD catalogs have small
satellite fractions, ' 11%. However, due to halo-exclusion effect at these scales, the satellites
make a significant contribution, reducing the shot noise. In contrast to the “all galaxies”
sample, here F6 is characterized by minimal deviations from GR. Also, N1, which for the “all
galaxies” sample shows significant departures from GR, deviates weakly from GR for central
galaxies. Only F4 and F5 remain as potentially detectable models. This results underlines
the importance of the nonlinear regime described by the 1-halo term, as well as an accurate
model for the halo-galaxy connection, for distinguishing between GR and MG scenarios. In
future works, a more careful and detailed approach should be used for modelling galaxy
satellites and their impact on the higher-order clustering statistics.

To summarize, our results indicate that there is a great potential in using the reduced
cumulants of galaxy distribution as strong discriminators of MG models. This is provided we
consider all galaxy sample that include satellites, which are necessary to probe the clustering
in 1-halo regime. The relative differences we have found are quite large, from ∼ 20% in
the case of the skewness to & 100% for S5. Indeed, while their error bars are much larger,
it seems that both S4 and S5 offers a better prospect for testing MG and GR, since the
amplitude of the signal is much higher. There are, nevertheless, uncertainties associated
with our analysis which are of a statistical nature, due to the relatively low number densities
and small volume of our mock galaxy catalogs. For a DESI-like survey we can expect a 20
times larger volume to be probed and also higher number density of tracers [13], which should
reduce the statistical errors by a factor of at least 3 (see, e.g., [240] for more discussion). To
match the specifications of such future data, larger-volume and higher-resolution simulations
are needed to more accurately make the theoretical predictions for Sn.

In addition to the statistical uncertainties, like the other summary statistics, there are
a range of theoretical and observational systematics which should be better understood. One
example is the HOD method to construct mock galaxy catalogs. We have repeated the
analysis using the mock galaxy catalogs where the HOD parameters were tuned to match the
real-space 3D galaxy 2PCFs amongst the different models, and the behaviors of ∆Sn are quite
different, with much smaller deviations from GR in all models except N1. This suggests that
galaxy modelling is an important uncertainty which should be addressed. A more accurate
but also more expensive way to achieve this is to use hydrodynamical simulations which evolve
the baryonic component as well. The latter can indeed be distributed in a different way than
smooth dark matter at small scales [262]. Recently, however, there is a growing consensus
that while nonlinear baryonic physics is crucial for understanding and modeling of galaxy
internal properties, its impact on galaxy velocities and positions is very mild [135, 263]. This
offers a way to test whether simplistic HOD modelling like the one used here would cause a
substantial bias in the predicted Sn’s.
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Another potentially important source of systematic effects lies in the fact that we have
neglected the effects of redshift space distortions in our analysis. In reality, the measured
line-of-sight coordinate of a galaxy is affected by its peculiar velocity, and some studies have
found that in MG scenarios there exists a degeneracy between increased spatial clustering
caused by the fifth force and enhanced clustering damping precipitated in redshift space
by enhanced dynamics (see, e.g., [240]). The situation can be to a large extent remedied
by the fact that both the nominator and denominator of the reduced cumulants ratios are
affected by the RSD to a similar magnitude and the overall effect is largely canceled out [264].
This, together with the fact that the damping is limited to only small scales, suggests that
at the intermediate scales of 10 . R/( h−1Mpc) . 60 the signal we have measured is not
severely affected by RSD effects. Therefore, we hope that with detailed studies using future
simulations we will be able to more accurately quantify these effects and extract genuine MG
signals on those scales.

While the MG signal unveiled in the clustering amplitudes appears to be strong and
significant, in reality, the observational data is a subject of various selection effects. To
foster robust data analysis one needs to model specific survey’s radial (redshift), angular
and luminosity (magnitude) selection functions. Since in our analysis we did not attempt to
model any of such effects, our results should be taken as an optimistic best-case scenario for
an idealized perfect survey. On the other hand, we are dealing here with volume-weighted
central moments estimated by count-in-cells. In contrast to pair-weighted statistics such
as 2PCF, the volume-weighting makes the central moments less prone to biases induced by
specific selections (especially radial and angular). As shown for example by [265], for the case
of the VIPERS survey, careful modelling of the survey selection functions admits for a robust
estimation of central moments and related hierarchical amplitudes. Thus, we expect that
for a survey with a footprint like DESI, the observational selection effects, when modelled
accurately, should not hinder the potential for obtaining strong MG constraints using the
reduced cumulants of galaxy clustering.

3.3.4 The Minkowski functionals of the density field

As discussed in section 3.3.1, section 3.3.2 and section 3.3.3, because the observed density
field is not perfectly Gaussian due to the nonlinear evolution of the cosmic structure and pos-
sibly also to primordial non-Gaussianity, one cannot extract all the information from galaxy
surveys that may be relevant for cosmological analysis using the commonly used two-point
correlation function or power spectrum. It is true that higher-order correlation functions,
or the corresponding high-order power spectra (referred to as N-point statistics hereafter),
can be complementary, given the computational challenges to measure those quantities from
observations and theoretical difficulty to model them accurately, it is worthwhile to consider
other probes that encode the same information. An example of such probes is cosmic voids
(see section 3.1.3 and section 3.4.2), the statistics of which can be related to the hierarchy
of N-point correlation functions (see, e.g., [266, 267]). Other alternatives include topological
and morphological measures of the density field; in this subsection we will briefly describe
the Minkowski functionals (MFs, [268]) as a potential test of gravity.

Compared with the standard N-point statistics, the MFs are advantageous in several
aspects. First, According to Hadwiger’s theorem, the morphological properties of a three-
dimensional structure are completely specified by four MFs, namely the volume, the surface
area, the integrated mean curvature and the genus. Second, MFs are independent of galaxy
bias, which makes them an ideal tool for gravity tests. This is because galaxy bias can have
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Figure 28. Left panel: the MFs computed from N-body simulations for different models of gravity
at z = 0, with the dark matter density field smoothed with a spherical Gaussian filter with size
RG = 5 h−1Mpc. The two f(R) models — F6 (red dotted lines), F5 (blue short dashed) — and
two nDGP models — N5 (purple dashed), N1 (green solid) — are compared with the GR case (black
solid) for V0 — V3 (from top to bottom). Right: the differences in the MFs between the four modified
gravity models and GR, first column for f(R) gravity, and second column for nDGP. The quantity
ρ/ρ̄ is the density threshold used for the MF calculations in ratio of the mean density. This plot is
reproduced from [278] and so the colour scheme is different from the one adopted for most other plots
in this paper. As discussed in the text, while some features of the MFs are similar for GR and MG
models, their amplitude is more pronounced and can be used to distinguish between the models.

a complicated scale dependence in general MG theories, which makes it challenging to build
models for N-point statistics for MG theories. Last but not least, it is computationally much
cheaper to measure than the N-point correlation functions from observational or mock galaxy
catalogs. MFs have been applied to analyze density fields in galaxy surveys (e.g., [269–271])
and maps from CMB or weak lensing experiments (e.g., [272–277]).

A proof-of-concept study of using MFs for gravity tests was done in [278], using the
dark matter fields from the simulations described in section 2.2, and the results are briefly
summerized here. After smoothing the dark matter density field to suppress the shot noise,
the MFs V0, V1, V2 and V3 were measured as a function of the density threshold, shown as
ρ/ρ̄. Although the specific analytical form of the MFs is not needed here and can be found

– 60 –



J
C
A
P
1
1
(
2
0
2
1
)
0
5
0

in, e.g., [279], their physical characterization is informative: V0 is the volume fraction of the
excursion set (structure pattern); V1 represents the area of the surface of the excursion; V2
is its integrated mean curvature; and V3 is its Euler characteristic per unit volume or the
genus number describing the connectedness of the isodensity contours, see, e.g., [280–282].
In the left panel of figure 28 the four MFs of GR (black) and four MG models — F6 (red), F5
(blue), N5 (purple) and N1 (green) — are shown, while the right panels show the differences
with respect to GR.

To get a sense on why MFs are useful for testing gravity, let us consider the results
in more details. Taking ∆V0 (the difference in volume) to begin with, we can see that the
volume fractions of the excursion set in MG are generally larger than that in GR, for densities
above a sufficiently high threshold (i.e., ρ > ρ̄). However, it is the opposite for under-dense
regions, namely, the volume fraction above an under-dense threshold get smaller in MG,
which is equivalent to having larger volume fraction below an under-dense threshold. This
is as naturally expected as the halos and voids are more abundant and with larger sizes
in f(R) or nDGP than those in GR. Furthermore, for ∆V1 (the surface area), the overall
trend is similar to that of ∆V0, except for the under-dense regions (ρ < ρ̄). This can be
understood as follows: if the excursion sets are all isolated regions, as is the case for high
density threshold, it is expected that the change in their surface area follows that in the
volume fraction they occupy. However, regions enclosed by the low iso-density contours
are no longer the excursion sets, but under-dense regions with density below the threshold,
with the volume fraction 1 − V0. Thus, at the low density threshold region, V1 changes in
the opposite direction as V0, and becomes larger in both f(R) gravity and nDGP models.
Moreover, it can be seen from figure 28 that V3 can help distinguish between GR and MG
models as follows. In GR, the isodensity contours are more connected with V3 < 0 for the
region 0.5 . ρ/ρ̄ . 1.5, but more disconnected with V3 > 0 in the other regions. For the
f(R) and the nDGP models, this feature is overall more pronounced and can thus serve to
distinguish them from GR.

To summarize, the MFs V0 — V3 capture information that is not available in the simple
two-point statistics, and therefore can be useful for testing gravity and other cosmological
models. However, the study in [278] was based on the dark matter, rather than galaxy fields,
which may have enhanced the model differences compared with the latter. The HOD tuning
to match the (projected) galaxy 2PCFs, as used in most other probes of this paper, may
further reduce the signal. Therefore, it will be useful to conduct a more detailed study using
the MFs measured from realistic mock galaxy catalogs with a higher galaxy density and
larger volume, allowing systematic effects from observations to be included, to fully assess
the potential of this probe.

3.3.5 Stacked cluster phase spaces
In the weak-field approximation of general relativity and at sub-horizon scales, a massive
particle will still feel a force from the accelerated expansion of space [283]. The effective
acceleration experienced by a massive particle with zero angular momentum in the vicinity
of a galaxy cluster with gravitational potential (Ψ) is given by,

~∇Φ = ~∇Ψ + qH2rr̂. (3.37)

The effective potential Φ therefore takes into account both the effect produced by a matter
only density field with potential Ψ and the effect produced by the acceleration term qH2r,
with q being the deceleration parameter q ≡ −aä/ȧ2. From a Newtonian perspective, the

– 61 –



J
C
A
P
1
1
(
2
0
2
1
)
0
5
0

latter term can be thought of as a repulsive force that opposes the inward pull of the cluster’s
mass distribution, caused by the accelerated expansion of space.

Given that the acceleration on a point mass is governed by the gradient of the gravita-
tional potential, we define an equivalence radius as the point where the acceleration due to
the cluster’s gravity and the acceleration from the expanding space are equal to each other
(~∇Φ = 0), which yields,

req =
(
GM

−qH2

)1/3
, (3.38)

where G is the gravitational constant and M is the mass of the cluster. The escape velocity
profile inferred from the observed phase space data can be modeled with a function of the
mass distribution of a specific cluster, as specified by its gravitational potential, in our case
we use the Einasto profile with its standard three free parameters: α, r−2, ρ−2 [284]. In
the concordance ΛCDM cosmology, the escape profile is also a function of redshift z and
cosmological parameters, Ωm, h, etc. . Therefore in standard ΛCDM, the escape velocity
radial profile is given by a function of the cosmology and cluster parameters combined,

vesc = vesc (r, z,Ωm, h, . . . , α, r−2, ρ−2) (3.39)

where we include cosmological parameters like Ωm as well as cluster observables like α, r−2
and ρ−2.

In terms of escape speeds, we now recognize that the gravitational potential at req plays
an important role and that the distance to escape a cluster is well-defined and finite in an
accelerating Universe. In other words, we set the boundary condition such that the radial
component of the escape velocity with respect to the cluster is zero at the equivalence radius,
−2Φ (req) = v2

esc (req) = 0. Using the Newtonian analogy that v2
esc = −2Φ, in ref. [285] it was

noted that
vesc(r, z) =

√
−2
(
Ψ(r)−Ψ(req)

)
− qH2(r2 − r2

eq
)
. (3.40)

Eq. (3.40) yields a radial escape speed of 0, relative to the cluster center, at the equivalence
radius given the gravitational potential profile Ψ. Note also that this equation applies to an
accelerating universe for any choice of gravitational potential Ψ [286]. For instance, modified
gravity theories where the Poisson equation holds still satisfy eq. (3.40) [186].

The observed escape velocity is readily identified by an edge in the radius-velocity
phase-space data. This edge is typically suppressed statistically from under-sampling of the
phase-space. ref. [287] showed that this suppression (Zv) is dependent only on the number
of galaxies which sample the phase space, such that when O(105) tracers are available, the
statistical suppression term Zv ≈ 1 and a practically exact tracing of the 3D escape velocity
profile can be made. In practice and even in stacked cluster phase-spaces, we typically have
a few hundred (in well-sampled single clusters) to a few thousand (stacked) available tracers,
and so 1.1 . Zv . 1.5. Thus, we measure the line-of-sight (LOS) escape velocity and correct
for this statistical suppression to infer the 3D escape velocity: vesc = Zvvesc,LOS.

Let us consider the f(R) model as introduced in section 2. The gravitational potential
which massive particles experience is given by [188],

Φf(R)(r) = ΦGR(r)− 1
2δfR(r), (3.41)

where the δ signifies that the background has been subtracted from the scalar field: δfR =
fR − f̄R. In an expanding chameleon f(R) gravity Universe, instead of eq. (3.37), we have
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Figure 29. (Color Online) Left: the expected radial escape velocity profile for a stacked high mass
(1015M�) cluster with ∼ 5000 member galaxies. The shaded region includes nominal 5% error from
the weak-lensing inference of the gravitational potential. Right: the same as in the left panel, but
shows the ratio between the high mass and low mass clusters escape velocities. This probe utilizes the
ratio for two reasons: (1) we expect the inner ∼ 0.5 Mpc of high mass clusters to look like GR, which
sets a lever-arm for the detection of f(R) signals in lower mass systems; (2) this removes a primary
systematic, the under-sampling which suppresses the true escape edge. Note that the color schemes
are different in the two panels, as indicated in the legends.

to modify the effective potential and its relation to the escape velocity as,

− 2Φf(R)(r) = v2
esc,f(R)(r) = v2

esc,GR(r) +
[
δfR(r)− δfR(req)

]
. (3.42)

In practice, the gravitational potential in eqs. (3.40) and (3.42) is constrained by weak lensing
shear profiles around galaxy clusters. The LOS escape velocity surface can be observed using
highly multiplexed spectroscopic instruments like DESI.

We expect the BGS data to provide spectroscopic redshifts for ∼ 25 member galaxies per
cluster in a typical ∼ 1015M� cluster, a value much lower than the actual cluster richnesses
at this mass. This is because DESI suffers from significant fiber collisions in dense regions
like the cores of galaxy clusters. However, due to the area and depth of the survey, we can
expect ∼ 100s of massive galaxy clusters to lie within the survey footprint. Therefore, DESI
will provide useful line-of-sight velocities for a few thousand galaxies in a stacked cluster
phase-space that has an average cluster mass of ∼ 1015M�. The cluster masses themselves
need to be measured via an independent weak lensing analysis. Note that unlike most of the
other probes discussed in this paper which require some knowledge of the physical distances
of the tracers, the escape velocity analysis is conducted purely in proper units, such as km/s
and angular separations [288].

In the left panel of figure 29, we use eq. (3.42) to predict the escape velocity for a stack
of high mass (1015M�) clusters for different variants of HS f(R) gravity including F4, F5,
F6 and as well as F7 (|fR0| = 10−7); note that the line colors are different from other plots of
this paper. These profiles are not measured directly The dashed lines representing Einasto
and NFW profiles are for GR and highlight the difference one would expect from an incorrect
choice of mass profile when inferring the gravitational potential from the weak lensing data.
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Figure 30. The z = 0 gravitational potential ratio between high and low mass bins (of 20 halos) for
GR (black), and the F5 (left) (green) and F6 (right) parametrization of modified gravity (blue). The
points are the averages of the square of the measured radial escape velocities using the simulation
particles for each bin in radius and mass. The errors are 1σ on the mean from boot-strap re-sampling.
The solid lines represent the theoretical predictions using the NFW density parameter. The separation
between GR and f(R) potential ratios increases with increasing separation in the mass bins and we
show two different mass binning schemes in each panel where the percentages denote the percentiles
of cluster masses we keep in the sample. Note the large difference between the GR and F5 ratios at
either mass binning scheme. Note the precise and accurate agreement between the theory and the
measured escape profile (or Φ) profile ratios. These figures justify our use of only theory in making
predictions without the need for additional simulations at differing levels of fR0.

The shaded region includes error from weak lensing (5%). For F4 and F5, we find significant
differences from GR in both the amplitude and the shape at all radii. For F6, it becomes
difficult to differentiate against GR using a single stacked phase-space, and for F7 the result
is practically indistinguishable from GR.

The right panel of figure 29 shows the ratio between the escape edges of high- and
low-mass clusters. Taking the ratio enables us to divide out the effect of the statistical
suppression, on the assumption that the phase-space sampling is similar between them. In
this case, we see that the difference between F6 and GR becomes appreciable at large radii.
This is a result of the chameleon screening mechanism, which means that MG deepens the
potential in the outskirts of low-mass galaxy clusters with respect to GR, but leaves the
potential of high-mass clusters relatively unaffected.

Therefore, this offers two ways to constrain gravity: using the radial escape velocity
profile based on vesc = Zvvesc,LOS, cf. left panel of figure 29, or using the ratio between
stacked high- and low-mass clusters, cf. right panel of figure 29. We have found that the first
approach, assuming a stack of massive (〈1015M�〉) clusters having ∼ 5000 tracers leads to a
constraint of |fR0| . 5× 10−6 when we take into account the uncertainty in Zv and the weak
lensing mass errors. However, the latter approach which utilizes the ratio of the escape edge
for a high and low mass stack produces superior constraints.

Since the galaxy number in the mock HOD galaxy catalogs described in section 2.2.3 is
too low, we use dark matter particles from the same simulations as described in section 2.2
to test the ratio of the high- and low-mass cluster potential ratios. Ref. [286] showed that
semi-analytically modeled galaxies are unbiased tracers of the dynamical escape velocity
edge when compared to particles in a ΛCDM dark matter only simulation. Since our MG
simulations are dark matter only, we assume galaxies in a MG universe will also be unbiased
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and that our constraints based on the particles will match expectations for real galaxies.
However, we note that high volume and high resolution simulations are required to create
large enough samples of massive halos which are well populated with sub-halos in order to
conduct detailed phase-space explorations.

We choose halos in the simulation such that the average masses in the high- and low-
mass bins are nearly the same. For GR, the low mass bin is 9.10× 1013 ∼ 1.96× 1014h−1M�
and the high mass bin is 7.48 × 1014 − 1.58 × 1015h−1M�. For F6, the low-mass bin is
9.13×1013−1.97×1014h−1M� and the high-mass bin is 7.34×1014−1.58×1015h−1M�. For
F5, the low-mass bin is 1.16×1014−1.94×1014h−1M� and the high-mass bin is 7.49×1014−
1.58× 1015h−1M�. We then measure the radial escape velocity for each cluster in these bins
and take the average, and calculate the error on the theory through bootstrap re-sampling
of the clusters in each bin. As shown in figure 30. we find excellent agreement with theory,
and this allows us to use the analytical prescriptions for making predictions for f(R) gravity
variants other than F5 and F6. We also note that there are detectable differences in the shape
between GR and F6 in the outskirts, in agreement with our analytical result in figure 29.

We then utilize the probe

Φhigh,LOS(r)
Φlow,LOS(r) ≡

〈Zv(low)〉
〈Zv(high)〉

〈v2
esc,high(r)〉
〈v2

esc,low(r)〉 ≈
Φhigh(r)
Φlow(r) , (3.43)

which was tested extensively on lightcone data from ref. [289]. A forecast analysis was carried
out in ref. [186], where it was found that using this probe, DESI BGS data could differentiate
between ΛCDM (the null hypothesis) and |fR0| < 4× 10−6 with a p-value of 3× 10−7 (e.g.,
∼ 5σ).

In reality, we expect to be able to make multiple independent measures of the escape
velocity ratio, each with different average masses in their high- and low-mass bins. We will
have enough clusters to choose from to ensure that there are no clusters residing in more than
one binned measurement of the escape ratio. This additional power to differentiate between
f(R) and GR models lies in both more clusters and more mass bins. We have checked that
the escape ratio linearly depends on the mass ratio of the high- and low-mass bins. Using the
large sample from the GR simulations described in section 2.2, we are able to create up to four
more high- and low-mass bins, each with a different mass ratio. In practice, we treat each of
these as independent measures as a function of radius, thus increasing our statistical sample
by a factor of 5. In doing so, we are able to differentiate between GR and fR0 = 6× 10−7 at
> 5σ.

The observables for this test involve the galaxy redshifts and radial positions for the
phase-spaces and the weak-lensing shear profiles. We assume that the systematics from these
measurements are well-controlled and minimized in the data. For the phase-spaces, this
should not be an issue, since the galaxy sky positions and redshifts should be determined
at percent level accuracy compared to the escape surface. Recent advances in the methods
to constrain weak lensing mass profiles claim control on the systematics at < 10% [290].
Nominal cluster-based systematic issues like the selection function and mis-centering are not
issues for this probe, simply because we require high signal-to-noise measurements of the
phase-space density and the weak-lensing signal for individual clusters.

It should be noted that while the ratio test exploits the unique properties of the f(R)
model (e.g. the chameleon screening mechanism), the test of the radial escape velocity profile
does not require any specific characteristics from the gravity models as it places constraints
based on the difference in gravitational potential alone. That allows to utilize galaxy cluster’s
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phase spaces to test other MG and alternative gravity models such as emergent gravity [291]
in addition to constraints based on mass profiles of galaxy clusters [292–294].

In the end, the primary observational systematic when using high signal-to-noise clusters
and parameterized mass profiles is the weak lensing shear. It is likely that the DESI Bright
Galaxy Survey will provide the required amount of phase-space sampling for over 1000 clus-
ters. Many of these will have (albeit noisy) weak lensing profiles from the deep ground-based
imaging from DES and DECals (as well as from the Hyper-SuprimeCam Survey).

The story is different when we stack phase-space data and weak-lensing shears. Stacking
is the presumed scenario for this probe. DESI does a poor job of spatial sampling within
high density regions. A concern is that weak-lensing profiles are hard to measure for clusters
. 1014M�, where the f(R) signal becomes interesting. However, in order to make further in-
roads into how well this probe will work for realistic DESI stacks, we require a new generation
of mock galaxy catalogs in light-cones with estimated shear profiles and high enough galaxy
sampling to measure phase-spaces with many 10s of galaxies per cluster.

3.4 Gravitational lensing statistics

While the paper principally focuses on utilizing density and velocity statistics coming out
of spectroscopic and photometric galaxy surveys, in this section we discuss the potential to
use complementary lensing information to test the properties of gravity directly through the
evolution of the gravitational potential. For a spectroscopic survey that has substantial sky
coverage overlap with imaging surveys, lensing can be a useful probe for testing gravity. In
this section we discuss two distinct environments that can be considered. In 3.4.1 we consider
galaxy-galaxy lensing, while in 3.4.2 we discuss the potential of lensing measurement in low
density, void environments.

3.4.1 Galaxy-galaxy lensing

Galaxy-galaxy lensing (GGL) describes the distortions of images of background (source)
galaxies around foreground (lensing) galaxies, and detects the matter distribution around
the latter up to radii which typically go well beyond the dark matter halos of the lensing
galaxies. It is an ideal probe to study properties of dark matter halos such as the mass
profiles [295, 296], galaxy-matter cross correlation and galaxy bias [297, 298], and to constrain
cosmological parameters [299]. It has been applied in multiple lensing surveys, such as
cfhtlens [300–302], kids [303–305] and des [306].

In regions well outside foreground galaxies, the screening mechanisms are expected to
work less efficiently. Such regions can experience substantially stronger gravitational force,
and consequently enhanced clustering of matter, in the MG models studied here, making
GGL a potentially useful probe to test them. However, as in void lensing (see section 3.4.2),
because individual galaxies generally do not produce strong enough lensing effect, one has to
stack the tangential shear around many foreground galaxies to detect signals at high signal-
to-noise. GGL in the context of MG models has been studied previously in, e.g., [307–309].

The tangential shear around a foreground galaxy is related to the average excess surface
density profile, ∆Σ(rp) [310, 311], given by the following integration of the galaxy-matter
cross correlation function, ξgm(r):

∆Σ(rp) = ρcritΩm
2
r2
p

∫ ∞
−∞

dχ
∫ rp

0
dr · rξgm

(√
r2 + χ2

)
− ρcritΩm

∫ ∞
−∞

dχξgm(rp, χ),(3.44)
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Figure 31. (Color Online) The excess surface mass density profiles, ∆Σ, measured at z = 0.5, for
the six models studied here: GR (black), F6 (blue), F5 (green), F4 (red), N5 (magenta) and N1
(orange). The lower sub-panel shows the relative differences with respect to GR, where the black
horizontal dotted line is zero, and the thick and thin error bars indicate respectively the statistic
uncertainties in an optimistic and a pessimistic case, in which an LSST-like imaging survey has 6, 000
and 1, 500 sq. deg. overlap with a DESI-like survey. We have used different lines styles to represent
the five realisations, instead of showing their mean, to highlight the small scatter across the different
realizations.

where r and rp are respectively the 3D distance and projected distance from the lensing
galaxy, and χ is the comoving distance from it. We have measured ξgm using a modi-
fied version of the publicly-available code cute [90], which counts pairs of HOD galaxies
and simulation particles. To carry out the integrations in eq. (3.44), we first interpolate
ξgm

(
r =

√
r2
p + χ2

)
onto a grid in (log(rp), χ) using cubic spline, and then do discrete summa-

tions of the integrands evaluated at the grid points. We use ±χmax, with χmax = 90 h−1Mpc,
as the integral limit and have checked that this choice leads to converged results.

The results of ∆Σ and the relative differences between modified gravity models and GR
are shown in figure 31, considering only lenses at z = 0.5 for simplicity. The MG curves
display the expected trends with respect to GR — within the f(R) family, F4 shows the
largest deviation and F6 the smallest, and within the nDGP family, N1 shows stronger dif-
ference than N5; these are in the same order as decreasing screening efficiency and increasing
strength of the fifth force. The differences between f(R) gravity and GR decrease on larger
scales, while for nDGP the deviation from GR remains scale-independent at rp greater than
a few h−1Mpc. This behavior was expected since f(R) gravity has scale-dependent linear
growth, with the fifth force suppressed outside the Compton wavelength of the scalar field,
while in DGP the linear growth rate is scale-independent. On the other hand, on small scales
(rp . 1h−1Mpc) the nDGP predictions become close to the GR ones, which is a result of the
efficient Vainshtein screening near and inside dark matter halos.

We have checked the results at z = 0 and found similar qualitative and quantitative
conclusions as z = 0.5, with the maximum deviation from GR at the level of ∼ 28%, ∼ 12%
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and ∼ 9% for F4, F5 and N1 respectively (the F6 and N5 models are, on the other hand,
very close to GR). The model differences also have a weak dependence on the galaxy number
density [309]. The GGL results are not sensitive to the way in which the HOD catalogs
are produced for the MG models; for example, we did a test by tuning the respective HOD
parameters so that these models match the real-space 3D galaxy correlation function of
GR, and found almost identical conclusions as in figure 31. Finally, note that in figure 31,
instead of the average results from all 5 simulation realizations, we have shown the curve
for each of them using different line styles, to see the scatter between them is very small
even for the stronger MG models (F4 and N1); we also did a test by tuning the HOD
parameters individually for each simulation realization instead of doing this for all 5 boxes
together, and while the HOD parameters are now slightly different, the realization scatter
was again negligible. This makes sample variance a lesser concern for testing models using
GGL, especially for surveys like DESI which will give higher galaxy number densities in a
larger volume than used in the analyses here.

To forecast the constraining power of GGL, we have calculated the signal-to-noise (S/N)
of the distinguishability of the MG models from GR, which is defined as

(S/N)2 ≡ δ∆ΣT (rp,i)C−1(rp,i, rp,j)δ∆Σ(rp,j), (3.45)

in which δ∆Σ(rp,i) is the model difference of the excess surface mass density in the ith rp
bin, and C(rp,i, rp,j) the covariance matrix between the i-th and j-th rp bins. The covariance
matrix is calculated following the analytical prescription of [312], based on halo model pre-
dictions of the shear-shear, galaxy-galaxy and shear-galaxy correlation functions (for which
we have used the same cosmological and HOD parameters as in the simulation and galaxy
catalogs). The calculation takes into account contributions from cosmic variance, the Poisson
noise of lens galaxies and source shape noise σγ , and assumes a single source redshift zS = 1.0
and lens redshift zL = 0.5. The original covariance matrix, C(θ, θ′) is calculated for the tan-
gential shear γt(θ), where θ is the angular separation from the lens, and then converted to
the covariance matrix for ∆Σ using

C(rp,i, rp,j) = Σ2
crit(zL)C(θ, θ′), (3.46)

where Σcrit is the critical surface mass density, and γt(θ) = ∆Σ [rp = DA(zL)θ] /Σcrit. We
consider GGL measured using the synergy of a DESI-like spectroscopic survey and an LSST-
like imaging survey, with two cases of overlapping sky areas — an optimistic case of 6, 000
and a pessimistic case of 1, 500 squared degrees. In both cases we adopt a value σγ = 0.22
and assume that the source galaxy number density is nS = 40 arcmin−2. The error bars in
the lower panel of figure 31 show the square roots of the diagonal elements of the covariance
matrix, C(rp,i, rp,i); even in the optimistic case the uncertainty is significantly larger than
the model differences for F6 and N5, but for the other models the reverse is true.

In addition to the statistical uncertainties discussed above, in real observations the
total error budget must also include contributions from a range of systematic effects. Follow-
ing [306], we calculate the total covariance matrix as Ctot

ij = Cstat
ij +Csyst

ij , where the statistical
contribution is as above, while the systematic contribution is given by

Csyst
ij = Csyst(rp,i, rp,j) = f2

syst∆Σ(rp,i)∆Σ(rp,j), (3.47)

where ∆Σ(rp,i) is the excess surface mass density for GR in the i-th rp bin, and fsyst is a
multiplicative factor accounting for systematic uncertainties caused by photo-z bias, shear
calibration, stellar contamination, intrinsic alignments of galaxies, etc., see, e.g., [306, 313].
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fsyst F6 F5 F4 N5 N1
0.0 1.0 5.1 18.9 0.9 5.3

Pessimistic case 0.1 0.4 1.4 4.8 0.1 0.8
0.0 2.0 10.6 39.2 1.8 11.1

Optimistic case 0.1 0.9 2.7 9.0 0.2 1.1

Table 4. The S/N values at which GGL from the synergy of a DESI-like spectroscopic and an LSST-
like imaging survey can distinguish the different modified models studied in this paper from GR. See
the main text for more details.

We have done the calculation of S/N in eq. (3.45) using the full covariance matrix, with
two values of fsyst: 0.0 (negligible systematic error) and 0.1, and the results are summarized
in table 4. Because of the relatively poor resolution of our simulations, on small scales the
matter clustering and galaxy distribution they predict could be inaccurate; to be conservative,
we only used the ∆Σ data within rp ∈ [2, 30]h−1Mpc in the forecast (this will also make the
result less affected by astrophysical uncertainties such as the impact of baryons on ∆Σ).
As one can see from table 4, including systematic uncertainties substantially reduces the
power of GGL in distinguishing the various modified gravity models. However, GGL with a
LSST-like imaging survey can still tell apart F5 and F4 from GR.

3.4.2 Void lensing

We have discussed that while MG models are usually screened in halos and high-density
regions, departures from GR can be substantial in underdense (void) regions. The fifth force
present in many such models (including f(R) gravity and nDGP) can lead to a more efficient
evacuation of underdense regions, and therefore emptier voids than in GR [49, 58, 141, 314–
316]. Once the galaxy populations were matched to have the same two-point galaxy correla-
tion function across models, voids in MG models such as f(R) gravity, despite being emptier
of matter, have essentially the same void abundances and void galaxy number density profiles
as their GR counterparts [49, 141]. However, the weak lensing signal of voids show significant
differences with respect to GR, with voids in f(R) and nDGP having a larger tangential shear
signal than GR ones [49, 141, 317, 318]. The weak lensing imprint of voids has already been
measured by current surveys [319–321], and future observational campaigns would greatly
improve the quantity and quality of void lensing data. Voids have an additional advantage,
namely their properties are largely insensitive to the baryonic and galaxy formation physics
— which is still a major uncertainty — and are well reproduced by dark matter only simula-
tions [322]. As a result, void lensing can be an appealing technique for testing MG models.
Voids are also highly versatile [49] in that there can be various different void definitions which
trace different aspects of the cosmic web and can be tailored to maximize the potential of
extracting certain features of a particular model.

Here, we test the potential of two galaxy void finders to constrain the MG models
studied in this paper. The first, the Watershed Void Finder [323, hereafter WVF] identifies
underdensities in the 3D distribution of galaxies. The voids are determined by the watershed
basins of a given large-scale galaxy density field without imposing any constraints on the
shape, size or underdensity of these objects. The method constructs a volume-filling galaxy
density field using the Delaunay Tessellation Field Estimator [324, 325], which is based on
Delaunay triangulations. The resulting density is defined on a 10243 regular grid with a grid
cell size of 1 h−1Mpc. To reduce small-scale structures that could give rise to artificial voids,
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the method smooths the density field with a Gaussian filter of 2 h−1Mpc radius — this filter
size corresponds to the typical width of the filaments and sheets that form the void edges [e.g.
326, 327]. The smoothed density field is then segmented into watershed basins. This process
is equivalent to following the path of a rain drop along a landscape: each volume element, in
our case the voxel of a regular grid, is connected to the neighbor with the lowest density, with
the same process repeated for each neighbor until a minimum of the density field is reached.
Finally, a watershed basin is composed of all the voxels whose paths end at the same density
minimum. The void centers are chosen as the volume-weighted barycentre of all the voxels
associated to each void, and the void radius is the radius of a sphere with the same volume
as the void volume.

The second method identifies tunnels, which are 2D underdensities in the distribution
of galaxies projected onto the plane of the sky. The tunnels are defined as circular regions
that are devoid of galaxies and consist of elongated line-of-sight regions that intersect one or
more voids without passing through overdense regions [49]. To identify tunnels, we build a
Delaunay tessellation of the projected galaxy distribution since, by definition, the circumcircle
of every Delaunay triangle is empty of galaxies, with the closest galaxies being the ones that
give the triangle vertices and that are found exactly on the circumcircle. The tunnels consist
of the circumcircles whose centres are not inside a larger circumcircle. We are interested in the
modified gravity signature of underdense regions, and so we select only the tunnels with radii
above 1 h−1Mpc, which correspond to underdense regions in projection [49]. We project the
entire simulation box, since its length roughly corresponds to the comoving distance between
redshift 0.3 and 0.7.

To obtain the void tangential shear, we compute the mean excess surface density profile
around each void. We have followed the procedure described in ref. [49], where the ∆Σ(rp) for
the 3D underdensities, that is WVF objects, was computed similarly to GGL, that is using
eq. (3.44), but with the galaxy-matter cross correlation function replaced by the void-matter
cross correlation one, ξvm. To average over the density profiles of voids of different sizes, we
computed ξvm as a function of the scaled radial distance, r/Rvoid, with Rvoid the radius of
each void. The mean excess surface density of WVF voids was computed as

∆Σ(ηp) = ρcritΩmR̄void

[
2
η2
p

∫ +3

−3
dχ
∫ ηp

0
dη · ηξvm

(√
η2 + χ2

)
−
∫ +3

−3
dχξvm

(√
η2
p + χ2

)]
,

(3.48)
where R̄void is the mean void radius. The symbols η12 and χ denote the spatial coordinates
perpendicular to and along the line-of-sight, respectively, with both coordinates representing
scaled distances, that is in units of the void radius, Rvoid. The value of 3 in the dχ line-of-sight
integral comes from limiting the integral to three times the void radius, which is sufficient
for calculating the void lensing signal [49, 141]. In the case of the 2D underdensities, we
compute the 2D void-matter cross correlation function, ξvm 2D(η), again as a function of the
scaled distance, η = r/Rvoid, by projecting the dark matter particle distribution along the
same axis along which we projected the HOD galaxy distribution. Then, the excess surface
density is given by

∆Σ(ηp) = ρcritΩm

[
2
η2
p

∫ ηp

0
dη · ηξvm 2D (η)− ξvm 2D (ηp)

]
. (3.49)

12Note that here we use η instead of rp for the distance transverse to the line of sight, to highlight the fact
that the former is rescaled by Rvoid.
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Figure 32. (Color Online) The excess surface mass density profiles, ∆Σ, of 3D voids (left) and
2D tunnels (right) at z = 0.5, as a function of scaled radial distance, r/Rvoid. The lines show the
predictions for the six models studied here: GR (black), F6 (blue), F5 (green), F4 (red), N5 (cyan)
and N1 (orange). The bottom panels show the difference between the MG models and GR, with the
grey shaded region showing the 1σ sample variance uncertainties for a 6, 000 sq.deg. overlap with the
LSST survey (for tunnels, the uncertainty range is very small and hence not easily visible).

We have measured the void-matter cross correlation functions using a brute force algorithm,
similarly to section 3.4.1.

The excess surface density profiles of WVF voids and tunnels at z = 0.5 are shown in
figure 32. Since voids are underdense, they have negative ∆Σ values, which means that they
give rise to a similar effect as a divergent lens. Of the two void finders, the tunnels have
lensing signals that are nearly 20 times larger, demonstrating that selecting underdensities
in projection results in a larger lensing signal than 3D underdensities. Void lensing would be
even larger if we select the voids using the weak lensing convergence field, as shown in [328–
330]. Compared with GR, voids in the two MG models studied here have systematically
larger lensing signals, i.e., show more divergent lensing effects. The differences are largest
for F4 within the f(R) family and for N1 in the nDGP family. The differences vary with
redshift (not shown here), being larger at lower z [49], because in both MG models studied
here the screening becomes weaker at late times, leading to larger deviations from GR.

The significant difference in the ∆Σ profiles between 3D WVF voids and 2D tunnels is
due to how these objects are selected. The 3D voids correspond to 3D underdensities, with
the matter evacuated from within the voids being pilled up near their edges. This means
that after projection 3D voids are on average only very mildly underdense, which results in
a small tangential shear signal. The boundaries of 3D voids do not have uniform densities,
but rather are composed from a few overdense regions with many lower density portions
connecting them [327, 331]. The tunnels correspond to line-of-sight elongated portions of
3D voids selected such that they do not contain the overdense regions found on the edge of
3D voids (see figure 3 in [317] for a sketch of the relation between tunnels and 3D voids).
This means that tunnels correspond to significantly lower mean projected densities, which
are reflected in a higher tangential shear signal than 3D voids.
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3D WVF voids
fsyst F6 F5 F4 N5 N1

Pessimistic case 0.00 0.1 0.3 1.0 0.1 0.7
0.10 0.1 0.2 0.6 0.1 0.4

Optimistic case 0.00 0.3 0.6 2.0 0.3 1.3
0.10 0.3 0.3 0.7 0.3 0.6

2D tunnels
fsyst F6 F5 F4 N5 N1

Pessimistic case 0.00 1.4 15 32 0.8 4.3
0.10 0.5 3.1 4.5 0.7 2.7

Optimistic case 0.00 2.8 30 63 1.7 8.6
0.10 0.9 5.8 7.5 1.5 5.4

Table 5. The S/N values for using void tangential shear measurements to distinguish the various
modified gravity models from GR. These are based on forecasts using the synergy between DESI and
two overlapping imaging surveys as described in the text. We present results for two void identification
methods: 3D WVF voids and 2D tunnels.

Interestingly, for 3D voids the F4 and N1 models show a similarly sized difference with
respect to GR. However, for tunnels the N1 model — which is the nDGP variant that deviates
from GR more strongly — is nearly as close to GR as the F6 model, while the F4 model
shows a much larger difference. The tunnels are selected to maximize the transition contrast
between underdense and overdense regions, with ∆Σ being proportional to the steepness of
this transition. In contrast to f(R) gravity, the overdense regions in nDGP models have
a similar density as in GR thanks to the more efficient screening (see section 3.4.1), and
the differences between nDGP and GR lensing come only from underdense regions, which
explains why tunnel lensing is better for testing f(R) models than nDGP ones. This is
another example to show how the different screening mechanisms can leave distinct imprints
in the observed large-scale matter distribution, which can in turn be picked up or maximized
by a suitably-tailored void finding algorithm [317].

To estimate the power of WVF and tunnels to constrain modified gravity models, we
have calculated the signal-to-noise (S/N) with which various models can be distinguished from
GR. For this, we follow the same approach as in section 3.4.1 and compute the S/N using
eq. (3.45). The covariance matrix contains the contribution from sample variance, shape
noise and systematic effects. We estimate this by considering a single source redshift of
zs = 1.0 and a distribution of void lenses between redshifts z = 0.3 and z = 0.7. Considering
lower redshift lenses makes little difference since the z < 0.3 volume is small; considering
lenses with z > 0.7 adds little constraining power due to a combination of decreasing lensing
kernel and smaller differences between modified gravity models and GR. For simplicity, we
consider that all void lenses between 0.3 ≤ z ≤ 0.7 have the same excess surface density
given by the mean value at z = 0.5. Similar to section 3.4.1, we consider two cases in which
the DESI spectroscopic survey have different overlaps — 6, 000 deg2 for the optimistic case
and 1, 500 deg2 for the pessimistic case — with the galaxy imaging survey LSST. In both
cases we adopt an intrinsic source shape noise σγ = 0.22 and a source galaxy number density
nS = 40 arcmin−2.

We estimate the sample variance using the 5 realizations of GR simulations. For each
realization, we split the volume into 43 non-overlapping regions and compute ∆Σ for each of
these regions; we do so using eq. (3.49) for both 3D voids and tunnels (see [49] for a discussion
of why we cannot use eq. (3.48)). Then, we generate 100 bootstrap samples over these regions
and calculate the mean ∆Σ of each of the bootstrap samples. The procedure leads to 5×100
samples which we use to calculate the sample variance of ∆Σ. The resulting uncertainties are
shown as a grey shaded region in figure 32. To estimate the sample variance for the survey,
we scale it by the ratio of the box volume to the survey volume between z = 0.3 and 0.7.
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We estimate the shape noise covariance matrix, CSN, by first calculating it for the tangential
shear, γt(θ), using angular coordinates, θ, and then converting it to a covariance matrix for
∆Σ similarly to eq. (3.46):

CSN(Rvoidηp,i, Rvoidηp,j) = Σ2
c;effCSN(θi, θj), (3.50)

where Σc;eff is the effective critical surface density for lensing, computed using eq. (19) of [49]
taking into account the variation of the lensing kernel across the considered redshift range.
The total statistical uncertainty is given by the sum of the sample variance and shape noise
covariance matrices. The lensing measurements can be affected by systematic effects, which
we model as a fraction, fsyst, of the total lensing signal, cf. eq. (3.47), and which we add
to the covariance matrix describing the statistical uncertainties similar to the case of GGL
above.

The S/N values with which 3D WVF voids and 2D tunnels can discriminate the various
MG models are given in table 5. A combination of 3D WVF voids and the pessimistic LSST
overlap scenario is unable to constrain any of the studied MG models even before considering
potential systematic errors in the lensing measurement. Having a survey with a larger sky
coverage and deeper imaging, like the optimistic LSST overlap scenario, results in 3D voids
being able to constrain only the F4 model to a modest 2σ level. However, including a 10%
systematic lensing error degrades again very much the constraining power of WVF voids and
results in S/N . 1. The situation is much better for 2D tunnels, which can probe F5, F4
and N1 models even for the pessimistic overlap case. The constraining power of tunnels is
even better for the optimistic overlap scenario, which would result in S/N & 3 for all models
studies here except N5 which has a S/N = 1.7. Including a 10% systematic error leads to
S/N values of ∼6 for F5, F4 and N1 (all models end up having the same S/N although they
have very different S/N values in the absence of systematic errors), and S/N value of 1.5 for
N5 and 0.9 for F6.

When constraining modified gravity theories, the tunnels result in higher S/N value
than WVF voids because of two aspects. Firstly, the tunnels’ tangential shear signal is
more sensitive to modified gravity models, e.g. the fractional change with respect to GR
for the F4 and F5 models is ∼2 times higher for tunnels than for WVF voids (see bottom
panels in figure 32). This is due to the tunnels’ interiors containing fewer overdense regions
and thus probing preferentially the lowest density regions which are the least screened ones.
Secondly, the tunnels tangential shear signal is ∼20 times higher than that of WVF voids, so
similar fractional differences between GR and MG theories can be more robustly measured
for tunnels than for 3D voids.

Comparing the S/N values for GGL and tunnels, we notice that, amongst the f(R)
variants, tunnels give better constraints for F6 and F5; which is possibly because GGL probes
the lensing of high-density regions while void lensing measures the effect of low-density regions
where the effect of the fifth force is stronger. The case of F4 is special, in that chameleon
screening is quite inefficient in this model so that the fifth force effect can be strong both in
voids and near halos, and our result suggests that GGL is boosted more than void lensing
in this case. Adding systematic errors downgrades constraints for all f(R) models but does
not qualitatively change this observation. In the case of nDGP, it is known that screening is
strong in the vicinity of dark matter halos but weaker far away. Since GGL probes regions far
beyond the halo virial radius, in the absence of systematic errors GGL and void lensing give
similar S/N values, while the systematics seem to affect tunnel lensing more. We remark,
however, that the GGL S/N values are calculated for distances larger than 2 h−1Mpc and
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including the inner regions may boost the S/N values, especially for f(R) models (though we
would need to worry about uncertainties caused by the impact of baryons in that case), and
that the ways to calculate the sample variance contributions to the statistic error budgets for
GGL and void lensing are not exactly the same. A more detailed and rigorous comparison
of the constraining powers of these two probes will be left for future work.

4 Conclusions

In this paper, we have undertaken an initial study of summary statistics that can potentially
be employed to extract information about the properties of gravity from DESI large-scale
structure data, leveraging the variety of environments DESI will observe, from voids to
densely populated galaxy clusters. We have considered one, two and multi-point statistics
of positional clustering and relative motions of galaxies in both configuration and Fourier
spaces, utilizing mock galaxy samples from simulations that currently cover smaller volumes
than will be covered in the full DESI survey. A brief summary of the summary statistics that
we have looked at is given in table 6.

This work is a preparatory step to both assess the relative potential of different statistics
to put constraints on the properties of gravity and to determine the requirements for future
larger-scale cosmological simulations, in terms of both the necessary fidelity in reproducing
modified gravity phenomenology, and in reproducing the realities of the DESI survey extent,
completeness and instrumental and astrophysical systematic effects.

To make accurate predictions for how gravity might be constrained by DESI, when fully
leveraging all observed spatial scales, and linear to nonlinear clustering, numerical simulations
and mock galaxy catalogs that include specific MG phenomenology are essential.

In this work, we have considered two representative examples of scalar-tensor theories,
which have played an important role in the development of Solar System tests of GR, and
serve as excellent case studies for this. The chameleon f(R) gravity and DGP braneworld
models considered exhibit different ‘screening’ mechanisms, that allow their predictions to
mimic GR in the Solar System and pass existing local gravity tests, and both predict the same
speeds of photons and gravitational waves, a key feature that makes them compatible with
detections of gravitational waves with electromagnetic counterparts. These models exhibit
subtle differences from GR and from each other, however, on cosmic scales, that one can
hope to use to distinguish or constrain them with observations. Their features are expected
to arise in a broader range of theories, making the simulations more broadly applicable.

This paper primarily uses existing N-body simulations that, while fully incorporating
the complex physics of the scalar-tensor theory, are over smaller volumes and with lower
mass resolution than will ultimately be sought for a full simulation of DESI. We also briefly
commented on faster, approximate, simulation methods such as MG-cola, which will be
valuable complements to the full simulations, giving the capability of running a large number
of realizations for covariance matrix estimates etc. . The dark matter particle simulations
have been used to construct mock galaxy catalogs using simulated halo catalogs and apply-
ing simple HOD prescriptions. The HOD parameters have been tuned so that they have
approximately the same galaxy number density and galaxy two-point clustering properties
(equivalent to fixing the number density and projected galaxy 2-point correlation function
of the galaxy sample to those from observations), and then studying other statistics to see
if they show any appreciable difference between the different gravity models. For one par-
ticular summary statistic, small-scale RSD, we have used mock galaxy catalogs constructed
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Summary statistics Mock Section Information content Physical
signal

Theoretical
prediction

External
data

Large-scale RSD HOD section 3.1.1 velocity field 1 PT/emulator no
Small-scale RSD SHAM/hydro section 3.1.2 velocity field 1 emulator no

Void RSD HOD section 3.1.3 velocity field
environment dependence 2 PT/emulator no

Marked CF (density marks) HOD section 3.2.1 environment dependence 3 PT/emulator no
Marked CF (other marks) HOD section 3.2.2 environment dependence 2 emulator yes

Clustering with density split HOD section 3.2.4 environment dependence 1 emulator no
3-point correlation HOD section 3.3.1 non-Gaussianity 2 PT/emulator no
Galaxy bispectrum HOD section 3.3.2 non-Gaussianity 2 PT/emulator no

Hierarchical clustering HOD section 3.3.3 non-Gaussianity 2 PT/emulator no
Minkowski functionals HOD section 3.3.4 morphology 2 emulator no

Cluster phase-space stacking HOD section 3.3.5 velocity field 1 emulator no
Galaxy-galaxy lensing HOD section 3.4.1 matter clustering 1 emulator yes

Void lensing HOD section 3.4.2 matter clustering
environment dependence 1 emulator yes

Table 6. A list of the summary statistics considered in this paper. The analyses are based on
mock galaxy catalogs constructed with HOD (for all summary statistics other than small-scale RSD;
cf. 2.2.3) or SHAM and hydrodynamical simulations (for small-scale RSD; cf. 2.2.4). Our HOD
catalogs are at z ' 0.5, with a number density of ' 3.2 × 10−4[ h−1Mpc]−3, which is close to the
specifications of DESI LRG targets; while the SHAM/hydro catalogs are at low redshift (z = 0) with
a number density of 10−2[ h−1Mpc]−3, close to DESI BGS. The 3rd column links to the relevant
sections in the paper. The 4th column (‘Information content’) highlights the main information that is
probed by a given summary statistic. In the 5th column we comment on the strength of the physical
signal caused by MG: ‘1’ means there is a strong and readily-interpretable effect of MG; ‘2’ indicates
there is a strong signal but the interpretation may be complicated, e.g., the signal strength and its
relative ordering among different gravity models could be affected by the use of tracers such as halos
and mock galaxies; ‘3’ shows the signal is weak and inconclusive. The 6th column indicates how the
theoretical predictions can be made: for some summary statistics (and on relatively large scales) it is
possible to applied perturbation-theory (PT) based approaches, while for most others (and especially
when tracers rather than the dark matter field itself are considered) this proves challenging, so that
alternative methods, such as emulation, will be needed. The 7th column indicates if external data,
e.g., lensing data or gravitational potential inferred elsewhere, is needed (which could bring further
challenges or uncertainties in their application to DESI). For all summary statistics, further works
using realistic mocks that include proper observational systematics will be needed, as discussed in
the text.

using SHAM or from full-physics galaxy formation simulations, in order to get a high galaxy
number density and to have better accuracy of the clustering signal on small scales.

Of the statistics considered, we find that the redshift space distortions and higher order
correlation functions offer the greatest immediate potential for distinguishing modifications
to GR with the first two years of DESI data.

• Prospective large scale RSD constraints on the growth rate from DESI, parameterized
by β, are expected to be markedly tighter than current constraints. This can be most
useful in constraining models such as nDGP, which modifies the growth rate on large,
linear, scales. The SHAM analysis presented here demonstrates a promising potential
to differentiate between GR and some MG models, such as f(R) gravity, whose effect
is most prominent on small, nonlinear, scales; the inclusion of small-scale RSD offers
complementary information that could improve the ability of differentiating the various
models. Finally, void RSD is a relatively new probe complementary to RSD around
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galaxies or galaxy clusters, and is of particular interest since near voids the effect of
modified gravity is usually stronger. We discussed the challenges facing these probes.

• The 3PCF offers complementary information about the nonlinear evolution of matter to
the traditional two-point statistics. We find deviations of the MG models from GR on
all scales, with different degrees of strength depending on the triangular shape searched.
On large scales, a multipole decomposition in one of the triangle angles allows for an
efficient comparison of models, showing particular patterns in the two triangle sides
that define the angle: the signal is relatively small on scales larger than ∼ 40 h−1Mpc,
but the complexity in the patterns at each multipole is unique for each tested model,
and cannot be easily reproduced by other mechanisms. On scales ∼ 10 h−1Mpc, the full
3PCF can be calculated and the signal is strong enough to provide a robust summary
statistic to test gravity — this is further confirmed by looking at the galaxy bispectrum
at k1 & 0.1hMpc−1 and the higher order central moments with a smoothing scale of
. 20 h−1Mpc. However, detailed studies on the systematics involved in the different
high-order statistics should be carried on, together with an appropriate modeling of the
signal including effects such as RSD, either through perturbation theory or by using
simulations, to assess the findings of these summary statistics when applying to broader
classes of MG models.

Other statistics appear to have a strong variation in outcomes depending on whether
one uses the halo catalog or a HOD tuned galaxy catalog, or on the details of the HOD model.
Our theoretical understanding of these summary statistics is dependent on how well we can
model their predictions and assumptions of the galaxy formation model. The utility of these
will therefore require further analysis to assess if they offer strong constraining potential for
DESI:

• Marked correlation functions, with appropriate choices of marks, can in principle up-
weight galaxies in environments where MG signals are stronger. Although the results
depend on the details of the implementation, we find that if the mark is defined using the
galaxy number density, which along with the galaxy two-point clustering has been tuned
to match in the different models, the distinguishing power is degraded in general. Using
additional information, e.g., the Newtonian potentials of the host halos of galaxies,
is found to lead to increased model differences, which suggests that in future works
other possibilities of marks should be explored. It is also important to understand, and
properly account for, the systematic errors of the marks themselves, which are (directly
or indirectly) related to observables.

• Other measures of the information beyond two-point statistics, such as the Minkowski
functionals, have the potential of offering complementary constraints on models or
breaking parameter degeneracies. However, their study is not yet in a mature state
and further efforts are needed to assess their model-constraining power.

In addition to statistics based solely on DESI data, we have also considered the poten-
tial to constrain gravity from combined results using lensing statistics in areas with DESI
overlap. While the results shown are promising, further analyses using galaxy clustering sim-
ulations with concurrent lensing predictions are required to fully understand the constraining
potential:
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• The MG models studied here predict stronger matter clustering around galaxies, with
the enhancement of galaxy galaxy lensing with respect to GR predictions strongest near
(far from) the galaxies for the f(R) (nDGP) models as a result of their different screen-
ing mechanisms. We find that for a LSST-like imaging survey overlapping with DESI,
with reasonably well-controlled systematics (. 10%), the enhanced galaxy-galaxy lens-
ing signals can be used to distinguish F5, F4 and N1 from GR.

• Voids in modified gravity models are emptier and have a larger lensing signal. Of
the two methods tested here, i.e., the 3D Watershed Void Finder and the 2D tunnels,
the latter applied to a LSST-like deep lensing survey overlapping the DESI region can
distinguish all the models investigated in this paper from GR (at more than 3σ level
even when considering 10% systematic errors).

• Phase space statistics probe both position and velocity data and photometric data for
weak-lensing mass (or mass-richness relation). This probe compares the observations
directly to the potential (GR or modified), as traced by the dynamics. If the modified
gravity model affects the dynamics and not light-travel, this becomes a powerful probe.
It can be used both to rule out specific non-GR models (e.g., by using f(R) as the null
hypothesis) or it can be a goodness-of-fit to GR (where GR is the null hypothesis).
After removing the dominant systematic in our tests by using potential ratios and by
using a large DESI-like sample of clusters, this probe can constrain |fR0| = 6× 10−7 at
> 5σ.

In table 6 we have also presented a short summary of some of the information itemized above,
for easier reference.

To further assess the most promising statistics and obtain accurate forecasts of their
constraining power with DESI data, it would be useful to have a single simulation with suf-
ficient volume, resolution and redshift coverage to construct realistic mocks for all types of
objects targeted by DESI. However, despite the latest technical developments, a full simula-
tion of this kind with modified gravity effects is likely still too expensive. Therefore, based
on the findings of this paper, we recommend the following alternatives:

(i) multiple simulations with higher mass and force resolutions that the ones used in
this paper, e.g., Lbox ∼ 500 h−1Mpc and Np = 10243 or Lbox ∼ 800-1000 h−1Mpc and Np =
20483. These should be run for a large number of models enough for building emulators of
various statistics in a higher-dimensional parameters space spanned by not just the modified
gravity but also cosmological parameters.

(ii) even higher-resolution simulations with Lbox ∼ 500 h−1Mpc and Np = 20483. These
are roughly of the same size and resolution as the Millennium Simulation [183], and some
of these simulations (for nDGP and ΛCDM) have already been running [332]. The high
resolution will make such simulations useful for resolving even small halos which host galaxies
such as ELGs, and the box size is still large enough to study clusterings on nonlinear and
some linear scales. Their large cost means that they can not be run for a large number of
models, unless a new generation of much more efficient full simulation codes come to existence
in the near future.

At this point, we consider it important to prioritize resolution and coverage of the
model/parameter space over volume, since most of the summary statistics studied in this
paper still lack reliable theoretical predictions, and for some of them simulations offer a more
promising and accurate way.
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These will be complemented by a large suite of fast approximate simulations using
(appropriately tested and tuned versions of) mg-cola that can be used to estimate the
covariance matrices for some of the summary statistics studied here. In ΛCDM models,
various approximate methods were compared in ref. [333] and their validity of creating galaxy
mocks to estimate the covariance matrices established on BAO scales [334]. In this paper,
we are interested in summary statistics that go into the non-linear scales and the validity of
the cola approach needs to be tested carefully in this regime. In ΛCDM, it was shown that
by re-calibrating halo masses and/or velocities, it is possible to bring accuracy in clustering
to one percent level on large scales [335], and this analysis needs to be extended to low-mass
dark matter halos and small-scale clustering. In addition, mg-cola uses an approximate
method for screening based on spherically symmetric solutions [40], which was shown to
have a sufficient accuracy up to k = 1hMpc−1 in describing deviations from ΛCDM in the
matter power spectrum [42] but again a calibration might be required. Once it is calibrated
and validated against full N-body simulations, mg-cola could provide a promising way to
compute the covariance matrices for some of the summary statistics considered in this paper.

The (purely dark matter) simulations mentioned above need to be populated with galax-
ies so that they can be compared with data. In this paper, we have primarily used mock
galaxy catalogs based on HOD in our study, but other methods to make mock galaxies such
as SHAM or using sub-sampled dark matter particles have also been used. As we pointed
out when describing a few summary statistics, uncertainties in such galaxy-halo connections
may have a non-negligible impact on their theoretical predictions. A possible way to quan-
tify this is by assessing the impact of different models of galaxy-halo connection on every
summary statistic; where hydrodynamics simulations of galaxy formation exist, it is also
useful to check the effect of the subgrid baryonic models on galaxy clustering observables, or
use them to calibrate the galaxy populating recipe. It is perhaps more advisable to directly
use observational data, e.g., of the two-point galaxy clustering, to calibrate the HOD model
(e.g., [336, 337]), a simplified variant of which is we have followed to create galaxy mocks in
this paper.

Moreover, during the past few years there has been a rise of interests in the use of emu-
lators to constrain cosmological parameters directly from N-body simulations. For instances,
the Aemulus [160, 338] and Dark Quest [339] projects presented accurate estimators for the
halo mass function and galaxy clustering, among other summary statistics, as functions of
the cosmological parameters in ΛCDM. In general, emulators learn to mimic the behavior
of a physical model that is slow and expensive to evaluate. They provide predictions of the
model outputs at input parameters where the expensive model has not been evaluated. By
far, the most common emulation technique applied to cosmology has been Gaussian Process
Emulation (see [340] for a comprehensive review), due to this model’s ability to provide un-
certainty estimations together with emulator outputs, although neural network approaches
have also been used [161]. Directly leveraging N-body simulations to constrain gravity on
intermediate to small scales can potentially play a big role in testing MG scenarios, where
screening mechanisms introduce further nonlinearities that strongly affect the small scales.
Although there has been some initial work done in this direction [169], a more extensive
investigation including a variety of models will be material for future studies.

Beyond the simulation creation, another important thing is to include critical systematic
effects when constraining MG from small scales. Missing galaxies due to fiber collisions, i.e.,
the finite size of the fibers preventing their placement close to each other within the focal
plane, generally affects all scales but — relevant to our work — leads to a factor of two
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Figure 33. (Color Online) The marked correlation functions (mCF) with the White mark with
(ρ∗, p) = (4, 10), for different numbers of cells used to calculate the density field.

discrepancy in the 2-point clustering on small scales if not accounted for properly. We would
want to incorporate fiber collision modeling into the mock data we analyze. One way to
account for the effect of collisions is to introduce a probability based weighting scheme using
the target algorithm itself [341]. While this method was developed within the framework of 2-
point statistics, in principle it can be applied to other summary statistics as well. Nonetheless,
it is necessary to test for potential bias and efficiency when the method is applied to other
statistics and in particular the interplay with statistics to detect the environment dependent
effects of modified gravity.

Beyond this, one needs a pipeline that produces multiple mocks on a light-cone that
incorporates the DESI survey geometry and imposes survey masks which incorporate in-
formation about the observing conditions, such as targeting (e.g., galaxy magnitude, color,
surface brightness), placement, galactic extinction, atmospheric extinction, seeing, cloud-
cover, zodiacal light, and so on. Mitigation strategies for these observational systematics,
including a forward modeling approach and weighting methods, will be developed by the
DESI clustering working group and are in detail discussed in a companion paper elsewhere.
We do not expect the measurement and observational effects, such as extinction or seeing,
to particularly affect small scales, but rather mainly be important for large to intermediate
scales.

To close, DESI, a Stage IV state-of-the-art galaxy survey, will open up a wide range
of opportunities to test the theory of gravity on cosmological scales with unprecedented
precision. This work provides a useful first step for the DESI collaboration, and the wider
theoretical and observational communities, to plan joint efforts to ensure we can fully exploit
the wealth of future observations and contribute to the tests of fundamental theories in
physics.
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A Impact of the cell-size on the marked correlation function measurements

As we mentioned in section 3.2, our galaxy number density is relatively low, therefore we
cannot calculate the marks using cell sizes which are too small because that will cause a large
number of cells to have no galaxies inside. Using a relatively large cell size helps to ensure
the calculated mark values follow the large-scale density fluctuations, but apparently the cell
size cannot be too large either, as that way the cells can no longer be considered as local
environments of the tracers.

For this reason, here we present a convergence test to show the impact of the cell size
(or mean number of galaxy) on the mCF. Figure 33 shows the mCFs with the White mark for
different numbers of cells, in the top left panel we see that using 1 cell, i.e., giving the same
weight to the galaxies, the signal is identical in all models. When increasing the number of
cells (or reducing the cell size), we see that f(R) models start to show some deviation from
GR, and with > 303 cells the relative differences from ΛCDM have stabilized. Note that the
cell size of ' 17h−1Mpc is only used to calculate the mark itself, and this does not mean
that the (marked) correlation function is calculated for a galaxy density field after 17h−1Mpc
smoothing.

With a size of 17h−1Mpc, the cells should still be a faithful representation of the local
environments of galaxies. For example, when identified using galaxies as tracers, cosmic
voids are usually quite large, e.g., with radii of ' 10–100h−1Mpc, which means that a cell
of size 17h−1Mpc is not so large that the tracer densities in these cells are too close to the
cosmic mean (i.e., cells of this size still capture the large-scale variations of the environment
densities). This is supported by the convergence test in figure 33 described above.

B Marked correlation function predictions for fixed halo number density

In this appendix, we further investigate how the mCF results behave when halo catalogues
are chosen to have the same number of haloes for all models, rather than a fixed halo mass
cut as assumed in the main analysis. In particular, we repeat the analyses of figures 12, 13
and 15 for halo samples with a fixed number density equal to the corresponding value of the
BOSS-CMASS-DR9 sample, nh = 3.2× 10−4 h3Mpc−3.

The comparison is presented in figure 34. We notice that the fractional deviations with
respect to the GR mCF prediction tend to become less pronounced in the case of the fixed
number density samples (dashed lines), in particular for the two stronger f(R) candidates,
F4 and F5. For the rest of the models, the results for the fractional deviation do not change
by more than 1% compared to when using a fixed halo mass cut (solid lines).

C Bispectrum measurements from halos and redshift-space galaxies

As a further test, we have measured the bispectrum using either all halos with over 20 particles
from the simulation box, or halos with a constant number density threshold (the 340,000
most massive ones), and in both cases we find qualitatively similar results, see figure 35. In
particular, the deviations from GR increase with increasing value of |fR0|, as opposed to the
results for the HOD samples (cf. figure 22), where F6 shows a stronger deviation from GR
than F5.

For illustration purposes, figure 36 (the same as figure 23) shows the configuration
dependence for the bispectrum monopole in redshift space. Unlike in real space, where the
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Figure 34. (Color Online) A comparison of the marked correlation statistic obtained for dark matter
halo samples designed with a fixed number density (dashed lines), as compared against the prediction
using samples with a fixed mass cut (solid lines) equivalent to the original results of figures 12 (Upper
Left), 13 (Upper Right) and 15 (Bottom) of the main paper. All results are in real space.

strongest deviations from GR occur for equilateral configurations, it shows that in redshift
space the deviations have less configuration dependence, with only a slight increase towards
collinear triangle shapes (lower left-hand side of the triangular plotting area). Since the
bispectrum monopole signal is strongly affected by the Finger-of-God damping on small
scales, the reduced configuration dependence is a consequence of the combination of this
damping and the real space enhancement.
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Figure 35. (Colour Online) Real-space bispectrum measured from halo catalogs using either all
identified halos in the simulation box (left panels), or the 340,000 most massive ones (right panels).

Figure 36. (Color Online) Configuration dependence of the monopole of the redshift space bispec-
trum.
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