
Benchmarking Persistent Memory
with Respect to Performance and

Programmability

Svein Gunnar Fagerheim

Thesis submitted for the degree of
Master in Informatikk: Programming and System

Architecture
60 credits

Institutt for informatikk
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2021

Benchmarking Persistent
Memory with Respect to

Performance and
Programmability

Svein Gunnar Fagerheim

© 2021 Svein Gunnar Fagerheim

Benchmarking Persistent Memory with Respect to Performance and
Programmability

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

1 Abstract
High performance computing is to process data and do calculation on
that data at high speed. Traditionally high performance computing
uses dynamic random access memory in their computers.

This thesis will explore an alternative form of memory called per-
sistent memory that will occupy half the DIMM slots in the computer.
The persistent memory will be tested for its performance and will be
compared to traditional memory. The performance will also be tested
in competition and cooperation with traditional memory and its perfor-
mance will be evaluated.

This thesis will also have a look at how to program with persis-
tent memory, are there any programming choices that could be recom-
mended.

1

2 Acknowledgements
I would like to thank my supervisor Xing Cai, his guidance and support
are what made it possible for me to complete this thesis. I also would
like to thank Tore H. Larsen the Chief Research Engineer HPC at Sim-
ula Research Laboratory for fixing all the hardware related issues that
came up during this thesis.

I would also like to thank Simula Research Laboratory for allowing
me to use their servers in this thesis.

I would also like to thank my parents for their support during this
thesis.

2

Contents
1 Abstract 1

2 Acknowledgements 2

3 Introduction 5
3.1 What is persistent memory 5
3.2 Challenges . 6

3.2.1 Security . 6
3.2.2 Durability . 7
3.2.3 Persistent memory leaks 7

3.3 Advantages . 8
3.3.1 Cost . 8
3.3.2 Capacity, larger physical memory 8
3.3.3 Byte addressable, low latency 8

3.4 The rest of thesis . 8
3.5 Research questions . 9

4 Basic programming with NVDIMM 10
4.1 Introduction . 10
4.2 Different types of libraries 10

4.2.1 Libpmemobj . 10
4.2.2 libpmemblk and libpmemlog 10

4.3 Creating pmempool . 11
4.4 NVDIMM Functions used in thesis 11

4.4.1 Open memory pool 11
4.4.2 Declaring an array 12
4.4.3 Allocating array . 12
4.4.4 Read/Write to array 12

4.5 Coding example . 13

5 Benchmarks 16
5.1 Introduction . 16

5.1.1 Hardware . 16
5.2 STREAM DRAM . 17
5.3 STREAM NVDIMM . 19
5.4 Competition benchmarks 23

5.4.1 NVM-NVM . 23
5.4.2 NVM-DRAM . 28
5.4.3 DRAM-NVM . 33

3

5.4.4 Observations . 38

6 DRAM and NVDIMM Cooperation 40
6.1 Introduction . 40
6.2 Calculation of NVDIMM part 40

6.2.1 Explanation of formula 40
6.2.2 Distribution . 42
6.2.3 Prediction . 43

6.3 First program version . 43
6.4 Second program version 51

6.4.1 Comparisons of versions 55

7 DRAM and NVDIMM working independently 56
7.1 Introduction . 56
7.2 Test with only DRAM . 56

7.2.1 Description of code 56
7.2.2 Data generation . 58
7.2.3 Analyzing the data 60
7.2.4 Result . 60

7.3 NVM simulation . 61
7.3.1 Locks . 61
7.3.2 Calculation . 62
7.3.3 Analysis . 64
7.3.4 Prediction . 67
7.3.5 Result . 68

8 Conclusion 70
8.1 Summary . 70
8.2 Research questions . 71

8.2.1 Question 1 . 71
8.2.2 Question 2 . 71
8.2.3 Question 3 . 71
8.2.4 Question 4 . 71

8.3 Reflections . 72
8.4 Further work . 72

4

3 Introduction
High performance computing is to process data and do calculation on
that data at high speed. The amount of data that is being generated is
increasing every year. The data that is being generated in the biggest
projects exceeds the capacity of traditional memory. Traditional mem-
ory in this context is dynamic random access memory(DRAM). Tra-
ditional way this is solved is to make use of the hard drive which is
making the processing and calculation of data significant slower.

A possible solution to this problem could be to use NVDIMM. This
is a persistent random-access memory[15][16], the difference between
DRAM and NVDIMM is that data will not be deleted from NVDIMM
when the computer shuts down. It has a faster load/store than a hard
drive, but is also slower than traditional DRAM. Since NVDIMM is
persistent it can also be used as a storage device the same way as tra-
ditional hard drives.

This thesis will explore several things. First is to explore how fast
NVDIMM is compared to DRAM when NVDIMM is working alone. The
speed of NVDIMM and DRAM will also be measured when they are
working simultaneously, they will be made to work simultaneously us-
ing the openMP library. The thesis will also explore how the persistent
memory performs in experiments that simulate what persistent mem-
ory might be used for in the real world. The goal is to come up with
a set of advice that may help other people who are using NVDIMM in
their projects.

The rest of this chapter will describe what persistent memory is
and how it will be used in this thesis. There will also a explanation
of the challenges and advantages of persistent memory such as cost,
durability and persistent memory leak. There will also be an outline of
research questions at the end of the chapter.

3.1 What is persistent memory
Persistent memory[8] is a non-volatile storage memory[5] that is byte-
addressable and has speed close to that of DRAM. Which is a volatile
storage system that will lose all its data when the computer is shut
down or restarted. Applications and data used by the CPU are tem-
porarily loaded into DRAM from a hard drive in order to reduce latency
and increase bandwidth. Persistent memory is another layer between
the CPU and the disk. The data the CPU has the most use for is stored
in the L1-L3 caches. When the cache is full the data needs to be evicted

5

the evicted data will be sent back to the memory. If the data usage of
the program is so large that it exceeds the memory available on the
computer then the computer will start using virtual memory on the
disk which is a lot slower then DRAM. The reason virtual memory is
so slow is because one must do an I/O block to read and write to disk
which takes time. Persistent memory is a layer between the DRAM
and the disk in which the CPU can access directly just like it would
do a normal DRAM. Figure 1 illustrates where in the hierarchy the
persistent memory is placed.

Figure 1: Persistent memory becomes a new level between DRAM and
Disk[9]

3.2 Challenges
3.2.1 Security

One challenge when it comes to persistent memory is security and pri-
vacy[1]. When an encryption key is used to unlock files, the key is
stored in the memory. If it is DRAM then the key will disappear when
the computer is shut down, but if it is stored in persistent memory it
will persist and remain there until it is deleted. It will be very easy for

6

someone to extract data from persistent memory if the person is able
to gain access to it. The same concern also applies to personal informa-
tion that is being stored in the persistent memory. When developing
applications that will use persistent memory and handling sensitive
information the programmer needs to remember that data he puts in
persistent memory will stay there until it is deleted. It’s also worth
mentioning that when the data is deleted or deallocated in the mem-
ory, the OS makes the space available to another application. The data
is only deleted when its overwritten.

3.2.2 Durability

Another challenge for persistent memory is durability. While persis-
tent memory behaves more like DRAM it still has a considerably shorter
lifespan than DRAM[1]. This is because persistent memory can only
write data to a certain amount of time to a region before the region can
no longer hold any data reliably. While the storage capacity of persis-
tent memory has increased, so has the bit error rate increased even
more. The solution to this is to either have the hardware mask all the
regions with bit error from the software or have the hardware expose
them to the software and let the software handle the rest. There is also
the possibility of letting the hardware and software work together in
order to mask regions with bit errors. This will expand the lifespan
of persistent memory, but the challenge for hardware producers is to
come up with new technologies that can increase the durability of the
persistent memory.

3.2.3 Persistent memory leaks

A common problem one might have when programming in C concerns
memory leaks. When the application is using normal DRAM, the mem-
ory consumed by the application can be freed just by restarting the ap-
plication. If the application is using persistent memory on the other
hand, then the memory consumed by the application will remain con-
sumed even after the program has been restarted.[14][3] Memory leaks
will persist a shutdown just like persistent memory will. The technol-
ogy must ensure that the memory occupied on the persistent memory
can be tracked down to the application that allocated the memory. By
doing this it is possible to track down and remove memory leak for the
persistent memory.

7

3.3 Advantages
3.3.1 Cost

One of the biggest shortcomings of DRAM is that it is expensive. When
the amount of memory increases in a system the cost of DRAM scales
nonlinearly.[1] This has led to memory becoming a bottleneck in servers
that run programs where a lot of memory is needed. Persistent memory
is more scalable in terms of cost compared to DRAM.

This will enable servers to have more storage capacity that can be
read at almost the same speed as DRAM.

3.3.2 Capacity, larger physical memory

The memory capacity of persistent memory represents a drastic in-
crease in the size of memory that is available to the user. Intel has
announced a new persistent memory called Intel Optane DC[10]. This
is a persistent memory that is compatible with a DDR4 socket and
each memory module can contain 512 Gigabytes of memory. The bigger
memory size will make it possible to keep more of the data the user is
working on in the memory and reduce the traffic between the memory
and the hard drive.

3.3.3 Byte addressable, low latency

Since the persistent memory is connected to a DRAM slot it is also byte-
addressable. When a program accesses traditional storage it must wait
for the OS to do an I/O block in order to get access which takes a long
time and read/write are done in 4 kB blocks. With persistent memory
the program can skip the I/O block and access the data directly, this will
dramatically decrease the latency. Typical latency when using DRAM
would be around 10-7 seconds[4] while Intel has measured their Optane
DC to have a latency of 4.1 ms[2]. Persistent memory is 40 times slower
than normal DRAM, but it is still a lot better than SSD that can have
80 ms latency.

3.4 The rest of thesis
In Chapter 4 there will be an explanation of how to program with
NVDIMM. There will be an explanation of some of the different types
of libraries that exist. How to set up a memory pool that will be used by

8

the programmer and an explanation of method that will be most used
by the programmer.

In chapter 5 will be several benchmarks that will show the per-
formance of DRAM and NVDIMM when whey are working alone and
when they are working simultaneously. There will also be made obser-
vations about the results from the benchmarks.

Chapter 6 will be about a scenario that a programmer can encounter.
That is when the data exceed the the total capacity of DRAM and the
programmer is forced to split the data in two part and place the part
that exceeds DRAM on NVDIMM. There will be a formula that calcu-
lates how many threads should be reallocated to work on NVDIMM.

Chapter 7 will be about a different scenario. The chapter will test
the ability of DRAM and NVDIMM to work with two different tasks.
The two groups will synchronize by using a lock/unlock function.

Chapter 8 will contain a summary and a conclusion.

3.5 Research questions
This thesis will try to answer the following research questions.

• What is the data transfer speed of NVDIMM compared to DRAM?

• In an competitive environment, in what way will NVDIMM and
DRAM affect each other?

• When the size of the data is higher than the capacity of the DRAM,
how much data should be transferred to NVDIMM? How many
threads should be allocated to work on the data on NVDIMM?

• While DRAM is working on a task, is it possible for NVDIMM to
be working on a different type of task?

9

4 Basic programming with NVDIMM

4.1 Introduction
This chapter will be about how to program with NVDIMM. In order to
create code that is using NVDIMM the programmer must choose what
library to use and there are many libraries to pick from and all are
made for different purposes and have many different types of methods.
This chapter exists so others can start on the right track and quickly
learn how to use NVDIMM.

The libraries and methods described in this chapter are relevant
for NVDIMM devices that support the libraries created by Intel at
pmem.io.

4.2 Different types of libraries
4.2.1 Libpmemobj

Libpmemobj[13] allows objects to be stored in persistent memory. The
objects in question are not class objects one finds in C++, but instead
they are variable-sized blocks of data. The object has an object ID that
is independent when it comes to location. The changes or updates to
these objects are atomic because the library have transactions to make
this happen. This library can be used for multithreading and have been
optimized for scaling when it comes to multithreading. The main au-
thor also mentions that the C++ version of this library is the cleanest
and least prone to error compared to all the other libraries[7]. He there-
fore recommends that programmers should start using this library if
they are new to persistent memory programming.

4.2.2 libpmemblk and libpmemlog

These libraries are made for specific cases. Libpmemblk[11] is used for
handling large arrays of persistent memory blocks. The blocks must
be larger than 512 bytes in order to work. This library is useful if the
program is made to manage a block cache. Libpmemlog[12] is used to
append log files. If the program logs a lot of data, it might be better
to use libpmemlog in order to avoid going through the traditional file
system where most of the time would be spent waiting.

10

4.3 Creating pmempool
Before NVDIMM can be used, the user must create what is called a
memory pool on the NVDIMM. The NVDIMM has several modes, in
order to be able to create a memory pool the mode must be set to fsdax.
On a server this must be done by the system administrator. To see
what mode the NVDIMM is in can be done by the command ndctl-list.
A program called pmempool must also be installed on the server, it is
this program that will create the memory pool. The command used for
creating the memory pool for this thesis is

1 pmempool create --layout Layout_name --size=170G obj
pool.obj

The layout is a string stored in the memory pool. When a program ac-
cesses a memory pool it needs to send a string that matches the string
in the memory pool in order to use it. The user can specify the size of
the memory pool, if size is not specified the pmempool will create a pool
with the lowest size allowed. There are three different types of memory
pool to choose from, they are obj, log and blk. Which type of memory
pool to use depends on which type of library is used in the program. In
this thesis the libpmemobj library was used and that is why obj was
used in the creating of memory pool. Log and blk are for the libraries
libpmemlog and libpmemblk. The last part of the command line is the
name and file address of the memory pool.

4.4 NVDIMM Functions used in thesis
In this project it is the libpmemobj library that will be used. Below is
a short description of all the functions that will be used in the thesis.

4.4.1 Open memory pool

The memory pool uses a pointer called PMEMobjpool. The memory
pool is opened by using the method pmemobj_open that needs two ar-
guments. The first argument is the path to the memory pool created in
chapter 4.3. The second argument is a text string that identifies what
data belongs to what program.

1 PMEMobjpool *pop = pmemobj_open(path, LAYOUT_NAME);

11

4.4.2 Declaring an array

When the programmer wants to declare an array, the follow command
must be used.

1 TOID(Type) Array_name;

Type is the data type the programmer wants to use and the name is
the name of the array.

4.4.3 Allocating array

When allocating the array the method called POBJ_ALLOC is used.
The method has six arguments. The first argument is the memory pool
created in chapter 4.4.1. The second argument is the the array the
user wants to allocate memory. Third argument is the data type and
the fourth argument is the array length in bytes. The last two argu-
ments are irrelevant in this context and can be given the value NULL.

1 //Allocating of the array
2 POBJ_ALLOC(Memory_pool, &Array_name, Type, sizeof(double)

* ARRAY_LENGTH, NULL, NULL);
3 //Deallocating of the array
4 POBJ_FREE(&Array_name);

When the user want to deallocate the array the function POBJ_FREE
must be used. The function is similar to the free function when using
malloc. The user only need to the name of the they want to deallocate
as argument in POBJ_FREE.

4.4.4 Read/Write to array

This section will explain the function D_RO and D_RW which stands
for DIRECT_RO and DIRECT_RW and they will read and write di-
rectly to the NVDIMM array. Reading from the array is done by using
the method D_RO that must have the array the user wants to read
from as argument. The method also uses square brackets after the ar-
gument that needs the index of the element in the array the user want
to read. The method D_RW is used when reading to the array. The use
of this method is identical to D_RO.

1 //Reading an array variable.

12

2 var = D_RO(Array_name)[index];
3

4 //Writing to an array variable.
5 D_RW(Array_name)[index] = var;

4.5 Coding example
This is an example on how to use the pmemobj library. The example
will find the average of an array where the array is replaced with an
NVDIMM array. The purpose is to show how easy it is to code with
NVDIMM by having all the relevant methods in an easy example. The
way of using the a NVDIMM library is a lot similar to using ordinary
arrays. Once the programmer has chosen what NVDIMM library to use
and included the library in the code the memory pool must be opened.
The first thing the code needs is the path to the memory pool and a
layout, which is a string that identifies the pool that the user can choose
what it will be. This can either be a command line argument the user
gives when starting the program or it can be hard coded into the code.
This is what has been done in listing 1 at line 5 and 11. These two
strings are used as arguments when initiating the pool at line 14-15.
The initiation is also followed up with an if-sentence at line 16-19 to
check that the memory pool has been successfully created. If it has not
the program will print out an error message and exit the program.

Next is to create a NVDIMM array, this is what happens at line 21.
The NVDIMM array pointer is a void pointer that is casted to a double
pointer. The array gets initiated at line 22. The method used is called
POBJ_ALLOC, this method is similar to malloc for DRAM. The method
has six arguments, the first argument is what memory pool the array
will be assigned to. The second argument is the address of the pointer.
Third argument is the type of the elements in the array. The fourth
argument is the length of the array, that is the size of type multiplied
with the number of elements in array. The last two arguments are set
to NULL.

When writing to an NVDIMM array the programmer must use the
method called D_RW. It only has one argument which is the name of
the array. It is followed up with a pair square brackets that contains
the index of the element the programmer wants to write to, an example
can be found at line 25.

D_RO is the name of the method one must use to read an element
from an NVDIMM array. This method also has one argument which

13

is the name of the array and the square brackets contains the index of
the element that will be read. Line 29 is an example of how to add the
value of an element in a NVDIMM array to a variable.

In order to deallocate the a NVDIMM array one must use the method
POBJ_FREE and the only argument needed is the address of the
NVDIMM pointer, an example can be found in line 34. If the program-
mer forgets to free up the NVDIMM array there will be a permanent
memory leak that will last even after the program have stopped run-
ning. In order to get rid of the memory leak one must delete the mem-
ory pool and create a new one.

Lastly one must close the memory pool before the program is ter-
minated. This is done with pmemobj_close, it only has the pointer for
the memory pool as argument. Line 35 shows how to close the memory
pool.

The functions introduced in this chapter will be used in all the other
chapters where I create new benchmarks and tests.

Listing 1: Example of coding with NVDIMM
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libpmemobj.h>
4

5 POBJ_LAYOUT_BEGIN(array);
6 POBJ_LAYOUT_TOID(array, double);
7 POBJ_LAYOUT_END(array);
8

9 #define ARRAY_LENGTH 1000
10 #define LAYOUT_NAME "my_layout"
11 int main(int argc, char *argv[])
12 {
13 double average = 0.0;
14 int i;
15 //The path for the memory pool.
16 const char path[] = "/mnt/pmem1-ext4/pool.obj";
17

18 /* create the pmemobj pool or open it if it already
exists */

19 PMEMobjpool *pop;
20 pop = pmemobj_open(path, LAYOUT_NAME);
21 if (pop == NULL) {
22 perror(path);
23 exit(1);

14

24 }
25 //Creation of NVDIMM array.
26 TOID(double) nvm_array;
27 POBJ_ALLOC(pop, &nvm_array, double, sizeof(double) *

ARRAY_LENGTH, NULL, NULL);
28 //Writing to the array.
29 for(i=0;i<ARRAY_LENGTH;i++){
30 D_RW(nvm_array)[i] = i;
31 }
32 //Reading from the NVDIMM array.
33 for(i=0;i<ARRAY_LENGTH;i++){
34 average += D_RO(nvm_array)[i];
35 }
36 average = average / ARRAY_LENGTH;
37 printf("%f\n", average);
38

39 POBJ_FREE(&nvm_array);
40 pmemobj_close(pop);
41 return 0;
42 }

15

5 Benchmarks

5.1 Introduction
Persistence memory is slower than DRAM. But there is not much infor-
mation on how much slower the NVDIMM is in comparison to DRAM.
This chapter will test the performance of NVDIMM when it work alone
and when it works simultaneously with DRAM. The results will be
presented with graphs and tables that will show the difference in per-
formance. The chapter will start off with using the STREAM[6] bench-
mark in order to find the performance of DRAM. The NVDIMM will
also be tested with a STREAM benchmark that have been modified
by me for this thesis. Three original benchmarks will also test the
NVDIMM when it works simultaneously with DRAM. In the first bench-
mark DRAM will copy an array from DRAM while NVDIMM copies an
array from NVDIMM. In the second benchmark DRAM will copy from
DRAM while NVDIMM will copy an array to DRAM. In the last bench-
mark DRAM will copy from DRAM while NVDIMM will copy an array
from DRAM.

5.1.1 Hardware

All the benchmarks has been tested on a server with the following
hardware.
Motherboard: Supermicro X11DPU-Z+
CPU: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, 16 cores
DRAM: Samsung RDIMM, 2666 MT/s.
NVDIMM: Micron Technology NV-DIMM , 2933 MT/s

The server have two CPU, both CPU have twelve memory slots each.
Each CPU have six channels. There are one DRAM and one NVDIMM
sharing one channel. The compiler used to compile the code is gcc
(Ubuntu 7.5.0-3ubuntu1 18.04) 7.5.0. The code have been optimized
to level two (-o2).

All of the benchmarks have been tested on socket two. This is to
avoid disturbances as much as possible since most of the other pro-
cesses are running on socket one.

16

5.2 STREAM DRAM
The STREAM[6] benchmark is a synthetic and simple benchmark that
is designed to measure bandwidth in MB/s. This benchmark is seen as
the standard for measuring memory bandwidth and has not been modi-
fied in any way after it was downloaded from the creator websites. The
benchmark tests memory bandwidth by running four different tests.
The first one test is copy where the elements in one array are copied
to another array. The second test is called scale where each element is
multiplied with a constant and the result is placed in a second array,
the index of the element in the first array and the result in the sec-
ond array is the same. Third test is add where the elements from two
different arrays with the same index are added together and place in
a third array where the index is the same as in the two other arrays.
Last test is the triad where the one array is multiplied with a constant
then added together with a second array and then placed in a third
array.

The DRAM Stream benchmark runs the test 32 times and only on
one socket, every time it restarts with one extra thread is added. The
CPU has 16 cores and when the thread number surpasses that number
it starts using the hyper threads on the same core. The Linux program
numactl is also used to manage the number of threads and what socket
the benchmark is allowed to use.

The result shown in figure 2 and table 1 is what was expected,
adding more threads in beginning will give a big increase in transfer
speed. But at thread 5 the gains in transfer speed will start to dimin-
ish and at thread 11 there will be very little increase in transfer speed
when adding more threads. This means that it might be possible to
allocate five of the sixteen threads to work on NVDIMM and not loose
a significant amount of performance for the eleven remaining threads
that are still working on DRAM.

After sixteen threads the benchmark starts to use the hyper-threads.
There is a 10,000 MB/s decrease when the benchmark starts to use
the hyper-threads. When more and more hyper-threads are added the
bandwidth will increase until it is almost at the same level when there
were only sixteen threads. 32 threads have 2,000 MB/s lower band-
width than sixteen threads.

17

Threads Copy Scale Add Triad
1 11673.5 12180.6 12799.4 12745.3
2 22995.1 23892.4 24637.1 24807.8
3 33554.9 34206.9 36248.9 36070.7
4 42917.3 44315.0 46759.0 46333.7
5 50260.9 50853.1 55574.9 55784.3
6 53612.5 54305.3 60174.4 60129.4
7 56100.8 56671.2 63670.6 63425.1
8 58554.6 58888.6 66348.1 66607.5
9 60491.7 60947.7 69059.1 68923.9
10 62242.2 62368.3 71335.2 70900.6
11 64257.1 64270.1 72604.0 71854.1
12 64890.3 65611.6 73973.6 73866.7
13 65648.8 65805.9 74285.3 74204.8
14 65606.5 65943.6 74128.9 74158.9
15 65665.5 65897.7 73918.8 74199.9
16 65509.8 65770.4 73721.2 74312.2
17 55365.3 58578.1 63624.8 64728.6
18 57104.2 59481.5 65404.0 62472.2
19 59160.6 59279.3 64749.4 68522.2
20 61328.6 61453.3 67489.5 69020.7
21 62290.7 62453.6 68987.6 69178.2
22 63091.2 63146.4 70173.6 70239.2
23 63737.2 63887.6 71195.5 71235.8
24 64056.6 64108.0 71629.1 71669.4
25 64601.7 64685.7 72282.9 72167.3
26 64824.5 64850.8 72729.4 72623.9
27 64706.3 64890.3 72444.1 72525.6
28 64654.6 64743.1 72586.7 72656.9
29 64827.0 64750.6 72505.7 72481.2
30 64589.2 64659.6 72453.0 72472.8
31 64703.8 64714.4 72531.8 72356.7
32 64610.4 64721.9 72459.3 72212.9

Table 1: DRAM Stream, 2.2 GB total. Speed are in MB/s.

18

Figure 2: DRAM Stream, 2.2 GB total. Graph of table 1.

5.3 STREAM NVDIMM
The stream NVDIMM benchmark measures the memory speed of the
NVDIMM. This benchmark is the same as the STREAM benchmark
has been described in chapter 5.2. The difference is that the mem-
ory type has been changed from DRAM to NVDIMM by me. The code
shown in listing 2 is part of the original code that has been removed
from the code.

Listing 2: Original STREAM benchmark code at line 175-181.
1 #ifndef STREAM_TYPE
2 #define STREAM_TYPE double
3 #endif
4

5 static STREAM_TYPE a[STREAM_ARRAY_SIZE+OFFSET],
6 b[STREAM_ARRAY_SIZE+OFFSET],
7 c[STREAM_ARRAY_SIZE+OFFSET];

It has been replaced with the code shown in listing 3. The code starts
by opening the memory pool at line 21-27. The code will use a method
called initiate at line 28 that will initiate the three arrays. Once this is
done the code will continue executing the rest of the STREAM bench-
mark code just like the original code. The difference is that lines with

19

read or write to DRAM array has been replaced with the functions
D_RO and D_RW which read and write to NVDIMM.

Listing 3: Code that has replaced original code.
1 PMEMobjpool *pop;
2 POBJ_LAYOUT_BEGIN(array);
3 POBJ_LAYOUT_TOID(array, double);
4 POBJ_LAYOUT_END(array);
5 //Declearing the arrays
6 TOID(double) a;
7 TOID(double) b;
8 TOID(double) c;
9

10 void initiate()
11 {
12 //Initiating the arrays.
13 POBJ_ALLOC(pop, &a, double,

(STREAM_ARRAY_SIZE+OFFSET)*sizeof(STREAM_TYPE), NULL,
NULL);

14 POBJ_ALLOC(pop, &b, double,
(STREAM_ARRAY_SIZE+OFFSET)*sizeof(STREAM_TYPE), NULL,
NULL);

15 POBJ_ALLOC(pop, &c, double,
(STREAM_ARRAY_SIZE+OFFSET)*sizeof(STREAM_TYPE), NULL,
NULL);

16 }
17

18 int main()
19 {
20 const char path[] = "/mnt/pmem1-ext4/pool.obj";
21 pop = pmemobj_create(path, LAYOUT_NAME, 10737418240,

0666);
22 if (pop == NULL)
23 pop = pmemobj_open(path, LAYOUT_NAME);
24 if (pop == NULL) {
25 perror(path);
26 exit(1);
27 }
28 initiate();
29 //The rest of the STREAM benchmark after this.
30 }

The result on the NVDIMM Stream benchmark shown in figure 3

20

and table 2 is very different from the DRAM Stream benchmark. The
DRAM Stream benchmark had a steep increase in bandwidth in the
beginning that started to taper off at thread five and almost no in-
crease from thread eleven. The NVDIMM has a more linear increase
in bandwidth when the threads are increased from one thread towards
sixteen threads. This might be because the speed of one thread is half
the bandwidth of one thread in the DRAM Stream benchmark. The
max bandwidth reached by the NVDIMM Stream benchmark is 51,273
MB/s and the DRAM Stream benchmark starts to taper off at around
55,000 MB/s. The NVDIMM Stream benchmark never reaches a speed
high enough so it can start to taper off and therefore it look more like
linear increase in bandwidth.

Thread seventeen and after are the hyper-threads and at thread
seventeen there is a 15,000 MB/s decrease before the bandwidth over-
all start to increase with more hyper-threads added. The bandwidth
swings up and down a lot. There is no clear explanation on why the
bandwidth fluctuates so much.

Figure 3: NVDIMM Stream, 2.2 GB total. Graph of table 2.

21

Threads Copy Scale Add Triad
1 5036.7 4026.4 5151.3 4956.0
2 11970.2 8616.8 10120.7 8515.8
3 12715.1 8903.4 9972.6 10085.0
4 16349.6 11266.2 12922.7 13474.2
5 20935.0 14924.3 17282.1 18050.7
6 23119.7 16381.2 18887.2 19859.8
7 28694.5 20320.0 23509.8 24824.9
8 32104.6 23082.0 26744.5 27255.4
9 37491.8 26450.3 30517.3 32194.4
10 41394.8 29897.7 34575.6 35671.3
11 44856.8 32659.1 37032.5 38714.6
12 44695.1 33848.9 39292.6 40625.8
13 47377.9 36377.7 42050.6 43542.1
14 48853.3 38589.6 44440.4 45509.7
15 51273.9 41662.3 44663.6 44941.4
16 48704.8 39592.3 43615.7 44797.8
17 33638.9 23842.9 29161.2 37024.5
18 33712.5 27466.9 37166.7 32095.5
19 38073.6 30095.0 34539.9 34835.6
20 26627.1 20307.7 24445.4 21617.2
21 41575.9 33180.5 40777.5 38727.8
22 43078.1 34787.1 38100.6 40516.5
23 44306.5 36409.9 44583.9 42289.1
24 44679.1 35595.9 40602.3 40671.9
25 47327.4 35824.6 41718.8 40939.5
26 46085.6 36378.7 46893.2 45583.9
27 48237.8 37579.8 49538.8 45762.3
28 43507.7 28391.9 32673.6 31051.1
29 46562.0 37710.1 49211.6 47533.4
30 45188.7 39833.6 45820.8 47210.6
31 46011.6 39429.2 46247.3 47491.9
32 47961.6 41638.6 49278.3 47481.3

Table 2: NVDIMM Stream, 2.2 GB total. Speeds are in MB/s

22

5.4 Competition benchmarks
This section is about three new benchmarks. In the first benchmark
data will be copied from a DRAM array to another DRAM array and
from a NVDIMM array to another NVDIMM array simultaneously. In
the second benchmark data will be copied from a DRAM array to an-
other DRAM arrays and from a DRAM array to a NVDIMM array si-
multaneously. In the last benchmark data will be copied from a DRAM
array to another DRAM array and from a NVDIMM array to a DRAM
array simultaneously.

The purpose of these benchmarks is to get an understanding of how
performance will be affected when different threads generate traffic
from DRAM and NVDIMM simultaneously. That is why there are three
types of benchmarks in order to test all possible combination of traffic.

5.4.1 NVM-NVM

The code for this benchmark is described in listing 4. From line 2-14
the code is declaring variables and creating the arrays where the result
from the benchmark will be stored. There will be declared two DRAM
arrays and two NVDIMM arrays that will be used in the benchmark.
When the threads arrive at line 16 they will synchronize before they
are split into two groups. Threads with a thread id lower than the
number of DRAM threads will pass the if-sentence at line 17, where
they will initiate two DRAM arrays and place values into each element.
The rest of the threads will move on to line 27 and enter this bracket.
These threads will initiate two NVDIMM arrays and place values into
each element. All the threads will then synchronize at line 40 before
they will divide into two groups at line 41 in the same fashion they did
in line 17. All the threads will then start to copy data from one array to
the other array. The DRAM threads will copy one of the DRAM array
to the other DRAM array and the NVDIMM threads will copy one of
the NVDIMM array to the other NVDIMM array. They will repeat this
for as many times as the user of the benchmark has decided by defining
the total_test variable as an argument in the command line when the
program was started. The time measurement will be started at the
beginning of the for-loop at line 45 or 54 and end at the end of the for-
loop at line 50 or 60. When the benchmark testing is over the threads
will free up their arrays and the benchmark will print out the result.

When the threads pass the barrier at line 40 and begin the bench-
mark test they will never synchronize another time. Because of this

23

the DRAM threads will complete their tasks earlier than NVDIMM
threads because DRAM speed is faster then NVIDMM speed. This
also means that once the fastest thread is done the rest of the threads
will share more bandwidth among them self and become faster. When
more and more threads complete their tasks the faster the remaining
threads will become. In order to get a correct benchmark where all
threads have been working the user must not use data where some
threads are working when other threads have completed their tasks.
Throwing out the last one third of the raw data is usually enough.
There is also a need to throw out at least the first 25 iterations. This is
because the NVDIMM is a lot slower to get started than DRAM.

Listing 4: NVM-NVM source code.
1 #pragma omp parallel
2 {
3 //Declearing variables.
4 int thread_id = omp_get_thread_num();
5 int i,j;
6 double *drm_read_array;
7 double *drm_write_array;
8 TOID(double) nvm_read_array;
9 TOID(double) nvm_write_array;

10 srand((unsigned int)time(NULL));
11 #pragma omp master
12 {
13 /* Creates array where the test result will be added.

*/
14 }
15 //Creates all the arrays needed for the test.
16 #pragma omp barrier
17 if(thread_id < totalThreads-nvmThreads){
18 drm_read_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
19 drm_write_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
20 #pragma omp critical
21 {
22 for(i=0;i<ARRAY_LENGTH;i++){
23 drm_read_array[i] =

((double)rand()/(double)(RAND_MAX));
24 drm_write_array[i] =

((double)rand()/(double)(RAND_MAX));

24

25 }
26 }
27 }else if(thread_id >= totalThreads-nvmThreads){
28 POBJ_ALLOC(pop, &nvm_read_array, double,

sizeof(double) * ARRAY_LENGTH, NULL, NULL);
29 POBJ_ALLOC(pop, &nvm_write_array, double,

sizeof(double) * ARRAY_LENGTH, NULL, NULL);
30 #pragma omp critical
31 {
32 for(i=0;i<ARRAY_LENGTH;i++){
33 D_RW(nvm_read_array)[i] =

((double)rand()/(double)(RAND_MAX));
34 D_RW(nvm_write_array)[i] =

((double)rand()/(double)(RAND_MAX));
35 }
36 //printf("NVM thread_id: %d, %f\n", thread_id,

D_RO(nvm_read_array)[11235]);
37 }
38 }
39 //Doing the test.
40 #pragma omp barrier
41 if(thread_id < totalThreads-nvmThreads){
42 //From DRAM to DRAM:
43 for(i=0;i<total_tests;i++){
44 //Time start
45 test_time[thread_id][i] = mysecond();
46 for(j=0;j<ARRAY_LENGTH;j++){
47 drm_write_array[j] = drm_read_array[j];
48 }
49 //Time stop.
50 test_time[thread_id][i] = mysecond() -

test_time[thread_id][i];
51 }
52 }else if(thread_id >= totalThreads-nvmThreads){
53 //From NVM to NVM:
54 for(i=0;i<total_tests;i++){
55 //Time start
56 test_time[thread_id][i] = mysecond2();
57 for(j=0;j<ARRAY_LENGTH;j++)
58 D_RW(nvm_write_array)[j] =

D_RO(nvm_read_array)[j];
59 //Time stop.
60 test_time[thread_id][i] = mysecond2() -

25

test_time[thread_id][i];
61 }
62 }else
63 printf("ERROR\n");
64 /* Freeing up DRAM and NVDIMM arrays */
65 }

DRAM NVDIMM
threads threads DRAM NVDIMM Sum

15 1 61042.84 3038.16 64081.01
14 2 57761.80 6027.24 63789.03
13 3 53767.10 9223.43 62990.52
12 4 51257.79 12630.42 63888.22
11 5 47770.89 15202.48 62973.37
10 6 43771.07 18771.08 62542.15
9 7 39780.16 22085.75 61865.90
8 8 36275.70 25068.35 61344.05
7 9 31873.99 28520.43 60394.42
6 10 28691.82 30840.40 59532.22
5 11 24580.59 33991.75 58572.33
4 12 20550.17 38006.44 58556.61
3 13 15877.24 40011.90 55889.14
2 14 11010.71 43913.44 54924.15
1 15 5932.95 46352.16 52285.11

Table 3: NVM-NVM, 32 GB total. DRAM and NVDIMM threads com-
peting for bandwidth. Speeds are in MB/s.

The result of the benchmark is shown in figure 4 and table 3. They
show that as the number of NVDIMM threads increases at the ex-
pense of the DRAM threads the NVDIMM bandwidth increases and
DRAM bandwidth decreases. The sum of the DRAM and NVDIMM
starts at 64,081 MB/s and decreases with 1,100 MB/s when there are
five NVDIMM threads. When the number of NVDIMM threads in-
creases even more, the bandwidth decreases at a higher rate. From
five to fifteen NVDIMM threads the bandwidth has decreased with
10,000 MB/s. This might be because the NVDIMM is not fast enough to
make use of all the bandwidth that becomes available as the number of
DRAM threads decreases. The result is that the user loses performance
if the number of NVDIMM is too high.

26

Figure 4: Graph of table 3. DRAM and NVDIMM threads competing
for bandwidth.

The graph in figure 5 is the result of the same benchmark as figure
4. The difference is that figure 5 now shows the number of seconds on x-
axis and bandwidth on y-axis. Threads ends at different times. The last
DRAM ends at 231 seconds and the last NVDIMM ends at around 319
seconds. The figure 5 also shows that all the DRAM threads have the
same consistent speed except for the end of the DRAM. The NVDIMM
threads on the other hand fluctuate a lot, they seem to have a speed at
around 3,000 MB/s, but once in a while they drop down to 1,700 MB/s.

27

Figure 5: DRAM and NVDIMM threads competing for bandwidth over
a certain time period. Threads ends at different times.

5.4.2 NVM-DRAM

In this version of the benchmark there will be one group of threads that
will transfer data from a DRAM array to a DRAM array and another
group of threads that will transfer data from a NVDIMM array to a
DRAM array. This code is very similar to the previous code. The dif-
ferences are at line 26-36 where the code will initiate and add values
to one DRAM array and one NVDIMM array instead of two NVDIMM
arrays. The other difference is at line 51-61 where the code will copy
data from NVDIMM-DRAM instead of NVDIMM-NVDIMM.

Listing 5: NVM-DRAM source code.
1 #pragma omp parallel
2 {
3 int thread_id = omp_get_thread_num();
4 int i,j;
5 double *drm_read_array;
6 double *drm_write_array;
7 TOID(double) nvm_read_array;
8 srand((unsigned int)time(NULL));
9 #pragma omp master

10 {

28

11 /* Creates array where the test result will be added.

*/
12 }
13 //Creates all the arrays needed for the test.
14 #pragma omp barrier
15 if(thread_id < totalThreads-nvmThreads){
16 drm_read_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
17 drm_write_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
18 #pragma omp critical
19 {
20 for(i=0;i<ARRAY_LENGTH;i++){
21 drm_read_array[i] =

((double)rand()/(double)(RAND_MAX));
22 drm_write_array[i] =

((double)rand()/(double)(RAND_MAX));
23 }
24 }
25 }
26 else if(thread_id >= totalThreads-nvmThreads){
27 drm_write_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
28 POBJ_ALLOC(pop, &nvm_read_array, double,

sizeof(double) * ARRAY_LENGTH, NULL, NULL);
29 #pragma omp critical
30 {
31 for(i=0;i<ARRAY_LENGTH;i++){
32 D_RW(nvm_read_array)[i] =

((double)rand()/(double)(RAND_MAX));
33 drm_write_array[i] =

((double)rand()/(double)(RAND_MAX));
34 }
35 }
36 }
37 //Doing the test.
38 #pragma omp barrier
39 if(thread_id < totalThreads-nvmThreads){
40 //From DRAM to DRAM:
41 for(i=0;i<total_tests;i++){
42 //Time start
43 test_time[thread_id][i] = mysecond();
44 for(j=0;j<ARRAY_LENGTH;j++){

29

45 drm_write_array[j] = drm_read_array[j];
46 }
47 //Time stop.
48 test_time[thread_id][i] = mysecond() -

test_time[thread_id][i];
49 }
50 }
51 else if(thread_id >= totalThreads-nvmThreads){
52 //From NVM to DRAM:
53 for(i=0;i<total_tests;i++){
54 //Time start
55 test_time[thread_id][i] = mysecond();
56 for(j=0;j<ARRAY_LENGTH;j++)
57 drm_write_array[j] = D_RO(nvm_read_array)[j];
58 //Time stop.
59 test_time[thread_id][i] = mysecond() -

test_time[thread_id][i];
60 }
61 }
62 else
63 printf("ERROR\n");
64 /* Freeing up DRAM and NVDIMM arrays */
65 }

The result of this benchmark are shown in figure 6 and table 4.
Figure 6 show that when the number of NVDIMM threads increases
the NVDIMM bandwidth also goes up while the DRAM threads and
bandwidth goes down. The sum of the DRAM and NVDIMM bandwidth
is stable at around 64,000 MB/s for all numbers of NVDIMM threads.

30

DRAM NVDIMM
threads threads DRAM NVDIMM Sum

15 1 61257.14 3742.24 64999.37
14 2 58419.89 6691.30 65111.18
13 3 54544.07 10520.34 65064.41
12 4 49997.69 15247.47 65245.16
11 5 46226.88 19189.81 65416.69
10 6 42942.39 22806.13 65748.52
9 7 38156.47 27257.45 65413.92
8 8 34613.22 30474.15 65087.37
7 9 30458.70 34533.35 64992.05
6 10 25489.86 39324.61 64814.47
5 11 22083.85 42763.51 64847.36
4 12 17704.90 47147.70 64852.60
3 13 13394.67 51380.63 64775.31
2 14 8947.75 56009.92 64957.67
1 15 4489.12 60031.12 64520.24

Table 4: NVM-DRAM, 32 GB total. DRAM and NVDIMM threads com-
peting for bandwidth. Speed are in MB/s.

Figure 6: Graph of table 4. DRAM and NVDIMM threads competing
for bandwidth.

31

Figure 7 and 8 shows the result of the same benchmark as figure 6,
but with second on the x-axis instead of NVDIMM threads. Figure 6
has been split in two in order to make it more readable, figure 7 shows
all the DRAM and figure 8 shows all the NVDIMM threads. The last
DRAM thread ends at 234 seconds and the last NVDIMM thread ends
at 258 seconds. The DRAM threads have consistent speed through the
entire test at around 4,300 MB/s, only at the end will the speed increase
because other threads have finished before them and therefore made
more bandwidth available for the remaining threads. The NVDIMM
threads are also more consistent in this benchmark where five of the
six threads have speed of 3,800 MB/s for most of the test. There is only
one thread that is fluctuating between 3,000 MB/s and 3,600 MB/s for
most of the benchmark.

Figure 7: DRAM threads in this figure and NVDIMM threads in figure
8 competing for bandwidth over a certain time period. Threads ends at
different times.

32

Figure 8: DRAM threads in figure 7 and NVDIMM threads in this fig-
ure competing for bandwidth over a certain time period. Threads ends
at different times.

5.4.3 DRAM-NVM

In this version of the benchmark there will be one group of threads that
transfer data from a DRAM array to a DRAM array and another group
of threads that will transfer data from a DRAM array to a NVDIMM
array. This code only have one difference when compared to the code
in 5.4.2. The difference is found in line 51-61 where data is transferred
from DRAM-NVDIMM insted of from NVDIMM-DRAM.

Listing 6: DRAM-NVM source code
1 #pragma omp parallel
2 {
3 int thread_id = omp_get_thread_num();
4 int i,j;
5 double *drm_read_array;
6 double *drm_write_array;
7 TOID(double) nvm_write_array;
8 srand((unsigned int)time(NULL));
9 #pragma omp master

10 {
11 /* Creates array where the test result will be added.

33

*/
12 }
13 //Creates all the arrays needed for the test.
14 #pragma omp barrier
15 if(thread_id < totalThreads-nvmThreads){
16 drm_read_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
17 drm_write_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
18 #pragma omp critical
19 {
20 for(i=0;i<ARRAY_LENGTH;i++){
21 drm_read_array[i] =

((double)rand()/(double)(RAND_MAX));
22 drm_write_array[i] =

((double)rand()/(double)(RAND_MAX));
23 }
24 }
25 }
26 else if(thread_id >= totalThreads-nvmThreads){
27 drm_read_array =

(double*)malloc(ARRAY_LENGTH*sizeof(double));
28 POBJ_ALLOC(pop, &nvm_write_array, double,

sizeof(double) * ARRAY_LENGTH, NULL, NULL);
29 #pragma omp critical
30 {
31 for(i=0;i<ARRAY_LENGTH;i++){
32 drm_read_array[i] =

((double)rand()/(double)(RAND_MAX));
33 D_RW(nvm_write_array)[i] =

((double)rand()/(double)(RAND_MAX));
34 }
35 }
36 }
37 //Doing the test.
38 #pragma omp barrier
39 if(thread_id < totalThreads-nvmThreads){
40 //From DRAM to DRAM:
41 for(i=0;i<total_tests;i++){
42 //Time start
43 test_time[thread_id][i] = mysecond();
44 for(j=0;j<ARRAY_LENGTH;j++){
45 drm_write_array[j] = drm_read_array[j];

34

46 }
47 //Time stop.
48 test_time[thread_id][i] = mysecond() -

test_time[thread_id][i];
49 }
50 }
51 else if(thread_id >= totalThreads-nvmThreads){
52 //From DRAM to NVM:
53 for(i=0;i<total_tests;i++){
54 //Time start
55 test_time[thread_id][i] = mysecond();
56 for(j=0;j<ARRAY_LENGTH;j++)
57 D_RW(nvm_write_array)[j] = drm_read_array[j];
58 //Time stop.
59 test_time[thread_id][i] = mysecond() -

test_time[thread_id][i];
60 }
61 }
62 else
63 printf("ERROR\n");
64 /* Freeing up DRAM and NVDIMM arrays */
65 }

The result of this benchmark is shown in figure 9 and table 5. The
result in figure 9 is similar to the result in figure 6 where NVDIMM
speed increases and DRAM speed decreases at the same around the
same rate. The sum of DRAM and NVDIMM speed remains stable at
around 63,000 MB/s. Only at eleven NVDIMM threads and higher does
the speed decrease a little.

Figure 10 and 11 shows the result of the same benchmark as figure
9, but with second on the x-axis instead of NVDIMM threads. Figure 9
has been split in two in order to make it more readable, figure 10 shows
all the DRAM and figure 11 shows all the NVDIMM threads. Unlike
the other two benchmarks the DRAM threads in Figure 10 have less
consistent speed than the DRAM in the benchmarks, this might be be-
cause both group of threads are reading from DRAM. The speed of the
DRAM threads is around 4,100 MB/s until the end where it increases
sharply because other threads have completed their tasks and given
the remaining threads more bandwidth. The speed of the NVDIMM
is more unstable. The speed remains at 3,800 MB/s, but all of the
NVDIMM threads drop their speed several time during the test. Some-
times as low as 1,900 MB/s.

35

DRAM NVDIMM
threads threads DRAM NVDIMM Sum

15 1 61002.60 3581.48 64584.09
14 2 56598.08 7323.96 63922.04
13 3 53247.52 10954.06 64201.58
12 4 48681.71 15070.61 63752.32
11 5 44761.80 18725.90 63487.70
10 6 41022.39 22614.45 63636.84
9 7 36897.42 26557.71 63455.13
8 8 32548.18 30570.88 63119.07
7 9 28892.06 33996.95 62889.00
6 10 24941.87 38191.10 63132.97
5 11 20563.14 42263.28 62826.42
4 12 16803.83 45915.39 62719.21
3 13 12648.47 49341.90 61990.38
2 14 8386.48 53331.10 61717.57
1 15 4189.43 57348.14 61537.57

Table 5: DRAM-NVM, 32 GB total. DRAM and NVDIMM threads com-
peting for bandwidth. Speed are in MB/s.

Figure 9: Graph of table 5. DRAM and NVDIMM threads competing
for bandwidth.

36

Figure 10: DRAM threads in this figure and NVDIMM threads in fig-
ure 11 competing for bandwidth over a certain time period. Threads
ends at different times.

Figure 11: DRAM threads in figure 10 and NVDIMM threads in this
figure competing for bandwidth over a certain time period. Threads
ends at different times.

37

5.4.4 Observations

The benchmarks at section 5.4.2 and section 5.4.3 have result more
similar than the result in chapter 5.4.1. This is because the transfer
speed DRAM to NVDIMM and NVDIMM to DRAM is almost identical.
The DRAM-NVDIMM speed with one thread is 3581 MB/s and with
fifteen thread the speed is 57348 MB/s. The NVDIMM-DRAM speed
with one thread is 3742 an with fifteen thread the speed is 60031 MB/s.
The speed with one and fifteen threads are almost the same. The rate
the speed increase for each NVDIMM are also very similar.

The speed of the NVDIMM to NVDIMM in section 5.4.1 is slower
than the other two benchmarks. When there are five threads the total
speed of both DRAM and NVDIMM starts to decrease and at fifteen
threads the total speed has decreased by 10,000 MB/s. This means
that if a program has two group of threads, one group only working
on DRAM and the other only in NVDIMM. The program should not
have more than five threads working on NVDIMM if the objective is to
maximize performance.

Figure 5 in section 5.4.1 and figure 11 in section 5.4.3 shows the
NVDIMM threads fluctuate a lot. The figure 8 in section 5.4.2 on the
other hand show that all the NVDIMM threads except for one is a lot
more stable. This might mean that writing to NVDIMM is a lot more
sensitive to disturbances than what reading data from NVDIMM is.

The NVDIMM Stream in section 5.3 is also similar where there are
only NVDIMM threads and no traffic on DRAM. When each thread
have their own core there is a smooth increase from one thread to six-
teen threads. But when the hyper-treads are included and there are
more than one thread per core the speed starts to fluctuate up and
down for each new thread that is included.

Regardless of what the reason is for the fluctuations. The fluctua-
tion might make it difficult to predict how much time it takes for an
NVDIMM thread to complete a task.

Table 6 show the copy speed of the two Stream benchmarks men-
tioned above. Table 6 end at sixteen threads while the Stream bench-
marks test up to 32 threads. This is because the NVDIMM fluctuate too
much to find a pattern. When the Stream is testing speed of only one
thread the NVDIMM have a performance of 43% of the speed of DRAM.
When the number of threads increases the difference remain at around
40% up until six threads. The exception to this is the test with two
threads where the NVDIMM performance is 52% of the DRAM perfor-
mance. The performance of NVDIMM at seven threads is at 51% and

38

when the number of threads increases the performance increases and
end at 75% when there is sixteen threads.

The reason the performance increases as more threads are added
is because DRAM at 65,000 MB/s have reached the maximum capacity
of the memory bandwidth. This allows the NVDIMM threads to catch
up with the DRAM performance, but NVDIMM is only able to reach a
performance 75% of DRAM.

Threads DRAM NVDIMM Difference in %
1 11673.5 5036.7 43.1
2 22995.1 11970.2 52.1
3 33554.9 12715.1 37.9
4 42917.3 16349.6 38.1
5 50260.9 20935.0 41.7
6 53612.5 23119.7 43.1
7 56100.8 28694.5 51.1
8 58554.6 32104.6 54.8
9 60491.7 37491.8 62.0
10 62242.2 41394.8 66.5
11 64257.1 44856.8 69.8
12 64890.3 44695.1 68.9
13 65648.8 47377.9 72.2
14 65606.5 48853.3 74.5
15 65665.5 51273.9 78.1
16 65509.8 48704.8 74.3

Table 6: Difference in STREAM performance between DRAM and
NVDIMM. Speeds are in MB/s.

The results from some of these benchmarks will be used in later
chapter in order to make a prediction of how long it will take to com-
plete a certain task.

39

6 DRAM and NVDIMM Cooperation

6.1 Introduction
There are instances where data become too large to be stored in DRAM
and some of the data must be offloaded to NVDIMM. The data can be
analyzed on NVDIMM just like it was on DRAM. The downside to this
strategy is that NVDIMM is slower than DRAM so the question is how
much data can be offloaded to NVDIMM. If the user offloads too much
data to NVDIMM then the threads working on analyzing the data on
DRAM will be idle while waiting for NVDIMM threads to complete.

The goal of this chapter is to find a formula that will make it possi-
ble to estimate how much data should be offloaded to NVDIMM. By us-
ing the the formula with different combination of DRAM and NVDIMM
the user can choose how many threads that should be allocated to
NVDIMM.

There are two versions of the code that are being used. They have
been programmed slightly differently in the way data is read. This is
to explore which of them is the fastest.

6.2 Calculation of NVDIMM part
6.2.1 Explanation of formula

In order to use the formula one must measure the NVDIMM and DRAM
speed using the benchmark shown in section 5.4.1 because in this chap-
ter DRAM threads will transfer data to and from DRAM and NVIDMM
threads will transfer data to and from NVDIMM. This is also what are
being done in the benchmark I have chosen. By using the speed from
the benchmark in the formula below along with the size of the data that
will be used in the calculation the user can easily calculate how much
data can be transferred to NVDIMM before DRAM complete its task
before NVDIMM. The formula does only decide how much data can be
allocated to NVDIMM with a certain amount of threads. This means
that the user must probably use the formula several times where the
number of NVDIMM threads varies from one to five in order to find a
combination of threads and data allocated to NVDIMM that the user is
satisfied with.

Total_data− nvdimm_data
dram_speed

=
nvdimm_data
nvdimm_speed

(1)

40

nvdimm_data =
nvdimm_speed ∗ Total_data
nvdimm_speed+ dram_speed

(2)

I have created a program that will test this formula to see if it is
accurate. This program has an two dimensional array filled with data.
The program starts at element (1,1) of the array where it add together
all of its eight neighbors and then takes the average. The result is
stored in the same position in another two dimensional array. The pro-
gram does this for every element between (1,1) and (m-2,n-2), m and
n is the length of the 2D array used by the program. The program re-
peats this process ten times and after each time the program will swap
the DRAM arrays and NVDIMM array. The time is measured at the
beginning of the process and at the end, this time is called total_time in
the code. Each thread will also measure the time it takes to complete
their own tasks, in the code this is called individual_time.

Listing 7 is an example of the serial code of the program. The array
has not been divided into two. The thread will repeat the while-loop on
line 1 k_length which is ten times. It will start the time measurement
at line 2. From line 3-10 the thread will pass through the the 2D-
array row by row starting from element (1,1) and end at element (m-
2,n-2). At each element the thread will calculate the average of all
the elements neighbors, eight neighbors in total. The thread will then
stop the time measurement at line 11 and swap the arrays at line 12-
14. It will also increase k by one and start over if k is still lower than
k_length.

Listing 7: Serial code that will be used in the first and second versions.
1 while(k<K_length){
2 total_time[k] = mysecond();
3 for(i=1; i<m-2; i++){
4 for(j=1; j<n-2; j++){
5 temp = A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]+
6 A[i][j-1] + A[i][j+1]+
7 A[i+1][j-1] + A[i+1][j] + A[i+1][j+1];
8 B[i][j] = temp/8;
9 }

10 }
11 total_time[k] = mysecond() - total_time[k];
12 temp_array = A;
13 A = B;
14 B = temp_array;
15 k++;
16 }

41

6.2.2 Distribution

By using the formula described above we have calculated the distri-
bution of data between DRAM and NVDIMM in table 7 and 8. The
tables show the number of NVDIMM threads assigned in first column.
Second and third columns show the speed of DRAM and NVDIMM.
The speed is from the result of the benchmark in section 5.4.1. Fourth
column shows how much data should be placed on NVDIMM. This is
based on the formula described previously in this chapter. The last col-
umn shows how many rows in the 2D array of data must be delegated
to NVDIMM in order for the size of the array to be close to the previous
column. Table 7 show how many rows in a 2d-array where m and n are
31,623 elements should be delegated to NVDIMM. Table 8 is the same,
but here m and n are 100,000 elements

NVM Aggregate DRAM Aggregate NVDIMM NVDIMM NVDIMM
Threads bandwidth in MB/s bandwidth in MB/s in MB/s rows

1 61042.84 3038.16 379.30 750
2 57761.80 6027.24 755.91 1494
3 53767.10 9223.43 1171.42 2315
4 51257.79 12630.42 1581.59 3126
5 47770.89 15202.48 1931.32 3817

Table 7: Distribution of 16 GB data between DRAM and NVDIMM.
Both m and n are 31,623 elements.

NVM Aggregate DRAM Aggregate NVDIMM NVDIMM NVDIMM
Threads bandwidth in MB/s bandwidth in MB/s in MB/s rows

1 61042.84 3038.16 3792.90 2371
2 57761.80 6027.24 7558.96 4724
3 53767.10 9223.43 11714.05 7321
4 51257.79 12630.42 15815.65 9885
5 47770.89 15202.48 19312.90 12071

Table 8: Distribution of 160 GB data between DRAM and NVDIMM.
Both m and n are 100,000 elements.

42

6.2.3 Prediction

The distributions calculated in the previous section are used in this
section to predict how much time DRAM and NVDIMM will take to
complete their tasks. The first column shows the number of NVDIMM
threads. Second and fifth columns show the speed of DRAM and NVDIMM,
they are also from the result of the benchmark in section 5.4.1. Third
and sixth columns show how much data is allocated to DRAM and
NVDIMM. Fourth and seventh columns show the how much time it
takes for DRAM and NVDIMM to complete their tasks.

DRAM DRAM DRAM NVDIMM NVDIMM NVDIMM
Threads speed Size pred.time speed Size pred.time

1 61042.84 15241.41 0.2497 3038.16 758.59 0.2497
2 57761.80 14488.19 0.2508 6027.24 1511.81 0.2508
3 53767.10 13657.16 0.2540 9223.43 2342.84 0.2540
4 51257.79 12836.82 0.2504 12630.42 3163.18 0.2504
5 47770.89 12137.37 0.2541 15202.48 3862.63 0.2541

Table 9: Time prediction with 16 GB of data.Both m and n are 31,623
elements.

DRAM DRAM DRAM NVDIMM NVDIMM NVDIMM
Threads speed Size pred.time speed Size pred.time

1 61042.84 152414.20 3.7453 3038.16 7585.80 3.7453
2 57761.80 144882.07 3.7624 6027.24 15117.93 3.7624
3 53767.10 136571.90 3.8101 9223.43 23428.10 3.8101
4 51257.79 128368.69 3.7566 12630.42 31631.31 3.7566
5 47770.89 121374.21 3.8111 15202.48 38625.79 3.8111

Table 10: Time prediction with 160 GB of data.Both m and n are
100,000 elements.

6.3 First program version
There are two groups of threads that work in parallel in this program.
The first group of threads works on the part of the data that is stored
on DRAM and the other works on the data stored on NVDIMM. One
thread in each group works on data that borders with the other group.
In the DRAM group that is the thread with the highest thread_id. Each

43

of the elements in the last row of data will have three neighbors that
exist on the NVDIMM side. This means that the thread must access
the NVDIMM in order to get the data. The NVDIMM thread with the
lowest thread_id also has elements in the first row of data that have
three neighbours that exist in DRAM that must be accessed by the
thread directly.

Listing 8 only shows the calculation process, it does not show the
rest of the code. Allocation of memory has been done by all the threads,
as a result the data have been spread across all the memory channels.
The data is a 2d array where the rows of data on DRAM will be divided
equally between the DRAM threads, the rows of data on NVDIMM will
also be divided equally between the NVDIMM threads. The variable
slice_start contains the index of the row where the tread must start
at and slice_end holds the index of the row the thread must stop at.
Array A and B are DRAM arrays and array C and D are NVDIMM
arrays. The average found by adding together eight neighbors in A will
be placed in same position in B. The same is true for C and D.

The process is repeated K_length time, usually ten times in my
tests. The code measures the time taken to complete one iteration of
calculation, this is done in the beginning of the code at line 5 and at the
end at line 84 by a single thread. All the threads then get divided into
the DRAM and NVDIMM at line 8. If the thread_id of a thread is less
than the dram_threads is it will do calculation on the data in DRAM,
the rest will fail the if test and move on to the else bracket at line 42.
Dram_threads is the total amount of threads that will be working on
data in DRAM.

At line 11 the thread with the highest thread_id will pass the if test
and the rest will move on to line 30. The thread with highest thread_id
will then measure time at line 12 and end the measurement in line
29, this is the start and the end of the bracket. The thread will then
enter a double for-loop at line 13-20 that will go through elements from
position (slice_start,1) until (slice_end-1,n-1), this leaves out the last
row assigned to the tread, that row will be dealt with later. At each
element the for-loop it will add all of its eight neighbors together at
line 15-17 and divide by eight at line 18. The thread will then enter a
new for-loop at line 23, this for-loop will calculate average of the last
row on DRAM. Elements of this row have three neighbors that exist in
NVDIMM. The thread will access the NVDIMM directly when adding
the eight neighbors at line 24-26. Data on NVDIMM are accessed by
the thread at line 26.

For all the other DRAM threads that jumped to line 30 will start

44

by taking time measurement at the beginning and at the end of the
bracket at line 31 and 40. The code from line 32-39 is identical to line
13-20 described before.

The group of NVDIMM enters the else bracket at line 42 where the
thread with the lowest thread_id will pass the if-sentence at line 44,
the rest will move on to the else bracket at line 62. The thread will
then measure time at line 45 and end the measurement in line 61.
It will then enter a for-loop at line 47 and will begin calculating the
average of the neighbors of the elements in the first row. The first row
has three of its eight neighbors in the row above and they exist in the
DRAM. Once done the thread will move on to a new for-loop at line 53.
This for-loop will go through the rest of the portion of data the thread
has been given and calculate the average of each elements neighbors.

The rest of the NVDIMM threads will move into the else bracket at
line 62. The code here is very similar to the code at 31-40 that has been
described at a previous paragraph. The only difference is that the code
at line 66-68 reads from NVDIMM instead DRAM.

All the threads will wait a barrier at line 75 until all threads are
done. After that one thread will enter a single bracket where array A
and B will swap places, array C and D will also swap places. The time
it took for this one iteration will be registered at line 84. After this the
code will move back to line 1.

Listing 8: First version of the code where the threads will access data
on the other memory type directly.

1 while(k<K_length){
2 #pragma omp barrier
3 #pragma omp single
4 {
5 total_time[k] = mysecond();
6 }
7 //Divides threads into DRAM threads and NVDIMM threads.
8 if(thread_id < dram_threads){
9

10 //for the thread bordering on NVDIMM thread.
11 if(thread_id==(dram_threads-1)){
12 individual_time[k][thread_id] = mysecond();
13 for(i=slice_start; i<slice_end-1; i++){
14 for(j=1; j<nMinusOne; j++){
15 temp = A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]+
16 A[i][j-1] + A[i][j+1]+
17 A[i+1][j-1] + A[i+1][j] + A[i+1][j+1];

45

18 B[i][j] = temp*inverseEigth;
19 }
20 }
21

22 i = slice_end-1;
23 for(j=1; j<nMinusOne; j++){
24 temp = A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]+
25 A[i][j-1] + A[i][j+1]+
26 D_RO(C)[i*n+j] + D_RO(C)[i*n+j] +

D_RO(C)[i*n+j];
27 B[i][j] = temp*inverseEigth;
28 }
29 individual_time[k][thread_id] = mysecond() -

individual_time[k][thread_id];
30 }else{
31 individual_time[k][thread_id] = mysecond();
32 for(i=slice_start; i<slice_end; i++){
33 for(j=1; j<nMinusOne; j++){
34 temp = A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]+
35 A[i][j-1] + A[i][j+1]+
36 A[i+1][j-1] + A[i+1][j] + A[i+1][j+1];
37 B[i][j] = temp*inverseEigth;
38 }
39 }
40 individual_time[k][thread_id] = mysecond() -

individual_time[k][thread_id];
41 }
42 }else{
43 //for the thread bordering on DRAM thread.
44 if(thread_id==dram_threads){
45 individual_time[k][thread_id] = mysecond();
46 i=0;
47 for(j=1; j<nMinusOne; j++){
48 temp =

A[dram_part-1][j-1]+A[dram_part-1][j]+A[dram_part-1][j+1]+
49 D_RO(C)[i*n+(j-1)] +

D_RO(C)[i*n+(j+1)]+
50 D_RO(C)[(i+1)*n+(j-1)] + D_RO(C)[(i+1)*n+j]

+ D_RO(C)[(i+1)*n+(j+1)];
51 D_RW(D)[i*n+j] = temp*inverseEigth;
52 }
53 for(i=slice_start+1; i<slice_end-1; i++){
54 for(j=1; j<nMinusOne; j++){

46

55 temp = D_RO(C)[(i-1)*n+(j-1)] +
D_RO(C)[(i-1)*n+j] + D_RO(C)[(i-1)*n+(j+1)]+

56 D_RO(C)[i*n+(j-1)] +
D_RO(C)[i*n+(j+1)]+

57 D_RO(C)[(i+1)*n+(j+1)] +
D_RO(C)[(i+1)*n+j] +
D_RO(C)[(i+1)*n+(j+1)];

58 D_RW(D)[i*n+j] = temp*inverseEigth;
59 }
60 }
61 individual_time[k][thread_id] = mysecond() -

individual_time[k][thread_id];
62 }else{
63 individual_time[k][thread_id] = mysecond();
64 for(i=slice_start; i<slice_end; i++){
65 for(j=1; j<nMinusOne; j++){
66 temp = D_RO(C)[(i-1)*n+(j-1)] +

D_RO(C)[(i-1)*n+j] + D_RO(C)[(i-1)*n+(j+1)]+
67 D_RO(C)[i*n+(j-1)] +

D_RO(C)[i*n+(j+1)]+
68 D_RO(C)[(i+1)*n+(j-1)] +

D_RO(C)[(i+1)*n+j] +
D_RO(C)[(i+1)*n+(j+1)];

69 D_RW(D)[i*n+j] = temp*inverseEigth;
70 }
71 }
72 individual_time[k][thread_id] = mysecond() -

individual_time[k][thread_id];
73 }
74 }
75 #pragma omp barrier
76 #pragma omp single
77 {
78 tempArray = B;
79 B=A;
80 A=tempArray;
81 temp_nvdimm = C;
82 C = D;
83 D = temp_nvdimm;
84 total_time[k] = mysecond() - total_time[k];
85 k++;
86 }
87 #pragma omp barrier

47

88 }//End of while

In table 11 and 12 the first two columns show m and n which is
the length of the 2D-array. Third columns show how many rows are
assigned to NVDIMM. Fourth and fifth column shows the number of
DRAM and NVDIMM threads the test have used. Columns five and
six show the time it takes for DRAM and NVDIMM to complete their
tasks. Column seven show the total time for the test.

Each row in table 11 and 12 is the result of running the code shown
above one time. The code is running its test ten times and all threads
measure the time to complete their own tasks. The slowest DRAM
thread and slowest NVDIMM thread in each test gets stored. The time
shown in column six and seven is the average of those times. Total
time in column eight is the average time it takes for all the threads to
complete.

NVDIMM DRAM NVDIMM DRAM NVDIMM Total
M N rows threads threads time time time

31623 31623 750 15 1 0.3099 0.3431 0.3457
31623 31623 1494 14 2 0.3117 0.3416 0.3427
31623 31623 2315 13 3 0.2937 0.3522 0.3542
31623 31623 3126 12 4 0.2882 0.3571 0.3578
31623 31623 3817 11 5 0.2900 0.3510 0.3512

Table 11: Result of the first version of the code with 16 GB of data.

The DRAM times of the in table 11 are almost matching the pre-
dicted times in table 9. The difference between predicted time and
actual time is at most 0.05 seconds. When comparing the predicted
DRAM time in table 10 and actual DRAM time in table 12 one can see
that predicted time is very close to actual time. The biggest difference
is when there are four NVDIMM threads. With four NVDIMM threads
the difference is 0.24 seconds.

The NVDIMM time predictions are a lot worse. According to the
prediction the DRAM and NVDIMM are supposed to complete at the
same time, but this is not happening. When comparing the predicted
time for NVDIMM in table 11 with the measured time in table 9 one
can see that NVDIMM takes a lot longer time to complete. NVDIMM
used about 0.1 second longer to complete its tasks, this is about 30%
longer than predicted time. The difference becomes even greater when
the size of the array increases. The NVDIMM predicted time in table
10 is in the range of between 3.74 and 3,81 seconds depending on how

48

Figure 12: Result of the first version of the code with 16 GB of data in
graph form.

many threads are given to NVDIMM. The time it takes for NVDIMM
to complete their task is almost twice as long for all the tests.

Since the time prediction for the DRAM was accurate this should
mean that there isn’t anything wrong with the prediction. The NVDIMM
has performed slower than expected based on the benchmarks collected
in section 5.4.1.

The total time in table 11 is almost identical to the NVDIMM. This
makes sense because the only thing happening when the threads are
not doing their tests is the swapping of arrays and this takes almost no
time at all. Since the slowest thread is always an NVDIMM then the
total time should be equal to the NVDIMM time.

This is not the case however in the table 12. Total time in this result
is only once identical to the NVDIMM time and that is when NVDIMM
is given five threads. For all the other total times there are a time
difference of between 0.5 and 2 seconds. Based on the code the total
time should be identical to NVDIMM time like the result in table 11
was. The only difference between these results is that the arrays are
bigger, but that should not affect the time it take to swap arrays.

49

NVDIMM DRAM NVDIMM DRAM NVDIMM Total
M N rows threads threads time time time

100000 100000 2371 15 1 3.7423 4.4166 6.1124
100000 100000 4724 14 2 4.0061 5.0799 7.1181
100000 100000 7321 13 3 4.0294 7.3525 7.8412
100000 100000 9885 12 4 4.0449 6.2484 7.3231
100000 100000 12071 11 5 4.0556 7.7680 7.7681

Table 12: Result of the first version of the code with 160 GB of data.

Figure 13: Result of the first version of the code with 160 GB of data in
graph form.

50

6.4 Second program version
Same as the first version there are two groups of threads that work
in parallel in this program. The first group of threads works on the
part of the data that is stored on DRAM and the other works on the
data stored on NVDIMM. In this version the two threads that have a
row of elements with neighbors in the other type of memory will not
directly access this data. Instead the two arrays will have their own
ghost array on their memory that they will access instead of fetching
data from the other side.

The while loop in line 1 will repeat itself for K_length amount of
time usually ten times, this is decided by the user of the benchmark. All
the threads will wait for all the other threads to arrive at line 2 before
one of the threads will start the time measurement in line 5. When the
threads arrives at line 8 all the DRAM threads will pass the if-test and
all the NVDIMM threads will move on to line 19. The DRAM threads
will first start the time measurement in line 9 and will then start to
calculate the average for every elements in the part of the array that
has been allocated to the each of the threads, this will happen from line
10-17. The threads will then stop the time measurement in line 18.

The NVDIMM threads will enter the else bracket at line 19. The
threads will then start time measurement at line 20. From line 21-
28 the threads will calculate average on the elements that have been
assigned to each thread. At line 29 the threads will stop the time mea-
surements.

The DRAM and NVDIMM threads will then encounter a barrier at
line 31 where they will wait for all the other threads to finish. All
threads will then update the ghost arrays at line 34 and 35. At line 34
the threads are copying the second row in the NVDIMM array into the
last row in the DRAM array. In line 35 they are copying the second last
row in the DRAM array into the first row in the NVDIMM array.

Once all the threads are done copying their parts of the rows, one
thread will enter the single bracket at line 37. This thread will swap
the DRAM arrays and then the NVDIMM array. The thread will then
stop the time measurement that was at the beginning of the while-loop
at line 47. At line 48 the k variable gets increased by one. The threads
will then return to line 1.

Listing 9: Second version of the code where the threads are using ghost
array instead of accessing the other type of memory directly.

1 while(k<K_length){

51

2 #pragma omp barrier
3 #pragma omp single
4 {
5 total_time[k] = mysecond();
6 }
7 //Divides threads into DRAM threads and NVDIMM threads.
8 if(thread_id < dram_threads){
9 individual_time[k][thread_id] = mysecond();

10 for(i=slice_start; i<slice_end; i++){
11 for(j=1; j<nMinusOne; j++){
12 temp = A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]+
13 A[i][j-1] + A[i][j+1]+
14 A[i+1][j-1] + A[i+1][j] + A[i+1][j+1];
15 B[i][j] = temp*inverseEigth;
16 }
17 }
18 individual_time[k][thread_id] = mysecond() -

individual_time[k][thread_id];
19 }else{
20 individual_time[k][thread_id] = mysecond();
21 for(i=slice_start; i<slice_end; i++){
22 for(j=1; j<nMinusOne; j++){
23 temp = D_RO(C)[(i-1)*n+(j-1)] +

D_RO(C)[(i-1)*n+j] + D_RO(C)[(i-1)*n+(j+1)]+
24 D_RO(C)[i*n+(j-1)] +

D_RO(C)[i*n+(j+1)]+
25 D_RO(C)[(i+1)*n+(j-1)] + D_RO(C)[(i+1)*n+j]

+ D_RO(C)[(i+1)*n+(j+1)];
26 D_RW(D)[i*n+j] = temp*inverseEigth;
27 }
28 }
29 individual_time[k][thread_id] = mysecond() -

individual_time[k][thread_id];
30 }
31 #pragma omp barrier
32 #pragma omp for
33 for(a=0; a<n; a++){
34 A[dram_part_Minus_One][a] = D_RO(C)[n+a];
35 D_RW(C)[a] = A[dram_part_Minus_Two][a];
36 }
37 #pragma omp single
38 {
39 tempArray = B;

52

40 B=A;
41 A=tempArray;
42

43 temp_nvdimm = C;
44 C = D;
45 D = temp_nvdimm;
46

47 total_time[k] = mysecond() - total_time[k];
48 k++;
49 }
50 #pragma omp barrier
51 }//End of while

NVDIMM DRAM NVDIMM DRAM NVDIMM Total
M N rows threads threads time time time

31623 31623 750 15 1 0.2695 0.3121 0.3138
31623 31623 1494 14 2 0.2724 0.3115 0.3135
31623 31623 2315 13 3 0.2730 0.3186 0.3196
31623 31623 3126 12 4 0.2965 0.3258 0.3367
31623 31623 3817 11 5 0.2998 0.3196 0.3205

Table 13: Result of the second version of the code with 16 GB of data.

When comparing the predicted DRAM time in table 9 to the mea-
sured DRAM time in table 13 one can see that at most the prediction
is off by between 0.01 and 0.05 seconds. The prediction DRAM time
in table 10 is also quite accurate when compared to DRAM times mea-
sured in table 14. The actual result is slower than the predicted time
by between 0.2 and 0.5 seconds depending on how many threads have
been given to NVIDMM.

The measured time of the NVDIMM in table 13 is slower than the
predicted time in table 9. The NVDIMM result is about 0.06 second
slower than the predicted result, in percent it is around 20% slower.
The NVIDMM result in table 14 is also slower than the predicted NVDIMM
time in 10. All the NVDIMM times are between 1 and 2.5 second
slower, in percent it would be between 23% and 37%.

All the total times in table 13 are also almost identical to the NVDIMM
time. In this version of the code all threads will update the ghost ar-
rays when all of them are done with the their task so it was expected
that the total time was a little slower than the NVDIMM time. The
ghost arrays might be so small that they do not have any significant

53

Figure 14: Result of the second version of the code with 16 GB of data
in graph form.

impact on the time.
The total time in table 14 is also slower than the NVDIMM time.

This is because of the same reasons as mention in last paragraph.
The lowest difference between NVDIMM and total time is when just
one thread is delegated and the difference is 0.11 seconds. The size
of the ghost arrays does not change even though the amount of data
on the NVDIMM increases, the length of the ghost arrays is always
100,000 elements. Because of this the difference between total time
and NVDIMM should be the same for all the total time. This is not
the case, all the other differences are between 0.65 and 1.16 seconds.
There is no clear reason for why the test takes that long.

NVDIMM DRAM NVDIMM DRAM NVDIMM Total
M N rows threads threads time time time

100000 100000 2371 15 1 4.1319 4.8735 4.9889
100000 100000 4724 14 2 4.0864 5.0859 6.0841
100000 100000 7321 13 3 4.0079 5.5318 6.6954
100000 100000 9885 12 4 4.1450 5.7829 6.5336
100000 100000 12071 11 5 4.3569 6.0666 6.7233

Table 14: Result of the second version of the code with 160 GB of data.

54

Figure 15: Result of the second version of the code with 160 GB of data
in graph form.

6.4.1 Comparisons of versions

When comparing the two versions it’s possible to make a couple of ob-
servations. First in the 16 GB test the second version NVDIMM time
and total time are faster in all instances and the DRAM in second ver-
sion is faster three out of five times. The first version of DRAM time is
barely faster than the second version of the test two times.

In the 160 GB version of the test all the total time in the second
version are faster then the first version. Three NVDIMM times and
one DRAM time in the second version are faster then the first version.

Based on the result in the first and second versions, the extra work
of updating the ghost array does not make the second version slower
then the first version. The code in the second version is also more
readable than the first version because it does not have all of the if-
sentences and code that repeats itself.

Overall the second version is the better version based on the total
time and the readability of the code.

55

7 DRAM and NVDIMM working indepen-
dently

7.1 Introduction
In the tests that was done in chapters three and four the DRAM and
NVDIMM have been doing the same type of work. This chapter will
be about DRAM and NVDIMM doing different types of work. There
will be a group of threads calculating data on DRAM. While this is
going on there will be another group of threads copying the latest set
of calculated data to NVDIMM and analyzing the data on NVDIMM.
The purpose of this is to find out if NVDIMM can work on other tasks
and understand how NVDIMM is behaving when other threads are
working on DRAM. The chapter will start by testing the DRAM alone
in order to see what kind of performance is possible. Afterward another
version of the program will be tested where both DRAM and NVDIMM
are being used.

7.2 Test with only DRAM
7.2.1 Description of code

The code in 10 starts by taking a time measurement before the while-
loop in line 4 by on of the threads. This time measurement will be
ended after the while-loop at line 41 by one thread. Since there is a
barrier at line 38 the time measurement will only end when all the
threads have left the while-loop.

The While-loop at line 6 will be repeated for 5000 times and there
is a barrier in line 7 to ensure that all threads are finished with the
previous iteration before starting a new iteration. One thread will start
by entering a single bracket in line 8 and does all the work only one
thread can do such as increase n by one, zero out diff and average and
does a calculation in line 13 that result will be used by all the threads
later. The description of data generation will be done in section 7.2.2.

After the data generation all the threads will wait the barrier at
line 19 before one thread enters the single bracket at line 20. The
thread will swap the arrays x and xk_1 before starting a new time
measurement at line 26. The threads will move on to analyzing the
data generated and this will be described at section 7.2.3.

The threads will wait for all the threads to complete analyzing the
data at line 31 before on thread enter a new single at line 32 where

56

it will first start by calculating an average and after that it will end
the time measurement that was started at line 26. This is the time
measurement of the analyzing part of the code, the time it takes to
analyze the data in all iterations will be add to one variable called
analyze_time. This is the end of the while-loop and the code will either
return to line 7 or exit the while-loop

The time measurement of the data generation will be found by sub-
tracting analyze_time from the time measurement that was taken be-
fore and after the code.

Listing 10: DRAM only version of the simulation code.
1 double double_temp;
2 #pragma omp single
3 {
4 data_generation_time, = mysecond();
5 }
6 while(n<5000){
7 #pragma omp barrier
8 #pragma omp single
9 {

10 n++;
11 diff=0.0;
12 average = 0;
13 //completes the first part of the formula.
14 Wk_1_product = (omd + (d*Wk_1))*iN;
15 }
16

17 Data generation, see section 7.2.2
18

19 #pragma omp barrier
20 #pragma omp single
21 {
22 temp_x = xk_1;
23 xk_1 = x;
24 x = temp_x;
25 //starting time measurement of calculation.
26 temp_calc=mysecond();
27 }
28

29 Analyzing the data, see section 7.2.3
30

31 #pragma omp barrier
32 #pragma omp single

57

33 {
34 average *= iN;
35 analyze_time+=mysecond()-temp_calc;
36 }
37 }
38 #pragma omp barrier
39 #pragma omp single
40 {
41 data_generation_time, = mysecond() -

data_generation_time;
42 }

The code shown in listing 11 is the function used to take the time mea-
surement. This function has been copied from the Stream benchmark
code.

Listing 11: Function that that is used for measure time
1 double mysecond(){
2 struct timeval tp;
3 struct timezone tzp;
4 int i;
5 i = gettimeofday(&tp,&tzp);
6 return ((double) tp.tv_sec + (double) tp.tv_usec *

1.e-6);
7 }

7.2.2 Data generation

All the threads will enter the for-loop at line 2 and they will start by
zero out the double_temp variable. They will then enter a new for-loop
at line 5. The array used in this test is a compressed row storage(CRS),
this means that a 2D-array has been converted to an 1D-array where
all the elements with zero have been removed. CRS_row_ptr shows the
where a row in the 2D-array begins and ends in the CRS, that is why
the CRS_row_ptr is used in the header of the for-loop. At line 6 the
for-loop will multiply together all elements in a row together with the
result from a previous iteration of data generation. Everything will be
added together in the variable double_temp. The variable double_temp
will then be multiplied with a constant d at line 9 and added together
with a constant Wk_1_product at line 11 before being stored in array
x at line 12 which is where data from the current data generation is

58

being stored. The code will then check if the difference between current
data generation and previous data generation is higher than the diff
variable. If it is then the diff variable will be changed to the current
difference.

Listing 12: Generation of data.
1 #pragma omp for reduction(max:diff)
2 for(i=0; i<nodes; i++){
3 //This is A*x^k-1
4 double_temp = 0;
5 for(j=CRS_row_ptr[i]; j<CRS_row_ptr[i+1]; j++){
6 double_temp += CRS_values[j] * xk_1[CRS_col_idx[j]];
7 }
8 //d*Ax^k-1
9 double_temp *= d;

10 //Adding the first part and second part together.
11 double_temp += Wk_1_product;
12 x[i] = double_temp;
13

14 //Comuting the difference between x^k and x^k-1
15 //and adds the biggest diff to diffX[thread_id]
16 if(x[i]-xk_1[i] > diff){
17 diff = x[i] - xk_1[i];
18 }
19 }

59

7.2.3 Analyzing the data

This analysis code is very synthetic and therefore it will go through the
array five times and add all the elements to the variable called average,
this is shown in the code in listing 13. The average is calculated five
times in a row in order to make the analysis part heavier.

Listing 13: Analyzing the data.
1 //Analyse part
2 #pragma omp for reduction(+ : average)
3 for(i=0;i<nodes;i++){
4 average += xk_1[i];
5 }
6 #pragma omp for reduction(+ : average)
7 for(i=0;i<nodes;i++){
8 average += xk_1[i];
9 }

10 #pragma omp for reduction(+ : average)
11 for(i=0;i<nodes;i++){
12 average += xk_1[i];
13 }
14 #pragma omp for reduction(+ : average)
15 for(i=0;i<nodes;i++){
16 average += xk_1[i];
17 }
18 #pragma omp for reduction(+ : average)
19 for(i=0;i<nodes;i++){
20 average += xk_1[i];
21 }

7.2.4 Result

The result of the test with only DRAM is shown in table 15. This result
will be compared to result where DRAM is working data generation
and NVDIMM is transferring the result of data generation to NVDIMM
and analyzing the result there.

60

Threads Total time Data generation time analysis time
1 1545.98 949.60 596.38
2 671.34 421.51 249.82
3 459.76 289.57 170.18
4 350.04 220.99 129.05
5 284.09 179.43 104.66
6 240.27 151.90 88.37
7 209.05 132.54 76.51
8 188.60 120.08 68.52
9 177.25 113.20 64.05

10 168.02 109.87 58.15
11 159.60 106.06 53.54
12 152.81 103.37 49.44
13 150.41 101.86 48.55
14 146.30 100.99 45.31
15 143.02 100.55 42.47
16 140.75 100.74 40.01

Table 15: Result from running the test with only DRAM. The time is
measured in seconds.

7.3 NVM simulation
7.3.1 Locks

The program is divided into two parts, the calculation of data and the
analyzing of the data that have been generated. The two parts syn-
chronize by using two locks called lock_a and lock_b, lock_a will start
in unlocked state and lock_b in locked state. When the two parts start
the analyzing part is put on hold by lock_b until the calculation part
has generated the first set of data. Then the calculation part will lock
lock_a, swap the pointers x and xk_1 and then unlock lock_b. The cal-
culation part will then start the calculation of the next set of data, but
wont swap pointers until analyzing part has transferred the content in
xk_1 to NVDIMM and unlocked lock_a.

When the calculation part unlocks lock_b the analyzing will start
transferring data from xk_1 to NVDIMM and unlock lock_a when it’s
done with the transfer. The analyzing part will then start analyzing the
data on NVDIMM. When it’s done it will encounter lock_b and will wait
there until calculation has a new set of data ready and has swapped the
pointers.

61

Before and after the set lock in calculation and analyze part there is
a time measurement that measured how long the threads have waited
for the lock to be unlocked by the other part. All the individual times
the threads have waited in calculation or analyze gets added to a vari-
able called iteration_idle_time or transfer_idle_time that will be the
total time the threads have waited.

Figure 16: A simplified version of how lock works in the program.

7.3.2 Calculation

The total time for calculation is measured before and after the while-
loop. One thread will start the time measurement at line 3 and the
measurement will be ended by one thread at line 33. The calculation
starts with a while-loop at line 5. It will be repeated 5000 times. There
is a barrier at line 6 that will synchronize all the threads. One thread
will enter a single bracket a line 7 and increase the variable n by one,
zero out the variables diff and Wk_1 and calculate one part of the cal-
culation that only need to be done by one thread at line 11.

The calculation of data will happen at line 17. All threads will enter
the for-loop at line 18, this for-loop will pass through all the nodes in
the array. A temporary variable is created at line 20, this is to ensure
that data is only stored at the end of the for-loop. Each thread will then
enter a second for-loop at line 21. The array that begins with CRS is
part of a compressed sparse matrix, that means that a 2D-array has
been turned into a 1D-array in order to perform faster. The for-loop
will add together edges that are connected to node i, they will be stored
in the double_temp variable. Once out of the array the double_temp

62

will be multiplied with a constant d at line 25 and added together with
the Wk_product at line 27, this is a variable that was calculated by one
thread in line 13. The double_temp value will be written to array at
line 28.

One thead will enter the single bracket at line 36 and will start a
new time measurement at line 38. This time measurement will mea-
sure how much time the calculation threads must wait for the analyze
threads to finish. Once the analyze threads have unlocked lock_a the
thread will pass through the lock and lock it again at line 39. It will
also end the time measurement at line 40 and add the time waited to
the iteration_idle_time variable. This variable is the total amount of
time the calculation threads have been idle. At line 42-44 the arrays x
and xk_1 will be swapped. At line 46 the thread will unlock the lock_b,
this will allow the analyze threads to do their jobs. The threads will
then return to the beginning of the while-loop at line 5 and repeat the
process if n is lower than 5000.

Listing 14: Calculation
1 #pragma omp single
2 {
3 iteration_time = mysecond();
4 }
5 while(n<5000){
6 #pragma omp barrier
7 #pragma omp single
8 {
9 n++;

10 diff=0.0;
11 Wk_1=0;
12 //completes the first part of the formula.
13 Wk_1_product = (omd + (d*Wk_1))*iN;
14 }
15

16 /* Calculation of Data */
17 #pragma omp for reduction(max:diff)
18 for(i=0; i<nodes; i++){
19 //This is A*x^k-1
20 double_temp = 0;
21 for(j=CRS_row_ptr[i]; j<CRS_row_ptr[i+1]; j++){
22 double_temp += CRS_values[j] * xk_1[CRS_col_idx[j]];
23 }
24 //d*Ax^k-1

63

25 double_temp *= d;
26 //Adding the first part and second part together.
27 double_temp += Wk_1_product;
28 x[i] = double_temp;
29

30 //Comuting the difference between x^k and x^k-1
31 //and adds the biggest diff to diffX[thread_id]
32 if(x[i]-xk_1[i] > diff)
33 diff = x[i] - xk_1[i];
34 }
35

36 #pragma omp single
37 {
38 temp_time = mysecond();
39 omp_set_lock(&lock_a);
40 iteration_idle_time += mysecond() - temp_time;
41

42 temp_x = xk_1;
43 xk_1 = x;
44 x = temp_x;
45

46 omp_unset_lock(&lock_b);
47 }
48 }//end of while-loop
49 #pragma omp single
50 {
51 iteration_time = mysecond() - iteration_time;
52 }

7.3.3 Analysis

The time will be measured before and after the while-loop that start
at line 1. The if test for this while-loop has been moved to the end of
the while-loop, that is why the if test at line 1 is 1==1 and will allways
be true. One thread will enter the single bracket at line 2 and start
a time measurement that will measure the idle time of the analyze
threads. The threads will wait until the calculation threads unlock the
lock_b. When it’s unlocked the thread will pass through line 5 and lock
lock_b again. It will also add the time waited to the variable trans-
fer_idle_time. The thread will then start a new time measurement at
line 7, this measurement will measure the time it takes to transfer
data from DRAM to NVDIMM. the variable average will be turned to

64

zero at line 8. At line 11-14 all the threads will work together to trans-
fer the xk_1 array from DRAM to NVDIMM. Once done one thread will
enter a new single at line 15. The thread will then end the time mea-
surement at line 17 and add the time taken to transfer the data to the
variable DRAM_to_NVM_time. It will then unlock lock_a at line 18,
this will allow the calculation threads to swap x and xk_1. The thread
will also start a new time measurement at line 19, this measurement
will measure how long it takes for the threads to analyze the data. Line
22-25 is where the data gets analyzed, in this case it’s just an average
of all the data. The threads will synchronize at a barrier at line 26.
One thread will enter the single thread at line 27 and will divide the
sum of all the nodes with the number of nodes. It will then end the
time measurement at line 30 and add it to the total time it takes to
analyze the data. All the threads will then go through an if test at line
33. This test will always be true until the calculation threads changes
the iteration_ongoing variable from 1 to 0.This will only be done when
calculation threads are done with calculation and left their while-loop
that was explained above.

Listing 15: Analyze
1 while(1==1){
2 #pragma omp single
3 {
4 temp_time = mysecond();
5 omp_set_lock(&lock_b);
6 transfer_idle_time += mysecond() - temp_time;
7 temp_time = mysecond();
8 average=0.0;
9 }

10 /* Transfer of array from DRAM to NVDIMM */
11 #pragma omp for
12 for(i=0; i<nodes; i++){
13 D_RW(nvm_values)[i]=xk_1[i];
14 }
15 #pragma omp single
16 {
17 DRAM_to_NVM_time += mysecond() - temp_time;
18 omp_unset_lock(&lock_a);
19 temp_time = mysecond();
20 }
21 /* Analyzations of data */
22 #pragma omp for reduction(+ : average)

65

23 for(i=0;i<nodes;i++){
24 average += D_RO(nvm_values)[i];
25 }
26 #pragma omp barrier
27 #pragma omp single
28 {
29 average /= nodes;
30 Analyse_time += mysecond() - temp_time;
31 }
32 //if sentence for exiting while-loop.
33 if(iteration_ongoing==0){
34 break;
35 }
36 }

66

7.3.4 Prediction

Table 16 shows the prediction of how much time it will take to trans-
fer data from DRAM to NVDIMM. First and second columns show the
number of DRAM and NVDIMM threads. Third column shows the
transfer speed in MB/s. These speed has been taken from benchmark
in section 5.4.3. The fourh column shows the total amount of time it
took to transfer data from DRAM to NVIDMM.

The equation below show the calculation of how much data would
be transferred from DRAM to NVDIMM. Nodes is the number of ele-
ments in the array that will be transferred 5000 times from DRAM to
NVDIMM. That result is multiplied with 8 and divided by 1,000,000 in
order to convert the result to megabyte.

Data =
nodes ∗ 5000 ∗ 8

1000000
(3)

DRAM NVM DRAM-NVDIMM transfer
theads threads speed in MB/s time

15 1 3581.48 178.70
14 2 7323.96 87.38
13 3 10954.06 58.43
12 4 15070.61 42.47
11 5 18725.90 34.18
10 6 22614.45 28.30
9 7 26557.71 24.10
8 8 30570.88 20.93
7 9 33996.95 18.83
6 10 38191.10 16.76
5 11 42263.28 15.14
4 12 45915.39 13.94
3 13 49341.90 12.97
2 14 53331.10 12.00
1 15 57348.14 11.16

Table 16: Time prediction in seconds of the data transfer between
DRAM and NVDIMM.

67

7.3.5 Result

A. Threads used for data generation.

B. Threads used for transferring data from DRAM to NVDIMM and
analyzing the data.

C. Data generation time.

D. Idle time for threads allocated to data generation.

E. Transfer time for data between DRAM and NVDIMM.

F. Analysis time

G. Idle time for threads allocated to transfer data and analysis.

H. Total time used.

A B C D E F G H
15 1 102.35 849.87 166.02 786.30 0.03 952.37
14 2 105.89 402.37 84.74 423.54 0.04 508.35
13 3 112.69 274.05 70.52 316.22 0.03 386.80
12 4 117.66 181.92 51.48 248.09 0.01 299.63
11 5 123.18 126.36 43.15 206.36 0.03 249.58
10 6 130.29 90.92 44.56 176.63 0.03 221.25
9 7 136.33 51.77 34.79 153.22 0.10 188.13
8 8 147.03 18.63 31.22 134.42 0.03 165.69
7 9 169.39 3.78 36.38 120.80 16.01 173.20
6 10 182.96 0.02 28.85 102.81 51.34 183.01
5 11 206.64 0.00 26.39 90.11 90.16 206.67
4 12 246.10 0.31 28.67 90.41 127.23 246.46
3 13 303.90 0.00 22.83 75.71 205.38 303.93
2 14 430.30 0.00 21.71 69.86 338.74 430.34
1 15 804.03 0.00 20.60 65.07 718.38 804.08

Table 17: Result where DRAM and NVDIMM does different tasks, all
times measured in seconds. Symbols in top row are explained above
the table.

The prediction of the data transfer was correct for the most part.
The predictions with one and two NVDIMM threads were above the
measured time in table 17. All the other predictions are lower than

68

the measured time. Since almost all the prediction are lower than the
measured time it could be used as prediction of minimum time needed
for transferring data from DRAM to NVDIMM.

The fastest combination of DRAM and NVDIMM thread in this test
is when both DRAM and NVDIMM have eight threads. This is also the
combination where the combined idle time of the two groups of threads
are the lowest which is also the reason why it was the fastest one.

The fastest combination result in this section is 25 second slower
when compared to the fastest result of DRAM only version of the code
in table 15. It was expected that the NVDIMM version of the code
would be slower than the DRAM only version of the code. But still it is
possible to assign the DRAM with one set of tasks while the NVDIMM
version of the code is doing another set of tasks. The only downside
is that it will take longer time. When comparing the extra time a
project will take with the amount of extra space the user gets by us-
ing NVDIMM it would probably be worth it.

69

8 Conclusion
The conclusion will start with a summary of what has happened in the
previous chapters. Then it will move on to answer the research ques-
tions that were introduced in the beginning of the thesis. After the
research questions have been answered there will be a section with re-
flections of what could have been done better or differently. The thesis
will end with a section that considers what further work could be.

8.1 Summary
This thesis started in chapter 3 with explaining what persistent mem-
ory is, what are the advantages and disadvantages. Four research
questions were introduced in the end of the section that will be an-
swered later in this chapter.

The thesis continued with explaining the basic when programming
with NVDIMM in chapter 4.

In chapter 5 I created a modified version of the Stream benchmark
that could be used to measure the speed of the NVDIMM. I also created
three other benchmark that are similar to each other where the threads
are competing with each other for bandwidth. I used the benchmarks to
measure the performance of NVDIMM on the computer I used through
the entire thesis it is described in section 5.1.1 and made observation
based on those performance measurements.

Chapter 6 is about DRAM and NVIDMM working together because
the amount of data exceeds the total capacity of the DRAM. I created
a formula that calculated how much should be allocated from DRAM
to NVDIMM. I also created two versions of a new test that could test
if the formula is correct. The purpose of the two versions was to which
programming decision is the fastest.

Chapter 7 is about NVDIMM and DRAM doing two different types
of jobs. I created a new test where DRAM is working on generating
data while the NVDIMM is transferring the last set of generated data
to from DRAM to NVDIMM and analyzing the data afterward.

70

8.2 Research questions
8.2.1 Question 1

What is the data transfer speed of NVDIMM compared to DRAM?
The expectation before starting this thesis was that NVDIMM would

be slower than DRAM. What I focused on is how fast the speed of the
NVDIMM is compared to DRAM. This question is possible to answer
by comparing the results Stream benchmark int section 5.2 and the
result from modified Stream benchmark in section 5.3. By comparing
the speed from these two benchmarks which has been done in table 6
in section 5.4.4 it possible to see how much faster the DRAM is.

8.2.2 Question 2

In an competitive environment, in what way will NVDIMM and DRAM
affect each other?

When both DRAM and NVDIMM are competing for bandwidth the
speed will be slower than what they would be if they were alone with
the bandwidth. When using all cores in a socket the sum of the DRAM
speed and NVDIMM speed will be lower then the speed of sixteen
DRAM threads running alone, this can be determined by comparing
table 1 and 3.

8.2.3 Question 3

When the size of the data is higher than the capacity of the DRAM,
how much data should be transferred to NVDIMM? How many threads
should be allocated to work on the data on NVDIMM?

In chapter four I created a formula that can be used to find out how
much data should be placed on NVDIMM based on what the speed of
DRAM and NVDIMM is. By deciding first on how many threads should
be allocated the formula will tell how much data should be placed on
NVDIMM.

8.2.4 Question 4

While DRAM is working on a task, is it possible for NVDIMM to be
working on a different type of task? In chapter 7 I created a program
where a group of DRAM threads working on one task while a group
of NVDIMM threads transfer the the result of that work to NVDIMM
and do another type of task on that data. The program is slower than

71

the DRAM version of the program, but it is possible to have DRAM and
NVDIMM do different kinds of tasks simultaneously.

8.3 Reflections
The benchmark section 5.4.1, 5.4.2, 5.4.3 had unstable NVDIMM theads
that dropped their speed for some reason. More time could have been
spent trying to find out why this is occurring.

A part of chapter 7 was to predict the time it takes to complete the
data generation and analysis part. This was dropped because I were
unable to predict it correctly.

While working on this thesis I could have saved a lot of time by
having a greater attention to details. By looking at the results more
critically I could have noticed mistakes more easier and it would not be
necessary for my supervisor to point it out.

I should also have been more creative in my approach. That would
have enabled me to attack a problem from different angles and this
thesis might had gotten a different result because of that.

8.4 Further work
Further work would be to find out what causes the NVDIMM threads
to drop their speed sometimes that was shown in competing benchmark
section in chapter three. If it’s possible to explain what causes this it
might be possible to make programming choices that avoid the sudden
drop from happening. The result is that with no drop in speed it might
be possible to get more performance out of NVDIMM.

72

References
[1] Anirudh Badam. “How Persistent Memory Will Change Software

Systems.” eng. In: Computer 46.8 (2013), pp. 45–51. ISSN: 0018-
9162.

[2] Big Memory Breakthrough for Your Biggest Data Challenges. URL:
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html
(visited on 05/27/2019).

[3] Joel Coburn et al. “NV-Heaps: making persistent objects fast and
safe with next-generation, non-volatile memories.” eng. In: ACM
SIGPLAN Notices 46.3 (2011), pp. 105–118. ISSN: 1558-1160.

[4] Georg Hager and Gerhard Wellein. Introduction to High Perfor-
mance Computing for Scientists and Engineers. CRC Press, 2010.
ISBN: 9781439811924.

[5] Myoungsoo Jung et al. “Exploring the Future of Out-of-Core Com-
puting with Compute-Local Non-Volatile Memory.” eng. In: Sci-
entific Programming 22.2 (2014), pp. 125–139. ISSN: 1058-9244.

[6] John D. McCalpin. STREAM source code. URL: https://www.
cs.virginia.edu/stream/FTP/Code/stream.c (visited on
12/20/2020).

[7] Andy Rudoff. “Persistent Memory Programming.” In: Login 42.2
(2017), pp. 125–139.

[8] Andy Rudoff. “Persistent Memory: The Value to HPC and the
Challenges.” eng. In: Proceedings of the Workshop on memory cen-
tric programming for hpc. Vol. 2017-. MCHPC’17. ACM, 2017,
pp. 7–10. ISBN: 9781450351317.

[9] Andy m. Rudoff. Intel Optane DC Persistent Memory: A Major
Advance in Memory and Storage Architecture. URL: https://
software.intel.com/en-us/blogs/2018/10/30/intel-
optane-dc-persistent-memory-a-major-advance-in-
memory-and-storage-architecture (visited on 05/25/2019).

[10] Lisa Spelman. Reimagining the Data Center Memory and Storage
Hierarchy. URL: https://newsroom.intel.com/editorials/
re-architecting-data-center-memory-storage-hierarchy/
#gs.d0rr1r (visited on 05/22/2019).

[11] The libpmemblk library. URL: http://pmem.io/pmdk/libpmemblk/
(visited on 05/25/2019).

73

[12] The libpmemlog library. URL: http://pmem.io/pmdk/libpmemlog/
(visited on 05/25/2019).

[13] The libpmemobj library. URL: http://pmem.io/pmdk/libpmemobj/
(visited on 05/25/2019).

[14] H Volos, Aj Tack, and MM Swift. “Mnemosyne: Lightweight Per-
sistent Memory.” English. In: Acm Sigplan Notices 47.4 (2012),
pp. 91–103. ISSN: 0362-1340.

[15] What is Persistent Memory? URL: https://www.snia.org/
education/what-is-persistent-memory (visited on 11/13/2021).

[16] What is Persistent Memory? URL: https://pmem.io/ (visited
on 11/13/2021).

74

