
On Recent Advances in
Compressed Sensing
Teah Kaasa McLean
Master’s Thesis, Autumn 2021

This master’s thesis is submitted under the master’s program Computational
Science, with program option Applied Mathematics and Risk Analysis, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

Compressed sensing has roused great interest in research and many industries
over the last few decades. This is because we can recover signals from vastly
undersampled measurements, under certain assumptions: sparsity, incoherence
and uniform random subsampling.

However, recent research has shown that the traditional theory yields poor
recovery results in many practical cases. This has lead to the development of a
new compressed sensing theory, based on local structure in the signals. The
new theory defines asymptotic sparsity, asymptotic incoherence and multilevel
random subsampling. With these new principles, we see much better recovery
results.

In order to apply CS in practice, we need to be able to solve the main
optimization problem basis pursuit efficiently for large data sets. The spectral
projected gradient `1 (SPGL1) algorithm serves this purpose. It restates the
optimization problem as a root finding problem of a single-variable non-linear
equation, and utilizes an inexact Newton method to find this root.

The purpose of this text is to give an introduction to the field of compressed
sensing, provide the mathematical motivation for the SPGL1 algorithm and
highlight some recent advances in compressed sensing.

i

Acknowledgements

First and foremost, I would like to thank my supervisors Øyvind Ryan and
Vegard Antun. Øyvind’s door has always been open, and he has been a massive
help in figuring out the mathematical details for the SPGL1 algorithm and
has given valuable feedback on the drafts of this thesis. Vegard has helped
me navigate the recent advances in compressed sensing by suggesting relevant
resources and answering any and all of my questions. He has also been a great
help with the code for this thesis.

I am so grateful to have met Aasne and Ine in my first year at the University
of Oslo. Together we got through all of our mandatory assignments and exams,
and we have had many fun conversations during our long lunch breaks. Christian
deserves a special thanks for his infectious optimism and for always being willing
to discuss details and concepts. I am beyond thankful for the effort he has put
into helping me proofread.

Finally, I want to thank Tonje, Stig and my other friends and family for all
of their support and words of encouragement. I could not have done it without
you.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Acronyms v

Code vi

1 Introduction 1

2 Traditional Compressed Sensing 4
2.1 Notation . 4
2.2 Sparse Solutions to Underdetermined Systems 4
2.3 Null Space Properties . 6
2.4 Coherence . 14
2.5 The Restricted Isometry Property 18
2.6 Other Optimization Problems 20
2.7 Setting up Compressed Sensing 22

3 Wavelets and the Walsh-Hadamard Transform 24
3.1 Wavelets . 24
3.2 The Walsh-Hadamard Transform 28
3.3 Coherence Between Wavelets and the Hadamard Matrix . . . 31

4 The SPGL1 Algorithm 35
4.1 Approach . 35
4.2 Convex Analysis . 36
4.3 The Pareto Curve . 38
4.4 Root Finding . 43
4.5 Solving the Lasso Problem . 49

5 New Compressed Sensing Theory 54
5.1 Sampling Structure . 54
5.2 Sparsity Structure . 55
5.3 Asymptotic Sparsity . 57

iii

Contents

5.4 Asymptotic Incoherence . 60
5.5 Multilevel Subsampling . 60
5.6 Restricted Isometry Property in Levels 61

6 Conclusion 65

A Extra derivations 66
A.1 Telescoping Series . 66
A.2 Column Coherence . 67

Bibliography 68

iv

List of Acronyms

BP Basis pursuit

BPDN Basis pursuit denoise problem

C-LASSO Constrained LASSO

CS Compressed sensing

DB4 Daubechies 4

DWT Discrete wavelet transform

FWHT Forward Walsh-Hadamard transform

IDWT Inverse discrete wavelet transform

IWHT Inverse Walsh-Hadamard transform

NSP Null space property

PSNR Peak signal-to-noise ratio

QCBP Quadratically constrained basis pursuit

RIC Restricted isometry constant

RICL Restricted isometry constant in levels

RIP Restricted isometry property

RIPL Restricted isometry property in levels

RNSP Robust null space property

SNSP Stable null space property

SPG Spectral projected gradient

SPGL1 Spectral projected gradient `1
U-LASSO Unconstrained LASSO

WHT Walsh-Hadamard transform

v

Code

The figures in this thesis have been produced utilizing the Compressive Imaging
library [4] by Vegard Antun and the open source Matlab solver SPGL1 [9] by
Michael P. Friedlander and Ewout van den Berg. For interested readers, the
test images and the scripts for generating the figures in this text can be found
at the author’s GitHub page1.

1https://github.com/teahkm/thesis_code

vi

https://github.com/teahkm/thesis_code

CHAPTER 1

Introduction

Compressed sensing (CS) is motivated by the observation that many natural
signals are compressible. For example, if we perform an appropriate change
of basis on a natural image, only a small percentage of the coefficients are
non-zero and necessary to encode the image. We say that the image is sparse
in the new basis. We can discard the coefficients that are zero and be left
with a compressed image that to the human eye looks identical to the original.
However, we are wasting time and resources collecting samples that are to be
discarded.

With CS, we wish to collect only the samples that will contain interesting
information. Then from these samples, we can recover the original signal. This
corresponds to solving the linear system of equations

Ax = y

where x ∈ RN is the signal, A ∈ Rm×N is a matrix describing how the
measurements are sampled and y ∈ Rm is the subsampled measurements.
Because we are subsampling, m < N and the system is underdetermined. This
means that there are infinitely many solutions x. We seek to find the sparsest
x that fits the measurements. One can show that this boils down to solving the
convex optimization problem basis pursuit (BP)

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 = 0. (1.1)

We know from traditional signal processing that there is a lower bound on
how many samples are necessary to recover the signal. The Shannon-Nyquist
sampling theorem tells us that to reconstruct a signal with highest frequency ω,
we only need a sampling rate higher than 2ω. Unfortunately, for high frequency
signals, this number can still be very large. Making a few additional reasonable
assumptions on the signal, the CS theory provides a much smaller estimate
on the number of samples required to recover the signal exactly. If we have
an incoherent measurement matrix A and we sample uniformly at random, all
vectors x with at most s non-zero coefficients can be recovered from y = Ax
provided

m ≥ CsµL,
where C > 0 is a universal constant, µ is the coherence of the matrix and L is
a log-factor.

For CS to work in practice, we need to be able to solve the optimization
problem (1.1) efficiently for large data sets. Several algorithms exist for solving

1

this problem, however most of these require that the measurement matrix be
stored explicitly. This is intractable for large data sets due to the limitations
on computer memory. The spectral projected gradient `1 (SPGL1) algorithm
[9] allows the matrix to be an operator, thereby handling the memory issue.
This algorithm solves BP and two other related problems for large data sets.
It relates the optimization problems to finding the root of a single-variable
non-linear equation. The root finding is done by applying an inexact Newton
method.

Standard CS yields poor reconstruction results in most practical setups.
Empirical observations suggest that there is an asymptotic structure in the
sparsity of a signal and the coherence of the measurement matrix, and that this
structure plays an important role in the recovery of the signal. Therefore, the
global notions of sparsity, coherence and sampling in the standard CS theory
do not suffice. Instead, new local versions of these principles can be defined to
improve recovery results and better describe how CS works in practice. The
new principles are asymptotic sparsity, asymptotic incoherence and multilevel
random sampling.

This thesis is an exposition of the literature in the field of compressed sensing.
We will state and prove some of the important results from the classical CS
theory, provide mathematical details for the SPGL1 algorithm, and present and
discuss the new local CS theory.

Convention

The two main references in this thesis are [18] for the CS theory and [10] for the
SPGL1 algorithm. For most of the thesis, we will follow the notation established
in [18]. However, in Chapter 5 we will follow the notation in [10], for example
using b ∈ Rm for the measured data instead of y ∈ Rm, so as to better align
with the source code for the SPGL1 algorithm.

We will be working with the application of recovering images with Hadamard
sampling. In this case, our signal x has real coefficients, and therefore all the
theory is stated for the case x ∈ RN . We note, however, that most of the results
also hold in the case where x ∈ CN . Proofs for the complex case can be seen in
the literature.

Outline

The rest of the thesis is organized in the following manner:

Chapter 2 reviews the most important results from the standard compressed
sensing theory.

Chapter 3 gives a brief introduction to wavelets and the Hadamard transform
and examines the coherence between them.

Chapter 4 provides thorough mathematical motivation for the SPGL1 al-
gorithm and outlines some parts of the algorithm.

Chapter 5 demonstrates the flaws in the traditional CS theory through
numerical experiments and states new theory to support how CS works
in practice.

2

Chapter 6 summarizes the thesis.

Appendix A features some extra derivations.

3

CHAPTER 2

Traditional Compressed Sensing

In this chapter we introduce the traditional compressed sensing problem,
establish some important results and discuss some concerns in the theory.

2.1 Notation

Throughout most of this thesis we use the following notation. We use the
notation [N] to mean the set {1, 2, . . . , N} and card(S) to mean the cardinality
of the set S. We use S to denote the complement of the set S, i.e., the set
[N] \ S. We write A . B to mean there exists a universal constant C > 0 such
that A ≤ CB, and similarly for A & B.

For a vector v ∈ RN and a set S ⊂ [N], we use the notation vS to mean
either the vector in RS which is the restriction of v to the indices in S, or the
vector in RN which coincides with v on the indices in S and is extended to zero
outside S.

For subsampling, we use the notation Ω for a subset of [N] with card(Ω) = m.
We use PΩ for the projection matrix in Rm×N that selects which of the m rows
to sample.

2.2 Sparse Solutions to Underdetermined Systems

The key assumption in order for compressed sensing to work is that the vectors
we wish to recover are sparse. In this section we define the notions of sparsity
and compressibility and set up the compressed sensing problem.

Definition 2.2.1. [18, Definition 2.1] The support of a vector x ∈ RN is the set
of indices for which x has non-zero entries,

supp(x) := {j ∈ [N] : xj 6= 0}.

A vector x ∈ RN is called s-sparse if it has at most s non-zero entries, or
that

‖x‖0 := card(supp(x)) ≤ s.

It is standard to use the norm notation ‖x‖0 to mean the number of non-zero
entries in the vector x. However, it is important to note that ‖x‖0 is not a
norm nor a quasinorm. This use of the notation comes from the observation

4

2.2. Sparse Solutions to Underdetermined Systems

that the limit of the `p-norm of x when p→ 0 is the number of non-zero entries
in x, i.e.,

lim
p→0
‖x‖pp = lim

p→0

N∑
j=1
|xj |p =

N∑
j=1

1{xj 6=0} = card({j ∈ [N] : xj 6= 0}),

where 1{xj 6=0} is 1 when xj 6= 0 and 0 when xj = 0.
In practice, it is unrealistic to assume that a vector is exactly sparse.

Instead, we consider vectors that are nearly sparse, or compressible. A vector x
is compressible if its distance to an s-sparse vector decays quickly in s. This
distance is measured by the vector’s `p-error of best s-term approximation.

Definition 2.2.2. [18, Definition 2.2] For p > 0, the `p-error of best s-term
approximation to a vector x ∈ RN is defined by

σs(x)p := inf{‖x− z‖p : z ∈ RN is s-sparse}.

The Main Optimization Problem

We are working with the equation Ax = y, where x ∈ RN is the sparse signal,
A ∈ Rm×N with m < N describes the measurement process, and y ∈ Rm is the
measured data. Our goal is to solve this equation for x. Since m < N , this
system is underdetermined, which means there are infinitely many solutions
x. We are interested in finding the sparsest x that satisfies this equation, i.e.,
solving

minimize
z∈RN

‖z‖0 subject to Az = y. (P0)

Unfornutately, (P0) is non-convex and NP-hard in general, see Theorem
2.17 in [18]. However, because ‖z‖qq tends to ‖z‖0 as q > 0 tends to 0, we can
instead consider the following optimization problem:

minimize
z∈RN

‖z‖q subject to Az = y. (Pq)

For most values of q we are not able to solve (Pq) efficiently, or the solution
does not coincide with the solution to (P0). We will see that the only appropriate
value is q = 1. First, we show that for q > 1 even 1-sparse vectors are not
solutions.

Proof. We let q > 1 and let A ∈ Rm×N with m < N . We assume for
contradiction that all 1-sparse vectors are minimizers of (Pq). This implies that
all standard basis vectors ej are minimizers of (Pq), since they are 1-sparse. We
note that since m < N , the kernel of A is non-trivial, because the columns of A
are linearly dependent. Thus, there exists a vector v 6= 0 such that Av = 0. We
choose an index j such that vj 6= 0. Then, for any t we can define the function

g(t) := ‖ej + tv‖qq = |1 + tvj |q +
∑
k 6=j
|tvk|q = |1 + tvj |q + |t|q

∑
k 6=j
|vk|q.

We consider two new functions:
g+(t) = (1 + tvj)q + tq

∑
k 6=j
|vk|q,

g−(t) = (1 + tvj)q + (−t)q
∑
k 6=j
|vk|q.

5

2.3. Null Space Properties

Suppose that |t| < 1/vj . Then we have (1 + t vj) > 0 and consequently
|1 + t vj | = 1 + t vj . Then, for t ≥ 0, g(t) corresponds to g+(t) because |t| = t.
For t < 0, g(t) corresponds to g−(t) because |t| = −t.

We compute the derivatives with respect to t:

g′+(t) = qvj(1 + tvj)q−1 + qtq−1
∑
k 6=j
|vk|q,

g′−(t) = qvj(1 + tvj)q−1 − q(−t)q−1
∑
k 6=j
|vk|q.

For q > 1, we have (q − 1) > 0, and thus taking the limit as t tends to 0 yields

lim
t→0+

g′+(t) = qvj(1)q−1 = qvj ,

lim
t→0−

g′−(t) = qvj(1)q−1 = qvj .

By this, we have that the derivative of g(0) = qvj . Since q > 1 and vj 6= 0, the
derivative of g(t) at t = 0 is non-zero. But then g(t) cannot have a minimum
at t = 0. Since ‖ej‖q corresponds to ‖ej + tv‖qq when t = 0, the 1-sparse vector
ej cannot be a minimizer of (Pq), since ‖ej‖q is not a minimum. �

For the values 0 < q < 1, it can be shown that the problem (Pq) is non-
convex and also NP-hard in general. Therefore, the critical value is q = 1. For
q = 1, we get the convex optimization problem referred to as `1-minimization
or basis pursuit (BP),

minimize
z∈RN

‖z‖1 subject to Az = y. (BP)

The next few sections will discuss conditions that ensure that (BP) solves
(P0).

2.3 Null Space Properties

We now look into conditions on the matrix A that guarantee exact reconstruction
of sparse vectors or approximate reconstruction of compressible vectors.

The Null Space Property

A necessary and sufficient condition for exact recovery of sparse vectors via
basis pursuit is the null space property (NSP).

Definition 2.3.1. [18, Definition 4.1] A matrix A ∈ Rm×N is said to satisfy the
null space property relative to a set S ⊂ [N] if

‖vS‖1 < ‖vS‖1 for all v ∈ kerA \ {0}. (2.1)

If a matrix satisfies the null space property relative to any set S ⊂ [N] with
card(S) ≤ s, it is said to satisfy the null space property of order s.

There are two useful reformulations of the NSP. The first is obtained by
adding ‖vS‖1 to both sides of the inequality:

‖vS‖1 + ‖vS‖1 < ‖vS‖1 + ‖vS‖1

6

2.3. Null Space Properties

2‖vS‖1 < ‖v‖1. (2.2)

The second is obtained by choosing S as an index set of s largest absolute
entries of v and adding ‖vS‖1 to both sides:

‖vS‖1 + ‖vS‖1 < ‖vS‖1 + ‖vS‖1
‖v‖1 < 2‖vS‖1
‖v‖1 < 2σs(v)1, (2.3)

where we have used that ‖vS‖1 = σs(v)1. To see this, recall that σs(v)1 =
inf‖z‖0≤s‖v − z‖1. Since vS contains the s largest absolute entries of v, we
have ‖vS‖0 ≤ s, and ‖vS‖1 = ‖v− vS‖1 satisfies the infimum.

The following theorem states that the NSP is a necessary and sufficient
condition for exact recovery.

Theorem 2.3.2. [18, Theorem 4.4] Given a matrix A ∈ Rm×N , every vector
x ∈ RN supported on a set S is the unique solution of (BP) with y = Ax if and
only if A satisfies the null space property relative to S.

Proof. Let S be a fixed index set and assume that every vector x ∈ RN
supported on S is the unique minimizer of ‖z‖1 subject to Az = Ax. Thus, for
any vector v ∈ kerA\{0}, the vector vS is the unique minimizer of ‖z‖1 subject
to Az = AvS . That is, ‖vS‖1 < ‖z‖1 for any z ∈ RN such that Az = AvS .
Since v = vS + vS and v ∈ kerA \ {0}, we have

A(vS + vS) = 0
AvS +AvS = 0

AvS = −AvS
AvS = A(−vS).

Since v 6= 0, we must have vS 6= −vS . Then vS is a unique minimizer of
AvS = A(−vS), i.e., ‖vS‖1 < ‖vS‖ and the null space property relative to S is
satisfied.

Conversely, we assume that the null space property relative to S holds. Let
x ∈ RN be supported on S and let z ∈ RN be such that z 6= x and Az = Ax.
We consider the vector v := x − z ∈ kerA \ {0}. Since x is supported on S,
we have vS = xS − zS = x − zS and vS = xS − zS = −zS . Then, using the
triangle inequality and the condition for the NSP, we obtain

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1 = ‖vS‖1 + ‖zS‖1
< ‖vS‖1 + ‖zS‖1 = ‖−zS‖1 + ‖zS‖1 = ‖z‖1.

We have shown that ‖x‖1 < ‖z‖1, i.e., x is the unique minimizer of ‖z‖1 subject
to Az = Ax. �

Note that if x does not need to be unique, then ‖vS‖1 ≤ ‖vS‖1 is a necessary
and sufficient condition for exact recovery.

If we let S vary, we obtain the following theorem as a consequence of
Theorem 2.3.2.

7

2.3. Null Space Properties

Theorem 2.3.3. [18, Theorem 4.5] Given a matrix A ∈ Rm×N , every s-sparse
vector x ∈ RN is the unique solution of (BP) with y = Ax if and only if A
satisfies the null space property of order s.

This theorem tells us that when the NSP of order s holds, the solution
to (BP) is the solution to the `0-minimization problem. Let us assume that
every s-sparse vector x is recovered via `1-minimization from y = Ax. Let z be
the solution to the `0-minimization problem with y = Ax. Then ‖z‖0 ≤ ‖x‖0.
Since x is s-sparse, then so is z. But since every s-sparse vector is the unique
`1-minimizer by Theorem 2.3.3, it follows that x = z.

The Stable Null Space Property

The null space property we have discussed so far assumes the vectors are
perfectly sparse. However, this is rarely the case. More often, the vectors are
only close to sparse vectors. If we strengthen the null space property, we have
that basis pursuit is stable with respect to sparsity defect, i.e., we can recover
the vector with an error that is controlled by its distance to s-sparse vectors.

Definition 2.3.4. [18, Definition 4.11] A matrix A ∈ Rm×N is said to satisfy
the stable null space property (SNSP) with constant 0 < ρ < 1 relative to a set
S ⊂ [N] if

‖vS‖1 ≤ ρ‖vS‖1 for all v ∈ kerA. (2.4)

We say that A satisfies the stable null space property of order s if it satisfies the
stable null space property with constant 0 < ρ < 1 relative to any set S ⊂ [N]
with card(S) ≤ s.

It is pretty straight forward to show that the NSP implies the SNSP using
the formulation (2.2), see page 85 in [18].

The main stability result is found in the following theorem, but will be
improved upon in the stronger Theorem 2.3.6.

Theorem 2.3.5. [18, Theorem 4.12] Suppose that a matrix A ∈ Rm×N satisfies
the stable null space property of order s with constant 0 < ρ < 1. Then, for any
x ∈ RN , a solution x# of (BP) with y = Ax approximates the vector x with
`1-error

‖x− x#‖1 ≤
2(1 + ρ)
(1− ρ) σs(x)1. (2.5)

From this theorem we see that we can recover the vector with an error that
is controlled by its distance to an s-sparse vector. We recall that the distance
to an s-sparse vector is measured by the `p error of best s-term approximation
σs(x)p.

The following theorem improves the previous theorem, and says that the
distance between an s-sparse vector x ∈ RN and a vector z ∈ RN satisfying
Az = Ax is controlled by the difference between their norms if and only if the
SNSP holds.

8

2.3. Null Space Properties

Theorem 2.3.6. [18, Theorem 4.14] The matrix A ∈ Rm×N satisfies the stable
null space property with constant 0 < ρ < 1 relative to S if and only if

‖z− x‖1 ≤
1 + ρ

1− ρ (‖z‖1 − ‖x‖1 + 2‖xS‖1) (2.6)

for all vectors x, z ∈ RN with Az = Ax.

In order to prove this theorem, we need the following lemma:

Lemma 2.3.7. [18, Lemma 4.15] Given a set S ⊂ [N] and vectors x, z ∈ RN ,

‖(x− z)S‖1 ≤ ‖z‖1 − ‖x‖1 + ‖(x− z)S‖1 + 2‖xS‖1.

Proof. First we note that

‖x‖1 = ‖xS‖1 + ‖xS‖1 ≤ ‖xS‖1 + ‖(x− z)S‖1 + ‖zS‖1,

and
‖(x− z)S‖1 ≤ ‖xS‖1 + ‖zS‖1.

Taking the sum of these two inequalities yields

‖x‖1 + ‖(x− z)S‖1 ≤ ‖xS‖1 + ‖(x− z)S‖1 + ‖zS‖1 + ‖xS‖1 + ‖zS‖1
‖(x− z)S‖1 ≤ ‖z‖1 − ‖x‖1 + ‖(x− z)S‖1 + 2‖xS‖1,

which is the desired inequality. �

Proof of Theorem 2.3.6. First, we assume that the matrix A satisfies (2.6)
for all vectors x, z ∈ RN such that Az = Ax. Let v ∈ kerA. Then, since
AvS = A(−vS), we can apply (2.6) with x = −vS and z = vS .

‖vS − (−vS)‖1 ≤
1 + ρ

1− ρ (‖vS‖1 − ‖vS‖1 + 2‖(vS)S‖1)

‖v‖1 ≤
1 + ρ

1− ρ (‖vS‖1 − ‖vS‖1).

Rewriting ‖v‖1 as ‖vS‖1 + ‖vS‖1 and multiplying by (1− ρ) on both sides of
the inequality yields

(1− ρ)(‖vS‖1 + ‖vS‖1) ≤ (1 + ρ)(‖vS‖1 − ‖vS‖1).

Rearranging the terms, we get

‖vS‖1 + ‖vS‖1 − ρ‖vS‖1 − ρ‖vS‖1 ≤ ‖vS‖1 − ‖vS‖1 + ρ‖vS‖1 − ρ‖vS‖1
2‖vS‖1 ≤ 2ρ‖vS‖1
‖vS‖1 ≤ ρ‖vS‖1,

which is the requirement for the SNSP.
Conversely, we assume that A satisfies the SNSP with constant 0 < ρ < 1

relative to S. For x, z ∈ RN with Az = Ax, since v := z−x ∈ kerA, the SNSP
yields

‖vS‖1 ≤ ρ‖vS‖1. (2.7)

9

2.3. Null Space Properties

Lemma 2.3.7 gives

‖(x− z)S‖1 = ‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + ‖vS‖1 + 2‖xS‖1. (2.8)

If we substitute (2.7) into (2.8), we get

‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + ρ‖vS‖1 + 2‖xS‖1.

Rearranging the terms gives

‖vS‖1 − ρ‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + 2‖xS‖1
(1− ρ)‖vS‖1 ≤ ‖z‖1 − ‖x‖1 + 2‖xS‖1.

Since ρ < 1, we can divide by (1− ρ) without flipping the inequality,

‖vS‖1 ≤
1

1− ρ (‖z‖1 − ‖x‖1 + 2‖xS‖1). (2.9)

Now, using (2.7) once more and (2.9), we derive the desired inequality:

‖z− x‖1 = ‖v‖1 = ‖vS‖1 + ‖vS‖1 ≤ ‖vS‖1 + ρ‖vS‖1
= (1 + ρ)‖vS‖1

≤ (1 + ρ)
(1− ρ) (‖z‖1 − ‖x‖1 + 2‖xS‖1).

�

The Robust Null Space Property

We know that having perfectly sparse vectors is rare. Similarly, it is not realistic
to measure a signal x ∈ RN with infinite precision. This means that we will
have some error in our measurement vector y ∈ Rm. In this case, y is an
approximation of Ax with

‖Ax− y‖ ≤ η

for some η ≥ 0 and for some norm ‖·‖ on RN . We now look to solve the convex
optimization problem

minimize
z∈RN

‖z‖1 subject to ‖Ax− y‖ ≤ η. (P1,η)

By strengthening the null space property further, we can guarantee that the
basis pursuit algorithm for (P1,η) is robust with respect to measurement error.

Definition 2.3.8. [18, Definition 4.17] A matrix A ∈ Rm×N is said to satisfy
the robust null space property (RNSP) (with respect to ‖·‖) with constants
0 < ρ < 1 and τ > 0 relative to a set S ∈ [N] if

‖vS‖1 < ρ‖vS‖1 + τ‖Av‖ for all v ∈ RN . (2.10)

The RNSP definition can vary slightly in the literature. For example, in [2]
we have the factor ρ/

√
s in front of ‖vS‖. However, this does not change the

property, as this factor is still between 0 and 1.

10

2.3. Null Space Properties

The RNSP implies the SNSP. To see this, we note that the condition for
RNSP is similar to the condition for SNSP, except for the addition of the penalty
term τ‖Av‖. The penalty term is due to the vector v no longer being required
to be in the null space of A. If, however, we have v ∈ kerA, then ‖Av‖ = 0
and the RNSP becomes the SNSP.

The following theorem is the main robustness result. It is analogous to
Theorem 2.3.5 for stability, and states that under the RNSP, we can recover a
vector x with an error that is controlled by the distance from x to an s-sparse
vector.

Theorem 2.3.9. [18, p. 86] Suppose that a matrix A ∈ Rm×N satisfies the
robust null space property of order s with constants 0 < ρ < 1 and τ > 0.
Then, for any x ∈ RN , a solution x# of (P1,η) with y = Ax + e and ‖e‖ ≤ η
approximates the vector x with `1-error

‖x− x#‖1 ≤
2(1 + ρ)
(1− ρ) σs(x)1 + 4τ

1− ρη. (2.11)

We leave out the proof for this theorem, and instead prove the following,
stronger theorem, which is analogous to Theorem 2.3.6. The second part of the
proof in [18] is slightly incorrect. The proof in this text is an improved version
by the author and her supervisors.

Theorem 2.3.10. [18, Theorem 4.20] The matrix A ∈ Rm×N satisfies the
robust null space property with constants 0 < ρ < 1 and τ > 0 relative to S if
and only if

‖z− x‖1 ≤
1 + ρ

1− ρ (‖z‖1 − ‖x‖1 + 2‖xS‖1) + 2τ
1− ρ‖A(z− x)‖ (2.12)

for all vectors x, z ∈ RN .

Proof. First, we assume that A satisfies (2.12) for all vectors x, z ∈ RN . Then,
by setting x = −vS and z = vS for v ∈ RN , we get

‖z− x‖1 = ‖v‖1 ≤
1 + ρ

1− ρ (‖vS‖1 − ‖vS‖1) + 2τ
1− ρ‖Av‖,

where the term 2‖xS‖ vanishes. Similar to the proof of Theorem 2.3.6, we can
rearrange these terms to get

(1− ρ)(‖vS‖1 + ‖vS‖1) ≤ (1 + ρ)(‖vS‖1 − ‖vS‖1) + 2τ‖Av‖
‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖,

which is the condition for the RNSP with constants 0 < ρ < 1 and τ > 0
relative to S.

Conversely, we will assume that A satisfies the RNSP with constant 0 < ρ < 1
and τ > 0 relative to S. We let v = z− x for arbitrary vectors x, z ∈ RN . We
combine the condition for the RNSP with Lemma 2.3.7 and get

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖
≤ ρ(‖z‖1 − ‖x‖1 + ‖vS‖1 + 2‖xS‖1) + τ‖Av‖.

11

2.3. Null Space Properties

We rearrange this inequality by moving the ‖vS‖1-terms to the left-hand side
and then dividing by (1− ρ) on both sides, and get

‖vS‖1 ≤
1

1− ρ (ρ(‖z‖1 − ‖x‖1 + 2‖xS‖1) + τ‖Av‖). (2.13)

By first using the condition for the RNSP, then Lemma 2.3.7, and then (2.13),
we get

‖z− x‖1 = ‖v‖1 = ‖vS‖1 + ‖vS‖1
≤ (1 + ρ)‖vS‖1 + τ‖Av‖
≤ (1 + ρ)(‖z‖1 − ‖x‖1 + ‖vS‖1 + 2‖xS‖1) + τ‖Av‖

≤ (1 + ρ)
(
‖z‖1 − ‖x‖1 + 1

1− ρ (ρ(‖z‖1 − ‖x‖1 + 2‖xS‖1) + τ‖Av‖)

+ 2‖xS‖1
)

+ τ‖Av‖.

To get the desired inequality, we distribute the factors in the inequality above
and combine like terms. Then, since (1 + ρ) + (1+ρ)·ρ

1−ρ = (1+ρ)
(1−ρ) , we get

‖z− x‖1 ≤
1 + ρ

1− ρ (‖z‖1 − ‖x‖1 + 2‖xS‖1) +
(

1 + ρ

1− ρ + 1
)
τ‖Av‖

= 1 + ρ

1− ρ (‖z‖1 − ‖x‖1 + 2‖xS‖1) + 2τ
1− ρ‖Av‖.

�

We can improve the robustness result by replacing the `1-error estimate
with an `p-error estimate for p ≥ 1. For this, we need the `q-robust null space
property, defined below.

Definition 2.3.11. [18, Definition 4.21] Given q ≥ 1, the matrix A ∈ Rm×N is
said to satisfy the `q-robust null space property of order s (with respect to ‖·‖)
with constants 0 < ρ < 1 and τ > 0 if, for any set S ⊂ [N] with card(S) ≤ s,

‖vS‖p ≤
ρ

s1−1/p ‖vS‖1 + τs1/p−1/q‖Av‖ for all v ∈ RN .

The second main result establishes the robustness of the quadratically
constrained basis pursuit algorithm, i.e., eq. (P1,η) with the two-norm.

Theorem 2.3.12. [18, Theorem 4.22] Suppose that A ∈ Rm×N satsifies the
`2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0.
Then, for any x ∈ RN , a solution x# of (P1,η) with ‖·‖ = ‖·‖2, y = Ax + e
and ‖e‖2 ≤ η approximates the vector x with `p-error

‖x− x#‖p ≤
C

s1−1/pσs(x)1 +Ds1/p−1/2η, 1 ≤ p ≤ 2,

for some constants C,D > 0 depending only on ρ and τ .

Proof. We first remark that `2-RNSP implies `1-RNSP and `p-RNSP for p ≤ 2
in the forms

‖vS‖1 ≤ ρ‖vS‖1 + τs1−1/2‖Av‖, (2.14)

12

2.3. Null Space Properties

‖vS‖p ≤
ρ

s1−1/p ‖vS‖1 + τs1/p−1/2‖Av‖, (2.15)

for all v ∈ RN and S ⊂ [N] with card(S) ≤ s. To see this, we deduce the
inequality ‖vS‖p ≤ s1/p−1/2‖vS‖2 from (A.3) in Appendix A in [18]. Then we
get (2.15) by applying the condition for `2-RNSP to this inequality,

‖vS‖p ≤ s1/p−1/2‖vS‖2

≤ s1/p−1/2(ρ

s1−1/2 ‖vS‖1 + τ‖Av‖)

= ρ

s1−1/p ‖vS‖1 + τs1/p−1/2‖Av‖.

Inserting p = 1 gives (2.14).
In view of (2.14), applying Theorem 2.3.10 with z = x# and S chosen as

the index set of the s largest (in absolute value) entries of x, we get

‖x#−x‖1 ≤
1 + ρ

1− ρ (‖x#‖1−‖x‖1+2σs(x)1)+ 2τ
1− ρs

1−1/2‖A(x#−x)‖. (2.16)

Next we choose S as the index set of the s largest (in absolute value) entries
of (x# − x), and separate (x# − x) into (x# − x)S and (x# − x)S . Then, by
using the triangle inequality and Theorem 2.5 in [18], we get

‖x# − x‖p ≤ ‖(x# − x)S‖p + ‖(x# − x)S‖p
= σs(x# − x)p + ‖(x# − x)S‖p

≤ 1
s1−1/p ‖x

− x‖1 + ‖(x# − x)S‖p.

Applying (2.15) to this and using ‖(x# − x)S‖1 ≤ ‖x# − x‖1 results in

‖x# − x‖p ≤
1

s1−1/p ‖x
− x‖1 + ρ

s1−1/p ‖(x
− x)S‖1 + τs1/p−1/2‖A(x# − x)‖

≤ 1
s1−1/p ‖x

− x‖1 + ρ

s1−1/p ‖x
− x‖1 + τs1/p−1/2‖A(x# − x)‖

≤ 1 + ρ

s1−1/p ‖x
− x‖1 + τs1/p−1/2‖A(x# − x)‖.

Finally, substituting (2.16) into this yields

‖x# − x‖p ≤
1 + ρ

s1−1/p

(
1 + ρ

1− ρ (‖x#‖1 − ‖x‖1 + 2σs(x)1) + 2τ
1− ρs

1−1/2‖A(x# − x)‖
)

+ τs1/p−1/2‖A(x# − x)‖

= (1 + ρ)2

(1− ρ)s1−1/p (‖x#‖1 − ‖x‖1 − 2σs(x)1)

+ (1 + ρ) · 2τs1−1/2

(1− ρ)s1−1/p ‖A(x# − x)‖+ τs1/p−1/2‖A(x# − x)‖

= (1 + ρ)2

(1− ρ)s1−1/p (‖x#‖1 − ‖x‖1 − 2σs(x)1)

+
(

1 + ρ

s1−1/p ·
2τs1−1/2

1− ρ + τs1/p−1/2
)
‖A(x# − x)‖

= (1 + ρ)2

(1− ρ)s1−1/p (‖x#‖1 − ‖x‖1 − 2σs(x)1) + (3 + ρ)τ
(1− ρ) s

1/p−1/2η.

13

2.4. Coherence

In the final equation we have used that ‖A(x# − x)‖ ≤ η and that

1 + ρ

s1−1/p ·
2τs1−1/2

1− ρ + τs1/p−1/2

= (1 + ρ)2τs1/p−1/2 + (1− ρ)τs1/p−1/2

(1− ρ)

= (3 + ρ)τ
(1− ρ) s

1/p−1/2.

Thus, with C := (1 + ρ)2/(1− ρ) and D := (3 + ρ)τ/(1− ρ), we have reached
the desired result. �

2.4 Coherence

Although the null space properties give nice guarantees on the recovery of sparse
vectors via basis pursuit, they can be difficult to verify. The coherence of a
matrix is a much simpler measure of the suitability of the measurement matrix.
There are different notions of the coherence in the literature. We will define
two of the notions here. The first notion, which we will continue to call the
coherence, will be used throughout the remainder of the thesis. It is defined
in Definition 2.4.1. The second notion will only be used in this section. We
will refer to it as the column coherence to avoid confusion, and it is defined
in Definition 2.4.2. The rest of this section will establish some results for the
column coherence. Results based on the first notion of coherence can be found
in the literature.

Generally speaking, regardless of the specific definition of the coherence, we
say that the smaller the coherence is, the better the recovery is.

In the following, we work with the assumption that the columns a1, . . . ,aN
of the matrix A are always `2-normalized, i.e., ‖ai‖2 = 1 for all i ∈ [N]. We
start by giving the formal definitions of the coherence and the column coherence.

Definition 2.4.1. [20, Definition 2.1] Let U ∈ RN×N be an isometry with
elements ui,j . The coherence µ = µ(U) of the matrix U is defined as

µ := max
1≤i,j≤N

|ui,j |2.

Definition 2.4.2. [18, Definition 5.1] Let A ∈ Rm×N be a matrix with `2-
normalized columns a1, . . . ,aN . The column coherence µc = µc(A) of the
matrix A is defined as

µc := max
1≤i 6=j≤N

|〈ai,aj〉|. (2.17)

A generalization of the column coherence is the so-called `1-column coherence
function, defined below.

Definition 2.4.3. [18, Definition 5.2] Let A ∈ Rm×N be a matrix with `2-
normalized columns a1, . . . ,aN . The `1-column coherence function µ1 of the
matrix A is defined for s ∈ [N − 1] by

µ1(s) := max
i∈[N]

max
{∑
j∈S
|〈ai,aj〉|, S ⊂ [N], card(S) = s, i /∈ S

}
. (2.18)

14

2.4. Coherence

For s = 1, the `1-column coherence function corresponds to the usual column
coherence.

Bounds on the Column Coherence

As mentioned briefly, small coherence generally means that the matrix is well-
conditioned for recovery. Therefore, it is of interest to know the bounds on the
coherence. We quickly note that for the coherence in Definition 2.4.1, we have
1/N ≤ µ(U) ≤ 1. For the column coherence in Definition 2.4.2, we can easily
see by the Cauchy-Schwartz inequality and the assumption that the columns
are `2-normalized that the column coherence µc is bounded above by 1,

µc = max
1≤i 6=j≤N

|〈ai,aj〉| ≤ ‖ai‖2‖aj‖2 = 1.

Since the column coherence is the greatest absolute value of the inner product
between columns, it cannot be less than 0. For a rectangular matrix A ∈ Rm×N
with m ≥ N , µc = 0 if and only if the columns of A form an orthonormal
system. This means that for a square matrix, we have µc = 0 if and only if A is
a unitary matrix. If we have m < N , which is the case in compressed sensing,
we cannot have µc = 0 because some of the columns must be linearly dependent.
We will look into the limitations on how small the column coherence can be in
this case, but first we need to define some terms.

Definition 2.4.4. [18, Definition 5.5] A system of `2-normalized vectors
(a1, . . . ,aN) in Rm is called equiangular if there is a constant c ≥ 0 such
that

|〈ai,aj〉| = c for all i, j ∈ [N], i 6= j.

Definition 2.4.5. [18, Definition 5.6] A system of vectors (a1, . . . ,aN) in Rm
is called a tight frame if there exists a constant λ > 0 such that one of the
following equivalent conditions holds:

a) ‖x‖22 = λ
∑N
j=1|〈x,aj〉|2 for all x ∈ Rm,

b) x = λ
∑N
j=1〈x,aj〉aj for all x ∈ Rm,

c) AA∗ = 1
λIm, where A is the matrix with columns a1, . . . ,aN and Im is

the (m×m) identity matrix.

The proof of the equivalence of the conditions is left out. A system of `2-
normalized columns is called an equiangular tight frame if it is both equiangular
and a tight frame. The following theorem states the lower bound on the column
coherence, which is known as the Welch bound.

Theorem 2.4.6. [18, Theorem 5.7] The column coherence of a matrix A ∈
Rm×N with `2-normalized columns satisfies

µc ≥

√
N −m
m(N − 1) . (2.19)

Equality holds if and only if the columns a1, . . . ,aN of the matrix A form an
equiangular tight frame.

15

2.4. Coherence

We can extend the Welch bound to the `1-column coherence function for
small values of its argument s.

Theorem 2.4.7. [18, Theorem 5.8] The `1-column coherence of a matrix
A ∈ Rm×N with `2-normalized columns satisfies

µ1(s) ≥ s
√

N −m
m(N − 1) whenever s <

√
N − 1. (2.20)

Equality holds if and only if the columns a1, . . . ,aN of the matrix A form an
equiangular tight frame.

Since we in compressed sensing are interested in both having a small column
coherence and (m×N)-matrices with m much smaller than N , it is impossible
to meet the Welch bound. To have small column coherence, the number of
measurements m will scale quadratically with the sparsity s, which we will see
later. Therefore, m could potentially become quite large.

The next theorem shows that the number of vectors N in an equiangular
tight frame, i.e., the number of columns in A required to meet the Welch bound,
cannot be arbitrarily large.

Theorem 2.4.8. [18, Theorem 5.10] The cardinality N of an equiangular system
(a1, . . . ,aN) of `2-normalized vectors in Rm satisfies

N ≤ m(m+ 1)
2 .

If equality is achieved, then the system (a1, . . . ,aN) is also a tight frame.

If we were working in the complex space, N would be less than or equal to
m2 [18, p. 117].

Analysis of Basis Pursuit

We will now show that a small column coherence guarantees the success of basis
pursuit.

Theorem 2.4.9. [18, Theorem 5.15] Let A ∈ Rm×N be a matrix with `2-
normalized columns. If

µ1(s) + µ1(s− 1) < 1, (2.21)

then every s-sparse vector x ∈ RN is exactly recovered from the measurement
vector y = Ax via basis pursuit.

Proof. By Theorem 2.3.2, it is necessary and sufficient to prove that A satisfies
the null space property of order s, i.e., that

‖vS‖1 < ‖vS‖1 (2.22)

for any non-zero vector v ∈ kerA and any index set S ⊂ [N] with card(S) = s.
Let a1, . . . ,aN be the columns of A. The condition v ∈ kerA, i.e., Av = 0 can
be written as

∑N
j=1 vjaj = 0.

16

2.4. Coherence

Taking the inner product of this sum with some ai, i ∈ S gives

〈
N∑
j=1

vjaj ,ai〉 =
N∑
j=1

vj〈aj ,ai〉 = 0.

We isolate the term vi,

vi〈ai,ai〉+
N∑

j=1,j 6=i
vj〈aj ,ai〉 = 0

vi = −
N∑

j=1,j 6=i
vj〈aj ,ai〉.

In the last equation have used that the columns are `2-normalized, i.e.,
〈ai,ai〉 = 1. We split the sum in the last equation into indices belonging
to S and S, and get

vi = −
∑
`∈S

v`〈a`,ai〉 −
∑

j∈S,j 6=i
vj〈aj ,ai〉.

By taking the absolute value on both sides and using the triangle inequality,
we get

|vi| ≤
∑
`∈S

|v`||〈a`,ai〉|+
∑

j∈S,j 6=i
|vj ||〈aj ,ai〉|.

We take the sum over all i ∈ S on both sides and interchange the summations,

‖vS‖1 =
∑
i∈S
|vi| ≤

∑
`∈S

|v`|
∑
i∈S
|〈a`,ai〉|+

∑
j∈S
|vj |

∑
i∈S,i 6=j

|〈aj ,ai〉|

≤
∑
`∈S

|v`|µ1(s) +
∑
j∈S
|vj |µ1(s− 1)

= µ1(s)‖vS‖1 + µ1(s− 1)‖vS‖1.

We combine the ‖vS‖1-terms on one side of the inequality, and get

(1− µ1(s− 1))‖vS‖1 ≤ µ1(s)‖vS‖1. (2.23)

Because of (2.21), we have 1− µ1(s− 1) > µ1(s). But then (2.23) cannot hold
unless ‖vS‖1 < ‖vS‖1, i.e., the null space property holds. �

The Quadratic Bottleneck

If we choose a matrix A ∈ Rm×N with small column coherence µc ≤ d
√
m for

some constant d > 0, we need
m ≥ Cs2

measurements to satisfy (2.21), i.e., to ensure exact recovery of s-sparse vectors
via basis pursuit.

It is straightforward to see that µc ≤ µ1(s) ≤ s µc for 1 ≤ s ≤ N − 1. We
refer to Appendix A.2 for a derivation. Using this, we see that the condition
(2.21) is satisfied when (2s− 1)µc < 1,

µ1(s) + µ1(s− 1) ≤ sµc + (s− 1)µc = (2s− 1)µc < 1.

17

2.5. The Restricted Isometry Property

Then, inserting µc = d/
√
m, we get

(2s− 1) d√
m
< 1

(2s− 1)2d2 < m

s2(4d2)− 2sd2 + d2 < m,

where s2(4d2) is the dominating term. The left-hand side is thus essentially on
the form Cs2.

Unfortunately, an estimate of the number of required measurementsm where
the sparsity s enters quadratically is often way too large, and thus the column
coherence is not commonly used in practice.

2.5 The Restricted Isometry Property

The measures we have discussed so far for determining suitability of the matrix
A are not typically used in practice. The null space properties are difficult
to verify and the column coherence gives a rather pessimistic estimate on the
required number of measurements. The restricted isometry property (RIP) is
more commonly used, because large classes of random matrices are known to
satisfy this property with high probability. We later show that the RIP implies
the RNSP, which further implies that the RIP with high probability yields
uniform recovery.

Definition 2.5.1. [2, Definition 5.15] Let 1 ≤ s ≤ N. The s-th restricted isometry
constant (RIC) δs of A ∈ Rm×N is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (2.24)

for all s-sparse vectors x ∈ RN . If 0 < δs < 1, then A is said to have the
restricted isometry property (RIP) of order s.

In essence, if δs is small, then A is well-suited. In the next theorem we see
that there exists a bound on the 2s-th RIC δ2s such that the matrix A satisfies
the RNSP.

Theorem 2.5.2. [18, Theorem 6.13] If the 2s-th RIC of A ∈ Rm×N obeys

δ2s <
4√
41
, (2.25)

then the matrix A satisfies the `2-robust null space property of order s with
constants 0 < ρ < 1 and τ > 0 depending only on δ2s.

The proof of this theorem is rather extensive and we will therefore only
include a sketch of the proof here. For the full proof, interested readers are
referred to [18, pp. 144–147].

Sketch of proof for Theorem 2.5.2. The goal is to find expressions for ρ and τ
depending only on δ2s such that we have

‖vS‖2 ≤
ρ√
s
‖vS‖1 + τ‖Av‖2 for all v ∈ RN (2.26)

18

2.5. The Restricted Isometry Property

and 0 < ρ < 1 and τ > 0.
Given a v ∈ RN , it is sufficient to consider the set S := S0 of s largest

absolute entries of v. We partition the complement of this set as S0 =
⋃
i≥1 Si,

where S1 is the index set of the s largest absolute entries of v in S0, and S2 is
the index set of the s largest absolute entries of v in S0 ∪ S1 and so on.

Since vS0 is s-sparse, we have

‖AvS0‖22 = (1 + t)‖vS0‖22 with |t| ≤ δs.

We will manipulate this expression to get an inequality on the form (2.26). We
observe that

‖AvS0‖22 = 〈AvS0 , AvS0〉

= 〈AvS0 , A(v−
∑
k≥1

vSk)〉. (2.27)

Next we establish a bound on |〈AvS0 , AvSk〉| for any k ≥ 1:

|〈AvS0 , AvSk〉| ≤
√
δ2
2s − t2‖vS0‖2‖vSk‖2.

We will use the bound above and properties of inner products to manipulate
(2.27) to get

‖AvS0‖22 ≤ ‖vS0‖
(√

1 + t‖Av‖2 +
√
δ2
2s − t2

∑
k≥1
‖vSk‖2

)
. (2.28)

By using the square root lifting inequality (Lemma 6.14 in [18]), we can
bound the sum

∑
k≥1‖vSk‖2 by an expression of ‖vS0‖1 and ‖vS0

‖1:∑
k≥1
‖vSk‖2 ≤

1√
s
‖vS0

‖1 + 1
4‖vS0‖1.

Substituting this into (2.28) and replacing ‖AvS0‖22 with (1 + t)‖vS‖22, we get

(1+t)‖vS0‖22 ≤ ‖vS0‖2
(√

1 + t‖Av‖2+
√
δ2
2s − t2√
s

‖vS0
‖1+

√
δ2
2s − t2
4 ‖vS0‖2

)
,

which we can solve for ‖vS0‖2. Then we get an expression on the form (2.26),
with

ρ := δ2s√
1− δ2

2s − δ2s/4
and τ :=

√
1 + δ2s√

1− δ2
2s − δ2s/4

.

We have 0 < ρ < 1 and τ > 0 when δ2s < 4/
√

41. �

The next theorem tells us that with a certain number of samples m, the
matrix A with an appropriate scaling will satisfy the RIP with high probability.

Theorem 2.5.3. [1, Theorem 2.5] Let U ∈ RN×N be an isometry, ε > 0 and
δ < 1. Let t1, . . . , tm be chosen uniformly and independently from the set
{1, . . . , N} and set Ω = {t1, . . . , tm}. If

m & δ−2 · s · µ(U) · (log(2m) log(2N) log2(2s) + log(1/ε)),

then with probability at least 1− ε, the matrix A = 1√
pPΩU ∈ Rm×N with p = m

N

satisfies the RIP of order s with δs ≤ δ.

19

2.6. Other Optimization Problems

We are now ready for our main result, which gives an estimate on how many
samples are necessary to have a high probability of uniform recovery.

Theorem 2.5.4. Let U ∈ RN×N be an isometry, A = 1√
pPΩU ∈ Rm×N with

p = m
N and ε > 0. Suppose that

m & s · µ(U) · (log(2m) log(2N) log2(2s) + log(1/ε)). (2.29)

Then with probability at least 1 − ε, for any x ∈ RN and y ∈ Rm with
‖Ax− y‖2 ≤ η, a solution x# ∈ RN of

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η

approximates the vector x with errors

‖x− x#‖1 ≤ Cσs(x)1 +D
√
sη, (2.30)

‖x− x#‖2 ≤
C√
s
σs(x)1 +Dη, (2.31)

where C,D > 0 are universal constants.

Proof. Assume that (2.29) holds. Then by Theorem 2.5.3, the matrix A =
1√
pPΩU ∈ Rm×N with p = m

N satisfies the RIP of order 2s with δ2s less than
some constant δ < 1. We can assume δ2s < 4/

√
41. This implies δ−2

2s > 41/16.
Inserting this into the estimate in Theorem 2.5.3, we get

m &
41
16 · 2s · µ(U) · (log(2m) log(2N) log2(2s) + log(1/ε)), (2.32)

which is on the form (2.29). By Theorem 2.5.2, A satisfies the `2-RNSP with
constants 0 < ρ < 1 and τ > 0 depending only on δ2s. Since δ2s < 4/

√
41 is

fixed, the variables ρ and τ are also fixed. From Theorem 2.3.12, it follows that

‖x− x#‖p ≤
C

s1−1/pσs(x)1 +Ds1/p−1/2η (2.33)

for constants C,D > 0 depending only on ρ and τ . Since ρ and τ are fixed, C
and D are universal. Setting p = 1 in (2.33) gives us (2.30) and inserting p = 2
gives (2.31). �

2.6 Other Optimization Problems

So far, all of our theory and analysis has been based on basis pursuit. For CS to
be applicable, we must be able to solve basis pursuit efficiently. In Chapter 5 we
will go into detail about the SPGL1 algorithm which does this. The algorithm
takes advantage of a few other formulations of the `1-minimization as well. In
this section we therefore introduce three alternative formulations and establish
a connection between the three.

The different formulations have varying names throughout the literature.
First, we have the problem which is called quadratically constrained basis pursuit

20

2.6. Other Optimization Problems

(QCBP) in [18] and the basis pursuit denoise problem (BPDN) in [10]. In this
text we will refer to it as QCBP. The problem is formulated as

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η, (QCBP)

for some η ≥ 0. It takes into account that the measurement vector y might not
be exactly equal to Ax.

Next, we have what we will call the unconstrained LASSO,

minimize
z∈RN

λ‖z‖1 + ‖Az− y‖22, (U-LASSO)

for some λ ≥ 0. This problem is referred to as basis pursuit denoising in [18]
and the quadratically penalized least-squares problem in [10].

The final related version is the constrained LASSO,

minimize
z∈RN

‖Az− y‖2 subject to ‖z‖1 ≤ τ, (C-LASSO)

for some τ ≥ 0. This problem is called LASSO in both [18] and [10], but we
will refer to it as the constrained LASSO problem here to differentiate from the
unconstrained LASSO.

The links between these minimization problems are given in the following
proposition.

Proposition 2.6.1. [18, Proposition 3.2]

a) If x is a minimizer of (U-LASSO) with λ > 0, then there exists η = ηx ≥ 0
such that x is a minimizer of (QCBP).

b) If x is a unique minimizer of (QCBP) with η ≥ 0, then there exists
τ = τx ≥ 0 such that x is a unique minimizer of (C-LASSO).

c) If x is a minimizer of (C-LASSO) with τ > 0, then there exists λ = λx ≥ 0
such that x is a minimizer of (U-LASSO).

Proof.

a) Assume x is a minimizer of (U-LASSO) with λ > 0.We set η := ‖Ax−y‖2.
Consider z ∈ RN such that ‖Az− y‖2 ≤ η, i.e., ‖Az− y‖2 ≤ ‖Ax− y‖2.
Then, since x is a minimizer of (U-LASSO),

λ‖x‖1 + ‖Ax− y‖22 ≤ λ‖z‖1 + ‖Az− y‖22 ≤ λ‖z‖1 + ‖Ax− y‖22.

If we simplify this, we get that ‖x‖1 ≤ ‖z‖1. Since z satisfies the constraint
of (QCBP), x is a minimizer of (QCBP) with η := ‖Ax− y‖2.

b) Assume x is a unique minimizer of (QCBP) with η ≥ 0, and set τ := ‖x‖1.
We consider z ∈ RN , z 6= x, such that ‖z‖1 ≤ τ , i.e., ‖z‖1 ≤ ‖x‖1. Since
x is a unique minimizer of (QCBP), z cannot satisfy the constraint of
(QCBP), otherwise z would be the minimizer. Thus,

‖Az− y‖2 ≥ η ≥ ‖Ax− y‖2.

Since ‖Ax−y‖2 ≤ ‖Az−y‖2 and z satisfies the constraint for (C-LASSO)
and is not equal to x, we have that x is a unique minimizer of (C-LASSO).

21

2.7. Setting up Compressed Sensing

c) To prove this part, we will use convex analysis. We start by noting that
the (C-LASSO) problem is equivalent to

minimize
z∈RN

‖Az− y‖22 subject to ‖z‖1 ≤ τ. (2.34)

The Lagrangian function for (2.34) is given by

L(z, ξ) = ‖Az− y‖22 + ξ(‖z‖1 − τ),

where ξ is the Lagrangian multiplier. We assume x is a minimizer of
(C-LASSO), and thus also of (2.34). Then by Theorem 4.2.1, strong
duality holds for (C-LASSO). Strong duality implies that the primal-dual
optimal point (x, ξ#) is a saddle-point, i.e., that L(x, ξ#) ≤ L(z, ξ#)
for all z ∈ RN (see [18, p. 562]). Hence, x is also a minimizer for the
Lagrange function L(z, ξ#) = ‖Az− y‖22 + ξ#‖z‖1 − τξ#. The constant
term −τξ# does not affect the minimizer. Thus x is a minimizer for

‖Az− y‖22 + ξ#‖z‖1,

which is (U-LASSO) with λ = ξ#.

�

2.7 Setting up Compressed Sensing

We have been working with the equation Ax = y, where x ∈ RN is the sparse
signal, A ∈ Rm×N with m < N describes the measurement process, and y ∈ Rm
is the measured data.

In reality, signals are not actually sparse in the domain in which they
naturally occur. Let us consider that our signal is an image. If the image were
sparse in the domain it naturally occurs, then most of the coefficients would
be zero, and we would perceive the image as mostly black. Fortunately, most
natural signals are sparse after an appropriate change of basis. Our sparse x
can then be seen as x = Ψw, where w is the original, non-sparse signal, and Ψ
is the sparsifying transform. It turns out that wavelets have a sparsifying effect
on most natural signals. They are therefore commonly used when working with
image compression. We will use the discrete wavelet transform (DWT) for Ψ in
this text.

The matrix A can be decomposed into several parts. Let A = PΩΦΨ−1.
The matrix PΩ selects which m rows to sample from ΦΨ−1. The matrix Φ is
the model for the sampling pattern. In Chapter 5 we will discuss how we should
design PΩ and Φ using multilevel sampling. We wish to choose Φ and Ψ in such
a way that the resulting matrix A has low coherence and thereby guarantees
the success of basis pursuit. We want Φ to be incoherent with the DWT. It can
be seen that the Paley and sequency ordered Hadamard transform is incoherent
with the Daubechies wavelets [5, Theorem 6.3]. Therefore, we have chosen to
use the Hadamard transform as Φ in this text.

Chosing the Hadamard transform has other benefits as well, besides being
incoherent with wavelets. The matrix for the Hadamard transform consists of
only values +1 and -1, so computing a matrix-vector multiplication can be done

22

2.7. Setting up Compressed Sensing

using only subtraction and addition, and thus reduces the cost from O(N2) to
O(N logN). The Hadamard matrix can also be computed using operators, so
that there is no need to store the explicit matrix. This is useful when N is very
large.

The next chapter will give a short introduction to some basic concepts of
wavelets and the Hadamard transform.

23

CHAPTER 3

Wavelets and the
Walsh-Hadamard Transform

In Section 2.7 we mentioned that we can use the discrete wavelet transform
(DWT) and the Walsh-Hadamard transform (WHT) to fulfill the need for an
incoherent matrix A. Both of these transforms perform a change of coordinates.
The DWT is a change from a full resolution representation of the signal to
a representation in lower resolution. The WHT decomposes a signal into
basis functions called the Walsh functions and is useful in modeling the binary
sampling we need in compressed sensing. Next we shall introduce some basic
concepts for each of these transforms.

3.1 Wavelets

Wavelet theory is based on representing a signal with a basis of functions,
wavelets, that is intentionally chosen to have specific properties. There are
many different choices of bases. We adapt our choice so that we can better
approximate differentiable signals or provide sparse representations of the signals.
In this thesis we will only consider orthonormal wavelets, due to our focus on
imaging applications and subsampled unitary linear systems. Such wavelets
include the Haar wavelet (Daubechies 1), higher order Daubechies wavelets
[6, 15, 16] or symlets [21, Section 7.2.3]. To make this introduction brief, the
theory in this section is restricted to the simplest wavelet, the Haar wavelet.

Wavelets are a so-called multiresolution model, because they make it easy
to switch been different levels of detail. We can project the signal onto nested
resolution spaces, where each consecutive resolution space can include finer
details than the previous one. In other words, the resolution spaces allow us to
find arbitrarily good approximations to continuous functions. However, again
for simplicity, we will restrict the discussion to only one level.

Definition 3.1.1. [25, Definition 1, p. 143] Let N ∈ N. Then the space V0 of
functions defined on [0, N) that are constant on each subinterval [n, n+ 1) for
n = 0, . . . , N is called the resolution space.

The following lemma tells us the basis for the space V0.

24

3.1. Wavelets

Lemma 3.1.2. [25, Lemma 2, pp. 143–144] Let φ(t) be defined by

φ(t) =
{

1, if 0 ≤ t < 1;
0, otherwise.

(3.1)

The space V0 has dimension N , and the N functions φ(t− 0), φ(t− 1), . . . , φ(t−
(N − 1)) form an orthonormal basis for V0, with respect to the inner product

〈f, g〉 =
∫ N

0
f(t)g(t) dt. (3.2)

Thus, any f ∈ V0 can be represented as

f =
N−1∑
n=0

cnφ(t− n) (3.3)

for suitable coefficients c0, c1, . . . , cN−1.

The proof can be seen in [25, p. 144]. The previously mentioned resolution
spaces are defined below.

Definition 3.1.3. [25, Definition 3, p. 145] The refined resolution space Vm is
defined as the space of functions defined on the interval [0, N) that are constant
on each subinterval [n/2m, (n+ 1)/2m) for n = 0, . . . , 2mN − 1.

As m increases, we can represent finer and finer details.
We find a basis for the spaces Vm similar to the basis for V0.

Lemma 3.1.4. [25, Lemma 4, p. 145] The dimension of Vm is 2mN , and the
functions

φm,n(t) = 2m/2φ(2mt− n), for n = 0, . . . , 2mN − 1 (3.4)

form an orthonormal basis for Vm. We will denote this basis by φm. Thus, any
function f ∈ Vm can be represented uniquely as

f =
2mN−1∑
n=0

cm,nφm,n(t) (3.5)

for appropriate coefficients cm,n.

Again the proof has been left out, but it can be seen in [25, pp. 145–146].
As mentioned, the resolution spaces are nested, i.e., V0 ⊂ V1 ⊂ · · · ⊂

Vm ⊂ · · · . We provide an explanation for V0 ⊂ V1 here. All the basis vectors
φ0,n for V0 have the value 1 on the subintervals [n, n + 1) and 0 elsewhere.
These subintervals can be split into two equal halves, [2n/2, (2n+ 1)/2) and
[(2n+ 1)/2, (2n+ 2)/2). The basis vectors φ1,2n for V1 have the value

√
2 on

[2n/2, (2n+ 1)/2) and 0 elsewhere. The basis vectors φ1,2n+1 have the value√
2 on [(2n+ 1)/2, (2n+ 2)/2) and 0 elsewhere. Therefore, we can write φ0,n

as a linear combination of the basis vectors for V1,

φ0,n = 1√
2
φ1,2n + 1√

2
φ1,2n+1.

25

3.1. Wavelets

This means that all the basis vectors of φ0 are in V1, and thus V0 ⊂ V1. This
idea can easily be generalized. For a formal proof of this, see [25, p. 148].

If we project Vm onto Vm−1, we get a low-resolution approximation. The
details that are left out when we replace Vm with this approximation, also called
the error, is contained in the corresponding detail space.

Definition 3.1.5. [25, Definition 8, p. 148] The orthogonal complement of Vm
projected onto Vm−1 is denoted Wm−1. All the spaces Wk are called detail
spaces.

For a gm ∈ Vm, we can write gm = gm−1 + em−1, where gm−1 ∈ Vm−1 and
em−1 ∈ Wm−1. Since Vm−1 and Wm−1 are mutually orthogonal spaces, they
are linearly independent. For linearly independent spaces U and V , we can
form a new space by taking the direct sum of these spaces, denoted by U ⊕ V .
The new vector space consists of vectors on the form u + v, where u ∈ U and
v ∈ V . Thus, we can write Vm = Vm−1 ⊕Wm+1. For wavelets with one level,
i.e., m = 1, we write V1 = V0 ⊕W0.

The following definition gives the basis functions for the detail spaces.

Definition 3.1.6. [25, Definition 9, p. 149] We define

ψ(t) = 1√
2
φ1,0(t)− 1√

2
φ1,1(t) = φ(2t)− φ(2t− 1) (3.6)

and
ψm,n(t) = 2m/2ψ(2mt− n) for n = 0, 1, . . . , 2mN − 1. (3.7)

It can be shown that ψm,n for n = 0, 1, . . . , 2mN − 1 are orthonormal for
any m and are thus a basis for the details spaces, see [25, pp. 149–151]. We will
denote this basis as ψm. The function ψ(t) for the Haar wavelet is defined as

ψ(t) =

1, if 0 ≤ t < 1/2;
−1, if 1/2 ≤ t < 1;
0, otherwise.

(3.8)

Figure 3.1 shows the functions φ and ψ for the Haar wavelet.
The function in (3.8) is an example of a mother wavelet. We can choose to

use other functions with similar properties and denote them by ψ. This would
give a different mother wavelet. The higher order Daubechies wavelets are other
popular mother wavelets.

Discrete Wavelet Transform

We now have the necessary terminology to define the discrete wavelet transform
(DWT).

Definition 3.1.7. [25, Definition 13, p. 152] The discrete wavelet transform
is defined as the change of coordinates from φ1 to φ0,ψ0. More generally,
the m-level DWT is defined as the change of coordinates from φm to
(φ0,ψ0, . . . ,ψm−1). The m-level inverse discrete wavelet transform (IDWT) is
the change of coordinates in the opposite direction.

26

3.1. Wavelets

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
1.5

1.0

0.5

0.0

0.5

1.0

1.5

φ(t) ψ(t)

Figure 3.1: The functions φ and ψ for the Haar wavelet.

For the rest of this section, we are going to use the following notation.
Let B and C be bases for a vector space V . Then the matrix PC←B is the
change-of-coordinates matrix from B to C such that

[x]C = PC←B[x]B,

where [x]B is the vector x in B-coordinates and [x]C is x in C-coordinates.
If we let

Cm = {φm−1,0, ψm−1,0, φm−1,1, ψm−1,1, . . . , φm−1,2m−1N−1, ψm−1,2m−1N−1}

be the basis for Vm with the basis vectors from φm−1 and ψm−1 put in
alternating order, then we can make the following definition.

Definition 3.1.8. [25, Definition 11, p. 151] The matrices

H = PCm←φm and G = Pφm←Cm

are called kernel transformations.

Using the kernel transformations, we get the expressions

DWT = P(φ0,ψ0)←φ1 = P(φ0,ψ0)←C1PC1←φ1 = P(φ0,ψ0)←C1H

and
IDWT = GPC1←(φ0,ψ0)

for the 1-level change of coordinates between φ1 and φ0,ψ0.
It follows from the definitions of φ and ψ that the matrix H for the DWT

in this case is the matrix where [
1√
2

1√
2

1√
2 − 1√

2

]

27

3.2. The Walsh-Hadamard Transform

is repeated along the main diagonal N times. The matrix G for the IDWT is
equal to H. For example, for m = 1 and N = 4 the matrices become

H = G = 1√
2

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1

.

3.2 The Walsh-Hadamard Transform

The Walsh-Hadamard transform (WHT), sometimes called just the Walsh
transform or Hadamard transform, is a nonsinusoidal, orthogonal transform.
Like how the Fourier transform decomposes a signal into a set of sine and cosine
functions, the WHT decomposes a signal into another set of basis functions the
Walsh functions.

Walsh Functions

Walsh functions [8] are an ordered, orthonormal set of rectangular waveforms,
which take only two amplitude values, +1 and -1.

To get the values +1 and -1, the definitions of the different Walsh functions
include an exponent which utilizes the binary representation of the input
variables. We include a short recap of the binary representation here. For n ∈ N
and x ∈ [0, 1), let ni be the i-th bit in the binary representation of n, with n1
being the least significant bit, so that

n = n120 + n21
2 + · · ·+ ni2i−1 + · · · , ni ∈ {0, 1},

and let xi be the i-th bit in the binary representation of x with x1 being the
most significant fractional bit, so that

x = x12−1 + x22−2 + · · ·+ xi2−i + · · · , xi ∈ {0, 1}.

The Walsh functions are defined on a set time interval T and take the
time period x as input. The second input variable n describes the ordering of
the functions. The ordering is based on the number of sign changes, or zero
crossings, in the function. If a function has the value +1 for half the time
interval T , and then switches to the value −1 for the rest of T , the function
would have one sign change. An intuitive ordering of the functions would be
to arrange them in ascending order, with the function with the lowest number
of sign changes being first. This is typically called the sequency ordering. We
denote Walsh functions with this ordering as

WAL(n, x).

The function WAL(0, x) would then be the sequency ordered Walsh function
with zero sign changes over the time period x. Later in the section we describe
two other orderings, the ordinary and Paley orderings, in connection with the
Hadamard matrices.

28

3.2. The Walsh-Hadamard Transform

Forward and Inverse Walsh-Hadamard Transform

For a 1D signal, the forward Walsh-Hadamard transform (FWHT) and the
inverse Walsh-Hadamard transform (IWHT) are defined by

FWHT: yn = 1
N

N∑
i=1

xi ·WAL(n, i) forn = 1, 2, . . . , N (3.9)

IWHT: xi =
N∑
n=1

yn ·WAL(n, i) for i = 1, 2, . . . , N (3.10)

where x = (x1, . . . , xN) is the original signal and y = (y1, . . . , yN) is the result
of the FWHT and N is the signal length. The signal length has to be on the
form 2R for some integer R > 0. If N 6= 2R, we can pad the signal with zeros.
Note that the formulae (3.9) and (3.10) are for the sequency ordered FWHT
and IWHT. By replacing WAL(n, i) with another Walsh function, we would get
a differently ordered Walsh-Hadamard transform.

The formulae can be interpreted as a change of coordinates between the
Walsh basis and the standard basis for RN . Therefore, we can also write the
FWHT and IWHT on matrix form,

FWHT: y = 1
N
HN x (3.11)

IWHT: x = H−1
N y = HNy (3.12)

where HN is the matrix for the change of basis, known as the Hadamard matrix.

The Hadamard Matrix

The Hadamard matrix is an (N × N) orthogonal matrix with elements that
take only the values +1 and −1. Matrices with these criteria are only defined
for N = 2R for some integer R > 0.

There is a fixed set of rows that will satisfy these criteria. We get different
types of Hadamard matrices depending on how we order these rows. There are
at least three different orderings, which are known as the ordinary, sequency
and Paley orderings, the same orderings as for the Walsh functions. Figure 3.2
shows these orderings.

Ordinary Hadamard Matrix

The ordinary ordering gets its name from being the most commonly used when
only discussing one ordering. It is also known as the Hadamard ordering or the
natural ordering.

For N = 2, the Hadamard matrix with this ordering is

H2 =
[
1 1
1 −1

]
.

29

3.2. The Walsh-Hadamard Transform

Ordinary Sequency Paley

Figure 3.2: The ordinary, sequency and Paley ordered Hadamard matrices for
N = 32. The +1’s are represented by white and the -1’s by black.

The (4 × 4) ordinary Hadamard matrix can be generated from H2, in the
following way:

H4 =
[
H2 H2
H2 −H2

]
=

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (3.13)

We can continue to generate bigger and bigger Hadamard matrices in this
fashion, using the recursive definition

HN = H2 ⊗HN/2 =
[
HN/2 HN/2
HN/2 −HN/2

]
(3.14)

H2 =
[
1 1
1 −1

]
(3.15)

where ⊗ is the Kronecker product. This simple definition is the reason the
ordinary Hadamard matrix is most commonly used when only using one ordering.

If we label the rows in (3.13) with their number of sign changes, the first
row would be labeled 0, the second row labeled 3, the third row labeled 1, and
the fourth row labeled 2. The order of the rows in (3.13) is {0, 3, 1, 2}.

Sequency Ordered Hadamard Matrix

If we change the order of the rows in (3.13) so that they are in ascending
order with respect to the number of sign changes, we get the sequency ordered
Hadamard matrix. These matrices are sometimes called Walsh matrices. For
N = 4, the order would then be {0, 1, 2, 3} and the matrix is

S4 =

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 .
The name SN here was chosen to make the distinction between the different
orderings of the Hadamard matrices more clear. The matrix SN can be used

30

3.3. Coherence Between Wavelets and the Hadamard Matrix

for HN in the formulae (3.11) abd (3.12) to get the sequency ordered FWHT
and IWHT.

The sequency ordered Hadamard matrices can be generated using Walsh
functions.

Definition 3.2.1. [2, Definition 2.6] Let n be a positive integer and x ∈ [0, 1).
The Walsh function for sequency ordered Hadamard transform is

WAL(n, x) := (−1)
∑∞

i=1
(ni+ni+1)xi .

The value at index (i, j) in the matrix SN is then given by WAL((i−1), (j−
1)/2R) for i, j = 1, 2, . . . , N .

Paley Hadamard Matrix

The final of the three orderings is the Paley ordering, which is also called the
dyadic ordering or the gray code ordering. Not surprisingly, this ordering is
based on the gray code representation [17, 19] of the number of sign changes for
each row. We find the gray code representation for each row: The numbers 0, 1,
2, 3 are 0, 1, 11, 10 in gray code, respectively. If we arrange these in ascending
order, we get 0, 1, 10, 11. This corresponds to rearranging the rows in (3.13) in
the order {0, 1, 3, 2}. Doing this, we get

D4 =

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .
Again, the name DN was chosen for clarity. The matrix DN can be used in
(3.11) and (3.12) to get the Paley ordered FWHT and IWHT.

The Paley ordered Hadamard matrices can be generated by using another
Walsh function.

Definition 3.2.2. [2, Definition 2.5] Let n be a positive integer and x ∈ [0, 1).
The Walsh function for the Paley ordered Hadamard transform is

PAL(n, x) := (−1)
∑∞

i=1
nixi .

Similar to the sequency ordered matrix, the value at index (i, j) in the
matrix DN is given by PAL((i− 1), (j − 1)/2R) for i, j = 1, 2, . . . , N .

Figure 3.3 shows the first 16 Walsh functions with the Paley and sequency
orderings.

3.3 Coherence Between Wavelets and the Hadamard
Matrix

The reason for using the combination of the Hadamard and wavelet transforms
is that we get a matrix A with small coherence. Recall that we are using
Definition 2.4.1 for the coherence. We can find the coherence between these
transforms by looking at the values in the matrix A = |ΦΨ−1|, where Φ is the
Hadamard matrix and Ψ is the wavelet matrix. Figure 3.4 shows the magnitudes

31

3.3. Coherence Between Wavelets and the Hadamard Matrix

P0 W0

P1 W1

P2 W3

P3 W2

P4 W7

P5 W6

P6 W4

P7 W5

P8 W15

P9 W14

P10 W12

P11 W13

P12 W8

P13 W9

P14 W11

P15 W10

Figure 3.3: The first 16 Walsh functions with the Paley Pn := PAL(n, T) and
sequency Wn := WAL(n, T) orderings.

of the entries in this matrix for the Hadamard transform with the Paley ordering
and the Haar and Daubechies 4 (DB4) wavelets.

We observe that both of these matrices have a clear diagonal tendency.
For the Haar wavelet, we get a perfectly diagonal matrix, with the largest
magnitudes in the top left corner. The magnitudes decrease asymptotically
away from this corner. With the DB4 wavelet, there is a bit more noise, but it
still follows the same pattern with the largest magnitudes in the top left corner.

In Chapter 5 we will discuss how to take advantage of this structure by
sampling in levels. We should sample areas with large coherence more fully
than areas with small coherence. From the matrices in Figure 3.4 we can infer
that in the first sampling level, corresponding to the top left corners of the
matrices, we should sample fully. For each consecutive level, as the coherence
gets smaller, we can sample less and less. Because these matrices have large
areas that are incoherent, most of our levels will have very few samples.

Figure 3.5 shows the success of a reconstruction via basis pursuit using
Hadamard sampling and the Haar wavelet.

32

3.3. Coherence Between Wavelets and the Hadamard Matrix

Haar

DB4

Figure 3.4: The matrix |ΦΨ−1|, where Φ is the Hadamard matrix with the
Paley ordering and Ψ is a wavelet matrix.

33

3.3. Coherence Between Wavelets and the Hadamard Matrix

Original

Haar

DB4

Figure 3.5: Reconstruction of a 512× 512 image using 20% Hadamard sampling
and the Haar and DB4 wavelets.

34

CHAPTER 4

The SPGL1 Algorithm

The traditional CS theory relies on being able to efficiently solve the basis
pursuit problem

minimize
x∈RN

‖x‖1 subject to Ax = b. (BP)

The spectral projected gradient `1 (SPGL1) algorithm by Ewout van den Berg
and Michael P. Friedlander solves this problem and two other related problems,
the quadratically constrained basis pursuit (QCBP) and the constrained LASSO
(C-LASSO).

The formulation in (BP) assumes perfect, non-noisy data. In practice, data
is noisy, and we would like to relax the constraint in (BP) by incorporating an
estimate of the noise level. Doing this obtains the QCBP problem

minimize
x∈RN

‖x‖1 subject to ‖Ax− b‖2 ≤ σ, (BPσ)

where the parameter σ ≥ 0 represents the noise level. The SPGL1 algorithm
can solve (BPσ) for any σ. We note that if σ = 0, the QCBP problem solves
BP.

Many applications of compressed sensing involve large data sets and the
matrix A may only be available as an operator, e.g., wavelets. One of the
benefits of the SPGL1 algorithm is that it scales well to large problems and
works for cases where the matrix is only available as an operator.

The idea behind the algorithm is to recast (BPσ) as a problem of finding
the root of a non-linear equation depending on a single variable τ , using a
Newton-based root finding method. For each iteration of the algorithm, we use
an approximation of τ to form a subproblem, the C-LASSO, which we solve
using the spectral projected gradient (SPG). In this section we will present the
necessary theory for this algorithm, fill in the details in the proofs from [10]
and give pseudocode for key parts of the algorithm.

4.1 Approach

Our goal is to solve (BPσ) for any σ ≥ 0. As mentioned, we will do this
by recasting (BPσ) as a problem of finding the root of a non-linear equation
φ(τ) = σ, depending on a single variable τ. For each iteration of the algorithm,
we will use an estimate of τ to form the convex optimization problem

minimize
x

‖Ax− b‖2 subject to ‖x‖1 ≤ τ. (LSτ)

35

4.2. Convex Analysis

Solving (LSτ) will give us information about the derivative of φ, which we will
need for the Newton based root finding method.

In Section 4.3 we will explain the relationship between the equation φ(τ) = σ
and (BPσ). We will also show the differentiability of φ and find an expression
for the derivative.

Since we are using an estimate of the variable τ , a solution of (LSτ) only
gives us an approximation to φ(τ) and φ′(τ). The usual convergence analysis
for Newton’s method does not apply in this case, and we therefore provide
rate-of-convergence results for our case in Section 4.4.

Finally, the complexity of the algorithm depends on how efficiently we solve
the subproblem. In Section 4.5 we give an algorithm based on the spectral
projected gradient that solves (LSτ) with worst-case complexity of O(n logn).
Numerical experiments in [10] show that the cost is typically much smaller than
the worst case.

Throughout the rest of this chapter we will make the following assumption
without loss of generality, in order to simplify the discussion:

Assumption 4.1.1. The vector b ∈ range(A), and b 6= 0.

4.2 Convex Analysis

Since the SPGL1 algorithm relies heavily on convex optimization, we will begin
by reviewing some elementary convex analysis. We follow the exposition in [14].

Convex Optimization

A mathematical optimization problem has the general form

minimize f0(x)
subject to fi(x) ≤ ci i = 1, . . . ,m

hi(x) = di i = 1, . . . , p.
(4.1)

where f0 is the objective function, x is the optimization variable, fi are the
inequality constraint functions and hi the equality constraint functions. In
general, optimization problems on this form are difficult to solve. However,
there are families of special cases for which efficient solving algorithms and
methods exist. A well known example of such a family is convex optimization
problems.

In a convex optimization problem, the f0, . . . , fm are convex functions and
h1, . . . hp affine functions. It can be shown that for a convex optimization
problem, any locally optimal point is also globally optimal.

Convex Sets and Functions

A convex set is a set C ⊆ RN where the line segment between any two points
in C also lies in C, i.e., for all points x,y in C and any β such that 0 ≤ β ≤ 1
we have

βx + (1− β)y ∈ C. (4.2)

We call βx + (1− β)y a convex combination of x and y. Thus, a set is convex
if and only if it contains every convex combination of its points.

36

4.2. Convex Analysis

Let dom f denote the domain of a function f . A convex function is a function
f where dom f is a convex set and the line segment between any two points
(x, f(x)) and (y, f(y)) on the graph of f lies above the graph. Intuitively, this
means the function “opens up”. More formally, a function f is convex if for all
x and y in the domain and β such that 0 ≤ β ≤ 1,

f(βx + (1− β)y) ≤ βf(x) + (1− β)f(y). (4.3)

Similarly, a function f is concave if the line segments lie below the graph, or
the inequality in (4.3) is the opposite way. If f is convex, then −f is concave
and vice versa.

If the inequality in (4.3) is a strict inequality, the function is strictly convex.
The minimizer of a strictly convex function is unique [18, Proposition B.14].

An example of a convex function is any norm on RN . Assume that the
function f : RN → R is an arbitrary norm on RN and that 0 ≤ β ≤ 1. Let x
and y be two arbitrary points in dom f . Then, first by the triangle inequality
and then by the homogeneity of a norm, we have

f(βx + (1− β)y) ≤ f(βx) + f((1− β)y) = βf(x) + (1− β)f(y).

Thus, f satisfies (4.3) and is convex.
Another useful example of a convex function is the conjugate function. The

conjugate function f∗ : RN → R is defined as

f∗(y) := sup
x∈dom f

(yTx− f(x)), (4.4)

where the domain of f∗ consists of y ∈ RN for which the supremum is finite.
The conjugate function is convex because it is the pointwise supremum

of a family of convex functions of y, and the pointwise supremum preserves
convexity.

Lagrange Duality

Sometimes it can be useful to look at an optimization problem’s dual problem.
The solution to the dual problem can provide information about the solution to
the original problem, or the primal problem. In certain cases, we can even find
the exact solution to the primal problem by solving the dual problem. A useful
property of the dual problem is that it is always convex, even when the primal
problem is not.

The dual problem is based on the Lagrange function, which incorporates
the constraints of the problem into the objective function through a weighted
sum. For an optimization problem on the form (4.1), the Lagrange function is
defined as

L(x,λ,y) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

yihi(x), (4.5)

where λi are the Lagrangian multipliers for the inequality constraints, and yi
are the Lagrangian multipliers for the equality constraints. The variables for
the dual problem become λ and y.

37

4.3. The Pareto Curve

The Lagrange dual function, often called just the dual function, is obtained
by minimizing the Lagrange function over x ∈ D :=

⋂m
i=0 dom fi ∩

⋂p
i=1 dom hi,

L(λ,y) = inf
x∈D

L(x,λ,y). (4.6)

For each dual pair (λ,y), the dual function gives a lower bound on the
optimal value of the primal problem. If we denote the optimal primal value by
p∗, we have L(λ,y) ≤ p∗.

We can also use the dual function to determine the best lower bound on the
optimal value by solving

maximize
y

L(λ,y) subject to λ ≥ 0. (4.7)

This is called the Lagrange dual problem, and solving the dual problem gives us
information about the optimal primal problem. Under certain conditions, we
can use the dual problem to find the exact solution to the primal problem.

Weak and Strong Duality

By definition, the dual optimal value d∗ is the best lower bound on the primal
optimal value p∗. This is called weak duality and can be written as the inequality

d∗ ≤ p∗.

The duality gap δ is the difference between the two optimal values:

δ = p∗ − d∗ ≥ 0.

If the duality gap is zero, i.e., p∗ = d∗, we have strong duality. Then we can
use the dual problem to solve the primal problem, or vice versa. The following
theorem gives conditions on the optimization problem that imply strong duality
holds.

Theorem 4.2.1. [18, Theorem B.26] Assume that f0, f1, . . . , fm are convex
functions with dom(f0) = RN and h1, . . . , hp are affine functions. If there
exists x ∈ RN such that f`(x) < c` for all ` = 1, . . . ,m and h`(x) = d` for all
` = 1, . . . , p then strong duality holds for the optimization problem (4.1).

For a proof of this theorem, see Section 5.3.2 in [14].

4.3 The Pareto Curve

Keeping the convex analysis in mind, we are ready to study the SPGL1 algorithm.
As previously stated, we are going to solve (BPσ) by finding the roots of a
non-linear, single-variable equation. The function we will be studying is given
by

φ(τ) := ‖rτ‖2 with rτ := b−Axτ , (4.8)
where xτ is the optimal solution to (LSτ) for a given τ . We see then that φ(τ)
gives the optimal value of (LSτ) for each τ ≥ 0.

The function in (4.8) is a parameterization in τ of a so-called Pareto curve.
Pareto curves trace the trade-off between two conditions. Our Pareto curve will

38

4.3. The Pareto Curve

0.0 0.5 1.0 1.5 2.0
one-norm of the solution

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

tw
o-

no
rm

 o
f t

he
 r

es
id

ua
l

Figure 4.1: Example of the Pareto curve using a random matrix A and vector
b.

trace the trade-off between the one-norm of the solution xτ and the two-norm
of its corresponding residual rτ . Points on Pareto curves are Pareto optimal,
meaning that we cannot make an improvement in one condition without lessening
the other condition. Indeed, as ‖xτ‖1 increases, ‖rτ‖2 decreases, and vice versa.
Figure 4.1 shows an example of the Pareto curve. The figure was generated by
solving (LSτ) with a random matrix A and vector b, for 20 values of τ linearly
spaced between 0 and 3. The function spg_lasso from [9] was used to solve
(LSτ). The output from spg_lasso includes the solution xτ and its residual
rτ . The one-norm of the solution (‖xτ‖1) was plotted against the two-norm of
the corresponding residual (‖rτ‖2) for each value of τ .

Note that (BPσ) is another parameterization of the Pareto curve, and we
can therefore find points on the curve where the solutions to (LSτ) and (BPσ)
coincide.

If we use Newton’s method on the equation

φ(τ) = σ, (4.9)

we get a sequence of parameters τk that converge to τσ, with ‖rτσ‖2 = σ. We
will see that τσ is the parameter for which the solutions to (LSτ) and (BPσ)
coincide. First we note that the optimal solution of (LSτ) for τσ, i.e., xτσ ,
satisfies the constraint in (BPσ), because ‖rτσ‖2 = ‖Axτσ − b‖2 = σ. We see
that xτσ must also be the optimal solution to (BPσ), because we can only
decrease ‖xτσ‖1 further by increasing ‖rτσ‖2. But increasing ‖rτσ‖2 means that
the constraint ‖Axτσ − b‖2 ≤ σ no longer holds. Thus finding a solution to
(4.9) means finding an optimal solution to (BPσ).

Using Newton’s method to solve (4.9) means finding the point on the Pareto
curve that intersects with a horizontal line with value σ. In Figure 4.1, we have
chosen σ = 0.3 and it is represented by a dashed orange line.

39

4.3. The Pareto Curve

Derivation of the Dual Variables

In order to use Newton’s method on (4.9), we must be able to evaluate the
derivative φ′. In the next section we will show that φ is differentiable and that
φ′ = −λτ , where λτ ≥ 0 is the unique dual solution of (LSτ). In this section, we
will see that the dual solution λτ is easily obtained as a by-product of solving
(LSτ).

To find an expression for λτ , we start by recasting the constrained Lasso
problem (LSτ) as the equivalent problem

minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ. (4.10)

By incorporating the constraints into the objective function, we get the
associated Lagrangian

L(λ,y) = ‖r‖2 − yT (Ax + r− b) + λ(‖x‖1 − τ), (4.11)

where y and λ are the Lagrangian multipliers. The Lagrangian dual function is
then

L(λ,y) = inf
x,r
{L(λ,y)}, (4.12)

so that the dual of the convex problem (4.10) is given by

max
y,λ

L(λ,y) subject to λ ≥ 0. (4.13)

By using the separability of the infimum in r and x and the definition of
the conjugate function, we can simplify the dual problem and find expressions
for y and λ. We start by distributing the yT and λ in (4.11), and then group
the terms that are dependent on r, dependent on x, and independent of both.
We also use the fact that yTb = bTy, since this is the inner product of two
vectors, and that − sup{f} = inf{−f} for an affine function f on RN . Thus,

L(λ,y) = inf
x,r
{‖r‖2 − yTAx− yT r + yTb + λ‖x‖1 − λτ}

= inf
r,x
{bTy− λτ}+ inf

r,x
{−yT r + ‖r‖2}+ inf

r,x
{−yTAx + λ‖x‖1}

= bTy− τλ− sup
r
{yT r− ‖r‖2} − sup

x
{yTAx− λ‖x‖1}.

Using the general definition of the conjugate function (4.4), we get that the
conjugate function of f(x) = α‖x‖ for any α ≥ 0 and arbitrary norm ‖ · ‖ with
dual norm ‖ · ‖∗, is given by

f∗(z) := sup
x
{zTx− α‖x‖} =

{
0, if ‖z‖∗ ≤ α;
∞, otherwise.

(4.14)

From this we see that the suprema in L(λ,y) are conjugate functions of ‖r‖2 and
λ‖x‖1, respectively. The first supremum has α = 1 and the norm is the self-dual
two-norm. In the latter supremum, α = λ and the norm is the one-norm, with
dual norm the infinity-norm.

It follows that (4.13) stays bounded if and only if the dual variables satisfy
the constraints of the conjugate functions, namely ‖y‖2 ≤ 1 and ‖ATy‖∞ ≤ λ.

40

4.3. The Pareto Curve

Otherwise, the conjugate functions will evaluate to ∞, making L infinitely
small, and thus infeasible. Therefore, we can remove the suprema from the dual
problem and add the constraints, so that the dual of (4.10) is given by

max
y,λ

bTy− τλ subject to ‖y‖2 ≤ 1, ‖ATy‖∞ ≤ λ. (4.15)

Since ‖ · ‖∞ is a norm, the non-negative constraint on λ is still enforced by the
second constraint in (4.15).

We are now ready to find the expressions for y and λ. We will see that they
are expressions of the primal solution r, with y = r/‖r‖2 and λ = ‖ATy‖∞.
The expression for y is found by noting that from (4.14), we have

sup
r
{yT r− ‖r‖2} = 0 if ‖y‖2 ≤ 1. (4.16)

We use the Cauchy-Schwartz inequality and the constraint in (4.16) to find

yT r− ‖r‖2 ≤ ‖y‖2‖r‖2 − ‖r‖2 ≤ ‖r‖2 − ‖r‖2 = 0.

Let r be fixed as the r that achieves the supremum. Then, since the supremum
is equal to 0, we must also have yT r − ‖r‖2 = 0, and the inequalities above
thus become equalities. If r = 0, the choice of y is arbitrary. If r 6= 0, then
y = r/‖r‖2 would satisfy ‖y‖2‖r‖2 − ‖r‖2 = 0. Then y is a unit vector, so we
have ‖y‖2 = 1.

The expression for λ can be seen from the dual problem (4.15). Let y be
fixed. To maximize bTy− τλ, we must minimize τλ. If τ > 0, λ must be at its
lower bound, i.e. λ = ‖ATy‖∞. If τ = 0, then the choice of λ is arbitrary.

Since the dual variable y only depends on the primal variable r, we can
eliminate y. Resulting are necessary and sufficient optimality conditions for the
primal-dual solution (rτ ,xτ , λτ) of the problem (4.10):

Axτ + rτ = b, ‖xτ‖1 ≤ τ (primal feasibility); (4.17)
‖AT rτ‖∞ ≤ λτ‖rτ‖2 (dual feasibility); (4.18)
λτ (‖xτ‖1 − τ) = 0 (complimentarity). (4.19)

Differentiability of the Pareto Curve

In this section we will show some properties of the Pareto curve φ for points
τ ∈ [0, τBP], where τBP is the optimal objective value of the problem (BP).
Note that because of our assumption 0 6= b ∈ range(A), we know that Ax = b
has a solution, so that (BP) is feasible, and that τBP > 0.

When τ = 0, we have that ‖xτ‖1 = 0, which means that xτ = 0. Then
rτ = b, and consequently φ(0) = ‖b‖2. That τBP is the optimal objective value
of (BP) means that it is the smallest value of τ such that ‖Axτ−b‖2 = ‖rτ‖2 = 0.
In other words, it is the smallest value of τ such that (LSτ) has a zero objective
value, or that φ(τBP) = 0. Therefore, we have that the function values at the
endpoints of our interval are

φ(0) = ‖b‖2 > 0 and φ(τBP) = 0. (4.20)

The properties of φ we want to show are listed in the following theorem.

41

4.3. The Pareto Curve

Theorem 4.3.1. [10, Theorem 2.1]

a) The function φ is convex and non-increasing.

b) For all τ ∈ (0, τBP), φ is continuously differentiable, φ′ = −λτ , and the
optimal dual variable λτ = ‖ATyτ‖∞, where yτ = rτ/‖rτ‖2.

c) For τ ∈ [0, τBP], ‖xτ‖ = τ , and φ is strictly decreasing.

Proof.

a) To prove that φ(τ) = ‖rτ‖2 is convex, we must show that φ(βτ1 + (1−
β)τ2) ≤ βφ(τ1) + (1 − β)φ(τ2) for any τ1, τ2 in domφ and all β ∈ [0, 1].
In order to do this, we restate φ as

φ(τ) = inf
x
f(x, τ), (4.21)

where

f(x, τ) := ‖Ax−b‖2+ψτ (x) and ψτ (x) :=
{

0, if ‖x‖1 ≤ τ
∞, otherwise.

(4.22)

With α = τ and ‖·‖∗ = ‖·‖1 in (4.14), we note that ψτ (x) = supz{xT z−
τ‖z‖∞}. Then ψτ (x) is a pointwise supremum of an affine function in
(x, τ), and thus convex. Since f then is the sum of two convex functions,
f is also convex. Now, let τ1, τ2 be any non-negative scalars, and let x1,x2
be the corresponding minimizers of (4.21). For any β ∈ [0, 1],

φ(βτ1 + (1− β)τ2) = inf
x
f(x, βτ1 + (1− β)τ2)

≤ f(βx1 + (1− β)x2, βτ1 + (1− β)τ2)
≤ βf(x1, τ1) + (1− β)f(x2, τ2)
= βφ(τ1) + (1− β)φ(τ2).

In the first inequality, we have used that the infimum is less than or equal
to f(z) for any z ∈ dom(f). Since f is convex, its domain is a convex set.
We can therefore pick a point z = βx1 + (1− β)x2. The second inequality
follows from the convexity of f . The last equality shows that φ is convex
in τ.
Furthermore, φ is nonincreasing, because the feasible set for (LSτ) extends
as τ increases. When the feasible set extends, the optimal value of (LSτ)
will stay the same or become smaller. But because φ(τ) is the optimal
value of (LSτ) at τ , we have that φ decreases as τ increases.

b) We know from part (a) that φ is a convex, non-increasing function. We also
know that τ ∈ (0, τBP) are points where φ is finite, since φ is finite at the
endpoints of this interval. Then by Theorem 25.1 in [23], φ is differentiable
at τ if and only if its subgradient at τ is unique. By Proposition 6.5.8a) in
[11], if λτ is a geometric multiplier, we have that −λτ ∈ ∂φ(τ), i.e., −λτ
is a subgradient of φ(τ). We know that λτ is a Lagrangian multiplier for
(4.10). Since (4.10) is a convex problem, we have by Proposition 6.1.2b)

42

4.4. Root Finding

in [11] that geometric and Lagrangian multipliers coincide. Ergo, −λτ is
a subgradient of φ(τ).
To prove the differentiability of φ, it suffices to show that λτ is unique.
Since τ > 0, the dual variable λτ is only optimal at its lower bound,
as discussed in the previous section. Hence λτ = ‖ATyτ‖∞. By
Proposition 2.6.1c), the solution xτ of (LSτ) is also a solution to the
strictly convex (U-LASSO). Then xτ is unique and thus the optimal value
rτ = b−Axτ of (LSτ) is unique. Since τ < τBP and φ is nonincreasing,
we have ‖rτ‖2 > 0. We can then take yτ = rτ/‖rτ‖2. The uniqueness of
rτ implies the uniqueness of yτ , which again implies the uniqueness of λτ .
Thus φ is differentiable with φ′ = −λτ . Finally, since φ is both convex
and differentiable, we have that its derivative is continuous.

c) Recall that xτ is the optimal solution of (LSτ), i.e., ‖xτ‖1 ≤ τ . For τ = 0,
the assertion ‖xτ‖1 = τ holds by the definiteness of a norm. The assertion
holds for τ = τBP by the definition of τBP . What remains to show is that
part (c) holds for the interior of the interval.
We note that φ(τ) ≡ ‖rτ‖2 > 0 for all τ ∈ [0, τBP). Then rτ 6= 0,
which implies that yτ 6= 0 and λτ 6= 0. More precisely, λτ > 0. Since
φ′(τ) = −λτ , we have φ′(τ) < 0 on (0, τBP), which implies that φ
is strictly decreasing on this interval. Since both xτ and λτ satisfy the
complimentarity in (4.19), we must have that ‖xτ‖1−τ = 0, or ‖xτ‖1 = τ.

�

4.4 Root Finding

We will generate a sequence of parameters τk that converge to τσ by applying
the Newton iteration

τk+1 = τk + ∆τk with ∆τk := (σ − φ(τk))/φ′(τk) (4.23)

to (4.9). Then the corresponding solutions xτk of (LSτ) will converge to xσ,
which is the solution to (BPσ).

By Theorem 4.3.1, we have that φ is convex, strictly decreasing and
continuously differentiable for σ ∈ (0, ‖b‖2). Then by Proposition 1.4.1 in
[12], this convergence is superlinear for all initial values τ0 ∈ (0, τBP). This
analysis is based on standard Newton methods, where we solve the Newton
equations

φ′(τk)∆τk = σ − φ(τk) (4.24)
exactly at each iteration. This involves solving (LSτ) exactly at each iteration.
For large numbers of unknowns, this can be very computationally expensive.

For systems of non-linear equations in general, inexact Newton methods
would solve (4.24) only approximately, reducing the cost of the algorithm. The
residual is a fraction of the right-hand side. Analysis of inexact Newton methods
shows that they are convergent and that the rate of convergence depends on
the fraction. For example, by Theorem 7.2 in [22], if the fraction tends to zero,
the method will have a superlinear convergence rate.

Unfortunately, this analysis does not apply when the right-hand side in
(4.24) is only known approximately, which is the case we are working with here.

43

4.4. Root Finding

We will show later that the inexact Newton method still converges when we do
not know the exact function value of φ, although this convergence is sublinear.
However, we can make this convergence as close to superlinear as we want,
by increasing the accuracy with which we compute φ. As we will see in the
following section, we can use the duality gap to bound this accuracy.

Bounds on Approximate Solutions

In this section we find a bound on the accuracy of the computed function
value of φ, using the duality gap. We later use this bound to establish the
rate-of-convergence guarantee for the Newton iteration.

The algorithm for solving (LSτ) that we outline in Section 4.5 preserves the
feasibility of the iterates at all iterations. That is, an approximate solution
xτ will satisfy the primal feasibility condition. Because xτ is an approximate
solution and therefore suboptimal, the norm of its residual rτ := b−Axτ must
be greater than or equal to the true minimum ‖rτ‖2. Because τ < τBP , both
norms are greater than 0. We thus have the following inequalities:

‖xτ‖1 ≤ τ, and ‖rτ‖2 ≥ ‖rτ‖2 > 0. (4.25)

Then we can construct the approximations to the dual variables that are
dual feasible,

yτ := rτ/‖rτ‖2 and λτ := ‖ATyτ‖∞.
By weak duality, the value of the dual problem at the dual feasible point

(λτ ,yτ) is a lower bound on the primal optimal value ‖rτ‖2. Because the primal
problem is a minimization problem, the value of the primal problem at the
primal feasible point xτ is an upper bound on the primal optimal value. Hence,

bTyτ − τλτ ≤ ‖rτ‖2 ≤ ‖rτ‖2. (4.26)

Now we use the duality gap

δτ := ‖rτ‖2 − (bTyτ − τλτ) ≥ 0, (4.27)

to measure the quality of an approximate solution xτ .
Let φ(τ) := ‖rτ‖2 be the objective value of (LSτ) at the approximate solution

xτ . Then, using (4.26), we get

φ(τ)− φ(τ) = ‖rτ‖2 − ‖rτ‖2 ≤ ‖rτ‖2 − (bTyτ − τλτ) = δτ , (4.28)

so that δτ is a bound on the accuracy of φ(τ).
According to [10, p. 9], with the added assumption that A has full rank

and thus finite condition number, we can also use the duality gap to bound
the difference between the derivatives φ′(τ) and φ′(τ). Using the following
definition of the condition number of A,

cond(A) := σmax

σmin
, (4.29)

where σmax and σmin are the largest and smallest singular values ofA respectively,
we have that cond(A) is bounded if A has full rank. The bound on the derivatives
can be seen in (4.30):

φ(τ)− φ(τ) < δτ and |φ′(τ)− φ′(τ)| < γδτ (4.30)

44

4.4. Root Finding

where γ > 0 is independent of τ and proportional to the condition number of A.
It is unclear from [10] why the second inequality holds and how it is connected
to the condition number.

Rate-of-convergence Results

In this section we will show that the inexact Newton method converges even
if we only know φ and φ′ approximately. The main theorem in this section
establishes the local convergence rate. Before we get to this theorem, we show
the following useful lemma.

Lemma 4.4.1. Suppose that A has full rank and σ ∈ (0, ‖b‖2). Then there
exists positive constants γ1 and γ2 independent of τk such that∣∣∣∣φ(τk)− σ

φ′(τk) − φ(τk)− σ
φ′(τk)

∣∣∣∣ ≤ γ1δk and |φ′(τk)−1| < γ2. (4.31)

Proof. First we note that σ ∈ (0, ‖b‖2) implies that τk ∈ (0, τBP). Since
φ(τk) = σ, we have that φ(τk) ∈ (0, ‖b‖2). Since φ(0) = ‖b‖2 > 0 and
φ(τBP) = 0, and φ is non-increasing by Theorem 4.3.1a), we have τk ∈ (0, τBP).

We will show the second inequality first. Since A has full rank and is of
dimension (m×N) with m < N , we have rank(A) = m. Then rank(AT) = m,
as well. By the Rank Theorem, the dimension of the null space of AT is

dim(Null(AT)) = m− rank(AT) = m−m = 0.

Thus, ATy = 0 only when y = 0.
From Theorem 4.3.1b), we have that φ′(τk) = −‖ATyτk‖∞, where yτk is a

unit vector. So yτk cannot be zero, and by the positive definiteness of a norm,
‖ATyτk‖∞ 6= 0. Then, and because of the non-negativity of a norm,

γ3 := min
y:‖y‖2=1

{‖ATy‖∞} > 0.

This gives us
|φ′(τk)| = ‖ATyτk‖∞ > γ3,

which yields |φ′(τk)−1| < γ2 with γ2 := 1/γ3.
To prove the first inequality in (4.31), we introduce the function f : R2 → R

given by
f(u, v) = u− σ

v
. (4.32)

Taylor’s formula in two variables for this function is expressed as

f(u, v) = f(u, v) +∇f(c)T ((u, v)− (u, v)), (4.33)

where c = (c1, c2) lies on the line segment between (u, v) and (u, v), i.e.,

u ≤ c1 ≤ u and v ≤ c2 ≤ v. (4.34)

We subtract f(u, v) and take the absolute value on both sides in (4.33).
Recognizing ∇f(c)T ((u, v)− (u, v)) as the inner product between ∇f(c) and
((u, v)− (u, v)), we can use Cauchy-Schwartz’ inequality to obtain

|f(u, v)− f(u, v)| ≤ ‖∇f(c)‖2‖((u, v)− (u, v))‖2.

45

4.4. Root Finding

Let u = φ(τk), v = φ′(τk), u = φ(τk) and v = φ′(τk). Making these
substitutions and using the definition of f , we get∣∣∣∣φ(τk)− σ

φ′(τk)
− φ(τk)− σ

φ′(τk)

∣∣∣∣ ≤ ‖∇f(c)‖2‖([φ(τk)− φ(τk)], [φ′(τk)− φ′(τk)])‖2,

where we recognize the left-hand side as the expression we are trying to restrict.
The second norm on the right-hand side can be bounded by using the inequalities
in (4.30),

‖([φ(τk)− φ(τk)], [φ′(τk)− φ′(τk)])‖2 =
√

(φ(τk)− φ(τk))2 + (φ′(τk)− φ′(τk))2

<
√
δ2
k + γ2δ2

k

= δk
√

1 + γ2.

To bound the first norm, ‖∇f(c)‖2, we compute the gradient of f and insert
c = (c1, c2),

∇f(c) =
(

1
c2
,
σ − c1
c22

)
. (4.35)

From the second inequality in (4.31), we have |v−1| = |φ′(τk)−1| < γ2. Then,
because of (4.34) and that u = φ(τk) is non-increasing and bounded below by 0,
we have

‖∇f(c)‖2 =

√
1

(c2)2 + (σ − c1)2

(c22)2

≤
√

1
v2 + (σ − u)2

v4

≤
√
γ2

2 + σ2γ4
2

= γ2

√
1 + σ2γ2

2 .

Combining everything, we get∣∣∣∣φ(τk)− σ
φ′(τk) − φ(τk)− σ

φ′(τk)

∣∣∣∣ ≤ δkγ1,

where γ1 := γ2
√

1 + σ2γ2
2
√

1 + γ2. �

We are now ready to prove the main result, which states that the Newton
iteration still converges when we only know φ and φ′ approximately.

Theorem 4.4.2. [10, Theorem 3.1] Suppose that A has full rank, σ ∈ (0, ‖b‖2),
and δk := δτk → 0. Then if τ0 is close enough to τσ, the iteration (4.23)–with φ
and φ′ replaced by φ and φ′–generates a sequence τk → τσ that satisfies

|τk+1 − τσ| = γδk + ηk|τk − τσ|, (4.36)

where ηk → 0 and γ is a positive constant.

46

4.4. Root Finding

Proof. Similar to the proof of Lemma 4.4.1, σ ∈ (0, ‖b‖2) implies that
τσ ∈ (0, τBP). Then, by Theorem 4.3.1b), φ is continuously differentiable
for all τ close enough to τσ. By the fundamental theorem of calculus, we have

φ(τk)− σ = φ(τk)− φ(τσ) =
∫ τk

τσ

φ′(τ) dτ.

We will make the following substitution in the integral above. Let
τ = τσ + α(τk − τσ). Then dτ = (τk − τσ) dα. If τ = τσ, then α = 0. If
τ = τk, then α = 1. We get

φ(τk)− σ =
∫ 1

0
φ′(τσ + α[τk − τσ]) dα · (τk − τσ).

Next, we add and subtract φ′(τk)(τk− τσ) on the right-hand side. By noting
that

∫ 1
0 φ
′(τk)(τk− τσ) dα = φ′(τk)(τk− τσ) and combining the integrals, we get

φ(τk)− σ = φ′(τk)(τk − τσ)− φ′(τk)(τk − τσ)

+
∫ 1

0
φ′(τσ + α[τk − τσ]) dα · (τk − τσ)

= φ′(τk)(τk − τσ) +
∫ 1

0
[φ′(τσ + α[τk − τσ])− φ′(τk)] · dα(τk − τσ).

(4.36)

We solve the integral in (4.36),∫ 1

0
[φ′(τσ + α[τk − τσ])− φ′(τk)] · dα(τk − τσ)

=
[
φ(τσ + α[τk − τσ])

(τk − τσ) − φ′(τk) · α
]1

0
(τk − τσ)

=
(
φ(τσ + [τk − τσ])

(τk − τσ) − φ′(τk) · 1− φ(τσ)
(τk − τσ) + φ′(τk) · 0

)
(τk − τσ)

=
(

φ(τk)
(τk − τσ) − φ

′(τk)− φ(τσ)
(τk − τσ)

)
(τk − τσ)

= φ(τk) + φ′(τk)(τσ − τk)− φ(τσ)
= ω(τk, τσ).

In the last equation, we have used that we can express φ(τσ) as a version of the
first order Taylor expansion around τk,

φ(τσ) = φ(τk) + (τσ − τk)φ′(τk) + ω(τk, τσ),

with the remainder ω(τk, τσ) satisfying

ω(τk, τσ)/|τk − τσ| → 0 as |τk − τσ| → 0. (4.37)

Inserting ω(τk, τσ) for the integral in (4.36), we get φ(τk) − σ = φ′(τk)(τk −
τσ) + ω(τk, τσ).

47

4.4. Root Finding

Next, because ∆τk = (σ − φ(τk))/φ′(τk) from (4.23), we have

|τk+1 − τσ| = |τk + ∆τk − τσ|

=
∣∣∣∣σ − φ(τk)
φ′(τk)

+ τk − τσ
∣∣∣∣ .

Solving φ(τk) − σ = φ′(τk)(τk − τσ) + ω(τk, τσ) for (τk − τσ) and using
Lemma 4.4.1, we get

|τk+1 − τσ| =
∣∣∣∣σ − φ(τk)
φ′(τk)

+ 1
φ′(τk) (φ(τk)− σ − ω(τk, τσ))

∣∣∣∣
=
∣∣∣∣− (φ(τk)− σ)

φ′(τk)
+ φ(τk)− σ

φ′(τk) − ω(τk, τσ)
φ′(τk)

∣∣∣∣
≤
∣∣∣∣φ(τk)− σ
φ′(τk) − (φ(τk)− σ)

φ′(τk)

∣∣∣∣+
∣∣∣∣ω(τk, τσ)
φ′(τk)

∣∣∣∣
≤ γ1δk + γ2|ω(τk, τσ)|
= γ1δk + ηk|τk − τσ|,

where ηk := γ2|ω(τk, τσ)|/|τk − τσ|. Since γ2 > 0, we have ηk > 0. With τk
sufficiently close to τσ, (4.37) implies that ηk → 0 and ηk < 1.

To show that the sequence of τk converges to τσ, we apply the inequality
above recursively ` ≥ 1 times and get

|τk+` − τσ| ≤ γ1
∑̀
i=1

(ηk)`−i δk+i−1 + (ηk)`|τk − τσ|. (4.38)

Because ηk < 1, we have that (ηk)` → 0 and (ηk)`−i → 0 as `→∞. We also
have by assumption that δk → 0, so the whole right-hand side goes to zero as
`→∞. Thus τk → τσ. For a derivation of (4.38), refer to Appendix A.2. �

We remark that the convergence rate of the algorithm depends on the rate
at which δk approaches zero. If δk is exactly zero, which is the case if (LSτ) is
solved exactly at each iteration, then (4.36) becomes

|τk+1 − τσ| = ηk|τk − τσ|
|τk+1 − τσ|
|τk − τσ|

= ηk.

Taking the limit as k →∞ on both sides yields |τk+1 − τσ|/|τk − τσ| → 0. The
convergence rate is superlinear. This agrees with the convergence analysis of a
standard Newton iteration.

Theorem 4.4.2 assumes that A has full rank. If A is rank deficient, then
we would have slow convergence unless δk = 0. To see this, assume A is rank
deficient. Then γ3 := miny:‖y‖2=1{‖ATyτk‖∞} is zero. But then γ2 := 1/γ3 is
infinite. Since γ1 is an expression of γ2, we have that γ1 is infinite as well. In
the proof for Theorem 4.4.2 we see that γ = γ1. Thus the right-hand side in
(4.36) is infinite.

48

4.5. Solving the Lasso Problem

4.5 Solving the Lasso Problem

In order to solve (LSτ), we can use an altered version of the gradient descent
method. Traditional gradient descent only works for a non-constrained problem.
Our Lasso problem has a constraint on the variable x, namely ‖x‖1 ≤ τ.
We can alter the gradient descent method to work for a constrained problem.
By moving in the direction of the negative projected gradient instead of the
negative gradient, we ensure that our iterate candidate satisfies the constraint
by projecting the iterate candidate into the feasible set. We will do this using
the operator

Pτ [c] := {argmin
x

‖c− x‖2 subject to ‖x‖1 ≤ τ}, (4.39)

which gives the projection of an N -dimensional vector c onto the one-norm ball
with radius τ .

Finding the ideal step length is an important and non-trivial part of gradient
methods. The step length can determine whether or not our sequence will
converge. In the SPGL1 algorithm, we use the Barzilai-Borwein step length,
which was introduced by Jonathan Barzilai and Jonathan M. Borwein in [7].
According to their analysis, gradient descent algorithms with this step length
achieve better performance and are cheaper to compute than the standard
steepest-descent method.

Let xk+1 = Pτ [xk − αkgk] be the iteration and gk = −AT rk be the current
gradient. We denote the difference between two consecutive iterate candidates
and two consecutive gradients as ∆x = xk − xk−1 and ∆g = gk − gk−1,
respectively.

The step length αk is chosen as the α that minimizes ‖∆x − α∆g‖22. We
note that

‖∆x− α∆g‖22 = (∆x1 − α∆g1)2 + (∆x2 − α∆g2)2 + · · ·+ (∆xN − α∆gN)2,

where ∆xi is the i-th element in ∆x and ∆gi is the i-th element in ∆g. Since
the norm is continuous and differentiable, in order to find the α that minimizes
this norm, we set the derivative equal to 0 and solve for α. We use the chain
rule to find the derivative and get:

N∑
i=1
−2(∆xi − α∆gi) ·∆gi = 0

−2
N∑
i=1

∆xi∆gi + 2
N∑
i=1

α∆g2
i = 0

N∑
i=1

∆xi∆gi =
N∑
i=1

α∆g2
i

α =
N∑
i=1

∆xi∆gi/
N∑
i=1

α∆g2
i

α = 〈∆x,∆g〉/〈∆g,∆g〉.

The final equality uses that 〈x,y〉 = xTy =
∑N
i=1 xiyi. Our step length is given

by
αk = 〈∆x,∆g〉/〈∆g,∆g〉. (4.40)

49

4.5. Solving the Lasso Problem

Listing 4.1 is a translation of Algorithm 1 from [10] into Matlab syntax. It
also closely follows Algorithm 2.1 in [13]. Note that the following is not how
the actual code for the SPGL1 algorithm is written. It merely outlines the SPG
procedure that we have just described. A very important difference between
Listing 4.1 and the actual SPGL1 code is that here the matrix A is assumed to
be an explicit matrix, whereas in the SPGL1 code A can be an operator.

Listing 4.1: Spectral projected gradient for (LSτ)
1 function [x_tau, r_tau] = spgl(b, A, x_in, tau, delta, varargin)

3 alpha_min = options.step_min; % set min step length
4 alpha_max = options.step_max; % set max step length
5 gam = 1e-4; % set sufficient descent parameter gamma
6 alpha_curr = 1; % set initial step length
7 M = options.max_its; % set linesearch history

9 % history of iterates
10 x = zeros(M,1);
11 r = zeros(M,1);
12 g = zeros(M,1);

14 % initial iterates
15 x(1) = real_proj(x_in, tau); r(1) = b - A*x(1); g(1) = -A.’*r(1);

17 i = 1;
18 while 1
19 % duality gap
20 delta_curr = norm(r(i),2) - (b.’*r(i) - tau*norm(g(i), inf))/norm(r(i),2);
21 if delta_curr < delta
22 break
23 end

25 alpha = alpha_curr; % initial step length

27 while 1
28 x_bar = real_proj(x(i)-alpha*g(i));
29 r_bar = b - A*x_bar;

31 % find armijo condition
32 armijo = norm(r(i),2)^2 + gam*(x_bar-x(i).’*g(i));
33 for j=1:min(i,M-1)
34 tmp = norm(r(i-j),2)^2 + gam*(x_bar-x(i).’*g(i));
35 if armijo < tmp;
36 armijo = tmp;
37 end
38 end

40 if norm(r_bar, 2)^2 <= armijo
41 break
42 else
43 alpha = alpha/2; % decrease step length
44 end
45 end

47 % update iterates
48 x(i+1) = x_bar; r(i+1) = r_bar; g(i+1) = -A.’*r(i+1);
49 dx = x(i+1) - x(i); dg = g(i+1) - g(i);

51 % update Barzilai-Borwein step length
52 if dx.’ * dg <= 0
53 alpha_curr = alpha_max;

50

4.5. Solving the Lasso Problem

54 else
55 bb_step = (dx.’ * dx)/(dx.’ * dg);
56 alpha_curr = min(alpha_max, max(alpha_min, bb_step));
57 end

59 i = i + 1;
60 end

62 x_tau = x(i); r_tau = r(i);
63 end

In this procedure, we update the iterates until the duality gap is acceptably
small. If the current duality gap δi is less than our desired duality gap δ,
the method has converged and we can return with our solution xτ = xi and
corresponding residual rτ = ri.

In lines 27 to 45 we perform a linesearch for the next iterate candidate. In
line 28 we compute the projection of the iterate candidate into the feasible set.
Since this is a potentially expensive step, a separate function real_proj has
been written to efficiently perform this task. We will outline the algorithm
behind this function in the next section. Lines 31 to 38 find the non-monotone
Armijo condition (see, e.g., [22]). It ensures a sufficient decrease in the objective
function at least every M iterations.

Lines 52 to 56 update the Barzilai-Borwein step length and ensure that αi+1
stays within the limits of αmin and αmax.

One-norm Projection

As mentioned, the step of computing the projected gradient (4.39) can potentially
be costly. We will now give an algorithm for computing this projection, with
worst-case complexity of O(n logn). Numerical experiments in [10] show that
on average the cost is much less than the worst-case cost.

To simplify the discussion, we assume that the entries of the vector c are
non-negative, which we can do without loss of generality. If c had any negative
entries, we could change the optimization problem in (4.39) to the equivalent
problem

argmin
x

‖Dc−Dx‖2 subject to ‖Dx‖1 ≤ τ, (4.41)

where D = diag(sgn(c)). We have used the convention from [14], where two
optimization problems are equivalent if the solution of one problem can be
readily found from the solution of the other problem. In this case, the two
problems are related by a change of variable, z = Dx, so the solution to (4.39)
can be found from the solution to (4.41) by applying D−1.

We will start by giving the motivation for the one-norm projection algorithm.
The smallest possible value the norm in (4.39) could have is zero. It becomes
zero if x = c, and so we start with this as our trial solution. If this is feasible,
i.e., ‖c‖1 ≤ τ , we have found the solution and can exit with Pτ [c] := x∗ = c. If
not, we will try to reduce the norm of the trial x by the amount of infeasibility,
which is

ν := ‖x‖1 − τ. (4.42)

We want to find a correction vector d such that ‖x− d‖1 = τ. We see that

‖c− (x− d)‖2 = ‖c− x + d‖2 ≤ ‖c− x‖2 + ‖d‖2,

51

4.5. Solving the Lasso Problem

so in order to minimize the potential increase in the objective value, we have to
choose d such that we minimize ‖d‖2. The vector d we are looking for is then
a solution to

minimize
d∈RN

‖d‖2 subject to d ≥ 0, ‖d‖1 = ν. (4.43)

With e a vector of ones, it is straightforward to verify that

d∗ = γe with γ = ν/N, (4.44)

is a solution to (4.43). For an intuitive argument, we look at the case where
d ∈ R2. Then the constraint d ≥ 0 confines us to the first quadrant. The
constraint ‖d‖1 = ν is a line segment from (0, ν) to (ν, 0). Minimizing ‖d‖2
under these constraints then means finding the point along this line which is
closest to the origin. This point is the center of the line segment, namely the
point (ν/2, ν/2).

Unfortunately, the solution x = c− d∗ could still be infeasible. If some of
the entries in c− d∗ are negative, the value of ‖x‖1 would increase. To combat
this problem, we ensure that our solution preserves the sign pattern of c. If
every element in d∗ is smaller than the smallest element in c, i.e., if each

d∗i < cmin := min
i
ci, (4.45)

none of the elements in x = c−d∗ can be negative, and we exit with this as the
solution to (4.39). Otherwise, we set all the elements that would be negative to
zero, i.e.,

xi = 0 for all i ∈ I := {i : d∗i ≥ cmin}. (4.46)
Listing 4.2 shows a translation of Algorithm 2 in [10] into Matlab syntax.

In order to improve the efficiency of the algorithm and reduce cost from
bookkeeping, the procedure is applied to a growing subvector of c. This way,
we do not need to sort the entire vector c. For the first iteration, we start
with a single element which is the largest element in magnitude from c. For
each subsequent iteration we add the next element from c that is largest in
magnitude. The variable name c_min can be a little confusing, as we are
extracting the largest element of c. However, this name was chosen because it
corresponds to the name used in (4.45) and (4.46), and because the element we
are extracting will become the minimum element in the current subvector.

Listing 4.2: Real projection onto the feasible set
1 function [x] = real_proj(c, tau)
2 n = size(c,2);

4 if norm(c,1) <= tau % c is feasible
5 x = c;
6 return
7 end

9 delta = 0; nu = -tau; gam = 0; % gamma

11 c_bar = build_heap(abs(c));

13 for j=1:n
14 c_min = c_bar(1); % extract largest element

52

4.5. Solving the Lasso Problem

15 nu = nu + c_min; % accumulate infeasibility
16 gam = nu/j; % define current solution

18 if gam >= c_min % remaining iterations satisfy soft thresholding condition
19 break
20 end

22 c_bar = delete_max(c_bar);
23 delta = gam; % element in d
24 end
25 x = soft_threshold(c, delta);
26 end

This Matlab script assumes a few functions exist. The function
build_heap should build a binomial heap with the largest element in magnitude
as the first element. The function delete_max removes the current largest
element and restores the heap property. The function soft_threshold
corresponds to (4.46).

The soft-thresholding operation would behave differently if c ∈ CN and the
algorithm outlined here would then have to be modified. For an algorithm for
the complex one-norm projection, see Algorithm 3 in [10].

53

CHAPTER 5

New Compressed Sensing Theory

In Chapter 2 we discussed the main concepts in traditional CS. In Chapter 4
we discussed an algorithm that efficiently solves the main optimization problem
in CS. Now we are interested in how the sampling process and recovery work in
practice.

As it turns out, there is a gap between the theory that we outlined and
its use in practice. The theory is built on three important pillars: sparsity,
incoherence and uniform random subsampling. There are cases where we have
all of these and recovery is successful, but quite often at least one of these
properties is missing. If that is the case, we have to adapt our measurement
process and sampling model to achieve satisfactory recovery results.

In Figure 5.1, we see two reconstructions of a 512× 512 gray-scale image of
the Oslo Opera House. The image on the left was achieved using uniform random
subsampling, which is what the CS theory suggests. This poor reconstruction
is an example of the actual process not aligning with the theory. The image on
the right is clearly a much better reconstruction. This image is the result of a
multilevel sampling pattern.

In this chapter we will discuss why the multilevel sampling pattern works
and define a new CS theory (first established in [2, Part III] and [3, 24]) that
better supports what is happening.

5.1 Sampling Structure

As we see in Figure 5.1, the structure of the sampling operator is important.
The multilevel sampling pattern performed much better than uniform random
sampling. We can explain this by examining the coherence of the matrix ΦΨ−1,
with Φ being the Hadamard matrix and Ψ the DWT matrix. This is seen in
Figure 3.4 from Section 3.3.

The matrix ΦΨ−1 has a block structure, where the non-zero elements lie
along the main diagonal. Even though most of the elements in the matrix
are zero, the matrix has a high global coherence because there are elements
with magnitudes close to 1. A high global coherence means we need a higher
number of samples to get uniform recovery, according to Theorem 2.5.4. The
measurements corresponding to blocks with high coherence are likely to contain
important information about the signal. Therefore, we are most interested in
drawing these samples. Even if the number of samples satisfies the lower bound
in Theorem 2.5.4, if we sample uniformly at random we could end up drawing

54

5.2. Sparsity Structure

Uniform random Circle

Figure 5.1: Two recoveries of a 512 × 512 image of the Oslo Opera House
from 20% Hadamard samples using DB4 wavelets. Original image courtesy of
Alexandra von Gutthenbach-Lindau from Pixabay.

most of our samples from areas outside the main diagonal, and thus get a poor
reconstruction.

We need a new, local notion of coherence so that we can sample with respect
to the structure in the coherence. That way, we can design sampling patterns
that sample densely in the blocks with high coherence and less densely in the
blocks with smaller coherence. We will define local coherence and this new way
of sampling later in the chapter.

5.2 Sparsity Structure

Figure 5.1 demonstrates that the structure in the sampling operator affects
the recovery, but what about the structure in the sparsifying operator, i.e.,
the wavelets? The standard CS theory tells us that the core assumption for
successfull recovery is sparsity. That is, as long as we have a signal where most
of the coefficients are zero, we should be able to recover it. In practice, we see
that the regular notion of sparsity alone is not sufficient to guarantee recovery.
Information about the structure of the sparsity, i.e., where the non-zero elements
are located, is in fact necessary.

To illustrate this, we perform an experiment called the flip test. The flip
test is based on the fact that sparsity is independent of permutation. Recall
that a vector is s-sparse if it has at most s non-zero elements. The number s
does not depend on the location of these non-zero elements. Thus, an s-sparse
vector x and a vector x′ = Qx, where Q is a permutation matrix, will have the
same sparsity. If sparsity alone is sufficient for recovery, then we would expect
the same recovery quality whether we recover the original signal x from y = Ax
or y′ = Ax′. With the flip test, we will attempt to recover the original signal
from the permutation and compare the results to a standard recovery.

By varying how we define the permutation matrix Q, we can investigate
different ways the sparsity might be structured. We perform two different

55

https://pixabay.com/users/alexvongutthenbach-lindau-1292951/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=894947
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=894947

5.2. Sparsity Structure

versions of the flip test, which we call the global flip test and the flip test
in levels. In the former version, we let Q be a so-called global permutation,
corresponding to flipping all the wavelet coefficients at once. That is, the first and
last coefficients switch places, the second and second to last coefficients switch
places, and so on. With the global flip test, we find that the reconstruction
quality is drastically worse than for a standard recovery, meaning that the
structure of the sparsity does matter.

For the flip test in levels, we will define Q as local permutations within each
wavelet scale, or level. The first and last coefficients within a level switch places,
the second and second to last coefficients within a level switch places, and so
on.

Let x be the original signal we seek to recover in vector form. Let d = Ψx
be the coefficients of x in the sparsifying transform, which we have chosen to be
the DWT. The matrix A = PΩΦΨ−1 is as usual the measurement matrix and
Q is the permutation matrix. The steps of the flip test are summarized below.

1. Compute the coefficients d = Ψx.

2. Flip the coefficients, resulting in d′ = Qd.

3. Reconstruct d̂ from y = Ad.

4. Reconstruct d̂′ from y′ = Ad′.

5. Flip d̂′ back, resulting in ď.

6. Perform the inverse transformation, resulting in x̂ = Ψ−1d̂ and x̌ = Ψ−1ď.

7. Compare x̂ and x̌.

For the flip test experiments, we have used the test images in Figure 5.2,
which have been converted to gray-scale and resized to 512 × 512. We have
sampled using the Hadamard transform and sparsified by a DB4 wavelet. We
have used three different sampling patterns, seen in Figure 5.3.

The results of the flip test experiments are found in Figure 5.4 and Figure 5.5.
The middle columns correspond to the global flip test. The right-most columns
correspond to the flip test in levels. For comparison, a standard recovery of the
images can be found in the left-most columns.

The quality of the reconstruction for the global flip test is clearly worse than
for a standard CS recovery. It is obvious by examining the results visually, but
we can also compare the peak signal-to-noise ratio (PSNR), which is a measure
of the quality of the recovery. Take for example the recovery of the pig image
using the circle sampling pattern. For the standard CS recovery, the PSNR
is 25.0. For the global flip test, the PSNR is only 7.5. If the structure of the
sparsity had no impact on recovery, we would expect the PSNR scores to be
equal.

We note that for the flip test in levels, the PSNR scores are much closer to
being equal to those of the standard recoveries. If we look at the recovery of
the pig image using the circle sampling pattern again, both the standard CS
recovery and the flip test in levels recovery have a PSNR of 25.0. This means
that the structure of the sparsity likely corresponds to the scales of the wavelet
we are using. In the next section, we will define a new notion of sparsity that
can describe this behavior.

56

5.3. Asymptotic Sparsity

Figure 5.2: Two 512× 512 test images of a pig and a turtle. The pig image is
by Marion Streiff and the turtle image by Pexels from Pixabay.

2 level Circle Uniform

Figure 5.3: The sampling patterns for the flip test.

The structure in the sparsity that we have observed here aligns with the
structure in the coherence that we discussed in the previous section. Like
how the Hadamard-wavelet matrix is asymptotically incoherent, the wavelet
coefficients are asymptotically sparse. That is, they are more sparse at coarse
wavelet scales and less and less sparse for finer and finer scales. This is why the
reconstruction quality in the flip test in levels was better for the 2 level and
circle sampling patterns than for the uniform random sampling pattern. The
first two patterns are what we call multilevel subsampling patterns, which take
the structure in the coherence into account. Section 5.5 gives a definition of
multilevel subsampling patterns.

5.3 Asymptotic Sparsity

As mentioned in the introduction to this chapter, the standard CS theory is
insufficient to describe what we have just seen. This is because the standard
theory is based on global notions of sparsity and incoherence. We will now
introduce local versions of these properties.

57

https://pixabay.com/no/users/mutinka-38389/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=214349
https://pixabay.com/no/users/pexels-2286921/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1850190
https://pixabay.com/no/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1850190

5.3. Asymptotic Sparsity

x̂ x̌ x̌ in levels

2 level 2 level 2 level

Circle Circle Circle

Uniform Uniform Uniform

Figure 5.4: The flip test experiments using Hadamard sampling with Daubechies
wavelets on the pig image. The first column corresponds to standard CS recovery,
the second column to the global flip test and the last column to the flip test in
levels. Figure 5.3 shows the sampling patterns that were used.

58

5.3. Asymptotic Sparsity

x̂ x̌ x̌ in levels

2 level 2 level 2 level

Circle Circle Circle

Uniform Uniform Uniform

Figure 5.5: The flip test experiments using Hadamard sampling with Daubechies
wavelets on the turtle image. The first column corresponds to standard CS
recovery, the second column to the global flip test and the last column to the
flip test in levels. Figure 5.3 shows the sampling patterns that were used.

59

5.4. Asymptotic Incoherence

Definition 5.3.1. [2, Definition 11.1] Let 1 ≤ r ≤ N and M0 = 0. Further, let
M = (M1, . . . ,Mr) where 1 ≤M1 < · · · < Mr = N and s = (s1, . . . , sr) where
sk ≤Mk −Mk−1 for k = 1, . . . , r. A vector x ∈ RN is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk k = 1, . . . , r.

The total sparsity is s = s1 + · · ·+ sr.

The vector x is (s,M)-sparse in levels if for each level i, there are at
most si non-zero elements. The vector M defines the r sparsity levels. The
sparsity in levels definition is general, but in the case where we use the wavelet
transform for sparsifying, the sparsity levels would correspond to the wavelet
scales. For the Haar wavelet, Mk = 2k. The k-th level would consist of indices
{2k−1 + 1, 2k−1 + 2, . . . , 2k}.

A signal has asymptotic sparsity if

sk/(Mk −Mk−1)→ 0

rapidly as k →∞.
We can also redefine the error of best approximation,

σs,M(x)p := {‖x− z‖p : z is (s,M)-sparse}.

5.4 Asymptotic Incoherence

As we have previously discussed, the matrix ΦΨ−1, with Φ being the Hadamard
matrix and Ψ the wavelet matrix, will have a high global coherence. Even
though most of the matrix elements are zero, the matrix has elements with
magnitude close to 1 in the top left corner. Therefore choosing the maximum
of the magnitudes of the elements will yield a global coherence close to 1. We
can define a local coherence that is the maximum element in magnitude within
a given region of the matrix. With this local version, we can design sampling
patterns that utilizes the block structure in the coherence.

Definition 5.4.1. [20, Definition 2.8] Let N = (N1, . . . , Nr) be the sampling
levels and M = (M1, . . . ,Mr) the sparsity levels. The (k, l)-th local coherence
of an isometry U ∈ RN×N is given by

µk,l = µk,l(U) := max{|ui,j |2 : i = Nk−1 + 1, . . . , Nk, j = Ml−1 + 1, . . . ,Ml}.

We say that a matrix has asymptotic incoherence if we can remove either the
first K columns or rows, and get new matrices with small global coherence. We
recall again Figure 3.4. The combination of Hadamard and Daubechies wavelets
is asymptotically incoherent, because the highest values are concentrated in the
first K rows and columns.

5.5 Multilevel Subsampling

If we have a matrix with asymptotic incoherence, we would get poor performance
if we sampled uniformly at random from the whole matrix. We saw an example
of this in Figure 5.1. We could end up under-sampling in the areas with high

60

5.6. Restricted Isometry Property in Levels

coherence and sampling unnecessarily in areas with low coherence. By sampling
in levels, we can sample fully in the first levels with the highest coherence, and
sample less and less in the consecutive levels.

Definition 5.5.1. [2, Definition 11.5] Let N0 = 0 and N = (N1, . . . , Nr) where
1 ≤ N1 < · · · < Nr = N and m = (m1, . . . ,mr) where mk ≤ Nk − Nk−1
for k = 1, . . . , r. An (m,N)-multilevel random subsampling scheme is a set
Ω = Ω1 ∪ · · · ∪Ωr of m = m1 + · · ·+mr indices, where for each k the following
holds: If mk = Nk − Nk−1, then Ωk = {Nk−1 + 1, . . . , Nk}, otherwise Ωk

consists of mk indices chosen independently and uniformly at random from the
set {Nk−1 + 1, . . . , Nk}.

The first two sampling patterns in Figure 5.3 are examples of multilevel
subsampling patterns.

5.6 Restricted Isometry Property in Levels

We can also define an in-levels version of the restricted isometry property, the
RIPL. We will show later that with enough samples, the measurement matrix
will with high probability satisfy the RIPL and consequently yield uniform
recovery. This is analogous to Theorem 2.5.4 in Chapter 2.

Definition 5.6.1. [20, Definition 2.12] Let M = (M1, . . . ,Mr) be sparsity levels
and s = (s1, . . . , sr) be local sparsities. The s-th restricted isometry constant
in levels (RICL) δ(s,M) of a matrix A ∈ Rm×N is the smallest constant δ ≥ 0
such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, for all (s,M)-sparse x.

If 0 < δ(s,M) < 1, we say that A satisfies the restricted isometry property in
levels (RIPL).

As with the standard RIP, the RIPL implies uniform recovery.

Theorem 5.6.2. [20, Theorem 2.13] Let r ∈ N. Suppose that A ∈ Rm×N
satisfies the RIPL of order (2s,M) with

δ(2s,M) <
1√

r(
√
α+ 1/4)2 + 1

where
α = max

k,l=1,...,r
{sk/sl}.

Then for any x ∈ RN and y ∈ Rm with ‖Ax− y‖2 ≤ η, a solution x# ∈ RN of

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η

approximates the vector x with errors

‖x− x#‖1 . σ(s,M)(x)1 +
√
sη

‖x− x#‖2 . (1 + (rα)1/4)
σ(s,M)(x)1√

s
+ (1 + (rα)1/4)η,

where s = s1 + · · ·+ sr.

61

5.6. Restricted Isometry Property in Levels

Since the RIPL implies uniform recovery, we are interested in knowing how
many samples we need to achieve the RIPL. For technical purposes, we need the
following scaling of the measurement matrix. Let U ∈ RN×N be an isometry
and Ω = ΩN,m be an (N,m)-multilevel subsampling scheme. We then define
the matrix

A = PΩDU ∈ Rm×N , (5.1)
where D ∈ RN×N is a diagonal scaling matrix with

di,i =
{√

Nk−Nk−1
mk

, if mk 6= 0
1, if mk = 0

Nk−1 < i ≤ Nk, k = 1, . . . , r.

Theorem 5.6.3. [20, Theorem 3.1] Let U ∈ RN×N be an isometry, r ∈ N,
ε > 0 and δ < 1. Let Ω = ΩN,m be an (N,m)-multilevel subsampling scheme,
M be the sparsity levels and s be the local sparsities. Suppose that

mk & δ
−2 · (Nk−Nk−1) ·

(r∑
l=1

µk,l ·sl
)
· (r log(2m) log(2N) log2(2s)+log(1/ε))

(5.2)
for k = 1, . . . , r where m = m1 + · · ·+mr. Then with probability at least 1− ε,
the matrix A as defined in (5.1) satisfies the RIPL of order (s,M) with constant
δ(s,M) ≤ δ.

Finally, we have reached our main result in the new CS theory. It gives an
estimate on the sampling size mk for each sampling level in order to achieve
uniform recovery with high probability.

Theorem 5.6.4. Let U ∈ RN×N be an isometry, r ∈ N and ε > 0. Let
Ω = ΩN,m be an (N,m)-multilevel subsampling scheme, M be the sparsity
levels and s be the local sparsities. Let A ∈ Rm×N be defined as in (5.1).
Suppose that

mk & (r(
√
α+ 1/4)2 + 1) · (Nk −Nk−1) ·

(r∑
l=1

µk,l · sl
)
· L (5.3)

for k = 1, . . . , r where m = m1 + · · ·+mr, L is the same log-factor as in (5.2),
and

α = α(s,M) = max
k,l=1,...,r

{sk/sl}.

Then with probability at least 1 − ε, for any x ∈ RN and y ∈ Rm with
‖Ax− y‖2 ≤ η, a solution x# ∈ RN of

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η

approximates the vector x with errors

‖x− x#‖1 . σ(s,M)(x)1 +
√
sη

‖x− x#‖2 . (1 + (rα)1/4)
σ(s,M)(x)1√

s
+ (1 + (rα)1/4)η,

where s = s1 + · · ·+ sr.

62

5.6. Restricted Isometry Property in Levels

Proof. Assume that (5.3) holds. Let δ−2 > r(
√
α + 1/4)2 + 1 where α =

maxk,l=1,...,r{sk/sl}. Then by Theorem 5.6.3, the matrix A = PΩDU satisfies
the RIPL of order (2s,M) with δ(2s,M) <

1√
r(
√
α+1/4)2+1

. By Theorem 5.6.2,
we have

‖x− x#‖1 . σ(s,M)(x)1 +
√
sη,

‖x− x#‖2 . (1 + (rα)1/4)
σ(s,M)(x)1√

s
+ (1 + (rα)1/4)η,

where s = s1 + · · ·+ sr, which is the desired result. �

The appearance of the sparsity ratio α in this estimate is unfortunate. When
there is a significant difference between the biggest and smallest sparsity levels,
the ratio α and consequently the number of required samples mk will become
quite large. However, we can remove α from this estimate if we replace the
`1-minimization problem with a weighted `1-minimization problem. This has
been shown in [26].

The estimate for mk is dependent on the local sparsity sk. This provides an
explanation for the results of the flip test experiments. We observed that the
recovery quality depends on the structure of the sparsity. When we flip all the
coefficients at once we get poor recovery, whereas flipping the coefficients within
the wavelet scales achieves the same quality as a standard CS recovery. If we
flip all the coefficients at once, the local sparsities sk may change, and we could
end up with a greater lower bound on mk. Then the number of samples we
have drawn may be too low and we get a poor reconstruction. For permutations
within the levels, the local sparsities do not change and the number of samples
drawn still meets the criteria for uniform recovery.

The estimate (5.3) also formalizes the need to sample fully in levels with
high coherence and less densely in levels with small coherence. For levels with
high local coherence, i.e., µk,l close to 1, the factor

∑r
l=1 µk,l · sl makes a

considerable contribution to the sample size estimate. For levels with small
coherence,

∑r
l=1 µk,l · sl will be close to zero, making the sample size estimate

close to zero as well. For completely incoherent levels, we do not need to sample
at all.

The final theorem in this chapter is a restatement of Theorem 5.6.4 for the
case where U is the Haar-Hadamard matrix.

Theorem 5.6.5. Let U = ΦΨ−1 ∈ RN×N with Φ as the Hadamard matrix
and Ψ as the Haar wavelet matrix. Let r ∈ N and ε > 0. Let Ω = ΩN,m be
an (N,m)-multilevel subsampling scheme, and let N = M = (21, . . . , 2r) be
the sampling and sparsity levels, respectively. Let s be the local sparsities and
A ∈ Rm×N be defined as in (5.1). Suppose that

mk & (r(
√
α+ 1/4)2 + 1) · sk · (r log(2m) log(2r+1) log2(2s) + log(1/ε)) (5.4)

for k = 1, . . . , r where m = m1 + · · ·+mr and

α = α(s,M) = max
k,l=1,...,r

{sk/sl}.

Then with probability at least 1 − ε, for any x ∈ RN and y ∈ Rm with
‖Ax− y‖2 ≤ η, a solution x# ∈ RN of

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η

63

5.6. Restricted Isometry Property in Levels

approximates the vector x with errors

‖x− x#‖1 . σ(s,M)(x)1 +
√
sη

‖x− x#‖2 . (1 + (rα)1/4)
σ(s,M)(x)1√

s
+ (1 + (rα)1/4)η,

where s = s1 + · · ·+ sr.

Proof. By Proposition 4.10 in [1] with J0 = 0, the matrix PNUPN is an isometry.
Let L := (r log(2m) log(2N) log2(2s) + log(1/ε)). Then by Theorem 5.6.4, we
need

mk & (r(
√
α+ 1/4)2 + 1) · (Nk −Nk−1) ·

(r∑
l=1

µk,l · sl
)
· L (5.5)

in order to achieve the desired error estimates. We have that Nk = 2k, so
Nk −Nk−1 = 2k − 2k−1 = 2k−1. We can rewrite the sum above as

r∑
l=1

µk,l · sl = µk,k · sk +
r∑

l=1,l 6=k
µk,l · sl. (5.6)

By Proposition 4.11 in [1] with J0 = 0, we have that the local coherences are

µk,l =
{

2−k+1, if k = l;
0, if k 6= l.

(5.7)

Then the sum (5.6) becomes 2−k+1 · sk. We have (Nk −Nk−1) ·
∑r
l=1 µk,l · sl =

2k−1 · 2−k+1 · sk = sk. Inserting this into (5.5) gives the desired result. �

We conclude this section by making a note on the total number of
measurements m required in the Haar-Hadamard case. For readability, we
let B := (r(

√
α+ 1/4)2 + 1) and L := (r log(2m) log(2r+1) log2(2s) + log(1/ε)).

Then,

m = m1 +m2 + · · ·+mr

& Bs1L+Bs2L+ · · ·+BsrL

= BL(s1 + s2 + · · ·+ sr)
= BLs.

We see that the number of measurements m needed for uniform recovery scales
linearly in the total sparsity s with a mild log-factor.

64

CHAPTER 6

Conclusion

In this thesis we have presented some key concepts, results and concerns from
the field of compressed sensing (CS). We have also discussed what is necessary
to be able to apply this theory to real-world applications.

We started with a review of the traditional CS theory in Chapter 2. Here we
discussed the main principles of CS: sparsity, incoherence and uniform random
subsampling. We also proved some important recovery results, including our
main result, which gives an estimate on how many samples m are required for
uniform recovery.

In Chapter 3 we gave a brief introduction to wavelets and the Hadamard
transform, and discussed the coherence between the wavelets and the Hadamard
matrices. We saw that the coherence had an asymptotic structure.

Chapter 4 provided the mathematical motivation for the SPGL1 algorithm
and gave pseudocode for critical parts of the algorithm.

Finally, in Chapter 5 we performed numerical experiments that showed
issues with the global principles from Chapter 2. The numerical experiments
showed that there is an asymptotic structure in the sparsity that aligns with the
previously mentioned asymptotic structure in the coherence. To better explain
the way CS works in practice, we introduced a new local CS theory, which
included four concepts: sparsity in levels, coherence in levels, the restricted
isometry property in levels and multilevel random sampling. The last section
in Chapter 5 provided a proof for an important recovery result, namely that for
a certain number of samples in each sampling level, we have uniform recovery.

65

APPENDIX A

Extra derivations

A.1 Telescoping Series

We will show that by applying the inequality

|τk+1 − τσ| ≤ γ1δk + ηk|τk − τσ| (A.1)

(with ηk → 0 and ηk < 1) recursively ` ≥ 1 times, we obtain

|τk+` − τσ| ≤ γ1
∑̀
i=1

(ηk)`−i δk+i−1 + (ηk)`|τk − τσ|.

Ideally, we would prove this by induction. However, for the sake of readability,
we will show that the inequality holds for ` = 1, 2, 3 and from the pattern that
emerges, it will become clear that it must hold for any ` ≥ 1.

For the case ` = 1, we have

|τk+1 − τσ| ≤ γ1δk + ηk|τk − τσ|
= γ1(ηk)0δk+1−1 + (ηk)1|τk − τσ|

= γ1

1∑
i=1

(ηk)1−iδk+i−1 + (ηk)1|τk − τσ|.

For ` = 2, we have

|τk+2 − τσ| ≤ γ1δk+1 + ηk+1|τk+1 − τσ|
≤ γ1δk+1 + ηk+1(γ1δk + ηk|τk − τσ|)
= γ1δk+1 + ηk+1γ1δk + ηk+1ηk|τk − τσ|
≤ γ1δk+1 + ηkγ1δk + (ηk)2|τk − τσ|

where we have used the fact that ηk < 1 implies that ηk+1 < ηk. If we factor
out γ1 from the first two terms, we get the expression we are trying to obtain.

The case where ` = 3 is much like the previous case, but we include it to
make the pattern more clear. Applying (A.1) recursively 3 times, we get

|τk+3 − τσ| ≤ γ1δk+2 + ηk+2|τk+2 − τσ|
≤ γ1δk+2 + ηk+2(γ1δk+1 + ηk+1|τk+1 − τσ|)
≤ γ1δk+2 + ηk+2(γ1δk+1 + ηk+1(γ1δk + ηk|τk − τσ|))

66

A.2. Column Coherence

= γ1δk+2 + ηk+2γ1δk+1 + ηk+2ηk+1(γ1δk + ηk|τk − τσ|)
= γ1δk+2 + ηk+2γ1δk+1 + ηk+2ηk+1γ1δk + ηk+2ηk+1ηk|τk − τσ|
≤ γ1δk+2 + ηkγ1δk+1 + (ηk)2γ1δk + (ηk)3|τk − τσ|.

Again, factoring out γ1 gives the desired expression.

A.2 Column Coherence

Consider the column coherence from Definition 2.4.2. We observe that for
1 ≤ s ≤ N − 1, we have

µc = max
1≤i 6=j≤N

|〈ai,aj〉|

≤ max
i∈[N]

max{
∑
j∈S
|〈ai,aj〉|, S ⊂ [N], card(S) = s, i /∈ S} = µ1(s)

≤ s · max
1≤i 6=j≤N

|〈ai,aj〉|

= sµc.

That is, µc ≤ µ1(s) ≤ sµc.

67

Bibliography

[1] Adcock, B., Antun, V. and Hansen, A. C. “Uniform recovery in infinite-
dimensional compressed sensing and applications to structured binary
sampling”. In: Appl. Comput. Harmon. Anal. vol. 55 (2021), pp. 1–40.

[2] Adcock, B. and Hansen, A. C. Compressive Imaging: Structure, Sampling,
Learning. Cambridge University Press, 2021.

[3] Adcock, B., Hansen, A. C., Poon, C. and Roman, B. “Breaking the
coherence barrier: A new theory for compressed sensing”. In: Forum of
Mathematics, Sigma vol. 5 (2017), e4.

[4] Antun, V. CIlib – A software library for compressive imaging. ht-
tps://github.com/vegarant/cilib. 2020.

[5] Antun, V. “Coherence estimates between Hadamard matrices and
Daubechies wavelets”. MA thesis. University of Oslo, 2016.

[6] Antun, V. and Ryan, Ø. “On the unification of schemes and software for
wavelets on the interval”. In: Acta Appl. Math. vol. 173, no. 7 (2021),
pp. 1–25.

[7] Barzilai, J. and Borwein, J. M. “Two-point step size gradient methods”.
In: IMA J. Numer. Anal. vol. 8, no. 1 (1988), pp. 141–148.

[8] Beauchamp, K. G. Walsh functions and their applications. Techniques of
Physics, No. 3. Academic Press [Harcourt Brace Jovanovich, Publishers],
London-New York, 1975, pp. xiii+236.

[9] Berg, E. van den and Friedlander, M. P. SPGL1: A solver for large-scale
sparse reconstruction. https://friedlander.io/spgl1. Dec. 2019.

[10] Berg, E. van den and Friedlander, M. P. “Probing the Pareto frontier for
basis pursuit solutions”. In: SIAM J. Sci. Comput. vol. 31, no. 2 (2008),
pp. 890–912.

[11] Bertsekas, D. P. Convex analysis and optimization. With Angelia
Nedić and Asuman E. Ozdaglar. Athena Scientific, Belmont, MA, 2003,
pp. xvi+534.

[12] Bertsekas, D. P. Nonlinear programming. Second. Athena Scientific
Optimization and Computation Series. Athena Scientific, Belmont, MA,
1999, pp. xiv+777.

68

Bibliography

[13] Birgin, E. G., Martínez, J. M. and Raydan, M. “Nonmonotone spectral
projected gradient methods on convex sets”. In: SIAM J. Optim. vol. 10,
no. 4 (2000), pp. 1196–1211.

[14] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge
University Press, 2004.

[15] Cohen, A., Daubechies, I. and Vial, P. “Wavelets on the Interval and Fast
Wavelet Transforms”. In: Applied and Computational Harmonic Analysis
vol. 1, no. 1 (1993), pp. 54–81.

[16] Daubechies, I. Ten lectures on wavelets. Society for Industrial and Applied
Mathematics, 1992.

[17] Flores, I. “Reflected Number Systems”. In: IRE Transactions on Electronic
Computers vol. EC-5, no. 2 (1956), pp. 79–82.

[18] Foucart, S. and Rauhut, H. A mathematical introduction to compressive
sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer,
New York, 2013, pp. xviii+625.

[19] Gardner, M. Knotted doughnuts and other mathematical entertainments.
W. H. Freeman and Company, New York, 1986, pp. xvi+278.

[20] Li, C. and Adcock, B. “Compressed sensing with local structure: Uniform
recovery guarantees for the sparsity in levels class”. In: Applied and
Computational Harmonic Analysis vol. 46, no. 3 (2019), pp. 453–477.

[21] Mallat, S. A wavelet tour of signal processing. Third. The sparse way, With
contributions from Gabriel Peyré. Elsevier/Academic Press, Amsterdam,
2009, pp. xxii+805.

[22] Nocedal, J. and Wright, S. J. Numerical Optimization. Second. New York,
NY, USA: Springer, 2006.

[23] Rockafellar, R. T. Convex analysis. Princeton Mathematical Series, No.
28. Princeton University Press, Princeton, N.J., 1970, pp. xviii+451.

[24] Roman, B., Hansen, A. and Adcock, B. On asymptotic structure in
compressed sensing. 2014. arXiv: 1406.4178 [math.FA].

[25] Ryan, Ø. Linear Algebra, Signal Processing, and Wavelets - A Unified
Approach. MATLAB Version. Springer International Publishing, 2019.

[26] Traonmilin, Y. and Gribonval, R. “Stable recovery of low-dimensional
cones in Hilbert spaces: One RIP to rule them all”. In: Applied and
Computational Harmonic Analysis vol. 45, no. 1 (2018), pp. 170–205.

69

https://arxiv.org/abs/1406.4178

	Abstract
	Acknowledgements
	Contents
	List of Acronyms
	Code
	Introduction
	Traditional Compressed Sensing
	Notation
	Sparse Solutions to Underdetermined Systems
	Null Space Properties
	Coherence
	The Restricted Isometry Property
	Other Optimization Problems
	Setting up Compressed Sensing

	Wavelets and the Walsh-Hadamard Transform
	Wavelets
	The Walsh-Hadamard Transform
	Coherence Between Wavelets and the Hadamard Matrix

	The SPGL1 Algorithm
	Approach
	Convex Analysis
	The Pareto Curve
	Root Finding
	Solving the Lasso Problem

	New Compressed Sensing Theory
	Sampling Structure
	Sparsity Structure
	Asymptotic Sparsity
	Asymptotic Incoherence
	Multilevel Subsampling
	Restricted Isometry Property in Levels

	Conclusion
	Extra derivations
	Telescoping Series
	Column Coherence

	Bibliography

