
Universitetet i Oslo
Institutt for informatikk

Xymphonic
Transactions in
Workflow
Management
Systems

Harald Askestad
haraldas@ifi.uio.no

Siv. Ing. Thesis

22nd July 2004

Abstract

Workflow Management Systems (WfMS) have been developed as a means to co-
ordinate organisational processes. In order to provide fault tolerance and concur-
rency control, concepts from transaction processing systems have been incorpor-
ated in WfMSs. Researchers from the database community have attempted to
define workflows in terms of advanced transaction models. Another theoretical
approach has been to selectively use concepts from transaction theory to better
support existing WfMSs. However, most commercial systems use classical flat
transactions where possible, but leave a lot to be desired.

This thesis explores the use of xymphonic transactions to improve transactional
support in WfMSs. The Xymphonic Transaction Model was presented in (Anfindsen
1997), and introduces conditional isolation and nested databases. These concepts
combine to give transactions the ACCID properties, which are better suited to sup-
porting collaborative work.

The thesis proposes and discusses a design for implementing xymphonic transac-
tions in a WfMS. The primary benefits are support for an undo functionality using
the transaction manager’s recovery mechanisms, and the possibility of grouping
multiple and more complex tasks into atomic units. The transactional mechan-
isms may mostly be automatically enforced and are controlled by the workflow
designers through a very simple extension to the workflow definition language.
The limitations to the design are considered. Xymphonic transactions are not suit-
able for environments where many heterogeneous and autonomous systems are to
be integrated by the WfMS.

i

Acknowledgements

During the course of working with this thesis, I have had three supervisors. I would
like to thank them all for their support:

Geir Waagbø, who has inspired a pragmatic attitude to information systems, and
who has spent much time on helping me, even after he officially quit as supervisor.

Ole Jørgen Anfindsen, who created the Xymphonic Transaction Model and contin-
ued as supervisor even after quitting his post at the university.

And Ragnar Normann, who took on the task of internally supervising this thesis
when Anfindsen quit, even though he obviously had enough work already.

I would also like to thank Marit Vaksvik, whose cand. scient. thesis has been an
invaluable starting point for my own work.

Finally I must express my gratitude for the time and resources that Computas AS
and the Norwegian Courts Administration have made available for my case study.

Harald Askestad

Oslo, July 21, 2004

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Database systems . 1

1.2 Workflow Management Systems 2

1.3 Research issues . .. 3

1.4 Approach . 4

1.5 Document Structure . 5

2 Transaction Models 7

2.1 Flat transactions . 7

2.1.1 The ACID properties 7

2.1.2 Concurrency Control and Serializability Theory. 9

2.1.3 View serializability 12

2.1.4 Recovery related properties 13

2.1.5 Enforcing Flat Transactions 15

2.2 Advanced Transaction Models 16

2.2.1 Supporting Long-Lasting Transactions 16

2.2.2 Spheres of Control . 17

2.2.3 Savepoints and Persistent Savepoints 19

2.2.4 Nested transactions . 19

2.3 The Xymphonic Transaction Model 21

2.3.1 Allowing interaction between ongoing transactions 21

iii

2.3.2 Conditional Conflict Serializability 22

2.3.3 Nested Databases 24

2.3.4 Querying Unreliable Data and Missing Data 25

2.3.5 The Xymphonic Engine. 26

3 Workflow Management Systems 27

3.1 The Workflow Reference Model 27

3.1.1 Product Implementation Model. 28

3.2 Process Definition Meta Model. 30

3.3 Alternative Workflow Definition Languages and Techniques . . . 32

4 Case Study 33

4.1 FrameSolutions . 34

4.1.1 The Workflow Meta-model 34

4.1.2 Transactions . 36

4.2 The User Interface of LOVISA 37

4.3 Example Workflow . 39

4.4 Graphical Notation . 43

4.5 Summary . 44

5 Discussion 45

5.1 Architectural Considerations . 46

5.1.1 Which Data should be Covered by Xymphonic Transactions? 46

5.1.2 Architectural Design Options 47

5.1.3 Who is the Owner of the Xymphonies? 50

5.1.4 Summary of Architecture 51

5.2 Upper Bounds on Transaction Duration – How Long May a Trans-
action Last? . 51

5.2.1 Persistent Savepoints to Avoid Lost Work 52

5.2.2 Real Actions and Auditing 53

5.2.3 Summary of Duration 55

5.3 Mapping from the Process Definition to Transactions. 56

5.3.1 Preliminary Remarks . 56

5.3.2 Single-User Mini-Workflows 57

iv

5.3.3 Sequential routing . 64

5.3.4 Conditional Routing . 68

5.3.5 Iterative Routing . 71

5.3.6 Parallel Routing . 72

5.3.7 Summary of Mapping Workflow Models to Transactions . 78

5.4 The Uses for Parameterised Access Modes. 78

5.4.1 Summary of Parameterised Access Modes 80

5.5 Data Partitioning to Avoid Conflicts 80

5.6 Extensions to the WfMC Process Model. 81

5.6.1 Process Definition 82

5.6.2 Activity Definitions . 83

5.6.3 Workflow Relevant Data 83

5.6.4 A Note on Access Modes. 83

5.6.5 A Note on Deferred Choice 85

5.6.6 Summary of Extended Attributes. 85

5.7 Other Uses for Xymphonic Transactions. 86

5.7.1 Documents in Workflow – a Common Special Case 86

5.7.2 Delegating Work . 87

5.8 Comments on Atomicity . 88

5.9 Related Work . 90

5.9.1 Vaksvik 2002. 90

5.9.2 Transactional Workflows 91

6 Summary and Conclusions 95

6.1 Summary of the Proposed Design 95

6.2 Pros and Cons of Xymphonic transactions in a WfMS. 97

6.3 Unresolved Issues and Further Research. 99

6.3.1 Unresolved design issues 99

6.3.2 Further research 100

Index 101

Bibliography 103

v

Chapter 1

Introduction

1.1 Database systems

Database systems have reached an enormous popularity and widespread use since
the development of the first general purpose systems in the 1960’s. A number of
properties contribute to this success. Using a database system, data may be shared,
security restrictions may be applied, inconsistency and redundancy can be avoided,
and the data may be recovered in the event of a failure (Date 2000).

A database is a collection of persistent data. A database management system
(DBMS) is a collection of programs that enables users to create and maintain
a database (Elmasri & Navathe 2000). A fundamental property of a DBMS is
that it provides data independence. Date defines data independence as “the im-
munity of applications to change in physical representation and access technique”
(Date 2000, p.20). This makes changes to the physical arrangement of data pos-
sible, without requiring a rewrite of the applications that use the database. It also
allows the database administrator to define different views of the data for different
users.

Another abstraction that has contributed greatly to the success of database systems
is the concept of a transaction. A transaction is a unit of operations, which must
either be executed in its entirety or not at all (i.e. it is executed atomically), it is
assumed to be consistent, it must be executed isolated from concurrent transactions,
and, once committed, the effects of the transaction must be durable even in the
event of serious failures. This gives us four properties — atomicity, consistency,
isolation, and durability — that a transaction must satisfy, and they are summed up
in the acronym ACID.

Any decent DBMS must provide transaction management. Gray & Reuter (1993)
point out that many projects have failed to provide fault tolerant systems without
the concept of a transaction. They extend the notion of a transaction processing
system to encompass both database systems as well as the applications, developing

1

CHAPTER 1. INTRODUCTION 2

tools, networking and operating systems software, providing a complete environ-
ment for programming, management and use.

Despite the power of transaction processing systems, there are application domains
where the semantics of the ACID properties are unsuitable. Isolation contradicts
the need for interaction between users. The implementation of transaction man-
agement relies on locking the data that is accessed. Applications that require long-
lasting transactions will lock the data for an extended period of time, preventing
others from accessing those data objects. In most cases it is not possible for more
than one application process to operate within the context of a given transaction,
effectively preventing users from cooperating on a set of uncommitted data.

Many extensions have been proposed in order to cope with these difficulties and
to extend the usefulness of DBMS to new application domains. One of these ex-
tensions, the Xymphonic Transaction Model, is the focus of this thesis. It was de-
veloped and published in a doctoral thesis by Anfindsen in 1997 under the name of
Application Oriented Transaction Model (APOTRAM) (Anfindsen 1997). In this
model, interaction between ongoing transactions is allowed by reducing isolation
in a controlled fashion. This is combined with the option of creating subtransac-
tions to control the commitment of partially finished work. Together these two
mechanisms enable cooperation between users of transactions that run for a long
duration.

This thesis explores the applicability of the Xymphonic Transaction Model in
workflow management systems.

1.2 Workflow Management Systems

A workflow management system (WfMS) can be characterised as an advanced
scheduler that coordinates the execution of activities running on different pro-
cessing units (Rusinkiewicz & Sheth 1995). These systems may be DBMSs, mail-
ing systems, text-editors, or other stand-alone systems that originally were made to
support some aspect of an organisation’s business.

The advent of DBMSs in the 1960’s and 70’s introduced data independence, and
separated the concern of handling data from the concern of writing application
programs. With WfMSs, business processes are pushed out of the applications.
van der Aalst (1998) identifies both of these developments as a trend in going
from special purpose information systems towards a more general-purpose soft-
ware system that can be configured for many different scenarios. The definition
given in (Lawrence 1997) illustrates this perspective: “A workflow management
system (WfMS) is a generic software tool which allows for the definition, execu-
tion, registration and control of workflows.”

The introduction of management philosophies such as Business Process Reengin-
eering (BPR) in the 1990s stimulated organisations to become more aware of their

CHAPTER 1. INTRODUCTION 3

business processes. Workflow technology enables the organisation to control and
enforce the identified and reengineered business processes (Reijers 2003, p.15).
Furthermore, the last decades, organisations often support an increased number of
business processes, and at the same time the complexity of the processes has in-
creased and the lifetime shortened. The need for efficient management and rapid
changes makes business processes an important issue for current information sys-
tems (van der Aalst 1998, p.3).

Transaction management for WfMSs was an active research area in the 1990s.
Some fundamental problems were frequently discussed — business processes last
for a longer time than what most transaction systems are able to support, and
processing is often distributed over heterogeneous and autonomous nodes. Addi-
tionally, workflow definition languages are able to express more complicated pro-
cess patterns than transaction models have been able to support. In fact, (Alonso,
Agrawal, Abbadi, Kamath, Günthör & Mohan 1996) indicate that in many aspects,
workflow models are a superset of advanced transaction models.

Bearing these difficulties in mind, xymphonic transactions may still be expected
to provide some benefits to WfMSs. The Xymphonic Transaction Model sup-
ports long-lasting activities. It allows for interaction between ongoing transactions,
which might compensate for the general lack of expressiveness. And it might allow
new, and previously impossible extensions to the workflow models by supporting
more complex tasks in which multiple users collaborate. We may not, however, ex-
pect it to solve the problem of heterogeneous and distributed systems. It is the aim
of this thesis to discover both the benefits and the drawbacks of using xymphonic
transactions in WfMSs.

1.3 Research issues

The following are the research questions that have guided the work.

• Which benefits can be had from using xymphonic transactions in a workflow
management system (WfMS)?

This is the primary motivation. Thebenefitswill be evaluated by comparing
a proposed design with a WfMS that uses classic flat transactions to manage
its persistent data.

In particular, the goal is to support tasks of a longer duration without com-
promising parallelism, grouping more than one task into an atomic action,
undoing tasks by means of the transactional recovery mechanisms and ad-
apting the workflow on the fly to unforeseen situations.

• How must the WfMS be designed to achieve the promised benefits?

There are three aspects of design that are of particular interest. The first
is the transaction dimension of architecture. Some WfMSs may incorpor-

CHAPTER 1. INTRODUCTION 4

ate subsystems that do not provide any transactional services. Is it possible
to achieve the benefits from using xymphonic transactions in this scenario?
And if not, which architecture is the ideal choice?

The next aspect is to consider the structuring of transactions. Xymphonic
transactions can be nested in a hierarchical structure. Workflows are de-
signed by routing work in a graph pattern. There may be loops, choices,
and branches for parallel execution. Is it possible to find a mapping from
workflow design to transaction design?

Finally, parameterised access modes allow xymphonic transactions to inter-
act. How can this feature be utilised? Is there a parameter set that will be
generally useful for most workflows?

• Which factors constrain the use of xymphonic transactions? Which factors
limit the applicability of xymphonic transactions?

Are there other aspects of a workflow that limit the use of xymphonic trans-
actions? A workflow is a long-running activity. It would be unacceptable
to loose several days worth of work due to a transaction abort. Addition-
ally, the tasks may include real actions that cannot be undone. It is often a
requirement that the system durably archives the documents and other data
pertaining to real actions. And finally, even though xymphonic transactions
allow sharing of data between long-lasting transactions, there may be situ-
ations that require even more interaction than what xymphonic transactions
are able to provide. These are factors that limit the possible duration of
transactions.

1.4 Approach

A starting point for working with this thesis was the cand. scient. thesis by Vaks-
vik (2002). While exploring the desired improvements for workflow systems de-
veloped by Computas, she found that advanced transaction models might provide
useful functionality. The requirements she identified include undo functionality of
completed tasks, making atomic tasks longer than what is possible with the current
systems, and grouping multiple tasks into atomic units (ibid, pp.66–67).

It has been my aim to extend the work started by Vaksvik. Following her sug-
gestions for further research, I have studied the workflow system LOVISA, being
developed for the Norwegian Courts of Justice. This case study has provided in-
formation on the transactional requirements of workflows and serves as an example
throughout the main discussion of this thesis.

LOVISA also serves as a test of the developed design. The systems that are dis-
cussed in this thesis would be far to big to program and test within the limited time
available for writing this thesis. However, by predicting the impact my design ideas

CHAPTER 1. INTRODUCTION 5

would have, if implemented in LOVISA, it provides an indication of the soundness
of the proposals.

Apart from this input from the case study, the work with this thesis has largely
been theoretical. Research in transactional workflows has highlighted some design
directions that have proved too limiting for workflows. However, Worah & Sheth
(1997) concludes that selected concepts from advanced transaction models will be
useful for supporting WfMSs. Consequently, the designs proposed in this thesis
are intended to support workflows as far as possible, but whenever the Xymphonic
Transaction Model proves to be too limited, they depart from a strict transactional
paradigm.

1.5 Document Structure

The chapters 2 and 3 give an introduction to transaction theory and workflow man-
agement systems respectively. They provide a basic background to readers that are
unfamiliar with these topics.

The case study is described in chapter 4. This provides details of an example
workflow management system, which is referred to throughout the discussion.

The discussion itself, in chapter 5, starts with a consideration of architectural is-
sues, and a discussion of constraints to the maximum possible duration for trans-
actions. Next, the main issue of this chapter is a discussion of how the workflow
engine may automatically map from workflow definitions to transactions. The dis-
cussion is completed by some remaining topics — different uses for conditional
isolation, extensions to workflow definition languages, some suggestions for other
uses of xymphonies in WfMSs, and a comparison with related research.

Finally, chapter 6 summarises the thesis and concludes with an evaluation of the
benefits and drawbacks of the proposed design.

At the end, an index is provided to allow easy reference to the definitions of terms
and abbreviations.

CHAPTER 1. INTRODUCTION 6

Chapter 2

Transaction Models

This chapter gives a theoretical background on transactions. It provides a basis for
understanding the discussion in this thesis.

The properties of the classical model of flat transactions are discussed in some
detail. This is followed up by briefly introducing some of the developments in
advanced transaction models. Finally, the most important part is the description
of the Xymphonic Transaction Model. Readers who are familiar with classical
transaction theory may skip directly to this section beginning on page 21.

2.1 Flat transactions

The classic transaction isflat because it has no internal structure as the user (usually
the application programmer) sees it. A transaction is started by using the keyword
begin transaction. It is terminated by either acommitor anabort. The set of oper-
ations between these keywords is protected by the transaction processing system.
The operations are executed sequentially (still this is as seen from the user’s per-
spective), and if the commit is acknowledged by the system, the operations have
completed successfully and any updates are guaranteed to be durable. If the ap-
plication issues an abort, or the system for some reason aborts it, then the system
guarantees that none of the operations will have any affect, neither on the database,
nor on any other processes in the system. This behaviour is described by the ACID
properties.

2.1.1 The ACID properties

Flat transactions are characterised by being atomic, consistent, isolated, and dur-
able. These properties are summed up in the acronym ACID, which was coined
by Härder & Reuter (1983) in an attempt to “establish an adequate and precise
terminology”:

7

CHAPTER 2. TRANSACTION MODELS 8

Atomicity: “Either all actions are properly reflected in the database or nothing
has happened” (ibid, p.289). Atomicity is a property that is relative to the
perspective. No operation is truly atomic, but from the perspective of the
user, the transaction must behave as if it is.

Consistency: A transaction that commits is assumed to transform the database
from a consistent state into another consistent state if it executes all by itself.
Constraints defined in the database schema may be checked at the end of the
transaction, but it is outside the scope of the transaction processing system to
verify that all committed data are truly correct. Thus they are assumed to be,
and in the event of a typing error, or a similar fault, it is necessary to correct
the mistake with a counter-transaction.

Isolation: “Events within a transaction must be hidden from other transactions
running concurrently” (ibid, p.290). Isolation corresponds to the termseri-
alizability, which is explained in greater depth below.

Durability: “Once a transaction has been completed and has committed its results
to the database, the system must guarantee that these results survive any
subsequent malfunctions” (ibid, p.290).

The properties are interrelated and easily confused. A transaction that in itself
is consistent, will preserve consistency if it executes atomically and in isolation
from other concurrent transaction, and if the results are durable. The consistency
property, as defined in ACID, is a property of the transaction itself. Consistency
of the entire database in the event of concurrency and possible failures is a task,
which requires all the ACID properties working together.

The term consistency has also been used to define a correctness criterion for trans-
actions as a whole. Eswaran, Gray, Lorie & Traiger (1976) defined a schedule to
be consistentif it has an equivalent serial schedule. We will see shortly that the
termserializability has replaced consistency in this context.

As pointed out in (Anfindsen 1997), atomicity can be confused with isolation. In
their discussion of atomicity, Gray & Reuter (1993, p.160) say that “concurrent
users must be protected from accessing preliminary data”, which implies that atom-
icity encompasses isolation. This would make the isolation property superfluous.
Anfindsen (1997) defines atomicity more precisely to be the atomiccommitmentof
a transaction. Once a transaction commits, it “cannot continue to perform work that
may or may not be committed at some later point in time” (ibid, p.5). Atomicity, as
opposed to isolation, is related to recovery, because a transaction that aborts, must
recover the data elements that it has modified preceding the decision to abort.

A zipper is a good metaphor for transactions. We may imagine each of the toothed
strips to be a transaction, and the teeth themselves to be operations on the data-
base. All the teeth taken together constitute an atomic operation, so we could roll
the single strip into an infinitesimally small ball to be executed in an instant. By

CHAPTER 2. TRANSACTION MODELS 9

execution, we could imagine the strip to be sewed to a jacket, and hopefully it
would be durable (or else it could be replaced by a backup). We expect the teeth
to be in working order, i.e. the transaction is assumed to be consistent. However,
we require a transaction to be executed in isolation. Would half a zipper be of any
use to us if it were separated from the other half? Let’s see how we may “zip” the
transactions together, without mixing up the individual operations in an improper
order.

2.1.2 Concurrency Control and Serializability Theory

Isolation, as described above, is closely related to concurrency control. A number
of transactions that execute one after the other constitute a serial schedule. In a
serial schedule, all transactions automatically execute in isolation. A schedule of
concurrent transactions is considered to be correct if and only if its effects are
the same as the effects of a serial schedule (Garcia-Molina, Ullman & Widom
2002). Stated in another way, a schedule is correct if it isequivalentto a serial
schedule1. In such a schedule all transactions execute in isolation and it is said to
beserializable.

A schedule, or a history, is an ordering of the individual operations of its constituent
transactions. More precisely, Garcia-Molina et al. (2002, p.924) define a schedule
of a set of transactionsT to be a sequence of actions, in which for each transaction
Ti in T , the actions ofTi appear in the same order that they appear in the definition
of Ti itself. We are primarily interested in two different operations, read and write.
A transactionTi reading an elementx is denotedri(x). Conversely, the operation
of writing a value to an element is denotedwi(x). The elements could be tuples,
disk blocks, or entire relations. Additionally, the begin ofTi is denotedbi, and the
only possible outcomes areci or ai, which means commit and abort respectively.

Equivalence of schedules is defined in two different ways. Schedules may becon-
flict equivalentor view equivalent. Conflict equivalence is the basis for most trans-
action processing systems, and will be treated first.

A schedule isconflict serializable (CSR)if it is conflict equivalentto a serial sched-
ule. Two schedules are conflict equivalent if

1. they contain the same transactions, and

2. they order conflicting operations of non-aborted transactions in the same
way.

1Bernstein, Hadzilacos & Goodman (1987, p.32) gives a more accurate definition. They state
that thecommitted projectionof a schedule must be equivalent to a serial schedule. This degree of
precision is usually left out in introductory texts on serializability, e.g. (Elmasri & Navathe 2000,
Garcia-Molina et al. 2002, Anfindsen 1997)

CHAPTER 2. TRANSACTION MODELS 10

Two operationsconflict if they are executed by different transactions, they operate
on the same element, and at least one of the operations is a write. This gives us four
possible combinations, which are summed up in table 2.1. In this table, conflict is
marked by two swords. This table is often called a compatibility matrix, referring
to the compatibility of the pair of operations that is marked by a smiling face.

r w

r

w

Table 2.1: Conflicting operations (compatibility matrix)

The term “conflict” is actually too dramatic. It is perfectly normal to have conflicts.
The important point in the definition of conflict serializability is that all the conflicts
must occur in the same order as in the equivalent serial schedule. We introduce the
precedence graph in order to reason more easily about this order.

A precedence graphfor a scheduleS is a directed graph whose nodes represent
the committed transactionsT = {T1, ..., Tn} of S. There is an edge fromTi to
Tj (i 6= j) whenever one ofTi’s operations precedes and conflicts with one of
Tj ’s operations inS. An example schedule and its precedence graph is shown in
figure 2.1. The edge fromT1 to T2 is established by the operationr2(y), which
comes afterT1 has written a value toy. The operationsr1(x) andr2(x) do not
conflict, thus they can be swapped without affecting serializability. Most texts on
transactions provide numerous other examples.

T1 2T

S : b1, b2, r1(x), r2(x), w1(y), r2(y), c1, c2

Figure 2.1: A scheduleS and the corresponding precedence graph

The serializability theorem states that a schedule is conflict serializable if and only
if its precedence graph is acyclic. This has been proved in (Garcia-Molina et al.
2002, Bernstein et al. 1987) among others. To check for serializability, first derive
the precedence graph from the committed transactions of a schedule, and then run
a depth first search to check for cycles. While this certainly could be exploited in a
real system, more efficient methods exist. The most common method is two phase
locking, which is explained in section 2.1.5.

Extending the zipper metaphor, we would say that the two strips taken together
constitute a schedule. It is a schedule that adheres to the definition above — no
teeth can be added, or removed, without disrupting the zipper, and they will ap-
pear in the schedule in the same order as they appear in each individual strip. If
we hold one strip entirely before the other, the zipper is a serial schedule. To re-

CHAPTER 2. TRANSACTION MODELS 11

strict us to serial schedules is just as limiting for real transactions, as it is for the
zipper. A transaction processing system enforcing serial schedules only would be
unacceptably inefficient.

An equivalent serial schedule

D
irection of conflicts

Time

O
perations

O
perations

Conflicts

A conflict−serializable schedule

Transaction
Scheduler

T1
2T

2T

T1

Figure 2.2: Conflict serializability visualised as a zipper

Now, let’s zip up the transactions, and imagine that each pair of teeth from the
two strips is a pair of conflicting operations in the way shown in figure 2.2. The
arrows represent the conflicts in the same direction as it would be represented in a
precedence graph, i.e. transactionT2 does an operation, which is in conflict with
a previous operation on the same object by transactionT1. Then the schedule
on the left would be conflict equivalent to the serial schedule on the right. The
serial schedule is created by unzipping, and moving the two parts in the temporal
direction of the arrows.

The zipping is controlled by the sliding tab, which is marked as transaction sched-
uler. If we try to bypass a tooth, the zipper will easily fall apart. This is illustrated
in figure 2.3, which shows a tooth out of order, thereby creating conflicts in the
other direction. That is,T1 performs an operation which is in conflict with a pre-
vious operation byT2. Such behaviour creates a loop in the precedence graph as
shown, and must be prevented by the scheduler.

It is important to note that the zipper metaphor represents two transactions that have
the same number of operations. Real transactions will rarely have such symmetry,

CHAPTER 2. TRANSACTION MODELS 12

T2

T2

Time

T1to

T1 to

An unserializable schedule

Transaction
Scheduler

The resulting serialization graph

Conflicts from

Conflicts from

2T
T1

T1 2T

Figure 2.3: Unserializable behaviour

and not all operations will conflict. The scheduler will normally interleave more
than two transactions, and each transaction may be allowed to execute more than
one operation before the other transaction is allowed to run. Thus the metaphor
represents a special case that is useful for illustrating the principles, but it must not
be taken as a typical example.

2.1.3 View serializability

View equivalence is another, less restrictive way to define equivalence of schedules.
To define this, we say that a transactionTi reads froma transactionTj if Ti reads a
value thatTj has written, andTj has not (yet) aborted.

A schedule isview serializableif it is view equivalentto a serial schedule. Two
schedules, S and S’, are view equivalent if

1. they contain the same transactions, and

2. if Ti readsx from Tj in S, then it must also be the case thatTi readsx from
Tj in S’, and

3. if the last transaction to writex in S is Ti, thenTi must also be the last
transaction to writex in S’.

CHAPTER 2. TRANSACTION MODELS 13

(Anfindsen 1997, p.8)

Recall that in the general definition of serializability, a schedule is considered to
be correct if its effects are the same as that of a serial schedule. The computation
that a transaction does is based on the values that it reads from the database. Point
2 above simply states that this computation will be the same if the values read by
the transaction are the same in both schedules. Thus the calculation of the value to
write to the elementx will also be the same, and as long as the last transaction to
write this value is the same in both schedules, the effects will be the same.

The set of conflict serializable schedules is a proper subset of view serializable
schedules. However, algorithms for enforcing view serializability are NP-complete,
so they are not used in commercial systems.

2.1.4 Recovery related properties

Atomicity and durability are closely connected to recovery. If a transaction aborts,
it is necessary to roll back, or undo whatever effects it has caused so far. And in
order to enforce durability, if the system fails, committed transactions may have to
be recovered. Until now we have not considered the abort and commit operations,
but they are of critical importance. If the commits and aborts are executed in the
wrong order, the system may not be able to recover the database to a consistent
state, even though the schedule may be serializable.

The problem can be illustrated by considering the serializable schedule in figure
2.2. If transactionT2 commits beforeT1 terminates, then abortingT1 could lead
to inconsistencies. IfT2 has read fromT1 and therefore based its computing upon
these values, it should also have been aborted. Such a schedule is not recoverable.

There are four increasingly restrictive classes of recoverability that may be imposed
on a schedule. The first three are treated in (Bernstein et al. 1987, pp.34–35), and
rigorousness was introduced by Breitbart and is treated in (Breitbart, Georgako-
poulos, Rusinkiewicz & Silberschatz 1991).

A schedule isrecoverable(RC) if whenever a transactionT2 reads from another
transactionT1, thenT2 will only commit afterT1 has committed. IfT1 aborts, then
T2 must also abort.

RC is a minimal requirement for providing atomic transactions. It prevents a trans-
action that has performed a dirty read from being committed until the transaction
it read from is committed as well.

A scheduleavoids cascading abort(it is ACA) if whenever a transactionT2 reads
from another transactionT1, then the read operation ofT2 must wait until afterT1

has committed.

ACA prevents dirty reads. As the name implies, ACA will prevent establishing de-
pendencies between transactions that cause an abort of one transaction to propagate

CHAPTER 2. TRANSACTION MODELS 14

to the entire set of dependent transactions.

A schedule isstrict (ST) if whenever a transactionT2 performs an operation on an
element written by another transactionT1, then the operation must wait until after
T1 has committed.

ST simplifies recovery by allowing the use of before images (BFIM). A BFIM is
the original value of an elementx that is updated, and it is usually recorded in the
log. To undo the update, the BFIM may be written tox. ST guarantees that no
other transaction may updatex, and thereby invalidate the BFIM, until the original
transaction is either committed or aborted.

A schedule isrigorous (RG) if whenever a transactionT2 performs a conflicting
operation on an element read or written by another transactionT1, thenT2’s oper-
ation must wait until afterT1 has committed.

RG will guarantee that the serialization order is analogous to the execution order
of the transactions (Breitbart et al. 1991, p.956). This is an important mechanism
for enforcing global serialization in distributed transactions.

The definitions are increasingly restrictive such that RC⊃ACA⊃ST⊃RG. If there
is a write-read conflict between active transactions, RC defines the order in which
transactions may commit. ACA on the other hand, will prevent write-read conflicts
entirely, and therefore it is also RC. ST, in addition to preventing write-read, also
prevents write-write conflicts. RG additionally prevents read-write conflicts. The
definitions are summed up and compared in table 2.2. In this table an operation,
which could be either a read or a write, is denotedo.

RC if w1(x) precedesr2(x), thenc1 must precedec2
ACA if w1(x) precedesr2(x), thenc1 must preceder2(x)
ST if w1(x) precedeso2(x), thenc1 must precedeo2(x)
RG if o1(x) precedes and conflicts witho2(x), thenc1 must precedeo2(x)

Table 2.2: Increasingly restrictive properties related to recovery

Returning to the zipper metaphor, we may classify the conflict serializable schedule
in figure 2.2 in terms of the new properties. Assuming the termination ofT1 is a
commit, the schedule is RC. The schedule is ACA if, for all the writes performed
by T1, then the conflicting operation ofT2 is also a write. If all the operations of
T1 are reads (and all the operations ofT2 must be writes, otherwise they would
not conflict), the schedule is ST. However, the schedule cannot be RG because the
conflicting operations ofT2 come beforeT1 has committed. A rigorous scheduler
would only allow the serial schedule to the right in this figure.

CHAPTER 2. TRANSACTION MODELS 15

2.1.5 Enforcing Flat Transactions

Transaction processing systems commonly control concurrency by locking. The
general idea is that a transactionTi must acquire a lock on an element before it can
process it. If another transaction holds an incompatible lock, thenTi must wait.
The transactionTi must hold the lock at least until it is finished processing the
element. The schedule will be conflict serializable if the transactions follow the
two phase locking (2PL) protocol: Once a transaction has released a lock, it cannot
acquire any more locks (Bernstein et al. 1987, p.50).

There are two fundamental types of locks, read locks and write locks. To read an
elementx, a transaction must at least set a read lock onx. To write, a transaction
must set a write lock onx. Two locks are compatible if their corresponding oper-
ations do not conflict. Recall table 2.1 that illustrated conflicting operations. This
table illustrate compatibility of locks by a smiling face.

The correctness of 2PL is easily explained by considering the precedence graph of
a schedule. An edge from transactionTi can only be established if it has released a
lock, and some other transaction sets a conflicting lock. This holds inductively, so
a transactionTj can only followTi in the graph, if it has acquired an incompatible
lock that its predecessor in the path fromTi has released. To establish a cycle,Ti
would have to set a lock that conflicts with a lock thatTj has released. This is not
possible because 2PL prohibitsTi from acquiring any more locks.

Basic 2PL can easily be extended to support recovery. Strict 2PL requires the
transaction to hold all write locks until it terminates, effectively preventing any
other operation on the locked elements until it has committed. Note that strict 2PL
produces schedules that are both strict and serializable, thus it is more restrictive
than strictness taken alone. Rigorous 2PL requires the transaction to hold all locks
until termination, preventing any conflicting operations on the locked elements
until it has committed. Rigorous 2PL is commonly used, as it is hard to decide
when it is possible to start releasing locks.

Other scheduling techniques exist. In timestamp ordering, the transaction manager
assigns a unique timestamp to each transaction, and the scheduler order conflicting
operations according to the timestamps. The effect is that edges in the precedence
graph are only allowed from the older to the younger transactions.

A system based on multiversion concurrency control keeps the old versions of an
element that is updated. The scheduler decides which version to use in order to
maintain serializability. A read request that would have been denied by a 2PL
scheduler, may be possible when the transaction is given the older version. There
are multiversion concurrency control algorithms both for ensuring view and con-
flict serializability.

CHAPTER 2. TRANSACTION MODELS 16

2.2 Advanced Transaction Models

Flat transactions were designed for quickly updating small amounts of data, and
have been highly successful in bookkeeping applications. Other application do-
mains, however, have access patterns that flat transactions cannot support very
well. Typical examples of such domains include technical design (CAD/CAM),
computer aided software engineering (CASE), office automation, data mining and
multimedia.

A transaction model is a specification of allowable and mandatory behaviour for
transactions as well as their structure (Anfindsen 1997, p.23). The classic transac-
tion model specifies both simple behaviour and structure.

The selection of transaction models presented here is far from comprehensive.
Rather, it is intended as a background for understanding the Xymphonic Transac-
tion Model. This may give the false impression that different extended transaction
models are quite similar. As pointed out in (Gray & Reuter 1993, p.180) — many
extensions to flat transactions have been proposed to support quite specific applica-
tions, however, their usefulness may be limited for other applications, and different
types of transactions may not be able to coexist in the same system. No transac-
tion model is yet general enough to accommodate all the different applications’
requirements. However, xymphonic transactions incorporate many of the features
from the other extensions.

2.2.1 Supporting Long-Lasting Transactions

Many of the advanced transaction models try to support transactions that last for
a long time. Such transactions are collectively known as long-lasting transactions
(LLTs). Transactions may have a long duration if they access many objects, per-
form complex operations, or wait for interaction with humans or other external
systems.

LLTs introduce particular problems for transaction management:

• Locking resources for a long time prevents others from accessing them.

• Locking many data items increases the risk of deadlocks.

• In case of an abort, the amount of work lost may be great.

• LLTs have higher probability of being interrupted by a system failure or a
shut down for maintenance.

Finally there is the question of how to maintain application context. Only the
global context is made durable by the DBMS. Applications (and users) have private
context that may be lost in case of a crash (Gray & Reuter 1993, pp.212–215). It is

CHAPTER 2. TRANSACTION MODELS 17

necessary to recover this context to a state that is consistent with the state recorded
in the database, otherwise the application may proceed in the wrong way.

Gray & Reuter (1993, p.217) discuss a set of requirements for supporting LLTs:

• Minimise lost workin case of a program or system crash.

• Providerecoverable computationto allow for the system to be shut down
and restarted without requiring a commit or abort.

• Provideexplicit control flowso that the system may control the sequence of
transactions belonging to one LLT. “At any point in time, and under all failure
conditions, it must be possible either to proceed along the prespecified path
or remove from the system what has been done so far.” (ibid, p.217)

And, I would add a final point:

• Allow interaction between ongoing transactions.

Even a long-lasting activity is regarded as an atomic unit of work (otherwise it
could be split into a set of smaller transactions, and the problem would have been
avoided). It is required that the system controls the commitment of the transactions
and that the changes are made durable at this time. And we would certainly not
like introducing inconsistencies. But as the point above shows, reducing isolation
may be a desired property. Many extended transaction models reduce isolation in
a controlled manner, and Anfindsen (1997, p.7) maintain that isolation is the only
property that should be compromised.

In general, reducing isolation in acontrolled mannermeans allowing access to un-
committed data in such a way that the desired level of consistency is preserved.
The isolation level will be application dependent, thus a mechanism for applica-
tions to explicitly control the transaction is needed. We will see one example of
how this may be achieved in the discussion of the Xymphonic Transaction Model
(section 2.3).

2.2.2 Spheres of Control

Bjork and Davies developed the concept of spheres of control in the 1970s. By
watching how human organisations deal with errors and their recovery, they pro-
posed a model for monitoring dependencies between processes and recovery from
errors that potentially may have a source in the past. It was “the first attempt to in-
vestigate the interrelated issues of concurrency control and recovery in integrated
systems in a coherent fashion” (Gray & Reuter 1993, p.160). Spheres of control has
never been fully realised, but it lead to the development of the classic transaction
model.

CHAPTER 2. TRANSACTION MODELS 18

According to Gray & Reuter (1993, p.174) spheres of control have two core func-
tions:

1. To contain the effects of operations as long as there may be a necessity to
revoke them, and

2. To monitor the dependencies of operations on each other in order to be able
to trace the execution history in case faulty data are found at some point.

Davies (1978) describes several types of SOCs. He understands a system as a
hierarchy of processes or abstract data types. A process at some level may use
operations at the next lower level for implementation, e.g. in the form of a function
call. As seen from the level above, the process executes atomically. Atomicity con-
trol is a SOC that protects the effects of a process from being externalised before
the execution finishes. Davies uses atomicity in the broad sense that encompasses
isolation.

Figure 2.4 illustrates some processes and their SOCs. Here we see a SOC contain-
ing each of the processes A and B. Nested within them are SOCs that control the
atomicity of the lower-level operations that they use for their implementation. The
operations A1 and A2 are processed in parallel, and together they form the output
from A. The operations nested in B are processed sequentially.

B1 B2 B3

A2

A1

Dependency Control Sphere

A
BAtomicity Control Spheres

Figure 2.4: Processes A, B and some spheres of control

As other SOCs use data from existing ones, dependencies are established between
them. SOCs may be dynamically created around processes to control this depend-
ency. Figure 2.4 illustrates a dependency from processes A to B. When for instance
process B reads from A, before A has committed, a SOC is dynamically created to
control the commitment, or alternatively, the rollback of both processes as a single
unit. This may allow A and B to start executing in parallel, although logically, the
execution is serial.

Several SOCs deal with recovery. In-process recovery allows processes to return to
a previous point of execution, i.e. to whatever state was recorded as the SOC was

CHAPTER 2. TRANSACTION MODELS 19

created. System recovery is useful for recovering from system failures. And finally,
post-process recovery allows a previously committed process to be rolled back. To
achieve this, the entire execution history with information of which versions are
dependent on each other must be kept. When an error is detected, the recovery
operation must trace back to the source of the error and establish a SOC around the
originally erroneous process. It then traces forward to extend the SOC to cover the
closure of all the other SOCs that have a dependency relation with the source of
the error.

A transaction is a very simple form of SOC. The atomicity and isolation prop-
erties have their close parallel to the concepts of atomicity, commitment and de-
pendency control. The durability property, however, contradicts the post-process
recovery mechanism. It seems practically impossible to maintain enough data to
re-establish consistency, and the actual recovery procedure would be dependent on
the situation. As an example, Gray & Reuter (1993, p.179) mentions that revoking
a fraudulent money transfer, could involve recovering the cash from the responsible
person.

2.2.3 Savepoints and Persistent Savepoints

Savepointsenable flat transactions to undo parts of its work and continue execution
from an earlier point. The point to which the transaction may return is a savepoint
and it is set by the transaction itself. It is useful in situations where the transaction
may choose between different paths of execution. If one path does not work, the
application could roll back to a savepoint and try another direction from there. This
saves the work of starting all the way from the beginning. Savepoints have become
an optional feature of the SQL-99 standard (ISO 2000, pp.82–83,721 and 726).

Persistent savepointsaddress the particular problem of minimising lost work if a
system fails during execution of a long-lasting transaction. A persistent savepoint is
a savepoint in the sense described above, but the transaction state must be recorded
in durable storage. Upon recovery, changes that happened after the savepoint must
be undone in the same way as is done for uncommitted transactions, and changes
before the savepoint may have to be redone.

A problem with persistent savepoints is that the state of the application program
may be lost in case of a failure (Gray & Reuter 1993, p.191). In order to handle
this correctly, the application state necessary for continuing execution after the
savepoint must be recorded in durable storage as well.

2.2.4 Nested transactions

Savepoints allow for the structuring of a transaction into a sequence of smaller
units. Nested transactions allow for the decomposition of transactions into a hier-
archy of smaller units. This hierarchy provides fine-grained control over commit-

CHAPTER 2. TRANSACTION MODELS 20

ment and recovery of different parts of a transaction, it allows distributing the exe-
cution of individual subtasks among multiple nodes, and supports intra-transaction
parallelism.

There is always a root, or top-level transaction. Within this, subtransactions may
be established. The nesting may continue to an arbitrary depth, forming a tree
structure of transactions. The usual vocabulary for trees apply to the nodes of the
tree, e.g. all transactions apart from the root have a parent, and their subtransactions
are referred to as children.

A subtransaction may commit if it is a leaf transaction, or if all its subtransactions
have terminated. Upon commitment, the results of the transaction are made avail-
able to its parent (and possibly its siblings). Its commitment will not be durable
until all its ancestors all the way to the root have committed too. When the top-
level transaction commits, it is said to be finally committed. On the other hand, if a
transaction aborts, this triggers the abort of all its subtransactions, even those that
already have issued a commit.

As seen from the outside, a nested transaction is indistinguishable from a simple
flat transaction. The sphere of control established by the top-level transaction cov-
ers the whole hierarchy and provides it with the ACID properties as a unit. The
individual subtransactions are atomic from the perspective of the parent and their
execution is isolated from each other. They are consistent with respect to the local
function they implement, although global consistency may depend on the com-
bined effects of all subtransactions. But as discussed above, their durability depend
on their parents recursively up to the root.

Nested transactions are generally attributed to a PhD thesis by J Eliot B Moss in
1981. As can be seen, the ideas of nesting are quite similar to those of spheres of
control, but Moss’ system was the first to use locking for synchronisation (Moss
1985, cited in Anfindsen 1997).

In Moss’ original scheme, the commitment of a subtransaction would pass its locks
to the parent, so calledupwards inheritance. Härder & Rothermel (1993) extend
this with the concept ofdownwards inheritance. They distinguish betweenholding
and retaining locks. A transaction that acquires a lock on an elementx in the
traditional sense, holds a lock. If a transaction retains a lock, its children will
be able to acquire it, but any transaction outside the subtree (including ancestors)
will be prevented from acquiring a conflicting lock. The locks of a committing
subtransaction will automatically be retained by its immediate parent (i.e. upwards
inheritance).

Multi-level transactionsare a generalised form of nested transactions (Gray &
Reuter 1993, p.203). They differ from the latter in that subtransactions are al-
lowed to commit, but their results are protected from externalisation by enforcing
a strictly layered architecture. As long as the parent locks higher-level data, no
other transaction may access the precommitted lower level data structures. In the

CHAPTER 2. TRANSACTION MODELS 21

event of an abort, the precommitted subtransactions may be undone by executing a
compensating transaction without affecting serializability.

Gray & Reuter (1993, pp.206–210) discuss the applicability of multi-level trans-
actions in the implementation of DBMSs. They are useful when the granularity of
locking at the physical level is required to be greater than what is needed by an
operation, e.g. when updating only a single tuple on a disk block. Precommitting
the subtransaction allows other tuples on the same block to be accessed, but the
parent’s locking of higher-level access structures precludes other transactions from
accessing the updated tuple.

2.3 The Xymphonic Transaction Model

The Xymphonic Transaction Model was developed and published in a doctoral
thesis by Ole Jørgen Anfindsen in 1997 under the name of Application Oriented
Transaction Model (APOTRAM) (Anfindsen 1997). The author has implemented
the model in a commercial system called the Xymphonic Engine. Different as-
pects of the model have been studied in several Cand. Scient. and Siv. Ing. Theses
(Vaksvik 2002, Kjølstad 2001, Sommerfelt 2001). APOTRAM as it is presented
in (Anfindsen 1997) is mainly a model. Although the PhD thesis considers im-
plementation issues, the actual functionality of the Xymphonic Engine may not
cover all the aspects of the model, and it may also provide new options that were
not apparent as the model was developed at first. This section integrates the new
developments with the presentation of the model as it was originally conceived.

2.3.1 Allowing interaction between ongoing transactions

Isolation and interaction may be regarded as opposites on a scale showing the
degree to which active transactions interact2. ACID transactions operate in total
isolation — they have no interaction with concurrent transactions. The only in-
teraction is with the database, which is actually the committed transactions of the
past. Reduced isolation allows a greater degree of interaction. The simplest scheme
is called uncommitted read (UR) and allows a transaction to read from other un-
committed transactions. However, the schedules produced will in general be non-
serializable and non-recoverable. UR and other isolation levels are defined in the
SQL-92 standard, but although the stricter schemes may eliminate some of the
problems associated with UR, the active transaction has no way of knowing how
reliable the data is.

The approach taken in xymphonic transactions is to give the user, represented in
the system as a transaction, several mechanisms for fine-tuning the degree of inter-
action. In order to let others read uncommitted data, the Xymphonic Transaction

2The idea of using the terminteractioncomes from talks with O. J. Anfindsen.

CHAPTER 2. TRANSACTION MODELS 22

Model introduces the notion of conditional conflict. Using a parameterised ac-
cess mode, a transaction may associate a set of write parameters, taken from a
predefined domain, to each write operation. The data item is locked according
to the normal compatibility matrix for two phase locking. However, another user
or application program may associate a set of parameters with the read operation,
thereby signalling to the scheduler that it is acceptable to read uncommitted values
whose write parameters match those of the read operation. The decision whether
the write and read operation conflict is made conditionally dependent on the ac-
cess parameters. This results in the correctness criterion calledconditional conflict
serializability, which is defined in section 2.3.2.

Collaborative writing of the same set of uncommitted data is achieved by com-
bining parameterised access modes with nested databases. A user, or application
program holding the write locks of a document, may convert the set of locks to
a nested database or a xymphony. Other users may be invited to create subtrans-
actions in the database, update the data, and when finished, commit to the nested
database. Finally, when finished, the original user may commit the nested database
as he would an ordinary transaction. Nested databases are treated in section 2.3.3.

In the model outlined, intertransaction interaction is increased bya), allowing oth-
ers to read uncommitted data under certain conditions, andb) allowing other users
to work on and complete part of the work.

2.3.2 Conditional Conflict Serializability

The Xymphonic Transaction Model introduces the concept ofparameterised ac-
cess modesandconditional conflict.

Parameterised access modes means that an access request is associated with a set
of parameters. The parameters are taken from a domain of values that are defined
by the application developers (or possibly by the users themselves, depending on
the type of application). For example the parameter domain {draft, preliminary,
proposed, accepted} may indicate the status and reliability of a document in the
database. Parameter domains may be defined to accommodate other, application
specific requirements, e.g. to indicate quality, maturity, reliability or degree of com-
pleteness (Anfindsen 2002, p.4).

With conditional conflict, conflict is conditionally dependent on the parameters of
read and write operations. LetR(A) andW (B) denote a parameterised read and
write operation respectively, whereA andB are the associated parameters. BothA
andB must be taken from the domainD of available parameters. Then conditional
conflict is defined as follows.

Definition 1 (Conditional Conflict) The parameterised read modeR(A) and the
parameterised write modeW (B) conflict unlessB ⊆ A.

CHAPTER 2. TRANSACTION MODELS 23

(Anfindsen 1997, p.29)

Or stated the other way around,R(A) andW (B) are compatible iff B⊆A. This
gives the revised compatibility matrix in figure 2.3.

R(A) W (B)
R(A) iff B ⊆ A
W (B) iff B ⊆ A

Table 2.3: Conditionally compatible operations

Two schedules are defined to beconditionally conflict equivalentthe same way
as they are conflict equivalent, provided table 2.3 is used to determine which op-
erations conflict (see page 9 for the definition of conflict equivalence). The new
correctness criterion is based on this notion of equivalence.

Definition 2 (Conditional Conflict Serializability) A schedule is defined as con-
ditional conflict serializable (CCSR) iff it is conditional conflict equivalent to a
serial history.

(Anfindsen 1997, p.30)

CCSR transactions reduce isolation by making itconditional. Thus the acronym
ACCID describes their properties. That is, xymphonic transactions have the prop-
erties atomicity, consistency,conditionally isolationand durability.

ACCID transactions may coexist in the same system as flat CSR transactions. The
default is to treat a normal read operation as equivalent to a parameterisedR(∅),
and a write as aW (D∗) operation, whereD∗ is an arbitrary superset of the para-
meter domainD. This means that a non-parameterised transaction will keep its
ACID properties, while at the same time there may be some transactions that re-
duce the isolation among each other. Thus CSR is a special case of CCSR.

By using parameterised write modes, a user declares a willingness to share that data
before the computing is finished. Another user issues a parameterised read mode
to declare a willingness to read data that may not be committed. If the parameters
of the read request is a superset of the parameters of the write request, the system
will grant the read request. Thus the meaning of the parameters is defined by the
users, not the system. Note that because the compatibility matrix is defined to
be symmetric, a parameterised read mode also means that a data item that is read
by one transactionT1, may be overwritten by another transactionT2 beforeT1

has started releasing its locks. We may say that a parameterised read request also
signals a willingness to let others modify the data that has been read.

CHAPTER 2. TRANSACTION MODELS 24

2.3.3 Nested Databases

CCSR deals with read-write conflicts. The concept ofnested databaseswas in-
troduced in (Anfindsen 1997) in order to manage write-write conflicts. Nested
databases let multiple users collaboratively write data that is protected by a single
transaction. Combined with CCSR, other users may review the progress of the
work.

The locks of a transaction can be seen as a sphere of control (SOC). A set of write
locks is denoted WSOC. A WSOC is similar to a database within which a single
transaction is active. The WSOC prevents outsiders from accessing the protec-
ted objects, and because only one transaction is active, no concurrency control is
needed within. Nested databases allow a WSOC to be converted into a subdata-
base, thereby establishing access and concurrency control similar to that of the
parent database. Multiple transactions may be started in parallel within the scope
of this database, and these in turn, may be converted to new nested levels of data-
base.

A subdatabase is treated like a nested transaction, albeit a passive one. In the man-
ner of ordinary nested transactions (see section 2.2.4), a transaction in a nested
database will commit its results to the parent database, and the results will be fi-
nally committed if the top-level database commits its results to the system. When
committing, the subtransaction prepares to commit, and the WSOC of the transac-
tion is handed (back) to the parent (upwards inheritance). The subdatabase owner
is now free to pass the locks on to some other subtransaction that may wish to
continue the work (downwards inheritance).

A nested database is controlled by the transaction owner. In the manner of ordinary
databases, an owner may specify access privileges. He may specify which objects
may be read, or updated and by whom. We say that the database ownerinvites
other users to participate and to complete a part of the whole project. Due to
recursive nesting, other users may in turn convert their part of the job to a database
and allocate responsibilities to other participants. When a subtransaction prepares
to commit, the subdatabase owner may opt to review the changes before they are
accepted.

Enforcing conflict serializability in all nested databases gives a schedule that isnes-
ted conflict serializable(Anfindsen 1997, p.49). When combining nested databases
with CCSR, we get the correctness criterionnested conditional conflict serializab-
ility , which is defined as follows.

Definition 3 (Nested Conditional Conflict Serializability) If subdatabases can be
nested to arbitrary depths, and transaction histories in subdatabases are CCSR,
and transactions in subdatabase histories commit to the subdatabase owner, then
the resulting transaction schedule will be nested conditional conflict serializable
(NCCSR).

CHAPTER 2. TRANSACTION MODELS 25

(Anfindsen 1997, p.50)

2.3.4 Querying Unreliable Data and Missing Data

Using parameterised access modes introduces the problem of evaluating queries
that may retrieve uncommitted, and therefore unreliable data. To handle this, An-
findsen (1997) proposes Annotated Logic (AL) as an extension to the logic of the
query language. Using the same general approach, Anfindsen additionally pro-
poses Nullable Logic (NL), which address the problem of querying missing data.
Defining a logic that consistently handles missing data is extensively treated in the
database literature (see Anfindsen 1997, pp.62–63 for a quick overview). Com-
bining AL and NL yields Annotated Nullable Logic, a comprehensive approach to
querying both missing and unreliable data.

Annotated Logic is sufficient for querying the status of a xymphonic transaction.
AL enables a user to construct predicates that evaluate the parameters currently
associated with a locked data item. If for example the parameter domain is defined
to let transactions indicate the status of the locked resources, AL queries could be
used to monitor the progress of the work done in a certain subdatabase.

Nullable Logic allows a set of null marks to be defined and used to indicate why a
data value is missing. An example domain of null values could be {does-not-exist,
unknown, no-information, prohibited, pending, secret} (Anfindsen 1997, p.64).
ANL requires the domains of reliability marks and null marks to be disjoint.

Basically ANL operates with the three truth-valuestrue, maybeand false. The
truth-value is associated with a set of annotation marks that are derived from truth-
valued expressions, e.g. a comparison likea > b. The set of annotation marks
associated with a truth-value is defined to be the union of all the annotation marks
of the data evaluated in the expression.

The resulting annotated truth-value is denoted(u,A), whereu is the truth-value
resulting from the comparison, andA is the set of annotation marks.A could be
the empty set, meaning thatu is either true, or false, and that this is the result of
comparing reliable data. IfA is a subset of the domain of reliability marks,u is
still either true or false, but the evaluation was based on unreliable data. However,
if A contains a null mark, the value ofu is a maybe (or Boolean null), and the null
marks inA will indicate why some of the evaluated data was missing.

(Anfindsen 1997) includes a definition of the effects of the Boolean operators NOT,
AND, and OR. The details are omitted, but note that ANL supports the laws of
idempotency, commutativity, associativity, universal bounds, De Morgan’s laws,
and partially the law of distributivity (ibid, pp.68–72). ANL does not support the
law of absorption, however, Anfindsen comment that it is impossible for a multi-
valued algebra to support all the laws of Boolean algebra, and he claims that ANL
is better than what is offered by SQL.

CHAPTER 2. TRANSACTION MODELS 26

2.3.5 The Xymphonic Engine

In conjunction with the commercial implementation, Anfindsen & Storløpa (2001)
introduce the termxymphonyto denote a nested database. Whereas the terms nes-
ted database and subdatabase describe the technical properties of the construct,
they maintain that the term xymphony communicates better with both users and
computer professionals. They define a xymphony as “a database that is, or poten-
tially can be, part of a recursive and dynamic structure of databases”(ibid, p.2).
The terms xymphony and subdatabase are used synonymously in this thesis.

The Xymphonic Engine was first implemented on top of the Oracle database. A
component known as the Internet File System (IFS) intercepts client application
calls to the database server and parses the requests. The parser is a Java object that
has been extended in subclasses to forward access requests to a separate lock server
using the Java Remote Method Invocation protocol. The lock server implements
the Xymphonic Transaction Model, allowing parameterised access modes and the
creation of xymphonies. The lock server decides whether to grant or deny a request,
and the parser implements the decision (Anfindsen & Storløpa 2001, p.3). The
implementation has been ported to run on top of other DBMS products as well.

In addition to supporting the Xymphonic Transaction Model, the Xymphonic En-
gine allows a xymphony to be checked out to another physical machine. The other
machine controls access to the resources of the xymphony until the results are
checked back in as the result of a commit or abort.

Collaboration between different xymphonies is further supported by the possibility
of exporting a selected set of data, which may be imported read only in another
xymphony. This corresponds to using write and read parameters that let other
transactions read, but not modify uncommitted data. However, the activation of an
export function allows better control of when and to whom the data is visible, and
the user may continue working on the exported data, without affecting the version
that other users import. Additionally, an export function is more easily understood
and the actual manipulation of access parameters may be hidden by the system.

Chapter 3

Workflow Management Systems

Computerised workflow management is based on an explicit workflow model that
is represented as data in the system and interpreted by a workflow engine. The
model includes several process definitions, each consisting of tasks to be executed
for different types of cases, and the order in which to do them. The process model
refers to an organisation model in order to select participants and other resources
for a task. In this way, a WfMS support the flow of work through the organisation.

The Workflow Management Coalition (WfMC) was founded in 1993 and is an
organisation of workflow vendors, users, analysts and university/research groups.
Their expressed mission is to establish “standards for software terminology, in-
teroperability and connectivity between workflow products”1. The standards they
propose are an important basis for the discussions in this thesis. The workflow
reference model and the meta model for process modelling will be presented in the
following two sections.

3.1 The Workflow Reference Model

The workflow reference model (WfMC 1995) and its associated terminology and
glossary (WfMC 1999b) provide the context for the standards from the Workflow
Management Coalition. They identify the characteristics, terminology and main
functional components of a WfMS. The individual components are further detailed
in a series of documents.

The workflow reference model gives an overview of the major components and
interfaces within a workflow architecture. It is shown in figure 3.1 on the next page.
Products may vary in how many of the interfaces they expose. A fully conforming
product would be able to substitute any of the subsystems with a corresponding
component from another vendor.

1http://www.wfmc.org/about.htm

27

CHAPTER 3. WORKFLOWMANAGEMENT SYSTEMS 28

Figure 3.1: The workflow reference model
(WfMC 1995, p.20)

The core of the system is the workflow enactment service. It provides the run-time
environment for one or more workflow engines. The workflow engine interprets
process definitions received over interface 1. Humans interact with the workflow
system through a client application that receives tasks over interface 2. Fully com-
puterised activities are controlled via interface 3, invoked applications. Interface 5
provides access to third party administration and monitoring tools. Such tools may
for example provide advanced statistical functions, or they may be used as a single
interface to control several WfMSs in one place.

Multiple workflow engines are useful for distributing the workload among several
processing nodes. Different workflow engines may also be customised for differ-
ent application domains. They belong to the same workflow enactment service if
they have a common naming and administrative scope, and they may interact and
coordinate using vendor specific protocols. Interface 4, on the other hand, provides
an API and exchange formats for interaction between heterogeneous WfMSs.

There are several reasons for combining heterogeneous components. Some tools
may provide more advanced functions than what is included in a specific workflow
product. Process definition tools may provide different modelling languages, ana-
lysis functions and simulation tools. An organisation may wish to build a client
application that interacts with all their different WfMSs in a coherent fashion. And
finally, a workflow may span different departments, e.g. sales and manufacturing,
which use workflow systems adapted to their particular application environment.

3.1.1 Product Implementation Model

The product implementation model in figure 3.2 on the following page provides
some additional details of the internal structure of the components presented above.

CHAPTER 3. WORKFLOWMANAGEMENT SYSTEMS 29

It identifies the main data elements being processed by a WfMS. An overview of
these will be important in the following discussion on transactional features.

Figure 3.2: A generic WfMS product
(WfMC 1995, p.13)

The input to the workflow engine is the process definition and the organisation
model. The process definition specifies the tasks to be executed for handling dif-
ferent types of cases. Tasks are inserted as work items in the work lists of selected
participants.Workflow participantis a general term for human and computer re-
sources that may process a work item. Human resources may be specified as an
individual, a role, or an organisation unit. The workflow engine refers to the or-
ganisation model in order to select appropriate participants for the tasks.

The workflow enactment service maintainsworkflow control data. This data is
internal to the system and identifies the state of individual process and activity
instances (WfMC 1995, p.25). Data related to transactional control would fit within
this category.

Workflow relevant datais used by the workflow engine to determine state trans-
itions of a workflow process (WfMC 1995, p.26). This data may be accessed and
updated by the workflow applications as well.Workflow application data, on the
other hand, is only processed by the applications. It is considered to be inaccess-
ible to the workflow engine, and references to it must be passed between tasks as

CHAPTER 3. WORKFLOWMANAGEMENT SYSTEMS 30

unique object names or access paths.

From a transactional viewpoint this distinction between workflow relevant data
and workflow application data may be problematic. Data under the control of the
WfMS is “assumed to be” processed atomically, but the standards “does not include
any specific controls over data synchronisation or recovery (for example between
workflow execution, subflows or applications under execution)” (WfMC 1999a,
p.37). In general, specific transaction mechanisms are left to the individual imple-
mentations, and it may be difficult to exercise sophisticated transactional control
over external data while conforming to the standard at the same time.

3.2 Process Definition Meta Model

Workflow management systems are driven by high-level models of the business
processes they support. A process definition is a “representation of a business
process in a form which supports automated manipulation, such as modelling, or
enactment by a workflow management system.” (WfMC 1999b, p.11). The process
definition meta model defined in (WfMC 1999a) specifies the building blocks of a
workflow, their relations and attributes.

Process definitions may be modelled in a graphical language. This is the most
suitable format for human readability and will be the primary means of discussing
workflow structures in this thesis. The graphical representation focuses on the
routing of cases. It is typically expressed as a directed graph in which the nodes
represent activities, and the edges represent the flow of work.

WfMC (1999b) identifies four types of routing between activities. They are illus-
trated in figure 3.3 on the next page. The exact graphical syntax varies between
different languages, and even between different documents of the WfMC. The
syntax chosen for this thesis is inspired by the informal presentation in (van der
Aalst 1998).

Sequential routing: A segment of a workflow in which activities are executed in
sequence under a single thread of execution.

Parallel routing: A segment of a workflow in which two or more activity in-
stances may execute concurrently within the workflow. Parallel routing nor-
mally commences with an AND-split and concludes with an AND-join.

Conditional routing: A segment of the workflow in which there is a choice be-
tween alternative paths of execution. The branch is defined with an OR-split,
and the alternative paths are merged with an OR-join.

Iterative routing: One, or more activities are repeated until a condition is met.
The termiterative routing is taken from (van der Aalst 1998, p.7), while
WfMC (1999b, p.34) defines this asiteration.

CHAPTER 3. WORKFLOWMANAGEMENT SYSTEMS 31

A1 A3A2

A1 A4

A2

A3

A1 A4

A2

A3

AND

OR

A1 A2 A3

Sequential routing

Parallel routing

Conditional routing

Iterative routing

Figure 3.3: Graphical representation of routing constructs
(van der Aalst 1998, p.7)

Using these routing constructs, the process definition specifies the flow of work.
Transition conditions may be used to block certain routes, but the default case is to
make the transition between activities as soon as the from-activity has completed
successfully. Apart from this, transitions are simple route assignment functions
(WfMC 1999a, p.14). Conditions related to splits, joins and iteration are defined
in the activities.

The activities represent a unit of work. They may assign a participant, referring
to the organisation model, and applications to be executed, either automatically, or
to support human users. Other attributes specify priority, routing conditions, and
references to workflow relevant data to be processed.

The basic activity is atomic in the sense that it is a self-contained piece of work.
Another type of activity is the subflow. It refers to a separately defined process,
possibly to be distributed to another workflow engine. Some activities may be
dummies that are included for routing purposes only.

The WfMC provides no way to specify transactional properties for the activities.
Activities are considered to be atomic “with respect to the data under control of the
Workflow engine” (WfMC 1999a, p.37), meaning that internal data must be rolled
back or compensated in case of crashes or cancellation of the activity. However, the
set of attributes for defining processes and activities is extensible (WfMC 1999a,
p.21). Chapter 5.6 discusses extensions that will be useful for controlling the trans-
actional mechanisms suggested in this thesis.

CHAPTER 3. WORKFLOWMANAGEMENT SYSTEMS 32

3.3 Alternative Workflow Definition Languages and Tech-
niques

The Workflow Management Coalition is not the only organisation to provide work-
flow definition languages. In the area of web services, a there are many competitors
to the WfMC. The Business Process Management Initiative seeks to standardise
“the management of business processes that span multiple applications, corporate
departments, and business partners”2. BPMI.org has released the BPML specific-
ation that allows for the definition of business processes that cross organisation
boundaries. Microsoft and IBM have released the specification Business Process
Execution Language for Web Services (BPEL4WS), which combines and replaces
previous languages from both companies3. In addition there are a fair number of
other alternatives for defining business processes.

In general, all the competing languages are able to express the four basic routing
constructs described here. They differ in their approach to some advanced concepts
(see van der Aalst 2003 for a comparison). For the most part, the conclusions in
this thesis do not depend on which workflow language is chosen.

2http://www.bpmi.org/
3http://www.ibm.com/webservices/

Chapter 4

Case Study

This chapter describes LOVISA, a workflow system under development for the
Norwegian Courts of Justice. LOVISA will support the preparation and document-
ation of criminal and civil cases, automating tasks where possible, and guiding the
users in the flow of work appropriate for different types of cases. The first version
of the system has been in production since 2003 and will gradually be improved
and implemented in all the District Courts and the Courts of appeal within the next
two years. I have done an analysis of LOVISA’s transactional requirements and
features.

The purpose of studying LOVISA as part of the work with this thesis has been
partially to acquire knowledge for my own benefit, and partially to serve as an
example when discussing general properties of WfMSs. The examples are used
both as a means to clarify the discussion, but more importantly, they serve as a test
to see how my general suggestions impact a concrete workflow system. Specific
tasks in LOVISA have also inspired new ideas that might expand the usability of
the Xymphonic Transaction Model.

van Leeuwen (1997, p.187) discusses pitfalls in designing workflow systems and
states that “the automation expert must resist the temptation of focusing attention
only on solutions to technical problems. Timely consultation with the real users
is vital to ensure acceptance and suitability of the workflow.” I have not discussed
the design with potential users, but it is my aim to predict as far as possible which
impact the suggestions proposed in this thesis will have on the users. Drawing on
examples from LOVISA has been invaluable in this respect.

LOVISA is written in java using a framework developed by Computas AS called
FrameSolutions. FrameSolutions provides classes and tools for defining and man-
aging workflows and related data in an otherwise custom built information system.
LOVISA is implemented in a three-tier architecture consisting of java clients run-
ning the user interface, an Enterprise JavaBeans application server that handles
business logic, and a relational DBMS for storing persistent data.

33

CHAPTER 4. CASE STUDY 34

LOVISA integrates with several external systems. The most important are Ephorte,
a document management system for public bodies in Norway, and Microsoft Ex-
change server for scheduling the court hearings and other meetings in a case. Fur-
thermore, criminal cases are received electronically from the police systems, and
certain types of cases may be received from the Brønnøysund Registers, Norway’s
central register authority. Fees and other expenses connected to hearings are ex-
ported to an accounting system. Integration with external systems is common in
WfMSs, and as such LOVISA is a representative example.

This chapter gives an overview of the architecture of LOVISA, and presents an
example workflow that will be used throughout this thesis. The legal terms are
translated from Norwegian by me using the dictionary (Chaffey & Walford 1997).
Any errors are my own.

4.1 FrameSolutions

In order to understand the transactional features of the system, some background
on FrameSolutions is necessary. The information presented here are taken from
(Computas 2002), a programmers’ guide to the framework.

4.1.1 The Workflow Meta-model

The workflow meta-model of FrameSolutions is in most respects compliant with
the Workflow Management Coalition’s (WfMC) workflow meta-model as presen-
ted in (WfMC 1999a). However, some variations in terminology warrant a descrip-
tion.

A workflow is defined as "The transfer of responsibility for a case from one or-
ganisation unit to the next, as they together perform the series of tasks needed to
reach a goal" (Computas 2002, p.5). Basically, a workflow consists of tasks to be
executed in some predefined order. Each task is assigned to one user by inserting it
as a work item in his work list. It contains several steps to be performed by the user.
The steps are defined in a process definition. The term process in FrameSolutions
refers to a task, not a complete workflow as in much other literature.

A stepis an activity, or a subprocess, which in turn may contain other steps. The
activities of a process are the basic operations that the participant is to perform.
Activities are typically very simple, e.g. answering a question, making a document,
entering some data in a form, or creating new tasks. There may be constraints de-
fining the order in which the steps are to be performed. Some steps may be hidden,
depending on an evaluation of include conditions, and steps may be optional or
required. Some steps may be performed repeatedly as often as desired.

The important difference between the reference model and FrameSolutions is the
work item assigned to a workflow participant. WfMC (1995, p.19) states that "an

CHAPTER 4. CASE STUDY 35

activity typically generates one or more work items, which together constitute the
task to be undertaken by the user (a workflow participant) within this activity". I.e.
the WfMC see the work items as smaller units of work and the terminology states
that ataskis a synonym both for work item and for activity. FrameSolutions on the
other hand, associates a process with the work item, thus awork itemwill contain
several activities to be performed by the user.

To avoid confusion, I will stick to the terminology of FrameSolutions. Figure 4.1
illustrates a simple task containing some activities. It is defined in the process
model, and the term process is often used as a synonym for task. Refer back to this
figure as often as necessary. You may also want to take a look ahead at figure 4.6
on page 42 to see how different tasks are combined to compose a workflow.

Process 1

(Sub)Process 2 Activity 1a

Activity 2a Activity 2b

Sub−process
 − Activity 2a
 − Activity 2b

Task 1

Activity 1a

Process definition

Is defined in

Figure 4.1: A task with some activities, and its corresponding process definition

The internal structure of an activity is illustrated in figure 4.2. When a user per-
forms an activity, the system executes one or more actions. One action is typically
one application statement, normally a java method invocation. Conditions control
how the activity is to be performed. The activity may define pre- and postconditions
as is also the case in the WfMC reference model. In addition, action-conditions
allows a selection between two different sets of actions to be performed for the
activity.

actions
Post−

actions
False

actions
True

Pre−
condition

Pre−
actions

Action−
condition condition

Post−

Actions

Figure 4.2: The internal structure of an activity.A precondition must be true before
the step can be started. An action condition is like an if-else-test in a programming
language, selecting between two sets of actions to be performed for the activity.
And a postcondition is the requirement for being able to terminate the step.

Actions that interact with the user are specified to be run on the client. In such cases
the workflow engine suspends the execution of the activity and a component in the

CHAPTER 4. CASE STUDY 36

client application is responsible for executing the action statement. The results of
the action are returned to the application server upon completion, whereupon the
workflow engine stores the data and resumes execution of the activity.

FrameSolutions applications handle both the workflow control data and the do-
main objects on which the applications operate. When a task is created, a process
instance is created. The process instance is executable and it contains a state, re-
ferred to as context. Objects from the application domain model are bound to the
variables of the context as work progress. E.g. a case is a domain object, repres-
enting the real world entity that is the focus of a given workflow. The case object
is bound to the context variables of the first task of the workflow. It is passed along
from one task to the next as work progresses, allowing all processes access to the
case and the information that the case-object references.

To sum up, a process and the activities it contains are the building blocks of a work-
flow. A process is executed by one user when its corresponding task is selected in
the work list. For work to flow from one user to the next, an activity in one process
may initiate a new task that is placed in the work list of another user. Processes may
also be created as a result of predefined triggers, e.g. the arrival of new information
regarding a case, or the expiration of a deadline.

4.1.2 Transactions

FrameSolutions does not make the same distinction between workflow relevant
data and workflow application data as does the WfMC. LOVISA manages both
workflow relevant data and, to a large degree, workflow application data as objects
in a domain model. The state of the objects in the domain model is stored in a
central relational database together with workflow control data. Workflow control
data consists of process instances created from the process definitions and other
run-time information. Thus there are two types of data that are internal to the
system – domain objects and workflow control data. Access to both types of data
is controlled by the transaction mechanisms described in this section.

The exception to the above is data managed by external systems. The exchange of
data with these systems is mediated by non-distributed transactions or by files in
predefined paths in the file system.

LOVISA uses a form of multi-level transactions to access internal data. At the ap-
plication server level, user transactions cover the processing of java objects. In gen-
eral a user transaction lasts as long as the processing of one action1. Concurrency
control is handled by a service in FrameSolutions called ObjectStore. ObjectStore
sets read and write locks on java objects as they are read from the database. The
database operation is a short read transaction. Execution of the action may initi-
ate several new database transactions if it requests new objects to be displayed for

1Action: Recall that an action is one application statement, typically a method invocation, and
that an activity consists of one or more actions

CHAPTER 4. CASE STUDY 37

a user. When the action completes, the framework commits the user transaction
by copying the new state of modified objects to the DBMS using a short update
transaction, before releasing the locks in ObjectStore. Thus one user transaction
at the application server level is implemented as several ACID transactions to the
database.

The correctness of this approach is guaranteed by specifying that all write-access to
the DBMS must go via the ObjectStore service. The code implementing an action
must first acquire a write lock on an object before it can update its values. Read-
only transactions may access the DBMS directly. LOVISA implements a number
of search and reporting procedures by reading directly from the database. Also,
individual cases may be opened and the objects displayed read-only, even though
another user is currently editing the same data. In both cases, the object displayed
is the most recently committed version. As soon as an object is updated, a new
search, or a refresh on the client will retrieve its new values.

Objects are cached in memory for as long as possible to avoid the delay in reading
from the database. Objects may also be cached on the client for quick access to
its properties, and for processing of actions that are defined to be run on the client.
The client returns the (possibly modified) object to the server upon completion of
the action.

The LOVISA workflow enactment service is distributed over multiple application
servers sharing the same DBMS. Each workflow engine serve one court district,
and most of the data is processed by one district only. The exception is person
information. People may be involved in several cases simultaneously and as a con-
sequence, accesses to person objects must be globally controlled. The ObjectStore
service includes a component that maintains locks on person objects in the shared
database. The setting of a lock is protected by a database transaction that first
checks for possible conflicts before persistently adding the new lock to the DBMS.

4.2 The User Interface of LOVISA

As the LOVISA client is started, the user’s task list is displayed. It contains tasks
that have been assigned to him for various cases, and there may be more than one
pending task for a case. Upon selecting a task, the activities to be performed are
displayed, and the user may execute an activity by selecting it and clicking an icon.
Another option, when selecting a task, is to open the case folder. An example case
folder is shown in figure 4.3 on the next page.

The case folder displays adatabase viewof the developments in the case so far.
The user may browse information such as the case’s status, involved parties, legal
claims, verdicts, documents, court hearings and other meetings, accounting inform-
ation, history and case log (see the labels of the various tabs in the case folder in
figure 4.3). By database view, I mean that the case is displayed without regards

CHAPTER 4. CASE STUDY 38

Figure 4.3: The user interface of LOVISA.The left column gives access to the main
functions of LOVISA. The most important are the inbox (innkurv), several search func-
tions (Søk), journal and archive, and a folder of opened cases (saker). An example case
folder is depicted on the right. The fifteen tabs give access to different aspects of the case,
for example status, involved parties (sorted under the headingsbehandles av, parter, and
aktører), legal claims (krav), verdicts (avgjørelser), documents (dokumentliste), etc. The
currently active inbox of the case (sakens innkurv)is displaying the two tasks that are
pending. The activities of the highlighted task, prepare case (forbered sak), is detailed in
the lower half of the screen, including a text field explaining the current activity (the details
are not important yet. The steps of this task are discussed in chapter 5.3.3). The activities
are executed when the user clicks the execute button. Note the last activity, send case along
(send saken videre), which, when executed, will complete the task and create the next task
of the workflow.

to workflow management features. The user may even register and modify data in
the case independently from the pending tasks in the task list. For example, in the
tab displaying claims, the user may activate the same dialogue for registering new
claims that he would get during the course of executing the taskprepare case.

Support for adaptive workflows has received much attention in research the last five
years. In LOVISA it is solved by a very simple mechanism. Figure 4.3 highlights
the task list of the case. From this view, a user may start his assigned tasks, as

CHAPTER 4. CASE STUDY 39

well as other users’ tasks, provided he has the rights to do so. Furthermore, he may
delete and create tasks in an ad hoc manner to deal with unforeseen events. It is up
to the user, as a responsible individual, to modify the workflow as appropriate to
the circumstances.

These two properties, the database centric view of the case, and the options for
ad hoc control of the workflow, leads me to the following conclusion: The work-
flow is guiding the users’ actions rather than limiting, or enforcing them. This is
a characteristic that will be useful for expert systems like LOVISA. It may be in-
appropriate for production workflows that manage highly formalised procedures.
Thus, from this perspective, LOVISA is only representative for a certain type of
workflow systems.

4.3 Example Workflow

The following is an overview of an example workflow from LOVISA. This is an
introduction, and the relevant details will be provided as appropriate in the next
chapter.

We will take a look at the workflow for criminal cases in which the accused has not
admitted his guilt. This type of case is calledmeddomsrettin Norwegian, indicating
that lay judges participate in the proceedings. These cases normally involve one
professional judge, but if the prescribed penalty scale is above six years, two judges
may participate.

A criminal case is initiated when the prosecuting authority sends an indictment and
a summary of evidence to the courts, applying for a main hearing in the case. The
receipt of the documents is registered in the journal and archive part of LOVISA.
This creates the case object and initiates a workflow for the further processing of
the case. The complete workflow is outlined in figure 4.4 on the next page. Note
that the activities are omitted from this figure.

The triggering event is described in an oval and marked with a letter symbol to
indicate the event was triggered by received mail. Each square is a task to be
undertaken by the participant under whose column the task is placed (in the manner
of UML activity diagrams). The arrows show the flow of work between tasks.
Time proceeds downward. The goal is to complete a case within three months,
however, in 2002 a significant number of the cases required more time. Other
types of cases may normally take up to six months (Yearly Statistics for the Courts
of Justice2002, p.7).

The arrows show dependencies between directly related tasks. The precise se-
mantics of an arrow, however, is that the source task will create the targeted task.
Thus the dependency is implicit. There are also hidden dependencies. Tasks that
seem to be endpoints have the semantics that they will just terminate when finished
and not create any new tasks. Dependencies to other tasks’ may be modelled by

CHAPTER 4. CASE STUDY 40

Prepare Case

Register case

Register counsel
for the aggrieved party

for main hearing
Fix time and place

Write decision
(for primary judge)

Functionary Judge

(shown in own diagram)

Select lay judges

Indictment registered
in journal

Functionary
("Berammer")

Register interpreter

Register defense counsel

Register expert

Manage responses
from lay judges

Prepare main hearing

Carry out main hearing

[Single professional judge]

[Multiple
professional
judges]

Write decision

Write decision
(for participating judge)

Register decision

(for primary judge)
Conclude decision

Serve the judgement

Finish the case

Inform other parties
of the decision

Figure 4.4: The workflow for criminal procedure

CHAPTER 4. CASE STUDY 41

preconditions, but they are not shown. For example, the main hearing cannot com-
mence until all the involved parties are registered and the required number of lay
judges have confirmed participation (see the subworkflow in figure 4.5). Note that
for the transactional features discussed in the next chapter, it is important to model
all dependencies explicitly.

Some of the tasks create more than one follower. This is shown as an AND-split
as discussed in chapter 3.2. For the most part, parallel execution is possible when
the tasks are shown approximately side-by-side. Additionally, in the large court of
Oslo (Oslo Tingrett), several functionaries with specialities in different fields may
undertake tasks in parallel, although usually they will be performed one after the
other by a single participant. Thus the workflow provides opportunities for parallel
execution.

The hexagonal box represents a part of the workflow that is shown in figure 4.5. All
the tasks in this subworkflow are started by triggering events, and ends without cre-
ating any new tasks. As noted above, however, there are dependencies not shown.

Supplemental selection
of lay judges

Functionary Judge

replies from lay judge Repeat request for response

Application for exemption
registered in journal

Consider application

Register application

Reject application

[granted]

[rejected]

Deadline expired for

Figure 4.5: Manage responses from lay judges subworkflow

Each task in the workflow consists of several activities. As an example, figure 4.6
on the next page shows the detailed process structures for the tasks required to
write the decision document. The exact procedure depends on how many judges
there are for the case. I have chosen to show the branch where there are more than
one professional judge. For simplicity, other tasks and arrows have been removed.

The notation used is the same as the users will see when they select a task in their
task list. Required activities are marked with an inverted arrow. The circular arrow

CHAPTER 4. CASE STUDY 42

JudgeFunctionary

Print list of participants
Write introduction to decision
Send case on

...

Send to functionary for registration

Create court record

Write decision (for primary judge)

Write decision document
Send decision to participating judge

Write decision (for participating judge)

Send to primary judge for conclusion

Conclude decision (for primary judge)

Prepare main hearing

Determine publicness classification
Finish decision document
(which also inserts code for publicness)

Register decision

Register decision
Finish decision document
Lock decision document
Export decision to Lovdata

Edit decision document

Send case on

Figure 4.6: Details of the tasks for writing the decision document

signifies that the activity may be repeated any number of times.

In general, the procedure is for a functionary to create the decision document in
advance. He writes an introduction as part of preparing the court hearing. The
document is temporarily stored in the database internal to LOVISA. It is sent to the
primary judge (Norwegian:domsskrivende dommer), who will write his part, send
the document to the next professional judge, who in his turn sends the document
back to the primary judge.

When concluded, the decision is returned to the functionary for registration. The
document is checked into the Ephorte archiving system by thelock documentactiv-
ity. A copy may also be exported toLovdata, a legal information system containing,
among other things, databases of verdicts.

A notable trait is that the writing is sequentially ordered. The document is passed
between the editors in the context variables of the process instances. Another op-
tion using xymphonic transactions is explored in chapter 5.7.1. Also note that
the transit between tasks is normally achieved by the user performing the last and
required activity in a process. The workflow will not proceed until the user ac-
knowledges the completion of his task by executing this activity.

CHAPTER 4. CASE STUDY 43

All the tasks in the overview in figure 4.4 have a similar number of steps to be
performed. Space does not allow all the details to be presented, but one more
example is discussed in chapter 5.3.3 (see figure 5.11 on page 65).

4.4 Graphical Notation

A generic process (task), such as the one shown in figure 4.7, may have different
internal structures, as exemplified in figure 4.8. For simplicity, I will assume that all
steps are activities. A step may be a subprocess, but it is not executable in itself and
will simply expand to a new set of activities. Usually the user will proceed from top
to bottom in an orderly fashion, but as the diagrams show, he is often allowed to do
this step here, another step there, and perhaps redo some steps before completing
it all.

Activity A1
Activity A2
Sub−process
 − Activity A3
 − Activity A4
Activity A5
Activity A6

Task A

Figure 4.7: A generic task (process) in LOVISA

A2

A3 A4
A1 A5 A6

OR

(a) Totally ordered activities

A2

A3

A4

A1

A5 A6

AND

(b) Partially ordered activities

A1

A2

A3

A5

A6

A4

Start End

(c) Unordered activities

Figure 4.8: Example activity structures

Figure 4.7 and 4.8 illustrate how the structure of a task, as it is defined in LOVISA,
may be converted to the graphical representation proposed by the WfMC. This

CHAPTER 4. CASE STUDY 44

last form makes the internal structure more explicit and is therefore more suitable
for the discussion of transactional properties. It will be used when discussing the
internal structure of processes.

4.5 Summary

LOVISA is a workflow system developed for managing all kinds of civil and crim-
inal cases in the Norwegian Courts of Justice. It will be used as an example to
illustrate the discussion in the next chapter, and I will evaluate my suggestions on
transactional design by showing how they would impact LOVISA.

This chapter started by describing the transactional design of LOVISA. Basically,
there is one user transaction for each application statement in a process. For each
user transaction, there may be several short transactions to the connected DBMS.
The last part of the chapter gave an overview of the workflow for handling criminal
cases. This workflow is relatively simple, still it includes all workflow elements
that will be discussed in this thesis, including all the routing constructs, triggering
events, opportunities for parallelism and integration with external systems.

It must be noted that the example presented only represents a small fraction of the
workflows managed by LOVISA. Furthermore, LOVISA may have properties that
are not found in other systems. I have attempted to focus on those aspects of the
system that will be most representative for WfMSs in general. Hopefully the reader
will be able to critically apply my ideas to dissimilar situations.

Chapter 5

Discussion

The Xymphonic Transaction Model controls concurrent access to shared data and
includes some constructs for routing tasks between participants. However, it does
not allow for the definition of the tasks to be done in a business procedure, and it
does not in itself guide nor constrain the users in how they accomplish a task. In
order to support and manage a workflow, process control will have to be imple-
mented in a software component, which in turn may use transactions as a means
for concurrency control and recovery.

In this chapter I propose a general model for how designers may specify the trans-
actional behaviour of the processes they create, and how the workflow management
system may interpret and enact this definition in terms of the transactions that are
created.

The chapter starts with a discussion of architecture in section 5.1 and includes some
design suggestions. Section 5.2 explores the upper bounds of transaction duration
and introduces some useful terminology. The proposal for a mapping from work-
flow definitions to transactions in section 5.3 is the main contribution of this thesis.
This mapping primarily establishes rules for structuring nested databases, while
the uses for parameterised access modes are explored in section 5.4. Section 5.5
incorporates a scheme of data partitioning proposed in (Vaksvik 2002) for avoiding
conflicts between workflows. The transactional design is made concrete in section
5.6 by presenting extensions to the WfMC’s workflow definition language. Up to
this point, the discussion focuses on supporting the behaviour of WfMSs as they are
today. Section 5.7 explores some ways of extending the functionality of WfMSs.
The discussion is rounded off in section 5.8 with a critical view on the atomicity
requirement, and in section 5.9 some related work is presented.

45

CHAPTER 5. DISCUSSION 46

5.1 Architectural Considerations

Transactions coordinate the storage of and access to data. The discussion starts by
considering which data, from an architectural perspective, should be covered by the
WfMS’s transactions. These considerations will give an indication of which type
of workflow systems may benefit from using xymphonic transactions. Following
this, a design example based on Java Enterprise Edition (J2EE) is outlined.

5.1.1 Which Data should be Covered by Xymphonic Transactions?

In the reference architecture proposed by WfMC there is a clear distinction between
the processing executed by the workflow enactment service and the data manipu-
lated by the applications invoked during the workflow. Workflow application data
is not used by the workflow enactment software and is relevant only to the ap-
plications or user tasks. It is normally placed outside the control of the workflow
engine.

Such a distinction is probably inappropriate for a WfMS based on long lasting
transactions. Consistency could be compromised if a distributed processing would
fail in one part of the system, but succeed in another. Example scenarios include
lost documents that according to the workflow system have been sent to customers,
or vice versa, the documents may be saved, but the workflow history explaining the
background for their existence may be lost.

Xymphonic transactions in particular would introduce problems if they were to in-
tegrate with non-xymphonic systems. The commitment of a data item to an external
system done in a subxymphony might have to be revoked (undone or compensated)
even though the subxymphony itself commits. No data committed in a hierarchy
of nested transactions is finally committed until the top-level xymphony commits.

These possibilities for inconsistencies indicate that xymphonic transactions should
be used throughout the system, that is, in all interactions between the workflow
engine, the work list and the workflow client application. Data that is processed
by invoked applications like word processors, spreadsheets and imaging programs,
must be placed under transactional control by the workflow client. This may be
achieved by checking out templates, or partially completed documents to the file
system on the client computer, and checking in the results to the workflow system
upon completion of the editing activity. Such a check-out check-in model is used
for document handling in LOVISA.

The workflow reference model from the WfMC aims to allow a combination of
workflow components from different vendors. However, it may be difficult to util-
ise xymphonic transactions effectively if mixing WfMSs. It is possible to support
the definition of workflows in one tool as long as it can accommodate the exten-
sions to the workflow definition language suggested in section 5.6. Interaction
between different WfMSs may be handled as any other interaction with external

CHAPTER 5. DISCUSSION 47

systems. However, integration with a work list that does not support xymphonic
transactions may be problematic. The presence of a task in the work list may be
the result of an uncommitted transaction. The contents of the work list must be
part of that same transaction in order to remove tasks in case of a rollback, and the
client application should be built to interface with the non-standard transactional
functions.

These considerations are supported by the conclusions reached by researchers in
transactional workflows. Rusinkiewicz & Sheth (1995, p.600) state that “some-
times the data integrity constraints span the boundaries of individual databases
and, as a consequence, the tasks accessing interrelated data must constitute an ex-
ecution atomic unit.” However, systems built for stand-alone operation normally
do not provide the information and services that would be necessary to execute
distributed transactions. Building a customised information system that manages
most of the data homogeneously will provide advanced transactional support to
most parts of a workflow, while limiting the number of interactions with external
systems that constrain the applicability of advanced transaction models.

It must be noted that workflows, or parts of workflows, using xymphonic transac-
tions can coexist in the same system with workflows based on ACID transactions.
Anfindsen (1997, p.50) has shown that traditional serializability is a special case of
the nested conditional conflict serializability property of xymphonic transactions.
This means that both types of transactions can be serviced by the same transaction
manager. Such a hybrid would allow for selected workflows, or subsets of tasks,
to utilise the features discussed in the following sections, provided the subsystems
on which they run can participate in the xymphonies.

5.1.2 Architectural Design Options

Custom built information systems are frequently programmed in an object oriented
programming language using a relational DBMS for storing the objects. This is
also the case for LOVISA, which uses the J2EE platform from Sun1. In this section
I will discuss two design options for implementing xymphonic transactions in a
system using an object oriented environment on application servers and clients.
The suggested design is not the only way to do it, rather it is my intension to
demonstrate the feasibility of incorporating xymphonic transactions in a WfMS.

Usually, such systems construct persistent objects from the database using a map-
ping to translate between the relational schema and the object model. The objects
thus created are cached in the memory of the server and possibly even on the cli-
ent. Modification to these objects apply to the cached copy, and are written back
to the database according to the policy adapted by the object-oriented application.
I will distinguish between two main approaches. The first option is to build sup-
port for xymphonic transactions into the workflow application and use traditional

1http://java.sun.com/j2ee

CHAPTER 5. DISCUSSION 48

transactions to the database. The other option is to use xymphonic support in the
DBMS, keeping the database connection open as long as there is a live transac-
tion holding locks on the corresponding object, and possibly writing uncommitted
modifications back to the database several times during a transaction.

Implementing Xymphonic Transactions in the Object-Oriented Application
Server

Taking LOVISA as an example, xymphonic transactions may be built as an ex-
tension to ObjectStore, the service that coordinates write-access to objects cached
in memory. In LOVISA, ObjectStore is a fairly simple lock manager, which all
requests for objects in the application server must pass through. It could be ex-
tended with more advanced transaction manager services to support xymphonic
transactions.

First, we will get an overview of the various cached copies of an object. The
system may contain up to three versions of an objectx. As shown in figure 5.1
these possible versions are:

• The most recently committed valuex0

• The most recent versionx1 of an object that has been committed in a sub-
transaction, but is not finally committed, and

• The objectx2 that is in the process of being updated by a live transaction.

DBMS Server Server/client

x0 x1 x2

Active Xymphony

Active transaction

Figure 5.1: Versions of an objectx

The versionx0 will reside in the DBMS and may be retrieved by issuing SQL-
statements directly to the database. The objectx1 is cached and associated with
the committed state of a xymphony. It may be accessed in write-mode by sub-
transactions of the xymphony or any of its children. It may also be accessed in
read-mode by any transaction using a parameterised read, and whose parameter set

CHAPTER 5. DISCUSSION 49

is compatible with the parameter set of the xymphony. Requests forx in write-
mode will create a copyx2 of x1 that may be processed in an activity, either on
the server or on the client. Upon completion of the activity,x2 will replacex1, and
upon commitment of the xymphony, the current state ofx1 should be written to the
database using a short ACID transaction.

This design makes rollback of a xymphony a matter of simply discarding all its
cached objects. Rolling back a subtransaction amounts to discarding the transac-
tion’s x2 objects. However, in order to support rollback of subxymphonies, Ob-
jectStore would need a transaction log recording the before-images (which is com-
monly used in the undo-redo protocol described in Bernstein et al. 1987, pp.180–
195) of allx1-objects that were replaced in a subxymphony. And finally, the lock
manager of ObjectStore would have to implement parameterised lock modes and
the mechanisms needed for the inheritance of locks downwards and upwards in the
nested xymphonies.

The benefits of implementing xymphonic transactions in the application server are
that the database transactions may be kept short. Not all databases support long-
lasting transactions, and the database performance would not suffer from handling
a large pool of live transaction state and locks. The performance issue, however,
would move to the application server. Cached objects would have to be kept in
memory for a longer time, unless a scheme was devised to allow the objects to be
temporarily written to disk (e.g. by adapting the complete undo-redo protocol to
the case of cached data). The ObjectStore lock manager would also have to keep
an increased number of locks in memory, and each lock would be more complex.

The performance issues can be alleviated to some degree by introducing more ap-
plication servers. LOVISA already has this option. The database server on the
other hand cannot that easily be partitioned and distributed on more nodes. Thus it
may be easier to handle the performance issues in the application server, than in a
central DBMS.

Needless to say, a drawback of this approach is that the implementation would re-
quire the programming of an almost complete transaction manager. As commented
by Gray & Reuter (1993, p.485), this is a great task and the debugging may take
years. Thus the quickest approach would be to exploit the transaction mechanisms
already available in a commercial product.

Using Xymphonic Transaction Services in the DBMS

This option should be fairly easily available by using the existing Xymphonic En-
gine, or possibly in the future, its equivalent. The DBMS would handle all transac-
tion mechanisms, including concurrency control, recovery and the management of
xymphonies. The application server would have to maintain an open connection to
the database for the duration of the whole xymphony. There should be a one-to-one
relation between the user transaction and the database transaction.

CHAPTER 5. DISCUSSION 50

In this case, the commitment of a subtransaction on the level of the application
server should probably be propagated down to the DBMS. Depending on the buffer
management policy, the previously committed versionx0 of an object would be
written to the log and replaced by the committed state ofx1. Thus access to any
version ofx would be restricted to parameterised read operations compatible with
the write-locks for the entire duration of the top-level xymphony.

Transaction management on the server would be simplified. It would have to
provide its clients an interface to the transaction mechanisms available from the
DBMS. It should probably not keep its own locks, as they would be redundant and
difficult to synchronise with the locks managed by the database. Rollback would be
managed by the DBMS, but should be complemented by the application discarding
all the cached objects covered by the aborting (sub)xymphony or transaction.

It is quite possible that allowing long-running transactions in the current DBMSs
would significantly reduce the number of clients that they are able to serve. The ex-
perience of the LOVISA developers is that when using a maximum duration of 30
seconds for a database transaction, the performance is marginally acceptable. The
transactions suggested in this thesis could easily last for more than an hour. Apart
from these words of warning, however, I will merely assume that performance will
not be a problem.

5.1.3 Who is the Owner of the Xymphonies?

A hierarchy of xymphonies is ideal for delegating work. The one who starts a task
is the owner of the top-level xymphony and may delegate parts of the work to other
participants. He holds responsibility for the final outcome of the work, and this is
supported technically by giving him the rights to determine which subtransactions
to accept and reject.

A workflow, on the other hand, is typically initiated by a trigger such as an in-
coming letter, telephone, order, etc. The recipient may be a secretary whose task
it is to register the event in the system, and the workflow may proceed to several
participants who has authority in their respective areas/fields. Giving ownership to
the user who starts the workflow is therefore inappropriate.

The only proper solution is to give the workflow engine ownership and full au-
thority to the xymphonies. The engine can then check the user’s rights to manage
transactions against the organisation model. In this way, configuration of access
rights to transactional features can be integrated with the definition and mainten-
ance of other aspects of the user organisation. However, the question of how to
assign user privileges will only be briefly touched in the following sections. A
detailed discussion of this topic is outside the scope of this thesis.

CHAPTER 5. DISCUSSION 51

5.1.4 Summary of Architecture

WfMSs designed for a heterogeneous environment seems to be unsuitable candid-
ates for incorporating xymphonic transactions. A workflow in this setting is poten-
tially distributed among nodes with limited transactional support. Inconsistencies
could be the result of diverging transactional semantics for different activities.

Xymphonic transactions are more suitable for implementation in a homogeneous
system. As a minimum, both the workflow engine, the work list and the workflow
client application should be able to participate in a distributed xymphonic trans-
action. Interaction with external systems is possible, but will reduce the potential
transaction duration. This last point is further discussed in the next section.

5.2 Upper Bounds on Transaction Duration – How Long
May a Transaction Last?

Frame Solutions and LOVISA uses one transaction to a task, and the tasks are
designed so that they should be as short as possible. One benefit of the Xymphonic
Transaction Model is that it allows for long-lasting transactions. The question is,
how long may the transaction last?

One aspect of this question is how to exploit the Xymphonic Transaction Model in
order to allow shared access to data by long running concurrent transactions. This
is the topic of the better part of this chapter. However, we will start by looking at
the factors that may reduce transaction duration. Some of these result in absolute
constraints that we cannot hope to avoid using the technology available today.

The following factors may limit the maximum duration of the transactions:

• Avoiding lost work

• Real actions and the requirement for auditing and accountability

• Integration with external systems

A transaction lasting for a day or more has a greater probability of being interrupted
by system crashes, or stops due to maintenance. Atomicity requires that all active
transactions must be aborted when the system is restarted. The problem is that a
lot of work may be lost when the transaction is forced to abort. Transactions may
be kept short in order to avoid lost work. A more elegant solution would be to use
persistent savepoints, which are discussed in section 5.2.1.

Real actions were discussed by Gray & Reuter (1993, p.163). Once executed,
they cannot be undone. For auditing purposes, the data regarding a real action
must often be recorded durably in the database. This requires the transaction to

CHAPTER 5. DISCUSSION 52

postpone the execution of the real action until it is prepared to commit, and upon
completion of the real action, it must finally commit. The implication is that a
task involving a real action forces the transaction to commit. The presence of
real actions effectively prevents transactions that cover the whole workflow. Its
relevance to WfMSs is discussed in section 5.2.2.

Workflow systems are frequently integrated with external systems. The external
systems may not be able to run long-lasting transactions. In order to preserve
consistency between the WfMS and the external system, the transactions that are
durably committed in one system should also be durable in the other. The workflow
cannot be undone, unless it is possible to roll back, or compensate its effects in the
external systems. Unless compensating transactions are available, we will have to
treat interactions with external systems as real actions. This is also discussed in
section 5.2.2.

5.2.1 Persistent Savepoints to Avoid Lost Work

In a system designed for long-lasting transactions it is desirable to provide forward
recovery in order to limit lost work due to crashes. Persistent savepoints have
been proposed to allow restoration of the data to the last savepoint. Gray & Reuter
(1993, p.575) state that to their knowledge, no system had at that time implemented
persistent savepoints. The Xymphonic Engine provides persistent savepoints, and
it is probable that more recent systems do as well.

The availability of persistent savepoints is important to determine upper limits on
transaction duration. An organisation might decide that it will not risk loosing
more than a few hours of work. Unless persistent savepoints can be used to save
the current state of the workflow every hour or so, this may force the transactions
to commit frequently.

For forward recovery to a persistent savepoint to be consistent, it is necessary to
restore both the data that is processed by an application, and the application context
as well (Gray & Reuter 1993). Some of the application contexts that typically will
be present in a workflow system are outlined in the following.

Recovery of Application Context

In a typical office environment many operations on a workstation will not be pro-
tected by transactions. The data processed by word-processors, spreadsheets, email
clients and web browsers may be protected by transactional OSes, but the applica-
tion context (e.g. local main memory and temporary files) is usually unprotected.

Thus the data involved in a work procedure may be partially protected e.g. in a
customer database, and partially unprotected in an unsaved document. Cut and
paste operations between such programs may compromise isolation, and crashes

CHAPTER 5. DISCUSSION 53

may lead to inconsistency between the unprotected application state and the data
that is protected (and possibly persistent).

This implies that a persistent savepoint (or a commit) should be taken in such
a way that the application context is recoverable as well. Word-processors and
spreadsheets must save the document before a savepoint is taken. An email client
must send all messages or save them as drafts. Some data may not be saved. For
example window positions, and browser history is usually only saved on program
exit. These are examples of state that may not be that important, and its possible
loss may be ignored. However, a persistent savepoint should only be taken if all
state that is relevant to the application logic can be included in the savepoint.

5.2.2 Real Actions and Auditing

One of the motives of Vaksvik (2002) was a to allow an undo-operation when
executing a workflow. This seems to be easily achieved by executing the tasks in
long-running transactions, partitioned by subtransactions or savepoints. An undo
of a task amounts to aborting the subtransaction that contains its work, or rolling
back to an appropriate savepoint.

This approach is not novel, and the following argument demonstrates that it may
not always be possible.

Rollback in a transactional sense is not applicable in case of long run-
ning applications like workflows. However, there is a strong request
for a feature, which allows to execute "something" which undoes some
or all the work of a process (e.g. to add a "not longer valid" phrase).
In addition, it is a request that these "undo executions" can be dis-
tinguished from work which is done to reach the goal of the process.
Especially in applications of the public administration, it is a require-
ment to be able to "cancel" a request. On the other hand, it is totally
forbidden that documents of processes are just destroyed (i.e. no roll-
back in a transactional sense). Instead, an additional document has to
be prepared which invalidates the process.

(Schwenkreis 1996)

The problem is related to the concept ofreal actions(Gray & Reuter 1993, p.163).
A protected action is an operation that has the ACID properties. Undoing its effects
will not affect the outside world. A real action, in contrast, cannot be undone, as
is the case for most real world actions. The primary example is drilling a hole or
in other ways demolishing physical entities. Examples from the area of workflows
may include sending a letter, acknowledging the receipt of a document, or com-
mitting a transaction in a legacy system. It would be inappropriate for a workflow
system to undo the information regarding such actions.

CHAPTER 5. DISCUSSION 54

A transaction involving a real action must delay the action itself until the transac-
tion is guaranteed to commit. Such a guarantee is not possible to give if the trans-
action should proceed doing updates. Even a nested transaction that successfully
commits cannot be guaranteed to finally commit. This means that a task requiring
durable records of its results will force the whole xymphony that it is a part of to
commit.

A workaround would be possible if we considered the log to be a durable record of
the real action. However, the log is not the database. Any updates in the log that
belongs to aborted transactions are invalid. Due to the atomicity requirement, such
updates have not happened.

Real actions are initiated by, or through the system. Recording data about other real
world activities may also be required for auditing purposes, although the WfMS is
not involved in the activity itself. The WfMC (1999a, p.33) allows the definition of
manual activities in a workflow process. The WfMS will inform a participant about
the task to be undertaken, and it expects a response as to the outcome. Bowers,
Button & Sharrock (1995) describe a workflow system that was introduced in a
print shop to account for the progress of print jobs for a major contractor. On a
panel in the print shop floor, the operator would punch in a job number to inform
the system of the starting and finishing times of the job. In this example, it would be
unacceptable for the transaction recording the job operation to abort. The operator
could manually enter the jobs at the end of the workday, but to do it twice, because
of some system peculiarity, would be intolerable.

The updating of external autonomous systems is another important class of real
actions. One of the strengths of WfMSs is their ability to integrate data processing
on disparate systems, often legacy systems. The problem is often that such systems
will not participate in a distributed commit protocol like 2PC. Some systems may
not even be transactional in nature. The systems will seldom be able to hold their
commitment for any extended length of time. Thus the update of an external system
will be short and commit immediately. For auditing purposes, such an update will
probably force the workflow transaction to commit as well.

Compensatable Tasks and Pivots

In order to treat the different types of real actions in a precise way, I will use the
terminology introduced in the literature about flexible transactions (Elmagarmid,
Leu, Litwin & Rusinkiewicz 1990, Leu, Elmagarmid & Boudriga 1992, Hagen &
Alonso 2000, Schuldt, Alonso, Beeri & Schek 2002).

Informally, a compensatable task is one that can be undone one way or
another in case the process either fails or it is cancelled. In most real
world processes, compensation is possible by executing a number of
actions that cancel the effects of the initial tasks. These actions may

CHAPTER 5. DISCUSSION 55

be directly related to the task (e.g. a transactional undo) or be a se-
mantic compensation (e.g. a letter is sent notifying the user of a given
mistake). By labelling a step as compensatable we are acknowledging
this fact. On the other hand, a task is a pivot when the overhead or
cost of compensating it is not acceptable (note that the definitions are
not mutually exclusive, it depends on the concrete application). Com-
mitting a pivot task means we are committed to complete the process
because, otherwise, things will get expensive or difficult.

(Hagen & Alonso 2000, p.946)

Designing compensating transactions is difficult, so they are assumed not be avail-
able as the general mechanism for rollback. But any transaction, or xymphony, is in
effect compensatable until it commits. Thus we may use the above terminology to
describe workflows using xymphonic transactions. The tasks that for some reason
must commit are termed pivots. Any other task is compensatable as long as it can
be aborted (i.e. its xymphony has not yet committed).

When a pivot activity completes, the workflow engine must prepare to commit
the top-level xymphony and all contained subtransactions. When all participating
subsystems have voted to commit, the real action may be executed. As noted in
(Leu et al. 1992, p.173), commitment of the non-compensatable subtransactions
must wait for a global decision. In order to avoid waiting for concurrent tasks
that may take a long time before they can be prepared to commit, we should avoid
running pivots in parallel with other tasks. Section 5.3.6 discusses how to handle
this.

Note that we will define more activities to be pivots, than what is the case if com-
pensation is possible. For example, when committing a transaction in a legacy
system, the activity is regarded as a pivot in order to ensure that consistency is pre-
served. If sending a letter to a customer, it is important that the organisation does
not risk loosing their copy of it. However, these are actions that in some situations
may be compensatable, and if compensating transactions are available, they are not
regarded as pivots.

In (Schuldt et al. 2002) the pivot has another important meaning. Schuldt et al.
require that a process program includes at least one execution path following the
pivot that is guaranteed to terminate the workflow successfully and consistently.
Such a requirement is not adopted in this thesis.

5.2.3 Summary of Duration

A pivot is a real action, or any task whose processing is required to be durably re-
corded. A pivot cannot be compensated, and it must finally commit upon successful
execution. This forces the transaction and all parent xymphonies to commit.

CHAPTER 5. DISCUSSION 56

If the database cannot provide persistent savepoints that may also recover applica-
tion state, the desire to avoid lost work will further constrain the maximum duration
of a transaction. The organisation policy will probably determine the appropriate
time-limits.

Having discussed the factors that require a transaction to terminate, we now turn to
a consideration of how to accommodate long-lasting transactions.

5.3 Mapping from the Process Definition to Transactions

The workflow definition is the input that specifies the tasks and activities that must
be performed in a case. This section discusses general rules for how the work-
flow engine may interpret the workflow definition in order to establish appropriate
transactions. By applying these rules, we will be able to map from activities to
transactions and xymphonies as the workflow proceeds.

Today’s WfMSs support process change by merely changing the process definition
(van der Aalst 1998, p.4). Such changes, especially if made after deployment of
the system, are possibly performed by inexperienced developers. In particular, if
developers are unfamiliar with xymphonic transactions, it is desirable to provide
consistent guidelines for transactional design. It would be even better if the work-
flow engine was able to establish suitable transactions automatically. It is my aim
to come as close to this goal as possible, and at least simplify the design issues
facing developers.

The basic rules are outlined in section 5.3.2, which introduces an advanced undo
functionality for the tasks of a single user. Next we will see what happens when
this design is applied in the context of multiple users. The four routing constructs
sequential, conditional, iterative and parallel routing affect transactions in different
ways. Sections 5.3.3 through 5.3.6 focus on each of these respectively.

5.3.1 Preliminary Remarks

Activities that require read-only access to its data are rare in LOVISA. Most activit-
ies amount to registering some fact about the case. I don’t know if this is typical of
WfMSs, but assuming it is, all concurrent activities that process the same data will
introduce write-write conflicts unless they are run within the same xymphony. For
this reason, my design is directed towards supporting the structure of the workflow
with a corresponding structure of nested databases.

Parameterised read operations, on the other hand, allow read-access to objects that
are being updated by another user. This will come in handy when transaction
duration increases. The uses for parameterised access modes will be discussed in
section 5.4.

CHAPTER 5. DISCUSSION 57

Dependencies will exist between the tasks of a process definition. The most com-
mon use is to define an execution order. This type of dependency is the focus of
the graphical representation of a business procedure. Reijers (2003, p.9) notes that
“dependencies may have various other semantics, expressing for instance an in-
formation exchange or control dependency.” Dependencies related to which com-
mon data objects will be processed by multiple activities are very important to
transaction design decisions.

In the following discussion, I will assume that an order defined over some activities
implies a dependency from the results of one activity to the following. This means
that an activity cannot be rolled back unless all the following activities also have
been aborted. On the other hand, I assume that the absence of a defined order
implies that there is no dependency between a pair of tasks, and in fact that the two
tasks process disjoint sets of data. This last assumption may be untrue in LOVISA,
but that should be possible to correct. For each pair of tasks that need write-access
to some overlapping set of data, we must either supply an ordering, or introduce
a property that tells the system to run the pair in the same subdatabase, regardless
of their relative order. We may indicate such a dependency by drawing a two-way
arrow between the activities (or an n-way arrow if n unordered activities process
overlapping data). The graphical representation of a two-way dependency is shown
in figure 5.2.

A1

A2

Figure 5.2: A two-way arrow signifies unordered activities with a dependency

5.3.2 Single-User Mini-Workflows

Some tasks in a workflow consist of a set of steps to be executed by a single user.
In LOVISA this is in fact the definition of a task. The steps, or activities, defined
in the corresponding process definition, may be unordered, partially ordered, or
totally ordered. This allows the task to be depicted as a mini-workflow that is the
responsibility of a single user.

Logically, a process in LOVISA is a unit that probably should have the ACID
properties. Having xymphonic transactions, it might be even better to give it the
ACCID properties, allowing parameterised read-access during processing. Further,
a process is an ideal scope for undo-functionality. A user proceeds from one step to
the next, and may at some time decide that a previous decision was wrong. Using
flat transactions with savepoints, he would have to undo, in a reverse order, all the

CHAPTER 5. DISCUSSION 58

steps leading back to the error. But using nested transactions, or nested databases,
he may be allowed to undo selected tasks in isolation.

The following discussion assumes that no activity, except for the last, will create a
task for another user. Such activities are in effect an AND-split, and will be treated
in section 5.3.6.

Proposed Design

I propose the following rules for nesting transactions within the context of a single
user’s task:

Start: Create a xymphony, or a subxymphony for the task. This will be referred to
as a task-xymphony, indicating that it is the parent of all the subtransactions
of this task.

Parallel routing: Create a subxymphony for each of the activities following an
AND-split. If more than one activity is a starting point of the process, treat
this as if there existed a dummy activity with an AND-split leading to the
start-activities.

The exception to this rule is activities that have the data-dependency prop-
erty. All activities having an n-way arrow between them should be run in the
same subxymphony and otherwise treated as a sequence.

Commit the parent xymphonies of parallel paths before executing the activ-
ity following their AND-join. At this point, the previous activities cannot
be aborted individually. Establish a new subxymphony for the activities fol-
lowing the and-join. This makes abort of the following activities possible
without affecting the committed activities preceding the AND-join.

Figure 5.3 on the following page sums up the rules for parallel routing.

Sequential routing: The whole sequence will run as a single transaction with
savepoints. Establish a savepoint at the end of each completed activity.
Commit the transaction when the chain reaches an AND-join or an AND-
split. See below for a justification for using savepoints rather than nested
transactions.

Activities with the n-way dependencies will be treated as a sequence. This
of course assumes that the user is not allowed to start several activities sim-
ultaneously. The user will perform the unordered activities in a pattern that
is unknown before it actually happens, still it will follow a single sequential
thread of execution that may be divided by savepoints as suggested here.

Conditional routing: Treat the activity instances as a sequence. The actual exe-
cution will proceed sequentially along a single path of execution. This cor-
responds exactly to the trip planning example presented in (Gray & Reuter

CHAPTER 5. DISCUSSION 59

A3A1

A2

A4

A5

AND xymphony2

xymphony1

Task−xymphony

Commit A1
and contained transactions
Commit subxymphonies

Join

...

new xymphony

Figure 5.3: The xymphonies resulting from an AND-split

1993, p.171), which shows how savepoints may be used to tentatively book a
flight route through the world. If an obstacle is encountered, the transaction
can backtrack to a savepoint and try another path.

Iterative routing: This is a special case of sequential routing. Activities that may
be repeated add consecutive activity instances to the sequence.

Figure 5.4 sums up the rules for sequential routing, including examples of
OR-splits and iteration.

A3 A4
A5A1

A2

X...

OR
A1

A1 repeated

...

SP1 SP2 SP3? SP4 SP5 Commit

Task−xymphony or a subxymphony following an AND−split

AND−join

Figure 5.4: Using savepoints (SP) for controlling sequential activities

Pivot: Whenever a pivot forces the top-level xymphony to commit, establish a
new xymphony for the remainder of the activities to run in. All the rules
are followed as if the process was newly started, e.g. if there are multiple
activities from which to continue, this is treated as the multiple entry points
discussed above.

CHAPTER 5. DISCUSSION 60

The key elements are the AND-splits and AND-joins. By establishing a xymphony
for each of the activities following an AND-split, these may be undone individually
regardless of the order in which they were executed. This is consistent as long as
there is no data-dependence between the tasks.

The AND-join presents a challenge to transaction processing. The xymphonies of
the joined activities must be merged, but ideally, if the AND-join is aborted, they
should be restored, again allowing selective rollback of the individual activities. A
transaction system allowing such behaviour would be a step closer to realising the
spheres of control suggested by Davies and Bjork (Gray & Reuter 1993, pp.174–
180). Being limited to nested databases (and the same holds for nested transac-
tions), the xymphonies must be “merged” by committing to their parent database.
There is no way this commitment may be cancelled without breaking atomicity.

Thus the activities A2 to A4 in figure 5.3 on the preceding page may be aborted
singularly until the AND-join, at which time they may only be aborted as part of a
rollback of the task-xymphony.

Design Options for Sequential Routing

In the case of a sequence, however, there is a dependency between the activities.
This may result from the activities processing the same data, successively refining
the result, or because the result of an activity is an input to the following task. This
requires a rollback to proceed in the reverse order back to the point selected by the
user.

I will consider two options for implementing this behaviour with transactions. We
may use nested databases, nesting each consecutive activity within a new subdata-
base. This option is shown in figure 5.5. Each activity commits its transaction when
finished. Its locks are inherited by the parent xymphony and may be acquired by
subtransactions. The next activity establishes a subxymphony within the parent.
Upon completion of the sequence, the hierarchy of xymphonies may commit. A
rollback is accomplished by aborting the subxymphonies as far back as desired.

A1 A2 A3 A4

Commit
transaction

Commit
transaction

Commit
transaction

xymphony4

xymphony1

xymphony2

xymphony3

...

Commit
xymphonies

Figure 5.5: Using nesting for sequential activities

CHAPTER 5. DISCUSSION 61

The other option is to use savepoints as shown in figure 5.6. For each finished activ-
ity, set a savepoint instead of committing. Commit the sequence when a rollback
is no longer needed or desirable. In practise, there may be even more savepoints
than shown. An activity will probably have one savepoint for each transaction that
otherwise would have been used, e.g. for each action of an activity.

A1 A2 A3 A4 ...

CommitSP3Begin(SP0) SP1 SP2

Figure 5.6: Using savepoints (SP) for sequential activities

I prefer using savepoints for the simple reason that they consume fewer resources.
Nested databases would accommodate a flow between multiple users, but within
the context of a mini-workflow this is not needed. Both allow for backwards re-
covery, but savepoints can be easily set within different parts of a transaction, pos-
sibly making the scope of rollback even smaller than an activity. Using savepoints,
however, requires the suspension of the transaction after completing each of the
sequential activities and possibly executing another activity before the transaction
is resumed. Current database systems may not allow the clients to switch between
different transactions in this manner. In that case, using xymphonies for sequential
activities is the only option, and the rules must be modified accordingly.

An Example Task from LOVISA

Following the creation of a criminal case, a functionary does some preparatory re-
gistration and classification. The taskregister caseis the first task in the workflow.
Its detailed specification is shown in figure 5.7.

Register participants
Register claims
Register what the case is about

Register other actors
Assign preparatory judge
Make case−folder
Send case to judge

Register Case

Categorize case

Register guardian

Figure 5.7: Example task from LOVISA

There is no order defined for the activities, except forsend case to judge, which
must be executed last. Thus the routing diagram in figure 5.8 on the following page

CHAPTER 5. DISCUSSION 62

is quite simple: There is a dummy start activity with an AND-split to the first eight
activities, which is joined in the last activity.

Make case−folder

Categorize case

Dummy

AND

...
AND−join

Send case to judge

Figure 5.8: Internal task structure of register case

Using the transactions proposed in this section, the system would establish a sub-
xymphony for each of the first activities. After completion of an activity, the trans-
action would set a savepoint and then suspend, allowing for a repetition of the
activity. Regardless of the order in which the activities were done, any activity
could be undone by aborting its subxymphony. When the user decides to send the
case to the judge, and the system has verified that this activity is allowed to run, all
active transactions and subxymphonies would first be committed. After this, undo
would not be permitted for the individual activities, but this is not a problem, since
no more work will be done with the task.

A Complication

Redoable activities complicate the clean scenario drawn so far. If an activity pre-
ceding an AND-split is redoable, there will be dependencies leading from this
activity a second time. The logical approach is to say that whatever activities were
executed after activity A1’s first invocation should be committed before A1 is ex-
ecuted a second time. The second invocation should produce a new subxymphony
to contain this second execution as if it followed an AND-join. An example scen-
ario is diagrammed in figure 5.9 on the next page, in which activity A2 and A3 were
completed after the first invocation of A1, and activities A4 and A5 are executed
after the second invocation.

The illogical thing about this situation is that activities A4 and A5 may be aborted
as usual, whereas A2 and A3 can only be aborted as part of undoing the whole
task. The user may be accustomed to the option of undoing executed activities, but
suddenly it becomes unavailable for some of them. We might be hard pressed to
explain this seemingly inconsistent behaviour to a user, and he might not be willing
to abort the whole task. Furthermore we have a problem in deciding how to run
an activity A6 following e.g. A2. According to our rules, this should be run in the
same xymphony as A2, preferably in the same transaction, following a savepoint.
But since the transaction of A2 is committed, the only option is to run A6 in a new
subxymphony.

A solution to this problem is to disallow the redoable property for activities that

CHAPTER 5. DISCUSSION 63

A1

...

...

A1

A2

A3

Committed activities

A4

A5

Task−xymphony

second subxymphony of A1

Repeated

Establish subxymhponies for activities
following and−join as usual

ad hoc A
N

D
−

join
Figure 5.9: Default behaviour for redoing activities preceding an AND-split

precede an AND-split. This may constrain the flexibility of the process model
to such degree that one might be better off not using long-lasting transactions.
Another option is to allow the redoing of activity A1 without committing the
already established subxymphonies of A2 and A3. However, this may lead to write-
conflicts between the second transaction of A1 running within the task-xymphony
and locks held by the subxymphonies of A2 and A3.

A similar constraint on the undo functionality arises when committing a pivot. As
discussed earlier, a pivot forces the top-level transaction to commit. This effect-
ively prevents all possibilities of aborting previously committed activities. We may
explain this to the user by a warning stating that “After clicking the OK-button,
undo will be unavailable for the previously finished steps.” Supplemented with a
well written help-text, this will probably be understandable.

By the same token, the illogical behaviour of the redoable activity A1 may be re-
solved by simply committing the top-level xymphony and issuing a warning sim-
ilar to that of the pivot. This solution, as well as the commitment of a pivot, break
atomicity of the process as a whole. Unfortunately, this is an unavoidable problem
with today’s transaction models.

User Interface Design

One challenge remains. What is the best way to present the undo-function to the
user? If a user selects to undo an activity that preceded another activity, he must
be informed that the undo will abort both activities. If a user has executed an
activity multiple times, how should the system present the choice between each of
these instances? And when performing an AND-join, the scope of rollback will be
enlarged. How can this be explained to the user in an understandable manner?

CHAPTER 5. DISCUSSION 64

It is outside the scope of the thesis to answer these questions here. It will suffice
to point them out, and suggest that these issues probably should be considered as
early as possible in a prototype. If the user-experience is negative, the advanced
functions described in this section may well be unwanted, and implemented func-
tionality remain unused.

Summary of Single-User Mini-Workflows

Xymphonic transactions may be used to implement an undo function for a set of
activities that I have chosen to call single-user mini-workflows. In FrameSolutions
applications such a mini-workflow is a common building block of workflows. The
example taskregister caseseems to indicate that the proposed design is suitable
for simple task structures.

However, the presence of pivots limits the undo scope and breaks atomicity for
the process as a whole. Complex activity structures, such as repeating an activ-
ity preceding an AND-split, pose some problems that mainly remain unanswered.
Another important issue is to build an understandable user interface for the func-
tionality.

5.3.3 Sequential routing

It should be technically feasible to allow a sequence of activities flowing from one
user to the next to be rolled back partially, or as a whole. In discussing single-
user sequential routing, I favoured using savepoints rather than subtransactions
to achieve a stepwise reverse recoverability. When different users are involved,
savepoints are insufficient. A live transaction with savepoints cannot be suspended
and taken over by another user. As a consequence, sequential routing between
different users requires the design illustrated in figure 5.5 on page 60. It is repeated
here for easy reference.

A1 A2 A3 A4

Commit
transaction

Commit
transaction

Commit
transaction

xymphony4

xymphony1

xymphony2

xymphony3

...

Commit
xymphonies

Figure 5.10: Sequential routing between different participants

As shown in the figure, activity A1 cannot be aborted unless A2 is aborted (or not
started). Recursively, A2 cannot be aborted unless, A3 is aborted, etc. Aborting

CHAPTER 5. DISCUSSION 65

the xymphony corresponding to a task takes care of this dependency. For example,
abortingxymphony2, will roll back the effects of activities A2 through A4.

In LOVISA there is a good probability that an activity will need write-access to
data processed by a predecessor. Thus we need to introduce the simple rule that
the subtransactions of an activity must commit before establishing a subxymphony
for the following activity. This frees the locks of e.g. transaction A1 and by upward
inheritance these are retained by the immediate parent. These locks may then be
acquired by the activities A2, A3 etc.

For workflow meta models similar to that of FrameSolutions, this design scales
to processes as well. Many of the tasks in LOVISA involve only one user, i.e.
they contain no AND-splits, and after all the steps have been completed, the next
process in the workflow is started by another user. As suggested in the section
on mini-workflows, each process should be run in its own task-xymphony. Within
each task-xymphony, the individual steps proceed as outlined for mini-workflows.
When a task is finished, all subtransactions and subxymphonies are committed to
the task-xymphony and a new subxymphony is established for the next task as
illustrated in figure 5.10 on the page before.

An Example Case Highlighting some Design Issues

In LOVISA the tasksregister caseandprepare casefollow each other sequentially.
They are illustrated in figure 5.11. Ignoring the optional steps, they involve no
AND-splits or pivots.

Functionary Judge

...

Register participants
Register claims
Register what the case is about

Register other actors
Assign preparatory judge
Make case−folder
Send case to judge

Prepare Case

Quality Check (same as Categorize case)
Check claims (same as Register claims)

... (some optional activities dropped
 for the purpose of this example)

Estimate trial duration
Send case along

Register Case

Categorize case

Register guardian

Figure 5.11: Example tasks from LOVISA

Assume that for some case, the functionary has finished the taskregister caseand
sent it to the judge for preparation. There is clearly a dependency between the
tasks, as two of the activities process the same data. In case the judge needs to
modify the information registered by the secretary, he must have write-access to

CHAPTER 5. DISCUSSION 66

the objects processed by theQuality checkandCheck claimsactivities. According
to our general design, there would be a xymphony containing the secretary’s work,
and a subxymphony has been established for the next task. This allows the judge
to acquire the necessary write-locks.

Now, assume the functionary decides to undoregister case, that is, to abort the
top-level xymphony. The taskprepare casewould mysteriously disappear from
the judge’s task list. Any work he had done so far would also be effectively rolled
back. We should probably disallow the abortion of other users’ tasks to prevent
this.

Continuing the example, assume that the judge, after an initial survey of the case,
decides that there are omissions that should be corrected by the functionary. He
may try to abort his task in order to return the workflow to the functionary. Notice
that the last activity completed by the functionary was tosend case to judge. Con-
sequently, according to our most recent rule, the judge is not allowed to undo this
task, as it was not executed by him. Thus, aborting the task would only result in a
rollback ofprepare case, but leave it in the judge’s task list.

To work around this problem, we could introduce a property allowing any user to
undo a task, and assign it to the activitysend case to judge. The judge could now be
given the option of aborting this last activity executed by the functionary, thereby
returning the case. Imagine the functionary’s surprise. With no visible explanation,
other than possibly a system message saying “rollback complete”, the task is back
in his task list. He might think he just forgot tosend case to judge, so he might just
do that and we are back to where we started.

To sort out this last problem, we could have the judge fill out a message explaining
why he undoes his task. However, I consider this to be a new development in the
case, not an abort in the transactional sense. It would be better to use a mechanism
already provided in LOVISA. Here, the judge may create a newregister casetask
and send it to the functionary with an explanation.

This example illustrates two important points. Having xymphonic transactions
makes it technically possible to abort an activity, or a process, and return the work-
flow to the previous user. But from a user perspective, this would probably seem
more like a peculiar error, rather than an elegant functionality.

And secondly, this example illustrates the difficulty in assigning user restrictions
on different levels of the subdatabase hierarchy. It seems inappropriate to allow all
participants to abort any part of the workflow. But it may be too limited to allow
only the abortion of one’s own processes. Unfortunately, specifying such rights to
a greater detail may require much time and effort.

CHAPTER 5. DISCUSSION 67

Drawing Transaction Boundaries

It is not immediately clear where to draw the transactional boundaries between
activities. The difficulties elaborated upon in the previous example are partially
caused by the assumption that the activitysend case to judgebelong to the task-
xymphony ofregister case. The act of sending a case to the next participant will
delimit all activities, or processes in a workflow. Should it belong to the prede-
cessor, or to the follower? According to the discussion on access rights, it should
belong to both. When analysing recoverability, we’ll see that it should in fact be
an independent unit between both.

The transition between two users mostly contains system processing. The pre-
decessor initiates the action, and the follower receives a task in his task list. In
between, some state in the workflow control data is affected. If this processing is
to be undoable as an independent entity, it must have its own subxymphony, or we
must be able to compensate it in some other manner.

The transition itself must be independently recoverable. Otherwise, if the transition
belongs to the preceding task’s xymphony, it must be committed to that xymphony,
together with other subtransactions of the task, before establishing the subxym-
phony for the next task. In that case, theprepare casecannot be removed from
the judge’s task list as part of a rollback, unless the precedingregister caseis also
aborted. And if the transition belongs to the following task’s subxymphony, it will
always be aborted as part of that task’s rollback. Thus the judge would be unable to
undo his ownprepare case, without also loosing the task itself (returning the case
to the functionary).

For these reasons, a transition from one user to the next should probably be con-
sidered an activity in its own right and inserted in the sequence as shown in fig-
ure 5.12.

A1 A2 ...

Commit

transition−xymphony

task−xymphony1

Transition

task−xymphony2

Figure 5.12: A transition may have its own xymphony

The transition-xymphony should by default be undoable by the participants of A1
and A2. Thus the judge would be given the choice between undoing his task only,
leaving it in his task list, or he could undo the transition entirely. The functionary
would be allowed to undo the sending of the case to the judge, as long as the judge

CHAPTER 5. DISCUSSION 68

has not yet established the task-xymphony for his task.

The problem with this design is the resource demand when using two subdatabases
for each activity instead of one. We could probably use compensating transactions
as a means for rolling back the effects of the transition. A compensating transaction
would allow the transition to be rolled back even though it was committed to the
task’s xymphony. It would be the responsibility of the workflow engine to install
the compensating transaction for a given transition, and it must also handle the
correctness regarding constraints on when a transition can be rolled back (e.g. the
task must not have the statusstarted). In general compensating transactions are
considered to be hard to program, but since the processing between tasks is limited
and follows a regular pattern, it should be possible. However, a detailed discussion
of this topic is outside the scope of this thesis.

Summary of Sequential Routing

It seems to be technically feasible to process a sequence of activities in a single
hierarchy of xymphonies. The design discussed allows stepwise reverse recover-
ability, including a detailed control over the transition between users. However,
designing an understandable user interface is probably a daunting task. The ex-
ample has highlighted some of the confusion that may rise when a user may abort
other users’ actions.

5.3.4 Conditional Routing

Conditional routing commences with an OR-split in the workflow definition. At
this point a choice between different execution paths are made. The normal in-
terpretation is that as soon as the activity preceding the OR-split is finished, a
condition is evaluated to select between which of the following tasks to instantiate
and insert in a work list.

The actual execution history will follow a single sequential path. Thus we may
utilise the same transaction design as for sequential routing. The evaluation of the
condition and subsequent insertion of a task in some user’s work list belongs to
the transition itself and may be put in a transition-xymphony as suggested in figure
5.12 on the previous page. The following activity is run in a subxymphony.

There is one notable difference between sequential routing and conditional routing.
If a task preceding the OR-split is aborted (and all its followers will be automatic-
ally aborted as well), then the next time the OR-split condition is evaluated, another
path of execution may be selected.

As an example, the subworkflow for managing responses from lay judges (see
figure 4.5 on page 41) includes an OR-split. The evaluation of its condition depends
on the outcome of the preceding activityconsider application. If a judge were to

CHAPTER 5. DISCUSSION 69

undo this task, we must assume that it was to re-evaluate the application. Assume
that the first time around, he decided to reject the application. This would create
the taskreject applicationin the functionary’s task list. But on second thoughts, he
might decide to reconsider. The abortion of his own task would make the system
remove thereject applicationtask. Upon reactivation of his task, he could grant
the application, thereby inserting thesupplemental selection of lay judgesin the
functionary’s work list instead.

This is probably an acceptable behaviour, but the developers must be aware of the
implications of providing undo-functionality. In cases where an OR-split condition
should be evaluated only once, it could be identified as a pivot.

Deferred Choice

van der Aalst (1998, p.20) identifies a special type of conditional routing, the im-
plicit OR-split. The moment of choice is deferred until some event triggers the
evaluation of the condition, thus it is also called deferred choice.

van der Aalst, ter Hofstede, Kiepuszewski & Barros (2003, p.34) gives several
examples where this pattern would be useful, among them the following; Business
trips require approval before being booked. Either the department head approves
the trip or both the project manager and the financial manager approve the trip.
At the same time both activities are offered to the department head and project
manager respectively. The moment one of these activities is selected, the other one
disappears.

Few WfMSs support the modelling of deferred choice. However, it can be imple-
mented by inserting both the following activities in appropriate work lists and by
cancelling one of them as soon as the other starts (Dumas & ter Hofstede 2001,
p.84). A transactional design along these lines is suggested in figure 5.13.

A1 A2 ...

transition−xymphony

task−xymphony1

task−xymphony2

Prepare A2

Prepare A3
Abort

Figure 5.13: One Possible Design for Supporting Deferred Choice

The general idea is that the transition processing inserts two tasks in the respective
tasks lists. The transactions that did the actual work are kept active until one of
the tasks is executed by a workflow participant. This activation of a task initiates
the following actions: The transaction, whose task was selected, aborts the other

CHAPTER 5. DISCUSSION 70

transaction, thereby removing the now disabled task. It concludes by establishing
a new subxymphony for the activity to run in.

General transaction processing systems might not allow one transaction to abort
another. However, this can be achieved by signals between the programs that do
the work within the above mentioned transactions. Reception of a cancellation
signal would make the program issue an abort. To avoid concurrency problems,
the sending of messages must be protected by semaphores.

According to my architectural design suggestions, the data that is covered by active
transactions should not be externalised, not even by parameterised read operations.
If this is followed strictly, the two transactions in figure 5.13 must be converted
to xymphonies, and the processing done in short subtransactions. The principal
design will still be the same.

Triggers

Deferred choice can be useful for handling triggers in a workflow system based on
xymphonic transactions.

LOVISA designs triggers as the starting point of a workflow. In the example given
in figure 4.5 on page 41, the subworkflow for managing responses from lay judges
is unconnected to the rest of the workflow. However, the two triggering events,
expiration of a deadline, or the reception of a response, can only happen as a con-
sequence of activities in the taskselect lay judges. There is also a data dependence
between this task and the treatment of responses.Select lay judgesregisters the
participation of lay judges, and depending of the responses, this information will
be modified.

In order to give the tasks following the triggers the needed write access, they must
be run in a subxymphony ofselect lay judges. There will be one triggering event
for each lay judge, thus we should probably handle this as a regular AND-split.
The workflow engine must be informed of the dependence, so it must be explicitly
modelled in the workflow definition.

The modelling itself is relatively straightforward, and an example is shown in fig-
ure 5.14 on the following page. There is an AND-split immediately afterselect lay
judges. This means that responses from each of the judges will be run in isolation
in their respective subxymphonies. Immediately following this there is an implicit
OR-split. This means that the processing will wait in the transition-xymphony un-
til one of the triggering events occur. The transition is concluded when one of the
events causes either of the following tasks to be created.

CHAPTER 5. DISCUSSION 71

Register application

Application for exemption
registered in journal

Repetition of the above pattern for each
of the lay judges selected

Repeat request for response

AND
Deferred choice based on which event occurs first ...

...

AND−joinOR−join
Select lay judges

replies from lay judge
Deadline expired for

Figure 5.14: Modelling triggering events

5.3.5 Iterative Routing

Iterative routing is a special case of sequential routing. The only difference is
that instead of executing different activities, the same activity definition (or set of
definitions) is used for making multiple activity instances. As long as the iteration
is explicitly designed in the workflow definition, the workflow engine is prepared
for the iteration and may interpret it as it would any sequence of activities. This
equivalence between sequential and iterative routing is illustrated in figure 5.15.

A1 A2......

A1 A2...... A1 A2......
Iteration

Iteration

The following process definition

Is equivalent to

Figure 5.15: Iterative routing is equivalent to sequential routing

Repeated executions of an activity will possibly need access to the same data. Ex-
amples from LOVISA include the tasks discussed in the previous section, in which
the judge checks the work of the functionary by executing the same activities on
the same case. Another example is the collaborative writing of the decision docu-
ment, which will be passed between the participants in an iteration of the editing
activity. Treating an iteration as a sequence will accommodate this by putting the
repeated activities in the same subdatabase. This gives the second invocation of an

CHAPTER 5. DISCUSSION 72

activity access to the same data that was processed by the first.

Redoable activities, however, may present a problem to the correct handling of
transactions. As discussed in section 5.3.2, a redoable activity preceding an AND-
split may create unforeseen complications to the transaction structure. However,
in LOVISA this problem is limited to single-user workflows (i.e. tasks). Iterative
routing between different participants must be made explicit in the process defini-
tion.

5.3.6 Parallel Routing

Parallel routing implies that two (or more) paths of execution may be executed con-
currently for the same case. Parallel routing normally commences with an AND-
split and concludes with an AND-join (WfMC 1999b, p.29). The AND-split is the
routing construct that really strains the limits of adapting long-lasting transactions
to workflows. Transactions may be allowed to continue after an AND-split. How-
ever, there are circumstances under which it may be more appropriate to commit
the transaction before the AND-split.

Assuming that parallel paths of execution need write-access to its data, it is im-
portant to determine if they will process disjoint, or conflicting sets of data. If they
access different data, we may be able to use the same transaction structure that was
proposed for AND-splits in section 5.3.2. If their access patterns conflict, true par-
allelism is impossible, even if using short transactions. However, we may be able
to interleave the execution of short activities within an active xymphony.

The Problem of Predicting Conflicts

When discussing AND-splits in a single user mini-workflow, it was assumed that
the activities following an AND-split would process disjoint data. With parallel
routing, we may not be able to make such an assumption. The n-way dependence
relation will be harder to discover as the workflow becomes large. It may not be ap-
parent in the immediate followers of the AND-split, but an analysis of the transitive
closure of the followers, may well reveal that such a dependency is present.

For simple workflows we may still be able to determine that two parallel paths
of execution most probably process disjoint sets of data. We may then adopt an
optimistic approach, which will result in a delay if a conflict is encountered after
all. This is the only design that allows true parallelism.

Transaction Design for Parallel Routing without Conflicts

When there is only a small probability that there will be conflicts between parallel
activities, we may adapt the transaction design that was proposed for AND-splits

CHAPTER 5. DISCUSSION 73

A1

A2 ...

xymphony2

...

and contained transactions
Commit subxymphoniesCommit A1

A3 ...

xymphony3

AND
new xymphony

Join

A4

xymphony1

Figure 5.16: The xymphonies resulting from an AND-split

in section 5.3.2. This is shown in figure 5.16.

As is shown in the figure, a subxymphony is established for each of the activities
A2 and A3 that will be executed in parallel. The task A1, that precedes the AND-
split, must commit its transaction. This allows the parallel activities following to
acquire locks (as long as they do not conflict with each other) on the data that was
prepared by A1.

Followers of activities A2 and A3 will run in xymphonies 2 and 3 respectively, and
may in turn require further nesting according to the rules for sequential routing.
There may even be further AND-splits, leading to arbitrary depths of nested data-
bases. This is fine as long as none of the transactions in e.g. xymphony 2 requires
locks that conflict with those that are held or retained in xymphony 3.

When the AND-split terminates in an AND-join, the xymphonies 2 and 3, and
all contained subtransactions, must commit to the parent. This allows activity A4
and the following to do further processing on the data released by the preceding
processes.

Resolving Unpredicted Conflicts

Although the workflow model might give a good indication of which conflicts to
expect, they may still occur. We need a way to handle this. Figure 5.17 on the
next page shows a situation in which activity A2.2, following somewhere after
the AND-split, tries to write an objectx, which is locked (held or retained) by
xymphony 3.

There are several options for handling this unforeseen conflict.

(1) Wait and/or abort. Upon discovering the conflict, activity A2.2 may wait for
the lock to be released by xymphony 3. While waiting it may decide to abort
and retry the operation at a later time. Unfortunately the wait may be long.
Xymphony 3 could be covering the execution of tasks taking days to finish.

CHAPTER 5. DISCUSSION 74

A1

A3 ...

xymphony3

A2AND

xymphony1

write(x)

xymphony2

A2.2

Figure 5.17: An unpredicted conflict between parallel paths of execution

(2) Request or force xymphony 3 to terminate. If xymphony 3 commits as soon
as all active tasks finish, the locks will be released. A new xymphony will be
established for the remaining activities in the execution path. However, this
disrupts the possibility of undoing the activities that were committed, and the
objectx that was released might again lead to a new conflict between the two
paths of execution.

There is also the possibility of aborting xymphony 3, but I don’t consider this
to be a reasonable solution.

(3) Continue without the requested resource. In some situations, the user may de-
cide that the update he wanted to perform is unnecessary. Especially if the
conflict was caused by a pessimistic requesting of write-locks. E.g. in LO-
VISA, some detailed views will acquire write-locks on the objects before the
view is even presented to the user. Cancelling the requested edit-mode may
thus resolve some of the situations.

(4) Request export of the resourcex. Exporting data is an extension to the original
Xymphonic Transaction Model. If xymphony 3 is not actively usingx, i.e. the
lock is retained by the xymphony itself and not held by an active transaction,
it may be exported to activity A2.2. Upon the completion of A2.2, the new
value is returned to xymphony 3. This breaks serializability, but it may still be
preferable to the options above.

None of these options are ideal ways of handling conflicts. Due to the attempt
at making transactions long-lasting, waiting might take a long time, and aborting
a xymphony might lead to lots of lost work. In those cases where the user can-
not continue without performing the requested update, exporting data between the
xymphonies may be a viable solution. However, if conflicts between the parallel
paths are common, it will not be a good solution to rely on.

CHAPTER 5. DISCUSSION 75

Transaction Design for Parallel Routing with Probable Conflicts

If there are more than a few conflicts to be resolved with exporting, as suggested
above, the isolation achieved by using transactions is void. We might as well com-
mit each step as a short transaction in the order that activities are performed. This
saves the overhead of maintaining possibly large structures of nested transactions
and the delay in waiting for conflicting data to be exported.

We may use the n-way dependency relation in the process definition to tell the
workflow engine that a set of parallel activities will need access to the same data.
The engine may establish a xymphony for the parallel activities, but all the activit-
ies run as flat subtransactions and commit to this xymphony after each step. This
will reduce the waiting time when conflicting operations are tried.

Using this approach, only the active transactions may be aborted by normal users.
It is not possible to undo previously completed activities individually. In extreme
cases, however, the complete xymphony containing the parallel activities may be
aborted by an administrator or equivalent super-user.

Example

For an example of parallel routing, we will return to the taskprepare case. In
figure 5.11 on page 65 this task was presented without any of its optional steps.
The omitted steps include creation of new tasks for registering interpreters, experts,
and defense counsel. In most cases these steps will be performed, thus there is an
AND-split from prepare case.

Figure 5.18 on the next page is an excerpt of the workflow model for criminal
cases. The four tasks to the left register persons that are involved in the case. It is
reasonable to assume that the same person will not be registered in different roles
for the same case. Thus the tasks are not expected to introduce conflicts between
each other.

There could be conflicts between different workflows, if for example the same
interpreter was to be assigned to several cases. If this is a rare occurrence, we could
handle this by exporting the interpreter’s objects from the workflow that initially
held the locks. However, the same persons are often involved in different cases,
even in different districts running their workflows on different application servers.
Vaksvik (2002) suggested that such inter-workflow conflicts could be avoided by a
scheme of data partitioning that is described in section 5.5.

Using the transaction design proposed in this chapter, we might get the following
structure: The taskprepare caseestablishes more than one follower, meaning that
all the work executed by its activities must be committed to the task-xymphony. A
subxymphony is established for each of its followers.

As noted in chapter 4.3, there are hidden dependencies between the tasks. The task

CHAPTER 5. DISCUSSION 76

Register counsel
for the aggrieved party

for main hearing
Fix time and place

Prepare Case

Functionary Judge Functionary
("Berammer")

Register interpreter

Register defense counsel

Register expert

AND−join

AND−split

Figure 5.18: Example parallel routing from LOVISA

of fixing time and place for the main hearing includes informing all participants of
the hearing. This could be modelled explicitly by creating an AND-join. This is
indicated in figure 5.18 by dashed arrows.

When the execution reaches the AND-join, the subxymphonies containing all the
five preceding tasks must commit to the parent database. After this point it is no
longer possible to undo any of the tasks individually. This constraining behaviour
is necessitated by the fact that the objects of the interpreter, expert, and the various
counsels are locked in different subxymphonies, and they are needed in the follow-
ing task when sending letters to inform them of the time and place for the main
hearing.

Note that the AND-join described in this example is conditional. The system must
make sure that it joins the exact number of parallel paths that were actually instan-
tiated.

Joins and the Scope of Rollback

As the example shows, upon an AND-join, when the subxymphonies of the parallel
activities commit, the scope of a possible rollback becomes larger. Referring to
figure 5.16 on page 73, if an undo of e.g. xymphony 2 is desired after activity A4
is started, this cannot be done without rolling back the results of xymphony 3 as
well.

The historical information that would be required by the system to re-establish

CHAPTER 5. DISCUSSION 77

these transactions is contained in the log, but would probably require complex and
time-consuming analysis to process.

If undo-functionality is the primary motivation for using long-running transactions,
we might as well finally commit upon a join. After the commitment of several
subxymphonies, the undo-operation becomes an all-or-nothing choice. Something
must be terribly wrong for us to undo and possibly loose months of work.

Handling Pivots

Parallel activities executing within a xymphony do not necessarily terminate at the
same time. What happens if a task involving a real action asks its xymphony (and
all parent xymphonies) to commit while other tasks still have a lot of work to do
before they may terminate? The committing task would have to wait for the other
tasks to finish, or the other tasks would have to be aborted.

In the context of flexible transactions Leu et al. (1992) suggest that the pivot trans-
action must wait.

“A global transaction istypedif some of its subtransactions are com-
pensatable and some are not. In a typed transaction, the subtrans-
actions which are compensatable are allowed to commit before the
global transaction commits, while the commitment of the non-com-
pensatable subtransactions must wait for a global decision.”

(Leu et al. 1992, p.173)

However, there are several situations in which it might be unacceptable to wait for
the global decision.

LOVISA heavily depends on the receipt and production of printed documents.
Whenever these are sent to external recipients, the event is recorded in the journal
and the document must be durably stored in the database. Thus the sending of
letters is a typical pivot – Once the mail has left the organisation, it can only be
revoked by sending a compensating letter, and the writing of this document cannot
be automated by a recovery procedure.

While waiting for the pivot to commit, the user may prepare the documents, and
even print them. But he would have to wait for workflow system to signal that
the task is successfully committed before delivering them to the postman. Long
waiting times would be unacceptable to most users in this situation.

My suggestion is to commit the top-level xymphony before the pivot commences.
In this way, the pivot may commit without affecting concurrent processes. The
appropriate point at which to commit would be at all AND-splits preceding the
pivot activity and whose corresponding AND-joins succeed the pivot.

CHAPTER 5. DISCUSSION 78

Summary of Parallel Routing

A xymphonic transaction may continue when the workflow includes parallel exe-
cution paths that most probably process disjoint data. Subtransactions preceding
the AND-split must commit, and new subxymphonies established for each of the
following parallel paths.

It may be difficult to determine that the parallel paths will not process conflicting
data. Unforeseen conflicts may be handled in different ways, but if conflicts are
probable, all the parallel activities should run as short-duration transactions. These
transactions may run in an active xymphony, but the scope of rollback will increase
as work progresses.

When the parallel paths merge in an AND-join, their subxymphonies (and sub-
transactions) must be committed. This also enlarges the scope of a rollback, redu-
cing the usability of long-lasting transactions for the purposes of undo functional-
ity.

Finally, to avoid long waits, the presence of pivots within one of the parallel paths,
forces the top-level xymphony to commit, even before the pivot is started.

5.3.7 Summary of Mapping Workflow Models to Transactions

This section has shown that it is possible to support the semantics of the WfMC
meta model for workflow definitions to some degree. However, some limitations in
the transactional paradigm necessitate the use of shorter transactions due to struc-
tural considerations alone. Add to this the limitations on transaction duration dis-
cussed in section 5.2 (avoiding lost work and the presence of pivots), it seems that
only short and very simple workflows may be encapsulated in one long-lasting
transaction. The benefits of using xymphonic transactions will be limited to selec-
ted parts of the workflow.

One such selected part is the single-user mini-workflow. Another part of the work-
flow that may easily benefit from using xymphonic transactions is any subset of
tasks that contain no AND-splits. Sequential, conditional and iterative routing may
be nested in a transactional structure that supports undo back to a specified point
in the execution history. Parallel routing presented some problems for long-lasting
transactions. The simple case, in which the parallel paths have little probability of
conflicting and contain no pivots, can be accommodated. However, in most other
cases, it seems more appropriate to commit before the AND-split.

5.4 The Uses for Parameterised Access Modes

So far, we have primarily discussed the structuring of nested databases in order
to accommodate write access between the tasks of a workflow. It may seem that

CHAPTER 5. DISCUSSION 79

the parameterised read operations of xymphonic transactions are superfluous. It
has been suggested that if undo-functionality is the primary motivation for using
advanced transaction models, it may be implemented using ordinary nested trans-
actions (Vaksvik 2002, p.95). However, when the duration of transactions increase,
there will be a greater probability that other users, apart from the participants them-
selves, will need to review the information about a case so far.

In fact, upon activating a task, a user may want to open the case and familiarise
himself with the developments so far. The task he is about to perform will only
need write-access to a fraction of the data that has accumulated, but he may want
read access to the rest. In particular, if transactions are long-lasting, he will need
read-access to uncommitted data.

The solution is to introduce a default parameter that is used for all the tasks of the
workflow. I suggest a parameter indicating that data is the result of a completed
activity. Normally in LOVISA, a completed activity is committed to the persistent
state. Allowing a default of parameterised access to such information amounts to
the same degree of isolation.

The notable difference is that the data is not finally committed, and therefore it may
be rolled back. This must be indicated in some way to the user. The application
will need a mechanism for distinguishing between committed objects, and objects
that were retrieved with parameterised access modes. Annotated nullable logic
(see chapter 2.3.4) may be a good choice for this purpose, although a workflow
engine implementing its own transaction manager may use custom built functions
for determining the transactional properties of an object. However, it is outside the
scope of this thesis to elaborate on the implementation details of such a function.

The parameter set may be extended for different purposes. One possibility is to
deny access to non-committed values for users that are not directly involved with
a case. If only those who are familiar with a case should be exposed to the uncom-
mitted, and therefore uncertain information, we could have the workflow engine
assign a parameter for each case and use it only for those clients that have activated
a task to operate on the case. The effect is different from that of ordinary access
restrictions in that an employee who normally has access rights to the case, might
still be prevented from viewing some of the information with the explanation that
the case is under development.

A parameterised read is still a dirty read. Some operations will not be acceptable
under these circumstances, e.g. updating a bank account. In a workflow that uses
a default access parameter, selected activities may be instructed to use an empty
set of parameters. The effect is that the activity will run in isolation from other
transactions, including its siblings. The data that such an activity has written will be
unavailable to others, except those that perform in a subdatabase (i.e. its following
activities). The activity can be designated as a pivot, in order to ensure that its
followers will only see committed data.

CHAPTER 5. DISCUSSION 80

Overriding the access mode in an activity has another possible application. Groups
of activities sharing the same set of parameters would be given mutual access to
each other’s data, whereas any other activities in the workflow would be denied
(except in a subdatabase). I have been unable to find useful examples in LOVISA
for this application of parameters, but it might come in handy in other settings.

A final way to use parameters, is to have the workflow upgrade its access mode
for the remainder of the activities. This behaviour could be achieved by issuing
a set_access_modeoperation to the workflow engine. Such an operation could be
user controlled, or it could be automatically executed by an invoked application,
possibly corresponding to a modification of the workflow’s status. It is tempting
to let the parameters indicate the status of the case. However, status is an attrib-
ute of the case, taken from the universe of discourse. The status is changed and
committed to the database as the case proceeds. A lock-parameter, on the other
hand, disappears as soon as the transactions are committed. A parameter to indic-
ate status would only be appropriate as a supplement to the status attribute of the
case-object.

5.4.1 Summary of Parameterised Access Modes

Parameterised access modes allow read access to case data that are locked in long-
lasting transactions. In general, it may be sufficient to use one simple default para-
meter for all workflow processes. In some application domains, there will probably
be application specific requirements that may benefit from a more advanced use of
parameters. However, I have been unable to find any useful examples of this in the
LOVISA system.

5.5 Data Partitioning to Avoid Conflicts

Vaksvik suggested that some conflicts could be avoided by partitioning data. Data
for which there is high contention and which is changed less often is calledregister
data (Vaksvik 2002, p.68). In LOVISA, an example is personal information like
birth date, addresses, etc. that will be updated independently of the cases they par-
ticipate in. This data should be accessed by short transactions to prevent conflicts
between workflows, and the updates should be durable, regardless of the outcome
of the workflow. Workflow relevant data, on the other hand, must be covered by
the transactions discussed above.

Section 5.1 concluded that all data processed in a workflow should be protected
by the same spheres of control. The crucial point, which allows us to depart from
this position, is that updates to register data are independent of the outcome of
the workflow. A failure leading to an abort of the xymphonies would not introduce
any inconsistencies between committed register data and aborted workflow relevant

CHAPTER 5. DISCUSSION 81

data.

The implementation may be tricky. An activity will often process a combination
of register and workflow relevant data. For example the registering of participants
in a case allows updates to personal information, like name and address (register
data), and the object model will be updated with references to these persons and
information on which roles they have in the case (workflow relevant data). Upon
completion of this activity, the workflow engine would have to sort out the objects
that have been defined to be register data and commit them immediately. The
rest of the objects, would be committed to the active xymphony, awaiting final
commitment until the completion of the top-level xymphony.

In this example, there is a dependency requiring register data to be successfully
committed before the workflow relevant data is committed. However, there is not
a dependency the other way. Assuming this is the case for all imaginable types of
register data, an activity can only succeed if its register data may be committed.

It is possible to prevent a xymphony from committing, if it depends on durable
register data. Referential integrity constraints require that a reference to a person
can only be committed if the person actually exists in the database. At the time
an activity established the reference, it existed. But because access to the person
object was covered by a short-duration transaction, it is possible to remove the
person from the database before the workflow tries to finally commit. There are
several reasons why this person might be removed. A maintenance operation re-
moving old data would not know about the recently made reference to the person.
Users accidentally deleting data and sabotage are other possible causes. The result
of removing the referenced object would be that the committing workflow would
break referential integrity and be forced to abort. Much work could be lost, unless
a technique for preventing premature deletes of register data is developed.

5.6 Extensions to the WfMC Process Model

Which extensions to the WfMC Process Model are needed in order to accommod-
ate the transaction design proposed in this chapter? The process definition must
contain enough information to enable the workflow engine to automatically estab-
lish transactions and subdatabases for the activities to run in. This section outlines
some extended attributes that could be added to the workflow definition language
proposed by the WfMC (WfMC 1999a).

If the workflows are specified in other business procedure definition languages,
similar extensions are possible. There are many competitors to the workflow defin-
ition language proposed by the WfMC. BPML4WS2 and BPML3 are prominent
examples, and many others are discussed in (van der Aalst 2003).

2http://www.ibm.com/webservices/
3http://www.bpmi.org

CHAPTER 5. DISCUSSION 82

5.6.1 Process Definition

The first set of attributes applies to the workflow process definition. A process
definition, in the terminology of the WfMC, specifies a workflow as a whole, or a
subworkflow4. A subworkflow allows the process definition to serve as a way of
grouping activities. The single-user mini-workflow is one example of a subprocess.
Another example is a set of activities that should be processed atomically. The
attributes in figure 5.1 control how the workflow engine should handle the process.

Attribute Data type Purpose
use_xymphonies Boolean Signals whether long-lasting

transactions should be used at
all. If true, the workflow will
map activities to transactions as
suggested in this thesis.

persistent_save-point_interval time value If persistent save-points are
available, this defines how often
a save-point should be set.

commit_frequency time value Defines how often the workflow
engine should try to commit the
top-level xymphony in order to
avoid lost work.

default_access_mode parameter
set

The default access mode to be
used by all activities of this pro-
cess.

xymphony_owner reference
to organ-
isation
model

Specifies who will be the owner
of the xymphony established for
this process. If empty, the work-
flow engine is the owner.

is_single-user Boolean All activities in this subpro-
cess are executed by a single
user, indicating that the design
for single-user mini-workflows
is used.

Table 5.1: Attributes relevant to a process definition

4In LOVISA a single task is specified in a process definition, an the specification of a workflow is
referred to as aprocess base. The WfMC would refer to a LOVISA-task as a subworkflow. However,
the difference is in terminology only.

CHAPTER 5. DISCUSSION 83

5.6.2 Activity Definitions

The attributes of an activity definition normally specify participant assignment,
applications or application statements to run, conditions and restrictions, priority,
etc. Routing constructs such as OR- and AND-splits are also defined in the activ-
ities (WfMC 1999a, p.32). The extensions suggested for transactional control are
provided in table 5.2 on the following page.

5.6.3 Workflow Relevant Data

In a standard WfMS, workflow relevant data is “typically used to maintain decision
data (used in conditions) or reference data values (parameters) which are passed
between activities or subprocesses” (WfMC 1999a, p.48). In a system like LO-
VISA, there is a complete domain model defining all data that is processed by the
system. This allows the system full transactional control over most of the data and
is probably the best solution for implementing long-lasting transactions. However,
the data model of the WfMC’s definition language is not rich enough to express
complex object models, or even relational data models. It would therefore be ne-
cessary to specify a domain model in a language that is not standardised (so far)
for WfMSs.

There are two attributes that give the workflow engine hints on how to manage
transactions depending on which data is processed. Regardless of which data defin-
ition language that is used, the entities should be extended with the attributes shown
in table 5.3 on page 85. For example, if UML is used to design the domain model,
they could be incorporated as stereotypes or tagged values.

5.6.4 A Note on Access Modes

All the tables of extended attributes include adefault_access_modeattribute. If
only using a default access mode, as suggested in section 5.4, this attribute should
be given the same value in both the process definition (table 5.1) and the definition
of workflow relevant data (table 5.3).

If using the design for preventing outsiders access to uncommitted data, the pro-
cess definition should be assigned a unique parameter for each workflow instance.
The default_access_mode could be set to empty for workflow relevant data. The
interpretation should be that all operations are unparameterised, unless they are
executed in the context of an activity.

As discussed in section 5.4, the workflow enactment service should provide an
operation to set the access mode at run-time. However, an activity that overrides the
default_access_mode of the process definition, must be allowed to override access
modes set at run-time as well. Also note that an empty parameter set is different
from a NULL value. An activity running in unconditional isolation would use the

CHAPTER 5. DISCUSSION 84

Attribute Data type Purpose
is_pivot Boolean This activity must finally com-

mit, as discussed throughout this
chapter. In some cases, it is possible
to derive the value of this attribute.
Interaction with an invoked applic-
ation, which is considered to be an
external system, will automatically
be a pivot.

data_dependency references
to other
activities

This is the n-way dependency dis-
cussed earlier. All activities refer-
encing each other are run as short
transactions in the same subxym-
phony.

default_access_mode parameter
set

Overrides the default access mode
for this activity alone.

xymphony_owner reference
to organ-
isation
model

Specifies who will be the owner of
the xymphony established for this
activity. If empty, the workflow en-
gine is the owner.

is_read-only Boolean Indicates that a read-only activity
may access its data by paramet-
erised read operations. No new
subxymphonies are needed for this
activity.

default_conflict_resolution wait for n
seconds,
commit

other, read
past, or
request
export

Applies to activities defining an
AND-split. The enumeration of val-
ues correspond to the options for
resolving conflicts as discussed in
section 5.3.6 on page 73.

commit_when_finished Boolean For fine-tuning the transactions.
Even though an activity is not a
pivot, it may be beneficent for
the performance to finally commit
when the activity completes. It
may be particularly useful before an
AND-split.

Table 5.2: Attributes relevant to an activity definition

CHAPTER 5. DISCUSSION 85

Attribute Data type Purpose
is_register_data Boolean Indicates partitioning of data as discussed

in section 5.5.
default_access_mode parameter

set
Default access mode for operations out-
side the context of an activity.

Table 5.3: Attributes relevant to the object model

empty set, whereas a NULL, or otherwise undefined value, would indicate that the
activity inherits the access mode given in the process definition.

The configuration of access modes at different levels may easily lead to unpredict-
able conflicts. An activity trying to modify its write parameter, may be prevented
from executing, if another transaction has a read-lock on the object. This issue be-
longs to a discussion of validation and verification of workflow design. Although
correct modelling of workflows is an important topic, it is not considered in this
thesis.

5.6.5 A Note on Deferred Choice

Unfortunately the deferred choice pattern is not supported by the workflow lan-
guage specified by the WfMC (van der Aalst 2003, p.77). This may be a problem
for handling triggers in xymphonic transactions. The workflow engine must be
informed of the data dependency between certain predecessors and the tasks fol-
lowing a deferred choice.

The tables above make no attempt at addressing this issue. It is outside the scope
of this thesis to suggest an appropriate extension to support deferred choice.

5.6.6 Summary of Extended Attributes

These extensions to the workflow definition language control the transactions that
will be established by the workflow engine. The set of attributes are as simple as
possible. As a minimum, a designer must tell the WfMS to use xymphonies, he
must identify pivots, and he must provide the n-way dependency relation where
appropriate. The rest of the attributes allow fine-tuning of the operation.

Attributes for extending the organisation model have so far been omitted. There
should be attributes for defining access privileges to run-time control of workflows.
However, there are too many unanswered questions related to this issue. If, and
when, these questions are investigated, it should be easy to provide appropriate
attributes.

The benefit of extending a standardised workflow definition language, is that any

CHAPTER 5. DISCUSSION 86

compliant WfMS may enact the workflows. A non-xymphonic workflow engine
can just ignore the attributes that it does not understand, and use its own approach to
transactions instead. Another benefit is that a graphical tool for defining workflows
probably can be modified to model xymphonic workflows quite easily.

5.7 Other Uses for Xymphonic Transactions

So far the approach has been to support the structure and semantics of the workflow
definition meta model defined by the WfMC. Xymphonic transactions may also be
used to extend the functionality of WfMSs. By using this approach, it is possible to
create more complex activities for collaborative efforts, and support ad hoc routing
and delegation of tasks. These suggestions may be used even though the system
does not implement xymphonic transactions in general.

5.7.1 Documents in Workflow – a Common Special Case

In an office environment, workflow systems will most probably manage docu-
ments. A quick survey of WfMS products, reveal that quite a few are specialised
in managing document flow. It seems that the producing, editing, reading and dis-
tribution of documents is a very common task to be undertaken by a WfMS. As a
consequence, benefits of using xymphonic transactions in this area would have a
significant impact on the WfMS. The ideas here are based on usingXymphony for
MS Word, a plug-in allowing collaborative editing of documents to be managed by
xymphonic transactions (Anfindsen & Storløpa 2001).

Xymphony for MS Word is activated and controlled from a new menu within Mi-
crosoft Word. The owner of the document may partition the document, or the
application may convert the structure of chapters, sections, subsections, etc. into
a hierarchy of nested transactions. The owner may invite users registered in the
system and give them access to work within the context of selected subxymphon-
ies. By using parameterised access modes, the participants may see each other’s
contribution as work progresses. Upon commitment of a subtransaction, the owner
may review the changes before deciding to accept or deny it.

In a WfMS, Xymphony for MS Word might be used as a stand-alone applica-
tion that is invoked by the workflow client when a user starts an editing activity.
The word processor could be given an automatically partitioned document. Lists
of users can be extracted from the organisation model describing owner, allowed
users, invited users, etc. Invitations to join an editing activity can be sent to the
other participants in the form of invitation tasks, automating the process of joining
the xymphony. The owner may manually involve other allowed users as appropri-
ate to the circumstances.

In section 4.3, there was an example of collaborative writing in LOVISA. In cases

CHAPTER 5. DISCUSSION 87

involving more than one professional judge, LOVISA manages the writing of the
decision document by routing it between the authors sequentially. Before the writ-
ing starts, the judges meet to agree about the content of the document. One judge is
responsible for most of the writing, and the other judge makes comments, correc-
tions or additions after receiving the first draft. Still, they have the same authority
with regards to the outcome. Using Xymphony for MS Word like outlined above,
would allow the writing process to be collaborative. The judges could, for example
write different parts of the document simultaneously, and if in doubt, they could
submit their part and ask the other to complete it.

A benefit of using Xymphony for MS Word in this way, is that the granularity of the
undo mechanism is finer. A workflow routing the document between participants,
even if using xymphonic transactions in the WfMS, would only be able to abort
at a granularity corresponding to a completed activity. If using Xymphony for
MS Word, the scope of undo is document sections, or even finer units if desired.
Additionally, for as long as the editing session is active, the undo mechanism built
into the word processor may be used as well. If we can save application state, we
may even preserve the native undo mechanism between sessions.

The writing of decision documents is the only obvious opportunity for collaborat-
ive writing in LOVISA. However, the procedures in an organisation are normally
rooted in the traditional way of organising work. With the introduction of an in-
formation system allowing parallel processing of cases, the mentality may change.
Pipek & Wulf (1999) describes the introduction of a groupware system in a Ger-
man state administration. They observed that workflows underwent changes even
during the use phase, partially stimulated by the technology. They discuss the im-
portance of an integrated view on organisational and technological development.
Technology and organisations will both affect each other. It might be possible to
identify more processes that could benefit from using concurrent writing of docu-
ments, as long as evolution of business processes is supported during the use phase
of the system.

5.7.2 Delegating Work

LOVISA supports delegating work by allowing a user to send his task to another.
A new task is created in another user’s task list, and the original task is deleted. By
doing this, however, further control of the task is relinquished.

Using xymphonic transactions, a user may convert his task, or activity into a sub-
database and invite other users to start subtransactions in this context. Such user
initiated xymphonies could be exploited in a WfMS to give more control over
work that has been delegated. These ideas have been adapted from (Vaksvik 2002,
pp.86–88).

The functionality could be designed along the lines of Xymphony for MS Word
discussed above. The activity to be delegated must be selected in the work list.

CHAPTER 5. DISCUSSION 88

Selecting a task containing many activities, might allow a partitioning of the overall
work item into several subxymphonies. The delegation proceeds by inviting users
from the organisation model to the various subxymphonies. Such an invitation
may create adelegated task, which highlights the activities that the invited user is
requested to process.

The further execution of the task may proceed in a collaborative fashion. As an ex-
ample, when executing the taskprepare case(presented in figure 5.7 on page 61),
a functionary might be in doubt as to the correct way of registering claims. He
could select the activityregister claims, invite a more experienced colleague, who
in his turn registers the most important claims as an example and submits the work.
When the functionary restarts theregister claimsactivity, his colleague’s contribu-
tions are present, and he may complete the activity. The activity may be restarted
and work developed iteratively in several more rounds of passing the activity back
and forth.

As a final benefit, this way of delegating activities allows the original owner to
review the contributions from other parties before accepting them.

Implementing this functionality in a WfMS is a little more complicated than util-
ising Xymphony for MS Word. The Xymphonic Engine would have to be integ-
rated with the workflow engine. When a user delegates an activity, the workflow
engine would have to place the cached copy of the objects to be processed in a xym-
phony (or subxymphony). The activities of both the original user, and the invited
user, would have to be run within the context of subtransactions to this xymphony.

5.8 Comments on Atomicity

It has been an aim to design the transactions so that they may cover as large a part
of the workflow as possible. This would give the part atomicity, consistency, isola-
tion (conditional isolation in our case), and upon finally committing, durability. It
has been an underlying assumption that a workflow is a logical unit of work that
should be executed atomically. This section questions the appropriateness of this
assumption.

Indeed, as is shown by the following example from (van den Heuvel & Artyshchev
2002, p.10), there are business procedures that would benefit from being atomic.
Figure 5.19 on the following page depicts a business process including the order-
ing, production, payment and delivery of goods. The concept of spheres of atom-
icity captures different semantics of atomicity. A sphere must be completed all or
nothing, and the execution atomicity sphere covering the whole workflow indicates
the desired transactional nature of the entire process.

However, so far researchers in transactional workflows have been unable to provide
atomicity to complex workflows. Most systems available today use short transac-
tions. In the case of LOVISA, an application statement is seen as an atomic unit.

CHAPTER 5. DISCUSSION 89

Figure 5.19: Spheres of atomicity in an example business transaction
(van den Heuvel & Artyshchev 2002, p.10)

From a technical viewpoint this is appropriate. There are other considerations that
support such design.

In comparing workflows and transaction monitors, Ader (1997) considers the activ-
ity to be the atomic unit. In particular, activities that interact with external trans-
action oriented systems should conform to the same transaction boundaries as the
external system. For the most part, the transactions in the external system are short.

Atomicity, and the complementary property of serializability, might not be ap-
propriate from a business perspective. Eder & Liebhart (1997, p.197) state that
“Serializability as a global correctness criterion is not applicable in the workflow
domain because business processes themselves are not serial.” Classical transac-
tions are seen as concurrent and completely unrelated units of work, whereas in
a workflow there is much cooperation between the different processes. The re-
duced isolation that is possible with xymphonic transactions accommodates this to
a certain degree, but as we have seen, there are problems when the task structures
become complicated and the degree of interaction between activities is high (e.g.
parallel paths with a high probability of conflicts).

In introducing the concept ofworkflow transactions, Eder & Liebhart (1997, p.199)
states that “a workflow transaction is asequence of workflow activitieswhich trans-
fer a business process from one consistent state into the next consistent state. Activ-
ities themselves are again workflow transactions.” In this perspective, determining
what constitutes the logical unit of operations suitable for one transaction becomes
a rather abstract question. An activity, a task or the whole workflow are all can-
didates. Committing the work done after each activity, as is the rule in LOVISA,

CHAPTER 5. DISCUSSION 90

corresponds to the view that the business procedure has taken a step forward to-
wards its completion, and the state that it is in, although unfinished, is nevertheless
a consistent state.

The attitude taken in this thesis, is that for small workflows it may be appropriate
to model the whole workflow as an atomic unit. If there are technical obstructions
to reaching this goal, we must look for parts of the workflow that may benefit from
being regarded as an atomic unit. In most cases, benefit from a practical perspective
(as opposed to a theoretical) will be the driving factor. We may be better served
by keeping transactions short if this will lead to better performance, lesser risk
of loosing work and simpler technical designs. Balance this with the benefit of
providing undo functionality and other benefits of using long-lasting transactions.
In a pragmatic approach like this, theoretical properties like atomicity and isolation
do not become as important.

5.9 Related Work

5.9.1 Vaksvik 2002

The cand scient thesis by Vaksvik (2002) was a starting point for the work with
this thesis. Vaksvik examined the question of integrating xymphonic transactions
with FrameSolutions, using Gaius as an example. Gaius is a workflow system
for managing cases in the Norwegian Supreme Courts, and in some aspects it is
a predecessor to LOVISA. This section will summarise the results of Vaksvik and
evaluate how this thesis has developed her ideas further.

Vaksvik (2002, pp.71–73) proposes abasic modelfor the structuring of xymphon-
ies. At the start of a workflow, a top-level xymphony is established to contain the
processing of the complete workflow. Each task is run within a subxymphony, and
likewise, activities are run within their respective task-xymphonies.

One of the problems identified by Vaksvik is that although the process model fits
neatly within the structure of nested databases, work processes do not necessarily
follow such hierarchical patterns. Consequently, Vaksvik suggested further ana-
lysis of the data processing requirements of a real system.

In the case study of LOVISA, I have focused on the data processed by different
tasks, analysing potential conflicts. My approach has been to let dependencies
determine the structuring of transactions. The ordering of tasks was identified
as the most important indication of dependencies, therefore much space has been
devoted to discussing the routing constructs.

Another notable difference is the transaction duration. The basic model covers
the whole workflow in one long-lasting transaction. By using shorter transactions,
it is possible to support real actions, integration with external systems, and the
potential amount of lost work is reduced. The drawback is that the benefits of

CHAPTER 5. DISCUSSION 91

using xymphonic transactions only apply to parts of a workflow.

A major concern for Vaksvik was to avoid conflicts by carefully structuring and
partitioning data. The suggestions on updating register data outside the sphere of
control of the workflow-xymphony were taken from (Vaksvik 2002) as discussed
in section 5.5. Vaksvik (2002, pp.80–83) includes a detailed discussion of the
granularity of locking in the domain model. Central objects, like the case object,
are seldom modified, but the references to other objects, e.g. to the documents in a
case, are accessed by most tasks. It is important to select the granularity of locking
so that an activity editing one document, does not prevent access to, or addition of
other documents.

Many of the open questions pointed out in (Vaksvik 2002) remain unanswered.
This includes the question of establishing appropriate parameter domains. A de-
fault parameter was assumed to be sufficient for most processes, and a more ad-
vanced usage of parameters is probably application specific. Finally there is the
question of to which degree users should be exposed to the control of xymphonic
transactions. Mostly, the workflow engine may manage transactions. However,
issues such as user interface design and the assignment of user privileges largely
remain unresolved.

5.9.2 Transactional Workflows

In the 1990s researchers were concerned with the lack of transactional support
and formally defined failure semantics in current WfMSs. Sheth & Rusinkiewicz
(1993) introduced the concept oftransactional workflowto clearly recognise the
relevance of transactions to workflows. Subsequently it has been used by a number
of researchers when discussing workflows that define transactional properties for
individual tasks or entire workflows (Worah & Sheth 1997, p.9).

The following quote is a typical perspective that motivates the adoption of ad-
vanced transaction models for workflow systems.

“Modern WfMSs have to support complex long-running business pro-
cesses in a heterogeneous and/or distributed environment. It has been
pointed out in [GHS1995]5 that most of these systems lack the ability
to ensure correctness and reliability of workflow execution in the pres-
ence of failures. Therefore a strong motivation of merging advanced
transaction models with workflow models become evident.”

(Eder & Liebhart 1997, p.198)
5GHS1995 refers to D. Georgakopoulos, M. Hornick, and A. Sheth, ‘An Overview of Workflow

Management: From Process Modelling to Workflow Automation Infrastructure´,Distributed and
Parallel Databases, 3(2):119-153, April 1995.

CHAPTER 5. DISCUSSION 92

In one approach, tasks are mapped to transactions of an advanced transaction
model, and control flow is defined as dependencies between transactional steps
(Worah & Sheth 1997, p.9). The ConTract model (Wächter & Reuter 1992) is a
good example. A ConTract consists of a set of steps with the ACID properties
and an execution plan, called a script. The script specifies execution dependencies
between the steps, and may combine multiple steps in atomic units. Each step is
required to be compensatable, and the default strategy for dealing with failures is
forward recovery. The ConTract model relaxes isolation and atomicity and defines
correctness in terms of invariants for each step, leading toinvariant-based serial-
izability.

However, this focus on the transactional properties of a workflow has its draw-
backs. While a “WfMS automates the flow of control and data between activities,
and maps activities to users and programs” (Alonso et al. 1996, p.6), transactional
workflows address only part of the problem. Alonso et al. (1996) mention the
ConTract model as the most comprehensive approach, but still it “does not include
users into the system” (ibid, p.6).

Furthermore, WfMSs are built for supporting more generic tasks that may be non-
transactional in nature, and sometimes even non-computerised (ibid, p.6). The
systems involved in the processing of a workflow may not provide the services
implied by an extended transaction model (Sheth & Rusinkiewicz 1993, p.37).
Worah & Sheth (1997, p.5) conclude that “workflow requirements either exceed,
or significantly differ from those of ATMs [advanced transaction models] in terms
of modelling, coordination and run-time requirements.” In their view, the role of
advanced transaction models is of a supportive nature (ibid, p.31).

These conclusions are valid for the application of xymphonic transactions in work-
flows as well. The discussion of mapping workflows to transactions has shown
that the Xymphonic Transaction Model is not able to conveniently support com-
plex workflows and ad hoc routing (see e.g. the complication caused by the ad
hoc AND-join in figure 5.9 on page 63). The transaction model includes users,
and may in itself support collaboration. However, it does not provide any way to
specify tasks and execution dependencies, thus it addresses only a subset of the re-
quirements for a WfMS. For these reasons, the Xymphonic Transaction Model has
been proposed as a supportive extension to WfMSs, adding transactional properties
for selected parts of a workflow.

Recent contributions to transaction support for workflows include (Schuldt et al.
2002), from which I have adopted some useful terminology. They provide a frame-
work for specifying and executing processes that are guaranteed to terminate cor-
rectly. This is achieved by requiring that, in a process containing a pivot, all activit-
ies preceding the pivot must be compensatable, and following the pivot, there must
be a least one path of execution that contains only retriable activities. The process
may be aborted (by compensation) before the pivot commits. After this, even if
all other paths towards termination fail, the path containing only retriable activities

CHAPTER 5. DISCUSSION 93

may be retried until eventually it succeeds.

The example workflow on page 89 was taken from (van den Heuvel & Artyshchev
2002). Their main discussion centers upon defining different types of atomicity,
and how web services may negotiate the degree of atomicity for business-to-busi-
ness transactions over the Internet. Their approach may provide atomicity to pro-
cesses that span multiple organisations, however, as is apparent from their plans
for further research (ibid, p.11), much work remains before this is possible.

CHAPTER 5. DISCUSSION 94

Chapter 6

Summary and Conclusions

Transactions have been an important factor in the success of DBMSs for man-
aging data. However, as application requirements have changed, the transactional
paradigm has proved too limited for many application domains. In the case of
WfMSs, attempts have been made at using advanced transaction models for sup-
porting the structure and inter task dependencies of workflows. However, business
processes have richer semantics than what it is possible to express with a transac-
tion model.

Still, WfMSs may benefit from the recovery mechanisms and consistency guaran-
tees provided by transactional systems. This thesis has explored the potential use
of the Xymphonic Transaction Model.

The Xymphonic Transaction Model extends the classical transaction model with
parameterised access modes and nested databases. Parameterised access modes
allow for a controlled access to uncommitted data locked in long-running transac-
tions. Nested databases, or xymphonies as they have been named in the commercial
product, are similar to nested transactions, but the sphere of control provides some
of the same services to subtransactions as a database would. Xymphonic transac-
tions have all the ACID properties of standard transactions, except for isolation,
which is conditional, yielding the acronym ACCID.

6.1 Summary of the Proposed Design

The discussion in chapter 5 addressed the two research questions:

(1) How must the WfMS be designed to achieve the promised benefits?

(2) Which factors constrain the use of xymphonic transactions? Which factors
limit the applicability of xymphonic transactions?

95

CHAPTER 6. SUMMARYAND CONCLUSIONS 96

The questions are interrelated, and answers to one, affect the other. The following
summarises the design and some of the most important constraints that were found.

The main contribution is a set of rules for transaction handling that may be used
by a generic workflow management system to automatically interpret a workflow
definition and establish appropriate structures of xymphonies for the processes to
run in. However, a precondition is that the WfMS has transactional control over
all the data that is processed. This means that the workflow application data must
be internal to the WfMS, or that external data sources can be covered by distrib-
uted xymphonic transactions. However, many WfMSs integrate external DBMSs,
legacy systems, and non-transactional systems. Communication with such systems
is restricted to short classical transactions at best. In order to ensure global con-
sistency, interaction with external systems forces the WfMS to commit its internal
transactions.

In custom built workflow systems like LOVISA, most of the data processing is
internal to the system. This environment is better suited to long-lasting xymphonic
transactions. Implementation options for a potential system were briefly discussed,
indicating that the proposals in this thesis might be feasible.

The section on mapping from workflows to transactions approached the question
of how to structure xymphonic transactions. It is possible to support the semantics
of the WfMC meta model for workflow definitions to some degree. Some limita-
tions in the transactional paradigm necessitate the use of shorter transactions due
to structural considerations alone. This combines with limitations on transaction
duration due to real actions (pivots) and a desire to avoid lost work. It seems that
only short and very simple workflows may be encapsulated in one long-lasting
transaction. The potential benefits of using xymphonic transactions will be limited
to selected parts of the workflow.

One such selected part is the single-user mini-workflow. If a set of activities to
be processed by a single user contains no pivots, and the structure of this mini-
workflow is relatively simple, xymphonic transactions may provide an undo func-
tion to the user. Due to nested databases, such an undo function is more advanced
than what would be possible if using only flat transactions with savepoints.

Another part of the workflow that may easily benefit from using xymphonic trans-
actions is any subset of tasks that contains no AND-splits. Sequential routing and
iterative routing may be nested in a transactional structure that supports undo back
to a specified point in the execution history. The two major problems identified in
this context, are assigning appropriate user privileges to the transactional mechan-
isms, and building an understandable user interface. These problems can be solved
by only allowing the user to undo his most recent activity, and restricting access to
more complicated control to appropriately trained administrators.

Conditional routing in its basic form is similar to sequential routing. Deferred
choice and selection between alternative paths based on triggers require a more

CHAPTER 6. SUMMARYAND CONCLUSIONS 97

careful design. LOVISA has solved this issue by making triggers a starting point
in a workflow. However, this simple approach is not possible if the following
activities need access to resources locked by the preceding activities. An option
discussed is to enable all the paths following an OR-split, but keep them waiting in
the transition phase until an event makes a decision possible.

Parallel routing presented some problems for long-lasting transactions. The simple
case, in which the parallel paths have little probability of conflicting and contain
no pivots, can be accommodated. However, in any other case, it seems more ap-
propriate to commit before the AND-split. A high probability of conflicts and the
presence of pivots limit the undo scope and break atomicity for the process as a
whole.

Parameterised access modes allow read access to case data that are locked in long-
lasting transactions. In general, it may be sufficient to use one simple default para-
meter for all workflow processes. In some application domains, there will probably
be application specific requirements that may benefit from a more advanced use of
parameters.

Finally, section 5.6 provided a very simple set of extensions to the workflow defin-
ition language for controlling transactions. As a minimum, a designer must tell
the WfMS to use xymphonies, he must identify pivots, and he must provide the
n-way dependency relation where appropriate. The rest of the attributes allows for
fine-tuning of the operation.

6.2 Pros and Cons of Xymphonic transactions in a WfMS

There are both pros and cons for using xymphonic transactions in a WfMS. The
following evaluation serves as an answer to the main research question that motiv-
ated this thesis:Which benefits can be had from using xymphonic transactions in a
workflow management system (WfMS)?

Xymphonic transactions may provide the ACCID properties to small workflows,
or parts of a larger business procedure. This was one of the aims of researchers
in transactional workflows in the 1990s (Rusinkiewicz & Sheth 1995, p.599). The
precondition to achieving this, however, is that all the subsystems participating in
the atomic unit are protected by the same xymphonic transaction. This condition
is satisfied in LOVISA for many single tasks, and for some sets of up to four tasks
that do not contain real actions.

We may expect the atomicity semantics of workflows to improve in such a sys-
tem. However, section 5.8 debated the applicability of enforcing strict atomicity
for business procedures, and concluded that practical benefits may be more import-
ant than theoretical elegance.

The undo function is one practical benefit of using xymphonic transactions. Based

CHAPTER 6. SUMMARYAND CONCLUSIONS 98

on the built in recovery mechanism of the transaction manager, consistency is auto-
matically ensured. The granularity of the undo-steps is reasonably fine, and in
many cases, it allows for individually selecting parallel paths for rollback. How-
ever, AND-joins enlarge the scope of rollback, and pivots and other events forcing
a commit, prevent further use of undo. Another problem is designing an under-
standable user interface, and granting appropriate user privileges to transactional
control.

Support for long-lasting transactions allows for longer activities than what is pos-
sible in LOVISA today. Parameterised access modes ensure that information will
be available to other users, even though data is locked. The extra uses for xym-
phonic transactions further extend the possibilities for complex activities. For ex-
ample, documents may be edited collaboratively within a single activity, and work
may be delegated in a controlled fashion.

A drawback of longer transactions is that more work may be lost in the event of
crashes. The availability of persistent savepoints is an important factor in this re-
spect. A parameter for specifying the commit interval was provided to allow or-
ganisations to define their own policy on this issue. The risk of lost work may to
some extent be compensated for by the undo functionality. Some time is spent by
support personnel to recover from user errors in LOVISA. They have repeatedly
expressed a desire for a button to undo the error (and all activities depending on it),
instead of performing the tedious task of manually correcting it.

The rules provided for automatically mapping workflow tasks to transactions sim-
plifies the workflow specification. Designers do not need an intimate understand-
ing of the Xymphonic Transaction Model, and most of its usage is controlled by a
simple set of extended attributes. There is one complicating factor, however. De-
pendencies between tasks have to be modelled explicitly and more completely than
in LOVISA. The designer must identify data dependencies and possibly conflicting
parallel paths. AND-splits must be joined in order to inform the workflow engine
of the necessary commitment of the parallel paths. And triggers must be connected
to the rest of the workflow, usually in the form of an implicit OR-split. LOVISA
allows for a more relaxed approach to modelling dependencies.

Xymphonic transactions have limited support for adaptive workflows, and may
even hinder the possibility in LOVISA to create ad hoc tasks. An ad hoc task will
perform outside the scope of the xymphonies covering the workflow tasks and may
experience conflicts with these.

Real time statistics will become more complex when using xymphonic transac-
tions. LOVISA implements statistics by querying the committed state in the DBMS.
When using long-lasting transactions, on the other hand, completed tasks may be
uncommitted. The statistical function must combine committed and uncommitted
data, and there is a question of how to interpret this potentially unreliable inform-
ation.

CHAPTER 6. SUMMARYAND CONCLUSIONS 99

These conclusions are based on a comparison of a would-be xymphonic WfMS
with LOVISA. LOVISA is representative of WfMSs using classic flat transactions
to manage its persistent data. It has several features that are common in WfMSs —
it integrates with external systems and implements a workflow meta model similar
to the WfMC’s standard. On the other hand, LOVISA manages most of its case data
internally. This contrasts with WfMSs designed to integrate heterogeneous systems
and whose sole purpose is to manage flow control between existing systems, thus
not all the conclusions in this section are valid for all types of WfMSs.

6.3 Unresolved Issues and Further Research

Some design issues deserve more attention prior to implementing a WfMS based on
the Xymphonic Transaction Model. Following this, there are some suggestions for
further research. This distinction is made because the design issues are relatively
limited in scope and applicability, although they are important questions to answer
when building a xymphonic WfMS.

6.3.1 Unresolved design issues

Performance was assumed to be sufficient for supporting the long lasting trans-
actions proposed in this thesis. Although this may not be true for current sys-
tems, increases in hardware performance may alleviate the problem. Furthermore,
the orally expressed view of Anfindsen is that a DBMS implementing xymphonic
transactions in the core would be far more efficient than a xymphonic transaction
manager built as a layer on top of a standard database. Still, final conclusions are
difficult to reach without testing the design in a prototype or a simulation.

A detailed discussion of user interface design has been outside the scope of this
thesis. It may be beneficent to test this in a prototype and experiment with different
variants to be evaluated by users. In particular, the usability of the interface to the
undo functions requires further attention.

Another user-related question remains. The suggestions for user privileges to trans-
actional control simply allowed normal users to undo their own tasks. More ad-
vanced assignment policies may be useful. However, a comprehensive analysis of
this question may require experience with a live system.

A host of lesser details require further attention as well. The architectural designs
discussed need further detailing, and other design options may be possible. The
design for register data need further development. Locking and the granularity of
locking in the domain model has not even been considered in this thesis. Finally, it
may be possible to support more complex tasks without implementing a full blown
xymphonic WfMS. The suggestions in section 5.7 illustrate a few possibilities, and
many similar extensions may be possible.

CHAPTER 6. SUMMARYAND CONCLUSIONS 100

The final design issue borders on a research question: How can deferred choice be
modelled in workflow definition languages that do not support it explicitly? The
reason it is listed as a design issue, is that in order to implement a xymphonic
WfMS using the standard workflow definition language from the WfMC, it might
be sufficient to find a working solution by adding some simple extended attributes
to the workflow language.

6.3.2 Further research

The mapping of workflows to transactions (section 5.3) was based on the assump-
tion that dependencies should determine the structuring of transactions. In LO-
VISA, the ordering of tasks was identified as the most important indication of de-
pendencies. This may, or may not be true for other systems. A case study of several
WfMSs would give a better basis for verifying (or falsifying) this assumption.

Adaptive workflows, in particular, present some interesting problems. A workflow
definition in which the order of tasks is not given, or only partially defined, does not
give the workflow engine enough information about dependencies. Is it possible to
determine this information at run-time? Or can the users be given control over the
establishing of xymphonies?

Finally, although the extended attributes for controlling transaction mechanisms
in a workflow are quite simple, designers may easily make errors. It is possible
to define contradictory requirements for different tasks. Developers may fail to
identify probable conflicts between parallel paths. The transactions may become
too large, locking too much resources and decreasing performance. Or the trans-
actions may become too small to be of any use. Business process management
(BPM) may provide a solution to these problems.

van der Aalst, ter Hofstede & Weske (2003) describe BPM as the “next step” of
workflow management. BPM includes better support for process design by provid-
ing methods and techniques for verification, validation and simulation of the work-
flows. BPM extends the development process by defining a life-cycle of product
design, use, analysis/diagnosis and redesign. The diagnosis phase gather data from
the running system an the analysis is input to redesigning existing processes.

While BPM is new and the methods still a research topic, there are many use-
ful techniques for diagnosing workflows. However, adapting these techniques to
xymphonic workflows requires further research. A non-exhaustive list of research
questions includes: Can formal methods be extended to verify the correctness of
the transactional design of a workflow? How can the transactional behaviour of
a xymphonic workflow be simulated? Which data should be gathered from the
running xymphonic system as input to the diagnosis phase of BPM?

Index

ACCID properties, 23
ACID properties, 7
Action, 35
Activity, 34
ANL (Annotated Nullable Logic), 25
Application context, 16, 19, 52
Atomicity, 7

Case, 27
Classic transaction, 7
Compatibility matrix, 9, 15, 23
Compensatable task, 54
Compensating transaction, 55
Conditional conflict, 22
Conditional conflict serializability, 23
Conditional routing, 30
Conflict equivalence, 9
Conflict serializability, 9
Consistency, 8

Data partitioning, 80
Database management system (DBMS),

1
Database transaction, 36
DBMS (database management system),

1
Deferred choice, 69
Dependency, 18, 39, 56
Domain model, 36
Downwards inheritance, 20
Durability, 8

Flat transaction, 7
Forward recovery, 52
FrameSolutions, 33, 34

Hold a lock, 20

Implicit OR-split, 69
Interaction, 17, 21
Isolation, 8

LLT (long-lasting transaction), 16
Locking, 15
Long-lasting transaction, 16
LOVISA, 33

Missing data, 25
Multi-level transactions, 20
Multiversion concurrency, 15

N-way dependency relation, 57
Nested conditional conflict serializab-

ility, 24
Nested databases, 24
Nested transactions, 19

ObjectStore, 36
Organisation model, 27, 29, 50

Parallel routing, 30
Parameterised access modes, 22
Persistent savepoints, 19, 52
Pivot, 54
Precedence graph, 10
Process change, 56
Process definition, 27, 29, 30, 34

Real actions, 53
Recovery, 13, 15, 18
Register data, 80
Retain a lock, 20
Rigorous schedule (RG), 14
Routing constructs, 30

Savepoints, 19

101

INDEX 102

Schedule, 9
Scope of rollback, 76
Sequential routing, 30
Serializability, 9
Spheres of control, 17
Step, 34
Strict schedule (ST), 14
Subdatabase, 24
Subtransaction, 20

Task, 27, 29, 34
Timestamp ordering, 15
Transaction model, 16
Trigger, 39, 70
Two phase locking (2PL), 15

Undo-redo protocol, 49
Unreliable data, 25
Upwards inheritance, 20
User transaction, 36

Versions of a cached object, 48
View serializability, 12

WfMC (Workflow Management Co-
alition), 27

WfMS (workflow management sys-
tem), 2, 27

Work item, 29, 34
Work list, 34
Workflow, 34
Workflow application data, 29, 36
Workflow control data, 29, 36
Workflow enactment service, 27
Workflow engine, 27
Workflow Management Coalition, the

(WfMC), 27
Workflow management system (WfMS),

2, 27
Workflow model, 27
Workflow participant, 27, 29
Workflow relevant data, 29, 36

Xymphonic Engine, the, 26
Xymphonic Transaction Model, the,

21

Bibliography

Ader, M. (1997), Workflow engines as transaction monitors,in Lawrence (1997),
pp. 231–239.

Alonso, G., Agrawal, D., Abbadi, A. E., Kamath, M., Günthör, R. & Mohan,
C. (1996), Advanced transaction models in workflow contexts,in ‘Proc.
12th International Conference on Data Engineering, New Orleans, February
1996.’, pp. 574–581.
*A more detailed version of the paper is available as a re-
search report from the IBM Almaden Research Center:
http://www.almaden.ibm.com/cs/exotica/exotica_tran_models0795.ps
[cited July 2004]

Anfindsen, O. J. (1997), Apotram — an Application-Oriented Transaction Model,
PhD thesis, Department of Informatics, University of Oslo.

Anfindsen, O. J. (2002), The power of xymphonic collaboration, White paper,
Xymphonic Systems.
*http://www.xymphonic.com/pdf/The power of xymphonic collaboration
white paper.pdf [cited October 2002]

Anfindsen, O. J. & Storløpa, R. (2001), Supporting xymphonic transactions on top
of oracle,in ‘SSGRR 2001 Conference Proceedings’.
*http://www.ssgrr.it/en/ssgrr2001/papers/Ole%20Anfindsen.pdf [cited
November 2002]

Bernstein, P. A., Hadzilacos, V. & Goodman, N. (1987),Concurrency Control and
Recovery in Database Systems, Addison-Wesley, Reading, Mass.

Bowers, J., Button, G. & Sharrock, W. (1995), Workflow from within and without:
Technology and cooperative work on the print industry shopfloor,in M. et al.
(eds.), ed., ‘Proceedings of the Fourth European Conference on Computer-
Supported Cooperative Work’, Vol. ECSCW’95, Kluwer, pp. 51–66.

Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M. & Silberschatz, A. (1991),
‘On rigorous transaction scheduling’,IEEE Transactions on Software Engin-
eering17(10), 954–960.

103

BIBLIOGRAPHY 104

Chaffey, P. & Walford, R. (1997),Norwegian-English law dictionary : criminal
law and procedure and other legal terms, 2nd edition (1st ed. 1992) edn,
Universitetsforlaget, Oslo.

Computas (2002),FrameSolutions Programmer’s Guide, framesolutions/beans
version 3.0 edn, Computas AS.

Date, C. J. (2000),An introduction to database systems, 7th edn, Addison-Wesley,
Reading, Mass.

Davies, C. T. (1978), ‘Data processing spheres of control’,IBM-Systems-Journal
17(2), 179–198.

Dumas, M. & ter Hofstede, A. H. M. (2001), Uml activity diagrams as a workflow
specification language,in M. Gogolla & C. Kobryn, eds, ‘UML 2001 —
The Unified Modeling Language, Modeling Languages, Concepts, and
Tools, 4th International Conference, Toronto, Canada, October 1–5, 2001,
Proceedings’, Vol. 2185 ofLecture Notes in Computer Science, Springer,
pp. 76–90.
*http://www.springerlink.com/openurl.asp?genre=article&issn=0302-
9743&volume=2185&spage=76 [cited February 2003]

Eder, J. & Liebhart, W. (1997), Workflow transactions,in Lawrence (1997),
pp. 196–202.

Elmagarmid, A. K., Leu, Y., Litwin, W. & Rusinkiewicz, M. (1990), A multidata-
base transaction model for interbase,in ‘Proceedings of the 16th International
Conference on Very Large Data Bases’, Morgan Kaufmann Publishers Inc.,
pp. 507–518.

Elmasri, R. & Navathe, S. B. (2000),Fundamentals of database systems, Addison
Wesley, Reading, Mass.

Eswaran, K. P., Gray, J., Lorie, R. A. & Traiger, I. L. (1976), ‘The notions of
consistency and predicate locks in a database system’,Communications of
the ACM19(11), 624–633.

Garcia-Molina, H., Ullman, J. & Widom, J. (2002),Database Systems: The Com-
plete Book, Prentice Hall, New Jersey.

Gray, J. & Reuter, A. (1993),Transaction processing: concepts and techniques,
Morgan Kaufmann Publishers, San Francisco.

Hagen, C. & Alonso, G. (2000), ‘Exception handling in workflow manage-
ment systems’,IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
26(10), 943–958.

Härder, T. & Reuter, A. (1983), ‘Principles of transaction-oriented database recov-
ery’, ACM Computing Surveys15(4), 287–317.

BIBLIOGRAPHY 105

Härder, T. & Rothermel, K. (1993), ‘Concurrency control issues in nested transac-
tions’, VLDB Journal2(1), 39–74.

ISO (2000), International Standard ISO/IEC 9075-2:1999, Database Language
SQL Part 2: Foundation (SQL/Foundation).

Kjølstad, A. G. (2001), Issues concerning parameter sets in apotram, Cand.scient
thesis, Department of informatics, University of Oslo.
*http://www.digbib.uio.no/publ/informatikk/2001/1185/kjolstad.pdf [cited
September 2002]

Lawrence, P., ed. (1997),Workflow Handbook 1997, Workflow Management Coali-
tion, John Wiley and Sons, New York.

Leu, Y., Elmagarmid, A. K. & Boudriga, N. (1992), ‘Specification and execu-
tion of transactions for advanced database applications’,Information Systems
17(2), 171–183.

Moss, J. E. B. (1985),Nested transactions – an approach to reliable distributed
computing, MIT Press, Cambridge, Mass.

Pipek, V. & Wulf, V. (1999), A groupware’s life,in S. Bødker, M. Kyng &
K. Schmidt, eds, ‘Proceedings of the Sixth European Conference on Com-
puter Supported Cooperative Work’, Kluwer, pp. 199–218.

Reijers, H. A. (2003),Design and Control of Workflow Processes:Business
Process Management for the Service Industry, Vol. 2617 ofLecture Notes in
Computer Science, Springer-Verlag Heidelberg.
*http://www.springerlink.com/openurl.asp?genre=issue&issn=0302-
9743&volume=2617 [cited February 2004]

Rusinkiewicz, M. & Sheth, A. P. (1995), Specification and execution of trans-
actional workflows,in W. Kim, ed., ‘Modern Database Systems: The Ob-
ject Model, Interoperability, and Beyond’, ACM Press and Addison-Wesley,
Reading, Mass., chapter 9, pp. 592–620.

Schuldt, H., Alonso, G., Beeri, C. & Schek, H.-J. (2002), ‘Atomicity and isol-
ation for transactional processes’,ACM Transactions on Database Systems
27(1), 63–116.

Schwenkreis, F. (1996), Workflow for the german federal government – a position
paper,in A. Sheth, ed., ‘NSF Workshop on Workflow and Process Automa-
tion in Information Systems: State-of-the-art and Future Directions’, National
Science Foundation.
*http://lsdis.cs.uga.edu/activities/NSF-workflow/schwenk.html [cited Octo-
ber 2003]

BIBLIOGRAPHY 106

Sheth, A. P. & Rusinkiewicz, M. (1993), ‘On transactional workflows’,Data En-
gineering Bulletin16(2), 37–40.
*http://citeseer.nj.nec.com/295779.html [cited June 2003]

Sommerfelt, P. E. T. (2001), Dynamic modification of transaction isolation in
the apotram transaction model, Siv.ing thesis, Department of informatics,
University of Oslo.
*http://www.digbib.uio.no/publ/informatikk/2001/1341/Sommerfelt2001.pdf
[cited September 2002]

Vaksvik, M. S. (2002), Avanserte transaksjonsmekanismer i saksbehandlingssyte-
mer, Cand.scient thesis, Department of informatics, University of Oslo.

van den Heuvel, W.-J. & Artyshchev, S. (2002), ‘Developing a three-dimensional
transaction model for supporting atomicity spheres’, Workshop lecture paper
presented on Net.ObjectDays 2002 (not reviewed).
*http://citeseer.nj.nec.com/552793.html

van der Aalst, W. (1998), ‘The application of petri nets to workflow management’,
The Journal of Circuits, Systems and Computers8(1), 21–66.
*http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p53.pdf [cited Febru-
ary 2004]

van der Aalst, W. M. P. (2003), ‘Don’t go with the flow: Web services composition
standards exposed’,IEEE Intelligent Systems18(1), 72–76.
*http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf
[cited April 2004]

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. & Barros, A. (2003), ‘Work-
flow patterns’,Distributed and Parallel Databases14(3), 5–51.
*http://tmitwww.tm.tue.nl/research/patterns/documentation.htm [cited Feb-
ruary 2004]

van der Aalst, W., ter Hofstede, A. & Weske, M. (2003), Business process man-
agement: A survey,in ‘Conference on Business Process Management: On
the Application of Formal Methods to Process-Aware Information Systems’,
Vol. 2678 ofLecture Notes in Computer Science, Springer, pp. 1–12.

van Leeuwen, F. (1997), Learning from experience in workflow projects,in
Lawrence (1997), pp. 185–193.

Wächter, H. & Reuter, A. (1992), The contract model,in A. K. Elmagarmid,
ed., ‘Database Transaction Models for Advanced Applications’, Morgan
Kaufmann Publishers, chapter 7, pp. 219–263.

WfMC (1995), The workflow reference model, Technical Report WFMC-TC-
1003, Issue 1.1, Workflow Management Coalition, Hampshire, UK.
*http://www.wfmc.org/standards/docs/tc003v11.pdf [cited March 2004]

BIBLIOGRAPHY 107

WfMC (1999a), Interface 1: Process definition interchange process model,
Technical Report WfMC TC-1016-P, Version 1.1, Workflow Management
Coalition.
*http://www.wfmc.org/standards/docs/TC-1016-
P_v11_IF1_Process_definition_Interchange.pdf [cited May 2003]

WfMC (1999b), Terminology and glossary, Technical Report WFMC-TC-1011,
Issue 3.0, Workflow Management Coalition, Hampshire, UK.
*http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
[cited May 2003]

Worah, D. & Sheth, A. P. (1997), Transactions in transactional workflows,in S. Ja-
jodia & L. Kerschberg, eds, ‘Advanced Transaction Models and Architec-
tures’, Kluwer Academic Publishers, pp. 3–34.
*http://lsdis.cs.uga.edu/lib/download/WS97.pdf [cited March 2004]

Yearly Statistics for the Courts of Justice(2002), Norwegian Courts Administra-
tion.
*http://www.domstol.no/Domstolene/internet/showLinks.asp?archive=1002200
[cited January 2003]

