
Database Query Analysis and
Optimization in a Large Scale

Information System

Case Study on Large Scale DHIS2
Implementations

Mohamed Ameen

Thesis submitted for the degree of
Master in Informatics:Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2021

Database Query Analysis
and Optimization in a

Large Scale Information
System

Case Study on Large Scale DHIS2
Implementations

Mohamed Ameen

© 2021 Mohamed Ameen

Database Query Analysis and Optimization in a Large Scale Information
System

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract
Information Systems play an integral role in several aspects of busi-

nesses and society. They provide valuable insights by collecting and an-
alyzing data and help optimal decision makings. With the advancement
in technologies, the scale of information systems also increases. Modern re-
quirements of Information systems demand high scalability to support very
large-scale needs. Large-scale essentially means the data volume is large
and data access frequency is very high. Resolving bottlenecks and avoid-
ing common pitfalls in Information systems is the key to achieving higher
scalability.

DHIS2 is a web application originally designed for collecting, aggregat-
ing, and analyzing statistical health data. DHIS2 is used in more than 73
different countries, each with its implementation and use cases. Due to the
covid pandemic, the demand for a scalable DHIS2 system increased and
Covid contact tracing and Covid vaccination tracking. Even though DHIS2
is used mainly in the Health domain, there are also implementations of
DHIS2 in other sectors like Education. Some of these implementations
need to support a country-wide scale. Such large-scale DHIS2 implementa-
tions frequently suffer from performance issues and bottlenecks.

This thesis aims to study the types of performance issues faced by large-
scale Information Systems. I focus on various large-scale DHIS2 imple-
mentations and investigate the bottlenecks both on the application side
and database side of DHIS2. The thesis also aims at finding out optimiza-
tion techniques and changes to improve performance and clear these bot-
tlenecks. The results of this research are generalized in such a way that
they can be applied to any Information system and not just DHIS2. The
results show successful optimization changes and how much of an impact
these changes have had on the performance of real-world large-scale DHIS2
implementations. Qualitative analysis of the performance improvement is
done to understand the impact of each optimization.

i

Acknowledgements
First, I would like to give a big thanks to my supervisor Sundeep Sahay

for his guidance throughout the research. I was very new to Academic writ-
ing. He guided me in the right direction and gave me valuable insights into
how best to express my work.

I would also like to thank the DHIS2 Core Development team for their
collaboration in this research. Thanks to Bob Joliffe for his valuable inputs
to my research. His experience helped me learn a lot and contribute to as-
sisting several country implementations. A big thanks to Gintare Vilkelyte
and Stian Sandvold of the DHIS2 Core team. Collaborating with them was
one of the best experiences throughout this research work. Special thanks
to all the HISP Nodes and System administrators of the DHIS2 implemen-
tations part of my research. Pamod Amarakoon from HISP Sri Lanka and
Barnabas from HISP Nigeria were very supportive and were happy to an-
swer all of my queries. This research work would not have been possible
without all of you.

Last but not least, I want to thank my wife, Shamna, and my daughter,
Ayana, for encouraging and supporting me continuously throughout this
thesis work. They have kept me motivated during my research work with
their positive and kind words.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question, Objective and Scope 2
1.3 Thesis Structure and Overview 3

2 Background 4
2.1 DHIS2 Platform . 4

2.1.1 Technology . 4
2.1.2 Functionality . 5

2.2 DHIS2 Implementations . 6

3 Research Methodology 8
3.1 Research Process and Collaboration 8
3.2 Ethical Obligation and Challenges 10

4 Literature Review 12
4.1 Bottlenecks . 12
4.2 Performance Analysis . 12
4.3 Optimization . 13
4.4 Limitations . 14
4.5 Summary . 15

5 Performance Analysis 16
5.1 Data Source Bottlenecks . 21

5.1.1 In-Efficient Queries . 21
5.1.2 Absence of Indexes . 24

5.2 Application Bottlenecks . 32
5.2.1 In-efficient API Access Pattern 33
5.2.2 ORM Pitfalls . 36
5.2.3 In-Efficient Resource Utilization 39

6 Optimizations and Results 42
6.1 Database Optimizations . 44

6.1.1 Query Rewriting . 44
6.1.2 Indexing . 46
6.1.3 Summary of Results . 54

6.2 Application Optimizations . 55
6.2.1 Efficient API Access Pattern 55
6.2.2 Avoiding ORM pitfalls 57
6.2.3 Connection Pooling . 58
6.2.4 Summary of Results . 60

7 Discussion 61

8 Conclusion 68

A Appendix 72

iii

List of Tables
1 Three Principal Layers in the context of DHIS2 16
2 DHIS2 Tracker Metadata Concepts 17
3 DHIS2 Tracker Data Concepts 20
4 SMART goals for DHIS2 optimizations 42
5 Database Optimization Results 54
6 Application Optimization Results 60

iv

Listings
1 Identified In-Efficient Query . 22
2 Slow Query reported by Nigeria DHIS2 Vaccination Instance 24
3 Slow attribute search query reported by Rwanda DHIS2 Vac-

cination Instance . 26
4 Slow QR Code search query reported by Nigeria DHIS2 Vac-

cination Instance . 29
5 Request Payload example for single event data value update

API . 36
6 Java code snippet showing a common ORM anti-pattern . . . 38
7 Optimized Rewritten Query . 45
8 Creating a functional index on lower(value) 49
9 Creating a partial trigram gin index on lower(value) 51
10 Creating a trigram gin index on a jsonb column for a specific

attribute . 52
11 Request Payload example for Event Update API that collec-

tively updates all event data values 56

v

List of Figures
1 Number of DHIS2 Tracker implementations over the years . . 7
2 Entity-Relationship diagram of tables in DHIS2 Tracker . . . 19
3 Query plan node that consumes the most time 25
4 Query plan node details showing the filter applied 26
5 The bottleneck Query plan node in Rwanda 27
6 Query plan node details showing the like comparison filter

with double ended wildcard (%) 28
7 Query plan node in Nigeria that shows bottleneck with QR

code searches . 30
8 Query plan node details from Nigeria showing the like com-

parison filter with double ended wildcard (%) 31
9 Tracker Capture App in Sri-Lanka with 5 to 10 input fields . 34
10 Updated input fields shown with green background colour in

Tracker Capture App . 35
11 Response timing of single event data value update API 36
12 Glowroot Slow Trace showing 1GB Memory allocated for a

single API request . 40
13 Munin dashboard showing CPU struggling due to sub-optimal

resource utilization . 41
14 B-Tree index structure . 47
15 Using bitmaps for table access through multiple indexes . . . 49
16 Optimized Query plan node in Rwanda showing the new in-

dex being used effectively. 51
17 Optimized Query plan node in Nigeria showing the new index

being used effectively. 53
18 Rewritten App user interface for collective event data values

updation. 55
19 Response timing of Event Update API that collectively up-

dates all event data values . 57
20 Lower Memory allocation for the purpose-built API as recorded

by Glowroot . 58
21 Glowroot Guage chart showing the effect of the optimization

on CPU load . 59
22 How ORM works . 65
23 How NORM works . 66
24 Statistics from field, presented by Lars Øverland, Tech Lead

DHIS2, during the DHIS2 Symposium 2021 [24] 72
25 Performance Improvement from 2.34.3 to 2.34.4, presented by

Lars Øverland, Tech Lead DHIS2, during the DHIS2 Sympo-
sium 2021 [24] . 73

26 Munin dashboard showing Disk Latency issue in Sri Lanka
that caused excessive database locking. [12] 73

vi

Acronyms
API Application Programming Interface.

APM Application Performance Management.

CPU Central Processing Unit.

CSS Cascading Style Sheets.

DHIS2 Digital Health Information Software 2.

GIN Generalized Inverted Index.

HIS Health Information Systems.

HISP Health Information System Program.

HMIS Health Management Information System.

HTML HyperText Markup Language.

IoC Inversion of Control.

IS Information Systems.

IT Information Technology.

JEE Java Enterprise Edition.

JRE Java Runtime Environment.

MOH Ministry of Health.

NGO Non-Governmental Organisation.

ORM Object-Relational Mapping.

QA Quality Assurance.

REST Representational State Transfer.

SQL Structured Query Language.

SSD Solid State Drive.

UiO University of Oslo.

WAR Web ARchive.

WHO World Health Organisation.

vii

1 Introduction
Modern Information Systems (IS) are used in various fields and with

varying scopes. It plays an integral role in business and society. It pro-
vides valuable insights by collecting and analyzing data and helps in opti-
mal decision-making. Information systems occasionally suffer from perfor-
mance bottlenecks due to high data volume or high data access rates. With
the advancement in technologies, IS should be able to scale up to support
large-scale concrete implementations. Resolving bottlenecks and avoiding
common performance pitfalls in Information systems is the key to achieving
higher scalability. One such large scale IS is the Digital Health Information
Software 2 (DHIS2).

DHIS2 is a global platform developed by the research group Health In-
formation System Program (HISP) under the Department of Informatics at
the University of Oslo (UiO) for collecting and aggregating health statis-
tics. Governments in over 73 countries have adopted DHIS2 [8]. These
countries are primarily but not limited to developing countries in Africa
and Asia. Several prominent NGO’s, including the World Health Organi-
sation (WHO), have adopted DHIS2 for their data collection, aggregation,
and analysis needs.

Such global adoption of DHIS2 has led to the establishment of several
concrete implementations on varying scales across the globe. Some imple-
mentations cater to a small region, like a district/state/province, within a
country, whereas other implementations cater to nationwide scope support-
ing the whole population of that country. When the scale of a DHIS2 imple-
mentation increases, so do the performance issues faced by that instance.

1.1 Motivation
Scalability is a Non-functional requirement for any large-scale Informa-

tion System. There is always room for optimizations that can improve the
scalability of an enterprise application. The usefulness of any application
quickly deters if it has severe bottlenecks and cannot sustain the real-world
practical load. Some of the major bottlenecks are due to well-known anti-
patterns and developer errors. One of my motivations was to help users of
large-scale Information systems to achieve their desired productivity.

As part of my case study, I focus on large-scale DHIS2 implementations.
DHIS2 is the world’s most used health information management system
that aids in the public health of numerous countries. It continues to grow,
and more countries are adopting the platform. The continued adoption
and growth of DHIS2 in various countries and the diverse implementations
make scalability and availability high priority non-functional requirements
for DHIS2.

Over the years, DHIS2 is also being used at a national scale by Ministry
of Health (MOH) of the respective countries for collecting, aggregating, and

1

analyzing their country health data. Such large-scale implementation of-
ten faces performance issues that block them from using DHIS2 temporar-
ily. These may either be due to server crashes, slow response times, or
unavailability of any kind. Due to such performance issues when adopting
on a large-scale, other countries or governments may get discouraged to
use DHIS2 for their large-scale needs. In a time-critical implementation,
there have been reports where users of DHIS2 have had to either switch
to paper-based reporting or excel based recording and suffer a decrease in
their productivity due to performance issues that affect DHIS2 usability.
These bottlenecks have to be investigated and resolved to ensure DHIS2
continues to influence the different socio-economic efforts across the globe.
I wanted to support the performance analysis investigations and bottleneck
resolutions for large-scale implementations so that DHIS2 continues to be
used effectively for even larger scale requirements and domains.

1.2 Research Question, Objective and Scope
The objective of this thesis is to analyze and optimize database queries in

large-scale Information Systems. I focus on DHIS2 implementations, as it
fits the criteria of a large-scale Information System interacting with a rela-
tional database. I analyze the different database queries involved in the
Information system and attempt to resolve the performance bottlenecks
using optimization techniques available in the existing literature. I also
empirically evaluate how several optimization changes have had an impact
on the performance of this large-scale DHIS2 implementations. The analy-
sis is then generalized to make it applicable to any large-scale Information
System.

In this thesis, I focus on the following three research questions:

1. What are the different performance issues faced by a large-scale In-
formation System? How does it affect the user’s day-to-day work?

2. What are some of the optimization techniques available to mitigate
performance bottlenecks in a large-scale Information System like DHIS2?

3. What is the impact of the optimizations on DHIS2?

To address these research questions, I look at the DHIS2 version 2.34
and 2.35 along with PostgreSQL version 10.

The scope of this thesis is limited to the actual DHIS2 application source
code and the PostgreSQL database. Other factors like Networking prob-
lems, Data storage or disk latencies, or other infrastructure-related bottle-
necks or performance issues are outside the scope of this thesis.

2

1.3 Thesis Structure and Overview
This thesis contains the following chapters

Chapter 1: Introduction The current chapter briefs about my mo-
tivation and why I chose to focus on large-scale DHIS2 implementations. I
also explain the research questions, objective, and scope of this thesis.

Chapter 2: Background In this chapter, I introduce the DHIS2
platform and briefly look at its history and how it has evolved into the go-to
health information system. I touch upon the technology and functionality
of DHIS2 along with some insights into the real-world concrete large-scale
DHIS2 implementations that form the basis of my research.

Chapter 3: Research Methodology In this chapter, I present
the research methodology that I used and the different data collection meth-
ods. I also explain the collaboration, ethical obligations, and challenges
faced during the research process.

Chapter 4: Literature Review In this chapter, I present a review
of existing literature that is related to my work. I conclude with a summary
of my contribution to the literature.

Chapter 5: Performance Analysis In this chapter, I focus on
performance analysis and identifying issues and bottlenecks faced by large-
scale production DHIS2 instances and how it affects DHIS2 usability. I
have characterized the performance issues into categories and subcate-
gories to explain them in detail.

Chapter 6: Optimizations and Results In this chapter, I ex-
plain the different optimizations that resolved the performance issues en-
listed in Chapter 4. Empirical evaluation of the optimizations is detailed.

Chapter 7: Discussion In this chapter, I discuss the identified bot-
tlenecks, the optimizations applied, and the results of the optimizations. I
also give a brief explanation of some of the limitations of some optimiza-
tions. I answer the research questions in this chapter.

Chapter 8: Conclusion In this chapter, I conclude the thesis with
a summary of my work and how it answers the research questions. I also
hint at some suggested future work.

3

2 Background
2.1 DHIS2 Platform

HISP originated in South Africa in 1996 as a project for improving health
services for the post-apartheid period in South Africa [1]. Researchers from
the University of Oslo were part of the HISP team. HISP saw the need for a
unified health information system as a way to battle inequity in healthcare.
These resulted in the origin of DHIS. They started developing a system for
collecting and aggregating health data and introduced it in three health
districts in Cape Town, South Africa, in 1998. DHIS continued to grow
during the early 2000s and spread to multiple countries in Africa and Asia.
The early DHIS system was used primarily for routine health reporting.
The scale of the system was also quite small and was often limited to health
facilities in certain districts alone. The frequency of reporting was also
quite less, often once a month. The optimizations done for the early DHIS
system were mainly around analytics processing. Transactional processing
was not a feature in DHIS in the earlier system. Early DHIS served as an
OLAP (Online Analytical Processing) system like a data warehouse instead
of an OLTP (Online Transaction Processing) system.

2.1.1 Technology
DHIS2 is a flexible platform written primarily in Java. Any system where

there exists a Java Runtime Environment (JRE) can run DHIS2 with a
Java-enabled server or servlet container. A relational database accompa-
nies the Java backend. PostgreSQL is the supported database[11].

The Java backend consists of a set of RESTful Web API to interact with
various resources and perform functions within the DHIS2 system. The
DHIS2 core also consists of core apps created with web technologies like
Javascript, CSS and HTML5. Both core apps and the Java backend are
bundled together in the form of a Web ARchive (WAR) format. The pri-
mary technologies and frameworks used in developing DHIS2 backend are
Java Enterprise Edition (JEE) technology, Spring Inversion of Control (IoC)
Framework and Hibernate Object-Relational Mapping (ORM) Framework[25].

The performance of the RESTful APIs affects the overall performance of
a DHIS2 instance. The performance of individual database queries affects
the performance of the corresponding RESTful APIs.

4

2.1.2 Functionality
DHIS2 is used to collect, validate, analyze, and present data. It is pri-

marily used for aggregate and patient-based data for health information
management purposes. Some of its key features are[27]:

• ”Provide data entry tools which can either be in the form of standard
lists or tables or can be customized to replicate paper forms.”

• ”Supports data collection and analysis of transactional or disaggre-
gated data.”

• ”Flexible and dynamic (on-the-fly) data analysis in the analytics mod-
ules (like GIS, Pivot Tables, Data Visualizer, Event reports).”

• ”Using the DHIS2 Web-API, allows for integration with external soft-
ware and extension of the core platform through the use of custom
apps.”

• ”Further modules can be developed and integrated as per user needs,
either as part of the DHIS2 portal user interface or a more loosely-
coupled external application interacting through the DHIS2 Web-API.”

The initial DHIS was designed for the specific situation in South Africa.
HISP saw the need for modifications as the design did not sufficiently sup-
port the diverse needs of other nations. Modularity and flexibility became
essential design goals for the next iteration. HISP wanted the system to
be easily tailored and configured to suit any administration. In 2004 they
started the development of DHIS2 as a modular web application. It was
released in 2006 and has been in continuous development from then un-
til today[2]. Over the years, countries and other implementations saw the
need for online transaction processing features in DHIS2. These included
the capability to track a specific entity over a period and to be able to cap-
ture and fetch data associated with the tracked entity. The early DHIS was
never optimized for high transaction rates until OLTP requirements were
needed.

Currently, DHIS2 has two main components. The Aggregate component
has analytical processing capabilities. The Tracker component has online
transactional processing capabilities. The Aggregate component is similar
to any traditional Health Management Information System (HMIS), where
data is reported in aggregate format. For example, the total number of
cases of a specific disease in a given district for one month was captured
on paper forms and submitted to a central office for manual entry into a
database. This kind of data collection was necessary when computers and
the internet were a rarity. But the time delay in reporting made it difficult
to take prompt action for addressing any issues that the data revealed. The
aggregated nature of the data also made it impossible to isolate and follow-
up with an individual patient or case. Here is where the Tracker component
provides a solution.

5

DHIS2 Tracker is a component that expands the DHIS2 data model from
aggregate to individual-level data that turns DHIS2 into a powerful tool for
managing patient care workflows on a facility or community level. For ex-
ample, within a Tracker program, you can configure SMS reminders, track
missed appointments and generate visit schedules for individual patients.
The Tracker component also provides a simple tool for sharing critical clin-
ical health data across multiple health facilities, including linking Tracker
to an Electronic Medical Record (EMR) system.

In this thesis, DHIS2 Tracker versions 2.34 and 2.35 were analyzed for
performance bottlenecks.

2.2 DHIS2 Implementations
There are several DHIS2 Implementations across the globe. At the time

of writing this thesis, DHIS2 serves as the primary solution for collecting
and analyzing health data in over 70 countries [9]. In some countries, there
are national-level implementations for specific contexts like Measles Immu-
nization or Covid Contact tracing. Some countries may also have multiple
implementations for various contexts. For example, Sri Lanka has separate
DHIS2 implementations for Covid Vaccination Tracking and Covid Contact
tracing. Similarly, there are countries where DHIS2 is used both in the
Health domain and Education domain as separate implementations.

DHIS2 implementations around the globe use either one or both of the
components of DHIS2. Although the DHIS2 Tracker was first developed
in 2010, there were very few implementations using it initially. Since
2016 there has been an increased demand and requirement of the DHIS2
Tracker module for several concrete implementations. The figure 1 shows
the rise in the adoption of the DHIS2 Tracker module from 2010 to 2021[10].
The number of implementations using DHIS2 has almost doubled every
year since 2016. The Covid Pandemic outbreak in 2019 resulted in sev-
eral concrete DHIS2 Tracker implementations created for Covid Contact
Tracing and Covid Vaccination Tracking. These national-level implementa-
tions have politically high visibility. Performance bottlenecks faced by such
high-profile national-scale instances are not just an inconvenience, but a
national crisis. Therefore the context of this thesis is important and time-
critical. Performance analysis and optimization of database queries had to
be completed in hours and days rather than weeks and months. This was
also a motivation for me as I was able to work with the DHIS2 Core Team
to help the different countries to ensure their national health efforts like
Vaccination campaigns and Immunization campaigns become a success.

This kind of global adoption also increases the demand for better scala-
bility. During my thesis work, I was able to support multiple large-scale
implementations when they faced a crisis due to bottlenecks and perfor-
mance issues in DHIS2. Some of the performance issues only surface on
large-scale implementation. Those were the areas of potential improve-
ment and optimization. In small-scale implementations, such botttlenecks

6

Figure 1: Number of DHIS2 Tracker implementations over the years

remain hidden. The performance issues explored and investigated in this
thesis were mainly from the following large-scale DHIS2 Tracker imple-
mentations

• Bangladesh - Measles Immunization Tracking Instance [28]

• Sri Lanka - Covid Vaccination Tracking instance [29]

• Rwanda - Covid Vaccination Tracking instance [30]

• Nigeria - Covid Vaccination Tracking instance

• PEPFAR - DATIM instance

Supporting the large-scale implementations when they face performance
issues is crucial for the continued adoption and growth of DHIS2. These
performance issues make DHIS2 unusable in most cases, which forces coun-
tries to look for alternatives like paper-based reporting. Such incidents also
discourage future potential implementers from using DHIS2 on their large-
scale information system requirements.

In the next chapter, I define the research methodology used and explain
the steps involved in the research process. I also list the data collection
methods used for this thesis.

7

3 Research Methodology
This chapter describes the research methodology used in this thesis. I

also describe the different data collection methods used for this work. I
explain how the data collected were analyzed to achieve the optimization
goals and answer the research questions. I reflect on some ethical and
lawful considerations along with describing challenges faced during the re-
search work.

The main objective of the study was to identify and resolve performance
bottlenecks in a large-scale enterprise application. Bottleneck identifica-
tion was scoped to include the Application Code and the Database interac-
tions. To illustrate the issues and analyze the impacts of optimizations, I
used several large-scale DHIS2 implementations as the basis for my study.

Empirical research is a type of research methodology that uses verifi-
able evidence to arrive at research outcomes. In other words, this type of
research relies solely on evidence obtained through observation or scien-
tific data collection methods. Empirical research on the research questions
stated in section 1.2 has been done. I have chosen the DHIS2 Tracker mod-
ule as the context of my research. This was chosen because it fits perfectly
into the category of Large Scale Information systems and because of its rel-
evance in these pandemic times. I observed various large-scale DHIS2 im-
plementations to perform my case study. Due to the recent Covid pandemic,
it was very important to help identify bottlenecks and resolve them with
optimizations as fast as possible. Several countries were using DHIS2 for
their Covid Vaccination tracking needs as well as other use cases. DHIS2 is
an open-source information system software and serves as a digital global
public good. Hence, ensuring scalability by bottleneck optimization is nec-
essary for DHIS2 to remain a useful global public good.

This work does not follow analytical, mathematical optimization meth-
ods, but is rather based on an empirical approach. My approach was based
on first identifying performance bottlenecks and limitations in large-scale
data-intensive enterprise applications and then designing and implement-
ing techniques to overcome these limitations. I focus on DHIS2 as part of
my case study and the optimizations and findings are then generalized so
that they can be applied for most enterprise applications that interact with
a relational database.

3.1 Research Process and Collaboration
I work in the DHIS2 core development team. This gives me valuable

insights and first-hand information on the performance bottlenecks and
limitations that several large-scale DHIS2 implementations are facing. I
volunteered to take part in performance analysis and experimenting opti-
mizations to overcome these bottlenecks along with others in the DHIS2
Core development team. This thesis was completed in collaboration with
the DHIS2 Core development, Quality Assurance (QA) team, and System

8

administrators (HISP Teams) of various large-scale DHIS2 implementa-
tions.

First, I conducted a literature study of recent research papers on the lim-
itations and potential optimizations for large-scale enterprise applications
that use the ORM framework and interact with relational databases. The
results of this study allowed me to become familiar with the best practices
and expert recommendations on large-scale applications. It also revealed
common anti-patterns that gave me an insight into possible problems to
tackle. To identify a potential bottleneck, I along with the DHIS2 core de-
velopment team used monitoring tools like Glowroot and Munin and also
referred to relevant log files when required. After having collected can-
didate opportunities for performance improvement, we verified the exis-
tence of the bottleneck, by experimenting on our simulated performance
test environment. Once we had confirmed the presence of a shortcoming,
we experimented with various optimization techniques to improve perfor-
mance depending on the type of bottleneck. Next, we implemented the
optimization technique, while trying to generalize it and ensure use-case
independence. Finally, we evaluated our implementation by comparing the
modified system which uses our optimization technique, to the original un-
modified system. For the evaluation, we used both the synthetic environ-
ment and the real-world environment, where possible. In most cases, we
used total execution time as the performance measure and also computed
overheads separately, when necessary.

When a performance issue is reported by System administrators of large-
scale DHIS2 implementations, we first identify the underlying root cause
of the specific performance bottleneck. Then optimization possibilities were
evaluated. In some cases, the evaluations were done and tested on the ac-
tual production implementation of DHIS2 to make sure the bottleneck is
resolved. Based on the evaluation results, the optimizations were released
along with the subsequent patch release of DHIS2 software. For the eval-
uation, we used a test database representative of a real-world large-scale
DHIS2 implementation database. All comparisons and figures of optimiza-
tion impact were done using the same application environment to ensure a
fair comparison of performance parameters.

We set up a performance testing environment backed by a database that
approximately represented real-world DHIS2 databases of large-scale in-
stances. This simulated environment helped us to benchmark optimiza-
tions and analyze various performance metrics. During workload testing,
workloads must be repeatable and easily reproducible to simulate multiple
alternative scenarios with identical settings. We were able to reproduce
several issues from the field in the performance environment and analyze
them in isolation in our performance test environment. We could exper-
iment with various optimization techniques for the identified bottlenecks
and the impacts could be studied in a controlled manner.

9

There were multiple sources in the data collection process. They are
listed below

1. I was in touch with system administrators of several large-scale DHIS2
implementations. System administrators of DHIS2 implementations
in Rwanda, Sri Lanka, and Nigeria were all cooperative and support-
ive of my research work. We had several informal discussions and
information sharing using the Slack messaging platform.

2. Glowroot access was provided for observation in several large-scale
DHIS2 implementations. Glowroot provides a very useful dashboard
with Slow traces and breakdown of various performance metrics. Query
processing times, wait/block times, memory allocation, etc are some of
the metrics shown in Glowroot slow trace. These slow traces can be
exported, saved, and shared. Glowroot also has graphs to show the
heap memory utilization and CPU load among other things. Request
and Response payload will not be saved by Glowroot which ensures
no confidential data (or Personally Identifiable Information) is visible
in the Glowroot dashboard. However, request parameters that may
include sub-strings of names and phone numbers will potentially be
seen. But those were not exported or saved and were only used to
identify the access pattern to be able to reproduce them in a simu-
lated environment.

3. Application logs and PostgreSQL logs were shared by System main-
tainers to help the investigation. Only the relevant error stack traces
in the logs were shared and this reduces the risk of sharing any confi-
dential information.

4. Access to production database or their infrastructure was not required.
System administrators were very cooperative to share query plans
and other relevant information related to our performance analysis.
This ensured that they had complete control of the data shared and
can anonymize relevant data in case it was needed.

5. We created a performance testing environment that simulated a real-
world DHIS2 Covid implementation database. This helped us experi-
ment with several optimization approaches and evaluate the best can-
didate.

6. We conducted several formal and informal meetings, which involved a
mix of QA engineers, System Administrators, Product managers, and
members from the DHIS2 Core development team.

3.2 Ethical Obligation and Challenges
I ensured that no sensitive data are included in this thesis. The data

that is presented in the listings are anonymous and do not characterize as
PII data. I have only collected material relevant to the scope of the thesis.
Observations of different performance metrics under varying data access
patterns and data dynamics were done on production databases. Whenever
I have received production data samples for analysis, I have made sure

10

to delete them after recording my observation. It was important to study
and observe real-world production-grade applications to understand their
behavior under load and unique data access patterns.

We faced several challenges throughout this work. First and foremost
were the time constraints and urgency. In most cases, the issues were re-
ported by large-scale implementations and I was part of the reactive efforts
to identify the bottleneck and implement possible optimization suitable for
the problem. Secondly, there were several large-scale DHIS2 implementa-
tions used for my thesis case study. This meant that the data dynamics,
volume, and access patterns were not the same. So all the optimization
techniques had to be made generalized as much as possible to make them
applicable for all the systems. In some cases, our synthetic performance
test environment did not accurately represent the real-world problem. In
such instances, we had to seek the help of the system administrators of the
affected implementation to get more information and context of the prob-
lem. The biggest challenge among all was infrastructure inconsistencies
and issues related to infrastructure. Most of the country implementations
were hosted in a private cloud environment maintained by the government
or parastatal authorities. Some of the performance issues were caused by
the infrastructure and it had a ripple effect on the application and database
bottlenecks.

For the experiments, we focused on DHIS2 version 2.34 and 2.35. The
exact version depended on the affected version reported from the field. To
facilitate reproducibility, the performance test environment can be down-
loaded from the link provided in Appendix. The corresponding DHIS2 ap-
plication WAR files can be downloaded from the DHIS2 downloads URL
linked in the Appendix. The performance test environment was set up in
virtual machines in a cloud environment. For brevity, most of the long list-
ings of queries and query plans have been trimmed in the main section.
The original full queries and query plans are added in the Appendix.

In the next chapter, we define what we mean by ”performance analysis”,
”bottleneck” and ”optimization” in the context of this thesis. I also review
existing literature related to my research topic in the next chapter.

11

4 Literature Review
This chapter presents a review of literature that is deemed appropriate

for the topics concerned in this thesis. Firstly, the relevant terminologies
are defined, namely bottleneck, performance analysis, and optimization.
Then a review of existing literature covering the different concepts follows.
And finally, a summary of the literature review that explains my contribu-
tion to the literature.

4.1 Bottlenecks
In software terms, a bottleneck occurs when the capacity of an application
or a computer system is limited by a single component, like the neck of a
bottle slowing down the overall water flow. The bottleneck has the low-
est throughput of all parts of the transaction path. Therefore developers
will try to avoid bottlenecks and direct effort towards locating and tuning
existing bottlenecks. Sometimes this happens after the software has been
deployed in a live environment to be used by real traffic. Tracking down
bottlenecks is called performance analysis.

4.2 Performance Analysis
Cortellessa et al. explain the difference between System vs Software Per-

formance Analysis [6]. In System performance analysis, when a bottleneck
is identified, the prevalent corrective actions mainly concern the hardware
platform and its load. For example, to relieve an overloaded CPU, it is usu-
ally suggested to increase the multiplicity of the CPU or, in the best case,
to deviate part of its load (through a load balancing system) toward less
stressed CPUs.

On the other hand, in Software performance analysis, when a bottleneck
is identified, the corrective action or suggestion is to introduce a change
in the software rather than the system hardware. For example, excessive
memory utilization can also be relieved by modifying the software to utilize
memory more effectively.

Software performance analysis looks at how a specific program is per-
forming daily and chronicles what slows down performance and causes er-
rors now and what could pose a problem in the future. Performance issues
are not always built into the software in a way that can easily be spotted
through the QA process. Instead, it is something that can emerge over time
after the project has been deployed and under diverse load. This thesis
focuses on software performance analysis on large-scale DHIS2 implemen-
tations.

Several tools exist for performance analysis for various software tech-
nologies. In this thesis, the following external tools were used for analyzing
the performance of DHIS2.

12

• Glowroot is an open-source Application Performance Management (APM)
tool useful for monitoring Java-based applications [23]. It supports
profiling Java applications. Glowroot dashboards were used exten-
sively to monitor and observe the real traffic of large-scale DHIS2 im-
plementations.

• Locust [17] is an open-source load testing tool that allows you to define
user behavior and swarm your system with millions of simultaneous
users. We used Locust to stress test DHIS2 and simulate workloads
comparable with large-scale DHIS2 implementations.

• Apache Jmeter [14] is open-source software and a 100% pure Java ap-
plication designed to load test functional behavior and measure per-
formance. Jmeter was used locally on my laptop for some ad-hoc stress
testing.

• YourKit Java Profile [31] is a fully-featured low overhead profiler for
Java EE and Java SE platforms. YourKit was used to profile our per-
formance test environment during stress tests.

Koçi et al. state a data-driven approach to measure usability of Web
APIs[19]. Out of the six usability attributes elaborated in their work, the
Efficiency attribute directly correlates to the performance of a Web API. The
relevant sub-attributes are efficiency In Task Execution and efficiency em-
phIn Tied Up resources. Both of these metrics are significant when analyz-
ing the performance of software through its exposed Web-APIs. In this the-
sis, response time and resource utilization are the main factors evaluated
when analyzing the performance of DHIS2. In their work, Koçi et al. have
also done a case study design on DHIS2 where they apply their proposed
approach of measuring usability attributes by processing API logs. How-
ever, the case study is limited to computing the metrics for the know-ability
attribute alone and not the efficiency attribute. This thesis can therefore
complement their work by computing some of the metrics for the efficiency
attribute of Web-APIs (non-exhaustively) in DHIS2.

Disk type and FileSystem type have an impact on transaction processing
performance in PostgreSQL which is proven by Smolinksi’s work with Stor-
age space configuration [22]. However, as mentioned in the first chapter,
storage configuration falls under infrastructure which is outside the scope
of this research work. This thesis focuses on the DHIS2 application source
code and the interaction with the PostgreSQL database.

4.3 Optimization
Performance Optimization is the process of modifying a software system

to make it work more efficiently and execute more rapidly. Performance op-
timization is key in having an efficiently functional application. It is done
by monitoring and analyzing the performance of an application and iden-
tifying ways to improve it. Performance optimization generally focuses on
improving just one or two aspects of the system’s performance, e.g execution
time, memory usage, disk space, bandwidth, etc. This will usually require

13

a trade-off where one aspect is implemented at the expense of others. For
example, increasing the size of the cache improves run-time performance,
but also increases memory consumption.

There are numerous works on standard performance issues caused by
common anti-patterns. These works also detail the optimizations that can
be applied to eliminate the common anti-patterns. Using an Object-Relational
mapping framework like Hibernate makes it more vulnerable to introduc-
ing such anti-patterns. Tse-Hsun Chen et al. have detected performance
anti-patterns for applications developed using Object-Relational Mapping
[5]. Their work specifically is focused on Java and Hibernate. ORM has
always been a topic of performance analysis. The overhead required to map
objects to their relational counterparts, and the amount of non-transparent
logic contained in it makes it vulnerable to being a bottleneck. The same
kind of analysis, as well as a performance aware refactoring, was done by
Boyuan Chen et al. in their Industrial Experience Report [4]. However,
their work was more focused on PHP and its ORM framework named Lau-
rel. Gorodnichev et al. explore the use of ORM in their work[16] and con-
clude that if ORM is used competently by experienced developers then the
overhead or impact on performance is negligible. This further reinforces
the need to detect and remove anti-patterns in an ORM-backed application
like DHIS2.

There are also numerous works on optimizing and configuring PostgreSQL
database effectively [3, 21, 20]. However, all of these works explain differ-
ent database configurations and query optimizations and suggest options.
Since there is no one-size-fits-all configuration, fine-tuning the configura-
tion and database schema for a large-scale DHIS2 instance is not triv-
ial. This thesis translated the suggestions from their work into actionable
points for specific large-scale DHIS2 implementations involved in my case
study.

The work that is very closely related to my thesis work is by Dombrovskaya
et al. that not only focuses on PostgreSQL Query Optimization but also
delves into common pitfalls and anti-patterns of applications working with
PostgreSQL [12]. I have extended their work by empirically analyzing the
impact of various optimizations on a real-world large-scale time-critical in-
formation system like DHIS2.

4.4 Limitations
DHIS2 is a complex information system with varying scopes and con-

texts. As mentioned in the previous sections, more than 73 countries are
using DHIS2 for collecting and analyzing health-related data. The scope
of this thesis is limited to identifying the application and database query
bottlenecks. All infrastructure-related bottlenecks are out of scope for this
thesis. The different large-scale DHIS2 implementations are hosted by the
corresponding countries on secure private cloud environments or physical
servers. There are large-scale implementations hosted in the AWS cloud

14

platform and also on local physical machines with Linux. We do not have
direct access to the systems or any sort of control on how much resources
are provided for the instances. It is completely up to the implementers to
decide how they want to size their system. There are some standard guide-
lines provided for setting up a DHIS2 instance.

The optimizations, wherever possible, are released as version upgrades.
However, several implementations are reluctant to upgrade their versions
to get these optimization benefits. There are states in India (Uttar Pradesh
and Orissa) that are still using older DHIS2 versions like 2.28 that are not
actively supported anymore. However, they wish to remain in the old ver-
sion as they feel their requirements are satisfied with that version and do
not want to upgrade to a more recent version bringing with it more com-
plexities and sophisticated features. Such implementations will never have
the benefit of the optimizations done during this research work until their
policies change and they upgrade to the latest DHIS2 versions.

We also know that countries like Nepal and Ethiopia are stuck in DHIS2
version 2.30. This is because Nepal and Ethiopia have their native calen-
dars which were supported until 2.30. These countries need date pickers for
their native calendars. From version 2.30, front-end applications were mod-
ernized to be implemented with ReactJS and related frameworks. However,
ReactJS does not have libraries for the Nepalese/Ethiopian calendar. There
is no Material-UI support or library, which caused DHIS2 to drop support
for native calendars from DHIS2 version 2.31. This technical limitation has
forced Ethiopia and Nepal to continue using DHIS2 version 2.30. They are
unable to upgrade to a better-performing version.

There are also limitations concerting governance and policies by the Coun-
try implementations. HISP teams can only provide recommendations. The
ultimate decision is always made by the higher officials in a country and
those decisions can be affected or influenced in many ways. Such infras-
tructural issues, governance, and policies are outside our control and also
outside the scope of this research work.

4.5 Summary
This chapter introduced the reader to the concepts of bottleneck, per-

formance analysis, and optimization. It also presents a review of exist-
ing literature on these concepts that are related to my research topic. As
far as my search goes, there is no existing literature that details perfor-
mance bottlenecks and evaluates the impact of optimization techniques
on production-grade large-scale information systems like DHIS2. Through
this case study, I have detailed some of the performance issues identified,
the optimizations that were applied, and the impact of these optimizations
on large-scale DHIS2 implementations.

15

5 Performance Analysis
An enterprise application will have several layers that constitute the en-

tire software system. Application architectures are also described with tiers
rather than layers. Tier usually implies a physical separation. An example
is Client-server systems that represent a two-tier system, and the separa-
tion is physical. However, describing application architecture with layers
is mainly a logical separation. These logical layers do not necessarily have
to be run on different physical machines and can co-exist in the same ma-
chine. Performance analysis of an enterprise application can be done at
each layer of the software system.

Layer Responsibilities and Components in DHIS2

Presentation Display of information to the end users through
front-end Apps. Actions done by users in the
form of mouse-clicks and keyboard hits trans-
lates into a series of HTTP Requests accessing
the DHIS2 APIs served by the backend.

Domain All the logic and functional rules of the system
forms this layer. In DHIS2, a part of the backend
handles all the business logic.

Data Source This layer communicates with the database and
uses appropriate queries to fetch data from
database or persist data into the database.

Table 1: Three Principal Layers in the context of DHIS2

Although there are numerous ways to layer an application, I will be us-
ing one of the oldest and most popular architecture approaches as shown in
table 1. This kind of architecture and its three principal layers have been
a topic of discussion since the early 2000s. Fowler explains it clearly along
with several other architectural patterns in their work from 2002 [15]. This
kind of layering is very generic and can be applied to a large number of ap-
plication implementations. In the table 1, the components and functionali-
ties of DHIS2 that fall into each of these layers are also explained. In this
thesis, for the case study with DHIS2, I have merged the Presentation layer
and Domain layer into a single layer called Application Layer for the sake
of simplicity. The Data Source Layer is the second layer that is referenced
in this thesis. From my case study on large-scale DHIS2 implementations,
I categorized the identified bottlenecks into one of the two layers - Applica-
tion Side or Database Side.

16

Tracker
Metadata
Concept

Description and Examples

Tracked Entity
Type These are the types of entities that you want to track

timeline data for. This can be a ”Person” or ”Vehicle”
or ”Student” or any other type that you want to track
based on the domain and use-case. In the health sec-
tor, the tracked entity type is usually a ”Person” or
”Patient”. This concept falls under metadata. Defin-
ing a tracked entity type is done by the system ad-
ministrator as part of the system setup and is a one-
time job.

Tracked Entity
Attribute These are the attributes that can be configured to

be attached to either tracked entity type or program.
Examples of tracked entity attribute that can be at-
tached to a ”Person” tracked entity type are ”First
Name”, ”Sex”, ”Date of Birth” and so on. Some at-
tributes can be configured to be unique, for example,
”National Identification Number”.

Program This is the definition of a program to which an
instance of a tracked entity type can be enrolled.
For example, Covid Vaccination Program, Maternity,
and Child Health Program, and Tuberculosis Pro-
gram. A specific patient, an instance of a tracked en-
tity type, can be enrolled into one of these programs,
and their treatment or participation in the program
can be tracked from thereon.

Program Stage These are the different stages that can be configured
in a program. Each program can have one or many
program stages. For example, in a Covid Vaccination
Program, First Dose can be a program stage, Second
Dose can be the second program stage. These stages
can be configured to unlock sequentially as well.

Table 2: DHIS2 Tracker Metadata Concepts

17

Certain terminologies need to be familiarized to fully understand the per-
formance bottlenecks in DHIS2 and their implications. The table 2 gives
a brief description of the different metadata concepts in DHIS2 Tracker.
Even though the list is not exhaustive, all the essential concepts of DHIS2
Tracker Metadata are covered based on the scope of this thesis.

The table 2 focuses on DHIS2 Tracker Metadata concepts. Metadata is
part of the system configuration. Since DHIS2 is a generic application that
can be tailored for different contexts by configuring the metadata. This
customizability is crucial for enabling DHIS2 to support the concrete im-
plementation context at hand. The configuration and metadata setup is
done by the system administrators as a one-time activity as part of the sys-
tem setup. Once the metadata setup is complete, there is rarely a need to
change the metadata configuration. The table 2 also has examples for the
specific metadata concepts that can be customized for a health domain use-
case, like Covid Vaccination Tracking. Along with the concepts mentioned
in the table, an additional concept worth mentioning is Organisation Unit.

In DHIS2 the location of the data, the geographical context, is repre-
sented as organisation units. Organisation units can either be a health fa-
cility or department/sub-unit providing services or an administrative unit
representing a geographical area (e.g. a health district). Organisation units
are located within a hierarchy, also referred to as a tree. The hierarchy will
reflect the health administrative structure and its levels. Typical levels in
such a hierarchy are the national, province, district, and facility levels. In
DHIS2 there is a single organisational hierarchy so the way this is defined
and mapped to reality needs careful consideration. Which geographical ar-
eas and levels are defined in the main organisational hierarchy will have a
major impact on the usability and performance of the application[26].

Metadata is only a mechanism to set up a DHIS2 instance and config-
ure it to collect data. The memory footprint for storing metadata is low as
it does not include the actual data collected by the users. Data is entered
based on this metadata, and therefore as long as the data collection con-
tinues, the memory footprint for storing this data keeps on increasing. In
the table 3, some of the DHIS2 Tracker Data concepts are listed. It also
has examples for the specific data concepts that have been customized for a
health domain use-case, like Covid Vaccination Tracking.

18

The database schema design also plays an integral role in application
and query performance. The best way to graphically represent a database
schema design is using an Entity-Relationship diagram for the tables in
the database. Figure 2 shows the E-R diagram of the relevant database
tables of DHIS2 discussed in this thesis. Only those tables and columns
that are relevant to the scope of this thesis are shown in the diagram. In
multiple parts of the thesis, I have referenced the figure to better explain
the bottleneck or related optimization.

Figure 2: Entity-Relationship diagram of tables in DHIS2 Tracker

In the remaining part of this section, I list out the bottlenecks identi-
fied during my research work on the Database Side and Application Side
separately.

19

Tracker Data
Concept

Description and Examples

Tracked En-
tity Instance

This is an instance of the tracked entity type. If the
type was ”Person”, then examples of tracked entities
will be specific individual persons. In a national level
implementation of DHIS2 Tracker, there will be as
many tracked entities as the population of that coun-
try. Every citizen is a tracked entity instance. This
concept falls under data. In health information in-
stances, this is the actual patient data.

Tracked En-
tity Attribute
Value

These are the values of a tracked entity attribute
for a specific tracked entity instance. For example,
”David” is the value of tracked entity attribute ”First
Name” for a specific Tracked Entity instance. This
data is also crucial for searching and finding specific
tracked entity instances.

Program In-
stance

A Program instance is an enrollment of a tracked
entity instance into a program. Program Instance
and Enrollment can be used interchangeably. For ex-
ample, an Enrollment of a patient (a tracked entity)
into the Covid Vaccination Program is a Program In-
stance.

Program Stage
Instance

They are also called Events. These are the instances
of program stages. For example, when the patient
is enrolled into the Covid Vaccination program and
then visits a clinic to get their first dose, an Event
(Program Stage Instance) gets created. The details
of that stage are populated in the system like the
date of vaccine, type of vaccine, etc. This is also data
and is attached to the enrollment as events.

Table 3: DHIS2 Tracker Data Concepts

20

5.1 Data Source Bottlenecks
The Data Source Layer mainly consists of the actual database and the

technologies or tools used to communicate with the database. In the case
of DHIS2, the database is PostgreSQL. Communication with the database
mainly implies querying the database to fetch data and to insert or update
specific records in the database. In the case of DHIS2, these communica-
tions are done using Hibernate ORM tool and Spring JdbcTemplate, all of
which internally use the PostgreSQL JDBC driver. The performance bottle-
necks in the data source layer are usually in-efficient queries or the absence
of indexes. The bottlenecks explained here are also applicable to most In-
formation Systems and not just DHIS2.

5.1.1 In-Efficient Queries
In-efficient queries are queries structured in such a way that the database

query engine is unable to optimize the data fetch/update and thus leads to
a significant response time. In-efficient queries are not declarative enough
which does not give the optimizer better execution paths. There have been
incidents in large-scale implementations where the query response time
has been as large as 600000ms, which is 10 minutes. This essentially boils
up to the DHIS2 API response time and the user is left hanging after per-
forming a mouse-click and waiting for something to happen. Since Hiber-
nate ORM is extensively used in DHIS2, there is a chance that in some
cases hibernate constructs in-efficient queries under the hood as well. In
other cases, it may be the application developer that has inadvertently mod-
ified an SQL query to add a feature and thereafter make it in-efficient.

Sri Lanka’s Covid Vaccination Tracker instance suffered from an in-efficient
query that caused a huge bottleneck. The bottleneck rendered DHIS2 use-
less and the health facilities were unable to meet the Sri Lankan Ministry
of Health (MOH) deadlines and targets for vaccination per day. Each vac-
cine that was provided took a long time due to the high wait time in the
application. The bottleneck and its impact were severe and several health
facilities had to resort to paper-based and excel based tracking.

The issues reported from the field in Sri Lanka were the following

1. Delay in loading the front page list of the Tracker Capture App.

2. Delay in searching for a Tracked Entity Instance based on a unique
attribute

3. Delay in registration of a new Tracked Entity Instance

On investigating the API calls that are invoked during these front-end
user actions, there was a common API involved in all of the 3. The API that
was performing poorly and taking minutes to respond was https://base-url/api/trackedEntityInstances/query.json?

21

We used Glowroot to track down the individual queries generated within
this API and identified an in-efficient query that consumed a lot of time.
The corresponding query has been trimmed for brevity and is shown in
listing 1. The full query can be found in Appendix.

1 SELECT instance,..., enrollment_status,
2 "tJz1lz2sGrl".value AS ..,"m8xiBGIwDOT".value AS ..,
3 "wi1E4HGW2zn".value AS ..,"XELfe4q9YMx".value AS ..,
4 "xom4oPe793b".value AS .., "I2kOTyjBaL7".value AS ..,
5 FROM trackedentityinstance INNER JOIN trackedentitytype
6 ON ..
7 INNER JOIN
8 (SELECT ... FROM trackedentityprogramowner
9 WHERE programid = 17609) AS tepo

10 ON ..
11 INNER JOIN
12 (SELECT trackedentityinstanceid,
13 Min(CASE WHEN status=’ACTIVE’ THEN 0
14 WHEN status=’COMPLETED’ THEN 1
15 ELSE 2 END) AS status
16 FROM programinstance pi WHERE
17 pi.programid= 17609 AND pi.deleted IS false
18 GROUP BY trackedentityinstanceid) AS en
19 ON ..
20 INNER JOIN organisationunit ou ON ..
21 INNER JOIN trackedentityattributevalue AS "tJz1lz2sGrl"
22 ON .. AND "tJz1lz2sGrl".trackedentityattributeid = 17633
23 AND lower("tJz1lz2sGrl".value) = ’783063093v’
24 LEFT JOIN trackedentityattributevalue AS "m8xiBGIwDOT"
25 ON .. AND "m8xiBGIwDOT".trackedentityattributeid = 26234
26 LEFT JOIN trackedentityattributevalue AS "wi1E4HGW2zn"
27 ON .. AND "wi1E4HGW2zn".trackedentityattributeid = 17621
28 LEFT JOIN trackedentityattributevalue AS "XELfe4q9YMx"
29 ON .. AND "XELfe4q9YMx".trackedentityattributeid = 357636
30 LEFT JOIN trackedentityattributevalue AS "xom4oPe793b"
31 ON .. AND "xom4oPe793b".trackedentityattributeid = 357642
32 LEFT JOIN trackedentityattributevalue AS "I2kOTyjBaL7"
33 ON .. AND "I2kOTyjBaL7".trackedentityattributeid = 17585
34 LEFT JOIN trackedentityattributevalue AS "pSTSMtz1Wpl"
35 ON .. "pSTSMtz1Wpl".trackedentityattributeid = 357648
36 LEFT JOIN trackedentityattributevalue AS "edxMtP94nYO"
37 ON .. "edxMtP94nYO".trackedentityattributeid = 17592
38 LEFT JOIN trackedentityattributevalue AS "E3rF2khHBXS"
39 ON .. "E3rF2khHBXS".trackedentityattributeid = 24772
40 LEFT JOIN trackedentityattributevalue AS "fFXrgNH7SY6"
41 ON .. "fFXrgNH7SY6".trackedentityattributeid = 29959
42 WHERE tei.trackedentitytypeid IN (17581)
43 AND (ou.path LIKE ’/GYBZ1og9bk7%’) AND tei.deleted IS false
44 ORDER BY en.status ASC, lastupdated DESC

Listing 1: Identified In-Efficient Query

22

The query was sometimes taking several minutes to get a response from
the database and this was happening on a powerful national DHIS2 tracker
instance. A glimpse at the query made it obvious that this query does not
scale well. The more attributes the implementation has configured, the
more left joins with the trackedentityattributevalue table occurs. On ana-
lyzing the query plan, which is also added in Appendix, the specific areas
of bottleneck within the query were identified.

The query plan analysis gave the following observations

• The chaining of joins (line 24 to 40) for every trackedentityattribute-
value is not scalable. For the Sri Lanka Covid Vaccination Tracker in-
stance, there were more than 10 attributes, and that resulted in more
than 10 chained joins of a table that has over 200 million records. The
default value of join collapse limit PostgreSQL configuration param-
eter is 8. This parameter caps the number of tables in a join that will
still be processed by the cost-based optimizer. This means that if the
number of tables in a join is eight or fewer, the optimizer will perform
a selection of candidate plans, compare plans, and choose the best one
[12]. But if the number of tables is nine or more, it will simply exe-
cute the joins in the order seen in the SELECT statement. Hence, this
kind of chained left joins block the optimizer from choosing the best
execution path. An alternative way of fetching the same set of data
without these many joins had to be investigated.

• The default sorting is based on a computed column of status in the ta-
ble programinstance. A decision had to be made whether the default
sorting has to be such a costly one. Default sorting is used when the
API client does not explicitly request sorting by any specific param-
eter. A non-costly default sorting would have been more optimal to
avoid this bottleneck.

By understanding the problematic areas in the query structure, we rewrote
this query as elaborated in section 6.1.1. The rewrite considered the above
observations, alleviated the scalability issues while still satisfying the re-
quirement of the API. The optimization results are also explained in section
6.1.1.

23

5.1.2 Absence of Indexes
In the majority of the cases, the SQL query is already declarative and

optimized structurally. There may not be a way to rewrite it to make it more
efficient. Despite being optimized on paper, there are cases where such a
query is performing poorly on large databases. This is because the query
optimizer does not have the necessary help to speed up data fetching. If
the execution path involves full table scans to fetch data from a large table,
then it will certainly be slow. A tool that can help the query optimizer to
further speed up data lookup is an Index.

What exactly is an index? Indexes are redundant data structures that
are invisible to the application and are designed to speed up data selection
based on criteria [12]. The redundancy means that an index can be dropped
without any data loss and can be reconstructed from data stored in the
tables. Invisibility means that an application cannot detect if an index is
present or absent. Any query produces the same results with or without an
index. An index is created to improve the performance of a specific query or
several queries.

If appropriate indexes are not created, the query engine sequentially
scans the entire table and that consumes time. To obtain the execution
plan for a query, the EXPLAIN command is run. This command takes any
grammatically correct SQL statement as a parameter and returns its exe-
cution plan[12]. Analyzing the execution plan gives valuable insights into
how the query optimizer decided to execute the query. It displays the usage
of indexes (if any), estimations of costs, the expected number of rows in the
output for that specific query execution.

In this section, I list two major types of performance bottlenecks that
multiple large-scale DHIS2 instances faced due to lack of indexing. Both of
the issues revolve around one of the largest tables in the DHIS2 database,
the trackedentityattributevalue table. If an instance has 10 attributes con-
figured for a trackedentitytype, then the number of trackedentityattribute-
values will be 10 times the number of trackedentityinstances. The relations
between these tables can be referred to in figure 2. In the Sri Lankan Covid
Vaccination tracker instance, there were 17 Million trackedentityinstances
and more than 10 trackedentityattributes configured. This meant the size
of the trackedentityattributevalue table was well over 200 Million records.

Nigeria DHIS2-Vaccination instance reported the slow query shown in
listing 2. Such queries with cross joins are created internally by Hibernate
ORM used within DHIS2, more of this is covered in the next section 5.2. In
this section, the slow query is analyzed to identify the bottleneck.

1 SELECT trackedent0_.uid AS col_0_0_
2 FROM trackedentityinstance trackedent0_
3 WHERE (EXISTS (
4 SELECT trackedent1_.trackedentityinstanceid,

24

5 trackedent1_.trackedentityattributeid
6 FROM trackedentityattributevalue trackedent1_
7 CROSS JOIN trackedentityattribute trackedent2_
8 WHERE trackedent1_.trackedentityattributeid =
9 trackedent2_.trackedentityattributeid

10 AND trackedent1_.trackedentityinstanceid =
11 trackedent0_.trackedentityinstanceid
12 AND trackedent2_.uid = ’izttywqePh2’
13 AND Lower(trackedent1_.value) = ’ng-tm10697501lx’
14)) AND trackedent0_.deleted = false

Listing 2: Slow Query reported by Nigeria DHIS2 Vaccination Instance

We executed the EXPLAIN command on the query in listing 2 and an-
alyzed the query plan. The performance bottleneck was evidently in one
of the filter checks corresponding to Line 13. The figures 3 and 4 shows a
graphical representation of the node in the query plan that causes the bot-
tleneck. The filtering check on the lower(value) comparison is not part of
an index and therefore is causing the bottleneck.

Figure 3: Query plan node that consumes the most time

In figure 3, we see the time taken to process this specific operation by the
query executor is 4 minutes and 39 seconds. We also see that over 99% of
the rows are removed by the filter. For such a restrictive filter, an index
is essential [12]. Even though the operation is an Index Scan, the index
that is scanned is the primary key of the trackedentityattributevalue table
and does not help to speed up the filter condition on lower(value). This
is evident from figure 4, where the index condition and filter are shown
clearly.

25

Figure 4: Query plan node details showing the filter applied

Another type of performance issue on a specific query was reported by the
Rwanda DHIS2 Covid Vaccination tracker instance. The issue, if left unat-
tended, would have compromised their National Covid Vaccination Cam-
paign which was running for a few weeks and had an estimate of 100k
vaccinations per day. The query is shown in listing 3 which also uses the
trackedentityattributevalue table. The query is trimmed for brevity, the full
query can be found in Appendix.

1 SELECT instance, ... ,inactive,
2 String_agg(TEA.uid || ’:’ || TEAV.value, ’;’)
3 FROM (SELECT ...
4 FROM (SELECT ...
5 FROM trackedentityinstance TEI
6 INNER JOIN trackedentityattributevalue "ciCR6BBvIT4"
7 ON "ciCR6BBvIT4".trackedentityattributeid = 3465
8 AND "ciCR6BBvIT4".trackedentityinstanceid =
9 TEI.trackedentityinstanceid

10 AND Lower("ciCR6BBvIT4".value) LIKE ’%0784003172%’
11 INNER JOIN trackedentityprogramowner PO
12 ON .. AND PO.programid = 3541

26

13 INNER JOIN organisationunit OU
14 ON .. AND (OU.path LIKE ’/Hjw70Lodtf2%’)
15 WHERE TEI.trackedentitytypeid IN (3501)
16 AND TEI.deleted IS FALSE
17 AND EXISTS (SELECT PI.trackedentityinstanceid
18 FROM programinstance PI
19 WHERE PI.trackedentityinstanceid =
20 TEI.trackedentityinstanceid
21 AND PI.programid = 3541
22 AND PI.deleted IS FALSE)
23 ORDER BY TEI.trackedentityinstanceid ASC
24 LIMIT 21 offset 0) TEI
25 LEFT JOIN trackedentitytype TET ON ..
26 LEFT JOIN trackedentityattributevalue TEAV
27 ON .. AND TEAV.trackedentityattributeid IN (...)
28 LEFT JOIN trackedentityattribute TEA ON ..
29 GROUP BY ...
30 ORDER BY TEI.trackedentityinstanceid ASC;

Listing 3: Slow attribute search query reported by Rwanda DHIS2 Vacci-
nation Instance

On analyzing the query plan for the query in listing 3 the performance
bottleneck was once again in one of the filter checks on lower(value) corre-
sponding to Line 10. The figures 5 and 6 shows a graphical representation
of the node in the query plan that causes this bottleneck. The filtering
check on the lower(value) comparison is not part of an index and there-
fore is causing the bottleneck.

Figure 5: The bottleneck Query plan node in Rwanda

It has to be noted that the query in listing 3 is an optimized version of
the in-efficient query in listing 1. Even after making the required structural

27

changes for better efficiency, the query still struggled to perform under load
for certain criteria checks.

In figure 5, we see the time taken to process this specific operation of
like comparison with a double-ended wildcard on lower(value) is 82% of
the total time required to execute the query. The timing of 1 second 367
milliseconds should not be taken lightly, as the query plan was obtained
during off-peak hours from the Rwanda DHIS2 instance. With the vacci-
nation campaign going in full swing during the peak time, the number of
similar queries hitting the database concurrently is high and the bottleneck
was stressing the database. For such a high execution frequency of a query,
82% of the time spent on filtering the condition becomes a bottleneck that
is worth optimizing.

Figure 6: Query plan node details showing the like comparison filter with
double ended wildcard (%)

A very similar performance issue on a specific query was reported by the
Nigeria DHIS2 Covid Vaccination tracker instance. They had their meta-
data configured in such a way that, Covid vaccination verification QR code
was set up as an event data value. The query to search for a specific QR

28

code was very slow. The search functionality was used at airports and other
ports of entry to verify if the passengers were vaccinated by searching for
the QR code presented by them. We got reports that passengers were un-
able to board their flights on time because of this performance bottleneck
and huge response time for searching. The corresponding trimmed query is
shown in listing 4. The full query can be found in Appendix.

1 SELECT *
2 FROM (SELECT ..
3 lower(psi.eventdatavalues #>> ’{LavUrktwH5D, value}’)
4 .. FROM programstageinstance psi
5 INNER JOIN programinstance pi
6 ON ..
7 INNER JOIN program p
8 ON ..
9 INNER JOIN programstage ps

10 ON ..
11 INNER JOIN categoryoptioncombo coc
12 ON ..
13 INNER JOIN categoryoptioncombos_categoryoptions
14 ON ..
15 INNER JOIN dataelementcategoryoption deco
16 ON ..
17 LEFT JOIN trackedentityinstance tei
18 ON ..
19 LEFT JOIN organisationunit ou
20 ON ..
21 LEFT JOIN organisationunit teiou
22 ON ..
23 LEFT JOIN users auc
24 ON ..
25 LEFT JOIN userinfo au
26 ON ..
27 LEFT JOIN (SELECT categoryoptioncomboid,
28 Count(categoryoptioncomboid)
29 FROM categoryoptioncombos_categoryoptions
30 GROUP BY categoryoptioncomboid) AS cocount
31 ON ..
32 LEFT JOIN (SELECT ..
33 FROM dataelementcategoryoption deco
34 LEFT JOIN dataelementcategoryoptionusergroupaccesses
35 ON ..
36 LEFT JOIN dataelementcategoryoptionuseraccesses
37 ON ..
38 LEFT JOIN usergroupaccess
39 ON ..
40 LEFT JOIN useraccess ua
41 ON .. WHERE ..) AS decoa
42 ON ..

29

43 WHERE Lower(psi.eventdatavalues #>> ’{LavUrktwH5D, value}’)
44 LIKE ’%nphcda000005013%’
45 AND p.programid = 64519
46 AND psi.deleted IS FALSE
47 AND (p.uid IN (..))
48 AND (ps.uid IN (..))
49 ORDER BY psi_lastupdated DESC
50 LIMIT 2 offset 0) AS event
51

52 LEFT JOIN (SELECT ..
53 FROM programstageinstancecomments psic
54 INNER JOIN trackedentitycomment psinote
55 ON ..
56 LEFT JOIN users usernote
57 ON ..
58 LEFT JOIN userinfo
59 ON ..) AS cm
60 ON ..
61 ORDER BY psi_lastupdated DESC

Listing 4: Slow QR Code search query reported by Nigeria DHIS2 Vaccina-
tion Instance

The bottleneck for the query in listing 4 was in one of the filter check on
lower(psi.eventdatavalues #>> ’{LavUrktwH5D, value}’) corre-
sponding to Line 43-44. The figures 7 and 8 shows a graphical representa-
tion of the node in the query plan that causes this bottleneck. The filter-
ing check on the lower(psi.eventdatavalues #>> ’{LavUrktwH5D,
value}’) comparison is not part of an index and therefore is causing the
bottleneck.

Figure 7: Query plan node in Nigeria that shows bottleneck with QR code
searches

30

In figure 7, we see the time taken to process this specific operation of like
comparison with double ended wildcard on lower(psi.eventdatavalues
#>> ’{LavUrktwH5D, value}’) is 83% of the total time required to exe-
cute the query.

Figure 8: Query plan node details from Nigeria showing the like comparison
filter with double ended wildcard (%)

The bottleneck for both types of issues was identified as the filters with
like or equality comparisons on large tables. The type of the first issue
used an equality comparison operation whereas the latter issue used the
like operation with a double-ended wildcard (%). Hence, both are treated
differently and the optimization for each is different. Details of how these
2 performance bottlenecks were optimized are explained in section 6.1.2.

31

5.2 Application Bottlenecks
In the previous section 5.1, I focused on Database bottlenecks which were
mainly about optimizing database query performance. Database queries
are parts of an application, and this section concerns optimizing processes
within the application rather than individual queries. If we do not address
process deficiencies, it could easily cancel any performance gained from in-
dividual queries. In this section, I focus on listing the identified bottlenecks
on the Application Layer. Out of the layers described in table 1, the Pre-
sentation Layer and Domain Layer collectively form the Application layer
discussed in this section.

A bottleneck in the Application layer means there is an inefficiency in a
section of the code. Application bottlenecks can increase the response times
and decrease the throughput of all the RESTful APIs that touch the inef-
ficient section of the code. Such application Bottlenecks can either be on
the client-side or server-side. The frontend (client-side) is the presentation
layer that is developed using JavaScript and related technologies. There
could exist a sub-optimal function or flow in the frontend JavaScript appli-
cation which in large-scale systems can even cause the client-side browser
to crash or hang. Sub-optimal code execution can also exist in the Java-
based backend application running in a JEE compliant container like Tom-
cat. This can lead to resource exhaustion and system crashes. Just as
database bottlenecks, application bottlenecks also tend to be prominent
only in large-scale Enterprise applications with user access patterns.

Faroult illustrated a great analogy for common performance bottlenecks
on the application side in their work [13]. The analogy is called the Shop-
ping List Problem.

Suppose you have a shopping list for the grocery store. In real life, you
would get into a car, drive to the grocery store, pick up all the items on
your list, get them into the car trunk, drive home, bring them inside, and
put them into your fridge. But Imagine that, instead of this, you would
drive to the store, come in, pick just the first item from your shopping list,
drive back home, place this item in the fridge, and head to the store again.
Imagine repeating the same sequence of actions for each item on your list.
This sounds extremely inefficient for shopping. The fact is that such an
inefficient mechanism is seen in many applications when it comes to their
interaction with databases or APIs.

To put things further into perspective, imagine that to improve the speed
of shopping, experts suggest that we should increase the width of the isles
in the store or build better highways or equip the car with a more powerful
engine to reach the store faster. Some of these suggestions could, indeed,
improve the situation. But no improvement can be compared with the gains
achieved with one simple process improvement - picking up all groceries
during one single trip.

32

This shopping list problem is often translated into application behavior.
Most performance problems are caused by too many queries that are too
small or too many HTTP requests that are very closely related. The same
analogy on better highways and powerful car engines can be applied on the
application side like listed here [13]

1. More powerful computers do not help much, as both the application
and the database are in a wait state for 99% of time.

2. Higher network bandwidth does not help either. High-bandwidth net-
works are efficient for the transfer of bulk amounts of data but can-
not significantly improve the time needed for roundtrips. Time de-
pends on the number of hops and the number of messages but does
not depend significantly on message size. Furthermore, the size of
the packet header does not depend on the message size; hence, the
fraction of bandwidth used for payload becomes small for very short
messages.

3. Distributed servers might improve throughput but not response time
as an application sends data requests sequentially.

Therefore, the best way to optimize the shopping list problem is by re-
ducing round trips. The same pattern of the shopping list problem exists
in most enterprise applications. In the remaining sections of this chapter, I
focus on such performance analysis of application bottlenecks in the DHIS2
application.

5.2.1 In-efficient API Access Pattern
Sometimes the RESTful API itself be very optimized, but an inefficient

way of accessing the APIs (the process) becomes the bottleneck. For exam-
ple, assume there is a customer registration form that is rendered as part
of a front-end App. There would naturally be a Customer Registration API
or Customer Details Update API in the backend which the front-end App
will have to consume. But if the front-end app invokes the API for every
input field entered by the user, the amount of API invocation will be large.
Instead, if the front-end app waits till all the user input fields are popu-
lated and then sends all the data using a single API invocation, the num-
ber of round-trips to the backend decreases considerably and performance
improves drastically. Invoking the API for every input field is similar to the
Shopping List problem described in the previous section 5.2.

A performance issue of a similar nature was reported in Sri Lanka DHIS2
Covid Vaccination Tracker Instance. The Tracker Capture App was used to
track the vaccination doses given to each resident in Sri Lanka.

System administrators observed that there existed intermittent database
row-level locks when updating event data values, table programstagein-
stance shown in 2. We investigated a typical end-user flow through the
Tracker Capture App and observed that for each field input in the Event

33

Data Values section as shown in figure 15, there was an HTTP request
sent to the backend to update that single field value. During peak hours
of vaccinations in various facilities, this means that the number of APIs
being consumed in the backend was a multiplier of the number of the in-
put fields. The same end-user was filling in multiple inputs within a few
seconds and a sequence of API updating the event data values for the same
enrollment was fired into the backend server. In a large scale highly concur-
rent system, these excessive API round-trips have exponential performance
degradation.

Figure 9: Tracker Capture App in Sri-Lanka with 5 to 10 input fields

From the entity-relationship diagram figure 2, the table programstage-
instance stores the data for events. As seen in the figure, the table has a
column eventdatavalues which is of type jsonb. All the event data values
corresponding to a single event are stored in a denormalized way in a sin-
gle column for each event. This further aggravated the problem of multiple
API hits to update individual parts of the same event row and thereby in-
creasing the chances of database row-level locking and waiting. The figure
10 shows the User Interface, which shows a green background color when
an input field is populated by the user. This reflects an API request hitting
the backend and if the response is a success, the background turns green.
Note that only the specific event data value, the Phone(Mobile) field is sent
as part of the API request for updating. This process repeats for each input

34

field. For the Sri Lanka DHIS2 Covid Vaccination tracker instance, there
were on average 5 to 10 input fields.

Figure 10: Updated input fields shown with green background colour in
Tracker Capture App

The listing 5 shows the details of the event data value update API that
updates a single event data value for each API requested. An example
payload is also shown in the listing. The payload has only one event data
value contained in it and only that event data value will be updated in
this specific API. The figure 11 shows the response timing information as
recorded by the Google Chrome browser. The TTFB (Time to First Byte) is
the time it took for the first byte of the response to reach the browser.

35

1 URL: /dhis/api/30/events/*/*
2 Request Method: PUT
3 Request Payload:
4 {
5 "event": "iERafKJQ3aP",
6 "orgUnit": "DiszpKrYNg8",
7 "program": "aLZQ5fSVdQc",
8 "programStage": "fZ3diyIwzDF",
9 "status": "ACTIVE",

10 "trackedEntityInstance": "iWxmynYsPGr",
11 "dataValues": [{
12 "dataElement": "TYn17QNtyNV",
13 "value": "false",
14 "providedElsewhere": false
15 }]
16 }

Listing 5: Request Payload example for single event data value update API

This proved to be a performance bottleneck in the Front-end Application,
namely Tracker Capture App. This in-efficient behavior has existed in the
App for several years. But only in the large-scale covid vaccine implemen-
tation, it starts creating a bottleneck due to the magnitude and frequency
of data entry in the field. The high concurrency of the event data value
updates for the Covid Vaccination implementations exposed the bottleneck
in the application.

Figure 11: Response timing of single event data value update API

5.2.2 ORM Pitfalls
In this section, I cover the common pitfalls and anti-patterns that arise

when using the ORM framework in an enterprise application. I have also
explained how Hibernate ORM framework used within DHIS2 has created
some performance bottlenecks.

An object-relational mapper (ORM) stands for a program that maps a
database object to the in-memory application object. An ORM usually pro-
vides means for retrieving data from the database and mapping them into

36

Java objects. ORM also runs arbitrary database queries which may not be
optimized. However, in practice, generated queries are almost always used
due to time pressures and the simplicity with which they are created in the
application. Because the actual database code is obscured from the devel-
oper, database operations on sets of objects end up happening very similarly
to this: an ORM method returns the list of object IDs from the database,
and then each object is extracted from the database with a separate query
(also generated in the ORM). Thus, to process N objects, an ORM issues
N+1 database queries, effectively implementing the shopping list pattern
described in the previous section.

There are also other factors to consider when using an ORM framework
like Hibernate. Fetching whole objects and their associated graphs into
memory eats a huge chunk of the available heap memory. Such high mem-
ory allocation leads to the application starving of memory and performing
poorly. In worst cases, such high memory consumption can also crash the
application. This kind of performance issue is a result of using ORM map-
ping directly and letting it fetch the entire associations under the hood. The
reason for poor performance from ORM is the incompatibility of database
models and programming language models that can be expressed via the
impedance mismatch metaphor. The power of the expressiveness and effi-
ciency of database query languages does not match the strengths of imper-
ative programming languages. Both imperative programming languages
and declarative query languages work extremely well to accomplish the
tasks they were designed for. The problems start when we try to make
them work together. Thus, the reason for poor performance is an incompat-
ibility of database models and programming language models. However,
that does not mean ORM frameworks have to be avoided. Gorodnichev et
al. has validated in their work that the use of the ORM framework compe-
tently introduces negligible performance issues [16].

A performance issue was reported in the Bangladesh DHIS2 Measles Im-
munization instance where the Front-end app was crashing during one of
their workflows. The issue was in the ”Capture App”. The App fetches all
the categoryOptions (A domain entity mapped by ORM) from the backend
using an API request. Each categoryOption has an associated list of Organ-
isationUnits. In a large-scale DHIS2 instance like the Bangladesh DHIS2
Measles Immunization instance, this translates to around 50,000 category
options with each category option being associated with more than 5000
organisation units. The organisation Unit association indicates whether
the corresponding categoryOption can be used/accessed by the organisation
unit.

In a typical DHIS2 installation, users will not have access to all the or-
ganisation units. Organisation unit can be compared to a health facility.
Therefore, only the health workers in that facility will have the authority
to write data into that organisation unit. This meant that the front-end app
was unnecessarily fetching the entire list of 250,000 (50,000 multiplied by
5,000) objects from the backend and then filtering out the inaccessible ob-

37

jects by traversing through them. This traversing caused several browser
clients to crash. The fact was that out of these 250,000 objects only a very
small percentage would be relevant to the logged-in user based on the user’s
access permissions.

An optimization fix was implemented to enable the Bangladesh National
Immunization campaign to proceed without blockers. The optimization in-
volved creating a new parameter restrictToCaptureScope in the same API
request, which when set to true, the backend server will perform all the
filtering and traversing logic. The response sent back then will be a small
payload that contains domain objects relevant to the logged-in user and no
further traversing or filtering was required from the Front-end App. This
ensured the frontend App never crashed due to the small payload it received
back from the server, and also the payload contained only the relevant data.

The listing 6 shows the significant code snippet on how the quick fix was
done for the traversing and filtering logic. Note that, the entities here are
all Hibernate ORM mapped entities. The method invocation of getOrgani-
sationUnits() on line 7 will internally generate a database query and fetch
all the associated organisation unit objects from the database for that spe-
cific categoryOption alone. This happens in a for loop as shown in line 5 of
the listing 6. This is another example of the hibernate n+1 query problem
which is also illustrated by the Shopping list problem in the previous sec-
tion. The fix has eliminated the category options that are not accessible to
the logged-in user but still has to trim the associated organisation unit list
by traversing through them.

1 Set<String> orgUnits = organisationUnitService.
getOrganisationUnitsByQuery(params).stream().map(orgUnit - >
orgUnit.getUid()).collect(

2 Collectors.toSet());
3

4 //This for loop does the traversal of ORM entities
5 for (T entity: entityList) {
6 OrganisationUnitAssignable e = (OrganisationUnitAssignable)

entity;
7 if (e.getOrganisationUnits() != null && e.

getOrganisationUnits().size() > 0) {
8 //for each entity, the association is fetched and filtered.
9 e.setOrganisationUnits(

10 e.getOrganisationUnits().stream().filter(ou - >
orgUnits.contains(ou.getUid())).collect(
Collectors.toSet()));

11 }
12 }

Listing 6: Java code snippet showing a common ORM anti-pattern

In addition to the multiple round trips to the database because of the
n+1 queries problem, each list of associations is also large. The quick fix

38

helped the Bangladesh National Immunization campaign only because of
their user access configuration. However, the fix introduced a new per-
formance bottleneck in another large-scale instance, the PEPFAR DATIM
Instance. The memory allocated to serve the same request was huge that
the backend application crashed with an OutOfMemory error due to GC
(Garbage Collection) overhead limit getting exceeded.

Further investigation into the DHIS2 PEPFAR DATIM instance revealed
that most of their users had access to all the organisation units (Admin
Users). This essentially meant that the entire set of 250,000+ objects was
loaded into memory and traversed to check if any filtering is required. This
huge memory footprint exhausted the heap memory of JVM which caused
it to crash. We realized that the quick optimization fix applied earlier was
not an optimized solution and proper optimization was required to support
the feature irrespective of how the users in the system are configured.

We simulated the same user configuration in a performance testing en-
vironment and were able to reproduce the massive memory allocation to
serve a single request. The figure 12 shows the metrics captured by Glow-
root [23]. 1GB of memory was allocated to serve a single request. Note that
1GB was observed in a simulated performance test environment. This fig-
ure can go beyond 10 GB depending on the size of the instance. The cost of
invoking the method to get the associated objects in an ORM mapped entity
is often overlooked by developers and goes unnoticed until its being used in
large-scale implementations. This leads to transactions with timeouts or
hangs in large-scale systems.

5.2.3 In-Efficient Resource Utilization
A system resource is any physical or virtual component of limited avail-

ability within a computer system. All connected devices and internal sys-
tem components are resources.

Effective resource management includes both preventing resource leaks
(not releasing a resource when a process has finished using it) and dealing
with resource contention (when multiple processes wish to access a limited
resource). CPU time, Random-access memory (RAM), Disk drives, Cache
Spaces, Network sockets, Input/Output operations are all examples of some
of the general system resources. A robust application ensures efficient use
of the resources of the system.

Actual resource management is a broad topic that I do not cover in this
thesis exhaustively. However, I focus on one specific aspect of resource man-
agement which is always essential in any enterprise application that inter-
acts with a database. Database interaction in Java applications is done us-
ing JDBC drivers that establish a connection to the Database. The drivers
connect to the database using a TCP connection. Once the connection is

39

Figure 12: Glowroot Slow Trace showing 1GB Memory allocated for a single
API request

40

established, the session has begun. Once the session ends the connection
is destroyed. Sessions are designed to be long-lived. This means that the
application connects once, performs many requests, and eventually discon-
nects when the application is being shut down or if the connection is no
more needed. There is an overhead for connection creation. Hence connect-
ing and disconnecting repeatedly is a bad practice as the overhead of con-
nection creation and disconnection causes a performance bottleneck. This
is where Connection Pooling is required.

On investigating the Rwanda DHIS2 Covid Vaccination instance for a
high CPU consumption issue, with the help of the PostgreSQL database
logs, we confirmed that the application was creating and destroying a con-
nection for a specific HTTP Request. This HTTP Request was being in-
voked by all the users multiple times in a short period which caused the
CPU to struggle. The CPU time needed to create and destroy a connection
for every single request could have been saved if proper connection pools
were utilized. Connection pools allow pre-connected sessions to be quickly
served when needed and save the overhead of establishing or terminating
the connection unnecessarily.

Figure 13: Munin dashboard showing CPU struggling due to sub-optimal
resource utilization

Figure 13 shows a screenshot of the Munin CPU monitoring dashboard
of Nigeria DHIS2 Covid Vaccination tracking instance. The screenshot also
shows the effect of the optimization. It can be observed from the figure
13 that right before the optimization was deployed, the CPU usage was
very high for an extended duration in the peak hours. Inefficient resource
management caused unnecessary pressure on the CPU.

41

6 Optimizations and Results
The objective of any optimization is to attain a better performance of the

whole system. It might be response time or throughput or a balance of
both. Optimizations that have no impact on overall performance are not
worth the effort. Optimizations have to be SMART (specific, measurable,
achievable, results-based, and time-bound)[12]. The table 4 is inspired by
SMART goal framework for optimization goals.

Goal DHIS2 Example

Specific Registration of TEI should be completed be-
fore the defined threshold time.

Measurable Response time for search tracked entity in-
stances by unique attributes query should
not exceed 5 seconds.

Achievable When data volume grows, the query response
time should not grow more than logarithmi-
cally

Result-based Event data value updates should not cause
any database locking

Time-bound We should release an optimized event data
value update flow in the patch released next
month

Table 4: SMART goals for DHIS2 optimizations

Optimization may involve optimizing the software development processes
as well. An example is when developers seek further clarification of the
business requirement and question the status quo. Such discussions can
lead the way to create more declarative and performant queries and make
changes in the application to better optimize it. On the application side,
even if a single query takes less than 0.1 seconds if the API takes 10 seconds
to respond, then there may be too many small queries being executed by the
application on the database to serve that request.

The life of an application does not end after release in production, and
optimization is a continuous process. We should continually keep an eye on

42

the system performance, not only on the execution times but on database
volume trends and access patterns. A query may be very performant in the
beginning, but query execution time may change because data volume in-
creased or the data distribution changed or execution frequency increased.
In addition, there will also be new indexes and other improvements in each
new PostgreSQL release, and some of them may be so significant that they
prompt further optimizations.

In the remaining part of this section, I elaborate on the optimizations
done for the bottlenecks identified in section 5.2. Both the Application side
optimizations and Database side optimizations are explained separately in
the corresponding subsections of this chapter.

43

6.1 Database Optimizations
The best approach when trying to optimize database queries is to Think

like a database! [12]. Observing the query from the point of view of a
database engine, and imagining what it has to do to execute that query.
The aim has to be to avoid imposing suboptimal execution plans.

Since two queries yielding the same result may be executed differently,
utilizing different resources and taking a different amount of time, opti-
mization and thinking like a database are core parts of SQL development
and optimization. The database engine interprets SQL queries by parsing
them into a logical plan, transforming the results, choosing algorithms to
implement the logical plan, and finally executing the chosen algorithms.

When queries are not written declaratively, the original purpose of a
query might not be evident. Developers writing the database queries should
be well aware of the business requirement. Asking more questions to un-
derstand what exactly is needed and what is not is perhaps the first and the
most critical optimization step. Some of those answers will help to trans-
form a non-performant query into a performant one. An SQL query cannot
be optimized in isolation, outside the context of its purpose and the envi-
ronment in which it is executed.

6.1.1 Query Rewriting
A poorly constructed query, in other words, an in-efficient query, can be

rewritten to satisfy the same requirement but better optimized for perfor-
mance. The main points to remember when rewriting an in-efficient query
are the following.

• Avoid fetching whole tables unless it is needed. Pagination should be
enabled by default and only a subset of records should be fetched at a
time.

• When constructing a complex query, we should make sure the query is
declarative enough for the optimizer to find the best execution path. It
is beneficial to start with adding all the clauses and conditionals that
are responsible for narrowing or limiting the results. This means all
the filtering predicates are applied early to limit the result size. This
way, the subsequent left joins will have fewer records to join with.

• Avoid unnecessary usage of computed columns and sorting based on
computed columns. On large tables, the columns have to be computed
for every row by the database engine. Unless the computed column is
indexed, the computation happens every time the query is executed.

In section 5.1.1, we have seen the inefficient query in listing 1 that cre-
ated a bottleneck in the Sri Lanka Covid Vaccination Tracker instance.
Keeping the above points in mind we rewrote the query. The new query
is as shown in listing 7. The query is trimmed for brevity.

44

1 SELECT instance, ... ,inactive,
2 String_agg(TEA.uid || ’:’ || TEAV.value, ’;’)
3 FROM (SELECT ...
4 FROM trackedentityinstance TEI
5 INNER JOIN trackedentityattributevalue "eYViMjtiWRA"
6 ON .. AND "eYViMjtiWRA".trackedentityattributeid = 17593
7 AND Lower("eYViMjtiWRA".value) LIKE ’%0000000000%’
8 INNER JOIN trackedentityprogramowner PO
9 ON .. AND PO.programid = 17609

10 INNER JOIN organisationunit OU
11 ON .. AND (OU.path LIKE ’/GYBZ1og9bk7%’)
12 WHERE TEI.trackedentitytypeid IN (17581)
13 AND TEI.deleted IS FALSE
14 AND EXISTS (SELECT PI.trackedentityinstanceid
15 FROM programinstance PI
16 WHERE PI.trackedentityinstanceid =
17 TEI.trackedentityinstanceid
18 AND PI.programid = 17609
19 AND PI.deleted IS FALSE)
20 ORDER BY TEI.trackedentityinstanceid ASC
21 LIMIT 11 offset 0) TEI
22 LEFT JOIN trackedentitytype TET ON ..
23 LEFT JOIN trackedentityattributevalue TEAV
24 ON .. AND TEAV.trackedentityattributeid IN (
25 17593, 17621, 357636, 357642,
26 17585, 357663, 17586, 17587,
27 357648, 357649, 17592, 50842561,
28 24772, 25029, 29959, 54166040,
29 54166531, 17633, 50109767, 26234)
30 LEFT JOIN trackedentityattribute TEA ON ..
31 GROUP BY ..
32 ORDER BY TEI.trackedentityinstanceid ASC

Listing 7: Optimized Rewritten Query

The main optimizations in the optimized query 7 are

• An inner subquery (line 3 to 21) is generated which limits the total
number of results as per the pagination rules. Pagination is also en-
abled by default. This gives a minor boost in performance as there is
an intermediate inner joined table that is restricted with limit and off-
set. This intermediate inner joined table is more scalable as the total
size of the raw tables has a lesser impact. Whereas, in the in-efficient
query 1, all of the left joins were done on the full table.

• All the chaining of left joins that existed in the inefficient query 1 has
been replaced with an aggregate function String agg. This eliminates
the scalability problem when having a large number of trackedentity-
attributes in the system. No matter the number of attributes, there is

45

always only a single left join to the trackedentityattributevalue table
as shown in line numbers 23 to 30 in the optimized query 7. This pro-
vides a significant performance boost and also ensures an overall pre-
dictable cost irrespective of the number of attributes in the instance.

• Unnecessary computed column usage has been removed. The default
order is switched to the primary key trackedentityinstanceid column
of the trackedentityinstance table. This ensures that the default or-
dering, if not explicitly requested, will always be based on the most
performant primary key column that will already be indexed. This im-
provement was only possible when more questions were asked about
the necessity of sorting by enrollment status which was present in the
unoptimized query. The requirement was then updated in favor of
achieving better performance.

String agg is an aggregate function that concatenates a list of inputs with
the specified delimiter. In line 2 of the above optimized query 7, the delim-
iter is semi-colon ”;” and the list is a concatenated string of TEA.uid and
TEAV.value. Using this aggregate function, all the relevant attributes for
a single tracked entity instance are concatenated and returned as a single
cell value. The application logic then splits this to get the individual values.
This enables the query to scale better by avoiding chaining of left joins with
the same table.

The query execution time for the in-efficient query in listing 1 was on
an average 10 to 15 seconds. The query was rewritten to make it more
declarative as shown in listing 7. This optimized query allowed the query
optimizer to choose a better execution path while satisfying the same re-
quirement. The query execution time for the optimized query was on an
average 190ms. The figures are directly obtained from Sri Lanka’s DHIS2
Covid Vaccination Tracker Instance.

6.1.2 Indexing
Queries can be categorized as Short queries and Long queries. It is impor-

tant to distinguish between these categories as the optimization technique
depends on the type of query. A query is short when the number of rows
needed to compute its output is small, no matter how large the involved ta-
bles are. Short queries may read every row from small tables but read only
a small percentage of rows from large tables. Whereas a query is consid-
ered long when query selectivity is high for at least one of the large tables;
that is, almost all rows contribute to the output, even when the output size
is small [12]. DHIS2 Tracker is mostly an OLTP (Online Transaction Pro-
cessing) System and hence mainly has Short queries.

Short queries require indexes for faster execution. If there is no index
to support a highly restrictive query as seen in section 5.1.2, one needs to
be created. The best performance possible for a short query occurs when
the most restrictive indexes (i.e., indexes with the lowest selectivity) are
used. Selectivity is the ratio of rows that are retained (after a filter) to the

46

total rows in the stored table. Higher selectivity means, even after a filter
operation, most rows are retained. Lower selectivity means, after a filter
operation, most rows are eliminated. To create correct indexes, we must
know about the different types of indexes along with their intended usage
for maximum benefits. In this section, I explain the type of indexes that
we used to optimize the identified bottlenecks in section 5.1.2. I also briefly
explore alternative options and why those were not ultimately used.

The standard index type is the B-tree, where the B stands for balanced.
A balanced tree is one where the amount of data on the left and right sides
of each split is kept even so that the amount of levels you have to descend
to reach any individual row is approximately equal. The B-tree can be used
to find a single value or to scan a range, searching for key values that are
greater than, less than, and/or equal to some value. They also work fine
on both numeric and text data. They are suited for range querying and
comparisons (greater than, between, less than, and equality)[20].

A hash index uses a hash function to calculate the address of an index
block containing an index key. This type of index has better performance
than a B-tree index for equality conditions. The hash index type can be
useful in cases where you are only doing equality (not range) searching on
an index, and you don’t allow null values in it. The advantages to using a
hash index instead of a B-tree are usually small [12, 20].

Figure 14: B-Tree index structure

The leaf nodes (shown in the bottom row in Figure 14) contain index
records. These index records contain an index key and a pointer to a table

47

row. Non-leaf nodes (located at all levels except the bottom) contain records
that consist of the smallest key in a block located at the next level and a
pointer to this block. All records in all blocks are ordered, and at least half
of the block capacity is used in every block.

Any search for a key K starts from the root node of the B-tree. During
the block lookup, the largest key P not exceeding K is found, and then the
search continues in the block pointed to by the pointer associated with P
until the leaf node is reached, where a pointer refers to table rows. The
number of accessed nodes is equal to the depth of the tree. The key K is
not necessarily stored in the index, but the search finds either the key or
the position where it could be located. B-trees also support range search
(expressed as a between operation in SQL). As soon as the lower end of the
range is located, all index keys in the range are obtained with a sequential
scan of leaf nodes until the upper end of the range is reached. A scan of leaf
nodes is also needed to obtain all pointers if the index is not unique (i.e., an
index value may correspond to more than one row).

B-trees are a sensible default in PostgreSQL. No lookup algorithm can
find an index key among N different keys faster than in log N time (mea-
sured in CPU instructions). This performance is achieved with a binary
search on an ordered list or with binary trees. However, the cost of updates
(such as insertions of new keys) can be very high for both ordered lists and
binary trees: insertion of a single record can cause complete restructur-
ing. This makes both structures unusable for external storage. In contrast,
B-trees can be modified without significant overhead. When a record is in-
serted, the restructuring is limited to one block. If the block capacity is
exceeded, then the block is split into two blocks, and the update is prop-
agated to upper levels. In the worst case, the number of modified blocks
cannot exceed the depth of the tree. In PostgreSQL, a B-tree index can be
created for any ordinal data type; that is, for any two distinct values of the
data type, one value is less than the other. This includes user-defined types.

It may also be useful to have multiple b-tree indexes in the same table
depending on querying and filtering patterns. A bitmap is an auxiliary
data structure that is used internally in PostgreSQL for several different
purposes. Bitmaps can be considered a kind of index: they are built to
facilitate access to other data structures containing several data blocks.
Typically, bitmaps are used to compactly represent the properties of table
data. Usually, a bitmap contains one bit for each block (8192 bytes). The
value of the bit is 1 if the block has a property and 0 if it hasn’t. Figure 15
shows how bitmaps are used to access data through multiple indexes[12].

The database engine starts by scanning both indexes and building a
bitmap for each that indicates which data blocks contain table rows with
requested values. These bitmaps are shown in the rows labeled Index 1
and Index 2. As soon as these bitmaps are created, the engine performs a

48

Figure 15: Using bitmaps for table access through multiple indexes

bitwise logical AND operation to find which blocks contain requested val-
ues for both selection criteria. Finally, data blocks corresponding to 1s in
the final bitmap are scanned. This means that blocks that satisfy only one
of the two criteria within a logical AND never have to be accessed. Note
that requested values may reside in different rows in the same block. The
bitmap ensures that relevant rows will not be missed, but does not guaran-
tee that all scanned blocks contain a relevant row. Bitmaps are very com-
pact; however, bitmaps may occupy several blocks for very large tables. To
speed up processing such bitmaps, PostgreSQL builds a hierarchical struc-
ture: an upper level indicates the blocks of the lower-level bitmap to be
processed[12].

Now that some of the index types and structure has been explained, we
proceed to resolve the identified bottlenecks from section 5.1.2. The first
issue shown in figure 4 was that the filter condition was very restrictive but
no index existed. We created an index for it as it is a very good candidate for
indexing in this scenario. However, note that there will not be any benefit
if the column value is indexed. Since the query uses column transformation
to convert the value into lowercase with lower(value). This meant that we
had to create a functional index on lower(value). When a functional index
is built, PostgreSQL applies the function to the values of the column (or
columns) and then places these values in the B-tree. Similar to a regular B-
tree index, where the nodes contain the values of the column, in a functional
index, a node contains the value of the function. In this case, the function is
lower(). We created the indexes using the SQL statements shown in listing
8.

1 ALTER TABLE trackedentityattributevalue
2 ALTER COLUMN VALUE SET DATA TYPE VARCHAR(1200);
3

4 CREATE INDEX in_trackedentity_attribute_value
5 ON trackedentityattributevalue
6 USING btree (trackedentityattributeid, lower(value));

Listing 8: Creating a functional index on lower(value)

49

Once the indexes were created we ran the ANALYZE command so that
PostgreSQL can collect updated data statistics which can be used by the
optimizer to find the best execution plan. On analyzing the query plan af-
ter index creation, for query in listing 2, we saw that the new functional
index was used by the query planner as shown in figure 16. The most re-
strictive criteria were processed first with the help of the index and thereby
optimizing the performance of this query.

The query execution time for the query in listing 2 was around 3536ms.
After analyzing the bottleneck in the query plan and adding an index as
shown in listing 8, the query execution time for the same query in the same
environment became 5ms. The figures are directly obtained from Nigeria’s
DHIS2 Covid Vaccination Tracker Instance.

The second issue, which was reported by the Rwanda DHIS2 tracker in-
stance, was the bottleneck for the query in listing 3. The identified bottle-
neck is shown with the corresponding query plan node in figure 6. It was
observed again that the filter condition was very restrictive removing over
99% of the parsed rows but no index existed to help the query executor. In
this case, a B-tree index will not suffice. This is because of the usage of
the like operator along with double-ended wildcards (%). This is where we
experimented with trigram indexes as it was a good fit for this use case.

Regular indexes are optimized for the case where a row has a single key-
value associated with it so that the mapping between rows and keys is gen-
erally simple. The Generalized Inverted Index (GIN) is useful for different
sorts of organizations. GIN stores a list of keys with what’s called a posting
list of rows, each of which contains that key. A row can appear on the post-
ing list of multiple keys too. GIN is useful for indexing array values, which
allows operations such as searching for all rows where the array column
contains a particular value or has some elements in common with an ar-
ray being matched against. It’s also one of the ways to implement full-text
search [20].

Indexes do not have to cover the entirety of a table. Smaller and targeted
indexes can be created that satisfy a particular WHERE clause, and the
planner will use those when appropriate. Such index is called a Partial
Index.

B-tree index cannot be used for searches like ’%aaaa’ (starting wildcard)
or searches like ’%aaaa%’ (double-ended wildcard). To index for this type
of search, the pg trgm extension is needed. This extension also indexes
ilike (insensitive like) searches. Trigram indexes are GIN indexes. To cre-
ate a composite multi-column trigram index on a set of columns having at
least one primitive column type (bigint in our case) then another exten-
sion btree gin is also required. We created trigram gin indexes to solve the
performance bottleneck with the like search filter as shown in figure 6.

50

1 CREATE EXTENSION pg_trgm;
2 CREATE EXTENSION btree_gin;
3

4 CREATE INDEX in_gin_teavalue_3461
5 ON trackedentityattributevalue USING
6 gin (trackedentityinstanceid, lower(value) gin_trgm_ops)
7 WHERE trackedentityattributeid = 3461;

Listing 9: Creating a partial trigram gin index on lower(value)

Figure 16: Optimized Query plan node in Rwanda showing the new index
being used effectively.

Since both of the extensions, pg trgm and btree gin are already part of the
PostgreSQL installation bundle, we created the extensions right away in

51

Rwanda DHIS2 Covid Vaccination instance. We then created 3 specific par-
tial multi-column trigram indexes on the First Name attribute, Surname
attribute and Phone Number attribute in the table trackedentityattribute-
value. Listing 9 shows the sql statements used to create the extensions and
one of the 3 partial indexes.

Once the extensions and trigram indexes were created, we analyzed the
query plan node again. The same query in listing 3 was used to obtain the
execution plan and the relevant query plan node is shown in figure 16. We
confirmed that the new trigram index was used very effectively by the query
planner. Since the index had low selectivity, the speed of look-up increased
multiple folds.

The query execution time for the query in listing 3 was around 1281ms.
After analyzing the bottleneck in the query plan and adding an index as
shown in listing 9, the query execution time for the same query in the same
environment decreased to 13ms. The figures are directly obtained from
Rwanda’s DHIS2 Covid Vaccination Tracker Instance.

We resolved a very similar bottleneck with trigram indexes in the Nigeria
DHIS2 Covid Vaccination instance where their QR code searches were very
slow. We created a specific trigram index on the specific jsonb attribute
that was searched in the table programstageinstance. Listing 10 shows the
index creation statements.

1 CREATE INDEX in_gin_psi_edv_64527_233047
2 ON programstageinstance USING
3 gin(lower(eventdatavalues #>> ’{LavUrktwH5D, value}’)
4 gin_trgm_ops);

Listing 10: Creating a trigram gin index on a jsonb column for a specific
attribute

52

Figure 17: Optimized Query plan node in Nigeria showing the new index
being used effectively.

We obtained the execution plan for the same query after creating the
trigram index. The relevant query plan node is shown in figure 16. We con-
firmed that the new trigram index was used very effectively by the query
planner. Since the index had low selectivity, the speed of look-up increased
multiple folds. The query execution time for the query in listing 4 was
around 8.5s. After analyzing the bottleneck in the query plan and adding
an index as shown in listing 10, the query execution time for the same query
in the same environment decreased to 210ms. The figures are directly ob-
tained from Nigeria’s DHIS2 Covid Vaccination Tracker Instance.

53

6.1.3 Summary of Results
The table 5 shows a summary of the results observed when resolving

database bottlenecks and applying their corresponding optimizations.

Bottleneck Optimization Improvement

In-Efficient
Query

(Listing 1)

Rewritten
Declarative

Query
(Listing 7)

Query Execution time decreased from
12500 ms to 190 ms. 6500% increase
in performance observed in Sri
Lanka DHIS2 Covid Vaccination
Instance

Attribute
Uniqueness

Check
(Listing 2)

Added
Functional

Index (Listing
8) .

Query Execution time decreased from
3536 ms to 5 ms. 70600% increase
in performance observed in Nige-
ria DHIS2 Covid Vaccination In-
stance

Search with
like operator

(Listing 3 and
Listing 4)

Added
Trigram Gin

Index (Listing
9 and Listing

10)

Query Execution time in Rwanda
decreased from 1281 ms to 13 ms.
Query Execution time in Nigeria
decreased from 8511 ms to 209 ms.
9753% increase in performance
observed in Rwanda DHIS2
Covid Vaccination Instance
3972% increase in performance
observed in Nigeria DHIS2 Covid
Vaccination Instance

Table 5: Database Optimization Results

54

6.2 Application Optimizations
In this section, I explain the optimizations done on the bottlenecks iden-

tified in section 5.2. This mainly deals with optimizing the processes and
code flow within the application.

6.2.1 Efficient API Access Pattern
As explained in section 5.2.1, the in-efficient pattern of accessing API is

potentially a severe bottleneck. The bottleneck identified in the Sri Lanka
DHIS2 Covid Vaccination instance is a real example of the Shopping list
problem. Instead of sending an HTTP PUT request for every input field
separately, the front-end App was rewritten to wait till all input fields were
populated. Only when the user clicks on a ”Save and Complete” button, the
HTTP PUT Request to update all the fields together are sent. This elimi-
nated the unnecessary round-trips from the Client-side (Front-end app) to
the Server side.

Figure 18: Rewritten App user interface for collective event data values
updation.

Changing the API access pattern to collectively update the event data
values instead of doing it per input field decreased the number of round-
trips to the backend by a factor of the number of input fields. In Sri-
Lanka DHIS2 Covid Vaccination instance, it decreased by a factor of al-

55

most 10. The figure 18 shows the rewritten front-end app rendered in a
client browser. The extra piece of information highlighted in red indicates
the change in behavior so that users will not lose data. The button label
was changed to ”Save and Complete” instead of ”Complete” to indicate the
collective update action happening in the end.

1 URL: /dhis/api/30/events/*
2 Request Method: PUT
3 Request Payload:
4 {
5 "dataValues": [{
6 "value": "true",
7 "dataElement": "sEgbpR5sGP6"
8 }, {
9 "value": "criteria4",

10 "dataElement": "CUTNLPqkmNn"
11 }, {
12 "value": "product1",
13 "dataElement": "J1HZdZNWqMb"
14 }, {
15 "value": "batch1",
16 "dataElement": "xv7LXLV8RLT"
17 }, {
18 "value": "9876543210",
19 "dataElement": "aqlnlgpRDdI"
20 }, {
21 "value": "false",
22 "dataElement": "TYn17QNtyNV"
23 }, {
24 "value": "false",
25 "dataElement": "Z3dcWqQz6e6"
26 }, {
27 "value": "2021-10-15",
28 "dataElement": "WcMFAfaJ46U"
29 }],
30 "event": "qOHWS1SwApY",
31 "program": "aLZQ5fSVdQc",
32 "programStage": "fZ3diyIwzDF",
33 "orgUnit": "DiszpKrYNg8",
34 "trackedEntityInstance": "iWxmynYsPGr",
35 "status": "COMPLETED",
36 "eventDate": "2021-10-15",
37 "completedDate": "2021-10-15"
38 }

Listing 11: Request Payload example for Event Update API that collectively
updates all event data values

56

The listing 11 shows the details of the event update API that collectively
updates all event data values together. An example payload is also shown
in the listing. The payload has eight event data values contained in it and
all eight will be updated in this specific API. The unoptimized version would
use eight separate API requests to update the same number of event data
values. The figure 19 shows the response timing information as recorded
by the Google Chrome browser. The TTFB (Time to First Byte) is the time
it took for the first byte of the response to reach the browser.

Figure 19: Response timing of Event Update API that collectively updates
all event data values

6.2.2 Avoiding ORM pitfalls
As observed in section 5.2.2, the Hibernate ORM was the root cause of

the identified bottleneck in the DHIS2 PEPFAR DATIM instance. This is
mainly due to developers overlooking the fact that any method invocation
that retrieves the associated list of hibernate mapped entities, will trigger
a new database query. On large-scale instances, this creates a significant
bottleneck. As reported by the system administrators of the PEPFAR DA-
TIM instance, their implementation got shut down due to OutOfMemory
errors.

This first step to optimizing this bottleneck was to not use Hibernate to
fetch the data. The ORM mapped objects bring with them unnecessary
complexities whereas in this case, the requirement was very straightfor-
ward. A new purpose-built API was created independently which fetches
the required data for the front-end client. The categoryOptions along with
its associated OrganisationUnit identifiers (Unique ID) that are relevant to
the logged-in user are fetched using Spring JDBCTemplate. Since the asso-
ciation is only a list of strings, the memory allocation within the application
reduces drastically. Spring JDBCTemplate uses native queries provided by
the developer and therefore the developer can create performant queries
tailored for the requirement at hand. The figure 20 shows the slow trace
recorded by Glowroot. It can be seen that the memory allocation for the
same requirement is considerably lower here as compared to the unopti-
mized slow trace in figure 12.

57

Figure 20: Lower Memory allocation for the purpose-built API as recorded
by Glowroot

This optimization was effective for both the Bangladesh DHIS2 Immu-
nization instance as well as the PEPFAR Datim instance. The performance
was acceptable irrespective of how the users and organisation units were
configured.

6.2.3 Connection Pooling
As illustrated in section 5.2.3, it is important to utilize and manage sys-

tem resources efficiently. The issue in the Rwanda DHIS2 instance was
that connections to the database were continuously being created and de-
stroyed for every HTTP request. This caused the CPU to struggle and have
unnecessarily high CPU utilization.

As a temporary relief, the instance was provided with double the amount
of CPUs while the investigation was being done. Providing more CPUs
is not considered as a performance optimization. However, the additional
CPUs did relieve the stress in the system until a proper fix was identified.

DHIS2 application has a Connection Pooling mechanism for database
connections. The Connection pooling library c3p0 had already been config-
ured. Even though there was a connection pool configured, the PostgreSQL
logs of the Rwanda DHIS2 Covid Vaccination instance confirmed that there
was an area in the application that was creating ad-hoc connections into
the database without using the connection pool.

58

Digging deeper into the issue, we learned that an external library used by
the DHIS2 core application was creating ad-hoc connections and destroying
them on demand. The external library had to be modified to accept the
connections from the connection pool, instead of creating its connections to
the database. This saved significant CPU time and associated bottleneck.

Figure 21: Glowroot Guage chart showing the effect of the optimization on
CPU load

Figure 13 and figure 21 both show CPU usage and load monitored by
Munin and Glowroot. The effect of the optimization is seen on both screen-
shots. This also shows the importance of connection pooling. The dash-
board is from the production instance of Nigeria’s DHIS2 Covid Vaccination
Tracker instance.

59

6.2.4 Summary of Results
The table 6 shows a summary of the results after resolving application

bottlenecks and applying their corresponding optimizations.

Bottleneck Optimization Improvement

In-Efficient
API Access

(Section 5.2.1)

Rewrite
Front-End

App to reduce
API

round-trips

Total API Request time drastically
reduced by more than 80%. Time
taken for individual API was aver-
aging 300ms. Total Event Update
API Request time before optimization
was 2.1s. This decreased to 300ms.
600% increase in performance ob-
served in Sri Lanka DHIS2 Covid
Vaccination Instance for Event
updates

High Memory
allocation by
ORM object

graphs

Purpose-built
API created The memory allocation for the same

request was reduced considerably.
85% decrease in memory alloca-
tion observed in simulated load
on Performance Test Environ-
ment

In-efficient
connection
creations

Enforce
connection
pool usage

This optimization is hard to quantify.
However, the figures 13 and 21 shows
the effect of the optimization. Ap-
proximately 60% decrease in CPU
usage observed in Nigeria DHIS2
Covid Vaccination instance

Table 6: Application Optimization Results

60

7 Discussion
Through this thesis, we understood some of the performance issues faced

by large-scale Information Systems. By studying the performance issues
on large-scale DHIS2 implementations across the globe, we understood
how these bottlenecks affected the day-to-day work of users of the system.
Health workers and officials are all affected deeply by performance bottle-
necks. We resolved some of the performance bottlenecks using optimiza-
tion techniques available in the existing literature. We also empirically
evaluated how the optimization changes have had an impact on perfor-
mance. These optimizations applied to DHIS2 will be generalized in this
chapter. Generalized optimizations make them relevant to any large-scale
enterprise application that interacts with a relational database.

The bottlenecks faced by large-scale DHIS2 implementations are cate-
gorized into two, Data Source Layer and Application Layer. Existing lit-
erature on optimization techniques was extensively studied and carefully
applied to the real-world problem at hand, the DHIS2 Tracker country im-
plementations. The results of the optimizations demonstrate that the bot-
tlenecks have been resolved for the identified issues.

Most of the optimization techniques applied were derived from existing
literature. Dombrovskaya et al. in their work [12] covers the most common
performance issues faced by applications interacting with the PostgreSQL
database. The work also covers common pitfalls in ORM frameworks, Ap-
plication development, and database interactions. Although the examples
were generic, this thesis extends their work by identifying the bottlenecks
and applying the suggested optimizations on a production-grade large-scale
DHIS2 implementation. The results obtained support the optimizations.
There was a need for application downtime to experiment with some of
the optimizations. But the downtime was always worth the performance
improvement gained once the optimizations were done. The results con-
tribute to a clearer understanding of the impact of these optimizations. We
observed an increase in throughput, a decrease in response time, and better
resource utilization.

The generalized learnings during the resolution of database bottlenecks
were:

1. SQL queries should be as declarative as possible. This allows the
query optimizer to do its job of optimizing the execution path. Bottle-
necks will be created if a sub-optimal execution path is enforced.

2. Scalability should be considered when dynamically building SQL queries
based on data. The chaining of left joins depending on some aspect of
data is not ideal. The default value of join collapse limit PostgreSQL
configuration parameter is 8. This parameter caps the number of ta-
bles in a join that will be processed by the cost-based optimizer. If the
number of tables in a join is eight or fewer, the optimizer will perform

61

a selection of candidate plans, compare plans, and choose the best one
[12]. But if the number of tables is nine or more, it will simply ex-
ecute the joins in the order seen in the SQL and hence enforcing a
sub-optimal plan.

3. Selectivity should be considered when creating indexes. The most re-
strictive filter with a low selectivity is an ideal candidate for an index.

4. Query access pattern should be monitored to find out appropriate in-
dex types to create. Appropriate Index types have to be used. For
example, the Trigram index type should be used for like comparisons,
and the B-tree index type should be used for range and equality com-
parisons. GIN index type for full-text searches.

The generalized learnings during the resolution of application bottle-
necks were

1. Avoid unnecessary round trips from the client-side (Front-end App).
Multiple smaller APIs performing related operations for a user flow
could be merged into a single API doing the same tasks.

2. Avoid unnecessary round trips to the database from the application.
These are a common performance pitfall in any ORM-based applica-
tion. Hibernate n+1 query problem is an example of such a pitfall.

3. Inspect the queries generated by ORM under the hood. ORM can
generate sub-optimal queries.

4. Keep an eye on memory allocation per request. These give an idea of
potential resource leakage or even a sub-optimal in-memory compu-
tation that will not scale well. Although request processing time may
be low, if it consumes high resources, it will still be a bottleneck.

Different factors expose a bottleneck. It can either be due to a unique
data access pattern or a unique data configuration or data volume of specific
entities. There are cases where a bottleneck in one instance of a system is
not immediately visible in another instance of a similar system. For exam-
ple, the application bottleneck in section 5.2.2 was resolved by a quick op-
timization fix, and the bottleneck seemed to be resolved in the Bangladesh
DHIS2 Measles Immunization instance. However, the same optimization
created a new application bottleneck in another large-scale DHIS2 imple-
mentation, the PEPFAR DATIM instance. This was because of the dif-
ference in the implementation context and how the metadata and users
were set up. The PEPFAR DATIM instance had a large number of users
having access to the Root Organisation Unit along with a very large num-
ber of organizational units in the hierarchy. This was different from how
Bangladesh had configured their system with the majority of the users only
having access to just a handful of organisation units. In any information
system, such configurations, data access patterns, data volume, and data
access frequency are significant factors that influence performance charac-
teristics. Covid Vaccination tracking was the concrete context for three of

62

the five implementations involved in my case study. The optimizations ap-
plied were equally relevant to all these 3 Covid related implementations
due to their similarity in configuration and data access patterns. The Covid
Vaccination tracking implementation exposed several bottlenecks due to its
magnitude of data entry and frequency of data access. An optimization done
to resolve a bottleneck should not create an equal or greater bottleneck in
another part of the system. Such changes are not optimizations and lead to
further degradation of the system.

One of the optimizations to resolve the bottleneck in 6.1.2 was to create
partial trigram indexes (Listing 9). However, a limitation of the trigram in-
dex is that it is ineffective for substrings shorter than three. For example,
the pattern ’%01%’ requires a sequential search even if the trigram index is
present. This behavior created an issue in Nigeria, where some end users
were searching with a search text size of less than three. The same bottle-
neck resurfaced for which the trigram index was created in the first place.
A fix in the Custom Frontend App maintained by HISP Nigeria was done
to enforce a three-character search text rule. The change ensured that the
client does not use the API if the search text is less than three letters.

Sri Lanka had reported a performance issue related to 5.2. On investigat-
ing the PostgreSQL logs, we observed database locks held for extended pe-
riods(30 seconds). However, on analyzing their infrastructure using Munin
Monitoring tool [7], the disk latency was momentarily creeping up as high
as 1 second. The snapshot from Munin is added in Appendix 26. An ideal
disk latency should have been under 20ms, and even under 1ms for SSDs.
Due to this poor disk latency, excessive locking was observed. Even though
infrastructural performance issues are outside the scope of this thesis, it
has to be noted that such infrastructural issues magnify the bottlenecks
present in the application. Since these issues are outside the control of de-
velopers, it is important to resolve as many potential application/database
bottlenecks as possible.

Some of the performance optimizations were done only on specific produc-
tion instances by analyzing their data distribution and query patterns. The
trigram indexes mentioned in listing 9 is one of them. These optimizations
have not yet been included in the DHIS2 Core release. However, seeing the
performance improvement the optimizations have led to, the DHIS2 core
development team is planning to generalize the optimizations and include
them as part of a future DHIS2 release. The same principle can be applied
to any enterprise application that wants to improve searching based on text
comparisons in PostgreSQL.

There were several challenges faced during the course of my thesis work.
Most of the DHIS2 Tracker implementations involved in my case study
are based in developing countries. For a developed country like USA or
Norway, it was possible to vertically scale the system by adding more com-
puting power on demand in case a performance bottleneck was identified.
However, this was not always possible in developing countries where the

63

instance was deployed and maintained in Government or Parastatal data
centers. Resources were often limited and it was not possible to increase
the computing resources on demand. This further signifies the scope of my
thesis where we had to resolve the bottlenecks within the confines of the
infrastructural environment it was running in. Another challenge was, the
system administrators in developing countries were often inexperienced in
diagnosing complex performance problems. Fortunately, Glowroot provided
a window into several DHIS2 implementations without opening up access
to their sensitive data. The different metrics captured in Glowroot helped
us in the analysis of database queries and API behaviors to resolve bottle-
necks. It provided a vital bridge between the DHIS2 Core team and the dif-
ferent concrete implementations. Another challenge faced during my thesis
work is the time-critical nature of the Covid Vaccine implementations. Un-
like usual long-term HIS implementations where performance issues can
eventually get fixed over time, Covid Vaccination implementations are dif-
ferent. Besides being large-scale, they are also time-critical. National vac-
cination campaigns are launched by country officials to achieve maximum
vaccinations. These campaigns typically last a few weeks. When the system
fails to perform, it is not merely an inconvenience. It threatens the viability
of the whole campaign and needs to get fixed quickly. This determined the
urgency of the optimization responses and fixes were required within hours
or days and not weeks or months.

Apart from the challenges faced, there were optimization techniques that
could not be applied due to various limitations. Covering index is a new
feature that was introduced in PostgreSQL 11. This feature allows the
query executor to use index-only scans instead of index-scans [18]. The
non-indexed columns required by the select projection can be included in an
existing b-tree index. This is different from multicolumn indexes with the
same columns. Size and maintenance of covering indexes will be lower than
multi-column indexes. Covering index could not be applied to DHIS2 ver-
sion 2.34 or 2.35 as the minimum supported PostgreSQL version of DHIS2
version 2.34 and 2.35 is PostgreSQL 9.6. Due to this limitation, optimiza-
tions based on Covering indexes were not actively explored. Such Post-
greSQL version requirement upgrades can only be made on a later major
release version (like 2.38) with an explicit announcement.

Infrastructural and architectural decisions and changes were out of the
scope of my thesis work. However, several optimization opportunities can
be explored by modifying the application architecture. For example, a micro-
service architecture can be used to modularize and scale parts of the appli-
cation based on usage and demand. There are benefits to a micro-service
architecture-based application compared to a Monolith application. DHIS2
is currently a Monolith but has the potential to be modularized into micro-
services. Such micro-services can be deployed and scaled independently.
Horizontal scaling is also a possibility for optimizing performance. How-
ever, it needs more computing resources to be able to host multiple nodes of
the system and have a load balancer balancing the requests to the system.
PEPFAR DATIM based in the US is one of the few implementations that

64

have horizontal scaling enabled. The developing countries cannot horizon-
tally scale DHIS2 due to resource limitations. Therefore, this thesis work
has had a significant impact on implementations in developing countries.

In the research work related to this thesis, most of the optimizations were
reactively done. It means that once a large-scale DHIS2 implementation
reports a performance issue, we then analyze the bottleneck and resolve it
reactively. Existing literature indicates that there are several more possi-
bilities to proactively optimize certain parts of the DHIS2 core application
and its interaction with the PostgreSQL database. Such extensive opti-
mization is also constrained by the amount of development time required
in comparison with the urgency of the performance issue being a blocker in
large-scale DHIS2 instances. Hence due to time limitations, such optimiza-
tion experiments could not be done in this thesis.

One of the potential proactive optimization to avoid common pitfalls of
the ORM framework was explained by Dombrovskaya[12]. The concept of
NORM (No ORM) was introduced in their work. Traditional ORM works
as shown in figure 22. The fact that ORM fails to represent complex objects
present in the database forces the application to make multiple round trips
to fetch data.

Figure 22: How ORM works

In the optimization suggestion with the NORM framework, the interac-
tion between the application and the database can be summarized as:

1. The application serializes data into JSON format then converts it into
an array of text strings and sends it to the database by calling a cor-
responding database function.

2. A database function parses the JSON that was passed as a parameter
and executes whatever the function is supposed to do: either a search
or data transformation.

3. The result set is converted to JSON (or rather an array of strings,
which represents an array of JSON objects) and passed to the appli-
cation, where it is deserialized and is ready to be consumed by the
application.

65

The figure 23 shows how NORM helps the application interact with the
database more effectively by reducing the round trips and fetching complex
data records in one trip. Further studies would be needed to verify if NORM
framework can further optimize DHIS2.

Figure 23: How NORM works

The NORM framework is said to be tried and tested on production enter-
prise applications with positive results. This can be a possible optimization
path for Large Scale information systems that use ORM frameworks and
face performance bottlenecks due to the common ORM pitfalls.

Even though the performance analysis was done on large-scale DHIS2
systems, the explanation of the bottlenecks and the optimizations are gen-
eralized so that they can be applied to any large-scale enterprise applica-
tion that interacts with a relational database. I used large-scale DHIS2 im-
plementations to illustrate the common performance bottlenecks that can
occur in any large-scale Information System. I also explain how these bot-
tlenecks can be optimized and resolved by taking examples from DHIS2
implementations.

This research has shown how important it is to integrate performance
analysis into the development life-cycle of any large-scale enterprise ap-
plication development. Over the course of my case study, there have been
positive changes in the DHIS2 Core development process to include per-
formance analysis and stress testing as part of the development life-cycle.
This has helped in the early identification of bottlenecks and also helped
to replicate the production bottlenecks in a performance test environment
accessible to developers.

The important point is to always remember Amdahl’s law. The overall
performance improvement gained by optimizing a single part of a system
is limited by the fraction of time that the improved part is used. One may
increase the performance of one part of an API by a factor of 10, but if
the application only spends 1% of its time in that code, then the overall
improvement is reduced to only a factor of 0.1 (10 times 0.01). Therefore we
must prioritize optimizing parts of a system that is used most often.

66

Performance Analysis is an ongoing process. Query execution time may
change because of data volume increase or data distribution change or ex-
ecution frequency increase. In addition, there will be new index types and
other improvements in each new PostgreSQL release, and some of them
may be so significant that they prompt rewriting original queries. Require-
ments may change forcing new features to be added to the application.
These can also have a rippling effect on the overall performance of the sys-
tem. No part of any system should be assumed to be optimized forever, and
monitoring the system should happen continuously. This research work
only covers some of the performance bottlenecks and is not an exhaustive
attempt to resolve all bottlenecks.

67

8 Conclusion
This research aimed to identify performance issues in large-scale Infor-

mation systems by performing a case study on multiple large-scale DHIS2
Tracker implementations. I illustrated how performance analysis was done
and how bottlenecks were resolved using various optimization techniques.
The results of the optimizations indicate that each of the optimizations is
increasing the scalability of DHIS2. However, there are still more optimiza-
tion opportunities available to improve scalability even further.

The impacts of these bottlenecks are significant. For DHIS2, users had
to switch to less effective alternative ways to store information like paper-
based records. Users were unable to meet their deadlines. Bottlenecks
in large-scale systems render the system unusable. Passengers could not
board their flights because the Covid Vaccine QR code searching was a bot-
tleneck in the system. It affects the day-to-day lives and work of users.
The viability of Covid Vaccination campaigns that last only a few weeks is
threatened due to performance bottlenecks.

Several optimization techniques available from existing literature were
applied to multiple large-scale production information systems. The impact
of the optimizations was analyzed with experiments on simulated environ-
ments as well as real-world production environments. The results confirm
significant performance improvements. System administrators of all the
DHIS2 implementations I have worked with during my research have con-
firmed that the optimizations applied have saved their day and made their
jobs easier. All the learnings mentioned in section 7 have been generalized
and can be applied to any large-scale enterprise application.

Further research is needed to determine the effects of other optimization
techniques available in the existing literature which were not explored in
this thesis due to technical or time limitations. Future work is encouraged
to investigate bottlenecks and apply optimizations proactively into DHIS2
or other large-scale Information Systems. For example, the application of
the NORM framework in DHIS2 as mentioned in section 7. Similarly, cov-
ering indexes and other new features released in later PostgreSQL versions
will warrant more optimization changes within DHIS2. Infrastructural and
architectural decisions were outside the scope of this thesis. However, fur-
ther research can also explore the optimization opportunities possible by
enabling efficient horizontal scaling capability or using microservices ar-
chitecture in an Information System.

I conclude my thesis with a word of caution that we cannot assume any-
thing is optimized forever. Information systems will have to be monitored
continuously for changes in queries, data volume, value distributions, data
access patterns, and other characteristics that can interfere with perfor-
mance. System administrators and developers should be vigilant. There is
always room for more optimizations, both on the application side and the
database side.

68

Bibliography
[1] Jørn Braa and Calle Hedberg. “The Struggle for District-Based Health

Information Systems in South Africa”. In: The Information Society
18.2 (2002), pp. 113–127. DOI: 10.1080/01972240290075048. eprint:
https://doi.org/10.1080/01972240290075048. URL: https:
//doi.org/10.1080/01972240290075048.

[2] Jørn Braa and Sundeep Sahay. “The DHIS2 Open Source Software
Platform: Evolution Over Time and Space”. In: Apr. 2017. ISBN: 9780262338127.

[3] Chitij Chauhan. PostgreSQL high performance cookbook : mastering
query optimization, database monitoring, and performance-tuning for
PostgreSQL. eng. Birmingham, England, 2017.

[4] Boyuan Chen et al. “An Industrial Experience Report on Performance-
Aware Refactoring on a Database-Centric Web Application”. In: 2019
34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2019, pp. 653–664. DOI: 10.1109/ASE.2019.
00066.

[5] Tse-Hsun Chen et al. “Detecting Performance Anti-Patterns for Ap-
plications Developed Using Object-Relational Mapping”. In: Proceed-
ings of the 36th International Conference on Software Engineering.
ICSE 2014. Hyderabad, India: Association for Computing Machinery,
2014, pp. 1001–1012. ISBN: 9781450327565. DOI: 10.1145/2568225.
2568259. URL: https://doi-org.ezproxy.uio.no/10.1145/
2568225.2568259.

[6] Vittorioa Cortellessa, Antinisca Di Marco, and Paola Inverardi. “What
Is Software Performance?” In: Model-Based Software Performance Anal-
ysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–7.
ISBN: 978-3-642-13621-4. DOI: 10.1007/978-3-642-13621-4_1.
URL: https://doi.org/10.1007/978-3-642-13621-4_1.

[7] Munin Dev. An open source networked resource monitoring tool. URL:
https://munin-monitoring.org/. (accessed: 07.10.2021).

[8] DHIS2. DHIS2. URL: http://www.dhis2.org. (accessed: 20.05.2021).
[9] DHIS2. DHIS2. URL: http://www.dhis2.org/about. (accessed:

25.05.2021).
[10] DHIS2. DHIS2 Tracker In Action. URL: https : / / dhis2 . org /

tracker-in-action/. (accessed: 31.10.2021).
[11] DHIS2. Technology Platform. URL: http://www.dhis2.org. (ac-

cessed: 17.07.2021).
[12] Henrietta Dombrovskaya, Boris Novikov, and Anna Bailliekova. Post-

greSQL Query Optimization: The Ultimate Guide to Building Effi-
cient Queries. eng. Berkeley, CA: Apress L. P, 2021. ISBN: 9781484268841.

[13] Stéphane Faroult. The art of SQL. eng. Sebastopol, California, 2006.
[14] Apache Software Foundation. Apache JMeter. URL: https://jmeter.

apache.org/. (accessed: 25.08.2021).

69

https://doi.org/10.1080/01972240290075048
https://doi.org/10.1080/01972240290075048
https://doi.org/10.1080/01972240290075048
https://doi.org/10.1080/01972240290075048
https://doi.org/10.1109/ASE.2019.00066
https://doi.org/10.1109/ASE.2019.00066
https://doi.org/10.1145/2568225.2568259
https://doi.org/10.1145/2568225.2568259
https://doi-org.ezproxy.uio.no/10.1145/2568225.2568259
https://doi-org.ezproxy.uio.no/10.1145/2568225.2568259
https://doi.org/10.1007/978-3-642-13621-4_1
https://doi.org/10.1007/978-3-642-13621-4_1
https://munin-monitoring.org/
http://www.dhis2.org
http://www.dhis2.org/about
https://dhis2.org/tracker-in-action/
https://dhis2.org/tracker-in-action/
http://www.dhis2.org
https://jmeter.apache.org/
https://jmeter.apache.org/

[15] Martin Fowler. Patterns of enterprise application architecture. eng.
Boston, Mass, 2003.

[16] Mikhail Gorodnichev et al. “EXPLORING OBJECT-RELATIONAL
MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PRO-
GRAM A DATA ACCESS MODEL”. In: PalArch’s Journal of Archae-
ology of Egypt / Egyptology 17.3 (Nov. 2020), pp. 615–627. DOI: 10.
48080/jae.v17i3.141. URL: https://archives.palarch.nl/
index.php/jae/article/view/141.

[17] Jonatan Heyman et al. Apache JMeter. URL: https://locust.io/.
(accessed: 28.04.2021).

[18] Salahaldin Juba and Andrey Volkov. Learning PostgreSQL 11: A Be-
ginner’s Guide to Building High-Performance PostgreSQL Database
Solutions, 3rd Edition. eng. Birmingham: Packt Publishing, Limited,
2019. ISBN: 9781789535464.

[19] Rediana Koçi et al. “A Data-Driven Approach to Measure the Usabil-
ity of Web APIs”. In: 2020 46th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA). 2020, pp. 64–71. DOI:
10.1109/SEAA51224.2020.00021.

[20] Enrico Pirozzi. PostgreSQL 10 High Performance: Expert Techniques
for Query Optimization, High Availability, and Efficient Database Main-
tenance. eng. Birmingham: Packt Publishing, Limited, 2018. ISBN:
9781788474481.

[21] Hans-Jürgen Schönig. Mastering PostgreSQL 9.6 : a comprehensive
guide for PostgreSQL 9.6 developers and administrators. eng. Birm-
ingham, 2017.

[22] Mateusz Smolinski. “Impact of Storage Space Configuration on Trans-
action Processing Performance for Relational Database in PostgreSQL”.
In: Beyond Databases, Architectures and Structures. Facing the Chal-
lenges of Data Proliferation and Growing Variety. Ed. by Stanisław
Kozielski et al. Cham: Springer International Publishing, 2018, pp. 157–
167. ISBN: 978-3-319-99987-6.

[23] Trask Stalnaker. Glowroot. URL: https://glowroot.org/. (ac-
cessed: 15.02.2021).

[24] BAO Systems. Dhis2 Symposium. URL: https://www.dhis2symposium.
org/agenda/dhis2-roadmap. (accessed: 06.10.2021).

[25] DHIS2 Core Development Team. DHIS2 Codebase on Github. URL:
https://github.com/dhis2/dhis2-core. (accessed: 10.02.2021).

[26] DHIS2 Documentation Team. DHIS2 Implementation Guides. URL:
https://docs.dhis2.org/en/implement/database-design/
organisation-units.html. (accessed: 30.09.2021).

[27] DHIS2 Documentation Team. DHIS2 User Guides. URL: https://
docs.dhis2.org/en/use/use.html. (accessed: 12.08.2021).

[28] DHIS2 Project Support Team and HISP Bangladesh. Bangladesh uses
DHIS2 to manage immunization of 35+ million children in their MR
mass campaign. URL: https://dhis2.org/bangladesh-immunization-
campaign/. (accessed: 07.09.2021).

70

https://doi.org/10.48080/jae.v17i3.141
https://doi.org/10.48080/jae.v17i3.141
https://archives.palarch.nl/index.php/jae/article/view/141
https://archives.palarch.nl/index.php/jae/article/view/141
https://locust.io/
https://doi.org/10.1109/SEAA51224.2020.00021
https://glowroot.org/
https://www.dhis2symposium.org/agenda/dhis2-roadmap
https://www.dhis2symposium.org/agenda/dhis2-roadmap
https://github.com/dhis2/dhis2-core
https://docs.dhis2.org/en/implement/database-design/organisation-units.html
https://docs.dhis2.org/en/implement/database-design/organisation-units.html
https://docs.dhis2.org/en/use/use.html
https://docs.dhis2.org/en/use/use.html
https://dhis2.org/bangladesh-immunization-campaign/
https://dhis2.org/bangladesh-immunization-campaign/

[29] DHIS2 Project Support Team and HISP Sri Lanka. Innovative man-
agement of COVID-19 vaccine delivery in Sri Lanka. URL: https://
dhis2.org/sri-lanka-covid-vaccine/. (accessed: 07.09.2021).

[30] DHIS2 Project Support Team and HISP Rwanda. Rwanda uses DHIS2
as an interactive system for rapid and paperless COVID-19 vaccina-
tion. URL: https://dhis2.org/rwanda-covid-vaccination/.
(accessed: 07.09.2021).

[31] YourKit. YourKit Java Profiler. URL: https://www.yourkit.com/
java/profiler/features/. (accessed: 21.03.2021).

71

https://dhis2.org/sri-lanka-covid-vaccine/
https://dhis2.org/sri-lanka-covid-vaccine/
https://dhis2.org/rwanda-covid-vaccination/
https://www.yourkit.com/java/profiler/features/
https://www.yourkit.com/java/profiler/features/

A Appendix

Figure 24: Statistics from field, presented by Lars Øverland, Tech Lead
DHIS2, during the DHIS2 Symposium 2021 [24]

Due to size limitations, some of the raw data associated with this re-
search are not added here. However, they have been uploaded into a Github
Repository (Clickable link) for reference. It also includes some guidelines
on how to reproduce my research. The repository contains the following

• Database dump that can be used to restore the same database used in
our performance testing environment. (Synthetic data)

• Full queries for the queries that were trimmed in listing 1,2, 3 and 4.

• Full query plans of queries in listing 2, 3 and 4 before optimization.

• Full query plans of queries in listing 2 and 4 after optimization

72

https://github.com/ameenhere/PerformanceAnalysisOptimizationThesis
https://github.com/ameenhere/PerformanceAnalysisOptimizationThesis

Figure 25: Performance Improvement from 2.34.3 to 2.34.4, presented by
Lars Øverland, Tech Lead DHIS2, during the DHIS2 Symposium 2021 [24]

Figure 26: Munin dashboard showing Disk Latency issue in Sri Lanka that
caused excessive database locking. [12]

73

	Introduction
	Motivation
	Research Question, Objective and Scope
	Thesis Structure and Overview

	Background
	DHIS2 Platform
	Technology
	Functionality

	DHIS2 Implementations

	Research Methodology
	Research Process and Collaboration
	Ethical Obligation and Challenges

	Literature Review
	Bottlenecks
	Performance Analysis
	Optimization
	Limitations
	Summary

	Performance Analysis
	Data Source Bottlenecks
	In-Efficient Queries
	Absence of Indexes

	Application Bottlenecks
	In-efficient API Access Pattern
	ORM Pitfalls
	In-Efficient Resource Utilization

	Optimizations and Results
	Database Optimizations
	Query Rewriting
	Indexing
	Summary of Results

	Application Optimizations
	Efficient API Access Pattern
	Avoiding ORM pitfalls
	Connection Pooling
	Summary of Results

	Discussion
	Conclusion
	Appendix

