
Master Thesis

Application-Layer
Communication Protocol
for Home Automation

Dinko Hadzic

June 15, 2004

University of Oslo
Faculty of Mathematics and Natural Sciences

Department of Informatics

i

Abstract

Chipcon [CHI], a Norwegian company that designs, produces and
markets high performance and cost-e¤ective radio frequency integrated
circuits (RF-ICs), wanted to develop a new communication protocol
for monitoring and control scenarios that would be applicable with all
their products.
The thesis proposes a new application-layer communication proto-

col for home automation named the Device Control Protocol (DCP).
Being a completely transmission-layer independent and simple but
�exible and extensible communication protocol that allows cost-e¤ective
embedded implementation in a wide range of application areas, DCP
meets and exceeds the requirements given by Chipcon. In order to
simplify DCP-based application implementations, the thesis also de-
�nes a standardized application program interface (API) for the pro-
tocol, which hides the complex details of the underlying transmission
layer and provides a uniform interface to upper layers regardless of
the selected transmission technology.
As an open, universal home automation protocol, the Device Con-

trol Protocol (DCP) provides a solid foundation for further develop-
ment and industrialization by other other manufacturers seeking a
simple but �exible communication solution.
The thesis also explores and con�rms the possibility of using a mo-

bile phone as a short-range remote control in home automation. Due
to the platform independency and a strong market acceptance, Java
Platform 2 Micro Edition (J2ME) is the recommended software plat-
form for hosting the remote control applications. The recommended
wireless technology is Bluetooth.
Various prototype systems are developed to illustrate the results

of the thesis and demonstrate the practical application of the Device
Control Protocol (DCP).

ii

�Every new beginning comes from some other beginning�s end�

Con�cius, 550-478 BC

iii

Preface

This Master Thesis is written at the University of Oslo, Faculty of Mathemat-
ics and Natural Sciences, Department of Informatics [UIO] and the University
Graduate Center at Kjeller [UNI]. The project is carried through during one
semester (30 credit points), it started January 15th and concluded June 15th,
2004.
The project is de�ned by a commercial company, Chipcon AS [CHI], that

has contributed with hardware equipment, technical expertise and consulta-
tions.
Parts of the thesis are also published on the o¢ cial thesis website, avail-

able online at http://folk.uio.no/dinkoh.
I would like to thank my supervisors Knut Øvsthus, Øyvind Janbu and

Pål Spilling for valuable help, guidance and counselling throughout the project
period. I would also like to thank Hans Klouman for creating the electrical
power relay chip put to use in one of the prototype systems.

Oslo, June 15, 2004

Dinko Hadzic

iv

http://folk.uio.no/dinkoh

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Thesis De�nition and Scope 2
1.3 Related Work . 3
1.4 Report Overview . 4

2 Home Automation Systems 6
2.1 Introduction . 6
2.2 X-10 . 7
2.3 LonWorks . 7
2.4 Konnex . 8
2.5 Z-Wave . 9
2.6 Consumer Electronics Bus (CEBus) 10

3 Short-Range Wireless Technologies 11
3.1 IEEE 802.15.4 . 11

3.1.1 Overview . 12
3.1.2 Physical Layer (PHY) 12
3.1.3 Medium Access Control (MAC) layer 13
3.1.4 Home Automation Evaluation 14

3.2 ZigBee . 14
3.2.1 Overview . 15
3.2.2 ZigBee Protocol Stack 16
3.2.3 ZigBee Pro�les . 18
3.2.4 Home Automation Evaluation 19

3.3 Bluetooth . 19
3.3.1 Overview . 19
3.3.2 Network Topology . 20

v

3.3.3 Protocol Stack . 20
3.3.4 Host Controller Interface (HCI) 23
3.3.5 Bluetooth Pro�les . 23
3.3.6 Home Automation Evaluation 24

4 Device Control Protocol (DCP) 25
4.1 Overview . 25
4.2 Services, Ports and Bindings 26
4.3 Addressing . 28
4.4 Error Handling . 29
4.5 Security . 31
4.6 Packet Format . 31
4.7 Packet Size . 32
4.8 Message Types . 33

4.8.1 CONNECT_REQ . 34
4.8.2 CONNECT_RSP . 34
4.8.3 CONNECT_ERR . 34
4.8.4 DISCONNECT_REQ 35
4.8.5 DISCONNECT_RSP 35
4.8.6 DISCONNECT_ERR 35
4.8.7 BIND_REQ . 35
4.8.8 BIND_RSP . 37
4.8.9 BIND_ERR . 37
4.8.10 UNBIND_REQ . 38
4.8.11 UNBIND_RSP . 38
4.8.12 UNBIND_ERR . 39
4.8.13 SETDATA_REQ . 39
4.8.14 SETDATA_RSP . 39
4.8.15 SETDATA_ERR . 40
4.8.16 GETDATA_REQ . 40
4.8.17 GETDATA_RSP . 41
4.8.18 GETDATA_ERR . 41
4.8.19 SERVICE_DISCOVERY_REQ 41
4.8.20 SERVICE_DISCOVERY_RSP 42
4.8.21 SERVICE_DISCOVERY_ERR 42
4.8.22 DEVICE_DESCRIPTION_REQ 42
4.8.23 DEVICE_DESCRIPTION_RSP 44
4.8.24 DEVICE_DESCRIPTION_ERR 44

vi

4.9 DCP Services . 45
4.9.1 SERVICE_DATE . 45
4.9.2 SERVICE_TIME . 45
4.9.3 SERVICE_SWITCH 45
4.9.4 SERVICE_DIMMER 46
4.9.5 SERVICE_TEMP_C 46

4.10 Error reasons . 46
4.11 Application Program Interface (API) 48

4.11.1 Scanning for Devices 50
4.11.2 Connecting . 50
4.11.3 Disconnecting . 51
4.11.4 Binding . 53
4.11.5 Unbinding . 53
4.11.6 Changing the Service Value 54
4.11.7 Reading the Service Value 55
4.11.8 Service Discovery . 56
4.11.9 Device Description . 56

4.12 DCP Bridging . 57
4.13 Network Layer . 58

4.13.1 Reactive vs. Proactive Protocols 60
4.13.2 Routing in DCP IEEE 802.15.4 Networks 61

5 Mobile Phone in Home Automation 64
5.1 Motivation . 64
5.2 Software Platforms . 65

5.2.1 SymbianOS . 66
5.2.2 PalmOS . 66
5.2.3 Mophun . 67
5.2.4 Java Platform 2 Micro Edition (J2ME) 67
5.2.5 Binary Runtime Environment for Wireless (BREW) . . 68
5.2.6 Mobile Phone Platforms from Microsoft 68

5.3 Communication Technologies 68
5.3.1 Bluetooth . 69
5.3.2 IEEE 802.11 WLAN 69
5.3.3 IrDA Infrared . 70

5.4 Discussion . 71

vii

6 Prototype Systems 74
6.1 Home Automation Communication 74
6.2 Monitoring and Control from a Mobile Phone 78
6.3 Monitoring and Control from a Web Site 81

7 Discussion 84
7.1 Theoretical Investigation . 84
7.2 Device Control Protocol (DCP) 85

7.2.1 Further work . 87
7.3 Mobile Phone as a Short-Range Remote Control 88

7.3.1 Further work . 89

8 Conclusion 90

Abbrevations 91

Bibliography 95

A Contents of the Accompanying CD-ROM 101

viii

List of Figures

3.1 IEEE 802.15.4 network topologies: star and peer-to-peer . . . 14
3.2 ZigBee network topologies: star, mesh and tree 17
3.3 ZigBee protocol stack . 17
3.4 a) Point-to-point piconet b) Point-to-multipoint piconet c)

Scatternet . 21
3.5 Bluetooth protocol stack . 22
3.6 Host Controller Interface (HCI) architecture 23

4.1 ADCP device implementing two services, SERVICE_TEMP_C
and SERVICE_TIME at two di¤erent ports 27

4.2 A DCP binding created by the light switch with the binding
direction "out" . 28

4.3 DCP address translation mechanism 29
4.4 DCP request-response transactions: a successful scenario and

an error scenario . 30
4.5 DCP packet format . 31
4.6 Device Control Protocol (DCP) application program interface

(API) . 48
4.7 DCP API implementation architecture 50
4.8 Device scan procedure . 51
4.9 Connect procedure . 52
4.10 Disconnect procedure . 52
4.11 Bind procedure . 53
4.12 Unbind procedure . 54
4.13 Changing the service value . 55
4.14 Reading the service value . 56
4.15 Service discovery procedure 57
4.16 Device description procedure 58
4.17 DCP bridging scenario . 59

ix

4.18 Position of network layer in a DCP stack 59

5.1 Thermostat control scenario: the mobile phone transfers the
desired temperature setpoint wirelessly to the thermostat . . . 66

5.2 J2ME applications are platform independent. J2ME functions
as a middelware layer across platforms from di¤erent manu-
facturers. 67

5.3 Bluetooth-ZigBee gateway scenario. The theromstat imple-
ments both Bluetooth and ZigBee acting as a gateway between
Bluetooth enabled phone and ZigBee enabled appliances. . . . 70

6.1 Home automation communication, architecture 75
6.2 Chipcon CC2420DBK contains an 8-bit microcontroller that

runs the implementation of the Device Control Protocol (DCP).
The board supports the wireless IEEE 802.15.4 communica-
tion. 76

6.3 DCP communication sequence throughout the life cycle of the
"Home Automation Communication" prototype system 77

6.4 Monitoring and control from a mobile phone 78
6.5 Mobile phone graphical interface, implemented in J2ME and

tested both on a phone emulator and a real phone 80
6.6 DCP lamp emulator . 80
6.7 Monitoring and control from a web site 81
6.8 The graphical interface of the web site remote control 83

x

List of Tables

3.1 Frequency bands and data rates 13

4.1 DCP message types . 33
4.2 Representation primitives . 34
4.3 CONNECT_REQ payload . 34
4.4 CONNECT_RSP payload . 34
4.5 CONNECT_ERR payload . 35
4.6 DISCONNECT_ERR payload 35
4.7 BIND_REQ payload . 36
4.8 BIND_RSP payload . 37
4.9 BIND_ERR payload . 37
4.10 UNBIND_REQ payload . 38
4.11 UNBIND_RSP payload . 38
4.12 UNBIND_ERR payload . 39
4.13 SETDATA_REQ payload . 39
4.14 SETDATA_RSP payload . 40
4.15 SETDATA_ERR payload . 40
4.16 GETDATA_REQ payload . 41
4.17 GETDATA_RSP payload . 41
4.18 GETDATA_ERR payload . 42
4.19 SERVICE_DISCOVERY_REQ payload 42
4.20 SERVICE_DISCOVERY_RSP payload 43
4.21 SERVICE_DISCOVERY_ERR payload 43
4.22 DEVICE_DESCRIPTION_RSP payload 44
4.23 DEVICE_DESCRIPTION_ERR payload 44
4.24 DCP service types . 45
4.25 SERVICE_DATE structure 45
4.26 SERVICE_TIME structure 46
4.27 SERVICE_SWITCH structure 46

xi

4.28 SERVICE_DIMMER structure 46
4.29 SERVICE_TEMP_C structure 47

xii

Chapter 1

Introduction

1.1 Background and Motivation

�You come home from work and as you approach the house
a retinal analyzer recognizes you, opens the door and greets you
by turning on the lights. In the kitchen, you walk towards your
fridge, which informs you that you are missing a few ingredients
from the recipe for tonight�s dinner.�

The term home automation covers processes, systems and technologies
that make the home more comfortable, convenient, safe and e¢ cient, as
illustrated in the quotation above [SHA]. Home automation covers a wide
range of applications like home lighting, security systems and access control,
home theatre and entertainment control, and ranges from simple scenarios
like lighting control to complex, integrated systems.
This thesis is de�ned by Chipcon [CHI], a Norwegian company that de-

signs, produces and markets high performance and cost-e¤ective radio fre-
quency integrated circuits (RF-ICs) for use in a variety of wireless applica-
tions. Motivated by the potential reduction in installation cost and com-
plexity as no new wiring is needed and the possibility for battery powered
operation, the use of wireless home automation systems is expected to in-
crease signi�cantly during the next few years [Sol]. In this context, Chipcon
wanted to evaluate the applicability of three short-range wireless technolo-
gies having the potential of gaining ground within home automation: IEEE
802.15.4, ZigBee and Bluetooth. In addition, a short theoretical review of

1

1.2 Thesis De�nition and Scope

several other common home automation technologies that exist on the mar-
ket, both wired and wireless, should be presented.
O¤ering a complete product family of RF-ICs with varying character-

istics, Chipcon wanted to develop a new application-layer communication
protocol for home automation monitoring and control scenarios, applicable
with all their RF-ICs. If possible, the protocol should be completely indepen-
dent of the underlying transmission layer, thus supporting both wireless and
wired transmission technologies. The protocol should as simple as possible in
order to enable cost e¤ective embedded implementations. At the same time,
the protocol should be �exible enough to support a diversity of application
areas and products. Chipcon wanted a considerable part of the project to
be invested into designing and programming of one or more prototype sys-
tems that demonstrate the characteristics and application possibilities of the
proposed communication protocol.
The thesis also explores the possibility of using a mobile phone as a short-

range remote control in home automation. Mobile phones are constantly in-
creasing the complexity and processing power, and more and more phones
incorporate one or more short-range wireless technologies. The mobile phone
should be able to communicate with the home automation appliances through
the protocol speci�ed in this thesis. The proposed solution should be com-
patible with mobile phones from di¤erent manufacturers. If possible and
allowed by the time frame, a simple remote control application should be
implemented and tested on a mobile phone.

1.2 Thesis De�nition and Scope

The main goals of this thesis are as follows:

� Present a short theoretical review of several home automation tech-
nologies that exist on the market, both wired and wireless.

� Present an in-depth introduction to three short-range wireless com-
munication technologies having the potential of gaining ground within
home automation, IEEE 802.15.4, ZigBee and Bluetooth, and evaluate
and discuss their applicability in home automation scenarios.

� Specify an application layer communication protocol for suitable for
use in home automation. The protocol should be simple enough to

2

1.3 Related Work

allow low cost implementations but �exible enough to allow a broad
range of products. If possible, the protocol should be independent of
the underlying transmission technology.

� Explore the possibility of using a mobile phone as a short-range wireless
remote control in home automation.

� Demonstrate the results of the thesis by implementing one or more
prototype applications.

1.3 Related Work

Extensible Automation Protocol (XAP) [XAP] is an open protocol intended
to support the integration home automation devices. The initial implemen-
tation focuses on IP based networks, although [XAP] claims to support other
network types. Note that the solution proposed in this thesis has not been in-
�uenced by XAP in any ways, the proposed solution is developed completely
from scratch to suit the requirements given by the thesis de�nition.
The author is unaware of any other attempts to de�ne an open, universal

application-layer protocols for home automation. Although some alternatives
for industry automation exist, they are considered beyond the scope of this
thesis focusing on home automation, which has other protocol requirements
than industry automation.
A minor part of the thesis also explores the mobile phone usage as a

short-range remote control in home automation. The paper [HK03] discusses
the home appliance control from a mobile phone, focusing on one software
platform (Java Platform 2 Micro Edition (J2ME) [J2M]), and one wireless
technology (Bluetooth [SIG01b]). This thesis focuses on presenting and eval-
uating several alternatives, both software platforms and wireless technologies,
and recommending a solution based on the evaluation. The paper [KT02] dis-
cusses the use of Bluetooth technology in wireless home automation networks,
and how such networks can be controller from a WAP (Wireless Application
Protocol) browser on a mobile phone. In contrast to [KT02] which focuses
on "long-range" remote control from potentially many kilometers away from
the home appliance itself, this thesis focuses on short-range remote controol
limiting the distance between phone and home appliance to typically 10-100
meters.

3

1.4 Report Overview

1.4 Report Overview

Chapter 2, Home Automation Systems The chapter gives a short
overall review of several home automation technologies that exist on the
market, both wired and wireless.

Chapter 3, Short-Range Wireless Technologies The chapter gives
an in-depth introduction to three short-range wireless technologies, IEEE
802.15, ZigBee and Bluetooth, and brie�y evaluates the applicability of each
technology in wireless home automation scenarios.

Chapter 4, Device Control Protocol (DCP) This chapter de�nes
a new application-layer communication protocol for home automation called
Device Control Protocol (DCP), and proposes a generic application program
interface (API) for the protocol. DCP is an open and simple but �exible and
extensible communication protocol independent of the underlying transmis-
sion technology.

Chapter 5, Mobile Phone in Home Automation The chapter ex-
plores and discusses the possibility of using a mobile phone as a short-range
remote control in home automation. The chapter presents and evaluates a
number of common software platforms attempting to �nd platforms applica-
ble for creating remote control applications that are compatible with phones
from di¤erent manufacturers. The chapter also discusses the applicability
of short-range wireless technologies available on mobile phones today: Blue-
tooth, IrDA Infrared and IEEE 802.11 WLAN.

Chapter 6, Prototype Systems The chapter presents the purpose,
technical architecture and user instructions of prototype applications im-
plemented during the thesis. The prototype systems o¤er several reference
implementations of the Device Control Protocol (DCP) and the proposed ap-
plication program interface (API) based on various transmission technologies.
The source code of all prototype systems can be found on the accompanying
CD-ROM.

Chapter 7, Discussion The chapter discusses the main results of the
thesis, and identi�es the further work to be done.

4

1.4 Report Overview

Chapter 8, Conclusion The chapter presents the main conclusions of
the thesis.

Appendix A This appendix lists the contents of the accompanying
CD-ROM.

5

Chapter 2

Home Automation Systems

The chapter presents a short review of several wired and wireless home au-
tomation technologies that exist on the market today.

2.1 Introduction

The home automation systems can be classi�ed into two categories according
to the transmission medium they use, wired or wireless.

Wired communication either exploits the existing electrical wiring in the
home or requires a separate cabling between devices. Devices using the power
lines are inexpensive and easy to install, but they are vulnerable to electrical
noise on power lines generated by other devices. Devices requiring a separate
cabling typically o¤er larger bandwidth and more reliable communication,
but they are more expensive and the installation procedure is more complex.

Wireless communication is based on either infrared (IR) or radio fre-
quency (RF) signals. IR communication requires line-of-sight communica-
tion, while RF o¤ers omnidirectional communication where signals penetrate
walls and other obstacles. The products have the potential of being battery
powered, thus being very �exible in terms of mobility. The installation pro-
cedure is also relatively simple as no preexisting cabling infrastructure is
required.

6

Home Automation Systems 2.2 X-10

2.2 X-10

X-10 is a proprietary communication protocol that allows devices to talk to
each other using the existing electrical wiring in the home. X-10 is developed
by the company with the same name [X10a].The products are inexpensive
and easy to install by simply plugging the device into the electrical outlet.
X-10 has existed for over 20 years, and many X-10 compatible products are
available today. X-10 is able to address up to 256 unique devices. However, if
there is too much electrical noise on the power lines generated by some other
electrical device, the X-10 devices might have problems communicating. A
number of devices are known to interfere with X-10 devices [X10b], some of
these are:

� Televisions

� Computers

� Game console machines

� Motors: refrigerator, heating systems, pumps etc.

� Cell phone chargers, toothbrush chargers etc.

Assessment X-10 is inexpensive, widely deployed and easy to install,
but it also has some drawbacks. In certain contexts, the X-10 communi-
cation is unreliable because the technology is a¤ected by the operation of
other electrical appliances nearby, and X-10 signals can get lost. X-10 prod-
ucts are typically installed into electric outlets, which restricts the potential
installation locations considerably, making it unsuitable for certain home au-
tomation scenarios. X-10 is a proprietary technology, although the company
also sells the X-10 products through other companies, under other brand
names [Met01].

2.3 LonWorks

LonWorks [INT] [Tie00] is a networking platform for control systems in build-
ing, industry, utility and home automation, introduced by Echelon [ECH] in
1988. Today, LonWorks is a de facto standard in commercial building au-
tomation and industry control. LonWorks has existed for more than 15 years,

7

2.4 Konnex Home Automation Systems

and it has become widely deployed. More than 1500 companies are develop-
ing LonWorks products. LonWorks devices communicate using the LonTalk
protocol. Based on the Open Systems Interconnect (OSI) protocol stack ref-
erence model, LonTalk de�nes 7 protocol layers. The protocol provides a set
of services that allow the application program in a device to send and receive
messages from other devices over the network without needing to know the
topology of the network or the names, addresses, or functions of other de-
vices. Networks can range in size from 2 to 32000 devices. LonTalk can be
implemented upon many medium types including power lines, twisted pair,
radio frequency (RF), infrared (IR), coaxial cable and �ber optics, although
the most common choice is twisted pair cable.

Assessment Through the years, LonWorks has proven to be a reliable
technology. However, the home control systems are typically smaller and
simpler networks where important properties are low installation complexity,
low battery consumption and low product price. LonWorks was designed
with none of these in mind as main issues. LonWorks was design to be
reliable, and to cover a diversity of potential products and markets. It seems
like the home automation is a secondary market for LonWorks. In order
to �t into home automation, products need to be physically small, simple
and inexpensive. They must be easily installed (plug-and-play). LonWorks
products are relatively large (physical size) and quite complex to install and
con�gure. The price of a typical LonWorks product is relatively high [LWP].
LonWorks products must be installed by trained and approved LonWorks
system integrators, which increases the total system complexity and cost.
Although LonWorks theoretically might use a variety of physical mediums,
the common choice is twisted pair cable. Wiring a house is expensive. Even
if some wireless LonWorks products exist, they are relatively expensive and
not optimized for battery powered operation because of the characteristics
of the LonTalk protocol.

2.4 Konnex

The Konnex Association [KNX] was established in 1999 by joining together
three organizations:

� BatiBUS Club International (BCI) [BCI]

8

Home Automation Systems 2.5 Z-Wave

� European Installation Bus Association (EIBA) [EIB]

� European Home Systems Association (EHSA) [EHS].

The goal of the organization is promote a single standard for home and
building automation, called KNX. Today, the Konnex Association has ap-
proximately 100 member companies. The KNX standard is based on the
EIB standard, and supports two transmission medium types, twisted pair
cable and power line. The next version of the standard (version 1.1) will also
include support for RF and IR media. The protocol stack is based on the
OSI model and speci�es the link layer, the network layer, the transport layer
and the application layer.

Assessment Products based on the KNX protocol from the Konnex
Association are not widely deployed in home automation. The KNX tech-
nology is mostly used in commercial building automation. However, the
Konnex Association has plans to expand into the residential market. The
Konnex Association has relatively strong industry support, specially in Eu-
rope [KNX].

2.5 Z-Wave

Z-Wave is developed by a commercial company, Zensys [ZEN]. Z-Wave is a
proprietary wireless RF-based communications technology designed for con-
trol and status reading applications. Z-Wave o¤ers duplex, reliable commu-
nication in a mesh network topology and operates at the rate of 9.6 Kbit/s.
All Z-Wave communication happens on a single RF channel with a prede-
�ned frequency. Z-Wave implements a proprietary routing protocol allowing
the devices to forward data packets from one device to another towards the
correct destination.

Assessment Although the bandwidth of the Z-Wave is relatively low,
it should be su¢ cient to cover the majority of home automation scenarios. Z-
Wave allows implementations of battery powered devices and supports wire-
less routing, making it well suited for home automation. Z-Wave is a closed,
proprietary technology. The deployment of the technology is limited. A
potential disadvantage in environments with a lot of interference is that Z-
Wave has no mechanisms to change the communication frequency in order to

9

2.6 Consumer Electronics Bus (CEBus) Home Automation Systems

�nd a frequency minimizing the amount of noise, making Z-Wave less robust
against interference.

2.6 Consumer Electronics Bus (CEBus)

Consumer Electronics Bus (CEBus) [CEB] is an open set of communication
protocols for home networks. CEBus is developed by the CEBus Indus-
try Council (CIC) and standardized by the Electronics Industry Association
(EIA). The CIC is a non-pro�t organization established in 1994 by Honeywell,
Intel, Microsoft and Thomson Consumer Electronics. The CEBus standard
supports power line communication (PLC), twisted pair (TP) cable, coax
cable, RF and Infrared transmission media.

Assessment Few CEBus products exist on the marked, although the
CEBus technology is more than 10 years old. In addition, the existing CEBus
products are relatively expensive.

10

Chapter 3

Short-Range Wireless
Technologies

This chapter provides an in-depth presentation of three short-range wireless
technologies, IEEE 802.15.4 [LRW03], ZigBee [ZIG] and Bluetooth [SIG01b],
and discusses their applicability in home automation scenarios. The desirable
characteristics of a wireless technology suitable for use in home automation
are:

� Low power consumption

� Low complexity

� Reliable transmission

� Secure transmission

� Cost e¤ective implementation

3.1 IEEE 802.15.4

This section provides an in-depth presentation of the IEEE 802.15.4 [LRW03]
technology and a short evaluation in the context of home automation.

11

3.1 IEEE 802.15.4 Short-Range Wireless Technologies

3.1.1 Overview

The IEEE 802.15.4 [LRW03] standard speci�es the physical (PHY) and me-
dia access control (MAC) layer for simple, low-cost radio communication
networks, o¤ering low data rates and low energy consumption. The pur-
pose of the IEEE 802.15.4 speci�cation is to provide a standard for ultra-low
complexity, ultra-low cost, ultra-low power consumption, and low data rate
wireless connectivity among inexpensive devices, as stated in [LRW03].
IEEE 802.15.4 provides a reliable communication protocol, and de�nes

both a star and a peer-to-peer network topology. The standard uses carrier
sense multiple access with collision avoidance (CSMA-CA) to avoid packet
collisions. Two device types are possible, a full-function device (FFD) and
a reduced-function device (RFD). A FFD device is capable of being the
network coordinator implementing the complete protocol stack, while a RFD
is a simpler device with a minimal protocol stack implementation.
The transmission distance is expected to range from 10 to 100 meters,

depending on output power and the surrounding environment. The trans-
mission can be optionally encrypted using Advanced Encryption Standard
(AES). In order to increase battery life, the standard allows some devices
to deactivate both the transmitter and the receiver for over 99% of their
operating time [Cal04].

3.1.2 Physical Layer (PHY)

The main responsibility of the physical layer (PHY) is to control the radio
transceiver. The layer also measures the energy level within the current
channel, and provides the link quality indication (LQI) for received packets.
Before sending packets on air, PHY optionally performs a CSMA-CA to
identify if the channel is busy. PHY is responsible for transmitting and
receiving packets on correct channel.
In order to provide �exibility for a range of applications, IEEE 802.15.4

operates in three frequency bands at di¤erent rates, o¤ering �exibility to a
range of applications. The frequency band properties are summarized in Ta-
ble 3.1. IEEE 802.15.4 speci�es a total of 27 communication channels across
the three frequency bands. Not that the 868/902 MHz band requires a com-
pliant device to be capable of operating in both frequency bands. This choice
has been taken in order to minimize the number of potentially incompati-
ble products on the market. The 868/902 MHz bands are likely to be less

12

Short-Range Wireless Technologies 3.1 IEEE 802.15.4

Frequency band (MHz) Bit rate (Kbit/s) Number of channels Geographical region

868 �868.6 20 1 Europe

902 �928 40 10 North America, Australia

2400 �2483.5 250 16 Worldwide

Table 3.1: Frequency bands and data rates

crowded and o¤er better quality of service (QoS), but they are not available
worldwide. The 2.4 GHz band is available worldwide.
IEEE 802.15.4 devices use direct sequence spread spectrum (DSSS) tech-

nique to increase the bandwidth of a transmitted signal, resulting in improved
communication reliability.

3.1.3 Medium Access Control (MAC) layer

The Media Access Control (MAC) layer has several responsibilities. The
layer is responsible for generating and synchronizing to the optional network
beacons. The layer provides an association and disassociation mechanism,
and provides a reliable link between two devices. It also o¤ers optional MAC
layer security and maintains a GTS (Guaranteed time slot) mechanism for
devices that require a constant rate and �xed delays.
The MAC layer supports creation of two types of network topologies:

� Star topology

� Peer-to-peer topology

The network topologies are illustrated in Figure 3.1, taken from [LRW03].
In the star topology, all communication is controlled by the network coordina-
tor. Any full-function device (FFD) can create its own network by becoming
a Personal Area Network (PAN) coordinator, as speci�ed in [LRW03]. Peer-
to-peer topology allows more complex communication scenarios. Any FFD
device might communicate with any other FFD device. It is possible to im-
plement routing protocols in this topology. Reduced-function devices (RFD)
might also participate in the network, but only as peripheral devices. They
can not relay packets and participate in the routing mechanisms. Peer-to-
peer networks are beyond the scope of the 802.15.4 standard.

13

3.2 ZigBee Short-Range Wireless Technologies

Figure 3.1: IEEE 802.15.4 network topologies: star and peer-to-peer

3.1.4 Home Automation Evaluation

The IEEE 802.15.4 technology is designed and optimized speci�cally for home
and building automation and similar applications, and it is therefore well
suited for building wireless networks. With the �nal speci�cation being re-
leased in 2003, IEEE 802.15.4 is still a relatively new technology. Not many
physical implementations of the standard or products based on the tech-
nology have been released yet, however the technology seems to be gaining
ground continuously, strengthened by the ZigBee Alliance initiative to de-
�ne higher communication protocols based on the IEEE 802.15.4 standard.
The technology �lls the need for a standardized, globally available low cost
and low power short-range wireless technology that provides reliable and se-
cure communication. It operates in three frequency bands at three di¤erent
transmission rates, o¤ering the manufacturers �exibility to make the optimal
choice for their application.

3.2 ZigBee

This section provides an in-depth presentation of the ZigBee [ZIG] technology
and a short evaluation in the context of home automation.

14

Short-Range Wireless Technologies 3.2 ZigBee

3.2.1 Overview

ZigBee [ZIG] de�nes the network, application and security layers suitable for
use in building automation, industrial, medical and residential monitoring
and control applications for wireless networks based on the IEEE 802.15.4
technology. Examples of ZigBee applications:

� Lighting control

� Automatic Meter Reading

� Wireless smoke detectors

� Heating control

� Home security

� Environmental controls

� Industrial and building automation

The ZigBee speci�cation is still under development, and the �rst �nal
version is scheduled to be released by the end of 2004. ZigBee is developed
by the ZigBee Alliance [ZIG], a non-pro�t organization with membership
open to all. The Alliance targets to de�ne a global speci�cation for reliable,
cost-e¤ective, low power wireless applications. The ZigBee alliance has today
more than 70 members, and the number is continuously growing.
ZigBee devices are expected to have a low duty cycle and to be inactive

most of their operating time. Combined with the low power consumption of
the IEEE 802.15.4 technology, the users can expect the batteries to last for
months and even years.
ZigBee de�nes three types of devices:

� ZigBee coordinator

� ZigBee end device

� ZigBee router

15

3.2 ZigBee Short-Range Wireless Technologies

The ZigBee coordinator is responsible for setting up and maintaining the
ZigBee network. It stores information about the network and the network
participants. The ZigBee coordinator is typically not battery powered and
it is listening continuously.
The ZigBee end device is designed and optimized for battery powered

operation, and allows devices to be inactive in periods of time in order to
minimize power consumption. The end device is able to search for available
ZigBee networks and synchronize to one of these.
The Zigbee router device participates in the network by routing messages

towards their correct destination.
ZigBee o¤ers two network topologies:

� Star network topology

� Mesh network topology

� Tree network topology

The ZigBee network topologies are illustrated in Figure 3.2, which is
created by the ZigBee Alliance [ZIG]. The star topology is de�ned by the
IEEE 802.15.4 [LRW03] standard. In the star topology, all communication
is controlled by the network coordinator, as explained in Section 3.1. The
mesh and tree topologies make it possible to extend the communication by
allowing multihop communication.

3.2.2 ZigBee Protocol Stack

The ZigBee protocol stack is illustrated in Figure 3.3. The lower layers of
the stack are de�ned by the IEEE 802.15.4 standard, while the upper layers
of the stack are de�ned by the ZigBee Alliance.
The size of the full ZigBee protocol stack implementation is expected to

be less than 32 Kb for the ZigBee coordinator, and approximately 4 Kb for
the ZigBee end device [Ada03]. The small size of the stack allows low-cost
embedded systems implementations (i.e. implementations on inexpensive
8-bit microcontrollers).

Network Layer

The network layer is able to create a new ZigBee network and let other de-
vices join or leave the network. The network layer of a ZigBee coordinator is

16

Short-Range Wireless Technologies 3.2 ZigBee

Figure 3.2: ZigBee network topologies: star, mesh and tree

Physical layer (PHY)

Medium Access Control (MAC)

Network (NWK) layer

Application (APL) layer

ZigBee Device
Object (ZDO)

Application Support (APS) layer

ZigBee
Alliance

IEEE
802.15.4

Application
Objects

Figure 3.3: ZigBee protocol stack

17

3.2 ZigBee Short-Range Wireless Technologies

responsible for assigning addresses to devices joining the network. The net-
work layer implements the ZigBee routing algorithm, described by the ZigBee
Alliance as �a hierarchical routing strategy with table driven optimizations
where possible�[Ada03].

Application Layer

The application layer consists of the application support layer (APS), the
ZigBee device object (ZDO) and the manufacturer-de�ned application ob-
jects.
The application support layer (APS) is responsible for maintaining tables

for binding and forwards messages between bound devices. A binding is the
ability to match two devices together based on their services and their needs.
The layer is also responsible for device discovery, which is the procedure to
discover other devices that are operating in the local area.
The ZigBee device object (ZDO) de�nes the role of the device in the

ZigBee network (ZigBee coordinator or ZigBee end device). The ZigBee
device object is also responsible for initiating and responding to binding
requests.
The application objects are de�ned by the manufacturer, and they are

de�ned by the manufacturer that implements the application. The ZigBee
protocol stack supports up to 30 distinct application objects to be imple-
mented at the same time.

ZigBee Security

ZigBee requires each layer in the stack to be responsible for its own security.
However, this does not imply that the layer does the actual work. For exam-
ple, applications can trust the network layer to secure their communications
and the network layer can trust the MAC layer to secure its communications.
Details about the ZigBee security mechanisms are not available yet, as the
technology is still undergoing standardization.

3.2.3 ZigBee Pro�les

ZigBee pro�les provide target applications with the interoperability and inter-
compatibility required to allow similar products from di¤erent manufacturers
to work seamlessly. ZigBee pro�les are de�ned by the ZigBee Alliance [ZIG]

18

Short-Range Wireless Technologies 3.3 Bluetooth

as an agreement on messages, message formats and processing actions that
enable applications residing on separate devices to send commands, request
data and process commands/requests to create an interoperable, distributed
application. The �rst pro�le de�ned by the ZigBee is the home control light-
ing pro�le.

3.2.4 Home Automation Evaluation

ZigBee de�ning the network, application and security layers based wireless
IEEE 802.15.4 networks. Fueled by the need for a standardized wireless sys-
tem, ZigBee has gained relatively strong support by industry and is expected
to become the de facto wireless standard for home automation. ZigBee spec-
i�cation is still undergoing speci�cation, which means that the no ZigBee
products exist yet, and that the �nal details about the technology are not
available yet. ZigBee will support a wide range of products and application
areas and guarantee interoperability between products. It will also support
network routing and allow the network to be expanded incrementally.

3.3 Bluetooth

This section provides an in-depth presentation of the Bluetooth [SIG01b]
technology and a short evaluation in the context of home automation.

3.3.1 Overview

Bluetooth [BTS] [SIG01b] is a short-range wireless technology intended to
replace the cables between electronic devices, such as mobile phones, headsets
and laptop computers. It was Ericsson Mobile Communications that started
the development of the Bluetooth technology in 1994. In 1998 a group of
companies formed the Bluetooth Special Interest Group (SIG) [BTS] that
would work to de�ne and promote the Bluetooth speci�cation. Any company
that wants to exploit Bluetooth commercially must become a member of the
SIG organization. Version 1.0 of the Bluetooth speci�cation was released in
1999. The IEEE organization adopted later parts of the Bluetooth stack into
a formal IEEE 802.15.1 standard [LRW02] [WPAa].
Bluetooth o¤ers omnidirectional wireless transmission of both voice and

data in the globally available, license free 2.4 GHz Industrial, Scienti�c and

19

3.3 Bluetooth Short-Range Wireless Technologies

Medical (ISM) band. Devices are categorized into three di¤erent classes,
according to their power consumption and transmission range:

� A class 3 device has 1 mW transmission power and a typical range of
0.1 �10 meters

� A class 2 device has a transmission power of 1-2.5 mW and a typical
range of 10 meters

� A class 1 device has a transmission power of up to 100 mW and a range
of up to 100 meters

Bluetooth provides a bandwidth of 1 Mbit/s at the physical layer. It
avoids interference and noise from other devices operating in the same fre-
quency band by using the spread spectrum technique called frequency hop-
ping. The communication changes the transmitting/receiving frequency 1600
times per second across 79 di¤erent frequencies.

3.3.2 Network Topology

Each Bluetooth connection has a master and a slave. By de�nition, the
device that initiates the connection automatically becomes the master. The
master can establish up to 7 simultaneous connections to other devices. A
network of one master and up to 7 slaves is called a piconet. All devices on
the same piconet follow the same frequency hopping and timing rules de�ned
by the piconet master.
Two or more piconets can be linked together to create a scatternet. In

a scatternet, one or more members participate in more than one piconet.
However, they can only send and receive data in one piconet at a time. Such
devices spend a few time slots on one piconet, and then few time slots on
some other piconet etc. It is not possible for a single device to be master
in two or more piconets. Although the scatternet topology makes it possible
to multihop communication, the Bluetooth speci�cation [SIG01b] does not
specify any scatternet routing protocols.
Bluetooth piconet and scatternet topologies are illustrated in Figure 3.4.

3.3.3 Protocol Stack

The Bluetooth protocol stack is illustrated in Figure 3.5.

20

Short-Range Wireless Technologies 3.3 Bluetooth

Figure 3.4: a) Point-to-point piconet b) Point-to-multipoint piconet c) Scat-
ternet

The radio block is responsible for transmitting and receiving data packets
on the physical channel by modulating and demodulating data on air.
Baseband is responsible for all access to the radio medium. The link

controller (LC) is responsible for the encoding and decoding of Bluetooth
packets from the data payload and parameters related to the physical chan-
nel, logical transport and logical link. The link controller carries out the Link
Control Protocol (LCP) signaling.
The link manager is responsible for the creation, modi�cation and releas-

ing of logical links. The LM protocol allows the creation of new logical links
and logical transports between devices when required, as well as the general
control of link and transport attributes such as the enabling of encryption on
the logical transport, the adapting of transmit power on the physical link, or
the adjustment of QoS settings for a logical link.
Logical link control and adaptation (L2CAP) protocol provides a connection-

oriented and connectionless data services to higher layer protocols, with seg-
mentation, reassembly and group abstraction. It also functions as a multi-
plexer, by allowing multiple logical links on a single physical links, by imple-
menting the concept of logical channels.
RFCOMM is the protocol for emulation of the RS232 serial port connec-

tions over L2CAP.
Wireless Application Protocol (WAP) allows devices to use data services

of the underlying protocol stack, and access the Internet.

21

3.3 Bluetooth Short-Range Wireless Technologies

RFCOMM

Host Controller
Interface (HCI)

Applications

O
B

E
X

W
A

P

TCS SDP

Radio

Baseband/Link Controller (LC)

Link Manager (LM)

Logical Link Control and Adaptation Layer (L2CAP)

Figure 3.5: Bluetooth protocol stack

Object Exchange protocol (OBEX) is a session-layer protocol that sup-
ports exchange of objects (�les) in a simple and spontaneous manner. It
has client-server architecture. OBEX was developed by the Infrared Data
Association (IrDA), and later adapted to Bluetooth.

Service Discovery Protocol (SDP) provides a way to search and discover
what services the Bluetooth devices in the area nearby can o¤er.

Telephony Control Speci�cation (TCS) provides telephony services.

22

Short-Range Wireless Technologies 3.3 Bluetooth

Bluetooth host

Bluetooth
controller

HCI packets

Figure 3.6: Host Controller Interface (HCI) architecture

3.3.4 Host Controller Interface (HCI)

A typical Bluetooth device consists of two parts: a host and a controller,
communicating through a standardized host-controller interface (HCI). Al-
though a common scenario, this separation is not mandatory, and devices
might implement both host and controller protocol layers in a single unit,
thus avoiding the need for communication through the HCI interface. The
HCI architecture is illustrated in Figure 3.6. The host implements the upper
layers of the Bluetooth protocol stack, while the Bluetooth controller imple-
ments the lower layers of the protocol stack. The HCI interface provides a
uniform method of accessing the capabilities and con�guration parameters
of the lower layers of the stack.

3.3.5 Bluetooth Pro�les

Bluetooth pro�les describe how Bluetooth technology should be used in ap-
plications, and ensure interoperability between applications from di¤erent
manufacturers. Pro�les are arranged in a hierarchy where some pro�les de-
pend on others. Generic Access Pro�le (GAP) is root of the hierarchy, de�n-
ing minimum basic functionality that all Bluetooth devices shall have. More
information and a list of all pro�les can be found in [SIG01a].

23

3.3 Bluetooth Short-Range Wireless Technologies

3.3.6 Home Automation Evaluation

Bluetooth is intended as a cable replacement technology between electronic
devices, such as mobile phones, headsets and laptop computers, and is not
optimized to suit the home automation needs. The Bluetooth connection and
inquiry (device scan) procedure are time consuming. The maximum time for
a connection procedure is 2.56 seconds, while the device scan takes up to
10.24 seconds, according to the Bluetooth Speci�cation version 1.1 [SIG01b].
In many home automation scenarios, these delays are not acceptable. The
Bluetooth SIG has the ambition to improve and shorten the connection and
inquiry procedures, and the new version 1.2 [SIG03] of the Bluetooth stan-
dard shortens the inquiry and connecting procedure. Bluetooth allows up to
7 simultaneous connections, which might be insu¢ cient in some scenarios.
Bluetooth power consumption is too high for battery powered devices where
battery is not expected to be charged periodically. Bluetooth makes it pos-
sible to create networks called scatternets where multihop communication is
possible, but no routing protocols have been de�ned by the standard. At this
time, there are no Bluetooth pro�les targeting home automation, although
some of the general Bluetooth pro�les could be used instead.

24

Chapter 4

Device Control Protocol (DCP)

The main goal of the thesis was to develop a new application-layer com-
munication protocol suitable for use in home automation monitoring and
control scenarios, as de�ned by Chipcon [CHI]. This chapter presents the
proposed solution, a new communication protocol called Device Control Pro-
tocol (DCP). The protocol has been designed, speci�ed and implemented as
a part of the thesis.

4.1 Overview

Device Control Protocol (DCP) is an application-layer communication pro-
tocol suitable for use in home automation, but also other similar areas like
building and industry automation. For example, DCP can be used to transfer
on/o¤ commands from a switch to a lamp, or transfer temperature informa-
tion between a thermostat and a heater unit. The protocol is developed to
satisfy the requirements given by Chipcon [CHI] in the thesis de�nition.
The proposed protocol is independent of the underlying transmission tech-

nology and it is possible to use many kinds of transmission mediums like radio
frequency (RF), twisted pair cable etc. The protocol is also independent of
the underlying communication protocol. For example, DCP could be imple-
mented upon TCP, Bluetooth RFCOMM etc. DCP requires the underlying
protocol to provide reliable transmission. No transmission error detection or
correction functionality is incorporated into DCP because it is an applica-
tion layer protocol which relies on the underlying layer to guarantee correct
transfer of DCP packets and indicate an error to the DCP layer if the transfer

25

4.2 Services, Ports and Bindings Device Control Protocol (DCP)

could not be carried through.
The thesis proposes an application program interface (API) for DCP

which is independent of the underlying transmission technology, simplifying
the application implementation by providing a uniform interface and hiding
the complex details of the underlying layer.
DCP supports a wide range of potential products and application areas.

Besides standardizing the most common usage areas of the protocol, the pro-
tocol allows manufacturers to implement their own proprietary applications
that are not covered by the DCP speci�cation.
New transmission technologies and underlying communication protocols

should be accepted by the DCP without problems, as DCP puts low require-
ments on the underlying technologies and communication protocols. New
application areas can be covered by the manufacturers by exploiting the
parts of the protocol reserved for proprietary usage, or by creating a new
version of the protocol. DCP supports up to 256 di¤erent versions of the
protocol. DCP communication includes a DCP version check in order to
detect potential version inconsistencies.
Simplicity of the protocol was one of the key issues when DCP was de-

signed. Because of the simplicity, DCP allows cost e¤ective implementation
on low cost embedded platforms.

4.2 Services, Ports and Bindings

The protocol introduces the concepts of services, ports and bindings, making
it truly �exible and dynamic for use in a wide range of applications. The
terminology is explained in following paragraphs.

Service A DCP service is an abstraction of a device�s ability to perform
some speci�c task. As illustrated in Figure 4.1, a device implementing a
SERVICE_TEMP_C service has a capability to measure the temperature using
the Celsius scale. A device implementing the SERVICE_TIME maintains the
current time of day. Each device implements one or more services, making
it possible to implement both very simple and more complex devices. There
is no central service administration, and no devices know about all services
of all devices in the neighborhood. Each device knows only about its own
services, which are preinstalled when a device is manufactured. A device

26

Device Control Protocol (DCP) 4.2 Services, Ports and Bindings

Port 1

Port 2SERVICE_TIME

SERVICE_TEMP_C

Figure 4.1: A DCP device implementing two services, SERVICE_TEMP_C
and SERVICE_TIME at two di¤erent ports

can �nd out information about services o¤ered by some remote device by
performing a DCP service discovery procedure.
In order to ensure �exibility and support for a wide range of applications,

DCP makes it possible to distinguish 65535 di¤erent services. Some services
are standardized in the DCP speci�cation (see Section 4.9), others are re-
served for future versions of the DCP protocol. Manufacturers implementing
the protocol are also free to de�ne their own proprietary services in case
these are not covered by this speci�cation, at the expense of interoperability
between devices from di¤erent manufacturers.

Port Each service is o¤ered at a single port. A port is a simple integer
functioning as a service multiplexer in scenarios where a device implements
more than one service or multiple instances of the same service type (e.g.
light control panel with multiple switches). The port concept makes possible
implementations of more complex devices having several services. A port
number uniquely identi�es a service port within a device in cases where
several services coexist on a device. A device that o¤ers two services at two
di¤erent ports is illustrated in Figure 4.1.

Binding The services of a device are o¤ered to other devices through
the binding concept. Bindings are logical connections between two services
of same type. They are agreements between devices to notify each other if
the value of a service is changed. A device can have one or more services, and
therefore one or more bindings to a remote device, depending on its purpose
and complexity.

27

4.3 Addressing Device Control Protocol (DCP)

Port 2 SERVICE_SWITCH

Light switch Light actuator

Port 5SERVICE_SWITCH
H

OUT

Figure 4.2: A DCP binding created by the light switch with the binding
direction "out"

Each binding has a direction. The direction is either �in�, �out�or �in
and out�. The direction is always considered from the viewpoint of the device
initiating the binding procedure. If a device creates a binding with a direction
�in�, then this speci�ed service can be exploited by the remote device. If a
device creates a binding with a direction �out�, then the device can make use
of the service on the other device. The direction �in and out�lets the bound
devices use each other�s services mutually. Figure 4.2 shows a scenario where
a light switch creates a binding with the direction �out�to a light actuator.
After the binding has been set up, the switch is ready to start controlling
the actuator.

4.3 Addressing

DCP de�nes a simple address translation mechanism, introducing the 16-bit
DCP addresses. The DCP address translation mechanism is illustrated in
Figure 4.3. During the protocol development stage, it was important to keep
the DCP as simple as possible, and at the same time it was desirable to o¤er
a uniform API completely independent of the underlying transmission tech-
nology to the application. The DCP address translation mechanism can be
seen as a compromise between these two requirements. The main objective of
the DCP addresses is to provide a uniform addressing method to the applica-
tion by being incorporated into the DCP API. The application only sees and
operates with the 16-bit DCP addresses, regardless of the addressing method
of the underlying transmission layer. The DCP layer is responsible for main-
taining the address translation tables, which bind the DCP addresses to the

28

Device Control Protocol (DCP) 4.4 Error Handling

DCP

Application

Bluetooth

API

16-bit DCP
addresses

Transmission-layer
addresses

Address
translation

table

IEEE 802.15.4 TCP/IP

Figure 4.3: DCP address translation mechanism

corresponding unique device address de�ned by the underlying transmission
layer, and use these for actual data transmissions.
The DCP addresses are never transmitted to any other device, but rather

maintained internally by each device and used by the DCP API and the
application implementation. This choice of not sending simpli�es the address
assignment by not needing to check whether the address is already used by
some wireless other device, and allow each DCP implementation to decides
how the DCP address translation mechanism is implemented, and which
algorithm it will choose to produce DCP addresses.

4.4 Error Handling

DCP communication is based on request-response transaction. Each device
that receives a request message shall answer with a corresponding response
message. However, if the operation requested in the request message can not
be carried out, the device shall respond with a corresponding error message
instead of response message. Each error message carries an error reason.
The two types of DCP transactions are illustrated in Figure 4.4. DCP

Client represents the device initiating the DCP transaction, while DCP server
is the device that responds to the DCP request message.

29

4.4 Error Handling Device Control Protocol (DCP)

DCP ServerDCP Client

DCP Request Message

DCP Response Message

DCP ServerDCP Client

DCP Request Message

DCP Error Message

Figure 4.4: DCP request-response transactions: a successful scenario and an
error scenario

The error handling mechanism described above concentrates on covering
error situations at DCP layer. The mechanism does not cover situations
where the error is generated by the transmission technology at the layer
below DCP, which include:

� Connection error � it is not possible to create a connection to the
speci�ed device

� Transmission error � data could not be transmitted to the speci�ed
device

� Timeout error � requested operation has been canceled because of a
timeout

One way of intercepting and handling these errors is through API func-
tion return values. The API functions would return special return values to
indicate an operation failure to the application. Due to lack of time, the API
function return values have not been standardized by this thesis.
An alternative to handling the transmission technology errors through

protocol API function return values is to generate DCP error packets locally.
For example, if the DCP layer tries to transmit a DCP message, and the
operation fails, the DCP layer would generate a DCP error packet locally
and deliver it to the higher layer. The error reason of the error message
would indicate the failure of the transmission operation.

30

Device Control Protocol (DCP) 4.5 Security

Message Type Sequence
number

Payload Length Payload

1 byte 1 bytes 0 - 96 bytes2 bytes

Static length header Dynamic length
payload

Figure 4.5: DCP packet format

4.5 Security

Communication security, including authentication, authorization, encryption
and other security mechanisms are beyond the scope of this thesis.

4.6 Packet Format

DCP packet format is de�ned in Figure 4.5. The least signi�cant byte is
illustrated leftmost in the �gure, and is transmitted �rst. The packet format
is kept as simple as possible deliberately.

The Message Type �eld determines the purpose of the packet. DCP
message types are de�ned in Section 4.8. The Sequence number �eld is
used to ensure packet freshness, and is incremented by 1 for each request
message sent. Response messages shall have the same sequence number as
the corresponding request message. The Payload Length �eld de�nes the
length of the Payload �eld. The Message Type �eld de�nes representation
and formatting of the Payload �eld.

To ensure �exibility for potential future protocol changes and add-ons,
DCP makes it possible to de�ne up to 256 di¤erent message types, 65535
di¤erent service types. The maximum payload and a payload length up to
100 bytes. Despite this, most DCP messages are expected to be very small.

31

4.7 Packet Size Device Control Protocol (DCP)

4.7 Packet Size

The maximum size of a DCP packet is 100 bytes. The DCP header is 4 bytes
long, leaving up to 96 bytes for the DCP payload.

A challenge while developing the DCP was to de�ne a maximum DCP
packet size that would cover as many transmission technologies as possi-
ble without requiring a mandatory fragmentation and reassembly mecha-
nism, and without de�ning the maximum packet size too small for certain
home automation scenarios. Various underlying transmission technologies
and communication protocols di¤er strongly in their de�nition of the maxi-
mum transmission unit (MTU). An MTU of an underlying layer is the max-
imum number of bytes that the layer can accept from the DCP layer and
transfer at a time. The MTU size directly limits the maximum size of a DCP
packet that can be transferred, as the DCP packet can not be larger than
the MTU of the underlying technology.

The initial solution was actually not to de�ne a maximum DCP packet
size that all implementations would comply with. The theoretical maximum
packet size of the DCP packet was 65536 bytes, and the actual maximum
packet size would have to be adopted to the MTU of the underlying transmis-
sion technology by each DCP implementation. The initial solution was later
abandoned, primarily because it introduced packet size variations making it
harder to implement interoperatible products.

The �nal solution de�nes the maximum DCP packet size to 100 bytes.
This limit is highly a¤ected by the MTU of the IEEE 802.15.4 MAC layer
being 102 bytes [LRW03]. It was considered very important to support the
IEEE 802.15.4 as a DCP transmission technology, the only globally stan-
dardized short-range wireless technology optimized for home automation and
similar areas. A maximum packet size that all DCP implementations must
o¤er has been speci�ed (at the expense of the initial solution) primarily in
order to ensure the interoperability between DCP appliances.

Most DCP packets are expected to be very small, ranging from 4-30 bytes.
Therefore, the DCP packet size of maximum 100 bytes does not represent a
restriction regarding the DCP application area range.

32

Device Control Protocol (DCP) 4.8 Message Types

4.8 Message Types

This section speci�es the DCP message types. The messages are listed in
Table 4.1. Each message type is de�ned separately in following subsections.
Representation primitives used throughout the section are de�ned in Table
4.2.

Message name Message number
CONNECT_REQ 0x00
CONNECT_RSP 0x01
CONNECT_ERR 0x02
DISCONNECT_REQ 0x03
DISCONNECT_RSP 0x04
DISCONNECT_ERR 0x05
BIND_REQ 0x06
BIND_RSP 0x07
BIND_ERR 0x08
UNBIND_REQ 0x09
UNBIND_RSP 0x0a
UNBIND_ERR 0x0b
SETDATA_REQ 0x0c
SETDATA_RSP 0x0d
SETDATA_ERR 0x0e
GETDATA_REQ 0x0f
GETDATA_RSP 0x10
GETDATA_ERR 0x11
SERVICE_DISCOVERY_REQ 0x12
SERVICE_DISCOVERY_RSP 0x13
SERVICE_DISCOVERY_ERR 0x14
DEVICE_DESCRIPTION_REQ 0x15
DEVICE_DESCRIPTION_RSP 0x16
DEVICE_DESCRIPTION_ERR 0x17

Table 4.1: DCP message types

33

4.8 Message Types Device Control Protocol (DCP)

Primitive type Number of bytes Maximum range
Unsigned byte 1 0...255
Signed byte 1 -128...127
Unsigned integer 2 0...65535
Signed integer 2 -32768...32767

Table 4.2: Representation primitives

4.8.1 CONNECT_REQ

This message requests a connection at the DCP layer. A DCP connection
must exist prior to exchanging any other messages. The CONNECT_REQ pay-
load is de�ned in Table 4.3. The payload contains the version of the protocol.
The current version of the protocol is 1, and will be incremented by 1 for
each new version.

Primitive type Primitive name Valid range
Unsigned byte Protocol version 0x01...0x¤

Table 4.3: CONNECT_REQ payload

4.8.2 CONNECT_RSP

This message informs the receiver that the remote device has accepted the
DCP connection. The CONNECT_RSP payload is de�ned in Table 4.4. The
payload contains the version of the protocol. The current version of the
protocol is 1, and will be incremented by 1 for each new version.

Primitive type Primitive name Valid range
Unsigned byte Protocol version 0x01...0x¤

Table 4.4: CONNECT_RSP payload

4.8.3 CONNECT_ERR

If a device does not accept the DCP connection request, it shall return a
CONNECT_ERR message. The CONNECT_ERR payload is de�ned in Table 4.5.
The payload shall contain an error reason.

34

Device Control Protocol (DCP) 4.8 Message Types

Primitive type Primitive name Valid range
Unsigned byte Error reason CONNECTION_REJECTED

CONNECTION_EXISTS
CONNECTION_OVERFLOW
UNSUPPORTED_VERSION

Table 4.5: CONNECT_ERR payload

4.8.4 DISCONNECT_REQ

This message tells the remote device to close the current DCP connection
and the connection at the layer below the DCP. The payload length �eld
shall be set to 0x00, and the payload shall not be included in the message.

4.8.5 DISCONNECT_RSP

This message informs that the state information that was associated with
the connection has been deleted. It is the responsibility of the device that
initiated the disconnect procedure by sending the DISCONNECT_REQ message
to close the physical connection at the layer below DCP. The payload length
�eld shall be set to 0, and the payload shall not be included in the message.

4.8.6 DISCONNECT_ERR

If a device is not able to close the connection, it should respond with a
DISCONNECT_ERR message. The DISCONNECT_ERR payload is de�ned in Table
4.6. The payload shall contain the error reason.

Primitive type Primitive name Valid range
Unsigned byte Error reason NO_CONNECTION

Table 4.6: DISCONNECT_ERR payload

4.8.7 BIND_REQ

This message is used to request a binding between two services on two dif-
ferent devices. The BIND_REQ payload is de�ned in Table 4.7.

35

4.8 Message Types Device Control Protocol (DCP)

The �rst two bytes represent the service type. ServiceType speci�es the
service to be bound. Bind direction is the direction of the binding, it should
either be BIND_IN_OUT, BIND_IN, or BIND_OUT. The direction is always con-
sidered from the viewpoint of the device initiating the binding (i.e. the device
that sends BIND_REQ message). If the direction is set to BIND_IN, the device
is expected to be passive, it will receive SETDATA_REQ or GETDATA_REQ mes-
sages and only respond to these. If the direction is set to BIND_OUT, the
device will be active and control the remote service by sending SETDATA_REQ
or GETDATA_REQ messages. If the direction is set to BIND_IN_OUT, then the
device is free to send all types of messages.

Each service implemented on a device has an associated service port num-
ber. Service port number is a simple integer functioning as a service mul-
tiplexer in scenarios where a device implements multiple instances of the
same service type (i.e. light control panel with multiple switches). The ser-
vice port number must be unique within the device, meaning that the service
port number can uniquely address a service instance within a device. The re-
mote service port number can be discovered in a service discovery procedure.
It is also possible to set the remote service port number is set to PORT_ANY,
making the service port number unspeci�ed and letting the remote device
choose any free service port number for the speci�ed service type.

Local port is the port number of the device that sent the BIND_REQ
message. Remote port is the port number of the device that receives the
BIND_REQ message.

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Bind direction BIND_IN_OUT = 0x00,

BIND_IN = 0x01,
BIND_OUT = 0x02

Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port PORT_ANY = 0x00,

0x01...0x¤

Table 4.7: BIND_REQ payload

36

Device Control Protocol (DCP) 4.8 Message Types

4.8.8 BIND_RSP

This message tells that the remote device has accepted the binding request.
The BIND_RSP payload is de�ned in Table 4.8. Service type must be set
to the same value as in BIND_REQ message. The bind direction must equal
the corresponding �eld in the request message. If the port in the request
message was set to PORT_ANY, the device can use any free port for the speci�ed
service. In this message, local port is the local port of the device that sent the
BIND_REQ message, and remote port is the port of the device that transmits
the BIND_RSP.

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Bind direction BIND_IN_OUT = 0x00,

BIND_IN = 0x01,
BIND_OUT = 0x02

Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤

Table 4.8: BIND_RSP payload

4.8.9 BIND_ERR

If a device does not accept the binding request, it shall respond with a
BIND_ERR message. The BIND_ERR payload is de�ned in Table 4.9. The
payload shall contain the error reason.

Primitive type Primitive name Valid range
Unsigned byte Error reason INCORRECT_VALUE,

INVALID_SERVICE,
BINDING_REJECTED,
BINDING_EXISTS,
BINDING_OVERFLOW,
INVALID_PORT,
NO_CONNECTION

Table 4.9: BIND_ERR payload

37

4.8 Message Types Device Control Protocol (DCP)

4.8.10 UNBIND_REQ

This message asks the receiver to remove the speci�ed binding. The UNBIND_REQ
payload is de�ned in Table 4.10. Service type must be set to service we want
to unbind. The payload contains the direction of the binding, the local port
and the remote port.

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Bind direction BIND_IN_OUT = 0x00,

BIND_IN = 0x01,
BIND_OUT = 0x02

Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤

Table 4.10: UNBIND_REQ payload

4.8.11 UNBIND_RSP

This message con�rms that the binding has successfully been removed. The
UNBIND_RSP payload is de�ned in Table 4.11. Service type shall be the same
as in UNBIND_REQ. The bind direction must equal the corresponding �eld in
the request message. The local port is the port of the device that sent the
BIND_REQ message, and remote port is the port of the device that transmits
the BIND_RSP.

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Bind direction BIND_IN_OUT = 0x00,

BIND_IN = 0x01,
BIND_OUT = 0x02

Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤

Table 4.11: UNBIND_RSP payload

38

Device Control Protocol (DCP) 4.8 Message Types

4.8.12 UNBIND_ERR

This message informs the receiver that the sender was unable to remove the
binding. The UNBIND_ERR payload is de�ned in Table 4.12. The payload
shall contain the error reason.

Primitive type Primitive name Valid range
Unsigned byte Error reason NO_BINDING,

INVALID_PORT,
NO_CONNECTION

Table 4.12: UNBIND_ERR payload

4.8.13 SETDATA_REQ

This message tells the receiver to change the value of the speci�ed service to
what is speci�ed in the Payload �eld. The SETDATA_REQ payload is de�ned in
Table 4.13. This message shall only be sent if a valid binding for the speci�ed
service type exists. The payload de�nes the speci�ed the binding through
which the message is sent, and the new value of the speci�ed service. The
service value representation and formatting is dependent on the service type
�eld.

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤
De�ned by Service type Service value De�ned by Service type

Table 4.13: SETDATA_REQ payload

4.8.14 SETDATA_RSP

This message tells the receiver that the request to change a service value was
successful. The SETDATA_RSP payload is de�ned in Table 4.14. Service type
shall be the same as in SETDATA_REQmessage. The service value is dependent
on the service type �eld.

39

4.8 Message Types Device Control Protocol (DCP)

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤
De�ned by Service type Service value De�ned by Service type

Table 4.14: SETDATA_RSP payload

4.8.15 SETDATA_ERR

This message informs the receiver that the sender did not change the value
of the service speci�ed in SETDATA_REQ. The SETDATA_ERR payload is de�ned
in Table 4.15. The payload shall contain the error reason.

Primitive type Primitive name Valid range
Unsigned byte Error reason NO_CONNECTION,

NO_BINDING,
INCORRECT_VALUE,
INVALID_PORT,
INCORRECT_DIRECTION,
PACKET_TOO_LARGE

Table 4.15: SETDATA_ERR payload

4.8.16 GETDATA_REQ

This message is used to request the current value of the speci�ed service. The
value of the service is sent back to the requesting device in the GETDATA_RSP
message. The GETDATA_REQ payload is de�ned in Table 4.16. The service is
identi�ed by setting the service type �eld to the service port number agreed
upon during the binding procedure. This message shall only be sent if a
valid binding for the speci�ed service exists. The payload de�nes the binding
through which the message is sent, and the new value of the speci�ed service.
The service value is dependent of the service type �eld.

40

Device Control Protocol (DCP) 4.8 Message Types

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤
De�ned by Service type Service value De�ned by Service type

Table 4.16: GETDATA_REQ payload

4.8.17 GETDATA_RSP

This message carries the value of the service that was requested in GETDATA_REQ.
The GETDATA_RSP payload is de�ned in Table 4.17. Service type is set to the
service port number of the current service. The payload de�nes the binding
through which the message is sent, and the new value of the speci�ed service.
The service value is dependent of the service type �eld.

Primitive type Primitive name Valid range
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤
De�ned by Service type Service value De�ned by Service type

Table 4.17: GETDATA_RSP payload

4.8.18 GETDATA_ERR

This message tells the receiver that the sender could not send the current
value of the service speci�ed in GETDATA_REQ. The GETDATA_ERR payload is
de�ned in Table 4.18. The payload shall contain the error reason.

4.8.19 SERVICE_DISCOVERY_REQ

This message is used to perform a service discovery and �nd out which service
types a remote device implements. The SERVICE_DISCOVERY_REQ payload is
de�ned in Table 4.19. If the service type �eld is set to ALL_SERVICES, a list
of all services is returned to the requesting device. If the service type �eld is
set to a speci�c service type, then the discovery applies only to the speci�ed
service.

41

4.8 Message Types Device Control Protocol (DCP)

Primitive type Primitive name Valid range
Unsigned byte Error reason NO_CONNECTION,

NO_BINDING,
INCORRECT_VALUE,
INVALID_PORT,
INCORRECT_DIRECTION,
PACKET_TOO_LARGE

Table 4.18: GETDATA_ERR payload

Primitive type Primitive name Valid range
Unsigned integer Service type ALL_SERVICES = 0x00,

0x10...0x¤¤

Table 4.19: SERVICE_DISCOVERY_REQ payload

4.8.20 SERVICE_DISCOVERY_RSP

This message carries the results of a service discovery. The SERVICE_DISCOVERY_RSP
payload is de�ned in Table 4.20. Service type should be set to the same value
as in SERVICE_DISCOVERY_REQ. Service count tells how many services follow
in the list. The maximum number of service types to be contained in the list
is 255. Service type, local port, remote port and the direction of the service
are repeated sequentially for each service on the device.

4.8.21 SERVICE_DISCOVERY_ERR

This message signalizes an error in the service discovery procedure. The
SERVICE_DISCOVERY_ERR is de�ned in Table 4.21. The payload shall contain
the error reason.

4.8.22 DEVICE_DESCRIPTION_REQ

This message requests a device description from the remote device. The
Payload Length �eld shall be set to 0, and payload shall not be included in
this message.

42

Device Control Protocol (DCP) 4.8 Message Types

Primitive type Primitive name Valid range
Unsigned byte Service count 0x00...0x¤
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤
Unsigned byte Direction BIND_IN_OUT = 0x00,

BIND_IN = 0x01,
BIND_OUT = 0x02

...
Unsigned integer Service type 0x10...0x¤¤
Unsigned byte Local port 0x01...0x¤
Unsigned byte Remote port 0x01...0x¤
Unsigned byte Direction BIND_IN_OUT = 0x00,

BIND_IN = 0x01,
BIND_OUT = 0x02

Table 4.20: SERVICE_DISCOVERY_RSP payload

Primitive type Primitive name Valid range
Unsigned byte Error reason NO_CONNECTION

PACKET_TOO_LARGE

Table 4.21: SERVICE_DISCOVERY_ERR payload

43

4.8 Message Types Device Control Protocol (DCP)

4.8.23 DEVICE_DESCRIPTION_RSP

This message carries the device description. The DEVICE_DESCRIPTION_RSP
payload is de�ned in Table 4.22. Device name is a user-friendly name such
as �Switch�or �Thermostat�. Manufacturer name is a user-friendly name of
the device manufacturer. Device model is a user-friendly description of the
device model.

Primitive type Number of bytes Primitive name Valid range
Unsigned byte 1 Device name length 0x00...0x14
Unsigned byte Device name length Device name Each byte represents a

character of the name
according to ASCII table

Unsigned byte 1 Manufacturer name 0x00...0x14
length

Unsigned byte Manufacturer name Manufacturer name Each byte represents a
length character of the name

according to ASCII table
Unsigned byte 1 Device model length 0x00...0x14
Unsigned byte Device model length Device model Each byte represents a

character of the name
according to ASCII table

Table 4.22: DEVICE_DESCRIPTION_RSP payload

4.8.24 DEVICE_DESCRIPTION_ERR

This message signalizes that the device could not generate and send a device
description to the requesting device. The DEVICE_DISCOVERY_ERR is de�ned
in Table 4.23. The payload shall contain the error reason.

Primitive type Primitive name Valid range
Unsigned byte Error reason NO_CONNECTION

PACKET_TOO_LARGE

Table 4.23: DEVICE_DESCRIPTION_ERR payload

44

Device Control Protocol (DCP) 4.9 DCP Services

4.9 DCP Services

The standardized DCP service types are listed in Table 4.24 and described
individually in following subsections. Service type numbers from 0x8000 to
0x¤¤ are reserved for manufacturers to de�ne their own proprietary service
types.

Service name Service number
SERVICE_DATE 0x10
SERVICE_TIME 0x11
SERVICE_SWITCH 0x12
SERVICE_DIMMER 0x13
SERVICE_TEMP_C 0x14

Table 4.24: DCP service types

4.9.1 SERVICE_DATE

This service represents the date on format day-month-year. The SERVICE_DATE
structure is de�ned in Table 4.25.

Primitive type Primitive name Valid range
Unsigned byte Day 0x01...0x1f
Unsigned byte Month 0x01...0x0c
Unsigned integer Year 0x00...0x¤¤

Table 4.25: SERVICE_DATE structure

4.9.2 SERVICE_TIME

This service represents the time on format hours-minutes-seconds. The
SERVICE_TIME structure is de�ned in Table 4.26.

4.9.3 SERVICE_SWITCH

This service represents an on/o¤ state. The SERVICE_SWITCH structure is
de�ned in Table 4.27.

45

4.10 Error reasons Device Control Protocol (DCP)

Primitive type Primitive name Valid range
Unsigned byte Hours 0x00...0x17
Unsigned byte Minutes 0x00...0x3b
Unsigned byte Seconds 0x00...0x3b

Table 4.26: SERVICE_TIME structure

Primitive type Primitive name Valid range
Unsigned byte Switch SWITCH_OFF = 0x00,

SWITCH_ON = 0x01

Table 4.27: SERVICE_SWITCH structure

4.9.4 SERVICE_DIMMER

This service represents the percentage level of the current dimmer value. The
SERVICE_DIMMER structure is de�ned in Table 4.28. The minimum value of
the dimmer is 0x00 (light is completely o¤). The maximum value of the
dimmer is 0x¤ (maximum light intensity).

Primitive type Primitive name Valid range
Unsigned byte Dimmer 0x00...0x¤

Table 4.28: SERVICE_DIMMER structure

4.9.5 SERVICE_TEMP_C

This service represents the temperature in degrees of Celsius. The resolution
is one degree. The SERVICE_TEMP_C structure is de�ned in Table 4.29.

4.10 Error reasons

If a device is unable to carry through the job speci�ed in a request message
(with su¢ x REQ), it should return an error message (with su¢ x ERR). The
sequence number must always equal the value in the corresponding request
message. Payload shall contain the error reason. DCP error reasons are
de�ned in following paragraphs. The error reason number sent on air is
de�ned in the parenthesis following the error reason name.

46

Device Control Protocol (DCP) 4.10 Error reasons

Primitive type Primitive name Valid range
Signed byte Temperature in Celsius degrees -125...125

Table 4.29: SERVICE_TEMP_C structure

NO_BINDING (0x10) The request could not be carried through
because there is no valid binding for the requested service.

INCORRECT_VALUE (0x11) The service value is incorrect.

NO_CONNECTION (0x12) The request could not be carried through
because there is no valid connection to the requesting device.

NO_SERVICES (0x13) The requested operation could not be com-
pleted because the device does not implement the requested service type(s).

CONNECTION_REJECTED (0x14) The incoming connection re-
quest could not be accepted.

CONNECTION_EXISTS (0x15) Connection already exists.

CONNECTION_OVERFLOW (0x16) Connection could not be
created because a maximum number of active connections have already been
reached.

UNSUPPORTED_VERSION (0x17) Requested protocol version
is not supported.

INVALID_SERVICE (0x18) The service that was speci�ed in the
request message is no valid.

BINDING_REJECTED (0x19) The incoming binding request could
not be accepted.

BINDING_EXISTS (0x1a) A valid binding for the speci�ed para-
meters already exists.

47

4.11 Application Program Interface (API) Device Control Protocol (DCP)

DCP

IEEE 802.15.4 Bluetooth TCP/IP

Application(s)
API

Figure 4.6: Device Control Protocol (DCP) application program interface
(API)

BINDING_OVERFLOW (0x1b) Binding could not be created be-
cause a maximum number of active bindings have already been reached.

INCORRECT_DIRECTION (0x1c) The operation could not be
completed because the direction of the binding is incorrect for this request.

INVALID_PORT (0x1d) The speci�ed port is incorrect.

PACKET_TOO_LARGE (0x1e) The size of the DCP packet is
too large and it could not be transmitted or received.

4.11 Application Program Interface (API)

This section proposes a standardized, generic application program interface
(API) for the Device Control Protocol (DCP) that has been developed and
implemented in various prototype systems during the thesis. The DCP API
hides the complex details of the underlying transmission technologies pro-
vides a simple, uniform programming interface. The API is completely in-
dependent of the underlying technology, which means that the API is the
same no matter which underlying transmission technology the DCP is imple-
mented upon. The transmission technology can be replaced without a¤ecting
the application since the changes only must be made at the DCP layer, while
the interface the application sees remains unchanged. Figure 4.6 illustrates
the DCP API.

48

Device Control Protocol (DCP) 4.11 Application Program Interface (API)

All over-the-air communication is based on request-response transactions.
If a device sends a request command, it expects to either receive a response
message or a corresponding error message. This principle is exploited in the
DCP implementation. An application makes a call to a request function,
which creates a DCP message, transmits it and waits for either a response or
an error message. The success or the failure of the transaction is indicated
to the application through the return value of the request function. If the
function waiting for the response times out, it should return an error value
back to application.

The receiver is obligated to execute a callback to a correct request handler
function provided by the application. These request handler functions are
called indication functions, as they indicate that a request message has been
received and it needs to be handled. An indication function is required to
answer to the request, either with a response or an error message by calling
the appropriate function at the DCP layer. The DCP API implementation
architecture is illustrated in Figure 4.7. Note that the suggested architecture
assumes that a request function waits and does not return until the trans-
action with a remote device has been completed, or until a timeout occurs
in which case the error is indicated to the application through the function
return value.

Request function names have the su¢ x Req (e.g. dcpConnectReq), indi-
cation functions have the su¢ x Ind (e.g. dcpConnectInd), response functions
have the su¢ x Rsp (e.g. dcpConnectRsp) while error functions have the suf-
�x Err (e.g. dcpConnectErr).

The API functions names are generated by adding the pre�x �dcp�to the
DCP message name and then eliminating the underscore separator "_". For
example, the API function that creates a connection to a remote device is
called dcpConnectReq, while the corresponding DCP message actually sent
on air is called CONNECT_REQ. The syntax of the API function calls in the
following subsections is similar to the C programming language.

The sequence diagrams in sections below use terms DCP client and DCP
server. DCP client is a DCP layer of the device that sends out a DCP request
message (e.g. BIND_REQ) thus starting a DCP request-response transaction.
A device that receives a DCP request message is called DCP server.

49

4.11 Application Program Interface (API) Device Control Protocol (DCP)

DCP DCP

Communication
link

Application(s) Application(s)

request indication response/error

Link/network layer Link/network layer

Figure 4.7: DCP API implementation architecture

4.11.1 Scanning for Devices

The application can discover other devices in the transmission range of the
technology the DCP implementation is based on by calling the function
dcpScanReq. The device scan procedure is illustrated in Figure 4.8. The
implementation of the dcpScanReq function is responsible for performing the
device scan using the capabilities of the underlying technology. If the tech-
nology does not o¤er device scan mechanism, then this subsection should be
ignored by the speci�c implementation.
The function will perform the device scan, and for each device found it

will produce a 16-bit DCP address (see Section 4.3). The application must
provide a data structure (illustrated as �neighbors�in Figure 4.8) where the
results of the scan (16-bit DCP addresses) will be put.

4.11.2 Connecting

ADCP connection between two devices is established by calling the dcpConnectReq
function. The connect procedure is illustrated in Figure 4.9. The application
has to provide a valid 16-bit DCP address of the remote device to the function
(illustrated as �serverAddress� in Figure 4.9). The application can acquire
the DCP addresses of the neighboring devices prior to calling dcpConnectReq

50

Device Control Protocol (DCP) 4.11 Application Program Interface (API)

DCP layerApplication

dcpScanReq(neighbors)

Scanning for neighbors...

Figure 4.8: Device scan procedure

by calling the dcpScanReq function (see Section 4.11.1).
The dcpConnectReq function creates a CONNECT_REQ message and trans-

mits it. The receiving DCP entity executes a callback to dcpConnectInd
function, sending the locally generated 16-bit DCP address procedure as a
parameter (illustrated as �clientAddress�in Figure 4.9). The dcpConnectInd
function is responsible for answering the DCP client by calling either the
dcpConnectRsp function if the connection request is accepted, or the dcpConnectErr
function if the connection can not be accepted.

4.11.3 Disconnecting

ADCP connection between two devices is closed by calling the dcpDisconnectReq
function. The disconnect procedure is illustrated in Figure 4.10. The appli-
cation has to provide a valid DCP address of the remote device (illustrated
as "serverAddress" in Figure 4.10).
The function creates a DISCONNECT_REQ message and transmits it. The

receiving DCP server executes a callback to the dcpDisconnectInd function,
sending the locally generated DCP address of that started the disconnect
procedure as a parameter (illustrated as �clientAddress� in Figure 4.10).
The dcpDisconnect function is responsible for answering the DCP client
by calling either the dcpDisconnectRsp function, or the dcpDisconnectErr
function if the connection can not be closed.

51

4.11 Application Program Interface (API) Device Control Protocol (DCP)

DCP client DCP serverApplication

dcpConnectReq(serverAddress)

CONNECT_REQ

CONNECT_RSP

Application

dcpConnectRsp(clientAddress)

dcpConnectInd(clientAddress)

Figure 4.9: Connect procedure

DCP client DCP serverApplication

dcpDisconnectReq(serverAddress)

DISCONNECT_REQ

DISCONNECT_RSP

Application

dcpDisconnectRsp(clientAddress)

dcpDisconnectInd(clientAddress)

Figure 4.10: Disconnect procedure

52

Device Control Protocol (DCP) 4.11 Application Program Interface (API)

DCP client DCP serverApplication

dcpBindReq(bindingParameters)

BIND_REQ

BIND_RSP

Application

dcpBindRsp(bindingParameters)

dcpBindInd(bindingParameters)

Figure 4.11: Bind procedure

4.11.4 Binding

A DCP binding between two services is created by calling the dcpBindReq
function. The bind procedure is illustrated in Figure 4.11. The function
parameters must uniquely describe the binding: DCP address of the remote
device, service type, local port, remote port and binding direction. The
function parameters are illustrated as �bindingParameters� in Figure 4.11.
Using these parameters, the function assembles a BIND_REQ message and
transmits it. The receiving DCP server executes a callback to dcpBindInd
function. If the device accepts the binding request, it answers the DCP client
by calling either the dcpBindRsp function. If the binding request is rejected,
it calls the dcpBindErr function which assembles and transmits a BIND_ERR
message.

4.11.5 Unbinding

ADCP binding between two services is removed by calling the dcpUnbindReq
function. The unbind procedure is illustrated in Figure 4.12. The function
parameters must uniquely describe the binding to be removed: the DCP
address of the remote device, service type, local port, remote port and binding
direction. The function parameters are illustrated as �bindingParameters�in

53

4.11 Application Program Interface (API) Device Control Protocol (DCP)

DCP client DCP serverApplication

dcpUnbindReq(bindingParameters)

UNBIND_REQ

UNBIND_RSP

Application

dcpUnbindRsp(bindingParameters)

dcpUnbindInd(bindingParameters)

Figure 4.12: Unbind procedure

Figure 4.12. Using these, the function assembles a UNBIND_REQ message and
transmits it. The receiving DCP server executes a callback to dcpUnbindInd
function, which is responsible for answering the DCP client by calling either
the dcpUnbindRsp function if the binding was deleted or the dcpUnbindErr
if the binding could not be removed.

4.11.6 Changing the Service Value

An application can change the value of a service on a remote device by calling
the dcpSetDataReq function. The procedure of changing the service value is
illustrated in Figure 4.13. It is a responsibility of the application to ensure
that a valid binding exists prior to calling the dcpSetDataReq function. The
application must provide several parameters to the function that uniquely
describe the binding (DCP address of the remote device, service type, local
port, remote port and binding direction), illustrated as �bindingParameters�
in Figure 4.13. The application must also provide the data to be sent (illus-
trated as �data�in Figure 4.13).
The function assembles a SETDATA_REQ message and transmits it. The

receiving DCP server executes a callback to dcpSetDataInd function, which
is responsible for actually changing the value of the speci�ed service. The

54

Device Control Protocol (DCP) 4.11 Application Program Interface (API)

DCP client DCP serverApplication

dcpSetDataReq(bindingParameters, data)

SETDATA_REQ

SETDATA_RSP

Application

dcpSetDataRsp(bindingParameters, data)

dcpSetDataInd(bindingParameters, data)

Figure 4.13: Changing the service value

dcpSetDataInd answers the DCP client by calling either the dcpSetDataRsp
function in case of success or dcpSetDataErr if the service value could not
be changed.

4.11.7 Reading the Service Value

An application can read the value of a service on a remote device by calling
the dcpDeviceDescriptionReq function. The procedure of reading the value
of a service is illustrated in Figure 4.14. It is a responsibility of the applica-
tion to ensure that a valid binding exists prior to calling the dcpGetDataReq
function. The application must provide several function parameters (illus-
trated as �bindingParameters� in Figure 4.14) that uniquely describe the
binding (DCP address of the remote device, service type, local port, remote
port and binding direction). The application must also provide a parame-
ter (illustrated as �data� in Figure 4.14) where the data received from the
remote device will be put by the function.

The function assembles a GETDATA_REQ message and transmits it. The
receiving DCP server executes a callback to dcpGetDataInd function, which
answers the DCP client by calling either the dcpGetDataRsp function speci-
fying the current service value or dcpGetDataErr in case of an error.

55

4.11 Application Program Interface (API) Device Control Protocol (DCP)

DCP client DCP serverApplication

dcpGetDataReq(bindingParameters, data)

GETDATA_REQ

GETDATA_RSP

Application

dcpGetDataRsp(bindingParameters, data)

dcpGetDataInd(bindingParameters, data)

Figure 4.14: Reading the service value

4.11.8 Service Discovery

An application can discover what services some other device o¤ers by call-
ing the dcpServiceDiscoveryReq function. The service discovery proce-
dure is illustrated in Figure 4.15. The application has to provide a valid
DCP address of the remote device (illustrated as "address" in 4.15). The
application can either search for all available services or a speci�c service,
as described in Section 4.8.19. The service search type is illustrated as
"service" in Figure 4.15. The application also has to provide a data struc-
ture (illustrated as �result� in Figure 4.15) where the results of the service
discovery will be put. The dcpServiceDiscoveryReq function assembles
a SERVICE_DISCOVERY_REQ message and transmits it. The receiving DCP
server executes a callback to the dcpServiceDiscoveryInd function, which is
responsible for answering the DCP client by calling either the dcpServiceDiscoveryRsp
function specifying the discovery results, or the dcpServiceDiscoveryErr
function if the discovery could not be carried through.

4.11.9 Device Description

An application can request a device description from some other device
by calling the dcpDeviceDescriptionReq function. The device descrip-
tion procedure is illustrated in Figure 4.16. The application has to pro-

56

Device Control Protocol (DCP) 4.12 DCP Bridging

DCP client DCP serverApplication

SERVICE_DISCOVERY_REQ

SERVICE_DISCOVERY_RSP

Application

dcpServiceDiscoveryReq
(address, service, result)

dcpServiceDiscoveryInd
(address, service, result)

dcpServiceDiscoveryRsp
(address, service, result)

Figure 4.15: Service discovery procedure

vide a valid DCP address of the remote device (illustrated as "address"
in 4.16). The application also has to provide a data structure (illustrated
as �description�in Figure 4.16) where the results of the device description
search will be put. The dcpDeviceDescriptionReq function assembles a
DEVICE_DESCRIPTION_REQ message and transmits it. The receiving DCP
server executes a callback to dcpDeviceDescriptionInd function, which is
responsible for answering the DCP client by calling either the dcpDeviceDescriptionRsp
function specifying it�s description, or the dcpDeviceDescriptionErr func-
tion in case of an error.

4.12 DCP Bridging

DCP can be implemented upon various transmission technologies, and it
could potentially implement a bridging mechanism to glue together DCP
networks based on di¤erent transmission technologies. Although not a part
of the DCP speci�cation (primarily due to lack of time), a DCP bridging
functionality would be a very useful service. The scenario is illustrated in
Figure 4.17, where an Internet remote device (i.e. web site) controls a home
appliance through the DCP gateway (bridge). Some issues that should be
considered in this context:

57

4.13 Network Layer Device Control Protocol (DCP)

DCP client DCP serverApplication

DEVICE_DESCRIPTION_REQ

DEVICE_DESCRIPTION_RSP

Application

dcpDeviceDescriptionReq
(address, description)

dcpDeviceDescriptionInd
(address, description)

dcpDeviceDescriptionRsp
(address, description)

Figure 4.16: Device description procedure

� Device addressing

� Additional DCP messages

� Communication security

4.13 Network Layer

This section is a short discussion of routing protocols in the context of IEEE
802.15.4 technology and the Device Control Protocol (DCP). The theoretical
investigation of the thesis concluded that IEEE 802.15.4 is the technology
most suitable for wireless home automation networking. The goal of the sec-
tion is to identify the desirable properties of a routing mechanism and outline
a routing strategy for IEEE 802.15.4 networks running the DCP protocol. In
a protocol stack, the routing mechanism would be implemented upon the
IEEE 802.15.4 technology but below DCP, as illustrated in Figure 4.18.
DCP relies on the underlying layer to provide a su¢ cient transmission

range to suit the application needs, but in some scenarios this simply is not
possible unless multihop communication is used. By introducing a network
layer and a routing mechanism at the layer below DCP, the transmission

58

Device Control Protocol (DCP) 4.13 Network Layer

Application(s)

DCP

TCP

IP

Ethernet

DCP

TCP

IP

Ethernet

IEEE 802.15.4
MAC

IEEE 802.15.4
PHY

IEEE 802.15.4
MAC

IEEE 802.15.4
PHY

DCP

Application(s)

DCP gatewayInternet remote control

Figure 4.17: DCP bridging scenario

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Network layer

Device Control Protocol (DCP)

Application(s)

Figure 4.18: Position of network layer in a DCP stack

59

4.13 Network Layer Device Control Protocol (DCP)

range could be increased without increasing the transmission output power
or the power consumption. In such a case, some DCP devices would func-
tion as mobile routers and they would forward packets toward their correct
destination.
The IEEE 802.15.4 is still a relatively new technology, the �nal speci�-

cation has been released in 2003. Up to now, a small amount of academic
research e¤orts has focused on the technology. The research e¤orts are pri-
marily carried out by the industry, with the ZigBee Alliance [ZIG] leading
the way. This is likely to change, as the popularity of the IEEE 802.15.4 and
the related ZigBee technology is forecast to increase in the years to come.
The IEEE Mobile Ad-hoc Networks (MANET) [IET] working group has

set the goal to standardize IP routing protocol functionality suitable for
wireless routing within both static and dynamic topologies. The MANET
group has standardized several routing protocols [IET]with di¤erent proper-
ties, purposes and areas of application. Several other protocols have been
de�ned outside the MANET group. An overall review of the ad hoc routing
protocols can be found in [Mis99] and [Roy99]. None of these protocols are
designed speci�cally for the IEEE 802.15.4 technology. However, the prin-
ciples and the main ideas should be reusable and adaptable to the IEEE
802.15.4 technology.
The IEEE has started the IEEE 802.15.5 Task Group [WPAb] with the

main objective of determining the necessary mechanisms that must be present
in the PHY and MAC layers of the short-range wireless technology to en-
able mesh networking, and to provide recommendations for building of mesh
networks. The working group will try to �nd out how mesh networks can
be formed at the MAC layer, without needing ZigBee or some other routing
protocol.

4.13.1 Reactive vs. Proactive Protocols

IEEE 802.15.4 peer-to-peer network topology supports many di¤erent types
of networks, and the designer must select the appropriate network type and
the routing algorithm for the intended application. Important tasks of the
protocol are to minimize battery power consumption and use of bandwidth
and CPU and memory resources. Routing protocols may generally be cate-
gorized as [Roy99]:

� Proactive (Table-driven)

60

Device Control Protocol (DCP) 4.13 Network Layer

� Reactive (Source routing)

Proactive routing protocols maintain consistent routes from each node
to every other node in the network. Routing information is stored in one
on more tables. Changes in network topology are handled by sending up-
dates throughout the network. Proactive protocols maintain a route entry
for every other network node, even if they never talk to many of these. This
requires unnecessary memory and computation resources. Proactive proto-
cols propagate all topology changes throughout the network. If some node
leaves the network, all other nodes receive a corresponding noti�cation, even
if the topology change does not a¤ect the node.
Reactive routing protocols only maintain routes to destinations the device

communicates with. Addresses of all devices along the towards the destina-
tion are included in the packet header. This means that source routing is
independent of routing information maintained by other nodes. Reactive
protocols only maintain routes to nodes of interest, which they expect to
communicate with. This fact corresponds with the DCP binding concept.
A potential drawback of reactive protocols is the delay for establishing the
route to destination. Each DCP binding is established only once, and during
this procedure the protocol would also perform a route discovery procedure,
resulting in an overall delay that should be acceptable by the user. Another
potential drawback of reactive protocols is an overhead in the DCP packet
header that contains the route information. Reactive protocols can easily
detect and avoid routing loops by simply checking that the same device is
not included twice or more in the route.
DCP architecture is based on logical bindings between devices. A DCP

device can only talk to devices it has established a valid binding to. After
the installation procedure in which the DCP bindings are established, the
DCP devices are expected to be static and not move. The size of a typical
DCP network that includes the network layer and a routing mechanism is
di¢ cult to estimate, but approximately 3-5 hops should be representable for
most common scenarios. DCP devices that are battery powered and movable
are not expected to participate in the routing mechanism.

4.13.2 Routing in DCP IEEE 802.15.4 Networks

Source routing should be a good choice for small to medium sized static DCP
networks implemented upon IEEE 802.15.4 technology with maximum 3-5

61

4.13 Network Layer Device Control Protocol (DCP)

hops, and this section discusses source routing in DCP IEEE 802.15.4 net-
works. Note that no simulations or theoretical analysis have been performed
as a part of the thesis, as the network layer investigation was not included
in the thesis speci�cation. Note that the purpose of this entire Section 4.13
is not to provide an in-depth routing protocol investigation in any sense, but
rather establish a foundation for future work to be done on the subject by
including a short introduction and discussion.
The route discovery procedure can be implemented by broadcasting route

request messages with speci�ed node address we are trying to locate, and
maximum number of hops the route request packet can travel. All nodes
should maintain and periodically update a neighbor table (all nodes within
the transmission range). The packet is sent from node to node, and address
of each node it travels through is added to the packet header. A node that
knows the route to the node speci�ed in route request answers with a route
response message. The route response message travels back to the source
by reversing the route information accumulated during the route discovery
procedure. If the source node receives more than one route response, the
route needs to choose the best route based on some route quality metrics.
Perhaps the most simple metric is the route length measured in number
of hops, making the shortest route the best one. However, more complex
metrics could be used including the link congestion level, transmission delay
etc.
Each route could be periodically checked for consistency by sending and

receiving "hello" messages.
Each time the application sends data, the entire route information is

incorporated into the network layer packet header. If the packet propagation
fails along the way, the noti�cation should be sent back to source with the
address of the unavailable node, and the source should start a new route
discovery procedure.
The maximum size of the IEEE 802.15.4 PHY layer packet is 127 bytes.

In order to �nd the maximum packet size at the network layer, the IEEE
802.15.4 MAC header size must be substracted. Maximum size of the MAC
header is 25 bytes (although it can vary and be smaller), according to [LRW03].
This leaves 102 bytes for the network layer header including the routing infor-
mation and the DCP packet. Based on the expected small number of routing
hops and small sizes of DCP packets, 102 bytes should be su¢ cient for many
applications. A way to reduce the network packet overhead is to use the
short 16-bit IEEE 802.15.4 addresses, instead of extended 64-bits addresses.

62

Device Control Protocol (DCP) 4.13 Network Layer

It should be noted that an introduction of a network layer represents
a theoretical con�ict because the maximum DCP packet size is set to 100
bytes. If the theoretical con�ict is to be avoided, the network layer should
never use more than 2 bytes, which is clearly impossible. One potential
solution is to reconsider the DCP packets size and reduce it. Another solution
is to introduce a transport layer between the network layer and the DCP
layer. The transport layer would implement a fragmentation and reassembly
mechanism. The layer would accept packets from DCP, and it would break
these into several smaller packets, if necessary, and transfer these separately.
The receiver would collect all these fragments and reassemble the original
DCP packet.

63

Chapter 5

Mobile Phone in Home
Automation

This chapter explores the possibility of using a mobile phone as a short range
remote control in home automation. For example, a mobile phone could be
used to monitor and control heating, lighting and other home automation
scenarios.
This chapter presents a short overview of the common software platforms

available on mobile phones today and explores the possibilities of creating
and downloading third-party applications. The chapter also discusses the
use of the short range wireless technologies available on mobile phones today,
Bluetooth [SIG01b], Infrared IrDA [IRD] and IEEE 802.11 WLAN [WLA].
Distant remote control, where a mobile phone is outside the transmission
range of these short range wireless technologies, is beyond the scope of the
discussion.

5.1 Motivation

There are several advantages and reasons for using the mobile phone as a
remote control in home automation:

� A single, universal remote control

� Comfort and convenience

� Economy, the cost of acquiring the remote control functionality is low

64

Mobile Phone in Home Automation 5.2 Software Platforms

� Exclusivity, having something new and modern

� The communication is free of charge, and no subscription fees are re-
quired

Mobile phone could become a universal remote control, replacing many
single-use remote controls and increasing comfort of the end user. Since the
user already owns the mobile phone, the cost is only limited to acquiring the
software application. Mobile phones o¤er relatively large and clear graphical
displays, suitable for developing user-friendly graphical interfaces. It would
be very convenient for the user to use the mobile phone as a remote control, as
the user already is familiar with using the phone and its technical properties.
Because the phone batteries are charged periodically, the power supply should
not be an issue. The cost and complexity of transforming a mobile phone
into a potentially universal remote control are relatively low as it is only the
matter of downloading a new software application. Using the mobile phone
as a remote control is potentially very economical.
There are several scenarios where a short-range mobile phone remote

control would be useful, including the following examples:

� Lighting control

� Controlling the home theater and entertainment systems

� Opening, closing, locking and unlocking doors

� Heating, ventilation and air conditioning control

� Activating and deactivating the security systems

� Monitoring and controlling various industries processes

Figure 5.1 illustrates a scenario where a mobile phone is used to control
a thermostat by transferring the desired temperature setpoint.

5.2 Software Platforms

This section presents software platforms commonly found on mobile phones
today. Unlike the marked of personal computers where few systems like Mi-
crosoft Windows dominate, many operating system and platforms exist for

65

5.2 Software Platforms Mobile Phone in Home Automation

Mobile phone
remote control Room thermostat

Figure 5.1: Thermostat control scenario: the mobile phone transfers the de-
sired temperature setpoint wirelessly to the thermostat

mobile phones. For example, almost all mobile phone manufacturers have
own, proprietary platforms and programming interfaces. It is therefore chal-
lenging to create interpretable applications that would run on all platforms
and thus all mobile phones.

5.2.1 SymbianOS

Symbian Operating System (SymbianOS) is an advanced and open operating
system for mobile phones. The platform is open in the sense that it provides
a set of APIs for third party application development. Symbian [SYM] was
established as an independent company in June 1998 and is owned by Nokia,
Panasonic, Psion, Samsung Electronics, Siemens and Sony Ericsson. The
SymbianOS programming language is Symbian C++, a variant of C++.
Today, SymbianOS is implemented in more expensive professional mobile
phones from various manufacturers.

5.2.2 PalmOS

Palm Operating System (PalmOS) is an operating system for handheld de-
vices (mostly PDAs) and more powerful smartphones. PalmOS was intro-
duced in 1996 by PalmSource Inc. [PALa], and today almost two out of
every three handhelds are based on PalmOS. In addition to handheld devices
and PDAs from PalmSource Inc., the PalmOS is implemented in PDAs from
Sony, Handspring, IBM and several other manufacturers [PALb].

66

Mobile Phone in Home Automation 5.2 Software Platforms

Figure 5.2: J2ME applications are platform independent. J2ME functions
as a middelware layer across platforms from di¤erent manufacturers.

5.2.3 Mophun

Mophun is a platform for developing games for mobile phones. Mophun is
released by Synergix Interactive [SYN]. Today, over 150 games have been
developed for the Mophun platform. Mophun supports both 2D and 3D game
development.

5.2.4 Java Platform 2 Micro Edition (J2ME)

Java Platform 2 Micro Edition (J2ME) [J2M] is an edition of Java 2 platform
developed and optimized for handheld and embedded devices. Applications
written for J2ME are platform independent, they run on all devices that im-
plement a Java Virtual Machine (JVM). Therefore, J2ME supports the Java
design philosophy �Write once, run anywhere�. Today, almost all new mo-
bile phones o¤er a JVM, and possibility to download and install new J2ME
applications using a wireless connection. J2ME provides a standardized pro-
gramming interface to Bluetooth [JSR02], but it does not provide an interface
for Infrared. WLAN is supported through a Java socket interface.

67

5.3 Communication Technologies Mobile Phone in Home Automation

5.2.5 Binary Runtime Environment forWireless (BREW)

Binary Runtime Environment for Wireless (BREW) is a platform for wire-
less applications development, device con�guration, application distribution,
and billing. BREW was released by Qualcomm [QUA] in February 2000.
Originally, BREW was restricted to work only in CDMA networks, but is
now able to run in all network types. Like J2ME, BREW is also independent
of the underlying platform, and it can run on many di¤erent operating sys-
tems. One of the main advantages of the BREW platform is its low memory
requirements (i.e. 150 Kb). BREW supports several programming languages
like C/C++, XML, Java etc.

5.2.6 Mobile Phone Platforms from Microsoft

Microsoft [MIC] has released a number of platforms targeted for handheld
devices and mobile phones:

� Windows Mobile

� PocketPC

� Windows CE.NET

� SmartPhone OS

The mobile development is supported by a range of development tools,
including Microsoft Visual Studio. Applications are based on the .NET Com-
pact Framework, which uses the same programming model and very similar
APIs to the .NET Framework.

5.3 Communication Technologies

This section discusses the use of the short range wireless technologies in mo-
bile phone remote control applications. Technologies commonly implemented
on mobile phones today are Bluetooth [SIG01b], Infrared IrDA [IRD] and
IEEE 802.11 WLAN [WLA].

68

Mobile Phone in Home Automation 5.3 Communication Technologies

5.3.1 Bluetooth

Bluetooth [BTS] [SIG01b] o¤ers a transmission range of 10-100 meters, and a
bandwidth of 1 Mbit/s. Bluetooth communication is robust and reliable even
in environments with much noise and interference. Optional security and
encryption is available. However, in a home automation network Bluetooth
has to be implemented into real products like thermostats, light switches,
sensors etc. Some potential disadvantages of Bluetooth in this context are:

� Bluetooth allows up to 7 simultaneous connections, which might be
insu¢ cient in some scenarios

� No routing mechanisms in scatternet networks are de�ned by the stan-
dard.

� Bluetooth power consumption can be too high for battery powered
devices where battery is not expected to be recharged periodically

� The Bluetooth inquiry (device scan) and connection procedures are
time consuming

In order to avoid the Bluetooth disadvantages stated above, a possibil-
ity is to incorporate Bluetooth technology only in selected gateway products
that are expected to communicate with Bluetooth remote control devices like
mobile phones, but also PCs and PDAs. The scenario is illustrated in Figure
5.3, where a gateway device implements both Bluetooth and ZigBee tech-
nologies, allowing a Bluetooth based mobile phone application to indirectly
communicate with ZigBee devices. In such scenarios, Bluetooth is only used
for point to point connections, and the delay for setting up the connections
should be acceptable.

5.3.2 IEEE 802.11 WLAN

IEEE 802.11 Wireless LAN (WLAN) [WLA] is not a very common tech-
nology on mobile phones, and only a few mobile phones today o¤er WLAN.
WLAN is usually implemented on PDAs and PCs rather than mobile phones.
WLAN is a replacement of the traditional wired network and its services, for
example internet access. WLAN o¤ers higher transmission range and band-
width higher than Bluetooth. However, this results in a signi�cantly higher
power consumption. The WLAN protocol stack is more complex, putting

69

5.3 Communication Technologies Mobile Phone in Home Automation

Mobile phone
remote control Central thermostat

with both Bluetooth
and Zigbee

technologies

Bluetooth

Zigbee

Heating, Ventilation
and Air-Conditioning
(HVAC) appliances

Figure 5.3: Bluetooth-ZigBee gateway scenario. The theromstat implements
both Bluetooth and ZigBee acting as a gateway between Bluetooth enabled
phone and ZigBee enabled appliances.

higher demands on memory, CPU and other hardware resources. Compared
to Bluetooth, WLAN is more complex and expensive without giving any par-
ticular advantages in simple home automation scenarios. It is important to
remember that besides having a technology available on the mobile phone, it
must be embedded into a real product that the mobile phone communicates
with. Therefore, cost, complexity and power consumption are important
attributes. Put together, WLAN is an overkill technology for home automa-
tion, and it is unrealistic and unnecessary to implement WLAN transceivers
in small, inexpensive and sometimes battery powered home appliances.

5.3.3 IrDA Infrared

Infrared communication on mobile phones follows the standards from the
Infrared Data Association (IrDA) [IRD], in order to make mobile phones
from di¤erent manufacturers compatible with each other. Bandwidth of up
to 4 Mbit/s is su¢ cient for remote control applications. However, IrDA
Infrared transmission range is up to one meter, meaning that the mobile
phone must be very close to the appliance it communicates with. In addition,

70

Mobile Phone in Home Automation 5.4 Discussion

IrDA Infrared requires line-of-sight communication. For most scenarios, these
limitations are inadequate. In some contexts though, low transmission range
might be seen as increased communication security, as it is almost impossible
to eavesdrop.

5.4 Discussion

This section discusses the applicability of the presented software platforms
and communication technologies for creating remote control applications for
mobile phones.
Several mobile phone platforms and operating systems exist. Today, Sym-

bianOS is a popular choice for expensive professional mobile phones. Because
Symbian is an independent company, several manufacturers have chosen to
implement SymbianOS in their products, including Nokia, Sony Ericsson,
Siemens etc. SymbianOS can be used to develop remote control applications
as it o¤ers a rich set of APIs both for graphical interface development and for
wireless communication. The SymbianOS programming language is C++.
PalmOS is rarely used on mobile phones, but it is a popular and common

platform for PDAs. It o¤ers a programming interface to both Bluetooth,
IrDA Infrared and IEEE 802.11 WLAN. PalmOS is applicable for remote
control applications for PDAs.
Mophune is a platform optimized for developing mobile games, but it can

be used to create remote control applications for mobile phones. A limited
number of mobile phones implement the technology.
BREW platform is independent of the underlying platform, similar to

J2ME. Compared to J2ME, the popularity of the BREW platform is limited.
However, this might change in the future.
Microsoft has several di¤erent platforms for mobile phones and handheld

devices. The platforms can be used to implement a graphical interface for
a remote control application, and they all support Bluetooth. The major
problem is the limited deployment of these platforms.
Java platform 2 Micro Edition (J2ME). J2ME is platform independent,

and almost all new mobile phones implement a J2ME virtual machine. The
platform o¤ers a rich set of graphical elements. J2ME is independent of
the underlying platform. It has a standardized Bluetooth API (JSR-82)
[JSR02]. J2ME has no standardized API support for IrDA Infrared. WLAN
is supported through a Java socket interface. Another important issue that

71

5.4 Discussion Mobile Phone in Home Automation

should be discussed is the distribution of a J2ME remote control application
to the mobile phone. Various alternatives exist:

� A proprietary cable between the PC and the mobile phone

� A Bluetooth or Infrared connection between the PC and the mobile
phone

� A WAP connection to download the application from a HTTP server

The most common scenario will presumably be using a WAP connection
to download a WAP page containing a link to the J2ME installation �le.
When the user clicks on the link in the WAP browser, the mobile phone
automatically recognizes the �le type and asks if it should install the appli-
cation. The technology is called Over-The-Air (OTA) [Ort02] provisioning.

The chapter discussed three wireless technologies: Bluetooth, IrDA In-
frared and IEEE 802.11 WLAN. IrDA is considered unsuitable in most sce-
narios because of the very short transmission range. IEEE 802.11WLAN is in
many ways similar to Bluetooth, seen in the context of the chapter. However,
only few mobile phones implement WLAN, and the technology, expensive,
complex and power consuming than Bluetooth. Of the three technologies
considered, Bluetooth is the most suitable technology for communication
between the mobile phone and home automation devices of the three tech-
nologies considered, it is implemented on many mobile phones and many
of the software platforms support it. Bluetooth is supported by all of the
reviewed platforms, although in di¤erent ways. Three of the platforms, Sym-
bianOS, PalmOS and J2ME o¤er a full programming support for Bluetooth
by o¤ering Bluetooth speci�c APIs to programmers. BREW and Mophun
however do not o¤er any Bluetooth speci�c APIs. These two platforms ex-
ploit the ability of Bluetooth to wirelessly emulate the standard RS232 serial
port cable connections, making the Bluetooth connection appear to BREW
and Mophun as a serial port cable connection between two devices.

All of the mobile platforms evaluated in this chapter can be used to im-
plement a graphical interface for remote control applications. However, the
deployment of the platforms vary considerably. J2ME is the most widely
deployed platform, and is accepted as a de facto standard. Almost all new
mobile phones implement a J2ME virtual machine, regardless of the price

72

Mobile Phone in Home Automation 5.4 Discussion

level and manufacturer. Bluetooth is supported by J2ME through the op-
tional JSR-82 [JSR02] API. However, the support for Bluetooth is optional,
which means that each manufacturer decides whether the support shall be
included into the J2ME virtual machine. Today, this the number is limited
and only approximately 20 J2ME-enabled phones support JSR-82, although
the number is continuously growing.

73

Chapter 6

Prototype Systems

Three prototype systems have been developed to illustrate the results of
the thesis and demonstrate the practical application of the Device Control
Protocol (DCP):

� Wireless communication between inexpensive embedded devices

� Remote control of home appliances from a mobile phone

� Remote control of home appliances from a web page

The following sections discuss present the purpose and the technical ar-
chitecture of the prototype applications separately. It is important to realize
that even if the applications are based on a simple lighting control scenario,
the potential application area of DCP is large.
A considerable amount of time has been used to design an architecture,

implement and test the prototype applications. Although the applications in-
clude a series of functional lacks and limitations, they successfully ful�ll their
main requirements �demonstrating the possibilities of DCP in both wired
and wireless scenarios and the possibility of creating remote control applica-
tions for mobile phones. The source code can be found on the accompanying
CD-ROM.

6.1 Home Automation Communication

This system demonstrates the DCP communication between low cost embed-
ded devices in a home lighting control scenario. The system consists of one

74

Prototype Systems 6.1 Home Automation Communication

Chipcon CC2420
with Atmel

ATMega128
microcontroller.

Acts as a light
switch/dimmer.

Chipcon CC2420
with Atmel
ATMega128
microcontroller.
Acts as a light
actuator.

Chipcon CC2420
with Atmel
ATMega128
microcontroller.
Acts as a light
actuator.

Figure 6.1: Home automation communication, architecture

light switch and one or more devices functioning as light actuators, as illus-
trated in Figure 6.1. A light bulb is connected to each of the light actuators
to improve the demonstration e¤ect and make it more realistic.
All communication between devices is based on the Device Control Pro-

tocol (DCP), implemented upon IEEE 802.15.4 MAC layer on a Chipcon
CC2420DBK prototype board. The CC2420DBK board consists of a CC2420
2.4 GHz low-cost RF transceiver and an AVR ATmega128 microcontroller.
In addition, CC2420DBK provides two buttons, four LEDs and a joystick
that were used by this prototype. The ATmega128 microcontroller runs
the IEEE 802.15.4 MAC software, the DCP protocol and the application
software, while the Chipcon CC2420 is responsible for wireless transmission
according to IEEE 802.15.4 PHY speci�cation. CC2420DBK also allows op-
tional 9V battery operation.
The sequence diagram in Figure 6.3 illustrates the operation mode and

the communication �ow of the prototype system. Moving the joystick in
any direction on a light actuator makes the device establish a new wireless
non-beacon IEEE 802.15.4 Personal Area Network (PAN) and become the
coordinator.
Moving the joystick in any direction on a light switch makes the device

75

6.1 Home Automation Communication Prototype Systems

Figure 6.2: Chipcon CC2420DBK contains an 8-bit microcontroller that runs
the implementation of the Device Control Protocol (DCP). The board sup-
ports the wireless IEEE 802.15.4 communication.

scan for all available PANs in the area, then tries to establish an IEEE
802.15.4 association to each of these. After a successful association, the
switch creates a DCP connection and a DCP binding for the SERVICE_SWITCH
service. The system supports incremental network expansion. At any time,
moving the joystick on a light switch will start a device scan. If any new
devices have been found, the switch will con�gure these and add them to it�s
binding table.
After a DCP binding has been created, pressing a button on light switch

toggles the light bulbs connected to light actuator devices by sending trans-
mitting SETDATA_REQ messages through the DCP binding.
Pressing the joystick centre button on a switch device removes all DCP

bindings and closes all physical connections to light actuators.
The 802.15.4 technology o¤ers 16 channels in the 2.4 GHz band, and the

prototype system uses one of these. The device scan duration can be regu-
lated by each speci�c implementation, as de�ned in [LRW03]. This prototype
system uses approximately 5 seconds to scan all the 16 channels, while scan-
ning a single channel takes less than 0.5 seconds. The transmission range of
the CC2420DBK is measured to approximately 170 meters in line-of-sight.
The transmission output power can be regulated in software and reduced if
desired.
All communication between devices happens on a single IEEE 802.15.4

channel in a non-beaconed network in the 2.4 GHz frequency band. The
switch device needs to poll the light actuator devices periodically to detect if
they want to send any data to it. All three devices are Full Function Devices

76

Prototype Systems 6.1 Home Automation Communication

Light ActuatorSwitch

CONNECT_REQ

CONNECT_RSP

User moves the joystick

Device scan starts...

Connect to all PANs found in
device scan

User moves the joystick

Create a non-beacon PAN

Create IEEE 802.15.4 Association

BIND_REQ

BIND_RSP

SETDATA_REQ

SETDATA_RSP

User presses button S2

User presses joystick
center button

UNBIND_REQ

UNBIND_RSP

DISCONNECT_REQ

DISCONNECT_RSP

Close IEEE 802.15.4 Association

Toggle lamp on/off ...

Figure 6.3: DCP communication sequence throughout the life cycle of the
"Home Automation Communication" prototype system

77

6.2 Monitoring and Control from a Mobile Phone Prototype Systems

Figure 6.4: Monitoring and control from a mobile phone

(FFD). In a cost-optimized system the switch could be a Reduced Function
Device (RFD).
The DCP protocol, the switch application and the light actuator appli-

cation are implemented in programming language C, and compiled with the
open source AVR GCC compiler version 3.3.1.

6.2 Monitoring and Control from a Mobile
Phone

This system demonstrates the possibility of using a mobile phone as a short-
range wireless remote control in home automation. All communication is
based on the DCP protocol, implemented upon the Bluetooth RFCOMM
protocol. The system architecture is illustrated in Figure 6.4, and it consists
of two devices:

� A mobile phone running a Java (J2ME) application which implements
a simple graphical interface for controlling a light actuator (on/o¤ and
dimming)

� A DCP device emulator running on a Linux PC and functioning as a
Bluetooth enabled light actuator embedded device

The mobile phone application is developed in Java (J2ME) using the
Borland JBuilder X development environment in Linux. Software that pro-
vides JSR-82 libraries was installed additionally (Series 60 MIDP Concept

78

Prototype Systems 6.2 Monitoring and Control from a Mobile Phone

SDK Beta 0.3.1), it can be downloaded from [NOK]. Being based on Java
(J2ME), the mobile phone application is independent of mobile phone model
and manufacturer, and is compatible with all phones with the following ca-
pabilities:

� Bluetooth wireless technology

� Java Platform 2 Micro Edition (J2ME)

� Java-Bluetooth API (JSR-82)

Approximately 20 phones support these requirements at the time of writ-
ing this, and the application was tested successfully with two of these, Nokia
6600 and Sony Ericsson P900. Although an increasingly number of mobile
phones implement Bluetooth and J2ME, the support for JSR-82 is still very
limited. The JSR-82 API is a relatively new speci�cation, and not many
manufacturers have implemented it yet. However, this is likely to change in
the near future.
When the mobile phone application starts, it sets up a Bluetooth RF-

COMM connection to the DCP device emulator, and then creates a DCP
binding for the SERVICE_SWITCH and SERVICE_DIMMER services. It takes
approximately 2 seconds to create a connection from the mobile phone to
the DCP device emulator. This happens only once when the application
starts, and it is acceptable. In addition, it takes approximately 10 seconds
to perform an inquiry procedure, although this functionality was not imple-
mented by the application. The transmission range has been measured to
approximately 15 meter in line-of-sight with the available hardware (class 2
Bluetooth devices).
If the user toggles the state of the device, a SETDATA_REQ message is

transmitted. The graphical user interface of the mobile phone application is
shown in Figure 6.5.
The DCP lamp emulator is activated by pressing the �Binding�button,

which makes the application listen for incoming Bluetooth RFCOMM con-
nections and DCP binding requests. The graphical interface of the DCP
lamp emulator is shown in Figure 6.6. The DCP device emulator is imple-
mented in C and C++ using the Qt QDesigner development environment in
Linux. The Linux PC is Bluetooth enabled, using a Bluetooth USB dongle
hardware and the Linux O¢ cial Bluetooth stack software.

79

6.2 Monitoring and Control from a Mobile Phone Prototype Systems

Figure 6.5: Mobile phone graphical interface, implemented in J2ME and
tested both on a phone emulator and a real phone

Figure 6.6: DCP lamp emulator

80

Prototype Systems 6.3 Monitoring and Control from a Web Site

Figure 6.7: Monitoring and control from a web site

6.3 Monitoring and Control from a Web Site

This system demonstrates monitoring and remote control of home automa-
tion products from a Web site. All communication is based on the DCP
protocol. The system incorporates a web page from which the used can
control a lamp (emulated by a Linux application).
The system architecture is illustrated in Figure 6.7. The user �lls in the

information required by the web page, the IP address of the lamp emulator,
status and dimmer intensity, and clicks the Submit button. User�s computer
creates a HTTP connection to the web server, and sends the information
entered by the user in a HTTP POST message. In this prototype system,
the web server runs locally on the same machine where the web page is
displayed. The web server extracts the values of the information from the
HTTP POST message, establishes a TCP/IP connection to the DCP device
emulator and then sets up a DCP connection and a DCP binding for the
SERVICE_SWITCH and SERVICE_DIMMER services.

81

6.3 Monitoring and Control from a Web Site Prototype Systems

The web interface is shown in Figure 6.8. In a full scale system, the server
would be located with the provider of the remote control service. The web
interface would also be improved, and instead of typing the IP address of a
device, the device would be presented with a picture and a friendly name.
The system would also require a logon procedure.
The application that runs on the web server is developed and implemented

as a Java Servlet, although other scripting languages that o¤er an interface
for setting up TCP connections, usually through a socket interface, could be
used (e.g. ASP or PHP). This prototype system has been tested on a Jakarta
Tomcat version 4.0 web server.
The DCP device emulator used in this prototype system is actually the

same application described in Figure 6.6. The emulator supports both Blue-
tooth connections and TCP connections. The emulator is activated by press-
ing the �Binding�button.

82

Prototype Systems 6.3 Monitoring and Control from a Web Site

Figure 6.8: The graphical interface of the web site remote control

83

Chapter 7

Discussion

This chapter is a discussion of the main results of the thesis. The chapter
also points out and recommends the further work to be done in succession of
this thesis.
The chapter is divided into three sections, corresponding to the logical

structure of thesis. Section 7.1 discusses the results of the theoretical in-
vestigation in Chapters 2 and 3, Section 7.2 discusses the Device Control
Protocol (DCP) while the Section 7.3 discusses the mobile phone utilization
as a short-range wireless remote control.

7.1 Theoretical Investigation

Chapter 2 brie�y presents an overall review of several home automation tech-
nologies. The market is fragmented, and none of the technologies have man-
aged to become a de facto standard in home automation yet. The market
penetration is limited for most of the home automation systems that exist
today. Currently, X-10 [X10a] is the most widespread technology. The de-
ployment of the wireless systems is even more limited, compared to wired
systems.
Chapter 3 presents three globally standardized short-range wireless tech-

nologies in-depth: IEEE 802.15.4 [LRW03], ZigBee [ZIG] and Bluetooth [SIG01b].
IEEE 802.15.4 and ZigBee are designed and optimized for operation in home
automation scenarios and similar areas like building and industry automa-
tion. The two technologies are related, with the IEEE 802.15.4 de�ning the
lower layers and ZigBee de�ning the upper layers of a protocol stack. Zig-

84

Discussion 7.2 Device Control Protocol (DCP)

Bee is forecast to gain a signi�cant growth during the next few years [Sol].
However, one needs to be careful with such predictions. A wireless technol-
ogy called HomeRF [HRF], that was in many ways similar to ZigBee, was
developed for a broad range of interoperable consumer devices, being backed
up by over 100 companies [HRF]. Despite optimistic forecasts, HomeRF was
abandoned and disbanded in January 2003.
Bluetooth was primarily developed as a cable replacement technology, not

optimized for home automation. The limited number of simultaneous connec-
tions, relatively high battery consumption and time consuming device scan
and connect procedures makes the technology unsuitable for some wireless
home automation scenarios, although the Bluetooth Special Interest Group
(SIG) [BTS] has the ambition of improving the mentioned disadvantages.

7.2 Device Control Protocol (DCP)

The thesis de�nes a new application-layer communication protocol suitable
for use in home automation monitoring and control scenarios called the De-
vice Control Protocol (DCP). The proposed solution ful�lls the requirements
given by Chipcon [CHI] in the thesis de�nition, o¤ering following character-
istics:

� Independency of the underlying transmission technology

� Flexibility to support a wide range of products and application areas

� Extensibility to adapt to new transmission technologies and application
areas

� Simplicity to allow low cost product implementations

� Uniformity of the application program interface (API) regardless of the
underlying transmission technology

� Openness and availability of the protocol speci�cation to everyone

DCP introduces a new terminology used to ease the comprehension of
important DCP mechanisms, but also ease the DCP implementation by con-
verting the logical terminology into programming language constructs. The
most important DCP terminology is summarized and discussed in following
paragraphs.

85

7.2 Device Control Protocol (DCP) Discussion

Service A service is an abstraction of a device�s ability to perform some
speci�c task, as de�ned in Section 4.2. DCP makes it possible to de�ne up
to 216 (65536) services. One half of these is reserved for standardization
by DCP. The current version of the DCP speci�cation de�nes only 5 stan-
dardized services (primarily because of lack of time), but an industrialized
version of the DCP speci�cation would include many more. The other half
of the service quantity can be used by manufacturers to implement their own
proprietary services, thus ensuring �exibility opening up for applications not
covered by the standardized DCP services. The consequence of implement-
ing proprietary service is naturally loss of interoperability with devices from
other manufacturers.

Port A port is a simple integer functioning as a service multiplexer in
scenarios where a device implements more than one service, as de�ned in
Section 4.2. For example, a light switch panel with several buttons would let
each button use di¤erent ports. This way, the buttons can be distinguished
within the switch panel. Each device has up to 28 (256) ports, which means it
can implement up to 256 services at the same time, which should be enough
even for the most complicated DCP devices.

Binding A binding is a logical connection between two services of the
same type, as de�ned in Section 4.2. The DCP speci�cation limits the max-
imum number of bindings per port to 28 (256). Since the maximum number
of ports is 256, the maximum number of simultaneous bindings in a device is
28 �28 = 216 (65536). For example, a single light switch can control up to 256
light actuators. Bindings are expected to be long-lasting, and they should
survive electrical power failures by being stored permanently on a device. A
binding has a direction, which is considered from the viewpoint of the device
initiating the binding procedure, as de�ned in Section 4.2. Each service is
either o¤ered to other devices (i.e. produced) or is used by some device (i.e.
consumed). A binding direction is a way of determining the service producer
and the consumer of each binding.

DCP o¤ers a protocol versioning support, and distinguishes 28 (256) ver-
sions of the protocol, allowing the protocol to expand and evolve during
several versions. A version check is mandatory in the connect procedure,

86

Discussion 7.2 Device Control Protocol (DCP)

used to detect version inconsistencies between two communicating entities at
an early stage.
A 16-bit DCP sequence number is included in each DCP packet, and is

intended to ensure packet freshness. Sequence number of a response or an
error packet always equals the sequence number of the corresponding request
packet. A DCP implementation must also handle the wraparound of the
sequence numbers (from 65535 to 0).
This chapter suggests a DCP API, which remains the same regardless of

which underlying technology and communication protocol is used. A stan-
dardized API eases both implementation and usage of the protocol.
Section 4.13 brie�y discusses the network layer routing mechanisms in

DCP networks based on the IEEE 802.15.4 [LRW03] technology. Although
not an in-depth investigation, Section 4.13 identi�es several potential ad-
vantages of reactive protocols in preference to proactive protocols in small
and static DCP networks. The section outlines a routing strategy based with
properties reactive protocols. The IEEE 802.15.4 maximum packet size is 127
bytes, shared by the IEEE 802.15.4 MAC header, the network layer header,
the DCP header and the DCP payload. In order to compress and reduce the
network layer header size, 16 bit IEEE addresses should be used in prefer-
ence to 64 bit extended addresses. If necessary, a transport layer could be
implemented between the DCP layer and the network layer. The transport
layer would implement a fragmentation and reassembly mechanism to break
large packets into smaller ones, transmit these separately and reassemble the
large packet at the receiver.

7.2.1 Further work

This subsection points out the recommended further work related to DCP.
Section 4.12 outlines a DCP bridging mechanism, which is not de�ned by

this thesis because of time shortage. Such a mechanism would be a useful
DCP service, and it would expand the DCP application area coverage. Addi-
tional DCP messages would need to de�ned. Addressing, device description,
service discovery and binding across di¤erent transmission technologies has
to be considered.
Communication security has been beyond the scope of this thesis. The

further work needs to de�ne the DCP security mechanisms, including the
authentication, authorization and encryption.
Section 4.13 presents a brief discussion of the routing protocols in the

87

7.3 Mobile Phone as a Short-Range Remote Control Discussion

context of IEEE 802.15.4 technology and the Device Control Protocol (DCP),
outlining a routing mechanism based on the characteristics of the reactive
protocols. The further work in this context would both provide an in-depth
theoretical investigation attempting to �nd the optimal routing strategy, a
routing protocol simulation and a practical implementation and testing.
The DCP API function return values have not been formally speci�ed

because of the time shortage, and this is regarded as a part of the potential
future work with DCP.

7.3 Mobile Phone as a Short-Range Remote
Control

The thesis examines the possibility of using a mobile phone as a short-range
wireless remote control in home automation, and states that several software
platforms can be used to implement the graphical interface for the remote
control application.
Java Platform 2 Micro Edition (J2ME) [J2M] is recommended because

of the platform independency and a wide market acceptance. J2ME allows
third-party applications to be downloaded and installed on the mobile phone
wirelessly, using the OTA (Over-the-air) [Ort02] technology. The technology
has been tested during the thesis, with the general impression of being user-
friendly. The user simply visits a WAP (Wireless Application Protocol) page
containing a link to the J2ME application. By clicking on the link in the
WAP browser, the mobile phone automatically recognizes the application
type and starts a simple installation procedure.
J2ME o¤ers permanent storage on the mobile phone [J2M], making very

easy to develop small databases stored permanently on the mobile phone.
This possibility could be used to store various information about devices
that are to be controlled by the mobile phone, and make the remote control
application more user-friendly and reliable.
The recommended wireless technology is Bluetooth [BTS]. IEEE 802.11

WLAN [WLA] has several disadvantages compared to Bluetooth: higher
battery consumption because of the increased transmission range and band-
width, higher complexity, higher cost and much lower deployment on mo-
bile phones. Not many phones implement IEEE 802.11 today, primarily
because of the higher battery consumption. Bluetooth provides reliable, om-

88

Discussion 7.3 Mobile Phone as a Short-Range Remote Control

nidirectional interference-resistant communication with su¢ cient bandwidth
(1 Mbit/s at the physical layer). Although the majority of the mobile phones
implement Bluetooth class 2 devices (typical transmission range of 10 me-
ters), Bluetooth de�nes class 1 devices with a transmission range of up to
100 meters.
The third wireless technology considered, IrDA Infrared [IRD], is found

unsuitable for most scenarios because of the very low transmission range (up
to one meter) and the line-of-sight requirement. Still, it should be noted that
in some scenarios where the mobile phone is used to transfer con�guration
parameters and similar data to a home appliance infrequently, IrDA Infrared
might be considered more closely because of it�s low cost, low complexity and
wide deployment on mobile phones.
A demonstrator based on J2ME and Bluetooth has been developed and

tested on two mobile phones, a Nokia 6600 and a Sony Ericsson P900. The
application worked correctly on both phones, although some graphical com-
ponents were interpreted di¤erently on the two phones. Also, the graphical
interface of the application was di¤erent on the two phones, because the
colors and the appearance of the J2ME components is decided by each man-
ufacturer. The phone application communicates through the DCP protocol
with a Linux application functioning as a light actuator.

7.3.1 Further work

This subsection points out the recommended further work related to mobile
phone utilization as a remote control.
Although the thesis states that it is possible to create remote control

applications for mobile phones, it does not provide an in-depth study. The
development of the graphical user interface is not discussed by the thesis.
Communication security is also an important issue which is beyond the scope
of this thesis.
In addition to short-range remote control, it would be interesting to in-

vestigate the possibilities of using such technologies as GSM (Global System
for Mobile communications), GPRS (General Packet Radio Service) or SMS
(Short Message Service), which would allow long-range remote control from
a mobile phone. In this context it would be specially interesting to focus on
the third-generation (3G) mobile wireless technologies like UMTS (Universal
Mobile Telecommunications System) and the use of IPv6 (Internet Protocol
version 6).

89

Chapter 8

Conclusion

The main part of the thesis focuses on de�ning a new communication protocol
for home automation. I am con�dent to argue that the proposed solution, the
Device Control Protocol (DCP), successfully meets the required character-
istics. The solution focuses on simplicity, transmission-layer independency,
�exibility and extensibility, and it o¤ers a uniform protocol API. Seen in a
global perspective, DCP provides a good foundation for further development
and industrialization to potentially become a universal home automation
communication alternative for a wide range of application areas. Various
demonstrator developed during the project demonstrate the characteristics
of DCP in both wired and wireless scenarios. The further work to be done
should focus on communication security and a DCP bridging functionality
that would make it possible to implement gateway devices forwarding DCP
messages between appliances based upon di¤erent transmission technologies.
The thesis includes a brief investigation of the possibility of using a mobile

phone as a short-range remote control. Mobile phone could become a con-
venient, economical and universal remote control. The thesis recommends
the J2ME platform to host the application and the Bluetooth technology
for wireless communication. However, the Bluetooth support in J2ME is
optional. A limited number of mobile phones implement this support, al-
though the number is increasing constantly. A demonstrator based on J2ME
and Bluetooth was successfully implemented and tested on a mobile phone.
The communication between the mobile phone and the home appliance is
based on DCP.

90

Abbrevations

AES. .Advanced Encryption Standard

API . Application Program Interface

APL . Application Layer

APS. .Application Support

ASCIIAmerican Standard Code for Information Interchange

ASP . Active Server Pages

BCI . BatiBUS Club International

BREW . Binary Runtime Environment for Wireless

CCA . Clear Channel Assessment

CDMA . Code Division Multiple Access

CEBus . Consumer Electronics Bus

CIC . CEBus Industry Council

CPU. .Central Processing Unit

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

DCP. .Device Control Protocol

DSSS . Direct Sequence Spread Spectrum

EHSA . European Home Systems Association

EIA . Electronics Industry Association

EIB . European Installation Bus

EIBA. .European Installation Bus Association

ERR . Error

FFD . Full Function Device

GAP . Generic Access Pro�le

91

GHz . Gigahertz

GPRS .General Packet Radio Service

GSM . Global System for Mobile communications

GTS. .Guaranteed Time Slot

GUI .Graphical User Interface

HCI. .Host Controller Interface

HTTP. .Hypertext Transfer Protocol

HVAC . Heating, Ventilation and Air Conditioning

IEEE Institute of Electrical and Electronics Engineers

IP . Internet Protocol

IPv6 . Internet Protocol version 6

IR . Infrared

IrDA. Infrared Data Association

ISM . Industrial, Scienti�c and Medical

J2ME . Java Platform 2 Micro Edition

JSR . Java Speci�cation Request

JVM . Java Virtual Machine

Kb . Kilobyte

Kbit/s .Kilobit per second

L2CAP. Logical Link Control and Adaptation Protocol

LAN. .Local Area Network

LC . Link Controller

LCP . Link Control Protocol

LM . Link Manager

LQI . Link Quality Indication

LSB . Least Signi�cant Bit

MAC. .Media Access Control

MANET . Mobile Ad hoc Networking

Mb. .Megabyte

Mbit/s . Megabit per second

MHz . Megahertz

92

MIDP. .Mobile Information Device Pro�le

MTU . Maximum Transmission Unit

mW. .Miliwatt

NWK . Network

OBEX . Object Exchange

OS. .Operating System

OSI . Open Systems Interconnect

OTA . Over The Air

PAN. .Personal Area Network

PC . Personal Computer

PDA. .Personal Digital Assistant

PHP. .PHP Hypertext Preprocessor

PHY . Physical

PLC . Power Line Communication

PSTN. .Public Switched Telephone Network

QoS. .Quality of Service

REQ. .Request

RF. .Radio Frequency

RFCOMM.Radio Frequency Communications Protocol

RFD . Reduced Function Device

RF-IC. .Radio Frequency Integrated Circuit

RSP .Response

SDK. .Software Development Kit

SDP . Service Discovery Protocol

SIG . Special Interest Group

SMS. Short Message Service

TCP . Transmission Control Protocol

TCS . Telephony Control Speci�cation

TDD. .Time Division Duplex

TP . Twisted Pair

UIO . University of Oslo

93

UMTS Universal Mobile Telecommunications System

UNIK. .University Graduate Center at Kjeller

USB .Universal Serial Bus

WAP . Wireless Application Protocol

WLAN . Wireless Local Area Network

XAP . Extensible Automation Protocol

XML . Extensible Markup Language

ZDO . ZigBee Device Object

94

Bibliography

[Ada03] John Adams. What you should know about the ZigBee Alliance,
2003. Available online (June 2004): http://www.zigbee.com/
resources.

[AH03] Ranjith Antony and Bruce Hopkins. Bluetooth for Java. APress,
�rst edition, 2003.

[BCI] BatiBUS Club International (BCI). O¢ cial homepage: http:
//www.batibus.com.

[BS02] Jennifer Bray and Charles F. Sturman. Connect Without Cables.
Prentice Hall, Upper Saddle River, New Jersey, second edition,
2002.

[BTS] The Bluetooth Special Interest Group (SIG). O¢ cial homepage:
http://www.bluetooth.com.

[Cal04] Edgar H. Callaway. Wireless Sensor Networks. Aurebach Publi-
cations, �rst edition, 2004.

[CEB] Consumer Electronics Bus (CEBus). O¢ cial homepage: http:
//www.cebus.com.

[CHI] Chipcon. O¢ cial homepage: http://www.chipcon.com.

[ECB02] Lance Hester Jose A. Gutierrez Marco Naeve Bob Heile Ed Call-
away, Paul Gorday and Venkat Bah. Home Networking with IEEE
802.15.4: A Developing Standard for Low-Rate Wireless Personal
Area Networks. Technical report, IEEE Communications Maga-
zine, Aug 2002.

95

http://www.zigbee.com/resources
http://www.zigbee.com/resources
http://www.batibus.com
http://www.batibus.com
http://www.bluetooth.com
http://www.cebus.com
http://www.cebus.com
http://www.chipcon.com

[ECH] Echelon Corporation. O¢ cial homepage: http://www.echelon.
com.

[EHS] European Home Systems Association (EHSA). O¢ cial homepage:
http://www.ehsa.com.

[EIB] European Installation Bus Association (EIBA). O¢ cial home-
page: http://www.eiba.com.

[HG03] Ivan Howitt and Jose A. Gutierrez. IEEE 802.15.4 Low Rate
Wireless Personal Area Network Coexistence Issues. Technical
report, IEEE, 2003.

[HK03] Ritsuko Kanazawa Hiromichi Ito Hiroshi Kanma, Naboru Wak-
abayashi. Home Appliance Control System over Bluetooth with
a Cellular Phone, 2003.

[HRF] HomeRF Resource Center. Available online (June 2004): http:
//www.palowireless.com/homerf.

[IET] Mobile Ad Hoc Networks (MANET)Working Group. Available at
http://www.ietf.org/html.charters/manet-charter.html.

[INT] Introduction to LonWorks System. Available online (June 2004):
http://echelon.com/support/documentation/Manuals/
078-0183-01A.pdf.

[IRD] Infrared Data Association (IrDA). O¢ cial homepage: http://
wwww.irda.org.

[J2M] Java Micro Edition (J2ME). O¢ cial homepage: http://java.
sun.com/j2me/index.jsp.

[JGB03] Edgar Callaway Jose Gutierrez and Raymond Barrett. Low-Rate
Wireless Personal Area Networks: Enabling Wireless Sensors
with IEEE 802.15.4. IEEE Press, �rst edition, 2003.

[JSR02] Java APIs for Bluetooth Wireless Technology (JSR-82) Speci�-
cation Version 1.0a. Technical report, Java Community Process
(JCP), 2002. O¢ cial online at: http://jcp.org/aboutJava/
communityprocess/final/jsr082/index.html.

96

http://www.echelon.com
http://www.echelon.com
http://www.ehsa.com
http://www.eiba.com
http://www.palowireless.com/homerf
http://www.palowireless.com/homerf
http://www.ietf.org/html.charters/manet-charter.html
http://echelon.com/support/documentation/Manuals/078-0183-01A.pdf
http://echelon.com/support/documentation/Manuals/078-0183-01A.pdf
http://wwww.irda.org
http://wwww.irda.org
http://java.sun.com/j2me/index.jsp
http://java.sun.com/j2me/index.jsp
http://jcp.org/aboutJava/communityprocess/final/jsr082/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr082/index.html

[KD] Charles D. Knutson and Glade Diviney. Infrared Data Commu-
nications with IrDA. Technical report, Infrared Data Association
(IrDA). Available online (June 2004): http://www.irda.org.

[KNX] Konnex Association. O¢ cial homepage: http://www.konnex.
org.

[KT02] K.N. Wang K.K. Tan, S.Y. Soh. Development of an Internet
Home Control System, 2002.

[LRW02] Part 15.1: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Speci�cations for Low-Rate Wireless Personal Area
Networks (LR-WPANs). Technical report, Institute of Electrical
and Electronics Engineers (IEEE), 2002.

[LRW03] Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Speci�cations for Low-Rate Wireless Personal Area
Networks (LR-WPANs). Technical report, Institute of Electrical
and Electronics Engineers (IEEE), 2003.

[LWP] EBV Elektronik, LonWorks Area. Available online (June 2004):
http://www.ebv.com/prodserv/lonworks/lonworks.phtml.

[MB00] Miller and Bisdikian. Bluetooth Revealed. Prentice Hall, Upper
Saddle River, New Jersey, 2000.

[Met01] Dave Methvin. Exploring X-10 technology, Sep 2001. Avail-
able online (June 2004): http://www.connectedhomemag.com/
homecontrols/articles/index.cfm?articleid=22668.

[MIC] Microsoft. O¢ cial homepage: http://www.microsoft.com.

[Mis99] Padmini Misra. Routing Protocols for Ad Hoc Mobile Wire-
less Networks. Technical report, Ohio State University, 1999.
Available online (June 2004): http://www.cis.ohio-state.
edu/~jain/cis788-99/adhoc-routing/index.html.

[NOK] Forum Nokia. O¢ cial homepage: http://www.forum.nokia.
com.

97

http://www.irda.org
http://www.konnex.org
http://www.konnex.org
http://www.ebv.com/prodserv/lonworks/lonworks.phtml
http://www.connectedhomemag.com/homecontrols/articles/index.cfm?articleid=22668
http://www.connectedhomemag.com/homecontrols/articles/index.cfm?articleid=22668
http://www.microsoft.com
http://www.cis.ohio-state.edu/~jain/cis788-99/adhoc-routing/index.html
http://www.cis.ohio-state.edu/~jain/cis788-99/adhoc-routing/index.html
http://www.forum.nokia.com
http://www.forum.nokia.com

[Ort02] Enrique Ortiz. Introduction to OTA Application Provision-
ing. Technical report, Sun, Nov 2002. Available online (June
2004): http://developers.sun.com/techtopics/mobility/
midp/articles/ota/.

[PALa] PalmSource Inc. O¢ cial homepage: http://www.palmsource.
com.

[PALb] PalmOS Devices. Available online (June 2004): http://chris.
mckinney.net/palm/default.html.

[PJMK] David W. Suvak Patrick J. Megowan and Charles D. Knutson.
IrDA Infrared Communications: An Overview. Technical report,
Infrared Data Association (IrDA). Available online (June 2004):
http://www.irda.org.

[QUA] Qualcomm. O¢ cial homepage: http://www.qualcomm.com.

[Roy99] Elizabeth M. Royer. A review of current routing protocols for ad
hoc mobile wireless networks. Technical report, IEEE Personal
Communications, 1999.

[SHA] Smart House article. Available online (June 2004): http://www.
agentland.com/pages/learn/bots5.html.

[SHN02] Smart Home Networks - The Fight for Control, 2002. Avail-
able online (June 2004): http://www.igigroup.com/st/pages/
bringlightv3.html.

[SIG01a] The Bluetooth SIG. The Bluetooth Pro�les, 2001. Available
online at https://www.bluetooth.org/spec/.

[SIG01b] The Bluetooth SIG. The Bluetooth Speci�cation version 1.1.
Technical report, The Bluetooth SIG, 2001. Available online at
https://www.bluetooth.org/spec/.

[SIG03] The Bluetooth SIG. The Bluetooth Speci�cation version 1.2.
Technical report, The Bluetooth SIG, 2003. Available online at
https://www.bluetooth.org/spec/.

98

http://developers.sun.com/techtopics/mobility/midp/articles/ota/
http://developers.sun.com/techtopics/mobility/midp/articles/ota/
http://www.palmsource.com
http://www.palmsource.com
http://chris.mckinney.net/palm/default.html
http://chris.mckinney.net/palm/default.html
http://www.irda.org
http://www.qualcomm.com
http://www.agentland.com/pages/learn/bots5.html
http://www.agentland.com/pages/learn/bots5.html
http://www.igigroup.com/st/pages/bringlightv3.html
http://www.igigroup.com/st/pages/bringlightv3.html

[Sol] West Technology Research Solutions. ZigBee Market Report
and Analysis. Available online (June 2004): http://www.
westtechresearch.com/zigbee.htm.

[SYM] Symbian. O¢ cial homepage: http://www.symbian.com.

[SYN] Synergix Interactive. O¢ cial homepage: http://www.
synergenix.se.

[Tie00] F. Tiersch. LonWorks Technology : An Introduction. Desotron
Verlagsgesellschaft, 2000.

[TMSH00] Richard C. Braley Thomas M. Siep, Ian C. Gi¤ord and Robert F.
Heile. Paving the Way for Personal Area Network Standards: An
Overview of the IEEE 802.15 Working Group for Wireless Per-
sonal Area Networks. Technical report, IEEE Personal Commu-
nications, Feb 2000.

[UIO] University of Oslo, Faculty of Mathematics and Natural Sciences,
Department of Informatics. O¢ cial homepage: http://www.ifi.
uio.no.

[UNI] University Graduate Center at Kjeller. O¢ cial homepage: http:
//www.unik.no.

[WLA] IEEE Working Group for WLAN Standards. O¢ cial homepage:
http://grouper.ieee.org/groups/802/11.

[WPAa] IEEE 802.15 WPAN Task Group 1. O¢ cial homepage: http:
//www.ieee802.org/15/pub/tg1.html.

[WPAb] IEEE 802.15 WPAN Task Group 5. O¢ cial homepage: http:
//www.ieee802.org/15/pub/tg5.html.

[X10a] X-10. O¢ cial homepage: http://www.x10.com.

[X10b] Common X-10 Problems. Available online (June 2004):
http://www.x10ideas.com/articles/displayx10article.
asp?articleid=9.

[XAP] XAP home automation protocol. Available online (June 2004):
http://www.xapautomation.org/index.php.

99

http://www.westtechresearch.com/zigbee.htm
http://www.westtechresearch.com/zigbee.htm
http://www.symbian.com
http://www.synergenix.se
http://www.synergenix.se
http://www.ifi.uio.no
http://www.ifi.uio.no
http://www.unik.no
http://www.unik.no
http://grouper.ieee.org/groups/802/11
http://www.ieee802.org/15/pub/tg1.html
http://www.ieee802.org/15/pub/tg1.html
http://www.ieee802.org/15/pub/tg5.html
http://www.ieee802.org/15/pub/tg5.html
http://www.x10.com
http://www.x10ideas.com/articles/displayx10article.asp?articleid=9
http://www.x10ideas.com/articles/displayx10article.asp?articleid=9
http://www.xapautomation.org/index.php

[ZEN] Zensys. O¢ cial homepage: http://www.zen-sys.com.

[ZIG] ZigBee Alliance. O¢ cial homepage: http://wwww.zigbee.com.

100

http://www.zen-sys.com
http://wwww.zigbee.com

Appendix A

Contents of the Accompanying
CD-ROM

� Report

�PDF

�DVI

�Latex

� Project Website

� Source Code

� IEEE 802.15.4 Communication

�Mobile Phone Control

�Web Control

�DCP Device Emulator

� Device Control Protocol (DCP)

�PDF

�Microsoft Word

101

102

103

	Introduction
	Background and Motivation
	Thesis Definition and Scope
	Related Work
	Report Overview

	Home Automation Systems
	Introduction
	X-10
	LonWorks
	Konnex
	Z-Wave
	Consumer Electronics Bus (CEBus)

	Short-Range Wireless Technologies
	IEEE 802.15.4
	Overview
	Physical Layer (PHY)
	Medium Access Control (MAC) layer
	Home Automation Evaluation

	ZigBee
	Overview
	ZigBee Protocol Stack
	ZigBee Profiles
	Home Automation Evaluation

	Bluetooth
	Overview
	Network Topology
	Protocol Stack
	Host Controller Interface (HCI)
	Bluetooth Profiles
	Home Automation Evaluation

	Device Control Protocol (DCP)
	Overview
	Services, Ports and Bindings
	Addressing
	Error Handling
	Security
	Packet Format
	Packet Size
	Message Types
	CONNECT_REQ
	CONNECT_RSP
	CONNECT_ERR
	DISCONNECT_REQ
	DISCONNECT_RSP
	DISCONNECT_ERR
	BIND_REQ
	BIND_RSP
	BIND_ERR
	UNBIND_REQ
	UNBIND_RSP
	UNBIND_ERR
	SETDATA_REQ
	SETDATA_RSP
	SETDATA_ERR
	GETDATA_REQ
	GETDATA_RSP
	GETDATA_ERR
	SERVICE_DISCOVERY_REQ
	SERVICE_DISCOVERY_RSP
	SERVICE_DISCOVERY_ERR
	DEVICE_DESCRIPTION_REQ
	DEVICE_DESCRIPTION_RSP
	DEVICE_DESCRIPTION_ERR

	DCP Services
	SERVICE_DATE
	SERVICE_TIME
	SERVICE_SWITCH
	SERVICE_DIMMER
	SERVICE_TEMP_C

	Error reasons
	Application Program Interface (API)
	Scanning for Devices
	Connecting
	Disconnecting
	Binding
	Unbinding
	Changing the Service Value
	Reading the Service Value
	Service Discovery
	Device Description

	DCP Bridging
	Network Layer
	Reactive vs. Proactive Protocols
	Routing in DCP IEEE 802.15.4 Networks

	Mobile Phone in Home Automation
	Motivation
	Software Platforms
	SymbianOS
	PalmOS
	Mophun
	Java Platform 2 Micro Edition (J2ME)
	Binary Runtime Environment for Wireless (BREW)
	Mobile Phone Platforms from Microsoft

	Communication Technologies
	Bluetooth
	IEEE 802.11 WLAN
	IrDA Infrared

	Discussion

	Prototype Systems
	Home Automation Communication
	Monitoring and Control from a Mobile Phone
	Monitoring and Control from a Web Site

	Discussion
	Theoretical Investigation
	Device Control Protocol (DCP)
	Further work

	Mobile Phone as a Short-Range Remote Control
	Further work

	Conclusion
	Abbrevations
	Bibliography
	Contents of the Accompanying CD-ROM

