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Abstract

This master project presents a fitting model developed to extrapolate the electric
dipole moment obtained from real-time time-dependent molecular electronic
structure simulations. Exact quantum theory shows that the dipole moment
evolves like a multi-sinusoidal signal, and the fitting model aims to determine
the unknown frequencies and sine and cosine linear coefficients. Extrapolating
the dipole moment is used to achieve high resolution absorption spectra from
shorter dipole trajectories, reducing the duration of computationally heavy
real-time simulations. The fitting model is tested on the z-component of the
dipole moment of some atoms and small molecules, calculated using real-time
time-dependent coupled cluster theory. A broadband laser is used to populate
excited states. Extrapolation of short trajectories of the dipole moment gave
spectra indistinguishable from the spectra obtained from simulations of 6000 a.u.
or longer for He (extrapolated from 20 a.u.), H2 (100 a.u.) and Be (150 a.u.),
all using the aug-cc-pVTZ basis set. The difficulty of extrapolating the dipole
moment was seen to increase with the spectral density. A trajectory of 1250 a.u.
was needed to achieve a perfect extrapolation to 8000 a.u. of the LiH dipole
moment using the aug-cc-pVDZ basis, although trajectories down to 300 a.u.
gave decent approximations. The fitting model was unable to perfectly reproduce
the high resolution spectrum (8000 a.u.) for H2O using the aug-cc-pVDZ basis. A
more restricted form of the electric dipole was also implemented, using the linear
response theory to determine the sign of the coefficients. The implementation
enforcing the expected sign of the coefficients gave either the same or better
results for all systems. This greatly improved the accuracy of the approximated
spectra of H2O, giving decent extrapolations of trajectories down to 300 a.u..
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CHAPTER 1

Introduction

Real-time time-dependent molecular electronic structure simulations are used
to study spectroscopic properties of molecules. The property of interest in this
project is the electronic absorption spectrum. A short laser pulse is added as
a perturbation to the molecular system in order to populate excited states,
creating oscillations in the time-dependent electric dipole moment. Obtaining
the absorption spectrum requires the imaginary part of the Fourier transform

F [µ(t)] = 1
2π

∫ ∞
−∞

µ(t)eiωt dt (1.1)

of the time-dependent electric dipole moment µ(t). The calculated dipole
moment is known on a discrete, evenly spaced time domain {tn}, with
tn = n∆t+ t0 for n = 0, 1, . . . , Nt− 1 with time step ∆t. The Fourier transform
must therefore be approximated using a discrete algorithm. The discrete Fourier
transform yields a discrete function, given by

µ(ωk) = 1
Nt

Nt−1∑
n=0

µ(tn)eiωkn∆t, (1.2)

where ωk = k∆ω, with ∆ω = 2π
Nt∆t for k = 0, 1, . . . , Nt/2− 1. The resolution

of the discrete Fourier transform is determined by the length of the dipole
trajectory Nt∆t, requiring long simulations in order to achieve decent looking
spectra. Low spectral resolution, meaning a large value for ∆ω, can cause
adjacent peaks in the spectrum to merge into a single wider peak. This is
illustrated in Fig. 1.1, where the details in the Fourier spectrum become visible
as Nt∆t increases.

This poses a challenge, as the N-electron problem must be solved before
evaluation of each µ(tn). For accurate methods, these long simulations become
prohibitively expensive for anything but small molecules.
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Figure 1.1: Illustration of the spectral resolution for different trajectory lengths
Nt∆t, using ∆t = 0.01 a.u.. The example shows the z-component of the dipole
moment of H2O, computational details may be found in Section 10.1.

There is a long history of using signal processing to speed up simulations
in both classical and quantum dynamics, including calculations of electronic
absorption spectra. A class of methods, called harmonic inversion, aims to
improve the spectral analysis of discrete time signals.1 Harmonic inversion
methods have been continuously developed and used for fitting discrete signals
in computational chemistry over the past decades.

In the 80’s, new harmonic inversion methods like multiple signal classification
(MUSIC) proposed by Schmidt2 and estimation of signal parameters via
rotational invariance technique (ESPRIT) by Roy and Kailath3 were developed
and studied in relation to molecular dynamics and spectral analysis.4,5 Later, the
filter-diagonalization method was developed in the 90’s by Wall and Neuhauser6,7
to determine eigenvalues and eigenstates of an operator in a given energy
range, and has later also been used in spectroscopy.8–11 In recent years, the
Fourier-Padé approximant was introduced by Bruner et al.12 to accelerate
real-time simulations of the absorption spectrum. The use of the Fourier-
Padé approximant was known long before the publication of Bruner et al.,
but the work combined the method with an occupied-virtual molecular orbital
decomposition of the dipole moment, as originally proposed by Repisky et
al.13,14. This made it possible to improve more than only sparse spectra. The
Fourier-Padé has gained popularity among researchers calculating absorption
spectra using real-time methods.15–17

The methods of harmonic inversion have been widely used and studied,
though signals with large numbers of frequencies cause problems for all the
methods mentioned above. All methods for harmonic inversion requires solving
large linear systems prone to near-degeneracy.1,18

Harmonic inversion methods improve the resolution of the spectrum directly
in the frequency domain. To the best of my knowledge, there are no publications
on improving the resolution by extrapolating the electric dipole moment in
the time domain. Such an extrapolation will be the main goal of this master
project.
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As will be shown later, the time-dependent dipole moment should evolve like
a multi-sinusoidal signal. The regular harmonic form of the molecular property
leads to the central question of this thesis:

Can we reduce the computational cost of the real-time simulated absorption
spectrum by forecasting the time-dependent electric dipole moment?
By exploiting the periodic property of the time-dependent dipole moment, the
goal is to achieve high resolution spectra from shorter real-time simulations.

This master thesis will propose a method for extrapolating the time-
dependent electric dipole moment from real-time coupled cluster theory. A
possible advantage of an extrapolation over the methods for harmonic inversion
is that the error in the extrapolation might be easier to quantify. An important
part of this thesis will therefore be to create and study a measure of error
for the approximated dipole moment. Finding a reliable convergence criterion
would enable automatic termination of the real-time simulations once the
fitting-criterion is reached.

A decomposition of the dipole moment will be used, to see if it can simplify
the extrapolation in the time domain. Such decomposition simplified the
interpolation in the frequency domain when using the Fourier-Padé approximant
in the work of Bruner et al.12. To the best of my knowledge, there currently
exists no published work on a molecular orbital pair decomposition of the
coupled cluster dipole moment. Some attention to dipole moment molecular
orbital decomposition in coupled cluster theory will therefore be given in this
project.

The thesis is divided into three main components. The first part aims to
provide background on both the exact theory on electronic transition spectra,
and some introduction to the coupled-cluster method. The true form of the
exact dipole moment motivates the choices of the extrapolation method. Next,
the proposed method for the dipole moment extrapolation is presented, along
with a few implementation details. In the third part the results are presented
and discussed, and the end provides a conclusion for the project.

3



PART I

Theoretical Background
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CHAPTER 2

The Dipole Moment in Exact
Quantum Theory

To obtain the electronic transition spectrum, the targeted molecule is subjected
to a short laser pulse. The energy added to the system by the external field
causes electron excitations, forcing the molecule out of its ground state. As will
be shown in Chapter 4, the calculated absorption spectrum from a real-time
simulation uses the Fourier-transform F [µ(t)] of the time-dependent dipole
moment, µ(t). The dipole moment will in this thesis always refer to the electric
dipole moment. The dipole moment is given by

µ(t) = 〈Ψ(t)| µ̂ |Ψ(t)〉 , (2.1)

showing that it is the expectation value of the electric dipole operator, µ̂.

Before looking at the form of the electric dipole operator, it should be
mentioned that discussions in this project are limited to the so-called closed
shell restricted form, requiring orbitals to appear in pairs. All electron
dynamics simulations in this project will use the restricted form, as this
reduces the computational cost. The spin orbitals φpα(r,ms) = ψp(r)α(ms)
and φpβ(r,ms) = ψp(r)β(ms) will share the spatial orbital ψp(r), differing only
in the spin component, σ(ms).19

The equations will be given in second quantization, using the creation
operators â†pσ and annihilation operators, âpσ. The elementary operators add
(â†pσ) and remove (âpσ) an electron from the spin-orbital φpσ when acting on a
state. The second quantization formalism in this thesis follows that of Helgaker
et al.20,21. All equations are given in atomic units.

The dipole operator has three components, one for each spatial coordinate.
The dipole operator in direction d ∈ {x, y, z} is given by

µ̂d =
∑
pq

P dpqÊpq, (2.2)

where the indexes refer to general orbitals ψp and ψq, and Êpq is the singlet
excitation operator :

Êpq = â†pαâqα + â†pβ âqβ (2.3)

5



2.1. Schrödinger’s Equation

and Pd is the electric dipole transition matrix for spatial coordinate d. The
elements of Pd are given by

P xpq = −
∫
ψ∗p(r)xψq(r) dr (2.4)

P ypq = −
∫
ψ∗p(r)yψq(r) dr (2.5)

P zpq = −
∫
ψ∗p(r)zψq(r) dr, (2.6)

where the negative sign in all three equations arises from the electron charge.
The electric dipole moment will then also have three components:

µd(t) = 〈Ψ(t)| µ̂d |Ψ(t)〉 , (2.7)

for d ∈ {x, y, z}.
This chapter will introduce the time-dependent Schrödinger equation. There

is no analytical solution to the Schrödinger equation for many-body systems.
The calculated wave function, and hence also the molecular properties, will be
approximated. The exact solution to the time-dependent electric dipole moment
will still be presented, as it will be used in the fitting model.

2.1 Schrödinger’s Equation

The wave function |Ψ(t)〉 evolves according to Schrödinger’s equation. The
time-dependent non-relativistic Schrödinger equation is given by

Ĥ(t) |Ψ(t)〉 = i d
dt |Ψ(t)〉 , (2.8)

where the time-dependent electronic Hamiltonian may be divided according to

Ĥ(t) = Ĥ0 + V̂ (t). (2.9)

The first term Ĥ0 is the time-independent electronic Hamiltonian within the
Born-Oppenheimer approximation22. The Born-Oppenheimer approximation
postulates that each nucleus may be treated as a point charge with fixed
position, leaving only the electron dynamics to be solved. The justification for
the approximation is that the displacement of the nuclei is negligible compared to
that of the electrons, due to their vast difference in mass. The time-independent
electronic Hamiltonian is given by

Ĥ0 = ĥ+ ĝ + hnuc, (2.10)

where ĥ is the one-electron part of the Hamiltonian, describing the kinetic
energy of the electrons and the attractive forces between the electrons and the
stationary nuclei. Mathematically, this is described by

ĥ =
∑
pq

hpqÊpq (2.11)

hpq =
∫
ψ∗p(r)

(
−1

2∇
2 −

∑
I

ZI
rI

)
ψq(r) dr, (2.12)

6



2.2. Time Evolution of the Exact Wave Function

where p and q denote general spatial orbitals. The sum in the integral runs
over all the nuclei in the molecule, where ZI is the charge of the nucleus and rI
is the distance between the electron and the I’th nucleus.

The second term ĝ is the two-body part of the Hamiltonian, describing the
electron-electron repulsion. This term is given by

ĝ = 1
2
∑
pqrs

gpqrsêpqrs (2.13)

gpqrs =
∫∫

ψ∗p(r1)ψ∗r (r2) 1
r12

ψq(r1)ψs(r2) dr1dr2, (2.14)

where r12 is the distance between the two electrons in the integral and êpqrs is
the two-electron excitation operator given by

êpqrs = ÊpqÊrs − δqrÊps, (2.15)

where r and s also denote general spatial orbitals
The final term in the unperturbed Hamiltonian is the constant nuclear

repulsion:
hnuc =

∑
I>J

ZIZJ
rIJ

, (2.16)

which sums over all unique nucleus pairs, where rIJ is the distance between the
nuclei pair.

The second term V̂ (t) in the time-dependent Hamiltonian from Eq. (2.9),
will be a time-dependent semi-classical interaction operator V̂ (t), describing
the interactions between the electrons in the system with a time-dependent
external field, F(t) which is nonzero only for 0 < t ≤ tp. The general form of
the interaction operator, according to the electric-dipole approximation, is given
by

V̂ (t) = −µ̂ · uF(t), (2.17)

where µ̂ is the electric dipole operator as defined in Eq. (2.2), u is the unit
vector determining the polarization direction of the field and F(t) describes a
spatially uniform electric field.23

2.2 Time Evolution of the Exact Wave Function

The time-dependent ground state wave function can be expressed as

|Ψ(t)〉 =
∑
n

cn(t) |n〉 , (2.18)

summing over all possible time-independent electronic states, forming a complete
orthonormal basis. Each state |n〉 is a solution to the time independent
Schrödinger equation, such that Ĥ0 |n〉 = En |n〉.24,25

The system is initially in its unperturbed ground state |Ψ(t = 0)〉 = |0〉,
before the external field has been switched on. At time tp, the laser pulse has
been turned off, and the Hamiltonian is reduced to the unperturbed Hamiltonian,
Ĥ(t > tp) = Ĥ0 for the rest of the simulation. The energy of the system will
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2.3. The Exact Dipole Moment

then remain constant. The time dependent Schrödinger equation for t > tp
becomes

Ĥ0 |Ψ(t)〉 = i d
dt |Ψ(t)〉 , (2.19)

where the corresponding wave function will evolve according to

|Ψ(t)〉 = e−iĤ0(t−tp) |Ψ(tp)〉 . (2.20)

By expressing the evolution operator e−iĤ0(t−tp) as a Taylor series and allowing
the Hamiltonian to act on the electronic states, the wave function may be
rewritten as

|Ψ(t)〉 =
∑
n

cn(tp)e−iEn(t−tp) |n〉 , (2.21)

giving the final expression for the exact wave function at t ≥ tp. The coefficients
in the exact wave function are periodic in time after the external field is switched
off, evolving according to

cn(t) = cn(tp)e−iEn(t−tp). (2.22)

This is an important observation, as the absorption spectra are only calculated
using the time after the external field has been switched off. The reason for this
will be revealed in Chapter 4, but some background on both the wave function
and the dipole moment should be provided before taking on the response theory.
For now, the claim is that the Fourier transform of µ(t) for t ≥ tp is the key to
obtaining the absorption spectrum.

2.3 The Exact Dipole Moment

The time dependence of the electric dipole moment lies exclusively in the wave
function, as the electric dipole operator µ̂d is time-independent. The expectation
value of the time dependent electric dipole moment is given by

µd(t) = 〈Ψ(t)| µ̂d |Ψ(t)〉 =
∑
nm

c∗ncm 〈n| µ̂d |m〉 eiωnm(t−tp), (2.23)

where ωnm = En − Em is known as the Bohr frequency for the transition
between states m and n, and the shorthand notation cn ≡ cn(tp) is used for
simplicity.

To rewrite the expression, three observations are necessary. Firstly, since the
electric dipole operator is Hermitian, then 〈n| µ̂d |m〉∗ = 〈m| µ̂d |n〉. Secondly,
(c∗ncm)∗ = c∗mcn and thirdly eiωmn(t−tp) = (eiωnm(t−tp))∗ because ωmn = −ωnm.
Using these properties, it becomes apparent that

c∗mcn 〈m| µ̂d |n〉 eiωmn(t−tp) = 〈n| µ̂d |m〉∗ (c∗ncmeiωnm(t−tp))∗, (2.24)

showing that the imaginary terms will be canceled out in the sum. The time
dependent dipole moment may then be written as

µd(t) = 2
∑
n>m

Re
[
〈n| µ̂d |m〉 c∗ncmeiωnm(t−tp)

]
+
∑
n

|cn|2 〈n| µ̂d |n〉 , (2.25)
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2.3. The Exact Dipole Moment

since ωnn = 0. By rewriting 2 〈n| µ̂d |m〉 c∗ncm = Anm + iBnm, such that

Anm = 2 Re
[
〈n| µ̂d |m〉 c∗ncm

]
(2.26)

Bnm = 2 Im
[
〈n| µ̂d |m〉 c∗ncm

]
, (2.27)

then the new formulation of time dependent dipole will be

µd(t) =
∑
n>m

[Anm cos(ωnm(t− tp))−Bnm sin(ωnm(t− tp))] +D (2.28)

where the constant is given by

D =
∑
n

|cn|2 〈n| µ̂d |n〉 . (2.29)

Using the angle subtraction theorems for trigonometric functions, the expression
may be further simplified to

µd(t) =
∑
i

[
Ãi cos(ωit) + B̃i sin(ωit)

]
+D, (2.30)

where i represents a unique pair of states i 7→ (m,n). The new coefficients are
given by

Ãi7→(n,m) = Anm cos(ωnmtp) +Bnm sin(ωnmtp) (2.31)
B̃i7→(n,m) = Anm sin(ωnmtp)−Bnm cos(ωnmtp). (2.32)

This shows that the exact time-dependent electric dipole moment evolves
like a multi-sinusoidal signal, where the frequencies are all Bohr frequencies
corresponding to electronic transition energies. The compact form in Eq. (2.30)
is the motivation for this project, as the regular harmonic form of the dipole
moment should make it ideal for time series forecasting.
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CHAPTER 3

The Approximated Wave Function

The wave function in many-body dynamics usually uses the basis set
approximation. The wave function is constructed in a molecular orbital (MO)
space, {φpσ}. The MOs are in turn usually expressed through an atomic orbital
(AO) basis, {χυσ}.19 The MOs are then given by

φpσ(r,ms) =
∑
υ

Cυpχυ(r)σ(ms), (3.1)

where the MOs are often held constant throughout time, but adaptive methods
using time-dependent orbitals do exist.26,27 This project will be limited to time-
independent orbitals, where the expansion is given by the restricted Hartree-Fock
(HF) ground state.

The exact wave function, within the Born-Oppenheimer approximation, can
be obtained in the limit of an infinitely large basis set. Using a complete basis
is not possible in computations, the finite expansion causing a basis set error.
Basis sets exits in various sizes, giving a trade-off between the basis set size and
computational expense.

This chapter will present the exact wave function within the basis set
approximation, from full configuration interaction (FCI) theory. The method
is too expensive for all but the smallest systems, with factorial scaling of the
computations. The theory is still included, as it illustrates how the information
about the excited states in Section 2.2 is lost in a primitive expansion using a
reference state. Popular theories, like configuration interaction (CI) and coupled
cluster (CC), provide approximations to the FCI wave function. The method
used to model the electron dynamics in this project is real-time time-dependent
coupled cluster theory. A short introduction to coupled cluster theory will
therefore be given. Since the reference state in this project will be a Hartree-
Fock state, some HF theory will also be included. The theory in this chapter is
based on the explanations of Helgaker et al.24,28–30.

3.1 Hartree-Fock Theory

The HF wave function consists of either one Slater determinant or one
configuration state function (CSF). The wave function therefore only consists
of a single spin orbital configuration. From an initial state of orthonormal
MOs |Φ0〉, the HF method performs unitary rotations on the orbital space
|HF〉 = e−κ̂ |Φ0〉, minimizing the energy of the system variationally.
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3.2. Full Configuration Interaction

The appropriate rotations can be found using a set of effective one-electron
Schrödinger equations, called the Hartree-Fock equations. The effective one-
electron operator is called the Fock operator and is given by

f̂ = ĥ+ V̂ f , (3.2)

where ĥ is the true one-electron part of the Hamiltonian from Eq. (2.11), while
the second term is the effective one-electron potential called the Fock potential.
The Fock potential provides an average Coulomb repulsion among the electrons,
as given by

V̂ f =
∑
pq

V fpqÊpq =
∑
pq

∑
i

(2gpqii − gpiiq)Êpq, (3.3)

where Êpq and gpqrs are defined in Eqs. (2.3) and (2.14), respectively. The
canonical representation in HF theory provides optimized spin orbitals which
are eigenfunctions of the Fock operator

f̂ â†pσ |vac〉 = εpâ
†
pσ |vac〉 , (3.4)

where |vac〉 is the vacuum state. The pseudo eigenvalue problem is solved
iteratively, using the self-consistent field method.

The time-independent Hamiltonian may be written as

Ĥ0 = f̂ + Φ̂ + hnuc. (3.5)

where one may consider the fluctuation potential:

Φ̂ = ĝ − V̂ f (3.6)

as a perturbation to the Fock operator. The HF wave function can then be
though of as the unperturbed wave function with respect to electron correlation,
as the effective one-electron potential only accounts for the Fermi correlation.
There are several post-Hartree-Fock methods which provide correction for the
electron correlation, using the HF ground state as their reference state.

3.2 Full Configuration Interaction

The exact solution to the Schrödinger equation within a given basis set is found
in FCI theory. The time-dependent FCI wave function is given by

|FCI(t)〉 =
(
c0 +

∑
ν

cν(t)τ̂ν

)
|HF〉 , (3.7)

where the reference state |HF〉 in this case is the Hartree-Fock state and τ̂ν is an
excitation operator with corresponding coefficient cν . The excitation operator
excites one (τ̂ai = Êia) or several (τ̂ab···ij··· = ÊiaÊjb · · · ) electrons from occupied
to virtual molecular orbitals in the reference state, creating a linear combination
of all N -electron Slater determinants (or CSFs) in the Fock space of a given
one-electron basis. In a complete one-electron basis set, the FCI wave function
would be equivalent to the exact wave function in Eq. (2.18).

The information about the excited states is lost in the primitive expansion.
They can be calculated, but at an excessive computational cost. This means that
the frequencies ωmn in Eq. (2.23) remain unknown in any real-time simulation.
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3.3 Time-Independent Coupled Cluster Theory

The CC wave function approximates the FCI wave function by the exponential
reformulation

|CC〉 = eT̂ |HF〉 , (3.8)
where T̂ is the cluster operator and eT̂ is acting on the reference state, which
in this case is the Hartree-Fock state. The cluster operator sums over all
excitations ν:

T̂ =
∑
ν

tν τ̂ν , (3.9)

where tν is the cluster amplitude corresponding to the excitation operator τ̂ν .
The CC wave function is equivalent to the FCI wave function when the cluster
operator is not truncated. The cluster operator is often truncated such that
it only includes excitations up to a given level, though the exponential form
of the CC wave function provides contributions from higher order excitations
through disconnected excitations, τ̂γ = τ̂η τ̂ν . The CC wave function is highly
dependent on the reference state giving a decent approximation to the ground
state of the system. The cluster operator includes description of the dynamical
correlation, arising from the Coulomb repulsion. The truncated cluster operator
does however not help with the description of static correlation, arising from
near degeneracies among configurations. Systems with such degeneracies should
be described by multi-reference methods.

The method used in this project was coupled cluster singles and doubles
(CCSD), where the cluster operator is truncated such that it only includes
single and double excitations:

T̂ = T̂1 + T̂2 =
∑
ia

tai τ̂
a
i +

∑
i>j

∑
a>b

tabij τ̂
ab
ij . (3.10)

Normalization of the CC wave function 〈CC|CC〉 = 1, and calculations using
the complex conjugate 〈CC| of the CC wave function in general, come at a
significant computational cost. The complex conjugate of the CC wave function
is therefore approximated. In the variational reformulation of CC theory, the
bra state is given by

〈Λ| = 〈HF|+
∑
η

〈η|ληe−T̂ , (3.11)

summing over all excited states |η〉 ≡ τ̂η |HF〉 obtained by the truncated cluster
operator. The normalization criterion 〈Λ|CC〉 = 1 is fulfilled. The Lagrange
multipliers λη constitute an additional set of unknowns, but the advantage of
the variational reformulation is that one may invoke the Hellmann-Feynman
theorem31 to simplify the calculations of the molecular properties.

3.4 Time Evolution of the Coupled Cluster Wave Function

The time-dependent coupled cluster theory in this section is based on the work
of Koch and Jørgensen32.

In time-dependent coupled cluster theory, the time-dependent Schrödinger
equations for the bra-state and ket-state respectively are given by

e−T̂ (t)i d
dt |CC(t)〉 = e−T̂ (t)Ĥ(t) |CC(t)〉 (3.12)
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3.5. The Dipole Moment in Coupled Cluster Theory

(
d
dt 〈Λ(t)|

)
eT̂ (t) = i 〈Λ(t)| Ĥ(t)eT̂ (t), (3.13)

where the cluster amplitudes as well as the Lagrange multipliers are time-
dependent. The CC bra and ket states are given by

|CC(t)〉 = eT̂ (t) |HF〉 eiξ(t) (3.14)

〈Λ(t)| = e−iξ(t)

(
〈HF|+

∑
η

〈η|λη(t)e−T̂ (t)

)
, (3.15)

where ξ(t) is the complex-valued phase factor of the wave function. For details
on solving the time-dependent coupled-cluster equations, the reader is referred
to the work of Pedersen and Kvaal33.

As remarked by Huber and Klamroth34, the CC wave function is expected
to be equivalent to a linear combination of excited states, though the non-
linear form the CC equations makes this difficult to prove. It is still a strong
assumption that the form in Eq. (2.18), and hence also the form of the dipole
moment in Eq. (2.23) holds for CC theory.

3.5 The Dipole Moment in Coupled Cluster Theory

The time-dependent electric dipole moment in RT-TDCC simulations is
calculated as the real part of the expectation value

µd(t) = 〈Λ(t)| µ̂d |CC(t)〉 =
∑
pq

P dpqDpq(t), (3.16)

where Pd is the electric dipole transition matrix for direction d, as given in
Eqs. (2.4) to (2.6) and D(t) is the one-body density matrix. The CC expectation
value will have an imaginary component close to zero when the CC-ket |CC(t)〉
and CC-bra 〈Λ(t)| provide good approximations to the FCI wave function
and its conjugate. A large imaginary component in the CC expectation value
indicates that the truncated cluster operator inadequately describes the electron
correlation. The expectation value of the hermitian operator µ̂d should be
real, and the imaginary component is therefore discarded. The elements of the
one-body density matrix will be given by only the real component

Dpq(t) = Re
{
〈Λ(t)| Êpq |CC(t)〉

}
, (3.17)

since only D(t) can contribute to the imaginary component of the expectation
value in CC theory using real orbitals.

The general rule for the trace of the product AᵀB, where both matrices A
and B have size N ×M , is given by Tr(AᵀB) =

∑
ij AijBij . This may be used

to rewrite the dipole moment into

µd(t) = Tr
[
(Pd)ᵀD(t)

]
= Tr

[
(Pd)∗D(t)

]
= Tr

[
PdD(t)

]
, (3.18)

as the transition matrix is symmetric when using real orbitals.
The form of the dipole moment in Eq. (3.18) is a general form for the

dipole moment in real-time simulations. The form of the dipole moment in
the time-domain from real-time simulations will therefore provide no direct
information about the frequencies in the signal.
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CHAPTER 4

The Absorption Spectrum in
Laser-Driven Dynamics

The absorption cross section in the electric dipole approximation, following the
explanation of Goings et al.35, is defined as the average number of absorbed
photons ∆N(ω) per average photon density N(ω)/A. The absorption cross
section is then given by

S(ω) = ∆N(ω)
N(ω) A, (4.1)

for a given frequency ω. From the initial ground state, where only |0〉 is
populated, the photon absorption can be determined by the decrease in electronic
population in the ground state. The electronic absorption spectrum is commonly
written as

S(ω) = 4πω
3c Im[αxx(ω) + αyy(ω) + αzz(ω)] (4.2)

where c is the speed of light and αdd are elements of the dipole polarizability
tensor, α(ω). While the imaginary part of the dipole polarizability tensor gives
the absorption, the real part describes the photon dispersion.

The three contributions αdd(ω) for d ∈ x, y, z, give a rotational average for
the absorption spectrum. The tensor α(ω) may be written in terms of the linear
response function. A short summary of relevant response theory will therefore
be given. The description of response theory given in this chapter is based on
work by Jørgensen et al.32,36 and Pedersen37.

4.1 Response Theory

The interaction operator V̂ (t) may be treated as a perturbation, requiring the
external field to have much less impact on the electronic structure than the
internal forces of the molecule. The electronic ground state to the K’th order
in time-dependent perturbation theory is given by the sum of all perturbation
contributions up to the K’th order:

|Ψ(t)〉 =
(∣∣∣Ψ(0)

〉
+
∣∣∣Ψ(1)(t)

〉
+
∣∣∣Ψ(2)(t)

〉
+ . . .

∣∣∣Ψ(K)(t)
〉)

eiξ(t) (4.3)

where the real phase factor ξ(t) is as described by Olsen and Jørgensen36 and the
corrections to the wave function may be determined by Ehrenfest’s theorem38.
The magnitude of the contributions decreases significantly with the perturbation
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order. The zero’th order wave function
∣∣Ψ(0)〉 = |0〉 is the electronic ground

state of the unperturbed Hamiltonian, Ĥ0 from Eq. (2.10).
Equivalently, the electric dipole moment in perturbation theory to the K’th

order is given by

µ(t) = µ(0) + µ(1)(t) + . . .+ µ(K)(t), (4.4)

where the µ(k)(t) is the k’th order correction to the dipole moment. The zero’th
order dipole moment is the dipole moment for the system in the unperturbed
ground state,

µ(0) = 〈0|µ |0〉 . (4.5)
Response theory expresses the perturbation corrections in terms of response

functions, given by

R(k)(ω1, . . . , ωk) = 〈〈µ̂; V̂ (ω1), . . . , V̂ (ωk)〉〉ω1,...,ωk
. (4.6)

The general form of the k’th order correction to the dipole moment, describing
k-photon transitions, is expressed using a series of inverse Fourier transforms

µ(k)(t) = 1
k!

∫ ∞
−∞
· · ·
∫ ∞
−∞

R(k)(ω1, . . . , ωk)e−i(ω1+...+ωk)t dω1 · · · dωk, (4.7)

where V̂ (ω) is the Fourier transform of the time-dependent perturbation:

V̂ (ω) = 1
2π

∫ ∞
−∞

V̂ (t)eiωt dt = − µ̂ · u2π

∫ ∞
−∞

F(t)eiωt dt = −µ̂ · uF(ω). (4.8)

The response functions are not time-dependent, but rather depend on the
frequencies of the external field. The electric dipole moment calculated through
response theory is therefore usually expressed in the frequency domain.

The three components of the dipole polarizability tensor α(ω) used in the
spectrum in Eq. (4.2) are defined as

αdd(ω) = −〈〈µ̂d; µ̂d〉〉ω. (4.9)

These elements may be written in terms of the linear response function, which
in exact theory is given by

〈〈µ̂; V̂ (ω)〉〉ω =
∑
n 6=0

[
〈0| µ̂ |n〉 〈n| V̂ (ω) |0〉

ω − ωn0
− 〈0| V̂ (ω) |n〉 〈n| µ̂ |0〉

ω + ωn0

]
, (4.10)

summing over all excited states, where the Bohr frequency ωn0 = En − E0 is
the excitation energy from the ground state to the n’th excited state. The
linear response function is therefore singular at all frequencies ω = ±ωn0. Some
simplification yields

〈〈µ̂d; V̂d(ω)〉〉ω = −udF(ω)
∑
n 6=0

[
〈0| µ̂d |n〉 〈n| µ̂d |0〉

ω − ωn0
− 〈0| µ̂

d |n〉 〈n| µ̂d |0〉
ω + ωn0

]
= −udF(ω)〈〈µ̂d; µ̂d〉〉ω,

(4.11)
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giving the new diagonal elements of the dipole polarizability tensor:

αdd(ω) = 〈〈µ̂
d; V̂d(ω)〉〉ω
udF(ω) , (4.12)

providing the link between the linear response function and the electron
absorption spectrum in Eq. (4.2). Since the absorption spectrum can be
written in terms of the linear response function, the definition of the spectrum
only includes one-photon transitions.

4.2 Damping in Response Theory

A requirement of the perturbation operator V̂ (t) is that V̂ (−∞) = 0, making
the initial electronic state |Ψ(−∞)〉 = |0〉 the ground state of the unperturbed
system. A way of ensuring this is to introduce a real positive infinitesimal γ.
The linear response function in damped response theory is given by

〈〈µ̂; V̂ (ω)〉〉ω+iγ =
∑
n 6=0

[
〈0| µ̂ |n〉 〈n| V̂ (ω) |0〉

ω − ωn0 + iγ − 〈0| V̂ (ω) |n〉 〈n| µ̂ |0〉
ω + ωn0 + iγ

]
, (4.13)

where the Fourier transform now includes damping e−γt:

V̂ (ω) = 1
2π

∫ ∞
−∞

V̂ (t)e(iω−γ)t dω = F [V̂ (t)e−γt] (4.14)

and a single value for γ is used for all excited states. The diagonal of the
polarizability tensor with damping is given by

αdd(ω) = −〈〈µ̂d; µ̂d〉〉ω+iγ

= −
∑
n 6=0

[
〈0| µ̂d |n〉 〈n| µ̂d |0〉
ω − ωn0 + iγ − 〈0| µ̂

d |n〉 〈n| µ̂d |0〉
ω + ωn0 + iγ

]

= −
∑
n 6=0

[∣∣〈0| µ̂d |n〉∣∣2(ω + iγ + ωn0)
(ω + iγ)2 − ω2

n0
−
∣∣〈0| µ̂d |n〉∣∣2(ω + iγ − ωn0)

(ω + iγ)2 − ω2
n0

]
= −

∑
n6=0

2
∣∣〈0| µ̂d |n〉∣∣2 ωn0

(ω + iγ)2 − ω2
n0
.

(4.15)

This reformulation will be important in the next section.
Damped response theory removes the possibility of encountering singularities

in the response functions. These singularities occur as the theory does not
account for the finite lifetime of the excited states. Damped response theory
introduces a common approximation to the finite lifetime of all excited states.39

4.3 The Broad-Band Laser as External Field

In order to include all dipole-allowed electronic excitations, a broad-band laser
pulse is used. The broad-band laser pulse is given by

F(t) = Fstrδ(t− tp), (4.16)
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where Fstr is the field strength. The external field represents an instantaneous
laser pulse at t = tp, where the system is initially in its ground state. The
frequencies of the electric field are given by its Fourier transform:

F(ω) = 1
2π

∫ ∞
−∞

Fstrδ(t− tp)e(iω−γ)t dt = Fstr

2π e(iω−γ)tp , (4.17)

using the integration property of the Dirac delta function. As tp approaches
zero, the Fourier transform of the electric field becomes

lim
tp→0

F(ω) = lim
tp→0

Fstr

2π e(iω−γ)tp = Fstr

2π , (4.18)

creating a continuum in the frequency domain. A Dirac delta function is a
nonphysical representation of a laser pulse, though conveniently it will populate
all dipole-allowed excited states in the system.13

Assuming that the first order correction to the dipole moment in a given
spatial direction can be written as

[µd](1)(t) =
∑
n 6=0

[An cos(ωn0(t− tp)) +Bn sin(ωn0(t− tp))] +D, (4.19)

using the known form of the complete d-component of the dipole moment in
Eq. (2.23). In the real-time simulations, the induced dipole moment will be
zero until tp. The diagonal elements of the polarizability tensor may then be
written as

αdd(ω) = 2π
Fstr

e−(iω−γ)tp〈〈µ̂; V̂ (ω)〉〉ω+iγ

= 2π
Fstr

e−(iω−γ)tp 1
2π

∫ ∞
−∞

[µd](1)(t)H(t− tp)e(iω−γ)t dt

= e−(iω−γ)tp

Fstr

∫ ∞
tp

[µd](1)(t)e(iω−γ)t dt

(4.20)

where H(t) is the Heaviside step function. Shifting the integrals according to

αdd(ω) = e−(iω−γ)tp

Fstr

∫ ∞−tp
tp−tp

[µd](1)(t+ tp)e(iω−γ)(t+tp) dt

= 1
Fstr

∫ ∞
0

[µd](1)(t+ tp)e(iω−γ)t dt
(4.21)

simplifies the evaluation of the integrals. This allows a final rewriting of the
diagonal elements of the polarizability tensor:

αdd(ω) =
∑
n 6=0

[
An
Fstr

∫ ∞
0

cos(ωn0t)e(iω−γ)t dt+ Bn
Fstr

∫ ∞
0

sin(ωn0t)e(iω−γ)t dt
]

+ 1
Fstr

∫ ∞
0

De(iω−γ)t dt

=
∑
n6=0

An
Fstr

iω − γ
(ω + iγ)2 − ω2

n0
−
∑
n 6=0

Bn
Fstr

ωn0

(ω + iγ)2 − ω2
n0
,

(4.22)
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where the integrals are solvable under the constraint that γ is positive. By
comparing this result with the previous definition of the diagonal elements of
the polarizability tensor with damping, one can see that

An = 0 (4.23)

Bn = 2
∣∣〈0| µ̂d |n〉∣∣2Fstr. (4.24)

Since
∣∣〈0| µ̂d |n〉∣∣2 must be positive and Fstr is positive, then it follows that all

sine coefficients Bn are also positive. Writing out the expression gives

[µd](1)(t) =
∑
n 6=0

Bn sin(ωn0(t− tp))

=
∑
n 6=0

{
[−Bn sin(ωn0tp)] cos(ωn0t) + [Bn cos(ωn0tp)] sin(ωn0t)

}
(4.25)

From this it follows that the cosine coefficient is expected to be negative as long
as ωn0 < π/tp, while the sine coefficient is expected to be positive as long as
ωn0 < 0.5π/tp.

In the numerical real-real time simulation, the Dirac delta function is
approximated by the box-shaped function

F(t) =
{

Fstr if 0 < t ≤ tp
0 else

. (4.26)

and the field is only turned on in the very first time step in the integration,
such that tp = ∆t. This becomes the Dirac delta function in the limit tp → 0.
Approximating the Dirac delta function in numerical integration makes it less
predictable to determine what the phase tp in Eq. (4.25) will be, although it
should be close to ∆t. The full one-photon absorption spectrum is the average
over three simulations, one for each polarization direction. The elements of
the unit vector are given by ur = δrd for d = {x, y, z}, where δrd is the
Kronecker-delta.

4.4 The Absorption Spectrum from Real-Time Simulations

The linear response function is needed in order to calculate the absorption
spectrum. Real-time simulations only provide the complete dipole-moment, and
give no information about the different orders of perturbation in Eq. (4.4). By
using a weak external field, the first order perturbation of the dipole moment
can be approximated by

µ(1)(t) ≈ µ(t)− µ(0), (4.27)

as the perturbation theory requires that lower order perturbations should
yield larger contributions, such that µ(1) � µ(k) for k > 1. The extent of
many-photon transitions depends on the strength of the external field. Only
one-photon transitions are expected when using weak external fields, making
the first order correction nearly the sole contributor to the dipole moment

18



4.4. The Absorption Spectrum from Real-Time Simulations

perturbation correction. For weak external fields, the linear response function
may then be approximated by the Fourier transform

〈〈µ̂; V̂ (ω)〉〉ω+iγ ≈
1

2π

∫ ∞
−∞

[
µ(t)− µ(0)

]
e(iω−γ)t dt. (4.28)

In real-time simulations, the induced dipole moment given by

µd,ind(t) = µd(t)− µd(t = 0), (4.29)

can give an approximation to the first order correction. As mentioned in
Section 2.2, the system is initially in the unperturbed ground state, such that∣∣Ψ(0)〉 = |Ψ(t = 0)〉, meaning that µ(0) = µ(t = 0). The linear response
function in real-time simulations must be further approximated by the discrete
Fourier transform

〈〈µ̂; V̂ (ω)〉〉ω+iγ ≈ µ(ωj) = 1
Nt

Nt−1∑
n=0

µind(tn)e(iωj−γ)n∆t, (4.30)

for j = 0, 1, . . . , Nt/2− 1, using only dipole trajectory after the external field is
switched off, with tn = (n∆t+ t0). The Fourier transform is calculated for the
polarization direction d:

µd(ωj) = 1
Nt

Nt−1∑
n=0

µd, ind(tn)e(iωj−γ)n∆t, (4.31)

dictated by the direction of the external field, ur = δd,r. This means that three
separate calculations are needed for the full spectrum, one for each polarization
direction. Although the damping e−γt is meant to account for the finite lifetime
of the excites states, it also improves discrete Fourier transform by letting the
signal approach zero at t = tNt−1. This is because the input signal provided
to the discrete Fourier transform should represent one period of the signal.
Discontinuity between the start and end points of the signal causes unwanted
artifacts in the frequency domain.

Inserting the new expression in Eq. (4.31) into the expression for αdd in
Eq. (4.32) gives the diagonal elements of the dipole polarizability tensor in
real-time simulations:

αdd(ωj) ≈ 2πµ
d(ωj)
Fstr

. (4.32)

The intensities obtained by the discrete Fourier transform depends greatly on
the time domain t ∈ [t0, Nt∆t) and the lifetime parameter, γ. The normalized
spectrum is therefore often used:

I(ωi) = S(ωi)
maxωj S(ωj)

(4.33)

giving an absorption spectrum with relative intensities.

The absorption spectrum as given in Eq. (4.33) is the end goal of the
laser-driven real-time simulations of interest in this project. The real-time
simulations are computationally heavy, and high resolution spectra requires
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4.4. The Absorption Spectrum from Real-Time Simulations

long simulations. This severely limits which molecules theoretical chemists are
able to study, as well as reduces the practically feasible choices of basis sets and
molecular electronic structure models.

This project aims to reduce the computational cost of the simulated
absorption spectrum by extrapolating a short trajectory of the time dependent
dipole moment. The extrapolation will exploit the regular harmonic form
of the exact dipole moment, as given in Eq. (2.30). The frequencies of the
dipole moment when using a weak laser field should correspond to transition
energies from the stationary ground state to the excited states. This would
correspond to one-photon transitions, as described by first order response
theory. The fitting model will therefore also try to fit the induced dipole
moment in the from of the first perturbation correction to the dipole moment,
given in Eq. (4.25). It is important to note that many-photon transitions may
be present in the dipole moment from the real-time simulations, and such
contributions cannot be isolated. One relies on using a sufficiently weak laser
field for the absorption spectrum to only include the one-photon transition when
using real-time simulations. Calculating the transition energies is comparably
expensive to the real-time simulations, and will therefore be unknown during
the extrapolation of the dipole moment.
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PART II

Method
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CHAPTER 5

Time-Series Extrapolation

There appears to be no available research within theoretical chemistry on
extrapolating molecular properties in the time domain. The approach when
developing the method for extrapolating the time-dependent electric dipole
moment was therefore to exploit its regular harmonic form, as shown in
Eq. (2.30). The first section in this chapter will go through some of the
thought process and related work leading to the proposed fitting model for the
dipole moment. After this, the second section will provide a short overview of
the developed fitting model.

5.1 Fitting Multi-Sinusoidal Signals

The initial proposition for this project was to use an artificial neural network
for the dipole moment forecasting. For an introduction to neural networks,
the reader is referred to the widely referenced explanations of Hastie et al.40.
The established and currently widely popular field of machine learning has
proved a powerful tool, also for molecular sciences.41–45 Neural networks in
their essence learn patterns from large amounts of data, and one could say that
their intelligence is in generalization. However, neural networks struggle with
precise and reliable extrapolations.46,47

Although the extrapolation of a regular harmonic signal may seem like
an ideal problem for forecasting, the periodicity would somehow have to be
embedded into the architectural structure of the neural network. This is no
trivial task when the frequencies, including the number of frequencies, are
unknown. I therefore turned my attention to multi-sine harmonic fitting used
in signal processing.

A commonly used method is the four parameters sine fitting algorithm.
The theory is based on the explanation by Ramos et al.48. The least-squares
multi-harmonic fitting method creates a truncated Fourier series using the
fundamental frequency ωf , as given by

ỹ(t) =
K∑
k=1

[Ak cos(kωf t) +Bk sin(kωf t)] +D (5.1)

to approximate a sinusoidal target function y(t). The unknown parameters Ak,
Bk and D in the approximated function ỹ(t) constitute the elements of the
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5.1. Fitting Multi-Sinusoidal Signals

vector c = [A1, A2, . . . , AK , B1, B2, . . . , BK , D], found by minimizing the least
squares error

MSE =

√√√√ 1
Nt

Nt−1∑
n=0

{
[y(tn)− ỹ(tn)]2

}
, (5.2)

measuring the error between the target function y(tn), known only on a discrete
grid tn = n∆t+ t0 for n = 0, 1, . . . , Nt − 1, and its approximated function ỹ(t).
The linear system created by the least squares problem is given by

A(ωf )c = s, (5.3)

where the elements in the vector s are the discrete values of the signal sn = y(tn),
and the matrix A(ωf ) is constructed such that each row in A(ωf ) fulfills the
equation [A(ωf )]nc = ỹ(tn).

Estimating the fundamental frequency ωf poses a challenge, and the initial
guess is often found using an interpolated fast Fourier transform49. The least
squares multiharmonic fitting method is therefore iterative, correcting the
fundamental frequency in each iteration. The solution to the i’th iteration is
given by

c(i) = [(A(i))TA(i)]−1(A(i))T s, (5.4)

where A(i) ≡ A(ω(i−1)
f ). The fundamental frequency is updated according to

ω
(i)
f = ω

(i−1)
f + ∆ω(i−1)

f , (5.5)

where the change ∆ω(i−1)
f is determined by using the first derivative of ỹ(ωf ; t)

with respect to the fundamental frequency, ∂ỹ(ωf ;t)
∂ωf

.48,50,51
In the case of the electronic absorption spectrum, the dipole-allowed

transition can in theory give a continuum of frequencies. The incomplete
basis sets used in actual real-time simulations have a finite number of electronic
states, and hence also a finite number of transition energies. The absorption
spectrum becomes increasingly dense for larger molecules. A dense spectrum
forces the fundamental frequency to be small, and consequently K will be
large. The size of the linear system becomes excessive, and the majority of the
frequencies ωk = kωf are not present in the dipole moment. For this reason,
the developed fitting model in this project avoids the use of a fundamental
frequency.

In 2009, Salinas et al.52 implemented the multi-harmonic fitting algorithm
described above using an artificial neural network. This would enforce the
correct form of the output function for the dipole moment. Their work showed
proof of concept on simple harmonic signals, but the accuracy of the neural
network depended greatly on the method of optimization of the weight variables.
Multi-harmonic fitting using neural networks encounters the same challenge
of determining the fundamental frequency as when using the classical multi-
harmonic fitting. At the current state of development, I can see no apparent
advantage with using a neural network for fitting a noise-free (apart from
numerical noise) multi-harmonic signal compared to using classical fitting
methods.

There are also recursive least-square methods, like the method presented by
Xu and Ding53, avoiding the inversion of large matrices. The recursive methods
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5.2. The Fitting Model for the Dipole Moment

fit a single sinusoidal to the signal, determining the amplitudes of a single
frequency. The determined contribution is removed from the signal, and the
next frequency is fitted on the remaining residual. As the recursion progresses,
the residual shrinks, giving a natural stopping criterion for the recursion. The
challenge of finding the fundamental frequency remains the same. In addition,
any wrongly estimated sinusoidal will cause accumulative error in all succeeding
levels of recursion.

The proposed method for fitting the time-dependent dipole moment draws
inspiration from the least-squares multi-harmonic fitting presented in this
section. Instead of using the fundamental frequency ωf , a method for estimating
frequencies using an interpolated Fourier spectrum will be developed.

5.2 The Fitting Model for the Dipole Moment

In the chapters in the method section, the dipole moment µ(tn) refers to the
discrete values of the induced electric dipole moment for an arbitrary spatial
coordinate obtained by real-time molecular electronic structure simulations,
and µ̃(t) is its approximation. Using the form of the exact numerical dipole
moment found in Eq.(2.30), the approximated function is defined as

µ̃(t) =
Nω−1∑
α=0

[cα cos(wαt) + cN+α sin(wαt)] + c2N . (5.6)

The fitting model will estimate the frequencies {ωα} and the linear coefficients
{ci} based on a short discrete dipole trajectory from the real-time simulations.
The approximated dipole moment µ̃(t) is a function, and may be evaluated at
any point in time. This allows for arbitrarily long extrapolations.

To simplify the notation, the approximated dipole moment is rewritten into
a linear combination of a set of basis functions, as

µ̃(t) =
2Nω∑
i=0

ciϕi(t), (5.7)

where ϕi are the basis functions given by

ϕi(t) =


cos(wit) 0 ≤ i < Nω

sin(wi−Nω
t) Nω ≤ i < 2Nω

1 i = 2Nω
, (5.8)

following conventions of function approximation.54 Determining the coefficients
{ci} for i = 0, 1, . . . , 2Nω becomes a linear problem once the frequencies {ωα}
for α = 0, 1, . . . , Nω − 1 are determined.

The proposed fitting model goes as follows:

1. Poles of the Fourier-Padé: Determine the complex poles ω̃p of the
interpolated Fourier spectrum, called the Fourier-Padé approximant.

2. Estimating frequencies: Determine the frequencies ωα ∈ {|ω̃p|} from
the set of poles in the interpolated spectrum. The frequencies should
correspond to extrema in the spectrum using real-valued ω.
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5.2. The Fitting Model for the Dipole Moment

3. Linear regression: Determine the linear coefficients using least squares
fitting.

A short explanation of each step will be given below and more detailed
discussions in the following chapters. In an attempt to stabilize the extraction of
frequencies, the time-dependent dipole moment was decomposed into molecular
orbital pairs. The fitting of each MO component µpq(t) follows the same
fitting algorithm. The MO decomposition will be introduced and discussed in
Chapter 9.

5.2.1 Poles of the Fourier-Padé

The frequency estimation in the fitting model will avoid the use of a fundamental
frequency. Instead, all the estimated frequencies will be determined by the
extrema of the Fourier-Padé approximant.

The frequencies of the dipole moment should correspond to extrema of the
Fourier transform, though the spectral resolution would be too low for a direct
reading of the spectral lines. The Fourier-Padé Approximant:

µ(ω) ≈ [M/M ]µ(ω) = P (z(ω))
Q(z(ω)) (5.9)

offers an interpolation of the discrete Fourier transform, represented through
the two polynomials P (z) and Q(z), where

z(ω) = eiω∆t. (5.10)

The frequencies will be found by examining the complex poles of the Fourier-
Padé approximant with respect to z, identified as roots of Q(z):

Q(z(ω̃p)) = 0. (5.11)

The actual roots ω̃p will be complex, but the absolute value ωp = |ω̃p| of the
roots close to the real axis should correspond to extrema of the interpolated
spectrum. There are far more roots ωp = |ω̃p| than actual frequencies in the
signal. All roots are treated as prospective frequencies, but only a subset of
these will be used in the approximated function, µ̃(t). There are examples in the
literature of using the Fourier-Padé approximant for frequency estimation.55,56

In order to extract the frequencies successfully, the Fourier-Padé must
converge well enough to pick up all the significant frequencies in the signals, such
that the frequencies {ωα} ∈ {ωp} form a subset of the prospective frequencies.
Details on the Fourier-Padé approximant and how the prospective frequencies
ωp are found will be given in Chapter 6.

5.2.2 Estimating Frequencies

The Fourier-Padé will have an excessive number of complex poles compared
to the actual number of frequencies in the dipole moment. A considerable
amount of the prospective frequencies ωp are therefore redundant. The number
of acceptable redundant frequencies used in the fitting is limited, as it both
increases the computation time of the linear fitting and – more importantly
– may cause false solutions. Any sufficiently large basis {ϕi} with arbitrary

25



5.3. Implementation and Testing

frequencies {ωα} will be able to interpolate a short trajectory of the dipole
moment, the precision increasing as the basis grows. A well interpolated short
trajectory does not however guarantee a stable extrapolation. Limiting the
frequencies used for creating the basis set will therefore be essential for reliable
extrapolation.

In order to separate the small subset of estimated frequencies {ωα} from
the prospective frequencies {ωp}, a clustering algorithm will be used. The
prospective frequencies will be divided into two groups, representing estimated
frequencies and redundancies. This will be the topic of Chapter 7.

5.2.3 Linear Regression

For the optimization of the coefficients, the well established method of linear
regression will be used. The method is presented in Chapter 8, along with
details on how to evaluate the goodness of the fit. The error measure will be
important if the convergence criterion is to be used for automatic termination
of real-time simulations.

5.3 Implementation and Testing

The code for fitting the dipole moment was implemented in the Python
programming language. The code was vectorized using NumPy57 arrays, and
all plots are generated using MatPlotLib58.

Each of the following chapters, describing the method, will also provide
a short description of implementation choices. Some unit testing and sanity
checks will also be presented. For this purpose, a synthetic test signal f(t) was
created in the form of Eq. (5.6). The synthetic signal is given by:

f(t) =
50∑
i=1

[
Ai cos(ωit) +Bi sin(ωit)

]
, (5.12)

with randomly generated frequencies ωi ∈ (0, 5] and random amplitudes
Ai, Bi ∈ [−1, 1]. All the random variables were generated using the random
library of NumPy57. This function will be used for several sanity checks in the
following chapters.
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CHAPTER 6

The Fourier-Padé Approximant

The first step of the developed method is to determine the frequencies by
examining the extrema of a Fourier-Padé spectrum. This chapter will introduce
the equations of the Fourier-Padé approximant, and describe how the prospective
frequencies are extracted. The implementation of the Fourier-Padé approximant
will be briefly discussed, including a test case using a synthetic sinusoidal signal.

6.1 The Equations of the Fourier-Padé Approximant

The Padé approximant is used to accelerate the convergence of a truncated
power series, such that the function f(z) =

∑∞
n=0 cnz

n is approximated by

[M/N ]f (z) = P (z)/Q(z), (6.1)

where P (z) and Q(z) are polynomials of respectively M ’th and N ’th degree.
In the work of Bruner et al.12, the discrete Fourier transform of the dipole
moment is interpolated using a Padé approximant. The explanation of the
method in this section is heavily based on their article, although the article
uses a different convention for the discrete Fourier transform. Damping will
also be incorporated into the Fourier-Padé equations.

Rewriting the discrete Fourier transform into a power series expansion yields

µ(ω) ∝
Nt−1∑
n=0

µ(tn)e(iω−γ)n∆t =
Nt−1∑
n=0

µ(tn)
(
e(iω−γ)∆t

)n
, (6.2)

where Nt is the number of time points and µ(tn) are the discrete values from
real-time calculations and tn = n∆t + t0. This leads to the required form of
the Padé approximant, with the diagonal Padé scheme given by

[M/M ]µ(z) =
∑M
k=0 akz

k∑M
k=0 bkz

k
, (6.3)

where M = (Nt − 1)/2 and

z(ω) ≡ e(iω−γ)∆t. (6.4)

The coefficients are determined by
Nt−1∑
n=0

cnz
n =

∑M
k=0 akz

k∑M
k=0 bkz

k
, (6.5)
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where cn ≡ µ(tn). This creates the linear system

Nt∑
n=0

cnz
n

M∑
m=0

bmz
m =

M∑
k=0

akz
k, (6.6)

where convention sets a0 = c0 and b0 = 1. Unless otherwise specified, the indices
in the following explanation therefore run m, k = 1, . . . ,M . The coefficients
{bk} are determined by solving

Gb = d, (6.7)

where G is a M ×M Toeplitz matrix and d is a vector of dimensionality M .
Their elements are defined by

Gkm = cM−m+k (6.8)
dk = −cM+k. (6.9)

After determining {bk}, the next set of coefficients {ak} is found by

ak =
k∑

m=0
bmck−m. (6.10)

The resulting function µ(z(ω)) may be evaluated at any point ω, enabling
arbitrary resolution to the Fourier spectrum.

The Fourier-Padé approximant can be used directly to improve the resolution
of the absorption spectrum. The proposed fitting model uses the Fourier-
Padé as a tool to estimate the frequencies, making the fitting method more
computationally expensive compared to the Fourier-Padé alone. So why the
extra work of fitting the dipole moment in the time domain? Firstly, the
hope is that the fitting model can surpass the performance of the Fourier-Padé
approximant. Secondly, self-evaluation of the fitting model uses quantitative
measures of error in the time domain. Measuring error in the frequency domain
is far less trivial, and the Fourier-Padé approximant offers no self-evaluation.
Using the Fourier-Padé alone, there is no way of evaluating the error in the
approximated spectrum. The fitting model will provide such an error estimate,
which is the topic of Section 8.3.

It should be pointed out that determining the coefficients in Q(z) requires
solving a linear system, prone to near-degeneracy. Small variations in the power
series coefficients {cn} make the calculations sensitive to numerical imprecision,
potentially causing significant round-off errors in the coefficients of both Q(z)
and P (z).59

6.2 Estimating Frequencies From the Complex Poles

By identifying the poles zp of the Padé approximant in Eq. (6.5), the possible
peaks of the spectrum may be identified as

ωp = |ω̃p| =
∣∣∣∣ ln(zp)
i∆t

∣∣∣∣ , (6.11)
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where the undamped γ = 0 version is used in order to achieve higher precision
in the frequencies. The poles will yield complex frequencies ω̃p, and the real ωp
should not represent singularities of the function µ(ω), but rather extrema.

The complex poles are found by determining the roots zp of Q(z) =
∑
k bkz

k

from the Fourier-Padé, [M/M ]µ(z) = P (z)
Q(z) . The coefficients in the polynomial

Q(z) will be real, as µ(t) is real. According to the complex conjugate root
theorem, a polynomial with real coefficients will be mirror-symmetric with
respect to the real axis. This implies that if zq is a root of Q(z), then the
complex conjugate z−q = zq is also a root. Rewriting the conjugate pairs gives

zq = ei Re(ω̃q)∆teIm(ω̃q)∆t (6.12)
zq = e−i Re(ω̃q)∆teIm(ω̃q)∆t. (6.13)

This shows that if ω̃q = aq + ibq is a root of Q(z(ω̃)), then ω̃−q = −aq + ibq is
also a root. All poles Im(zp) < 0 may be discarded, as these will simply yield
duplicates among real frequencies ωp.

A real pole zr implies that ω̃r = ibr is a pure imaginary number. These
poles are assumed not to represent the actual frequencies in the signal. Either
the root ω̃r is far from the real axis, making it likely that it will not represent a
peak in the spectra, or ω̃r is close to zero, representing a peak corresponding to
a constant in the signal. Either way, the pole should be discarded.

This reduces the number of possible frequencies to maximum M/2,
considering only the poles Im(zp) > 0. The possible frequencies are then

ωp =
∣∣∣∣ ln(zp)

∆t

∣∣∣∣ , Im(zp) > 0. (6.14)

It is safe to assume that M/2 � Nω, where Nω is the number of frequencies
present in the signal. In order to separate the estimated frequencies from the
redundant roots, a clustering algorithm will be used, as will be introduced in
Chapter 7.

6.3 Limitations on the Frequency Domain

While the resolution of the Fourier-Padé is greatly determined by final time
Tf = Nt∆t, studies have shown that the convergence depends less on the step
length, ∆t.17 The time step does however set limits to the range of the frequency
domain, as will be shown in this section.

For the absorption spectrum, the polynomials P (z) and Q(z) are only
evaluated on z(ω) = ei(ω−γ)∆t, where ω is real and positive. The function z(ω)
is periodic:

z(n 2π
∆t + ω) = z(ω), (6.15)

effectively making the Fourier-Padé approximant periodic.
The imaginary part of the Fourier spectra is anti-symmetric around ω = 0,

implying that the Fourier-Padé also is expected to be anti-symmetric, such that
Im{[M/M ]µ(z(−ω))} = − Im{[M/M ]µ(z(ω))}. Since z( 2π

∆t − ω) = z(−ω), the
spectrum is expected to also appear backwards from 2π

∆t , as shown by

Im
{

[M/M ]µ(z( 2π
∆t − ω))

}
= − Im{[M/M ]µ(z(ω))}. (6.16)
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In order to get a correct Fourier-Padé spectrum, it is vital to constrain the time
step to ∆t < π/ωmax, where ωmax is the largest frequency in the signal. This
limitation is similar to that of the regular discrete Fourier transform, where the
positive frequencies are limited to ωk ∈ [0, π/∆t). Unlike the Fourier-Padé, the
discrete Fourier transform is not affected by any frequencies ω ≥ π/∆t.

6.4 Scaling the Fourier-Padé Spectrum

The Fourier-Padé spectrum approximates the truncated discrete Fourier
spectrum. One may imagine that the Fourier-Padé spectrum approximates a
discrete Fourier transform with a larger number of discrete time points N ′t . The
time step ∆t is hard coded into the Fourier-Padé, but the resolution is improved
when N ′t > Nt. The discrete Fourier spectrum µ(ωj) where ωj = j∆ω with
resolution

∆ω = 2π
N ′t∆t′

(6.17)

using the same time step ∆t′ = ∆t may then be approximated as

µ(ωj) ≈
1
N ′t

[M/M ]µ(z(ωj)), (6.18)

where M = (Nt − 1)/2 with N ′t > Nt.
The spectral resolution of a discrete Fourier transform using Nt and ∆t

is equivalent to that of the discrete Fourier transform using N ′t = mNt and
∆t′ = ∆t/m. To approximate the longer simulation using N ′t and ∆t′, for
m > 1, the Fourier Padé should be scaled according to

µ(ωj) ≈
∆t

N ′t∆t′
[M/M ]µ(z(ωj)). (6.19)

A given resolution ∆ω may then be approximated according to

µ(ωj) ≈
∆ω∆t

2π [M/M ]µ(z(ωj)), (6.20)

where the rewriting mNt is not guaranteed to be an integer. The available
frequency domain of the Fourier-Padé will still be determined by the time step
∆t used when creating the approximant.

6.5 Implementation and Sanity Checks

The implementation of the Fourier-Padé approximant follows the equations
given above. The Toeplitz matrix G in Eq. (6.8) was created and its linear
system in Eq. (6.7) solved using functions from SciPy60. The matrix inversion
for solving the linear system does not exploit the symmetry in G, as the Toeplitz
solver was observed to be numerically unstable. The complex roots of Q(z) were
found using the NumPy57 function for determining polynomial roots, which is
based on finding the eigenvalues of the companion matrix61 of the polynomial.

The rewriting of the damped discrete Fourier transform in Eq. (6.2) could
have been chosen differently, making the damping part of the coefficients cn
instead of part of the variable z(ω). The Fourier-Padé approximant with
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cn = µ(tn)e−γn∆t and z(ω) = eiω∆t is equivalent to the equations given in
Section 6.1. The decision to keep the damping in z(ω) was to achieve higher
flexibility in the implementation. This way, the damping is not included in the
linear system. Different values for the lifetime parameter γ may then be tried
out without repeating the matrix inversion.

A sanity check for the Fourier-Padé spectrum is that it should converge
towards the high resolution Fourier spectrum when given a sufficiently long
trajectory. Fig. 6.1 shows the performance of the Fourier-Padé approximant
on the synthetic signal form Eq. (5.12). Discrete values f(tn) were evenly
spaced using ∆t = 0.1, using two different trajectory lengths. The Fourier-Padé
spectrum using the shorter trajectory coincides well with the high resolution
fast Fourier spectrum on the right part of the spectrum (ω > 3), but deviated
greatly on the left side of the spectrum. The Fourier-Padé spectrum using the
longer trajectory becomes almost interchangeable with the high resolution fast
Fourier transform.
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Figure 6.1: Fourier transform of the sinusoidal signal f(t) from Eq. (5.12),
using damping parameter γ = π/5000. The black line shows the fast Fourier
transform using tn ∈ [0, 5000]. The yellow and red lines show the Fourier-Padé
approximants using tn ∈ [0, 1000] and tn ∈ [0, 100], respectively.

Further verification of the Fourier-Padé implementation is shown in
Chapter 7, where the combination of the Fourier-Padé and cluster algorithm is
used to determine the frequencies of the synthetic signal.
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CHAPTER 7

K-means Clustering

TheK-means clustering method falls under the category of unsupervised machine
learning. Clustering methods divide data into clusters, aiming to minimize the
variability of each cluster. Each data sample, from now on referred to as a
node, has a position vector representing the features of the corresponding data
sample. The data set may have several features, determining the dimensionality
of the position vectors. Features may vary in proportions, often causing a bias
in the clustering where the larger features dominate the arrangement of the
clusters. To counter this, the features are typically normalized in the position
vector representation.62,63

7.1 The K-means Algorithm

The K-means method is a fast clustering method for dividing a set of nodes
into K clusters. Each cluster has a centroid, defined by the average position
of all nodes in the cluster. The iterative scheme distributes all nodes among
the K clusters in each iteration. The nodes are assigned to the cluster with the
centroid closest to the node, using an euclidean norm to measure the distance.
The positions of the centroids are then updated before the next iteration.
Convergence is reached when the centroids are left unaffected by an iteration.
The algorithm may be summed up by:

1. Give the centroid of each cluster an initial position.

2. Assign each node to the cluster with the closest centroid.

3. Update the value of the centroid of each cluster as the average position of
all nodes in the cluster.

4. Compute the change in position of all centroids. If any centroids moved
from the previous iteration; repeat steps 2.- 4.

5. Convergence has been reached, and the final clusters are given as output.

The method suffers from several limitations. The K-means method is non-
deterministic in that it may yield different results depending on the initial values
of the centroids. The clusters may not make complete sense if the number
of clusters K is not well suited for the data set. Methods like hierarchical
clustering do not suffer from these deficiencies, but would considerably increase
the computational cost of the clustering.62,63
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7.2. Creating Features

7.2 Creating Features

The nodes in this case would be the roots ωp, and the clustering will be binary
(K = 2), as the root will either be classified as a frequency ωα or a redundancy
ωβ . The value of the root is in itself irrelevant for the classification. Some
relevant features for the classification must therefore be constructed.

Given that the Fourier-Padé has converged, the roots ω̃p = ln(zp)
i∆t not

corresponding to an actual frequency should have a relatively large imaginary
component. This should have two consequences. Firstly, none of the estimated
real roots ωp will be actual roots of the polynomial, meaning that Q(z(ωp)) 6= 0.
The size of Q(z(ωp)) may serve as an indicator of how likely ωp corresponds
to a redundant frequency, assuming that Q(z(ωp)) will be larger for redundant
frequencies. Secondly, the intensity of the Fourier-Padé [M/M ]µ(z(ωp)) will
serve as an indicator of how likely ωp corresponds to an actual frequency in the
signal. Each root ωp is assigned two features, the intensity [M/M ]µ(z(ωp)) and
the polynomial value, Q(z(ωp)).

Both features will have quite extreme scaling, as they approach infinity for
[M/M ]µ(z(ω̃p)) and zero for Q(z(ω̃p)) for the complex roots ω̃p. In order to
smooth out the differences, the common logarithm is used on the features. The
features are then scaled from 0 to 1. The position vector of node q, is then
rq = (rqx, rqy) with elements given by

rqx =
X(ωq)−minp

[
X(ωp)

]
maxp

[
X(ωp)

]
−minp

[
X(ωp)

] (7.1)

rqy =
Y (ωq)−minp

[
Y (ωp)

]
maxp

[
Y (ωp)

]
−minp

[
Y (ωp)

] , (7.2)

where the unnormalized features are defined as

X(ωq) = log10 |[M/M ]µ(z(ωq))| (7.3)
Y (ωq) = log10 |Q(z(ωq))| . (7.4)

The initial position of the centroid of the redundant root cluster is set to
cβ0 = (0, 1), while the initial position of the centroid of the estimated frequency
cluster is set to cα0 = (1, 0).

7.3 Implementation and Sanity Checks

The clustering algorithm was implemented according to the details above.
The example in Fig. 7.1 serves as a sanity check for the implementation of

both the Fourier-Padé approximant and the clustering algorithm. The figure
shows the clustering of the potential frequencies of the synthetic signal f(t) from
Eq. (5.12). The relative distances in the plot correspond to how the clustering
algorithm will see the features, ignoring the numbers on the axes.

The clustering algorithm successfully separates all 50 frequencies in f(t). The
maximum absolute error of the determined frequencies was 10−12. This example
validates the implementation, as the Fourier-Padé approximant achieves high
precision in the frequency estimation, and the clustering algorithm is successful
in the separation of the actual frequencies.
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Figure 7.1: Clustering of ωp = |ω̃p| where Q(z(ω̃p)) = 0. Estimated frequencies
ωα are marked in green, while redundant roots ωβ are marked in gray.
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CHAPTER 8

Linear Regression

Once the frequencies for the basis functions ϕi(t) in Eq. (5.8) have been
estimated, the linear coefficients {ci} in

µ̃(t) =
2Nω∑
i=0

ciϕi(t) (8.1)

are determined using linear regression. An implementation choice should be
pointed out before the equations are introduced. The approximated dipole
moment µ̃(t) was not approximated as µ̃(t) ≈ µ(t), but rather as µ̃(t) ≈ µ(t+t0).
The change in the phase is baked into the coefficients, and should not alter
the general form of the dipole moment in Eq. (2.30). The results are slightly
different when approximating µ̃(t) ≈ µ(t + t0) versus µ̃(t) ≈ µ(t), and the
initial observation was that the fitting model was marginally better when using
µ̃(t) ≈ µ(t+ t0). This was however not extensively tested, but changing it back
to µ̃(t) ≈ µ(t) in the future is a trivial implementation detail.

The problem will be rewritten into a linear equation

Ac = µ′, (8.2)

where µ′ is a vector of dimensionality Nt with elements

[µ′]n = µ(tn), (8.3)

corresponding to data points from the real-time simulations at tn = n∆t+ t0.
The vector c is of dimensionality (2Nω+1) and contains the unknown coefficients
ci. The matrix A is a Nt × (2Nω + 1) matrix with elements

Ani = ϕi(n∆t), (8.4)

such that each row contains all the basis functions of µ̃(tn) evaluated at a given
time, tn. All the Nt linear equations are in the form

[A]nc = [µ′]n, (8.5)

where the number of equations Nt is much larger than the number of unknowns,
(2Nω + 1). The linear equations try to solve

2Nω∑
i=0

ϕi(n∆t)ci = µ(tn), (8.6)
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8.1. Ordinary Least Squares Method

making each linear equation in the system try to solve µ̃(n∆t) = µ(tn) for
all Nt available time points. This will not be achieved (µ̃(n∆t) 6= µ(tn)), as
the estimated frequencies will introduce an error. The linear regression will
always use the induced dipole moment, but the regular dipole moment is easily
approximated by adding µd(t = 0) to the constant c2Nω .

The linear regression optimizes the coefficients by minimizing the mean
square error :

R(c) =
Nt−1∑
i=0

[
µ(tn)−

2Nω∑
i=0

ϕi(n∆t)ci

]2

=
Nt−1∑
i=0

[µ(tn)− µ̃(n∆t)]2 , (8.7)

known as the cost function. The cost function measures the difference between
the true discrete values of the dipole moment µ(tn) obtained by the real-time
simulations and the approximated dipole moment, µ̃(tn). This chapter includes
a short description of the well established least squares method, as well as
explaining the chosen measure of error in the approximated function. The
explanation of the regression methods in this chapter is based on those of Hastie
et al.64,65 and Géron66.

8.1 Ordinary Least Squares Method

The ordinary least squares method (OLS) aims to minimize the cost function,
which in matrix form is given by

R(c) = (µ′ −Ac)ᵀ(µ′ −Ac). (8.8)

The cost function is minimized with respect to c. Writing out the differentiation
of the cost function gives

∂R(c)
∂c = 2Aᵀ(µ′ −Ac). (8.9)

The minimum of the cost function is found by setting the derivative to zero,
creating the optimization criterion

Aᵀµ′ = AᵀAc. (8.10)

The SVD of the Nt × (2Nω + 1) real matrix A is given by

A = UDVᵀ, (8.11)

where U is an Nt× (2Nω + 1) orthonormal matrix, D is a real positive diagonal
(2Nω + 1) × (2Nω + 1) matrix and V is another orthonormal matrix, also of
dimensionality (2Nω + 1)× (2Nω + 1). The coefficient vector is given by

c = (AᵀA)−1Aᵀµ′

= ((UDᵀVᵀ)ᵀUDVᵀ)−1(UDVᵀ)ᵀµ′.
(8.12)

Since U and V are orthogonal matrices, then it follows that U−1 = Uᵀ and
V−1 = Vᵀ. The relation Dᵀ = D also holds since D is symmetric diagonal.
Using this, the expression becomes

c = (VDUᵀUDVᵀ)−1VDUᵀµ′

= (VD2Vᵀ)−1VDUᵀµ′

= VD−2VᵀVDUᵀµ′,

(8.13)
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8.2. LASSO Regression

giving the final expression for the coefficient vector:

c = VD−1Uᵀµ′. (8.14)

This way, the matrix AᵀA can then be inverted despite potential singularity.

8.2 LASSO Regression

The least absolute shrinkage and selection operator (LASSO) method determines
the linear coefficients according to

argminc

{
1
2R(c) + λ

2Nω∑
i=0
|ci|

}
, (8.15)

where λ ≥ 0 shrinks the parameters c. The LASSO method has no closed form
for c, and the solution is found iteratively. The shrinkage parameter λ generally
makes the LASSO method less prone to over-fitting compared to OLS.

The expected form of the induced dipole moment according to linear response
theory has negative cosine coefficients and positive sine coefficients, as seen in
Eq. (4.25). The time step used in all calculations in this project was ∆t = 0.01,
and the largest molecule was the water molecule. We therefore expect none
of the frequencies to be large enough to alter the sign of the coefficients, as
discussed in Section 4.3.

The sampling of the dipole moment started at t0 = 2∆t. The approximated
dipole moment according to the linear response theory was therefore fitted
according to

µ̃(t) ≈ [µd](1)(t+ t0) = [µd](1)(t+ 2tp) =
∑
n 6=0

Bn sin(ωn0(t+ tp))

=
∑
n 6=0

{
[Bn sin(ωn0tp)] cos(ωn0t) + [Bn cos(ωn0tp)] sin(ωn0t)

}
,

(8.16)

since tp ≈ ∆t. This alters the sign of the cosine coefficient, making both the
sine and cosine coefficients positive. The non-linearity of the LASSO method
enables extra constraints on the coefficients. The LASSO method can therefore
be used to find the solution under the constraint

ci ≥ 0, (8.17)

for both the sine and the cosine coefficients, i = [0, 2Nω). Adding additional
constraints on the optimization could minimize the potential for false solutions,
given that the imposed form is correct. The LASSO method will therefore be
used to force the induced dipole moment in the linear response form seen in
Eq. (4.25).

8.3 Measure of Error

In order to evaluate the fitting, the available trajectory is divided into a fitting
set and a (smaller) verification set. The verification data is used to ensure that
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8.3. Measure of Error

the approximated function is not over-fitted. The need for such division of
the data is illustrated in Fig. 8.1, where the function f(t) from Eq. (5.12) is
fitted. The least squares method was provided with all frequencies in f(t), but
with a random error δω ∈ [−10−3, 10−3] added to each frequency. Since the
error in the estimated frequencies is unknown when fitting the dipole moment,
the error must be measured in the time domain. The linear coefficients of the
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Figure 8.1: The purple line shows the true function f(t) from Eq. (5.12), while
the yellow dashed line shows the approximated function f̃(t). The fitting data
is marked with gray background, and the verification data is marked with blue
background.

approximated function f̃(t) were determined by OLS using discrete values of
f(tn) on tn ∈ [0, 80], called the fitting domain. As seen in Fig. 8.1, f̃(t) is
indistinguishable from the true function f(t) on the fitting domain, achieving
good interpolation. The extrapolation on the verification domain tn ∈ (80, 100]
shows that f̃(t) is a poor approximation to f(t) when evaluated outside of the
fitting domain. The error in the frequencies was masked by over-fitting on the
small fitting domain. With the short fitting trajectory, the method succeeds in
reproducing the known values used for the fitting, but fails at extrapolation.
The goal of the fitting model is to achieve long and accurate extrapolation of
the dipole moment from short real-time simulations. Dividing the available
dipole data into fitting data and verification data is therefore necessary to avoid
over-fitting, as the error in the estimated frequencies will be unknown.

The coefficient of determination is used to determine the goodness of a fit.
The coefficient is given by

R2 = 1−
∑
n [yn − g(tn)]2∑
n [yn − ȳ]2

, (8.18)

where yn is observed data, with ȳ being the mean value and g(t) is the function
fitted on the data. The observed data in the fitting model will be the true dipole
moment from the real-time simulations yn ≡ µ(tn) and the fitted function is the
approximation g(tn) ≡ µ̃(n∆t). The coefficient of determination has a range
R2 ∈ [1, 0], where R2 = 1 is a perfect fit.67 A measure of error may therefore
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8.4. Implementation and Sanity Checks

be 1−R2, and the measure of error in the fitting of the dipole moment will be

E =
∑
n [µ(tn)− µ̃(n∆t)]2∑

n [µ(tn)− µ̄]2
. (8.19)

The most important error measure will be the error seen in the verification
domain, tn ∈ (Tfit, Tver], as the error in the fitting domain tn ∈ [t0, Tfit] can be
artificially low due to over-fitting. The convergence of the fitting model must
be based on the error on the verification data, as doing the heavy real-time
molecular electronic structure simulations to verify the approximated function
would defeat the purpose of the fitting model.

During development of the fitting model, long real-time simulations are
required for benchmarking. The goal is to find a convergence criterion based
on the verification data which ensures that a long extrapolation will be stable
and accurate. Finding such a convergence criterion would enable automatic
termination of future real-time simulations of the absorption spectrum. At
predetermined time intervals, the fitting model would try to fit the dipole
moment and evaluate the error in the approximation. The real-time dipole
trajectory length would increase until the error of the fitting model is below the
convergence criterion. The real-time simulations would then be terminated, and
the absorption spectrum would be calculated by extrapolating the approximated
dipole moment, µ̃(t).

8.4 Implementation and Sanity Checks

The implementation of the ordinary least squares fitting is implemented as
explained in Section 8.1, using the SVD function from NumPy57. The LASSO
method uses the implementation from SciKit-learn68.

To test the implementation, the error of the approximated function f̃(t) of
the synthetic signal from f(t) Eq. (5.12) was studied as a function of different
trajectory lengths. The approximated function f̃(t) was fitted using OLS and
the exact frequencies of f(t), using the same step length ∆t = 0.01 in all cases.
The error was measured as 1−R2, where R2 was computed on the time domain
t ∈ [0, 4000), using the time step ∆t = 1/3. The result is shown in Fig. 8.2.
The error quickly converges towards numerical zero, validating the correctness
of the implementation of the least-squares algorithm.
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Figure 8.2: Error between approximated function f̃(t) and target function f(t)
as a function of different fitting domains t ∈ [0, Tf ]. The exact frequencies were
used in the least square fitting.
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CHAPTER 9

Molecular Orbital Decomposition
of the Dipole Moment

In 2016, Bruner et al.12 used a diagonal Padé approximant [M/M ]µd to
accelerate the convergence of the discrete Fourier transform of the dipole
moment obtained from real-time time-dependent density functional theory (RT-
TDDFT). The Padé approximant struggles with dense spectra. To counter
this, Bruner et al. used an occupied-virtual molecular orbital decomposition of
the dipole moment, as originally proposed by Repisky et al.13,14. The dipole
moment was decomposed into

µd(t) =
∑
ia

µdia(t) (9.1)

where i indexes occupied orbitals and a indexes the virtual orbitals. The Padé
approximant was determined for each component µdia(t), creating many, but
sparser spectra. The linearity of the Fourier transform allows to write the total
spectrum as F [µd(t)] =

∑
ia F [µdia(t)]. According to Bruner et al., this reduced

the simulation time five- to seven-fold compared to the regular fast Fourier
transform.

The MO decomposition will also be used in this project, with hopes of
simplifying the fitting of the dipole moment. The description of the MO pair
decomposition below follows the same idea, though it is rewritten to suit the
RT-TDCC framework.

9.1 Decomposition in Coupled Cluster Theory

The dipole moment in the real-time simulations is calculated according to

µd(t) = Tr
[
PdD(t)

]
=
∑
p

[PdD(t)]pp, (9.2)

where p is a general orbital index, Pd is the transition dipole matrix for the
direction of interest and D(t) is the time dependent density matrix, given in
the MO basis. The diagonal of the product PdD(t) will be

[PdD(t)]pp =
∑
q

P dpqDqp(t), (9.3)
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summing over all orbitals, ψq. The dipole moment is decomposed into MO
pairs, including all unique pairs and the diagonal:

µdpq(t) = P dpqDqp(t) + P dqpDpq(t) (9.4)
µdpp(t) = P dppDpp(t). (9.5)

The full dipole moment is the sum over all components, as given by

µd(t) =
∑
p≤q

µdpq(t). (9.6)

The decomposition of the induced dipole moment is similarly given as

µd,ind(t) =
∑
p≤q

µd,indpq (t), (9.7)

where the components of the decomposed induced dipole moment are given by

µd,indpq (t) = µdpq(t)− µdpq(t = 0). (9.8)

The decomposition serves two purposes. Firstly, by decomposing the dipole
moment we hope to simplify the fitting of the dipole moment. The separate
dipole components in RT-TDDFT yielded several, but simpler spectra compared
to the full dipole moment. The hope is that the decomposition in RT-TDCC
theory will give a similar simplification. Secondly, the decomposition may enable
us to determine which orbital transitions contribute to the different peaks in
the absorption spectrum.

9.2 Similarity Measure Between Components

The decomposition of the dipole moment poses difficulties with memory
load, as the memory usage for the decomposed dipole moment scales with
Np(Np + 1)/2×Nt, where Nt is the number of time points Np is the number of
molecular orbitals. The memory demand grows fast for both larger molecules
as well as for larger basis sets. This problem was addressed by Ghosh et al.16,
where they used a reduced MO space decomposition, effectively reducing the
memory cost of the real-time dynamics simulation. Ghosh et al. chose to divide
the molecular orbitals into groups based on their orbital energy.

An interesting question could therefore be how to cluster the components of
the dipole moment in CC theory. Should the decomposition prove beneficial for
the function fitting, the number of components will quickly grow vast for larger
systems. Studying similarities between the components may reveal suitable
groupings.

The similarity between two components can be defined by their normalized
correlation, commonly used to determine the similarity between two oscillating
signals in signal processing.69 The similarity is given by

rpq,rs =
∑
n µ

d,ind
pq (tn)µd,indrs (tn)√(∑

n[µd,indpq (tn)]2
)(∑

n[µd,indrs (tn)]2
) , (9.9)
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where rpq,rs ∈ [−1, 1]. If rpq,rs = 1, then the two signals are completely
equivalent, differing possibly only in magnitude. If rpq,rs = −1, then the
signals are anti-parallel. In order to find patterns in the similarity between the
components of the dipole moment, a recursive algorithm was created to cluster
similar components:

1. Decide a tolerance parameter ε.

2. Select an unassigned component. µd,indpq

3. Create new cluster for µd,indpq .

4. Mark µd,indpq as assigned.

5. For each unassigned component µd,indrs :

a) If rpq,rs ≥ (1− ε):
i. Add µd,indrs to the cluster of µd,indpq .
ii. Mark µd,indrs as assigned.
iii. Recursive call to point 5.

6. If any components are unassigned: go back to point 2.

This way the components will form groups where µd,indpq will be similar within
the tolerance parameter rpq,rs ≥ (1− ε) to at least one other component µd,indrs

in its group. All components in the same group will be similar if the tolerance
parameter is small.

9.3 Implementation and Sanity Checks

Several of the MO pairs will not contribute to the dipole moment and should be
excluded from the simulations to avoid unnecessary memory usage. Redundant
pairs were identified by finding the zero-elements in the symmetric transition
matrix Pd. The stored components µdpq were therefore restricted to p ≤ q and
|P dpq| = |P dqp| < δ for a positive infinitesimal δ. Storing the components followed
the idea of sparse matrix representation.

Some testing of the implementation of the MO decomposition of the dipole
moment is included in Section 10.1.1.
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PART III

Results, Discussion and
Conclusion
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CHAPTER 10

The Coupled Cluster Calculations
and Parameter Studies

The first part of this chapter contains the simulation details of the RT-TDCCSD
calculations used to obtain the dipole data for testing the fitting model. The
second part contains a small parameter study of the fitting model, which will
motivate choices of the size of the verification window used for the fitting of
the dipole moment presented in later chapters.

10.1 Simulation Details

The dipole moment of all systems was obtained using RT-TDCCSD calculations
using the implementation of Pedersen et. al33,70. The external field used in all
simulations was

F(t) =
{

10−3 if 0 < t ≤ ∆t
0 else

, (10.1)

where tp = ∆t = 0.01 a.u. and the field strength was Fstr = 10−3 a.u.. The
polarization direction was z, such that u = (0, 0, 1). The calculated dipole
moment was therefore µz(t) for all systems, which was sampled from t0 = 2∆t.

All three spatial directions are needed for a complete absorption spectrum.
Still, only the z-direction will be discussed in this project, as the fitting method
is equivalent in all three directions. The assumption is that the fitting of the
three spatial coordinates should be similar in difficulty, and it was therefore
prioritized to include a few more atoms/molecules and a wider variety of studies
rather than to compute the dipole moment for all spatial directions for each
system.

Two different atoms, both placed at the origin, will be part of the study.
These are the helium atom and the beryllium atom. The molecules in the study
will be the hydrogen molecule, lithium hydride and the water molecule. The
nuclei of the hydrogen atoms in the hydrogen molecule are placed at (0, 0, 0) a0
and (0, 0, 1.4) a0. In lithium hydride, the lithium nucleus is placed at (0, 0, 0) a0
and the hydrogen nucleus at (0, 0, 3.08) a0. Lastly, the nucleus of the oxygen
atom in the water molecule is placed at (0, 0,−0.1239093563) a0 and the nuclei
of the two hydrogen atoms are placed at (0, 1.4299372840, 0.9832657567) a0 and
(0,−1.4299372840, 0.9832657567) a0.

All simulations used augmented correlation-consistent polarized valence basis
sets71, and the basis sets were obtained from PySCF72. The closed-shell
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10.1. Simulation Details

restricted Hartree-Fock ground state, used as reference state, was computed
with a tolerance parameter ε = 10−10 for all systems. The molecular orbital
energies are listed in Table A.1 in Appendix A. The point group symmetry was
not imposed on the wave function in the calculations. The reference states and
orbital integrals were computed using either PySCF72 or Dalton73. Specifics
for each atom or molecule are given in Table 10.1. The vode integrator comes

Table 10.1: Details on the RT-TDCCSD simulations.
basis set integrator background

He aug-cc-pVTZ Gauss Dalton
H2 aug-cc-pVTZ vode PySCF
Be aug-cc-pVTZ Gauss Dalton

LiH aug-cc-pVDZ Gauss Dalton
H2O aug-cc-pVDZ vode PySCF

from SciPy60, while the symplectic Gauss-Legendre integrator is as described
by Pedersen and Kvaal33.

10.1.1 Molecular Orbital Decomposition

The decomposition stored all dipole moment components where |P dpq| > 10−10.
A measure of the sparsity of the MO decomposition could be given as

sδ = Npq −Nδ
Npq

, (10.2)

where Nδ is the number of MO pairs stored when using the threshold δ, and
Npq = Np(Np + 1)/2 is the number of unique MO pairs of the orbital basis of
size Np. The sparsity of each studied system is given in Table 10.2.

To test the implementation of the MO decomposition, a measure of error
was defined on the discrete time domain as

EMO = max
n
|Tr
[
PdD(tn)

]
−
∑
p≤q

µdpq(tn)|, (10.3)

measuring the maximum deviation between the full dipole moment and the sum
over the non-trivial components of the dipole moment. The errors in the MO
decomposition of the studied systems are given in Table 10.2. The decomposed

Table 10.2: Error in MO decomposition. The error measure EMO as defined
in Eq. (10.3). The sparsity sδ of the MO decomposition is given in Eq. (10.2)
using δ = 10−10.

EMO [a.u.] sδ
He 3.0 · 10−20 0.89
H2 4.8 · 10−14 0.82
Be 3.0 · 10−19 0.92

LiH 9.8 · 10−15 0.70
H2O 1.3 · 10−15 0.67

dipole moment replicates the full dipole moment to machine precision.
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10.2. Parameter Study

10.2 Parameter Study

This section presents a few small scale parameter studies regarding the choice
of time step ∆t used in the Fourier-Padé when estimating the frequencies and
the size of the verification window used when optimizing the linear coefficients.
The studies motivate the parameter choices made in the succeeding chapters.
Several of the studies in this chapter are based on observations made during the
development of the method. The number of available test systems during this
project was limited, though some parameter trends were still apparent. These
trends are illustrated using example systems.

10.2.1 The Periodicity of the Fourier-Padé Approximant

As discussed in Section 6.3, the Fourier-Padé approximant should be periodic.
This study uses Helium as an example system, and details about the simulation
are found in Section 10.1. The absorption spectrum of Helium with γ = π

6000
was used to verify the periodicity, as shown in Figs. 10.1 and 10.2. The fast
Fourier transform was calculated using the time domain tn ∈ [t0, 6000 a.u.], using
∆t = 0.01 a.u. and t0 = 0.02 a.u.. The Fourier-Padé approximant was calculated
using the dipole moment values on the time domain tn ∈ [t0, 1000 a.u.], using
different time steps in Figs. 10.1 and 10.2.
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Figure 10.1: Comparing µz(ω) of He, using fast Fourier transform (black line)
and a Fourier-Padé approximant (blue line). The x-axis is shown relative to
the time step ∆t = 0.1 a.u. used for the Fourier-Padé approximant.

The Fourier-Padé spectra of Helium in Figs. 10.1 and 10.2 show the
periodicity and anti-symmetry as expected from the discussion in Section 6.3.
Fig. 10.1 displays three cycles, with the expected cycle length from Eq. (6.15)
of 2π/∆t. The Fourier-Padé approximant in Fig. 6.1 also displays the
anti-symmetric behavior Im

{
[M/M ]µ(z( 2π

∆t − ω))
}

= − Im{[M/M ]µ(z(ω))},
creating additional and unwanted peaks in the spectrum.

The example shown is a constructed illustration, where the time step is set
to very a large value in order to see the possible effects from limitations in the
frequency domain of the Fourier-Padé approximant. The upper bound of the
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Figure 10.2: Comparing µz(ω) of He, using fast Fourier transform (black line)
and a Fourier-Padé approximant (blue line). The x-axis is shown relative to
the time step ∆t = 1.5 a.u. used for the Fourier-Padé approximant.

time step should however be kept in mind when dealing with larger systems,
where long simulations are required for the Fourier-Padé to converge.

10.2.2 Frequency Convergence and the Time Domain

The visual table in Fig. 10.3 explores the relationship between the time
domain used for the Fourier-Padé approximant and the success of the frequency
estimation, using lithium hydride as the example molecule. Simulation details
are found in Section 10.1. The ordinary least squares fitting used the exact same
long dipole trajectory in all cases to limit the difference in error introduced by
the fitting. The error in all Figs. 10.3 to 10.6 was calculated on the time domain
tn ∈ [t0, 8000 a.u.] where t0 = 0.02 a.u., using ∆t = 0.01 a.u., measuring the
error on the fitting domain as well as for a longer extrapolation. There is a clear
trend in Fig. 10.3 of the error decreasing when the time domain tn ∈ [t0, Tf ] is
increased for estimating the frequencies. The error seems to be quite unaffected
by the step length, ∆t. This coincides well with the findings of Mattiat and
Luber17, who published on Padé accelerated Raman spectra computed using
RT-TDDFT, where they provided an analysis of the performance of the Fourier-
Padé approximant. They found that the convergence depends more on the
propagation time Tf than the step length ∆t. This is in good agreement with the
findings in Fig. 10.3, where the error trends also stem from convergence, or lack
thereof, of the Fourier-Padé approximant when searching for the frequencies.

The same study was repeated, results shown in Fig. 10.4, this time using the
same time domain for the fitting as for the frequency estimation. The estimated
frequencies are the same for the studies shown in Figs. 10.3 to 10.6, differing
only in the linear coefficients in µ̃z(t). Note that the colors in Figs. 10.3 to 10.6
use the same scaling. The error in Fig. 10.4 is very similar to that in Fig. 10.3,
suggesting that the error in the approximated dipole moment in these two
studies primarily stems from the frequency estimation, and not from the linear
fitting.
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Figure 10.3: Error of the approximated dipole moment µ̃z(t) of LiH. The x-
axis shows the time domain tn ∈ [t0, Tf ] and y-axis the time step ∆t used
when determining the frequencies. The function was fitted using µz(tn),
tn ∈ [t0, 1500 a.u.] and ∆t = 0.01 a.u. in all cases.
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Figure 10.4: Error of the approximated dipole moment µ̃z(t) of LiH. The x-axis
shows the time domain tn ∈ [t0, Tf ] and y-axis the time step ∆t used when
determining the frequencies. The function was fitted using µz(tn), tn ∈ [t0, Tf ]
and ∆t = 0.01 a.u. in all cases.

The available dipole trajectory must be split into fitting data and verification
data, in order to evaluate the success of the function approximation. Available
trajectory only includes the dipole moment on the time domain tn ∈ [t0, Tf ].
Since the error seems to be more sensitive to the estimated frequencies than
the least squares fitting, the frequencies will be estimated using the entire
available trajectory. The study in Fig. 10.4 was repeated twice again using

49



10.2. Parameter Study

first 75% and then 50% of the available data for the fitting. The results are
shown in Figs. 10.5 and 10.6, respectively. The error in Fig. 10.5 is slightly
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Figure 10.5: Error of the approximated dipole moment µ̃z(t) of LiH. The x-
axis shows the time domain tn ∈ [t0, Tf ] and y-axis the time step ∆t used
when determining the frequencies. The function was fitted using µz(tn),
tn ∈ [t0, 0.75 · Tf ] and ∆t = 0.01 a.u. in all cases.
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Figure 10.6: Error of the approximated dipole moment µ̃z(t) of LiH. The x-
axis shows the time domain tn ∈ [t0, Tf ] and y-axis the time step ∆t used
when determining the frequencies. The function was fitted using µz(tn),
tn ∈ [t0, 0.5 · Tf ] and ∆t = 0.01 a.u. in all cases.

higher compared to Fig. 10.4, where the entire available trajectory was used for
the fitting. The study using only half of the trajectory for fitting in Fig. 10.6
shows a clear increase in error compared to Fig. 10.4, including some seemingly
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10.2. Parameter Study

random jumps (e.g. at Tf = 1500 a.u., ∆t = 0.4 a.u.). In this limited study of
the verification window size, it seems that a verification window of 50% is too
large, while a verification window of 25% does not have a significant negative
impact on the quality of the fitting.

The visual table in Fig. 10.7 shows the number of estimated frequencies
found in the studies from in Figs. 10.3 to 10.6. The number of estimated
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Figure 10.7: Number of frequencies estimated in the dipole moment of LiH.
The x-axis shows the time domain tn ∈ [t0, Tf ] and y-axis the time step ∆t
used when determining the frequencies.

frequencies increases with the number of dipole data points provided to the
frequency estimator. By looking at the columns in Fig. 10.7, the number of
frequencies increases when a smaller time step (and hence more data points)
is used, while the error in Fig. 10.3 remains quite stable in the columns. This
suggests that the increase in number of frequencies does not correspond to actual
frequencies found, but rather that the clustering algorithm is less successful in
separating the actual frequencies from the redundant roots of Q(z(ω)). The
clustering of the roots to obtain the frequencies in the dipole moment does not
yield a clean separation, as shown in Fig. 10.8. The unclear separation between
the frequencies and the redundant roots of Q(z(ω)), as seen in Fig. 10.8, is to
various degrees representative for the observations made during this project.
The behavior of the frequency clusters of the dipole moment deviates from the
frequency clusters from synthetic signals. The synthetic signals were observed
to give a much clearer division between the estimated frequencies and the
redundant roots. The clustering of the potential frequencies of the synthetic
signal f(t) from Eq. (5.12) in Fig. 7.1 shows a clear division. A clear division
was also observed in cases of poor resolution for the synthetic signals, even
when the set of estimated frequencies was imprecise and incomplete.

It is unclear why the behavior is different for synthetic signals and the dipole
moment, but two possible explanations can be offered. Firstly, the synthetic
signals have no noise, while the dipole moment will suffer from a small but
increasing numerical error due to the numerical integration in the time domain.
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Figure 10.8: Clustering of possible frequencies found in µz(t) of LiH, using the
interval tn ∈ [t0, 1500 a.u.]. The green circles are estimated frequencies, while
the gray circles are deemed as redundancies.

Secondly, the dipole moment contains a large amount of frequencies with very
low intensities. These frequencies are not interesting for fitting of the dipole
moment, but may cause difficulties in the resolution of the Fourier-Padé.

When creating the function approximation µ̃d(t) to the dipole moment
µd(t), more than 50% of the available trajectory should be used for linear fitting.
Providing a large amount of data points when estimating frequencies seems to
increase the number of redundant roots among the estimated frequencies. The
success of the fitting depends greatly on the length of time domain, Tf , and
does not seem to be improved when reducing the step length, ∆t. When fitting
the dipole moment in the subsequent chapters, the available trajectory will
be divided into 75% fitting data and a 25% verification window. The number
of data points used for Fourier-Padé in the frequency estimator will be held
constant, such that ∆t will depend on the trajectory length, Tf .
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CHAPTER 11

Performance of the Fitting Model

This chapter shows the fitting of the full z-component of the dipole moment
µz(t) from RT-TDCCSD simulations. All simulation details can be found in
Section 10.1. Each study features a different atom or molecule, but the study
follows the same structure for all cases.

The dipole moment for each system was approximated using the dipole
trajectory µz(tn) with tn ∈ [t0, Tver], repeated several times using different
trajectory lengths. The frequencies were estimated using the full length of the
trajectory, tn ∈ [t0, Tver], but the time step was increased such that the number
of dipole data points provided to the frequency estimator should not exceed
7.5 · 103 time points. The linear coefficients were determined using the dipole
data µz(tn) with tn ∈ [t0, Tfit], using 75% of the trajectory

Tfit = 0.75 · Tver, (11.1)

leaving a verification window of 25%. The fitting and error measure use all
data points, i.e. using ∆t = 0.01. The error of the approximated dipole µ̃z(t) is
presented in tables, and is calculated using the coefficient of determination in
Eq. (8.19). The error is calculated separately on the fitting data, the verification
window and on the full test data:

Efit tn ∈ [t0, Tfit]
Ever tn ∈ (Tfit, Tver]
Efull tn ∈ [t0, Tfull],

(11.2)

using ∆t = 0.01 a.u. and t0 = 0.02 a.u.. The error Efit shows the error in
the fitting domain, Ever is the error in the verification domain, and Efull is
the benchmarking error showing the error in a long extrapolation. The dipole
moment of each atom and molecule has been calculated for a very long trajectory,
tn ∈ [0, Tfull] to evaluate if the extrapolation is truly stable and correct.

For each system, two cases of dipole extrapolation have been chosen for a
closer look. These examples are chosen to illustrate the significance of the size
of the error. The spectra shown in this chapter are calculated according to

Iz(ωi) = Sz(ωi)
maxωj Sz(ωj)

, (11.3)

where only the z-component of the absorption spectrum:

Sz(ω) = 8π2ω

3cFstr
Im[µz(ω)] (11.4)
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is included. Note that while S(ω) = Sx(ω) + Sy(ω) + Sz(ω), the same is not
necessarily true for I(ω). For symmetry reasons, the relative spectrum can only
be given as I(ω) = Ix(ω) + Iy(ω) + Iz(ω) for atoms. Each absorption spectrum
figure in this chapter will show the spectrum of the approximated dipole moment
µ̃z(t) extrapolated from Tver to Tfull, together with the spectrum obtained from
the short trajectory used for the function approximation tn ∈ [t0, Tver] and the
spectrum using all available data tn ∈ [t0, Tfull]. All computed spectra in this
chapter will use the lifetime parameter

γ = π

Nt∆t
, (11.5)

where ∆t = 0.01 will be used in all cases and Nt is the number of data points
used for the discrete Fourier transform.

11.1 Fitting Using Ordinary Least Squares

This first section will present the studies of the fitting model using the ordinary
least squares method for optimizing the linear coefficients. The studies of
each atom or molecule follow the structure described in the beginning of this
chapter. Some cases of extrapolation Tver for each system are chosen for a closer
look. These are chosen to illustrate the correlation between the quantitative
measure of error in the time domain and the more qualitative evaluation of the
approximated absorption spectra.

11.1.1 The Helium Atom

The full z-component of the dipole moment µz(t) of helium using the aug-
cc-pVTZ basis set was sampled up to Tfull = 6000 a.u.. The error from the
extrapolation using different trajectory lengths is presented in Table 11.1.

Table 11.1: Coefficient of determination when fitting µz(t) of He using OLS.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 1 · 10−10 2 · 10−5 1 · 10−1 1 · 105

20 1 · 10−10 1 · 10−10 2 · 10−8 1
50 4 · 10−12 4 · 10−12 1 · 10−8 1
75 8 · 10−15 4 · 10−12 1 · 10−8 5 · 102

100 7 · 10−15 2 · 10−13 1 · 10−8 3 · 10
150 2 · 10−13 1 · 10−11 1 · 10−8 4 · 10
200 1 · 10−12 3 · 10−11 1 · 10−8 2 · 10
300 1 · 10−12 5 · 10−11 1 · 10−8 4 · 10
400 2 · 10−12 1 · 10−10 2 · 10−8 9 · 10
500 3 · 10−13 3 · 10−11 1 · 10−8 7 · 10
600 5 · 10−12 2 · 10−10 1 · 10−8 5 · 10
750 2 · 10−11 3 · 10−10 1 · 10−8 2 · 10
1000 3 · 10−13 1 · 10−11 6 · 10−9 4 · 10
1250 2 · 10−12 1 · 10−10 1 · 10−8 5 · 10
1500 3 · 10−12 1 · 10−9 1 · 10−8 5 · 102

1750 2 · 10−10 2 · 10−9 2 · 10−8 2 · 10
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11.1. Fitting Using Ordinary Least Squares

The error of the extrapolation is approximately 10−8 for the long
extrapolation to Tfull, for all but the very smallest fitting trajectory. This
corresponds to a very good fit, as is shown in Fig. 11.1, where the spectrum
of the extrapolation from Tver = 20 a.u. is evaluated. The spectrum of the
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Figure 11.1: Evaluation of the extrapolation of µz(t) of He from 20 a.u. to
6000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

extrapolated dipole µ̃z(t) is indistinguishable from the actual high resolution
spectrum from the real-time simulations. The extrapolation is a significant
improvement over the short trajectory, which shows a very poor resolution
spectrum. The dipole trajectory in Fig. 11.2 was used for the extrapolation
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Figure 11.2: Comparison of the RT-TDCCSD dipole moment µz(t) of He
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

shown in Fig. 11.1. The dipole µz(t) and its approximation µ̃z(t) show no
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11.1. Fitting Using Ordinary Least Squares

visible difference.
Only the first case with Tver = 10 a.u. has a noteworthy higher error in the

full extrapolation, (Efull = 10−1). There is a significant error in the frequency
estimation in this case, as can be seen in Fig. 11.3. The most prominent
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Figure 11.3: Evaluation of the extrapolation of µz(t) of He from 10 a.u. to
6000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

peak (at ω ≈ 1 a.u.) is estimated well, though the two smaller peaks (between
2− 2.5 a.u.) are slightly shifted to the right. The approximated function µ̃z(t)
is shown in Fig. 11.4. The error on the fitting data is small (Efit = 10−10),
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Figure 11.4: Comparison of the RT-TDCCSD dipole moment µz(t) of He
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

and comparable in size to successful extrapolations in Table 11.1. The error in
the verification data (Ever = 10−5) is much larger compared to the successful
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11.1. Fitting Using Ordinary Least Squares

extrapolations (Ever ∈ [10−12, 10−9]), but still not visible, as seen in Fig. 11.4.
The jump in error from the fitting data to the verification data is very large
(Ever/Efit = 105), and can be seen as a warning of over-fitting.

11.1.2 The Hydrogen Molecule

In the simulations of the hydrogen molecule using the aug-cc-pVTZ basis set,
the z-component of dipole moment µz(t) was sampled up to Tfull = 8000 a.u..
The error in the extrapolation using different trajectory lengths is given
in Table 11.2. The error in the extrapolation to Tfull is larger for the

Table 11.2: Coefficient of determination when fitting µz(t) of H2 using OLS.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 1 · 10−4 1 · 10 3 9 · 104

20 2 · 10−5 8 · 10−1 2 5 · 104

50 2 · 10−8 6 · 10−6 1 · 10−3 3 · 102

75 7 · 10−9 4 · 10−7 1 · 10−4 5 · 10
100 1 · 10−9 1 · 10−7 9 · 10−6 1 · 102

150 3 · 10−10 2 · 10−8 6 · 10−6 5 · 10
200 6 · 10−11 1 · 10−8 5 · 10−6 2 · 102

300 3 · 10−11 2 · 10−10 2 · 10−7 8
400 2 · 10−11 2 · 10−10 1 · 10−7 1 · 10
500 3 · 10−11 3 · 10−10 3 · 10−8 8
600 1 · 10−10 2 · 10−10 1 · 10−8 2
750 1 · 10−10 2 · 10−10 1 · 10−8 1
1000 5 · 10−8 5 · 10−8 6 · 10−8 1
1250 2 · 10−10 7 · 10−10 1 · 10−8 3
1500 3 · 10−10 1 · 10−9 1 · 10−8 4
1750 3 · 10−10 2 · 10−9 1 · 10−8 6

hydrogen molecule compared to the helium atom. While the extrapolation
error of helium was Efull = 10−8 for all Tver ≥ 20 a.u., the same precision is
achieved for Tver ≥ 500 a.u. for hydrogen. The error in the extrapolation is
expected to increase in time. Since the full trajectory length of the hydrogen
molecule (Tfull = 8000 a.u.) is longer compared to that of the helium atom
(Tfull = 6000 a.u.), a direct comparison in the extrapolation error Efull will be
somewhat unbalanced. The extrapolation error of the hydrogen molecule might
appear to be higher simply because the extrapolation is longer compared to
that of the helium atom. The goal of the error measure is to find a convergence
criterion based on Efit and Ever, as the extrapolation error Efull will not be
known. The full trajectory length Tfull should correspond to a high resolution
spectrum in the development phase of the dipole fitting model. The two atoms
helium and beryllium therefore have somewhat shorter trajectories.

As seen in Fig. 11.5, the extrapolation error of Efull = 9 · 10−6 (for
Tver = 100 a.u.) is sufficient for a perfect approximation of the absorption
spectrum. This also gives a great improvement over the poor resolution spectrum
obtained by the trajectory used in the dipole extrapolation. The dipole data
µz(t) used for the extrapolation in Fig. 11.5, along with its approximation µ̃z(t),
is shown in Fig. 11.6. There is no visible difference between the two.
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Figure 11.5: Evaluation of the extrapolation of µz(t) of H2 from 100 a.u. to
8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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Figure 11.6: Comparison of the RT-TDCCSD dipole moment µz(t) of H2
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

The verification error (Ever = 1 · 10−7) of the successful extrapolation using
Tver = 100 a.u. is significantly lower than the verification error (Ever = 6·10−6) of
the extrapolation using Tver = 50 a.u.. The difference in the extrapolation error
is a little more than a hundred times larger for Tver = 50 a.u. (Efull = 1 · 10−3)
compared to that of Tver = 100 a.u. (Efull = 9 · 10−6). Still, the spectra in
Fig. 11.7 show only a very small difference between the true high resolution
spectrum and the spectrum obtained by the extrapolation. The difference
between the two spectra is not easily spotted, but is visible on the error line
Ĩz(ω)− Iz(ω) in the red area below the spectra. The error of the fitted function
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Figure 11.7: Evaluation of the extrapolation of µz(t) of H2 from 50 a.u. to
8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

µ̃z(t) in the verification window is too small to observe in Fig. 11.8.
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Figure 11.8: Comparison of the RT-TDCCSD dipole moment µz(t) of H2
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

The only two examples from Table 11.2 giving poor approximation to the
absorption spectrum were Tver = 10 a.u. and Tver = 20 a.u.. The spectrum of
the extrapolation using Tver = 20 a.u. is shown in Fig. 11.9. In this case, the
verification error (Ever = 8 · 10−1) and the extrapolation error (Efull = 2) was
much higher than the previous two cases. The ratio between the verification error
and the fitting error (Ever/Efit = 5 · 104) was also very high. The extrapolation
spectrum is missing significant peaks, and the existing peaks are not on the
correct location on the ω-axis. The error of the fitted function µ̃z(t) is clearly
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Figure 11.9: Evaluation of the extrapolation of µz(t) of H2 from 20 a.u. to
8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

visible in Fig. 11.10.
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Figure 11.10: Comparison of the RT-TDCCSD dipole moment µz(t) of H2
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

11.1.3 The Beryllium Atom

The dipole moment µz(t) was sampled up to Tfull = 6000 a.u. during the RT-
TDCCSD calculations of the beryllium atom. The calculations used the aug-
cc-pVTZ basis set. The error from the extrapolation using different trajectory
lengths is given in Table 11.3.
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Table 11.3: Coefficient of determination when fitting µz(t) of Be using OLS.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 2 · 10−8 2 · 10−1 3 1 · 107

20 4 · 10−5 7 · 10−2 1 2 · 103

50 3 · 10−6 3 · 10−4 2 · 10−1 1 · 102

75 2 · 10−7 2 · 10−5 4 · 10−3 1 · 102

100 6 · 10−7 1 · 10−5 2 · 10−3 2 · 10
150 6 · 10−10 5 · 10−8 2 · 10−5 9 · 10
200 6 · 10−11 6 · 10−9 6 · 10−7 9 · 10
300 1 · 10−11 6 · 10−9 3 · 10−7 5 · 102

400 4 · 10−11 4 · 10−11 8 · 10−10 1
500 3 · 10−11 3 · 10−11 5 · 10−10 1
600 2 · 10−12 4 · 10−12 4 · 10−10 3
750 1 · 10−10 1 · 10−10 5 · 10−10 1
1000 2 · 10−10 3 · 10−10 6 · 10−10 1
1250 2 · 10−9 2 · 10−9 3 · 10−9 1
1500 2 · 10−8 2 · 10−8 2 · 10−8 1
1750 2 · 10−8 2 · 10−8 2 · 10−8 1

The shortest trajectory yielding a completely successful extrapolation used
Tver = 150 a.u., as shown in Fig. 11.11. The spectrum of the extrapolation is
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Figure 11.11: Evaluation of the extrapolation of µz(t) of Be from 150 a.u. to
6000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

nearly indistinguishable from the actual high resolution spectrum, and a great
improvement over the spectrum obtained using the extrapolation data µz(tn),
tn ∈ [t0, Tver]. The extrapolation spectra using Tver = 75 a.u. and Tver = 100 a.u.
were also very good approximations. The extrapolation error (Efull = 2 · 10−5)
lies in between the three cases shown for the hydrogen molecule, while the
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verification error (Ever = 2 · 10−8) is lower for beryllium than for all three cases
for hydrogen (Ever ∼ 10−5). The dipole data used for the extrapolation in
Fig. 11.11 is shown in Fig. 11.12, along with its approximation.
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Figure 11.12: Comparison of the RT-TDCCSD dipole moment µz(t) of Be
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

The extrapolation error (Efull = 2 · 10−1) of Tver = 50 a.u. is comparable
in size to the extrapolation error (Efull = 1 · 10−1) of the dipole moment of
helium shown in Fig. 11.3. Like in the case of helium, the spectrum of the
extrapolated dipole moment of beryllium shows visible deviation from the actual
high resolution spectrum. This is shown in Fig. 11.13. Most of the peaks are
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Figure 11.13: Evaluation of the extrapolation of µz(t) of Be from 50 a.u. to
6000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in yellow,
the spectrum of the short trajectory is gray and long trajectory spectrum Iz(ω)
is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

approximated quite well, but there are several visible errors. This includes a
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cluster of unwanted oscillating peaks around ω ≈ 4.8 a.u.. The verification error
Ever = 3 · 10−4 corresponds to a visible error in the time domain, as can be seen
in Fig. 11.14. The approximated dipole moment µ̃z(t) is slightly larger than
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Figure 11.14: Comparison of the RT-TDCCSD dipole moment µz(t) of Be
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

the actual dipole moment µz(t) around t = 40 a.u.. There is a visible dominant
frequency with a period of ∼ 30 a.u.. The fitting data barely contains a full
period of the dominant frequency. The extrapolation spectra using Tver < 50 a.u.
gave poor approximations to the true high resolution spectrum.

The oscillations around ω ≈ 4.8 a.u. in Fig. 11.13 seem to be several
unwanted frequencies trying to make up for a missing frequency. This hypothesis
is strengthened by Fig. 11.15. Assuming that the good approximation of the
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Figure 11.15: A part of approximated dipole moment µ̃z(t) of Be, only including
the basis functions with frequencies ω ∈ [4.7, 4.9] a.u..

dipole moment using Tver = 150 a.u. has the correct frequencies with correct
amplitudes, then one may compare this to the poor approximation of the dipole
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moment using Tver = 50 a.u.. Only the frequency domain ω ∈ [4.7, 4.9] a.u. is
included in Fig. 11.15. While the good µ̃ seems to be dominated by a single
frequency, the bad µ̃ clearly consists of several frequencies. The unwanted
several frequencies are severely over-fitted on the short trajectory, causing the
oscillations in the spectrum.

11.1.4 Lithium Hydride

The error of µ̃z(t) of lithium hydride using the aug-cc-pVDZ basis set is given in
Table 11.4. The full dipole moment µz(t) was sampled up to Tfull = 8000 a.u..

Table 11.4: Coefficient of determination when fitting µz(t) of LiH using OLS.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 6 · 10−3 1 · 10 3 2 · 103

20 1 · 10−3 5 3 5 · 103

50 4 · 10−1 2 · 10 4 6 · 10
75 9 · 10−3 1 2 1 · 102

100 3 · 10−3 6 · 10−1 3 2 · 102

150 3 · 10−3 2 · 10−1 1 6 · 10
200 3 · 10−5 9 · 10−4 3 · 10−1 3 · 10
300 1 · 10−5 1 · 10−4 6 · 10−3 1 · 10
400 5 · 10−6 3 · 10−5 7 · 10−4 6
500 3 · 10−6 5 · 10−5 3 · 10−4 2 · 10
600 2 · 10−6 2 · 10−5 4 · 10−4 1 · 10
750 4 · 10−7 2 · 10−5 5 · 10−4 4 · 10
1000 6 · 10−8 3 · 10−6 5 · 10−5 5 · 10
1250 7 · 10−9 2 · 10−7 3 · 10−6 3 · 10
1500 1 · 10−9 8 · 10−8 8 · 10−7 6 · 10
1750 2 · 10−9 8 · 10−8 1 · 10−7 5 · 10

The extrapolations using Tver ≥ 1250 a.u. yields spectra indistinguishable
from the true high resolution spectrum of lithium hydride. Both the verification
error (Ever ∼ 10−8) and the extrapolation error (Efull ∈ (10−6, 10−8)) for these
cases strongly suggest that the extrapolation was successful. The spectrum for
the Tver = 1250 a.u. extrapolation is shown in Fig. 11.16, where the trajectory
used for the extrapolation has decent spectral resolution. The dipole data used
for the extrapolation in Fig. 11.16, along with the approximation µ̃z(t), is shown
in Fig. 11.17.

The extrapolations on data Tver ∈ [400, 750] a.u. display similar behavior in
Table 11.4. The verification error is Ever ∼ 10−5 and the extrapolation error
Efull ∼ 10−4. This is comparable to the hydrogen molecule using Tver = 50 a.u.,
with Ever = 6 · 10−6 and Efull = 1 · 10−3. The verification error was slightly
lower for the hydrogen molecule, but the ratio Ever/Efit = 3 · 102 was higher for
the hydrogen molecule than for the fitting of lithium hydride Ever/Efit ∼ 10.
The spectra obtained by the extrapolations on Tver ∈ [400, 750] a.u. of lithium
hydride are also comparable to the spectrum of hydrogen extrapolated from
Tver = 50 a.u., seen in Fig. 11.7. The worst of these spectra of lithium hydride
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Figure 11.16: Evaluation of the extrapolation of µz(t) of LiH from 1250 a.u.
to 8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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Figure 11.17: Comparison of the RT-TDCCSD dipole moment µz(t) of LiH
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

is shown in Fig. 11.18, where the approximated spectrum is close to true high
resolution spectrum. The spectrum of the dipole data used in the extrapolation
is quite crude, losing information about several of the peaks present in the
spectrum. The inaccuracies of the spectrum of the extrapolation are not easily
observable, with the exception of two narrowly spaced frequencies with opposite
amplitudes at ω ≈ 3.1 a.u.. Some additional discrepancies are visible in the
error area below the spectra, where Ĩz(ω) − Iz(ω) is shown. The other cases
Tver ∈ [500, 750] a.u. gave similar extrapolation spectra, but without the visible
error at ω ≈ 3.1 a.u.. The extrapolation spectrum in Fig. 11.18 is very similar
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Figure 11.18: Evaluation of the extrapolation of µz(t) of LiH from 400 a.u.
to 8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

to the spectra obtained when using Tver = 200 a.u. and Tver = 300 a.u., even
though the verification error of these two extrapolations is ten times higher.
The error in the verification window (Ever = 3 · 10−4) is too small to see in
Fig. 11.19, where the dipole moment µz(t) and its approximation µ̃z(t) is shown
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Figure 11.19: Comparison of the RT-TDCCSD dipole moment µz(t) of LiH
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

on the interval used for the extrapolation in Fig. 11.18.
Extrapolations using Tver ∈ [10, 75] a.u. all had large verification error

(Ever ≥ 1) and extrapolation error (Efull ≥ 1). Not surprisingly, the
approximated spectra were all of poor quality. The verification error when
using Tver = 100 a.u. and Tver = 150 a.u. was Ever ∼ 10−1. The case using
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Tver = 100 a.u. shows more signs of over-fitting (Ever/Efit = 2 · 102) compared
to the fitting using Tver = 150 a.u. (Ever/Efit = 6 · 10). In both cases, the
extrapolation spectra showed significant errors, but the Tver = 150 a.u. trajectory
gave a visibly better approximation.

11.1.5 The Water Molecule

The simulations of the water molecule, using the aug-cc-pVDZ basis set,
sampled the dipole moment µz(t) up to Tfull = 8000 a.u.. The error from
the extrapolation using different trajectory lengths is given in Table 11.5.

Table 11.5: Coefficient of determination when fitting µz(t) of H2O using OLS.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 1 · 10−3 1 · 10−1 4 9 · 10
20 9 · 10−3 6 · 10−1 5 · 10 6 · 10
50 7 · 10−3 1 · 10−1 3 2 · 10
75 4 · 10−3 2 · 10−1 2 4 · 10
100 2 · 10−3 7 · 10−2 4 · 10 3 · 10
150 3 · 10−3 3 · 10−1 2 8 · 10
200 1 · 10−3 1 · 10−1 2 1 · 102

300 2 · 10−3 6 · 10−2 1 3 · 10
400 2 · 10−3 1 · 10−1 1 5 · 10
500 8 · 10−4 2 · 10−1 6 · 10−1 3 · 102

600 6 · 10−4 3 · 10−2 5 · 10−1 4 · 10
750 2 · 10−3 2 · 10−2 5 · 10−1 1 · 10
1000 1 · 10−4 4 · 10−2 6 · 10−1 4 · 102

1250 1 · 10−4 2 · 10−3 2 · 10−2 2 · 10
1500 7 · 10−5 1 · 10−3 1 · 10−2 2 · 10
1750 6 · 10−5 5 · 10−3 2 · 10−2 9 · 10

In the case of the water molecule, a perfect spectrum was not achieved for
any of the Tver included in the study. The results when using Tver ≥ 1250 a.u.
were very similar, with an extrapolation error of Efull ∼ 10−2 and a verification
error of Ever ∼ 10−3. The resulting approximated spectrum is quite close to
the real high resolution spectrum, as seen in Fig. 11.20. The error is not easily
visible in the (relatively) dense spectrum, but the inaccuracies are exposed in
the error area showing Ĩz(ω)− Iz(ω) below the spectra. The spectral resolution
when using dipole trajectory on tn ∈ [t0, Tver] for the Fourier-transform is
also quite decent. The dipole trajectory used for the dipole approximation in
Fig. 11.16, along with its approximation, is shown in Fig. 11.17. There is no
visible difference between the real dipole moment µz(t) of the water molecule
and its approximation, µ̃z(t).

At this point there is reason to fear that the density of the spectrum
increases the difficulty of the dipole moment extrapolation. The length of the
trajectory needed for a successful extrapolation seems to increase with the size
and complexity of the system. This is not too surprising, as the main difficulty
of the dipole fitting is the frequency estimation. The frequency estimation is
in terms limited by the convergence of the Fourier-Padé approximant. The
challenge of dense spectra is a common problem for all methods of harmonic
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Figure 11.20: Evaluation of the extrapolation of µz(t) of H2O from 1250 a.u.
to 8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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Figure 11.21: Comparison of the RT-TDCCSD dipole moment µz(t) of H2O
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

inversion.1 The MO decomposition used to remedy this problem for the Fourier-
Padé approximant of RT-TDDFT absorption spectra in the work of Bruner et
al.12 will be studied in Section 12.3 for the RT-TDCCSD simulations in this
project.

The extrapolation using Tver = 400 a.u. shows a significant verification
error Ever = 2 · 10−1 and extrapolation error Ever = 6 · 10−1. The resulting
spectrum of the extrapolated dipole moment deviates visibly from the true
high resolution spectrum, as seen in Fig. 11.22. The approximated spectrum
coincides well with the true spectrum for low frequencies ω < 1.1 a.u., although
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Figure 11.22: Evaluation of the extrapolation of µz(t) of H2O from 500 a.u.
to 8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω). (I).

the normalization using a faulty peak at ω ≈ 1.4 a.u. consistently reduces the
height of the peaks of the approximated spectrum. The approximated spectrum
starts to deviate significantly for larger ω. This includes two phantom peaks
with opposite sign near ω = 4.6 a.u., and the extrapolation spectrum is quite
erroneous around the dense part at ω = 1.4 a.u.. As seen in Fig. 11.22, the
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Figure 11.23: Evaluation of the extrapolation of µz(t) of H2O from 500 a.u.
to 8000 a.u. using OLS. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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spectrum of the water molecule contains some very high energy transitions.
This figure is a continuation of the spectrum in Fig. 11.22. This part of the
spectrum is commonly discarded, but errors in this area will be present in
the evaluation of the fitting. The dipole trajectory used for the extrapolation
yielding the spectrum shown Figs. 11.22 and 11.23, along with its approximation,
is shown in Fig. 11.24. The difference between the dipole moment µz(t) and its
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Figure 11.24: Comparison of the RT-TDCCSD dipole moment µz(t) of H2O
(purple solid line) and its approximation µ̃z(t) (yellow dashed line).

approximation µ̃z(t) is apparent on the verification data.
The extrapolation error when using Tver < 400 a.u. is quite high, as seen

in Table 11.5. The approximated spectra in all these cases are poor. It was
observed that the dominant peak in all these cases came from a cluster of
pollution in the spectrum, of the same type that can be seen at ω ≈ 4.6 a.u. in
Fig. 11.22.

11.2 Fitting Using LASSO

The simulations in Section 11.1 were repeated, this time using the LASSO
method for determining the coefficients. The estimated frequencies are the
same, and the approximated dipole moment µ̃z(t) in these studies and the
studies in Section 11.1 differ only in the linear coefficients.

The LASSO method is iterative and terminates either if the error is lower
than a tolerance δ, or an upper limit for the number of iterations Niter is reached.
The maximum number of iterations was set to

Niter = 200Nω, (11.6)
where Nω is the number of estimated frequencies. The number of iterations was
set relative to the number of unknowns (2Nω), as each iteration only updates
one coefficient. This leaves an average of 100 iterations per parameter. The
tolerance parameter was set relative to the magnitude of the induced dipole
moment on the fitting trajectory tn ∈ [t0, Tfit]:

δ = 10−6 · maxn µz(tn)−minn µz(tn)
2 . (11.7)
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The shrinkage parameter was similarly set to

λ = 10−8 · maxn µz(tn)−minn µz(tn)
2 . (11.8)

All the sign of the coefficients of sine and cosine in µ̃z(t) were forced to follow
the form of linear response theory in Eq. (4.25). The coefficients were updated
in random order, setting the parameter random_state to 42 for reproducibility.
The details are otherwise as described in the beginning of this chapter.

11.2.1 The Helium Atom

The error from the extrapolation of the dipole moment of helium using the
aug-cc-pVTZ basis set is presented in Table 11.6. The dipole moment µz(t)
was sampled up to Tfull = 6000 a.u.. The extrapolation error when using

Table 11.6: Coefficient of determination when fitting µz(t) of He using LASSO.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 7 · 10−8 4 · 10−5 1 · 10−1 6 · 102

20 1 · 10−10 1 · 10−10 2 · 10−8 1
50 4 · 10−12 5 · 10−12 1 · 10−8 1
75 2 · 10−13 3 · 10−12 1 · 10−8 2 · 10
100 4 · 10−13 4 · 10−12 1 · 10−8 9
150 1 · 10−12 5 · 10−12 1 · 10−8 6
200 2 · 10−12 2 · 10−11 1 · 10−8 8
300 6 · 10−12 6 · 10−11 2 · 10−8 1 · 10
400 7 · 10−12 8 · 10−11 1 · 10−8 1 · 10
500 9 · 10−12 1 · 10−10 1 · 10−8 1 · 10
600 1 · 10−11 2 · 10−10 1 · 10−8 1 · 10
750 3 · 10−11 2 · 10−10 1 · 10−8 9
1000 5 · 10−11 3 · 10−10 1 · 10−8 6
1250 4 · 10−11 5 · 10−10 1 · 10−8 1 · 10
1500 8 · 10−11 8 · 10−10 1 · 10−8 1 · 10
1750 3 · 10−10 1 · 10−9 1 · 10−8 6

LASSO is very similar to the extrapolation error in Table 11.1 using OLS. In
both cases, the shortest trajectory Tver = 10 a.u. gives the extrapolation error
Efull = 1 · 10−1, while all the other trajectory lengths give almost insignificant
extrapolation error, Efull ∼ 10−8.

Both examples (Tver = 10 a.u. and Tver = 20 a.u.) of the helium atom
shown in greater detail when using OLS in Section 11.1.1 give the same spectra
when extrapolating using the LASSO method. The spectrum obtained by
extrapolating the dipole moment using Tver = 20 a.u. in Fig. 11.25 is a perfect
fit on the true high resolution spectrum, just like the OLS extrapolation in
Fig. 11.1.

The less accurate extrapolation using Tver = 10 a.u. shown in Fig. 11.26
is visibly different from the true high resolution spectrum. The extrapolation
spectrum using LASSO is indistinguishable from the extrapolation using OLS
in Fig. 11.3.
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Figure 11.25: Evaluation of the extrapolation of µz(t) of He from 20 a.u. to
6000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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Figure 11.26: Evaluation of the extrapolation of µz(t) of He from 10 a.u. to
6000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

11.2.2 The Hydrogen Molecule

The dipole moment µz(t) of the hydrogen molecule using the aug-cc-pVTZ basis
was sampled up to Tfull = 8000 a.u.. The error in the fitted function µ̃z(t) is
shown in Table 11.7. As for the helium atom, the extrapolation error Efull
of the hydrogen molecule is almost the same when using OLS and LASSO for
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Table 11.7: Coefficient of determination when fitting µz(t) of H2 using LASSO.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 2 · 10−3 3 · 10 3 2 · 104

20 4 · 10−3 1 2 3 · 102

50 4 · 10−7 8 · 10−6 1 · 10−3 2 · 10
75 8 · 10−8 3 · 10−7 1 · 10−4 4
100 2 · 10−8 8 · 10−8 6 · 10−6 4
150 4 · 10−9 2 · 10−8 6 · 10−6 4
200 2 · 10−10 1 · 10−8 5 · 10−6 5 · 10
300 4 · 10−11 2 · 10−10 1 · 10−7 4
400 3 · 10−11 2 · 10−10 1 · 10−7 8
500 8 · 10−11 2 · 10−10 1 · 10−8 3
600 1 · 10−10 2 · 10−10 1 · 10−8 1
750 1 · 10−10 3 · 10−10 2 · 10−8 2
1000 5 · 10−8 5 · 10−8 6 · 10−8 1
1250 2 · 10−10 7 · 10−10 1 · 10−8 3
1500 3 · 10−10 1 · 10−9 1 · 10−8 4
1750 3 · 10−10 2 · 10−9 1 · 10−8 5

optimizing the linear coefficients.
The example using Tver = 100 a.u. showed a slight improvement of the

LASSO method (Ever = 6 ·10−9) compared to the OLS method (Ever = 9 ·10−9).
While the error on the fitting data was ten times lower when using OLS
(Efit = 1 · 10−9) compared to LASSO (Efit = 2 · 10−8), LASSO showed no sign
of over-fitting (Ever/Efit = 4) while OLS shows increase in error from the fitting
data to the verification data (Ever/Efit = 1 · 102). The spectrum from the
extrapolation using LASSO is shown in Fig. 11.27. It is not possible to observe
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Figure 11.27: Evaluation of the extrapolation of µz(t) of H2 from 100 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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any difference between the extrapolated spectrum and the true high resolution
spectrum. The spectrum obtained by the extrapolation using OLS shown in
Fig. 11.5 has a small error around ω = 2.3 a.u., only visible in the error area
below the spectrum. The LASSO method provides a negligible improvement in
this case.

When the shorter trajectory (Tver = 20 a.u.) was used, the extrapolation
error was the same (Efull = 2) independent of the linear optimizing method.
LASSO showed less signs of over-fitting (Ever/Efit = 3 · 102) compared to OLS
(Ever/Efit = 5 · 104). The spectrum from the fitted function µ̃z(t) using LASSO
in Fig. 11.28 is identical to that using OLS in Fig. 11.9.
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Figure 11.28: Evaluation of the extrapolation of µz(t) of H2 from 50 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

11.2.3 The Beryllium Atom

The error of the extrapolation of µz(t) of the beryllium atom calculated using
the aug-cc-pVTZ basis set is found in Table 11.8. The full extrapolation was to
Tfull = 6000 a.u.. The extrapolation error is very similar to what is found in
Table 11.3 when using the OLS method for optimizing the linear coefficients.
The jump in error from the fitting data to the verification data is generally
higher when using the OLS method compared to LASSO on shorter trajectories
Tver ≤ 400 a.u..

The approximated spectrum obtained from extrapolating the Tver = 150 a.u.
trajectory is shown in Fig. 11.29. The extrapolation error was Efull = 2 · 10−5

independent of the method used for the linear regression. Both extrapolation
spectra, using LASSO in Fig. 11.29 and OLS in Fig. 11.11 have the same,
negligible small errors compared to the true high resolution spectrum.

The extrapolation error when using Tver = 50 a.u. was Efull = 2 · 10−1 for
both methods for linear regression. The resulting spectra are however quite
different. All the errors in the absorption spectrum of µ̃z(t) using LASSO in
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Table 11.8: Coefficient of determination when fitting µz(t) of Be using LASSO.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 4 · 10−6 9 · 10−1 3 2 · 105

20 2 · 10−4 4 · 10−2 9 · 10−1 2 · 102

50 5 · 10−5 3 · 10−4 2 · 10−1 5
75 4 · 10−6 4 · 10−5 4 · 10−3 1 · 10
100 2 · 10−6 3 · 10−5 2 · 10−3 1 · 10
150 1 · 10−8 4 · 10−8 2 · 10−5 3
200 2 · 10−10 3 · 10−9 6 · 10−7 1 · 10
300 3 · 10−10 3 · 10−9 3 · 10−7 1 · 10
400 4 · 10−11 5 · 10−11 1 · 10−9 1
500 3 · 10−11 3 · 10−11 5 · 10−10 1
600 2 · 10−12 7 · 10−12 5 · 10−10 3
750 1 · 10−10 1 · 10−10 5 · 10−10 1
1000 2 · 10−10 3 · 10−10 6 · 10−10 1
1250 2 · 10−9 2 · 10−9 3 · 10−9 1
1500 2 · 10−8 2 · 10−8 2 · 10−8 1
1750 2 · 10−8 2 · 10−8 2 · 10−8 1
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Figure 11.29: Evaluation of the extrapolation of µz(t) of Be from 150 a.u. to
6000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

Fig. 11.30 can also be seen in Fig. 11.13. The spectrum using OLS has an
additional error, where the spectrum seems to oscillate around ω ≈ 4.8 a.u., as
well as two narrowly spaced peaks with opposite sign at ω ≈ 0.9 a.u.. These
errors are eliminated when forcing all coefficients to be positive. In this case, the
extrapolation spectrum obtained using LASSO to enforce positive coefficients
gave a better approximation to the true high resolution spectrum.
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Figure 11.30: Evaluation of the extrapolation of µz(t) of Be from 50 a.u. to
6000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

11.2.4 Lithium Hydride

The lithium hydride calculations using aug-cc-pVDZ sampled the z-component
of the dipole moment up to Tfull = 8000 a.u.. The error in the fitting of µz
using LASSO is found in Table 11.9. The extrapolation error is either exactly

Table 11.9: Coefficient of determination when fitting µz(t) of LiH using LASSO.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 7 · 10−1 3 3 5
20 5 · 10−2 6 · 10−1 2 1 · 10
50 6 · 10−1 1 · 10 1 2 · 10
75 2 · 10−2 8 · 10−1 2 3 · 10
100 1 · 10−2 6 · 10−1 2 5 · 10
150 2 · 10−2 2 · 10−1 1 1 · 10
200 5 · 10−4 2 · 10−3 3 · 10−1 5
300 2 · 10−5 2 · 10−4 6 · 10−3 1 · 10
400 1 · 10−5 3 · 10−5 4 · 10−4 3
500 5 · 10−6 7 · 10−5 3 · 10−4 1 · 10
600 7 · 10−6 2 · 10−5 3 · 10−4 3
750 7 · 10−6 7 · 10−5 3 · 10−4 1 · 10
1000 3 · 10−7 2 · 10−6 2 · 10−5 8
1250 3 · 10−8 3 · 10−7 3 · 10−6 8
1500 2 · 10−8 7 · 10−8 3 · 10−7 4
1750 1 · 10−8 9 · 10−8 1 · 10−7 8

the same or marginally lower compared to the error of OLS fitting found in
Table 11.4. The jump in error Ever/Efit is consistently lower for the LASSO
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method, often by a factor of 10.
The extrapolation using Tver = 1250 a.u. gives a spectrum indistinguishable

from the true high resolution spectrum, as seen in Fig. 11.31. This was also the
case when using OLS, as is shown in Fig. 11.16.
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Figure 11.31: Evaluation of the extrapolation of µz(t) of LiH from 1250 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

The extrapolation spectrum using the Tver = 400 a.u. trajectory is shown in
Fig. 11.32. By comparing the error of the extrapolation OLS method and the
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Figure 11.32: Evaluation of the extrapolation of µz(t) of LiH from 400 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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LASSO method when looking at the error tables for Tver = 400 a.u., the results
seem very similar. The extrapolation error of the OLS method (Efull = 7 · 10−4)
is only slightly higher than that of LASSO (Efull = 4 · 10−4). The verification
error was the same for both (Ever = 3 · 10−5), while the jump in error was only
twice as large for OLS (Ever/Efit = 6) compared to LASSO (Ever/Efit = 3).
The spectra of the two methods are, however, quite different. The spectrum
obtained by LASSO in Fig. 11.32, shows only small inaccuracies in the spectrum.
The OLS spectrum in Fig. 11.18 has all the same minor errors as the LASSO-
spectrum, as well as a clear error at ω ≈ 3.1 a.u.. This is the only easily visible
error in the spectrum. In this case, the LASSO method outperforms the OLS
method.

11.2.5 The Water Molecule

The z-component of the dipole moment was sampled up to Tfull = 8000 a.u.
when simulating absorption spectrum of the water molecule using the aug-cc-
pVDZ basis set. The error in the approximated dipole moment µ̃z(t) is shown
in Table 11.10. Comparing the table to Table 11.5 using OLS reveals the same

Table 11.10: Coefficient of determination when fitting µz(t) of H2O using
LASSO.

Tver [a.u.] Efit Ever Efull Ever/Efit
10 6 · 10−3 1 · 10−1 4 2 · 10
20 1 · 10−1 8 · 10−1 5 8
50 1 · 10−2 7 · 10−2 3 6
75 5 · 10−3 2 · 10−1 2 3 · 10
100 8 · 10−3 1 · 10−1 2 1 · 10
150 8 · 10−3 3 · 10−1 2 4 · 10
200 4 · 10−3 1 · 10−1 1 3 · 10
300 5 · 10−3 1 · 10−1 7 · 10−1 2 · 10
400 4 · 10−3 1 · 10−1 6 · 10−1 3 · 10
500 2 · 10−3 1 · 10−1 5 · 10−1 6 · 10
600 4 · 10−3 3 · 10−2 4 · 10−1 7
750 4 · 10−3 2 · 10−2 5 · 10−1 4
1000 5 · 10−3 3 · 10−2 4 · 10−1 5
1250 2 · 10−4 1 · 10−3 2 · 10−2 8
1500 2 · 10−4 2 · 10−3 1 · 10−2 1 · 10
1750 1 · 10−3 6 · 10−3 8 · 10−3 5

pattern as seen for lithium hydride. The extrapolation error Efull is slightly
lower when using LASSO, and the ratio Ever/Efit is consistently a higher when
using OLS.

The approximated spectrum in Fig. 11.33 shows the result of the extrapola-
tion using Tver = 1250 a.u.. The error in the approximated spectrum is very
similar to that in Fig. 11.20, using OLS.

The extrapolation spectrum using Tver = 400 a.u. shown in Fig. 11.34 is an
improvement over the OLS-spectrum shown in Fig. 11.22. There are several
unwanted negative peaks in the OLS-spectrum which are not present in the
LASSO-spectrum.
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Figure 11.33: Evaluation of the extrapolation of µz(t) of H2O from 1250 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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Figure 11.34: Evaluation of the extrapolation of µz(t) of H2O from 500 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

There seems to be no clear way to correlate the verification error to the more
qualitative assessment of the approximated spectra. The verification error when
Tver < 600 a.u. is Ever ∼ 10−1. The extrapolation spectra using Tver < 600 a.u.
were all greatly improved by using LASSO compared to the OLS method. Using
the LASSO method, the extrapolation spectrum using Tver = 10 a.u. is very
inaccurate. The accuracy increases steadily when increasing the trajectory
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length. The approximated spectrum is significantly better by Tver = 200 a.u.,
as shown in Fig. 11.35. The observed trend of stable improvement in the
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Figure 11.35: Evaluation of the extrapolation of µz(t) of H2O from 200 a.u. to
8000 a.u. using LASSO. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).

extrapolation spectra when increasing the trajectory length up to Tver = 500 a.u.
is not visible in the error measure in Table 11.10.

In general, the LASSO method provides a small improvement to OLS when
fitting the dipole moment. The extrapolation error is consistently somewhat
lower, and the method is slightly less prone to over-fitting. The computational
cost of the iterative LASSO method is higher than the OLS method, which has
a closed form solution. The computational cost of the LASSO method is still
negligible compared to the actual RT-TDCCSD calculations.

Restricting the sign of the linear coefficients to follow the form in Eq. (4.25)
obtained by linear response theory seems to be a correct assumption, based on
the few systems used in this study. The restriction proved useful, as it prevents
the unphysical oscillations of narrowly spaced redundant roots seen in some of
the OLS spectra.

11.3 Comparison with Fourier-Padé Spectra

A Fourier-Padé approximant is created when fitting the dipole moment, µz(t).
This section will compare the spectra obtained by extrapolating the dipole
moment, as presented in Sections 11.1 and 11.2, with the spectra one may obtain
by simply using the Fourier-Padé approximant created when estimating the
frequencies. The Fourier-Padé approximant used in the frequency estimation is
the same regardless of the choice of method of linear regression for optimizing the
linear coefficients in µ̃z(t). The Fourier-Padé approximant offers no quantitative
measure of error, and the comparison between the fitting model and the Fourier-
Padé relies on the qualitative evaluation of the absorption spectra.
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Each figure in this section correspond to extrapolation spectra shown for
both the OLS and LASSO method in Sections 11.1 and 11.2, respectively. The
Fourier-Padé approximant in each figure is evaluated on the same discrete
frequency grid as the high resolution absorption spectrum obtained by the
long RT-TDCCSD simulation. The Fourier-Padé spectra use the same lifetime
parameter as their corresponding high resolution spectra.

11.3.1 The Helium Atom

Starting with the helium atom using the aug-cc-pVTZ basis set. The Fourier-
Padé spectrum coincides well with the high resolution spectrum when using
Tver = 20 a.u. and ∆t = 0.01 a.u., as seen in Fig. 11.36. The relative intensities
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Figure 11.36: Evaluation of the Fourier-Padé approximant created from a
20 a.u. dipole trajectory of He. The high resolution spectrum Iz(ω) is shown in
black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

of the peaks of the Fourier-Padé are only slightly wrong. Although the error in
the Fourier-Padé spectrum should not be deemed significant, the approximated
spectrum was in this case a little improved by using the fitting model. As shown
in Figs. 11.1 and 11.25, the spectra using the fitting model were indistinguishable
from the true high resolution spectrum independent of the linear regression
method.

The Fourier-Padé approximant fails to reproduce the spectrum when using
Tver = 10 a.u. and ∆t = 0.01 a.u., as seen in Fig. 11.37. In this case, only
the most prominent peak is present in the spectrum. The extrapolation of the
approximated function µ̃z(t) is an improvement compared to the Fourier-Padé
in this case. Both the spectra using approximations to the dipole moment
shown in Figs. 11.3 and 11.26 contain all the peaks. The intensities are not
completely correct, and all but the most prominent peak are slightly shifted.
The fitting model, independent of method of linear regression, outperforms the
Fourier-Padé in this case.
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Figure 11.37: Evaluation of the Fourier-Padé approximant created from a
10 a.u. dipole trajectory of He. The high resolution spectrum Iz(ω) is shown in
black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

11.3.2 The Hydrogen Molecule

Moving on to the hydrogen molecule, calculated using the aug-cc-pVTZ basis
set. The spectrum of the Fourier-Padé using Tver = 100 a.u. and ∆t = 0.02 a.u.
is shown in Fig. 11.38. The Padé spectrum is very close to the true high
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Figure 11.38: Evaluation of the Fourier-Padé approximant created from a
100 a.u. dipole trajectory of H2. The high resolution spectrum Iz(ω) is shown in
black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

resolution spectrum, but several minor errors in the intensities can be seen in
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11.3. Comparison with Fourier-Padé Spectra

the error area under the spectra. In this case, the fitting model created spectra
nearly indistinguishable from the true spectrum. This can be seen in Figs. 11.5
and 11.27, using OLS and LASSO respectively to optimize the linear coefficients.
The fitting gave in this case a slightly better result than the Fourier-Padé.

When using a shorter trajectory, Tver = 20 a.u. and ∆t = 0.01 a.u., the Padé
spectrum, as seen in Fig. 11.39, fails to reproduce the absorption spectrum.
The spectra obtained by using the fitting model were also poor approximations,
as seen in Figs. 11.9 and 11.28.
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Figure 11.39: Evaluation of the Fourier-Padé approximant created from a
20 a.u. dipole trajectory of H2. The high resolution spectrum Iz(ω) is shown in
black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

11.3.3 The Beryllium Atom

When using the Tver = 150 a.u. and ∆t = 0.02 a.u. dipole trajectory of the
beryllium atom using the aug-cc-pVTZ basis set, both the Fourier-Padé and
the fitting model yield spectra which are almost indistinguishable from the true
high resolution spectrum. This can be seen in Figs. 11.11, 11.29 and 11.40.
Only minor inaccuracies may be spotted in the error area under the spectra in
all three cases.

Both the Fourier-Padé and the extrapolated dipole moment using OLS fail to
reproduce the absorption spectrum when using Tver = 50 a.u. and ∆t = 0.01 a.u..
The Padé spectrum in Fig. 11.41 is missing several peaks, and the peak at
ω ≈ 5.1 a.u. is flipped. The spectrum of the approximated function, as also
seen in Fig. 11.13, replicates the existing peaks in the true spectrum better
than the Padé spectrum. On the other hand, the spectrum of the extrapolated
dipole moment µ̃z using OLS contains several additional peaks, closely placed
with alternating sign. Neither of the approximated spectra are satisfactory.
The extrapolation using LASSO provides the best spectrum in this case, as
seen in Fig. 11.30. This extrapolation results in the same spectrum as the OLS
extrapolation, but without the nonphysical oscillations.
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Figure 11.40: Evaluation of the Fourier-Padé approximant created from a
150 a.u. dipole trajectory of Be. The high resolution spectrum Iz(ω) is shown in
black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

1 2 3 4 5
ω [a.u.]

0

1

re
la

tiv
e 

in
te

ns
ity

   
  

RT-TDCCSD, Tf = 6000 a.u.

RT-TDCCSD, Tf = 50 a.u.

Fourier-Padé, ∆t= 0.01 a.u.

-0.2

0

0.2

                                        error

Figure 11.41: Evaluation of the Fourier-Padé approximant created from a
50 a.u. dipole trajectory of Be. The high resolution spectrum Iz(ω) is shown in
black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

11.3.4 Lithium Hydride

The dipole moment of lithium hydride was calculated using the aug-cc-pVDZ
basis set. The Padé spectrum using Tver = 1250 a.u. and ∆t = 0.17 a.u. is
shown in Fig. 11.42. While the spectra from the extrapolations in Figs. 11.16
and 11.31 are both a perfect fit, the Padé spectrum shows small errors in the

84



11.3. Comparison with Fourier-Padé Spectra

0.5 1.0 1.5 2.0 2.5 3.0 3.5
ω [a.u.]

0

1
re

la
tiv

e 
in

te
ns

ity
   

  
RT-TDCCSD, Tf = 8000 a.u.

RT-TDCCSD, Tf = 1250 a.u.

Fourier-Padé, ∆t= 0.17 a.u.

-0.2

0

0.2

                                        error

Figure 11.42: Evaluation of the Fourier-Padé approximant created from a
1250 a.u. dipole trajectory of LiH. The high resolution spectrum Iz(ω) is shown
in black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

peak intensities. This size in error is insignificant, and the Fourier-Padé has
the advantage of being less computationally demanding.

When reducing the dipole trajectory to Tver = 400 a.u. using ∆t = 0.06 a.u.,
the Padé spectrum still provides an adequate approximation to the true high
resolution spectrum, as seen in Fig. 11.43. As seen in Figs. 11.18 and 11.32, the
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Figure 11.43: Evaluation of the Fourier-Padé approximant created from a
400 a.u. dipole trajectory of LiH. The high resolution spectrum Iz(ω) is shown
in black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).
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error is generally similar for the Padé spectrum and the extrapolation spectra.
The exception is the large error at ω ≈ 3.1 a.u. in the extrapolated spectrum of
OLS. In this case, the Padé approximant provides a more correct spectrum than
the OLS extrapolation, while the Fourier-Padé and the LASSO extrapolation
give even results.

11.3.5 The Water Molecule

Lastly, looking at the water molecule using the aug-cc-pVDZ basis set, the
differences are small between the Padé spectrum using Tver = 1250 a.u. and
∆t = 0.17 a.u. in Fig. 11.44 and the corresponding extrapolation spectra in
Figs. 11.20 and 11.33. They all have small but visible inaccuracies, and all three
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Figure 11.44: Evaluation of the Fourier-Padé approximant created from a
1250 a.u. dipole trajectory of H2O. The high resolution spectrum Iz(ω) is shown
in black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).

provide decent approximations to the real-time absorption spectrum.
The H2O Fourier-Padé spectrum using Tver = 500 a.u. and ∆t = 0.07 a.u. is

shown in Fig. 11.45. Much like the extrapolation spectra in Figs. 11.22 and 11.34,
the spectrum at ω < 1.1 a.u. seems to be correct, only scaled wrong because
the most intense peak at ω ≈ 1.4 a.u. is incorrect. The peak at ω ≈ 1.4 a.u.
Padé spectrum seems to have the wrong sign. The extrapolation using LASSO
for the linear optimization gave the best result in this case.

As a general observation, the Fourier-Padé approximant seems to provide
a very good approximation to the true high resolution spectrum in the cases
where the fitting model gave nearly perfect approximations. The extrapolation
spectra using LASSO are consistently equally good or better approximations to
the absorption spectrum in all the cases presented in this comparison study. The
extrapolation spectra using OLS mostly compare favorably to the Fourier-Padé
spectra in this study, with the exception of the cases where the OLS spectra
contain nonphysical oscillations.
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Figure 11.45: Evaluation of the Fourier-Padé approximant created from a
500 a.u. dipole trajectory of H2O. The high resolution spectrum Iz(ω) is shown
in black, the spectrum of the short trajectory is gray, and the spectrum using the
Fourier-Pade ĨM/M

z (ω) is blue. The red area shows the error ĨM/M
z (ω)− Iz(ω).
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CHAPTER 12

Molecular Orbital Decomposition

This chapter contains a study of the MO decomposition of the dipole moment
in RT-TDCCSD theory. The first section shows a study of similarity between
the components µzpq(t), made in order to investigate alternative decomposition
criteria. The significance of the occupied to virtual transitions is also studied.
Lastly, the MO decomposition will be used in the fitting model, using LiH as
example system.

12.1 Degeneracy and Similarity in the Molecular Orbitals

This section shows a study of the correlation between components in the electric
dipole moment, using the algorithm described in Section 9.2.

The MO components of the dipole moment can be thought of as elements of
an upper triangular matrix, as is used to visualize the similarity clustering of the
dipole moment components in Figs. 12.1, 12.3, 12.5, 12.7 and 12.9. Each square
in the figures represents one matrix element, where the lower (inconsequential)
triangle is colored gray. The elements of the upper triangle are color coded
following three rules:

• white square: Forbidden transition, |P zpq| < 10−10. The component was
not stored, as it should be zero.

• black square: Dissimilar component µzpq. The component is not
sufficiently correlated, i.e. rpq,rs < (1− ε) for all other µzrs.

• colored square: The color itself is unimportant, but all components
sharing color are similar. If µzpq is a given color, then it is similar to at
least one other component µzrs with the same color, i.e. rpq,rs ≥ (1− ε).

Each dipole clustering figure contains the clustering using ε = 10−10 to the left
and ε = 10−1 to the right. The left clustering contains groups with components
that are similar to almost numerical precision. The gray lines separates the
degenerate from the non-degenerate orbitals. The MO energies are found in
Table A.1.

The clustering of the MO decomposition of the helium atom is shown in
Fig. 12.1. There are two things to note. Firstly, there is a large number
of white squares corresponding to forbidden transitions. This is the case for
all the studied systems, which greatly reduces the memory load of the MO
decomposition. Secondly, by looking at the left plot showing the groups formed
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Similarities in µzpq of He

Figure 12.1: Groups of dipole moment components of He formed by similarity.
Each square in the upper triangle corresponds to a component µzpq, and is color
coded according to the explanation in the beginning of this section.

with the strict criterion for similarity (ε = 10−10), one can observe all groups
are formed by degenerate orbital combinations. Atoms belong to the kugel
symmetry group Kh and the orbitals are therefore expected to exhibit symmetry.
Both the helium atom and the beryllium atom have high levels of degeneracy
among their orbitals. The symmetry was not imposed on the calculations of the
RHF reference states for any of the systems, but well converged calculations are
expected to have correct spatial symmetry. An example of degenerate orbital
combinations could be the dark blue group in the left plot in Fig. 12.1, consisting
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Figure 12.2: Dipole components of degenerate MOs of helium. The three
components correspond to the dark blue group on the left plot in Fig. 12.1.
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of µz2,7, µz3,8 and µz4,9. As can be seen in Table A.1, the orbitals ψ2, ψ3 and ψ4,
and ψ7, ψ8 and ψ9 are degenerate. The three dipole moment components are
indistinguishable, as seen in Fig. 12.2.

There is an exception to the rule of identical dipole components for the
degenerate orbital combinations, only seen in the dipole moment of the hydrogen
molecule. In the left plot in Fig. 12.3, there are two places where there are
four degenerate combinations of MOs, but only two of them form a group. One
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q
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ε= 10−1

Similarities in µzpq of H2

Figure 12.3: Groups of dipole moment components of H2 formed by similarity.
Each square in the upper triangle corresponds to a component µzpq, and is color
coded according to the explanation in the beginning of this section.

example is the four components µz20,30, µz20,31, µz21,30 and µz21,31. In this case,
the orbitals ψ20 and ψ21 are degenerate, and ψ30 and ψ31 are degenerate. In
the left plot in Fig. 12.3, µz20,30, µz21,31 are light purple, while µz20,31, µz21,30 are
black. The explanation may be found in numerical instability. As may be seen
in Fig. 12.4, the components are actually very similar, but have vastly different
scaling. While µz20,30 and µz21,31 are of size ∼ 10−10, the two other components
µz20,31 and µz21,30 are ∼ 10−18. In the other example, the black squares µz30,35
and µz31,36 are of size ∼ 10−19. These components are all numerically zero,
and can be speculated to correspond to forbidden transitions. Calculations
with numbers this small are numerically unstable. Two-fold degeneracy among
the orbitals is expected, as the point group D∞h of H2 consists of both one
and two-dimensional irreducible representations. The dipole components of
degenerate orbital combinations for all the systems shown in Figs. 12.1, 12.3,
12.5, 12.7 and 12.9 clearly contain the same frequencies and the same relative
intensities. Treating them separately in a dipole fitting would therefore be
repeating the same work multiple times. In a MO decomposition, degenerate
orbital combinations should therefore be treated as one.

The number of groups is reduced when using the more relaxed similarity
criterion (ε = 10−1) for all the systems in Figs. 12.1, 12.3, 12.5, 12.7 and 12.9.
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Figure 12.4: Dipole components of degenerate MOs of H2 . These components
are one of two degenerate sets of MOs which did not form a group in the left
plot in Fig. 12.3.

There is no obvious pattern in the grouping using the relaxed similarity criterion.
However, as seen for the similarity clustering of the beryllium atom in Fig. 12.5,
the groups often contain components sharing an orbital. For example, the
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Figure 12.5: Groups of dipole moment components of Be formed by similarity.
Each square in the upper triangle corresponds to a component µzpq, and is color
coded according to the explanation in the beginning of this section.

light blue group in the right plot in Fig. 12.5 contains the components µz1,31,
µz5,31 and µz14,31. Although the same color is often repeated in a column or
row, there seems to be no clear pattern that can be used to foresee which MO
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components will be similar. The relaxed similarity criterion (ε = 10−1) still
yields groups with visibly similar components, as illustrated in Fig. 12.6. The
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Figure 12.6: Three similar dipole components of the beryllium atom. The three
components correspond to the light blue group in the right plot in Fig. 12.5.

three components µz1,31, µz5,31 and µz14,31, shown in light blue in the right plot
in Fig. 12.5, are dominated by the same frequency. The similarity measure does
not mind the difference in magnitude.

The clustering of components of µz(t) of LiH is shown in Fig. 12.7. The
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Figure 12.7: Groups of dipole moment components of LiH formed by similarity.
Each square in the upper triangle corresponds to a component µzpq, and is color
coded according to the explanation in the beginning of this section.

molecular orbitals are either non-degenerate or degenerate to the second degree.
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This is expected, as the point group C∞v of LiH consists of one and two-
dimensional irreducible representations. When using the relaxed similarity
criterion (ε = 10−1), a large number of components form a group, assigned
with the color dark green. The components µzpq(t) in large dark green group
in the right plot in Fig. 12.7 are shown in Fig. 12.8. The group contains 36
different components, but the group is still clearly dominated by the same
frequency. An important thing to note, is that the components are both parallel
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Figure 12.8: The 36 similar dipole components of the lithium hydride,
corresponding to the dark green group in the right plot in Fig. 12.7.

and anti-parallel with respect to the dominant frequency. The components in
Fig. 12.8 are normalized, so the figure does not show the correct magnitude,
but the anti-parallel components will still cancel each other out to some degree.

The similarity clusters of the dipole components of the water molecule
are shown in Fig. 12.9. Unlike the other systems, the water molecule has no
degenerate orbitals. The molecule belongs to the C2v point group, which only
contains one-dimensional irreducible representations. The similarity clustering
with the relaxed criterion ε = 10−1 also shows little similarity between the
components compared to the other systems.

From the limited examples shown in this section, only degeneracy in
the molecular orbitals offers guaranteed strong similarity between the MO
components of the dipole moment. There is no conclusive result on how best
to determine a reduced orbital space among non-degenerate orbitals when
storing the decomposed dipole moment. Creating groups based on similarity
clustering of the dipole moment can alleviate the computational cost of the
post-processing, such as the dipole moment fitting or when simply using a
Fourier-Padé approximant, but will not reduce the memory load of the real-time
simulations.
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Figure 12.9: Groups of dipole moment components of H2O formed by similarity.
Each square in the upper triangle corresponds to a component µzpq, and is color
coded according to the explanation in the beginning of this section.

12.2 Transitions from Occupied to Virtual Orbitals

The MO decomposition of the dipole moment in RT-TDDFT often only includes
the transitions from occupied to virtual orbitals.13 This section investigates
whether or not only including the occupied-virtual transitions makes a reasonable
approximation in CCSD-theory.

The plots in Figs. 12.10, 12.12, 12.14, 12.16 and 12.18 all compare the
spectra Sz(ω) from the full z-component µz(t) to the spectra obtained by only
including the occupied to virtual transitions:

µz(t) ≈
∑
ia

µia(t), (12.1)

where i denotes occupied orbitals and a denotes virtual orbitals. The Fourier
transform of the dipole moment will use the lifetime parameter γ = π

Nt∆t , where
∆t = 0.01 a.u..

The occupied-virtual transitions make up for almost all the peaks in the
absorption spectrum of the helium atom using the aug-cc-pVTZ basis, as seen
in Fig. 12.10. Only a small part of the two most prominent peaks are missing
in the occupied-virtual spectrum. The helium atom only has three non-zero
dipole components µzia. The spectrum of each component is shown on a short
interval in Fig. 12.11. The component µz0,4 is almost the sole contributor to
the largest peak around ω ≈ 0.9 a.u.. Both peaks around ω ≈ 2.3 a.u. have
the same component µz0,18 as their most significant contributor. The spectrum
shows a small negative peak at ω ≈ 2.4 a.u.. Although the full spectrum
should only contain positive peaks, the separate components may have negative
contributions. This is also the case for the RT-TDDFT decomposition.12
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Figure 12.10: Evaluating the absorption spectrum Sz(ω) of He when only
including occupied-virtual MO transitions. The FFT used tn ∈ [t0, 3000 a.u.).
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Figure 12.11: Absorption spectra of the individual components µzia of He.

The occupied-virtual spectrum of the hydrogen molecule using the aug-cc-
pVTZ basis set shown in Fig. 12.12 is also very similar to the spectrum of the
full z-component. Some of the intensities in the occupied-virtual spectrum are
slightly lower, and a small peak at ω ≈ 1.4 a.u. is missing. There are nine µzia
components for the hydrogen molecule. These are shown on a short interval in
Fig. 12.13. One could hope that the MO decomposition of the dipole moment
could enable assignment of the peaks in the absorption spectrum to specific
molecular orbital transitions. There seems to be no clear way to assign the
peaks, as both µz01 and µz03 give significant contributions to the largest peak, at
ω ≈ 0.47 a.u.. The same orbital transition µz01 is also the largest contributor to
both visible peaks in Fig. 12.13.

95



12.2. Transitions from Occupied to Virtual Orbitals

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ω [a.u.]

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

4π
ω

3c
Im

[α
zz

(ω
)]

[a
.u
.]

all MO transitions
occupied to virtual

Figure 12.12: Evaluating the absorption spectrum Sz(ω) of H2 when only
including occupied-virtual MO transitions. The FFT used tn ∈ [t0, 4000 a.u.).
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Figure 12.13: Absorption spectra of the individual components µzia of H2.

The spectrum only containing the dipole components µzia of the beryllium
atom using the aug-cc-pVTZ basis set is shown in Fig. 12.14. The occupied-
virtual spectrum is missing a small peak at ω ≈ 0.9 a.u., but otherwise the
intensities are only marginally smaller than those of the full spectrum, Sz(ω).
The beryllium atom with the aug-cc-pVTZ basis set has eight non-zero occupied-
virtual dipole components, which are shown on a short interval of high energy
transitions in Fig. 12.15. The high energy transitions ω > 4 a.u. correspond to
core excitations, ψ0 → ψa. While the peak at ω ≈ 5.1 a.u. has µz0,31 as a clear
dominant contributor, the peak at ω ≈ 4.2 a.u. has several contributors which
add up to a significant peak in the spectrum.
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Figure 12.14: Evaluating the absorption spectrum Sz(ω) of Be when only
including occupied-virtual MO transitions. The FFT used tn ∈ [t0, 3000 a.u.).
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Figure 12.15: Absorption spectra of the individual components µzia of Be.

As seen in Fig. 12.16, the spectrum of lithium hydride using the aug-cc-pVDZ
basis set only containing the dipole components corresponding to transitions
from occupied to virtual MOs deviates somewhat more from the spectrum
using the full dipole µz(t) compared to the previous cases. This is maybe
not surprising, as the lowest unoccupied orbital ψ2 has a negative eigenvalue
(ε = −0.0080780 a.u.). There are 24 occupied-virtual dipole components. The
occupied to virtual transitions make up for most of the spectrum ω < 4 a.u., but
do not include the low intensity peaks around ω = 7 a.u.. These high energy
transitions with low intensities are not significant to reproduce the absorption
spectrum. The spectra of the µzia components are shown in Fig. 12.17. For
the lower energy transitions ω < 0.5 a.u., the most significant components are
transitions from the valence orbital ψ1 to the virtual orbitals.
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Figure 12.16: Evaluating the absorption spectrum Sz(ω) of LiH when only
including occupied-virtual MO transitions. The FFT used tn ∈ [t0, 4000 a.u.).
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Figure 12.17: Absorption spectra of the individual components µzia of LiH.
Showing a total of 24 components. The most visible are µz1,19 (light blue), µz1,18
(light green), µz1,10 (pink) and µz1,2 (green).

The occupied-virtual spectrum of the water molecule using the aug-cc-pVDZ
basis is shown in Fig. 12.18. The spectrum contains 62 µzia components. The
part of the spectrum shown in Fig. 12.19 shows a lot of noise among the
components. The two most prominent components in this figure are µz3,37
(purple line) and µz4,36 (orange line). Although the intensity of this area is low,
the spectral density is high. This makes it difficult to estimate the frequencies in
this area. The very high energy transitions ω ≈ 20 a.u. are shown in Fig. 12.20.
All of the visible peaks correspond to transitions from the core orbital ψ0.
These high energy parts of the spectrum are usually not of interest. Limiting
the dipole components to only include transitions from valence orbitals to the
virtual orbitals with lower orbital energies might simplify the fitting of the
dipole moment.
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Figure 12.18: Evaluating the absorption spectrum Sz(ω) of H2O when only
including occupied-virtual MO transitions. The FFT used tn ∈ [t0, 4000 a.u.).
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Figure 12.19: Absorption spectra of the individual components µzia of H2O.
The figure contains 62 components, but the two most visible are µz3,37 (purple)
and µz4,36 (orange)

From the small set of systems included in this study, the spectra containing
exclusively the transitions from occupied to virtual orbitals are very similar to
the full spectrum, Sz(ω). The intensities in the spectra are either the same or
slightly lower when only including the occupied-virtual components, µzia.

The RT-TDCCSD spectra are approximations to the FCI spectra. A more
rigorous approach to determine if the occupied-virtual transitions are sufficient
for a decent approximation would be to compare them to the FCI spectra and
spectra from less computationally heavy methods or smaller basis sets. For the
occupied-virtual transition spectrum to be useful, it should provide a significantly
better approximation to the FCI spectrum compared to cheaper methods. The
field strength must be sufficiently weak for the RHF reference state to maintain a
good approximation to the time-dependent CC state throughout the simulation.
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Figure 12.20: Absorption spectra of the individual components µzia of H2O.
The figure contains 62 components, but all the visible components include the
core orbital, µz0,a. The two most visible are µz0,27 (light blue) and µz0,24 (light
green).

The RT-TDCCSD spectra of He and H2 are equivalent to the FCI spectra, and
in these cases the occupied-virtual transitions yield almost the same spectra.

12.3 Fitting the Decomposed Dipole Moment

The following study explores the fitting of the decomposed dipole moment,
using lithium hydride with the aug-cc-pVDZ basis set as example system. The
fitted function is given by

µ̃z(t) =
∑
p≤q

µ̃zpq(t), (12.2)

where µ̃zpq(t) is the approximation of µzpq(t). The details of the fitting are
otherwise the same as in Section 11.1, using OLS to determine the linear
coefficients. The MO components of the dipole moment showed negative
interference in the previous section. The sign of the coefficients of the
components µzpq(t) will therefore be unknown.

The MO decomposition of the dipole moment µz(t) of LiH was sampled up
to Tfull = 4000 a.u., which will be used to calculate the extrapolation error,
Efull. The first section will show the fitting using all MO components, while
the latter two sections will limit the spectra to only include transitions from
occupied to virtual orbitals and valence to virtual orbitals, respectively.

12.3.1 The Full z-Component

The extrapolation error Efull in Table 12.1 is given for the approximation of the
full dipole moment µz(t), as well as two approximations using MO decomposition.
The first decomposition groups degenerate components together and all other
components are treated separately. This means that the components sharing
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color in the left plot Fig. 12.7 are summed up and approximated by one
function, while all components which are colored black are treated separately.
The second decomposition uses similarity clustering with δ = 10−1. Similarly
to the degeneracy decomposition, the black components shown in the right plot
in Fig. 12.7 are then treated separately, while the components sharing color are
summed up and approximated by a single function.

Table 12.1: Coefficient of determination when fitting µz(t) of LiH, using MO
decomposition.

Efull
Tver [a.u.] decomposed similarity clusters not decomposed

10 2 2 3
20 2 2 3
50 2 2 4
75 2 2 2
100 1 9 · 10−1 2
150 7 · 10−1 5 · 10−1 8 · 10−1

200 1 · 10−1 1 · 10−1 3 · 10−1

300 2 · 10−2 1 · 10−2 4 · 10−3

400 2 · 10−3 1 · 10−3 5 · 10−4

500 6 · 10−3 7 · 10−3 2 · 10−4

600 1 · 10−3 1 · 10−3 2 · 10−4

750 8 · 10−4 4 · 10−4 3 · 10−4

1000 4 · 10−4 5 · 10−4 3 · 10−5

1250 7 · 10−6 1 · 10−5 1 · 10−6

1500 8 · 10−7 2 · 10−6 3 · 10−7

1750 2 · 10−7 2 · 10−7 1 · 10−7

The extrapolation error Efull was calculated using Tfull = 4000 a.u., even
though the full dipole µz(t) was sampled up to Tfull = 8000 a.u.. This choice
was made to simplify comparison with the results in the upcoming sections.

The extrapolation error is not significantly reduced when using the MO
decomposition. In most cases, the extrapolation error is lowest without the
decomposition. The MO decomposition using degeneracy consists of 133
components, and is therefore 133 times more expensive than simply fitting
the entire z-component of the dipole moment, µz(t). Using similarity clustering
reduces the number of components to 77, which is still a large increase in
computational cost. For the MO decomposition to be useful, there should be a
significant improvement to justify the extra computational cost.

The error in the approximated spectrum when using MO decomposition by
degeneracy in Fig. 12.21 is very similar to that using MO decomposition based
on similarity clustering in Fig. 12.22. There is generally several more small
inaccuracies in both of the extrapolated spectra using decomposition compared
to the spectrum in Fig. 11.18 not using decomposition. The extrapolation on
the full dipole moment µ̃z(t) in Fig. 11.18 has a large error at ω ≈ 3.1 a.u. which
is not seen in the extrapolation spectra using decomposition. This is however
not a general trend, as such phantom oscillations were observed for some of the
other trajectory lengths Tver when fitting the decomposed dipole moment. This
type of pollution in the extrapolation spectrum may be eliminated by using the
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12.3. Fitting the Decomposed Dipole Moment

LASSO method and requiring all coefficients to be positive for the full dipole
moment µz(t). The individual MO components are not guaranteed to have
positive peaks in their absorption spectra, and one can therefore not restrict
the coefficients to be positive when fitting the components separately.
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Figure 12.21: Evaluation of the extrapolation of µz(t) of LiH from 400 a.u.
to 8000 a.u., using MO decomposition by degeneracy. The spectrum of the
extrapolation Ĩz(ω) is shown in yellow, the spectrum of the short trajectory is
gray and long trajectory spectrum Iz(ω) is shown in black. The red area shows
the error Ĩz(ω)− Iz(ω).
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Figure 12.22: Evaluation of the extrapolation of µz(t) of LiH from 400 a.u. to
8000 a.u., using MO decomposition by similarity clustering. The spectrum of
the extrapolation Ĩz(ω) is shown in yellow, the spectrum of the short trajectory
is gray and long trajectory spectrum Iz(ω) is shown in black. The red area
shows the error Ĩz(ω)− Iz(ω).
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12.3.2 Occupied to Virtual Transitions

In this section, the dipole moment will be given by

µz(t) ≈
∑
ia

µzia(t), (12.3)

only including the MO components corresponding to transitions from occupied
orbitals ψi ∈ {ψ0, ψ1} to virtual orbitals ψa ∈ {ψ2, . . . , ψ31}. The MO
decomposition treats all components µzia(t) separately. The extrapolation
error of the dipole moment only consisting of transitions from occupied to
virtual orbitals is given in Table 12.2.

Table 12.2: Coefficient of determination when fitting µz(t) of LiH, using MO
decomposition. Only using transitions from occupied to virtual orbitals.

Efull
Tver [a.u.] decomposed not decomposed

10 2 4
20 2 6
50 2 2
75 2 2
100 1 1
150 4 · 10−1 4 · 10−1

200 7 · 10−2 3 · 10−1

300 8 · 10−3 6 · 10−3

400 6 · 10−4 6 · 10−4

500 6 · 10−4 3 · 10−4

600 4 · 10−4 4 · 10−4

750 6 · 10−4 3 · 10−4

1000 2 · 10−4 1 · 10−5

1250 7 · 10−6 1 · 10−6

1500 3 · 10−7 8 · 10−7

1750 2 · 10−7 2 · 10−7

The fitting of the dipole moment without decomposition has very similar
extrapolation error when only using transitions from the occupied to virtual
orbitals to when all transitions are included.

Using the MO decomposition in the fitting model seems to have no clear
advantage, but the fitting of the decomposed dipole moment using occupied to
virtual transitions is improved compared to Table 12.1. The extrapolation error
when only including occupied to virtual transitions in Table 12.2 is very similar
with and without the decomposition, while the error was slightly larger for the
decomposed dipole moment in Table 12.2, including all dipole components.

The error in the extrapolation spectra using Tver = 400 a.u. with and
without using the MO decomposing is very similar, as can be seen in Figs. 12.23
and 12.24. The extrapolation spectrum in Fig. 12.23 using MO decomposition
is an improvement to the extrapolation spectra using decomposition including
all transitions in Figs. 12.21 and 12.22.
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Figure 12.23: Evaluation of the extrapolation of µz(t) ≈
∑
ia µ̃

z
ia(t) of LiH

from 400 a.u. to 4000 a.u., using MO decomposition. The spectrum of the
extrapolation Ĩz(ω) is shown in yellow, the spectrum of the short trajectory is
gray and long trajectory spectrum Iz(ω) is shown in black. The red area shows
the error Ĩz(ω)− Iz(ω).
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Figure 12.24: Evaluation of the extrapolation of µz(t) ≈
∑
ia µ̃

z
ia(t) of LiH from

400 a.u. to 4000 a.u.. The spectrum of the extrapolation Ĩz(ω) is shown in
yellow, the spectrum of the short trajectory is gray and long trajectory spectrum
Iz(ω) is shown in black. The red area shows the error Ĩz(ω)− Iz(ω).
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12.3.3 Valence to Virtual Transitions

In this section, the transitions from the core orbital ψ0 will also be omitted.
The dipole moment will be given by

µz(t) ≈
∑
a

µz1a(t) (12.4)

only including the MO components corresponding to transitions from the valence
orbital ψ1 to virtual orbitals ψa ∈ {ψ2, . . . , ψ31}. The MO decomposition treats
all components µz1a(t) separately. The extrapolation error of the dipole moment
only consists of transitions from the valence orbital to virtual orbitals is given
in Table 12.3.

Table 12.3: Coefficient of determination when fitting µz(t) of LiH, using MO
decomposition. Only using transitions from the valence orbitals to the virtual
orbitals.

Efull
Tver [a.u.] decomposed not decomposed

10 2 3
20 2 7
50 2 1 · 10
75 2 2
100 1 2
150 4 · 10−1 4 · 10−1

200 7 · 10−2 5 · 10−1

300 7 · 10−3 6 · 10−3

400 3 · 10−4 3 · 10−4

500 4 · 10−4 5 · 10−4

600 3 · 10−4 2 · 10−4

750 6 · 10−4 3 · 10−4

1000 2 · 10−4 2 · 10−5

1250 3 · 10−6 5 · 10−7

1500 2 · 10−7 8 · 10−8

1750 3 · 10−8 4 · 10−8

Fitting of the valence-virtual dipole moment without decomposition shows
slightly lower extrapolation error compared to the fitting of the full z-component
and the valence-virtual dipole in Tables 12.1 and 12.2, respectively. Not including
the core orbitals might have somewhat simplified the fitting of the dipole moment.
There seems to be no clear trend in Table 12.3 of the extrapolation error being
either improved nor worsened by using MO decomposition.

The spectra only including the dipole components corresponding to
transitions from the valence orbital to the virtual orbitals are shown in Figs. 12.25
and 12.26. As in the previous cases, the error in the extrapolation spectra using
Tver = 400 a.u. with and without using the MO decomposing is very similar.
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Figure 12.25: Evaluation of the extrapolation of µz(t) ≈
∑
a µ̃

z
1a(t) of LiH

from 400 a.u. to 4000 a.u., using MO decomposition. The spectrum of the
extrapolation Ĩz(ω) is shown in yellow, the spectrum of the short trajectory is
gray and long trajectory spectrum Iz(ω) is shown in black. The red area shows
the error Ĩz(ω)− Iz(ω).
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Figure 12.26: Evaluation of the extrapolation of µz(t) ≈
∑
a µ̃

z
1a(t) of LiH

from 400 a.u. to 4000 a.u., using MO decomposition. The spectrum of the
extrapolation Ĩz(ω) is shown in yellow, the spectrum of the short trajectory is
gray and long trajectory spectrum Iz(ω) is shown in black. The red area shows
the error Ĩz(ω)− Iz(ω).
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CHAPTER 13

Summary and Conclusion

This final chapter concludes this master thesis. Staring with a summary of
the discussions of the results of the studies made in this project, the chapter
will move on to reflect on future development of the fitting model. Lastly, the
conclusion of this mater project is presented.

13.1 Overview of the Discussion

This section provides a summary of the discussions given when presenting the
results. The summary focuses on a broader view compared to the more detailed
discussions in the previous chapters.

13.1.1 Evaluation of the Fitting Model

The error in the fitted dipole moment µ̃z(t) decreased when increasing the
trajectory length used in the fitting. This trend was observed for all the studied
systems regardless of the method of regression, as seen in Tables 11.1 to 11.10.
The error of the fitted dipole moment µ̃z(t) using LASSO was very similar to
the error when using OLS. The LASSO method constrained the sign of the
coefficients, using the form of the first order perturbation correction of the
dipole moment shown in Eq. (4.25). The LASSO method gave marginally, but
consistently, lower error compared to the OLS method.

The parameter study in Section 10.2.2 indicates that the error in the fitting
model is dominated by the frequency estimation. When the frequencies were
estimated using trajectory length Tf , the error remained almost unchanged
when using ≥ 100%, 100% or 75% of the trajectory for the fitting of the linear
coefficients. This can be seen in Figs. 10.3 to 10.5. These figures also show the
same trend as in the Fourier-Padé study of Mattiat and Luber17. The error is
determined by the trajectory length Tf , and not by the step length ∆t. Looking
at Figs. 10.3 to 10.5 showing the error along with Fig. 10.7 even suggests that
increasing the step length might be beneficial when the trajectory is longer.
The number of estimated frequencies was seen to increase when the time step
was decreased, without significant improvement in the fitting.

In general, the fitting method gave equally good or slightly better
approximations to the true high resolution spectra compared to the Fourier-Padé
approximant. The difference was very small in the cases where the fitting model
produced spectra indistinguishable from the true high resolution spectra. These
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examples are shown in Figs. 11.1, 11.5, 11.11 and 11.16, where the OLS method
was used, and the cases using LASSO are shown in Figs. 11.25, 11.27, 11.29
and 11.31. In these cases, the error in the Fourier-Padé shown in Figs. 11.36,
11.38, 11.40 and 11.42 was negligible, giving the Fourier-Padé an advantage as
it is cheaper.

When neither method produced perfect spectra, the fitting model generally
produced better approximations to the true spectra. The helium atom (using
the aug-cc-pVTZ basis) serves as an example. The spectrum in Fig. 11.37
shows that the Fourier-Padé approximant failed to provide all but the most
prominent peak. The spectra obtained from the extrapolations using the same
trajectory length account for all the peaks in the spectrum, although the peaks
were slightly shifted. These spectra from the extrapolation using OLS and
LASSO are shown in Figs. 11.3 and 11.26, respectively.

In some cases, the spectrum of the extrapolated dipole moment contained
unwanted peaks when using OLS to determine the coefficients. These unwanted
peaks consisted of two or more narrowly spaced peaks with alternating sign.
An illustrative example is the beryllium atom (using the aug-cc-pVTZ basis).
The failed OLS fitting is shown on Fig. 11.13. In this case, the Fourier-Padé
approximant shown in Fig. 11.41 also failed, where one of the prominent peaks
was flipped. Only the spectrum obtained from the LASSO fitting shown in
Fig. 11.30 gave a decent approximation to the true high resolution spectrum.
In other cases where the OLS fitting showed unwanted peaks, the Fourier-
Padé approximant and the LASSO fitting achieved similar accuracy in the
approximation of the spectrum. The OLS fitting of the dipole moment of
lithium hydride (using the aug-cc-pVDZ basis) seen in Fig. 11.18 also contained
such a pollution in the spectrum. The corresponding spectra obtained by the
Fourier-Padé in Fig. 11.43 and the LASSO fitting in Fig. 11.32 both provided
fairly accurate approximations to the absorption spectrum.

13.1.2 The Convergence Criterion

The convergence criterion must be based on the available data, meaning that
only Ever and Efit from Eq. (11.2) may be used in such a criterion. The most
important observation will therefore be the correlation between the error in
the verification window Ever and the accuracy of the approximated absorption
spectrum. This self-evaluation gives the fitting model an advantage to the
methods of harmonic inversion. No final convergence criterion was found for
the fitting model in this project, but several observations were made.

When the verification error of the fitted function µ̃z(t) was around
Ever ∼ 10−5, the corresponding spectra were mostly decent approximations.
A verification error of Ever ∼ 10−6 gave very good approximations, while
Ever ∼ 10−7 mostly corresponded to an almost perfect approximation to the
absorption spectrum. The approximated spectra were indistinguishable from
the true high resolution spectra when the verification error was even smaller,
Ever < 10−7.

A verification error of Ever ≥ 1 gave in all cases very bad approximations
to the absorption spectrum. A verification error of Ever ∼ 10−4 meant visible
inaccuracies in the extrapolation spectra, but in several cases still gave quite
decent approximations. The same was true for Ever ∼ 10−3, and even cases with
a verification error of Ever ∼ 10−2 gave acceptable spectra. In these cases, the
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success of the extrapolation was also determined by the measure of over-fitting,
Ever/Efit. For the fitted functions µ̃z(t) using OLS to optimize the coefficients,
the extrapolation would only be stable enough if Ever/Efit < 103. The LASSO
method was moderately less prone to over-fitting. When using LASSO to
determine the linear coefficients, the extrapolation spectra were decent only if
Ever/Efit < 102. A verification error of Ever ∼ 10−1 could be anything from a
poor approximation to a relatively decent spectrum with visible error.

From analyzing the limited number of systems in this study, it appears
that the convergence criterion should not only include the verification error
Ever, but also consider the ratio between the verification error and the fitting
error, Efit. A high ratio Ever/Efit is a sign of over-fitting, and was shown to
be a sign of unstable extrapolation. A larger scale study is needed in order to
determine the correlation between the measured error in the time domain and
the observed accuracy of the approximated spectrum. It is clear that there is a
trade-off between the accuracy of the extrapolation and the length of the dipole
trajectory.

13.1.3 Molecular Orbital Decomposition

The spectra were seen to be dominated by contributions of the dipole components
µzia corresponding to transitions between an occupied and a virtual orbital, as
seen in Figs. 12.10, 12.12, 12.14, 12.16 and 12.18. The MO decomposition was
not found to be suited for assigning molecular orbital transitions to the peaks
in the spectrum. As seen in Figs. 12.11, 12.13, 12.15, 12.17 and 12.19, each of
the components µzia contributed to several peaks, and a single component was
seen to be the largest contributor to several peaks in the spectrum. Assigning
the same orbital transition to several peaks would not make sense.

The MO decomposition in RT-TDCCSD seems to be less helpful compared
to the MO decomposition for the Fourier-Padé approximant using RT-TDDFT
simulations.12 The extrapolation error in Tables 12.1 to 12.3 did not decrease
when using the fitting model on the decomposed dipole moment of lithium
hydride (using the aug-cc-pVDZ basis set). Limiting the fitting of the dipole
moment to only include the transitions from the valence orbitals to the virtual
orbitals was seen to slightly improve the approximated dipole moment µ̃z(t) for
lithium hydride. For larger systems, it may simplify the fitting of the dipole
moment to use the frozen core approximation. This would avoid the high energy
core excitations. Further testing is needed for a conclusive result.

13.2 Future Work

The fitting model was developed in the limited time of a master thesis, and
there are naturally many studies to be done and alternative approaches worth
exploring. The newly developed model therefore has a lot of potential for
improvement. This section reflects on some prospective changes.

13.3 Improving Frequency Estimation

The result of the extrapolation of the dipole moment relies heavily on the
frequency estimation. The method for estimating the frequencies has several
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areas which have potential for improvement.
Finding the roots of of the polynomial Q(z) in the Fourier-Padé approximant

was observed to be the most computationally demanding part in the fitting
model. Finding a faster algorithm to obtain the roots of Q(z) would improve
the usability of the fitting model.

The fitting model could be stabilized by finding a better way to separate
out the roots of Q(z) corresponding to actual frequencies from the vast number
of redundant roots.

The estimated frequencies suffer from imprecision when shorter dipole
trajectories are used. Further development of the fitting model could include
non-linear optimization methods to improve the estimated frequencies, such as
various versions of gradient decent. This could potentially significantly decrease
the necessary dipole trajectory length for a satisfactory extrapolation.

Other methods for frequency estimation should also be explored. Only
the Fourier-Padé approximant was tested for estimating the frequencies of the
methods of harmonic inversion. The filter-diagonalization method6 could be a
potential alternative for estimating frequencies.

Another alternative could be to use an estimate of the fundamental frequency,
as is common in the four-parameter sine fitting48. The dipole moment would
then be a truncated Fourier series using the estimated fundamental frequency.

13.3.1 Larger Scale Testing

Testing the fitting model on more systems may reveal trends and weaknesses
which may be used to further develop the model. This should include larger
molecules than the small systems included in this thesis, to see how the fitting
model handles denser spectra.

It would also be interesting to see if the fitting model is more successful
when using the frozen core approximation. This should effectively limit the
range of frequencies by removing the high energy core excitations.

The fitting model has only been tried out on dipole data obtained by
RT-TDCC theory. A natural next step would therefore be to test the model
obtained by other electronic structure models, like for example RT-TDCI theory
or RT-TDDFT. The Fourier-Padé approximant was improved when using MO
decomposition for RT-TDDFT dipole data.12 The MO decomposition could
potentially work better when using the fitting model on RT-TDDFT dipole
data.

The correlation between the fitting error in the time domain and the more
qualitative assessment of the resulting spectra should be tested extensively.
This is needed in order to conclusively find a reliable convergence criterion such
that automatic termination of the real-time simulations may be enabled.

13.4 Restrictive Models

Restricting the fitting model based on knowledge about the physical properties of
the electric dipole moment is key to avoid over-fitting on short trajectories. The
induced dipole moment of the few systems included in this study was successfully
approximated using the form of the first order correction in Eq. (4.25), obtained
through linear response theory. The form of the induced dipole moment was
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derived using the delta-pulse specifically, and it is therefore unknown if the
assumption will hold when using other types of laser fields. In order to exclude
many-photon transitions, the upper limit of the field strength could also be
investigated. The limit might vary for different molecules.

Restricting the fitting model has potential to greatly stabilize the extrapola-
tion of the dipole moment. Adding assumptions which restrict the form of the
dipole moment is therefore encouraged, but mathematical proof is needed to
survey the limitations this could enforce on the use case of the fitting model.

Tailoring the fitting model with additional knowledge of the dipole moment
function form might require a more flexible method than the methods for linear
regression used in this thesis. Artificial neural networks could be an alternative,
given that the physics would guide the architecture of the neural network.

13.5 Conclusion

In this master thesis, a fitting model was developed for creating a function
µ̃(t) to approximate the electric dipole moment µ(t) obtained from real-time
time-dependent coupled cluster simulations. The approximated function µ̃(t)
was used to extrapolate the dipole moment in order to achieve high resolution
absorption spectra.

The extrapolation of the full z-component of the dipole moment of He, H2
and Be obtained by RT-TDCCSD calculations using the aug-cc-pVTZ basis set
was highly successful. The extrapolations gave completely accurate spectra from
short trajectories of µz(t). The fitting model required only dipole trajectories
up to Tv = 20 a.u. for the helium atom, Tv = 100 a.u. for the hydrogen molecule
and Tv = 150 a.u. for the beryllium atom. The spectra from the extrapolated
functions µ̃z were then indistinguishable from that obtained by long simulations
(up to Tf = 6000 a.u. for He and Be and up to Tf = 8000 a.u. for H2).

When extrapolating the z-component of the dipole moment of LiH from RT-
TDCCSD calculations using the aug-cc-pVDZ basis set, the fitting model needed
a dipole trajectory computed up to Tv = 1250 a.u. in order to obtain a perfect
match with the true high resolution spectrum obtained by sampling the dipole
moment up to Tf = 8000 a.u. from the real-time simulations. The spectrum
was well approximated when using dipole trajectories Tv ≥ 300 a.u., except
for the occasional presence of two or more narrowly spaced additional peaks
with alternating sign. This kind of pollution in the approximated spectrum was
eliminated by enforcing the expected sign of the coefficients, found using linear
response theory. This more restricted form of the dipole moment worked well
for all the systems included in this study, improving the stability and accuracy
of the extrapolations.

The difficulty of extrapolating the dipole moment was seen to increase
with the spectral density. The fitting model was unable to perfectly reproduce
the high resolution spectrum (Tf = 8000 a.u.) for the water molecule using
the aug-cc-pVDZ basis. Enforcing the form of the dipole moment from linear
response theory greatly improved the accuracy of the approximated spectra of
the water molecule, giving decent approximations, though with visible errors in
the spectrum when using Tv ≥ 300 a.u. for the dipole fitting.

Combining the fitting model with molecular orbital decomposition was not
seen to improve the accuracy of the dipole extrapolation. The extrapolation of
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µz(t) of lithium hydride was slightly improved when only including the dipole
components corresponding to transitions from valence to virtual orbitals.

A convergence criterion for the fitting model was investigated, using the
coefficient of determination for the measure of error. The short dipole trajectory
used for the extrapolation was divided into fitting data, used in the linear
regression, and verification data. A perfectly approximated dipole moment
gave errors which conclusively indicated the success of the fitting. A decent,
but not perfect approximation to the spectrum gave more unreliable errors to
interpret. Although the convergence criterion is not yet conclusively determined,
the self-evaluation of the fitting model provides an advantage over the methods
of harmonic inversion, like the Fourier-Padé approximant.

The initial investigations of the fitting model show great potential. The
current model already successfully extrapolated the dipole moment from shorter
dipole trajectories of atoms and small molecules. The next step in developing
the fitting model will be to test the model on dipole data from real-time time-
dependent density functional theory. A larger scale study of the convergence
criterion should also be conducted.

112



Appendices

113



APPENDIX A

Molecular Orbital Energies

The molecular orbital decomposition used in the fitting of the electric dipole
moment in Section 12.3 exploited degeneracy among the molecular orbitals.
The discussion regarding similarity clustering of the decomposed dipole moment
in Chapter 12 also used information about the molecular orbital degeneracy.

The molecular orbital energies of all the systems included in this study are
therefore listed in Table A.1.

The reference states in the coupled cluster calculations used in this project
were closed-shell restricted Hartree-Fock states. The orbital energies are the
eigenvalues of the Fock operator:

f̂ |ψp〉 = εp |ψp〉 . (A.1)

The helium atom, the hydrogen molecule and the beryllium atom all used
aug-cc-pVTZ basis sets. The water molecule and lithium hydride both used aug-
cc-pVDZ basis sets. Further details on the simulation are found in Section 10.1.
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Table A.1: Molecular orbital energies in atomic units.
He H2 Be LiH H2O

ε0 −0.91787 −0.59440 −4.7327 −2.4564 −20.577
ε1 0.11054 0.052563 −0.30928 −0.29938 −1.3568
ε2 0.42677 0.053105 0.017885 −0.0080780 −0.71940
ε3 0.42677 0.19037 0.017885 0.012335 −0.58571
ε4 0.42677 0.20889 0.017885 0.012335 −0.50946
ε5 0.83911 0.20889 0.034539 0.019264 0.035441
ε6 1.5201 0.28471 0.064448 0.031096 0.057930
ε7 1.5201 0.29744 0.064448 0.051086 0.17397
ε8 1.5201 0.29744 0.064448 0.051086 0.19666
ε9 1.5201 0.41741 0.17787 0.081115 0.22267
ε10 1.5201 0.42050 0.17787 0.14356 0.23143
ε11 1.9621 0.73736 0.17787 0.17807 0.29087
ε12 1.9621 0.79136 0.17787 0.18624 0.33151
ε13 1.9621 0.79136 0.17787 0.18624 0.38583
ε14 4.8165 0.88394 0.26528 0.19283 0.40412
ε15 7.1084 0.88394 0.27149 0.19283 0.43385
ε16 7.1084 0.90320 0.27149 0.19782 0.53926
ε17 7.1084 0.93145 0.27149 0.19782 0.64873
ε18 7.1084 0.93145 0.49113 0.23697 0.65824
ε19 7.1084 1.0473 0.49113 0.42346 0.81202
ε20 8.2211 1.0482 0.49113 0.52531 0.92994
ε21 8.2211 1.0482 0.49113 0.52531 1.1009
ε22 8.2211 1.0670 0.49113 0.53574 1.1152
ε23 - 1.0670 0.49113 0.53574 1.1489
ε24 - 1.5233 0.49113 0.54491 1.3080
ε25 - 1.9386 0.58448 0.54491 1.4672
ε26 - 1.9386 0.58448 0.54770 1.4833
ε27 - 2.1250 0.58448 0.96545 1.5839
ε28 - 2.5965 0.58448 1.5500 2.0039
ε29 - 2.9360 0.58448 2.0260 2.0118
ε30 - 3.6156 1.0165 2.0332 2.1093
ε31 - 3.6156 1.0165 2.0332 2.3685
ε32 - 3.6339 1.0165 - 2.4831
ε33 - 3.6339 1.4756 - 2.6290
ε34 - 4.1566 1.4756 - 2.7155
ε35 - 4.4063 1.4756 - 2.9667
ε36 - 4.4063 1.4756 - 3.6730
ε37 - 4.4311 1.4756 - 3.6905
ε38 - 4.4311 1.5873 - 3.7031
ε39 - 4.4883 1.5873 - 4.0276
ε40 - 4.4883 1.5873 - 4.3098
ε41 - 5.1907 1.5873 - -
ε42 - 5.7854 1.5873 - -
ε43 - 5.7854 1.5873 - -
ε44 - 5.9920 1.5873 - -
ε45 - 7.1222 1.7082 - -

115



Bibliography

1. Mandelshtam, V. A. & Taylor, H. S. Harmonic inversion of time signals
and its applications. The Journal of Chemical Physics 107, 6756–6769.
doi:10.1063/1.475324 (1997).

2. Schmidt, R. Multiple emitter location and signal parameter estimation.
IEEE Transactions on Antennas and Propagation 34, 276–280. doi:10.
1109/TAP.1986.1143830 (1986).

3. Roy, R. & Kailath, T. ESPRIT-estimation of signal parameters via
rotational invariance techniques. IEEE Transactions on Acoustics, Speech,
and Signal Processing 37, 984–995. doi:10.1109/29.32276 (1989).

4. Roy, R., Sumpter, B. G., Noid, D. W. & Wunderlich, B. Estimation of
dispersion relations from short-duration molecular dynamics simulations.
The Journal of Physical Chemistry 94, 5720–5729. doi:10 . 1021 /
j100378a023 (1990).

5. Roy, R., Sumpter, B., Pfeffer, G., Gray, S. & Noid, D. Novel methods
for spectral analysis. Physics Reports 205, 109–152. doi:10.1016/0370-
1573(91)90044-M (1991).

6. Neuhauser, D. Bound state eigenfunctions from wave packets:
Time→energy resolution. The Journal of Chemical Physics 93, 2611–2616.
doi:10.1063/1.458900 (1990).

7. Wall, M. R. & Neuhauser, D. Extraction, through filter-diagonalization,
of general quantum eigenvalues or classical normal mode frequencies from
a small number of residues or a short-time segment of a signal. I. Theory
and application to a quantum-dynamics model. The Journal of Chemical
Physics 102, 8011–8022. doi:10.1063/1.468999 (1995).

8. Mandelshtam, V. FDM: the filter diagonalization method for data
processing in NMR experiments. Progress in Nuclear Magnetic Resonance
Spectroscopy 38, 159–196. doi:10.1016/S0079-6565(00)00032-7 (2001).

9. Mandelshtam, V. A. & Taylor, H. S. A low-storage filter diagonalization
method for quantum eigenenergy calculation or for spectral analysis of
time signals. The Journal of Chemical Physics 106, 5085–5090. doi:10.
1063/1.473554 (1997).

116

http://dx.doi.org/10.1063/1.475324
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/29.32276
http://dx.doi.org/10.1021/j100378a023
http://dx.doi.org/10.1021/j100378a023
http://dx.doi.org/10.1016/0370-1573(91)90044-M
http://dx.doi.org/10.1016/0370-1573(91)90044-M
http://dx.doi.org/10.1063/1.458900
http://dx.doi.org/10.1063/1.468999
http://dx.doi.org/10.1016/S0079-6565(00)00032-7
http://dx.doi.org/10.1063/1.473554
http://dx.doi.org/10.1063/1.473554


Bibliography

10. Beck, M. H. & Meyer, H.-D. Extracting accurate bound-state spectra
from approximate wave packet propagation using the filter-diagonalization
method. The Journal of Chemical Physics 109, 3730–3741. doi:10.1063/1.
476974 (1998).

11. Martini, B. R., Aizikov, K. & Mandelshtam, V. A. The filter diagonalization
method and its assessment for Fourier transform mass spectrometry.
International Journal of Mass Spectrometry 373, 1–14. issn: 1387-3806.
doi:10.1016/j.ijms.2014.08.010 (2014).

12. Bruner, A., LaMaster, D. & Lopata, K. Accelerated Broadband Spectra
Using Transition Dipole Decomposition and Padé Approximants. Journal
of Chemical Theory and Computation 12, 3741–3750. doi:10.1021/acs.
jctc.6b00511 (2016).

13. Repisky, M., Konecny, L., Kadek, M., Komorovsky, S., Malkin, O. L.,
Malkin, V. G. & Ruud, K. Excitation Energies from Real-Time Propagation
of the Four-Component Dirac–Kohn–Sham Equation. Journal of Chemical
Theory and Computation 11, 980–991. doi:10.1021/ct501078d (2015).

14. Kadek, M., Konecny, L., Gao, B., Repisky, M. & Ruud, K. X-ray
absorption resonances near L2,3-edges from real-time propagation of the
Dirac–Kohn–Sham density matrix. Phys. Chem. Chem. Phys. 17, 22566–
22570. doi:10.1039/C5CP03712C (2015).

15. Nascimento, D. R. & DePrince, A. E. Simulation of Near-Edge X-ray
Absorption Fine Structure with Time-Dependent Equation-of-Motion
Coupled-Cluster Theory. The Journal of Physical Chemistry Letters 8,
2951–2957. doi:10.1021/acs.jpclett.7b01206 (2017).

16. Ghosh, S., Asher, J. C., Gagliardi, L., Cramer, C. J. & Govind, N. A
semiempirical effective Hamiltonian based approach for analyzing excited
state wave functions and computing excited state absorption spectra
using real-time dynamics. The Journal of Chemical Physics 150, 104103.
doi:10.1063/1.5061746 (2019).

17. Mattiat, J. & Luber, S. Efficient calculation of (resonance) Raman spectra
and excitation profiles with real-time propagation. The Journal of Chemical
Physics 149, 174108. doi:10.1063/1.5051250 (2018).

18. Li, X., Govind, N., Isborn, C., DePrince, A. E. & Lopata, K. Real-Time
Time-Dependent Electronic Structure Theory. Chemical Reviews 120,
9951–9993. doi:10.1021/acs.chemrev.0c00223 (2020).

19. Szabo, A. Modern quantum chemistry : introduction to advanced electronic
structure theory isbn: 0029497108 (Macmillam, New York, 1982).

20. Helgaker, T., Jørgensen, P. & Olsen, J. Second Quantization in Molecular
Electronic-Structure Theory 1–33 (John Wiley & Sons, Ltd, 2000). isbn:
9781119019572. doi:10.1002/9781119019572.ch1.

21. Helgaker, T., Jørgensen, P. & Olsen, J. Spin in Second Quantization in
Molecular Electronic-Structure Theory 34–79 (John Wiley & Sons, Ltd,
2000). isbn: 9781119019572. doi:10.1002/9781119019572.ch2.

22. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen
der Physik 389, 457–484. doi:10.1002/andp.19273892002 (1927).

117

http://dx.doi.org/10.1063/1.476974
http://dx.doi.org/10.1063/1.476974
http://dx.doi.org/10.1016/j.ijms.2014.08.010
http://dx.doi.org/10.1021/acs.jctc.6b00511
http://dx.doi.org/10.1021/acs.jctc.6b00511
http://dx.doi.org/10.1021/ct501078d
http://dx.doi.org/10.1039/C5CP03712C
http://dx.doi.org/10.1021/acs.jpclett.7b01206
http://dx.doi.org/10.1063/1.5061746
http://dx.doi.org/10.1063/1.5051250
http://dx.doi.org/10.1021/acs.chemrev.0c00223
http://dx.doi.org/10.1002/9781119019572.ch1
http://dx.doi.org/10.1002/9781119019572.ch2
http://dx.doi.org/10.1002/andp.19273892002


Bibliography

23. Pedersen, T. B., Kristiansen, H. E., Bodenstein, T., Kvaal, S. & Schøyen,
Ø. S. Interpretation of Coupled-Cluster Many-Electron Dynamics in Terms
of Stationary States. Journal of Chemical Theory and Computation 17,
388–404. doi:10.1021/acs.jctc.0c00977 (2021).

24. Helgaker, T., Jørgensen, P. & Olsen, J. The Standard Models in Molecular
Electronic-Structure Theory 142–200 (John Wiley & Sons, Ltd, 2000). isbn:
9781119019572. doi:10.1002/9781119019572.ch5.

25. Griffiths, D. J. Introduction to quantum mechanics 2nd ed. isbn:
9781107179868 (Cambridge University Press, Cambridge, 2017).

26. Kvaal, S. Ab initio quantum dynamics using coupled-cluster. The Journal
of Chemical Physics 136, 194109. doi:10.1063/1.4718427 (2012).

27. Madsen, N. K., Hansen, M. B., Christiansen, O. & Zoccante, A. Time-
dependent vibrational coupled cluster with variationally optimized time-
dependent basis sets. The Journal of Chemical Physics 153, 174108.
doi:10.1063/5.0024428 (2020).

28. Helgaker, T., Jørgensen, P. & Olsen, J. Hartree-Fock Theory in Molecular
Electronic-Structure Theory 433–522 (John Wiley & Sons, Ltd, 2000). isbn:
9781119019572. doi:10.1002/9781119019572.ch10.

29. Helgaker, T., Jørgensen, P. & Olsen, J. Coupled-Cluster Theory in
Molecular Electronic-Structure Theory 648–723 (John Wiley & Sons, Ltd,
2000). isbn: 9781119019572. doi:10.1002/9781119019572.ch13.

30. Helgaker, T., Jørgensen, P. & Olsen, J. Gaussian Basis Sets in Molecular
Electronic-Structure Theory 287–335 (John Wiley & Sons, Ltd, 2000). isbn:
9781119019572. doi:10.1002/9781119019572.ch8.

31. Feynman, R. P. Forces in Molecules. Phys. Rev. 56, 340–343. doi:10.1103/
PhysRev.56.340 (1939).

32. Koch, H. & Jørgensen, P. Coupled cluster response functions. The Journal
of Chemical Physics 93, 3333–3344. doi:10.1063/1.458814 (1990).

33. Pedersen, T. B. & Kvaal, S. Symplectic integration and physical
interpretation of time-dependent coupled-cluster theory. The Journal
of Chemical Physics 150, 144106. doi:10.1063/1.5085390. (2021) (2019).

34. Huber, C. & Klamroth, T. Explicitly time-dependent coupled cluster
singles doubles calculations of laser-driven many-electron dynamics. The
Journal of Chemical Physics 134, 054113. doi:10.1063/1.3530807 (2011).

35. Goings, J. J., Lestrange, P. J. & Li, X. Real-time time-dependent electronic
structure theory. WIREs Computational Molecular Science 8, e1341.
doi:10.1002/wcms.1341 (2018).

36. Olsen, J. & Jørgensen, P. Linear and nonlinear response functions for an
exact state and for an MCSCF state. The Journal of Chemical Physics
82, 3235–3264. doi:10.1063/1.448223 (1985).

37. Pedersen, T. B. Introduction to Response Theory in Handbook of
Computational Chemistry (eds Leszczynski, J., Kaczmarek-Kedziera, A.,
Puzyn, T., G. Papadopoulos, M., Reis, H. & K. Shukla, M.) 269–294
(Springer International Publishing, Cham, 2017). isbn: 978-3-319-27282-5.
doi:10.1007/978-3-319-27282-5_5.

118

http://dx.doi.org/10.1021/acs.jctc.0c00977
http://dx.doi.org/10.1002/9781119019572.ch5
http://dx.doi.org/10.1063/1.4718427
http://dx.doi.org/10.1063/5.0024428
http://dx.doi.org/10.1002/9781119019572.ch10
http://dx.doi.org/10.1002/9781119019572.ch13
http://dx.doi.org/10.1002/9781119019572.ch8
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1063/1.458814
http://dx.doi.org/10.1063/1.5085390
http://dx.doi.org/10.1063/1.3530807
http://dx.doi.org/10.1002/wcms.1341
http://dx.doi.org/10.1063/1.448223
http://dx.doi.org/10.1007/978-3-319-27282-5_5


Bibliography

38. Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen
Mechanik innerhalb der Quantenmechanik. Zeitschrift für Physik 45, 455–
457. issn: 0044-3328. doi:10.1007/BF01329203 (1927).

39. Kristensen, K., Kauczor, J., Kjærgaard, T. & Jørgensen, P. Quasienergy
formulation of damped response theory. The Journal of Chemical Physics
131, 044112. doi:10.1063/1.3173828 (2009).

40. Hastie, T., Tibshirani, R. & Friedman, J. Neural Networks in The Elements
of Statistical Learning: Data Mining, Inference, and Prediction 389–416
(Springer New York, New York, NY, 2009). isbn: 978-0-387-84858-7. doi:10.
1007/978-0-387-84858-7_11.

41. Dral, P. O. Quantum Chemistry in the Age of Machine Learning. The
Journal of Physical Chemistry Letters 11, 2336–2347. doi:10.1021/acs.
jpclett.9b03664 (2020).

42. Häse, F., Fdez. Galván, I., Aspuru-Guzik, A., Lindh, R. & Vacher, M.
How machine learning can assist the interpretation of ab initio molecular
dynamics simulations and conceptual understanding of chemistry. Chem.
Sci. 10, 2298–2307. doi:10.1039/C8SC04516J (8 2019).

43. Friederich, P., dos Passos Gomes, G., De Bin, R., Aspuru-Guzik, A. &
Balcells, D. Machine learning dihydrogen activation in the chemical space
surrounding Vaska’s complex. Chem. Sci. 11, 4584–4601. doi:10.1039/
D0SC00445F (2020).

44. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A.
Machine learning for molecular and materials science. Nature 559, 547–
555. issn: 1476-4687. doi:10.1038/s41586-018-0337-2 (2018).

45. Kitchin, J. R. Machine learning in catalysis. Nat Catal 1, 230–232. issn:
2520-1158. doi:10.1038/s41929-018-0056-y (2018).

46. Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi, K.-i. & Jegelka, S.
How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks https://arxiv.org/abs/2009.11848.

47. Oleinik, A. What are neural networks not good at? On artificial creativity.
Big Data & Society 6, 2053951719839433. doi:10.1177/2053951719839433
(2019).

48. Ramos, P., Fonseca da Silva, M., Martins, R. & Serra, A. Simulation
and experimental results of multiharmonic least-squares fitting algorithms
applied to periodic signals. IEEE Transactions on Instrumentation and
Measurement 55, 646–651. doi:10.1109/TIM.2006.864260 (2006).

49. Schoukens, J., Pintelon, R. & Van Hamme, H. The interpolated fast Fourier
transform: a comparative study. IEEE Transactions on Instrumentation
and Measurement 41, 226–232. doi:10.1109/19.137352 (1992).

50. Fonseca da Silva, M., Ramos, P. M. & Serra, A. A new four parameter
sine fitting technique. Measurement 35, 131–137. issn: 0263-2241. doi:10.
1016/j.measurement.2003.08.006 (2004).

51. Chen, J., Ren, Y. & Zeng, G. An improved Multi-harmonic Sine Fitting
Algorithm based on Tabu Search. Measurement 59, 258–267. issn: 0263-
2241. doi:10.1016/j.measurement.2014.09.035 (2015).

119

http://dx.doi.org/10.1007/BF01329203
http://dx.doi.org/10.1063/1.3173828
http://dx.doi.org/10.1007/978-0-387-84858-7_11
http://dx.doi.org/10.1007/978-0-387-84858-7_11
http://dx.doi.org/10.1021/acs.jpclett.9b03664
http://dx.doi.org/10.1021/acs.jpclett.9b03664
http://dx.doi.org/10.1039/C8SC04516J
http://dx.doi.org/10.1039/D0SC00445F
http://dx.doi.org/10.1039/D0SC00445F
http://dx.doi.org/10.1038/s41586-018-0337-2
http://dx.doi.org/10.1038/s41929-018-0056-y
https://arxiv.org/abs/2009.11848
http://dx.doi.org/10.1177/2053951719839433
http://dx.doi.org/10.1109/TIM.2006.864260
http://dx.doi.org/10.1109/19.137352
http://dx.doi.org/10.1016/j.measurement.2003.08.006
http://dx.doi.org/10.1016/j.measurement.2003.08.006
http://dx.doi.org/10.1016/j.measurement.2014.09.035


Bibliography

52. Salinas, J., Garcia-Lagos, F., Joya, G. & Sandoval, F. Sine-fitting
multiharmonic algorithms implemented by artificial neural networks.
Neurocomputing 72, 3640–3648. issn: 0925-2312. doi:10.1016/j.neucom.
2009.01.017 (2009).

53. Xu, L. & Ding, F. Recursive Least Squares and Multi-innovation Stochastic
Gradient Parameter Estimation Methods for Signal Modeling. Circuits
Syst Signal Process 36, 1735–1753. issn: 1531-5878. doi:10.1007/s00034-
016-0378-4 (2017).

54. Langtangen, H. P. & Mardal, K.-A. Function Approximation by Global
Functions in Introduction to Numerical Methods for Variational Problems
7–68 (Springer International Publishing, Cham, 2019). isbn: 978-3-030-
23788-2. doi:10.1007/978-3-030-23788-2_2.

55. Guo, W.-H., Li, W.-J. & Huang, Y.-Z. Computation of resonant frequencies
and quality factors of cavities by FDTD technique and Pade approximation.
IEEE Microwave and Wireless Components Letters 11, 223–225. doi:10.
1109/7260.923035 (2001).

56. Dey, S. & Mittra, R. Efficient computation of resonant frequencies and
quality factors of cavities via a combination of the finite-difference time-
domain technique and the Pade approximation. IEEE Microwave and
Guided Wave Letters 8, 415–417. doi:10.1109/75.746760 (1998).

57. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K.,
Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. & Oliphant, T. E. Array
programming with NumPy. Nature 585, 357–362. doi:10.1038/s41586-
020-2649-2 (2020).

58. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering 9, 90–95. doi:10.1109/MCSE.2007.55 (2007).

59. Baker, G. A. & Graves-Morris, P. Padé approximants and numerical
methods 2nd ed., 67–121. doi:10 . 1017 / CBO9780511530074 . 005
(Cambridge University Press, 1996).

60. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y.,
Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P. & SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17, 261–272. doi:10.1038/s41592-019-0686-2 (2020).

61. Horn, R. A. & Johnson, C. R. Norms for vectors and matrices in Matrix
Analysis 257–342 (Cambridge University Press, 1985). doi:10 . 1017 /
CBO9780511810817.007.

120

http://dx.doi.org/10.1016/j.neucom.2009.01.017
http://dx.doi.org/10.1016/j.neucom.2009.01.017
http://dx.doi.org/10.1007/s00034-016-0378-4
http://dx.doi.org/10.1007/s00034-016-0378-4
http://dx.doi.org/10.1007/978-3-030-23788-2_2
http://dx.doi.org/10.1109/7260.923035
http://dx.doi.org/10.1109/7260.923035
http://dx.doi.org/10.1109/75.746760
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1017/CBO9780511530074.005
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1017/CBO9780511810817.007
http://dx.doi.org/10.1017/CBO9780511810817.007


Bibliography

62. Hastie, T., Tibshirani, R. & Friedman, J. Unsupervised Learning in The
Elements of Statistical Learning: Data Mining, Inference, and Prediction
485–585 (Springer New York, New York, NY, 2009). isbn: 978-0-387-84858-
7. doi:10.1007/978-0-387-84858-7_14.

63. Guttag, J. Lecture 12: Clustering | Introduction to Computational
Thinking and Data Science Massachusetts Institute of Technology: MIT
OpenCourseWare. 2016. https://ocw.mit.edu.

64. Hastie, T., Tibshirani, R. & Friedman, J. Overview of Supervised Learning
in The Elements of Statistical Learning: Data Mining, Inference, and
Prediction 9–41 (Springer New York, New York, NY, 2009). isbn: 978-0-
387-84858-7. doi:10.1007/978-0-387-84858-7_2.

65. Hastie, T., Tibshirani, R. & Friedman, J. Linear Methods for Regression
in The Elements of Statistical Learning: Data Mining, Inference, and
Prediction 43–99 (Springer New York, New York, NY, 2009). isbn: 978-0-
387-84858-7. doi:10.1007/978-0-387-84858-7_3.

66. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems isbn:
9781491962299 (O’Reilly Media, Incorporated, Sebastopol, 2017).

67. Heumann, C., Schomaker, M. & Shalabh. Linear Regression in Introduction
to Statistics and Data Analysis : With Exercises, Solutions and Applications
in R 249–295 (Springer International Publishing, Cham, 2016). isbn: 978-
3-319-46162-5. doi:10.1007/978-3-319-46162-5_11.

68. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, E.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12, 2825–2830. https://dl.acm.org/doi/10.5555/1953048.2078195
(2011).

69. Gonzalez, R. C. Digital image processing 4th ed., 915–916. isbn:
9781292223049 (Pearson, New York, 2018).

70. Kristiansen, H. E., Schøyen, Ø. S., Kvaal, S. & Pedersen, T. B. Numerical
stability of time-dependent coupled-cluster methods for many-electron
dynamics in intense laser pulses. The Journal of Chemical Physics 152,
071102. doi:10.1063/1.5142276 (2020).

71. Dunning, T. H. Gaussian basis sets for use in correlated molecular
calculations. I. The atoms boron through neon and hydrogen. The Journal
of Chemical Physics 90, 1007–1023. doi:10.1063/1.456153 (1989).

72. Sun, Q., Berkelbach, T. C., Blunt, N. S., Booth, G. H., Guo, S., Li, Z., Liu,
J., McClain, J. D., Sayfutyarova, E. R., Sharma, S., Wouters, S. & Chan,
G. K.-L. PySCF: the Python-based simulations of chemistry framework.
WIREs Computational Molecular Science 8, e1340. doi:10.1002/wcms.
1340 (2018).

121

http://dx.doi.org/10.1007/978-0-387-84858-7_14
https://ocw.mit.edu
http://dx.doi.org/10.1007/978-0-387-84858-7_2
http://dx.doi.org/10.1007/978-0-387-84858-7_3
http://dx.doi.org/10.1007/978-3-319-46162-5_11
https://dl.acm.org/doi/10.5555/1953048.2078195
http://dx.doi.org/10.1063/1.5142276
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1002/wcms.1340
http://dx.doi.org/10.1002/wcms.1340


Bibliography

73. Aidas, K., Angeli, C., Bak, K. L., Bakken, V., Bast, R., Boman, L.,
Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E. K.,
Ekström, U., Enevoldsen, T., Eriksen, J. J., Ettenhuber, P., Fernández,
B., Ferrighi, L., Fliegl, H., Frediani, L., Hald, K., Halkier, A., Hättig, C.,
Heiberg, H., Helgaker, T., Hennum, A. C., Hettema, H., Hjertenæs, E.,
Høst, S., Høyvik, I.-M., Iozzi, M. F., Jansík, B., Jensen, H. J. A., Jonsson,
D., Jørgensen, P., Kauczor, J., Kirpekar, S., Kjærgaard, T., Klopper, W.,
Knecht, S., Kobayashi, R., Koch, H., Kongsted, J., Krapp, A., Kristensen,
K., Ligabue, A., Lutnæs, O. B., Melo, J. I., Mikkelsen, K. V., Myhre, R. H.,
Neiss, C., Nielsen, C. B., Norman, P., Olsen, J., Olsen, J. M. H., Osted, A.,
Packer, M. J., Pawlowski, F., Pedersen, T. B., Provasi, P. F., Reine, S.,
Rinkevicius, Z., Ruden, T. A., Ruud, K., Rybkin, V. V., Sałek, P., Samson,
C. C. M., de Merás, A. S., Saue, T., Sauer, S. P. A., Schimmelpfennig,
B., Sneskov, K., Steindal, A. H., Sylvester-Hvid, K. O., Taylor, P. R.,
Teale, A. M., Tellgren, E. I., Tew, D. P., Thorvaldsen, A. J., Thøgersen, L.,
Vahtras, O., Watson, M. A., Wilson, D. J. D., Ziolkowski, M. & Ågren, H.
The Dalton quantum chemistry program system. WIREs Computational
Molecular Science 4, 269–284. doi:10.1002/wcms.1172 (2014).

122

http://dx.doi.org/10.1002/wcms.1172

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Theoretical Background
	The Dipole Moment in Exact Quantum Theory
	Schrödinger's Equation
	Time Evolution of the Exact Wave Function
	The Exact Dipole Moment

	The Approximated Wave Function
	Hartree-Fock Theory
	Full Configuration Interaction
	Time-Independent Coupled Cluster Theory
	Time Evolution of the Coupled Cluster Wave Function
	The Dipole Moment in Coupled Cluster Theory

	The Absorption Spectrum in Laser-Driven Dynamics
	Response Theory
	Damping in Response Theory
	The Broad-Band Laser as External Field
	The Absorption Spectrum from Real-Time Simulations


	Method
	Time-Series Extrapolation
	Fitting Multi-Sinusoidal Signals
	The Fitting Model for the Dipole Moment
	Poles of the Fourier-Padé
	Estimating Frequencies
	Linear Regression

	Implementation and Testing

	The Fourier-Padé Approximant
	The Equations of the Fourier-Padé Approximant
	Estimating Frequencies From the Complex Poles
	Limitations on the Frequency Domain
	Scaling the Fourier-Padé Spectrum
	Implementation and Sanity Checks

	K-means Clustering
	The K-means Algorithm
	Creating Features
	Implementation and Sanity Checks

	Linear Regression
	Ordinary Least Squares Method
	LASSO Regression
	Measure of Error
	Implementation and Sanity Checks

	Molecular Orbital Decomposition of the Dipole Moment
	Decomposition in Coupled Cluster Theory
	Similarity Measure Between Components
	Implementation and Sanity Checks


	Results, Discussion and Conclusion
	The Coupled Cluster Calculations and Parameter Studies
	Simulation Details
	Molecular Orbital Decomposition

	Parameter Study
	The Periodicity of the Fourier-Padé Approximant
	Frequency Convergence and the Time Domain


	Performance of the Fitting Model
	Fitting Using Ordinary Least Squares
	The Helium Atom
	The Hydrogen Molecule
	The Beryllium Atom
	Lithium Hydride
	The Water Molecule

	Fitting Using LASSO
	The Helium Atom
	The Hydrogen Molecule
	The Beryllium Atom
	Lithium Hydride
	The Water Molecule

	Comparison with Fourier-Padé Spectra
	The Helium Atom
	The Hydrogen Molecule
	The Beryllium Atom
	Lithium Hydride
	The Water Molecule


	Molecular Orbital Decomposition
	Degeneracy and Similarity in the Molecular Orbitals
	Transitions from Occupied to Virtual Orbitals
	Fitting the Decomposed Dipole Moment
	The Full z-Component
	Occupied to Virtual Transitions
	Valence to Virtual Transitions


	Summary and Conclusion
	Overview of the Discussion
	Evaluation of the Fitting Model
	The Convergence Criterion
	Molecular Orbital Decomposition

	Future Work
	Improving Frequency Estimation
	Larger Scale Testing

	Restrictive Models
	Conclusion

	Appendices
	Molecular Orbital Energies
	Bibliography


