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Abstract 

Cost evaluation and cost control are the main concerns of any healthcare systems since 

national economies, regardless of their economic power, face constrained healthcare budgets 

while the demand for healthcare and health costs are ever-growing. Consequently, we need to 

understand how healthcare costs behave as a function of patients’ and health systems’ 

characteristics. However, although the positive association between education and health has 

been well documented, the causal relationship between years of schooling and healthcare costs 

is yet to be established. The aim of this thesis is to estimate, if any, this causal effect. 

To handle potential confounding and reverse causation problems in the education-

healthcare costs relationship, this thesis applies a Two-sample Mendelian Randomisation (MR) 

approach on summary data from previous genome-wide association studies based on samples 

of European and white British ancestry. Given that the IV/MR-conditions discussed through 

this paper are fulfilled, this method might provide the causal effects of years of schooling on 

healthcare costs. 

This thesis finds that an extra year of completed schooling would reduce total healthcare 

costs by approximately £61 in 2019-GBP (£219 per std in years of schooling (3.6 years); CI 

£267 - £168). This main result remains comparable across methods meant to uncover potential 

violations of the MR-assumptions.  However, only using summary data from previous studies 

pose some limitations to the analysis. Thus, these results should be treated with care. In 

addition, I conclude that, contrary to earlier concerns, a Two-sample MR with summary data 

can be used to perform exploratory analyses of economic outcomes. Genetic variants should 

not be dismissed as instruments beforehand on the argument that they won't induce enough 

variation to the exposure, However, methodologically solid research results would require using 

individual data, ideally containing information on siblings and/or family trios. 

There is a need to understand the biological pathways through which genetic 

instruments influence educational attainment. Without this knowledge it is difficult to make 

convincing arguments supporting the credibility of the exogenous condition, which cannot be 

tested otherwise. Finally, it seems of vital importance to rigorously establish which specific 

causal effects a MR-analysis identifies.  
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Introduction   

The analysis of healthcare costs has attracted the attention of epidemiological 

researchers as well economist and other experimental researchers since cost evaluation and 

control are a main concern for healthcare systems (e.g. Gregori et al., 2011; de Meijer et al., 

2011). For this reason, knowledge about causal factors of healthcare costs is needed to 

understand how healthcare costs behave as a function of patients’ and health systems’ 

characteristics. The aim of this thesis is to estimate the causal effects of education attainment, 

defined as completed years of schooling, on total healthcare costs including costs1 in both, 

primary and secondary healthcare. The nature of the data at hand (described in the method 

section), limits the analysis to focus on healthcare costs funded by governmental schemes. The 

discussion will include whether our results could be generalised to overall2 societal healthcare 

costs i.e., costs including governmental, and privately funded healthcare costs.   

The causal relationship between completed years of schooling and healthcare costs has 

thus far been unclear. There is a lack of theoretical frameworks and empirical results to refer to 

when, for instance, considering education as strategy to reduce future healthcare costs from a 

policy maker’s point of view. Yet, knowledge of the effects of years of schooling on healthcare 

costs could be relevant, for instance to national economies searching for strategies to contain 

ever-increasing healthcare expenditure. Estimates of the effect of years of schooling on 

healthcare costs, if any, would also be relevant information to cost-benefit analyses regarding 

interventions aimed to provide health education. For example, when evaluating the cost-

benefits of an increase in years of schooling vs carrying out information campaigns targeting 

the general population. 

Review of Relevant Literature  

From a macro-perspective, previous studies of the determinants of healthcare costs in 

OECD countries include factors such as the share of elderly population, proximity to death of 

patients, technological progress, territorial decentralization, and the remuneration arrangements 

of healthcare suppliers (Martín et al., 2011). However, to my knowledge, educational 

attainment/completed years of schooling has received little attention as a determinant of 

 
1 In this thesis the terms cost and expenditure are used interchangeable. 
2 Overall healthcare costs refer to healthcare cost funded by governmental schemes and private funds. Total 
healthcare costs refer to costs including primary and secondary healthcare. 
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healthcare costs (i.e. there are few analyses of the effect of educational attainment on healthcare 

costs beyond a health effect).  

At the individual level, it is well documented that there is a correlation between 

educational attainments i.e. years of schooling and health (e.g. Khaing et al., 2017; Xu et. al., 

2015). Furthermore, there are studies on healthcare costs at the individual’s level, indicating 

that healthcare costs are associated with several behavioural and social factors besides the 

individuals’ health (e.g. Sterling et al., 2018). When reviewing the literature, I find that 

healthcare services’ utilisation and health literacy emerge as potential linking paths between 

educational attainment and healthcare cost.  

Health. A causal relation between years of schooling and health would lead us to expect, 

other things being equal, lower healthcare costs amongst those with more years of schooling. 

However, the empirical evidence of the causal relationship between education and health is still 

unclear. Galama et al. (2018) review evidence from experimental and quasi-experimental 

studies, mostly from developed countries, regarding the effect of education (years of education) 

on mortality and two of the most well-known risk factors for mortality and disease: obesity and 

smoking. The authors define mortality, obesity and smoking as expressions of people’s health 

and conclude that the causal effect of education on health is yet to be well stablished. 

Specifically, they find that education’s effect on mortality and smoking is context sensitive. 

The effect on mortality seems to depend on gender, labour market returns to education, quality 

of education; and whether the educational intervention affects the quality of individuals’ peers. 

Smoking seems to be unaffected by a simple increase of schooling time, but rather to be 

influenced by schooling reforms that affect the individual’s track or the peer group. 

Furthermore, Galama et al. (2018) conclude that there is no convincing evidence of a causal 

effect of education on obesity.  

Healthcare services utilisation. Years of schooling may affect healthcare costs if there 

is a differential use of healthcare services depending on years of schooling. Many studies that 

have documented differences in healthcare services utilisation related to socioeconomic status 

(SES) (e.g. Jansen et al., 2018), which is closely related to education. However, I focus on 

literature regarding education or studies that measure SES in terms of education. The main 

impression after revising this literature is that observable differences in utilisation are related 

to the type of services being studied.  



On the one hand, Fletcher and Frisvold (2009) conclude that high school graduates who 

later attended college, were more likely to use preventive care services such as physical 

examinations, dental examinations, flu shots, and cholesterol tests compared to those who did 

not attend college. In their study, Fletcher and Frisvold (2009) use data from a cohort of high 

school graduates who were followed up for nearly 50 years, from Wisconsin, USA. 

Furthermore, the authors point out that there is a consistent conclusion in public health and 

economics literature that the use of preventive healthcare for adults is correlated with education. 

It is difficult to assess the generalisability of Fletcher and Frisvold’s (2009) results as their 

research suggest that these results are due to greater access to healthcare in an American context 

and they might not apply to, for instance, countries with universal healthcare coverage such as 

UK or Scandinavian countries.  

Similarly, Jansen et al. (2018) find a relation between educational attainment and the 

likelihood of using out-of-hours primary care (OOHPC) among people with similar health 

status (chronic illnesses) in the Netherlands. Their results indicate that people with low 

education levels (no education, primary school only or lower vocational education) were more 

likely to use out-of-hours primary care services than people with both intermediate 

(intermediate or advanced general education, intermediate vocational education) and high 

levels (higher professional education, university) of education. Additional evidence suggesting 

different use of healthcare services after accounting for health status in the Netherlands, was 

found by Droomers and Wester (2004). 

On the other hand, Dahl et al. (2014) report that there was no evidence suggesting 

differences in use of GPs associated with education attainment in Norway. Compatible results 

were found by Glazier et al. (2009) who use data from the Canadian Community Health Survey 

(CCHS). After adjusting for morbidity, income, urban-rural location, age and sex, Glazier et al. 

do not find differences in contact (measured as at least 1 visit) with GP associated with levels 

of education (low: not completed high school, medium: high school completion and some 

postsecondary education, and high: university degree). However, Glazier et al. results suggest 

that higher education is associated with less-frequent (fewer than 10) GP visits. Moreover based 

on a review of empirical results published between 2000 and 2013, Godager and Iversen (2013), 

and Glazier et al. (2009) observe evidence of differences in use of specialised care. Godager 

and Iversen's results suggest that people with higher education and higher incomes tend to 

utilise private specialist services outside the governmental schemes rather than visit publicly 

funded primary care services. Glazier et al. (2009) on their side, conclude that higher educated 
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people had greater contact, and higher visit frequency, with specialists. Their results also 

indicate that patients with higher education were more likely than those with lower education 

to bypass primary care to access specialists. Additionally, results of Fiva et al. (2014) suggest 

that education levels may also be associated with the type of treatment that individuals receive. 

In their study Fiva et al. (2014) investigate utilisation of highly specialised treatment and how 

utilisation patterns affected survival after cancer. The authors conclude that patients with higher 

education were more likely than other patients to be transferred to two central, highly 

specialized hospitals outside of their zone of residence. Furthermore, they find that differences 

in the probability of being transferred to the specialized hospital increased after conditioning 

on disease characteristics.  

Health literacy. Health literacy has gained interest as a determinant of healthcare costs 

(Palumbo, 2017). At the same time, health literacy has been associated with education 

attainment (Jansen et al.2018). Palumbo (2017) review the literature based on USA data and 

concluded that limited health literacy is an important and independent predictor of, for instance 

patients’ disengagement, health problems’ exacerbation, and misuse of available health 

resources, which in turn will increased healthcare costs.  

Causal effect of years of schooling on healthcare costs 

The literature at hand may lead us to speculate that higher educational attainment will 

cause better health in some contexts and is associated with improved health literacy. Better 

health and improved health literacy would in turn mean lower healthcare costs. Furthermore, 

there is some reason to believe that are patterns of healthcare services utilisation depending on 

educational attainment.  However, it is not straightforward to hypothesize the direction on 

which these patterns would affect costs. It is for instance not clear what differences in patterns 

of utilisation for different type of services would mean for costs; while highly specialised 

treatment could be assumed to be more costly, greater use of preventive care may lead to a 

reduction of healthcare costs later. Additionally, it is difficult to predict how the conclusion of 

Godager and Iversen’s (2013), regarding the tendency of higher educated people to utilise 

private specialist services rather than publicly funded primary care services, would affect total 

healthcare costs. While it could mean a reduction in the publicly funded costs, it may lead to an 

increased in the total healthcare costs.   



Figure 1 illustrates three examples of mechanisms by which education i.e. years of 

schooling may affect healthcare costs. The figure also illustrates a direct effect of years of 

schooling on healthcare costs.  

   

Figure 1 Graph representing three potential pathways in which years of schooling and adult healthcare cost may be related. 
The graph also illustrates that childhood health is a potential confounder of this relationship. Double arrows show potential 
sources of reverse causation problems. The green line illustrates a direct effect of years of schooling on healthcare costs. 

 

The literature is spare and prompts a need for more knowledge on the causal effect of 

years of schooling on costs. This thesis aims to estimate causal effects of years of schooling.  

Methods              

The estimation of the effect of years of schooling on healthcare costs is challenging, as 

this relationship is complex with numerous potential confounding and reverse causation 

problems. Examples of potential confounders (i.e. variables that both determine costs and are 

correlated to one or more of the included exposure variables (Stock & Watson, 2007) are 

cognitive ability, the patient’s socioeconomic and demographic factors, such as sex, parents’ 

economic status, place of birth, parents’ education and structural conditions, for instance, public 

funding of health and education. Childhood health may also affect completed years of schooling 

and is strong correlated with adult health (Case et al., 2005).  

The analysis of the effect of years of schooling on healthcare costs is further complicated 

by reverse causation (i.e. a situation where a change in the outcome results in a change on the 
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exposure of interest) because healthcare costs in adulthood affect for instance adult health 

(Figure 1). Adult health is highly correlated with the confounder childhood health and 

educational attainment (Case et al. 2005). As long as we cannot adjust for the individual’s 

childhood health, it will not be possible to separate the effect of childhood health on earlier 

years of schooling (during childhood) from the effect of earlier years of schooling on adult 

health and thereby on adult healthcare costs. Hence, a link between adult healthcare costs and 

earlier years of schooling will be maintained and the reverse causation problem will persist. 

Additionally, the analysis of this thesis is based on data from adult individuals, and years of 

schooling was measured at age 30 or older. Some of those individuals might still be under 

education at this point. In that case, there would be a direct link between adult healthcare costs, 

adult health, and years of schooling at age 30 or older. Confounders and reverse causation make 

it difficult to disentangle the effect of the exposure (years of schooling) on the outcome 

(healthcare costs).  

The following section makes a formal presentation of challenges that confounding 

factors and reverse causation pose to the analysis of the effect of the completed years of 

schooling on healthcare costs, and present the Mendelian Randomisation method, which aims 

to estimate causal relationships by avoiding bias originated by confounders and reverse 

causation (Lawlor et al., 2008).  

Confounding and reverse causation problems 

In the absence of confounding factors and reverse causation, and assuming linear 

relationship between the exposure and outcome, the relationship between completed years of 

schooling and healthcare costs can be modelled as in equation (1):   

𝑌 = 𝛽𝑜𝑚 + 𝛽1𝑋 +𝜸𝑴+휀𝑚 (1) 

 

𝑌 represents estimated yearly healthcare costs, 𝛽𝑜𝑚 is the regression constant term,  

𝛽1X is completed years of schooling (X) times the coefficient of interest i.e. the effect of one 

additional year of schooling on healthcare costs (𝛽1). 𝛄𝐌 is the product of a row vector 𝛄 

containing p coefficients corresponding to a column vector 𝐌′ of p covariates (see appendix X 

for a detailed description of the covariates) and  휀𝑚 is the error term of the equation. The values 

of 𝛽𝑜𝑚 and 𝛽1 define the intercept and the slope of a line that describes the relationship between 

years of schooling and healthcare costs.  



The values of 𝛽𝑜 , 𝛽1 and 𝛄 can be estimated by the OLS (Ordinary Least Squares) 

estimators (Stock & Watson, 2007) due to their superior practical and theoretical properties. 

Provided that the following least squares assumptions are met the OLS estimators will be 

unbiased, consistent, and asymptotically normal (ibid):  

A1. The error term for individual  𝑖 (휀𝑚𝑖) has conditional mean zero given the 

explanatory/exposure variable: 𝐸(휀𝑚𝑖 |𝑋𝑖,𝐌𝑖) = 0 ,which implies that   𝑐𝑜𝑟𝑟(𝑋𝑖, 휀𝑚𝑖) = 0. 

A2. The outcome, exposure, and covariate values of (𝑋𝑖, 𝐌𝒊, 𝑌𝑖)are independent and 

identically distributed drawn from their joint distribution. 

A3. Large outliers are unlikely: 𝑋𝑖, 𝑌𝑖  𝑎𝑛𝑑 𝐌𝒊 have nonzero finite fourth moments. 

A4. There is not perfect multicollinearity i.e. no one of the regressors (𝑋𝑖,M𝑝𝑖) is a 

perfect linear function of the other regressors.  

We assume that conditions A2, A3 and A4 above are satisfied. The presence of 

confounders/omitted variables violates the first assumption of the OLS estimators because it 

correlates the exposure with the error term (Stock & Watson, 2007) so that   𝑐𝑜𝑟𝑟(𝑋𝑖, 휀𝑚𝑖) ≠

0 creating what is known as omitted variable/confounding bias.  In practical terms, this means 

that a confounder, for instance cognitive ability, would lead to an under- or overestimation of 

the association between years of completed schooling on healthcare costs (Alexander et al., 

2015).  

One strategy to avoid confounding bias in observational studies using regression 

analysis is to include potential covariates in the regression equation (1) (Stock & Watson, 2007). 

In our analysis, one could consider including cognitive ability, the patient’s 

socioeconomic/demographic factors and childhood health to avoid confounding bias, however 

it is resource-intensive to gather the amount of information needed to adjust for these 

confounders. Additionally, one cannot guaranty that the results are unaffected by unmeasured 

confounding factor and results should therefore not be interpreted as causal effects (Hernán & 

Robins, 2006). 

In the case that one aimed to estimate the direct effect (green line in fig. 1) and had all 

required data at hand; adjusting for confounders could not solve the reverse causation problem 

created by adult health. This is because direct effects are estimated by conditioning for known 

mediators of the relationship. In our case, conditioning on adult health would be problematic as 

health is as a collider (i.e. a variable that is itself affected by both the exposure variable and the 
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outcome variable (Elwert & Winship, 2014) and conditioning on it would bias estimates of the 

direct effect. This bias is known as endogenous selection bias (Elwert & Winship, 2014) or 

simultaneous causality bias (Stock & Watson, 2007). Simultaneous causality distorts the OLS 

estimate in a similar way as an omitted variable, since the bias arises because the exposure of 

interest and covariates are correlated to the error term, violating the first OLS assumption i.e.  

𝐸(휀𝑚𝑖 |𝑋𝑖,M𝑖) = 0 (Stock & Watson, 2007).   

Mendelian Randomisation Method 

Mendelian randomization (MR) is an epidemiological method that uses genetic variants 

as instruments for estimating causal relationships between a modifiable (non-genetic) exposure 

and an outcome by avoiding bias originated by confounding and reverse causation (Lawlor et 

al., 2008). Mendelian randomization (MR) is recognizable to those acquainted with 

instrumental IV analysis commonly used in econometrics. However, when commenting an 

alternative naming of the method such as Genetic Instrumental Variable Analysis, proponents 

of MR (Davey Smith et al., 2020; Lawlor et al., 2008) argue that, even though the name is 

secondary, it is important to recognise that making causal inferences based on the MR-method 

demands expertise beyond the conventional understanding of instrumental variable analysis. 

This thesis is mostly based on MR-literature and terminology, however, some references to 

algebraic expressions commonly used in econometrics are used whenever it seems helpful to 

do so.  

Informally, the MR- method relies on finding a variable, the instrument, which is 

strongly associated with the exposure of interest (completed years of schooling) whilst the 

instrument can be assumed to be assigned to each individual almost at random and will therefore 

not be associated with confounders. Additionally, the instrument is assumed to only affect the 

outcome through the exposure (See conditions A5 and A6 below and appendix 3 for a detailed 

presentation of IV/MR conditions). 

As mentioned above, the need for instrumental variable analysis arises due to, among 

other reasons, unmeasured confounders, or reverse causation. I limit the presentation of the 

estimation problem to the context of a single-equation linear model with an omitted variable 

problem.   

The relationship of interest is as in equation 1. This means that 𝛽1 should not be 

estimated by the OLS method as the resulting estimator 𝛽1OLŜ would be bias due to the non-



zero correlation between the exposure and the error term of the model violating assumption A1 

i.e. 𝐸(휀𝑚𝑖 |𝑋𝑖,𝐌𝑖)  ≠ 0.  

To estimate the MR or any IV approach it is necessary to have at least one observable 

variable (𝑍𝑘) for each endogenous variable (i.e. the exposure variable correlated with the error 

term) that, apart from not being included in equation (1), satisfies the following two conditions:  

A5. Instrument relevance: This condition is often presented as 𝑐𝑜𝑟𝑟(𝑍𝑘𝑖 , 𝑋𝑖) ≠ 0. A 

more precise definition (Wooldridge, 2010) of this condition is that the coefficient of a 

regression/projection of X on all exogenous covariates and 𝑍𝑘, is not zero i.e. 𝜙 ≠ 0 in eq. 2 

below.  

A6. Instrument exogeneity: 𝑍𝑘 is uncorrelated with the error term 휀𝑚𝑖  i.e. 

𝑐𝑜𝑟𝑟(𝑍𝑘𝑖 , 휀𝑚𝑖) = 0 .  This mathematical expression comprises the independence and the 

exclusion assumption (Angrist & Pischke; 2009) presented in appendix 3.  

Additional assumptions of the IV regression model are (Stock & Watson,2007):  

A7. We assume that X are the only endogenous variable, while the covariates  𝑴 are 

uncorrelated with the error term i.e. 𝐸(휀𝑚𝑖 |𝐌𝑖) = (휀𝑚𝑖 |M1𝑖, … ,M𝑝𝑖) = 0. 

A8. The values (𝑋𝑖, M1𝑖, … , M𝑝𝑖, 𝑍𝑘𝑖  , 𝑌𝑖) are independent and identically distributed 

(i.i.d.) drawn from their joint distribution. 

A9. Large outliers are unlikely: (𝑋𝑖, M1𝑖, … ,M𝑝𝑖, 𝑍𝑘𝑖 , 𝑌𝑖) have nonzero finite fourth 

moments. 

IV models also make  assumptions about perfect multicollinearity of regressors (Stock 

& Watson, 2007), however, in the case where there is only one endogenous variable (X in our 

case), the condition regarding perfect multicollinearity holds whenever at least one instrument 

𝑍𝑘 enters the regression X on all exogenous covariates and 𝑍𝑘 (eq. (2) below). 

To obtain a point estimate of the causal effect of X on Y, it is necessary to make an 

additional assumption (Labrecque & Swanson, 2018) 

A10. Monotonicity condition requires that the instrument affect all individuals in the 

same direction, in our case it implies that the allele of reference either increases or decreases 

years of schooling for all individuals.  

In this thesis, a genetic variant (SNPk) is an instrument for the endogenous variable years 

of schooling. The value of the SNP is assigned randomly to each individual from his or her 
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parents at conception. The SNP (instrument) of interest can, for diploids cells as the human 

DNA, take the values 0, 1 or 2. These numbers represents the number of alleles of reference 

(called the effect allele) that each individual possesses. An individual's number of effect alleles 

can be thought of as a randomly assigned allocation number to different groups, where each 

group receives a different mean level of the exposure during their life course (Bowden et al., 

2016).  

Equation (2) below represents the relationship of years of schooling with the instrument 

Z (SNPk). This equation is called first stage, a term borrowed from simultaneous equation 

analysis, and means that an endogenous variable is expressed only in terms of exogenous 

variables (Angrist & Pischke, 2015). This equation is also known as reduced-form equation 

(Wooldridge, 2010). 

𝑋 = 𝜙𝑜𝑚 + 𝜙𝑘𝑍𝑘 +𝝍𝑴
𝒙 + 𝜚𝑚     (2) 

𝛙𝐌 is the product of vectors of p covariates times their coefficients.  

A reduced-form equation for healthcare costs (Y) can be obtained by replacing X in 

equation ((1) by the reduced form (2):  

𝑌 = 𝛿𝑜𝑚 + 𝜌𝑘𝑍𝑘 + 𝝊𝑴
𝒚 + 𝜈𝑚 (3) 

𝛿𝑜𝑚 = 𝛽0𝑚 + 𝛽1𝜙𝑜, = 𝛽1𝜙 , 𝛖 = (𝛽1𝜓1 + 𝛾1, 𝛽1𝜓2 + 𝛾2 , … , 𝛽1𝜓𝑝 + 𝛾𝑝,)  and 𝜈𝑚 =

𝛽1𝜚𝑚 + 휀𝑚.  

(A11). Reduced-form equation 2 and 3 are assumed to satisfy the OLS conditions stated 

above This means among other things that instruments are chosen so that 𝑍𝑘 is not correlated 

with unmeasured confounders i.e. 𝑐𝑜𝑣 (𝑍𝑘𝑖, 𝜚𝑚𝑖) = 0 and 𝑐𝑜𝑣 (𝑍𝑘𝑖, 𝜐𝑚𝑖) = 0, i.e. the 

independence condition is satisfied. Additionally, 𝜚𝑚𝑖 and 𝜐𝑚𝑖 are independent of each other 

(A12).  

The causal effect of interest i.e. effect of completed years of schooling on healthcare 

costs is determined by the ratio of the population reduced form regression of Y on 𝑍𝑘 (eq. (3)) 

to the population reduced form regression of X on 𝑍𝑘 (eq. (2)) (Angrist & Pischke, 2009; 

Wooldridge, 2010)  

𝛽1 = 
𝜌

𝜙
 (4) 

 



Angrist & Pischke (2009) explain that a consistent estimate of  β1 can therefore be constructed 

by the ratio of the OLS estimators of 𝜙 and 𝜌 provided that conditions A11 and A12 hold i.e. 

regressors (instrument and covariates) in the reduced-form equations are uncorrelated with their 

respective errors. Furthermore, this insight yields also when covariates are included in the 

reduced forms. In MR studies, the IV estimator is mostly referred to as Wald or Ratio estimator 

(Davies et al. 2018, Burgess et al. 2017). 

Two-sample MR 

There are different approaches to MR (e.g. Davey Smith & Hemani, 2014; Burgess et 

al. 2016). This thesis utilises the Two-sample Mendelian randomisation (Two-sample MR). 

The distinctive feature of the Two-sample MR is that it allows to estimate the causal effect of 

the exposure on the outcome by using two independent datasets from the same population. The 

theoretical insights that make this possible were laid out in an influential article by Angrist and 

Krueger (1992) where they developed a Two-sample instrumental variables (TSIV) estimator 

which has been applied and further developed (e.g. Inoue and Solon, 2010; Dee & Evans, 2003; 

Angrist & Krueger, 1995). The method relies on two important assumptions (Angrist & 

Pischke, 2009; Angrist & Krueger; 1992):  

A13. The two datasets are drawn from the same population. 

A14. There is not overlap of sample observations. 

Epidemiologist have built on this insight and developed Two-sample Mendelian 

Randomisation (e.g. Pierce & Burgess,2013; Burgess et al.,2015). Hemani et al. (2018) explains 

that this method makes it possible to take advantage of the vast wealth of known genetic 

associations stemming from the rapid accumulation of genome-wide association studies 

(GWAS) during the 2010s even in the cases where the pair of traits of interest (the outcome and 

exposure) have not been recorded in the same sample.  

An additional major advantage of the Two-sample MR is that it allows to carry out an 

MR analysis without having access to individual-level data, i.e. only by using Genome-wide 

Association Study (GWAS) summary data (Hemani et al., 2018). GWAS is an observational 

approach used in genetics research. The method involves scanning the genomes from big 

samples of people and looking for associations between specific genetic variations/genetic 

markers with particular traits (National Human Genome Research Institute, 2019). GWAS 

summary includes estimates of association (regression coefficients) between SNPs and the trait 
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of interest as well as standard errors of the regression coefficients. Hemani et al. (2018) point 

out that using summary data as the “raw data” for the analysis is a major advantage because 

summary statistics from GWAS are non-disclosive and are often made freely available to the 

public. In addition to that, the authors point out that two-samples MR adds power to the analysis 

as it combines the samples of two or more GWAS.  

In practical terms, the estimation process is as follows: suppose that one instrument, a 

SNP in our case (SNPk), is measured in two separate Genome-wide Association Studies 

(GWAS). Study 1 estimates the association of SNPk with the outcome (healthcare costs), while 

study 2 estimates the SNPk – exposure (years of schooling) association (Bowden & Holmes, 

2019). In the case that one specific SNPk from study 2 is not found in study 1, a proxy can be 

used (Burgess et al. 2015). The Two-sample MR estimate of 𝛽1 using instrument 𝑍𝑘 (ratio 

estimator of the causal effect) is constructed as the ratio of the OLS- regression coefficient of 

the outcome-SNPk from study 1to the OLS-regression coefficient of exposure-SNPk from study 

2 (Burgess et al. 2015; Lawlor et al. 2008). Study subscripts will be suppressed in the following 

for clarity.  

 �̂�1𝑘 = 
𝜌�̂�

𝜙�̂�
 

(5) 

 

The within-ratio/sample variance is (Burgess et al., 2016):  

𝑉𝑎𝑟�̂�1𝑘 = 𝑣𝑎𝑟
�̂�𝑘

�̂�𝑘
=
𝜎𝜌𝑘
2

�̂�𝑘
2

 
(6) 

 

This sample variance it is approximate using the formula for Taylor expansions. It relays in the 

additional assumption that the instrument-exposure effect is estimated with negligible error 

(𝜎𝜙𝑘 
2 ≈ 0)   so that �̂� ≈  𝜙  and can be therefore be treated as a constant (A15). This assumption 

is known as No Measurement error in the exposure (NOME) (Hemani et al., (2018); Bowden 

& Holmes, 2019). Furthermore, 𝜎𝜌𝑘
2  is the sample variance of 𝜌�̂� and 𝜎𝜙𝑘

2  is the sample variance 

of 𝜌�̂�, and although commonly estimated in the data as the standard errors of  𝜌�̂� and 𝜙�̂�, these 

variances are assumed to be known (A16) (Hemani et al., 2018).  

Efficient combination of estimators 

Using information from multiple ratio estimates may be useful to explore the possibility 

that MR/IV assumptions have been violated (Lawlor et al. 2008; Davey Smith & Hemani, 

2014). This study utilises 71 instruments yielding 71 independent estimates of 𝛽1 i.e. k= {1, 



2,…71}.The 71 ratio estimates can be combined into an overall effect by the inverse-variance 

weighted (IVW) method, from the meta-analysis literature, when assuming that each ratio 

estimate provides independent evidence on the causal effect i.e. the SNPs are uncorrelated 

(A17) (Burgess & Thompson, 2017). The inverse-variance weighted estimator can be 

informally motivated as a weighted average of the 71 ratio estimates
𝜌𝑘 ̂

𝜙�̂�
, using weights  𝑤𝑘. 

IVW estimator is formally defined as (Bowden & Holmes, 2019):  

�̂�1𝐼𝑉𝑊 = 

∑ 𝑤𝑘  
𝜌�̂�
𝜙�̂�

𝐾
𝑘=1  

∑ 𝑤𝑘
𝐾
𝑘=1

    

(7) 

 

can accommodate either a fixed effect, an additive random effect, or a multiplicative random 

effects IVW model.  In Mendelian randomisation studies, the fixed effect and the multiplicative 

are preferred (Burgess et al., 2020); both assume a single overall effect (A18) and yield the 

same estimate of the effect (Mawdsley et al. 2017). For comparison, the additive random effects 

model assumes that there is a distribution of true sample effects so that �̂�𝐼𝑉𝑊  is the estimate of 

the mean of this this distribution (Borestein et al., 2010) 

Formula (8) shows the weights for the estimation of a single overall effect (�̂�𝐼𝑉𝑊) in a fixed 

effects model. In addition to assuming a single overall effect, the fixed effects model requires 

all instruments to be valid (A19) (Bowden et al. 2016). A consequence of this condition is that 

the fixed effects IVW model supposes that all variation between ratio estimates of  β1 ( β̂1k =

 
ρk̂

ϕk̂
 ) is exclusively due to within-ratio/sample variation i.e. there is no between-ratio variation 

(Borestein et al., 2010).  

𝑤𝑘𝐹𝐸 =
1

𝑣𝑎𝑟
�̂�𝑘
�̂�𝑘

= 
�̂�𝑘
2

𝜎𝜌𝑘
2    

(8) 

 

 

With weights as in (8) the IVW fixed effects estimator takes the following form:  

�̂�1𝐼𝑉𝑊𝐹𝐸 =  
∑  �̂�𝑘�̂�𝑘𝜎𝜌𝑘

−271
𝑘=1  

∑ �̂�𝑘
271

𝑘=1 𝜎𝜌𝑘
−2

 
(9) 

 

The standard errors are (Mawdsley et al, 2017; Borestein et al., 2010):  
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𝑠𝑒(�̂�1𝐼𝑉𝑊_𝐹𝐸) =  √

1

∑ 𝑣𝑎𝑟
�̂�𝑘
�̂�𝑘

𝐾
𝑘=1

 

(10) 

 

The practical estimation of the 𝛽1 is carried out by fitting the following OLS weighted 

regression:  

�̂�𝑘 = 𝛽1𝑖𝑣𝑤 �̂�𝑘 + 𝜖𝑘;   𝜖𝑘~𝑁(0, 𝜎𝜌𝑘
2 )  

𝑊𝑒𝑖𝑔ℎ𝑡𝑠 =
1

𝜎𝜌𝑘
2  

(11) 

 

In this case, due to A19, the empirically estimated standard error of 𝜌�̂� (𝑠𝑒2(𝜌𝑘)̂) is set equal 

to 𝜎𝜌𝑘
2 . 

Challenges to the IV assumptions in MR-studies.  

The attractiveness of using genetic variants as instruments in Mendelian Randomisation 

stems from what is known as Mendel’s second law of independent assortment. Simply put, 

Mendel’s law declares that there is a random assortment of genes that are passed from parents 

to offspring during gamete formation and conception (Davey Smith & Ebrahim, 2003). 

Furthermore, genetic associations have the advantage that causation is unidirectional, from the 

genetic variation (SNP) to the trait of interest (Davey Smith & Hemani, 2014). Additionally, 

modern genotyping technologies and stringent quality controls, make it possible to measure 

genetic variants highly accurately (Pierce & WanderWeele, 2012). According to Davey Smith 

& Hemani (2014) the measurement of the effects of genetic variants, are also relatively free 

form measurement errors. However, using genetic variants as instruments comes with its own 

challenges.  I will now describe known phenomena that call into question the assumptions when 

using genetic variants as instruments.  

Threats to the relevance assumption  

Weak instruments refer to the case when the instrument explains little variation of the 

exposure being investigated (Burgess & Thompson, 2011).  In a two sample Mendelian 

randomization without individual data, it is not possible to test the relevance assumption (A5) 

i.e. the strength of the instrument by means of a traditional F- test. In these types of studies, 

researchers will typically only include independent SNPs with a significant association to the 

exposure at the customary genome-wide significant level of p< 5 x 10^-8 to avoid weak 

instruments (Zhao et al., 2020).  



Bowden & Del Greco et al. (2016a) suggest, in the context of Two-sample MR with 

summary data, to assess the strength of each individual instrument by the F statistic and the 

average instrument strength by the mean value of this statistic. F and �̅� are defined as follows:  

F = �̂�𝑘
2/𝜎𝜙𝑘

2  (12) 

�̅� =
∑ (�̂�𝑘

2/𝜎𝜙𝑘
2 )𝐾

𝑘=1

𝐾
 

(13) 

Furthermore, Bowden & Holmes (2019) suggest computing a weighted average instrument (𝐹𝑤̅̅ ̅) 

using �̂�𝑘
2/𝜎𝜌𝑘

2   as weights:  

𝐹𝑤̅̅ ̅ =
∑ 𝑤𝑘(�̂�𝑘

2/𝜎𝜙𝑘
2 )𝐾

𝑘=1 

∑ 𝑤𝑘
𝐾
𝑘=1

, 𝑤𝑘 = 
�̂�𝑘
2

𝜎𝜌𝑘
2  

(14) 

Winner’s curse. Winner’s curse is a type of selection/publication bias known in the 

MR-literature and refers to the risk that the estimated associations of the SNPs published in the 

GWAS-study are overestimated (Burgess et al., 2020), increasing the threat of using weak 

instruments in the MR-study (Lawlor, 2016). The "winner’s curse" problem is especially latent 

when researchers estimate the SNP-exposure associations on the same dataset as the dataset 

where the instrumental SNPs were first discovered. The reason for this is the way leading SNPs 

are chosen in GWAS studies i.e. the SNP in a locus with the lowest p-value is chosen to be the 

leading SNP. 

Threats to the independence assumption.  

Lawlor et al. (2008) explains that the random assortment of genes that are passed from 

parents to offspring implies that the inheritance of one trait (genotype) is independent of the 

inheritance of other traits. This can be understood as if one trait had been randomized with 

respect to the other of the traits. This random assortment was originally described in Mendel’s 

work on plants and makes the independence assumption stated above plausible.   

Genetic instruments that satisfy the independence assumption will serve as 

unconfounded indicators of particular trait values. The independence of genetic variants is, 

however, not always the case and researchers applying MR should consider the presence of 

social confounders that may create an association between genetic variants and outcomes. 

Potential confounders that threat the independence assumption are dynastic effects, assortative 

mating and population structure (Brumpton et al., 2020).  
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Dynastic effects. Dynastic effects may arise if parents' phenotypes (due to genetic 

variants) affect their children's observable traits beyond genetic heritage (Davies & Howe et al., 

2019; Kong et al.,2018). A relevant example for us can be the case where parents' healthcare 

costs affect the healthcare costs of their offspring because they live in an environment where it 

is common to overuse/underuse healthcare services. This effect will exacerbate the effect on 

costs due to the offspring's years of schooling and could result in a biased estimated effect.  

Assortative mating. is a social phenomenon consisting in people selecting partners in 

a non-random way, based on specific observable characteristics (phenotypes) (Brumpton et al., 

2020; Hartwig et al., 2018). Hartwig et al. (2018) explain that assortative mating can become a 

problem if individuals with a particular genetic variant select mates with a phenotype that is 

genetically influenced, leading to genetic correlation between parents. The authors illustrate 

assortative mating by using examples of height and intelligence, both height and intelligence 

are known to be genetically influenced. First, tall women are more likely to select tall men, and 

second, women with higher intelligence select taller men. The first case is known as single-trait 

assortative mating. Under single-trait assortative mating, the mother’s and father’s exposures 

(or outcomes) will be correlated. This case will be unproblematic if the exposure and outcome 

under investigation are not genetically correlated (e.g. it will be unproblematic that taller 

mothers select e.g. taller fathers in a study investigating the effect of height on anything that is 

not genetically correlated to height).  

However, as height and intelligence are highly hereditable and genetically correlated 

(Keller et al. 2013), the second example (i.e. women with higher intelligence select taller men) 

is problematic because it makes the exposure (e.g. height), the outcome (e.g. intelligence) and 

the genetic variants involved to be correlated, violating IV assumptions. Assortative mating as 

in this second example is known as is cross-trait assortative mating (Hartwig et al., 2018). 

Finally, Hartwig et al. (2018) argues that assertive mating depending on a third trait (other than 

exposure and outcome) can lead to bias if the trait under assortment is genetically correlated 

with exposure (e.g. height) and outcome (e.g. intelligence). For details, see Hartwig et al. 

(2018).  

Population stratification.  Population stratification refers to a situation where different 

population subgroups experience different outcome rates (i.e. healthcare costs in our case) and 

have different frequencies of the effect allele (Lawlor et al., 2008).  Lawlor et al., (2008) present 

a graphic representation of population stratification (Figure 2) that can lead to spurious 

associations between the instrument (genotype) and the outcome. A hypothetical example that 



could be relevant for this study is if the samples are collected from places that have systematic 

differences in the frequencies of the effect allele due to for example geographical distances. In 

that case, such differences will be problematic if there are also regional systematic differences 

in societal structures that affect healthcare costs, for instance difficulties in accessing healthcare 

services in remote regions.  

Figure 2  exemplifies a situation where a variable (e.g.  ethnicity) is correlated with the distribution on the instrumental SNP. 
This violates the IV/MR assumption if, as it is shown in the figure, there is a direct relationship between e.g. ethnicity and the 
outcome.  

 

Source: Adapted from Lawlor et al. 2018  

 

Linkage disequilibrium. Another threat to the independence assumption arises from 

the fact that independent assortment is not always the case (Lawlor et al., 2008). Lawlor et al. 

(2008) explain that work after Mendel’s second law of independent assortment discovered 

“gene linkage” which means that not all genes are assorted independently. Furthermore, the 

authors explain, that it is now known that independent assortment is generally true for a specific 

type of chromosomes (non-homologous) but is not true for a set of genes located on a 

homologous chromosome, particularly if the genes are located close to each other. 

The hypothetical situation in which all alleles exhibit complete independence is called 

linkage equilibrium (LE). A departure from this situation is referred to as linkage disequilibrium 

(LD) (Lawlor et al., 2008).  Linkage disequilibrium means that there is correlation between 
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genetic variants, typically for variants physically close together on the same chromosome 

(Haycock et al., 2016).  Lawlor et al. (2008) points out that LD is relevant to MR studies, 

because when an instrumental SNP is correlated (in LD) with a genetic variant, and the latter 

influences the outcome of interest, this may result in confounding. The authors also explain that 

not all correlation between genetic variants will challenge the IV assumptions and show it 

graphically. Figure 3 depicts examples of situations where LD is involved, as presented by the 

authors. Panel a presents a situation where LD is unproblematic. This is because the instrument 

(G1) is in LD with a variant (G2), which is related to the exposure, but (G2) does not have a 

direct effect on the outcome. However, on panel b LD violates IV/MR assumptions because G2 

is in LD with the instrument (G1) as well as the outcome (Y).  

Figure 3Examples of relationships between the instrumental SNP and other genetic variants. Panel a shows a situation 
where the LD between G1 and G2 do not violate the IV/MR assumptions. In panel b, on the contrary LD is a problem as there 
is a direct relationship from G2 to the outcome.  

Source: Figure adapted from Lawlor et al. 2008 

Threats to the exclusion assumption. 

To consistently estimate the effect of the exposure on the outcome, the exclusion 

assumption must be satisfied (i.e. genetic variants used as instruments only affect the outcome 

via the exposure). However, it is likely that a single genetic variant influences multiple 

phenotypes. This phenomenon is called pleiotropy (Hemani et al., 2018; Davey Smith & 

Ebrahim, 2003).  

There are two types of pleiotropy, vertical and horizontal pleiotropy. Vertical 

pleiotropy, which is also known as mediation, refers to the case were a genetic variant is 

associated with multiple traits (phenotypes) on the same biological pathway. This is less 

problematic as it does not violate the exclusion assumption (Hemani et al., 2018). Horizontal 

pleiotropy refers to a situation in which the instrument is associated with variables on different 

causal pathways to the outcome (Burgess et al., 2020).  



Horizontal pleiotropy can also induce association between the instrument and a 

confounder. In that case, horizontal pleiotropy will violate the independence assumption as well 

as the exclusion assumption. In fact, linkage disequilibrium and population stratification as 

explained above will violate both the independence and the exclusion criteria (Hemani et al., 

2018).  

Horizontal pleiotropy robust methods  

Horizontal pleiotropy is a major threat to MR-analysis as it contradicts the exclusion 

and independence assumptions, making the instruments (SNPs) invalid and thus leading to 

biased estimates. An algebraic expression of bias due to pleiotropy follows.  

Consider the following model with one instrument and no covariates:   

𝑌 = 𝐵𝑜 + 𝛼𝑘𝑍𝑘 + 𝛽1𝑋 + 𝛴 (15) 

 

The reduced forms are then:  

𝑋 = 𝜙0𝑘 + 𝜙𝑘𝑍𝑘 + 𝜚𝑘  (16) 

 

𝑌 = 𝛿0𝑘 + 𝜌𝑘
∗𝑍𝑘 + 𝜈𝑘 (17) 

 

Where 𝛿𝑜 = 𝐵0 + 𝛽1𝜙0𝑘 , 𝜌k
∗ = 𝛼𝑘 + 𝛽1𝜙𝑘 and 𝜈_𝑘 = 𝛽_1 𝜚_𝑘 +  Σ.  

So that 

𝛽1
∗ =

𝜌𝑘
∗

𝜙𝑘
= 𝛽1 + 

𝛼𝑘
𝜙𝑘

 
(18) 

 

And the IVW will tent towards (Bowden et al., 2015):  

�̂�1𝑖𝑣𝑤
∗ ≈ 𝛽1 +

∑ 𝑤𝑘
𝐾
𝑘=1  𝛼𝑗
∑ 𝑤𝑘
𝐾
𝑘=1

= 𝛽1 + 𝐵𝑖𝑎𝑠 (𝛼, 𝜙)   
(19) 

 

The robustness of the IVW fixed effect results to pleiotropy can be assessed by 

comparing them to the results of models which, contrary to the IVW fixed effects model, do 

not required all the SNPs to be valid instruments (Bowden et al., 2015). Similar results from 

pleiotropy robust methods will support our confidence in the results. Following Burgess et al. 

(2020), I applied a set of pleiotropy robust estimators including IVW_Multiplicative Random 

Effects, MR-Egger, the Median based method, and the Mode-based method. A brief description 

of the IVW_Multiplicative Random Effects, the Weighted Median and Mode-base estimation 
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models are provided below. A more detailed presentation of the Egger method is given as it 

allows to test for directional horizontal pleiotropy.  

Multiplicative Random Effects method. The IVW Multiplicative Random Effects 

method (IVW_MRE), originally from meta-analyses literature, permits between studies 

variation steaming from the SNP-specific direct effects on healthcare costs (horizontal 

pleiotropic effects) to be incorporated into the model (Thompson & Sharp, 1999; Mawdsley et 

al., 2017). The unbiasedness of the IVW_MRE estimator relays on the assumption that the 

instrument specific bias term ( 
𝛼𝑘

𝜙𝑘
 ) in equation (18) cancel each other out so that the sum of the 

bias term in (19) is zero as the number of instruments/SNPs increases (Burgess et al., 2020) 

(A20), provided that the direct effect of the instruments on healthcare costs are uncorrelated 

with the SNP-exposure effect (Slob & Burgess, 2020) (A21). This is known as the Instrument 

Strength Independent of Direct Effect (InSide) condition i.e. 𝑐𝑜𝑟𝑟 (𝛼𝜅, 𝜙𝑘) = 0 (Bowden et al. 

2015). 

By the assumptions of the model, the bias derived from pleiotropic effect do not bias 

the overall estimator of the effect. This situation is referred to as balance horizontal pleiotropy 

(Burgess et al., 2020) and means that the magnitude of the multiplicative and the fixed effects 

IVW models are the same (Bowden et al., 2017). Burgess et al. (2020) explains that the 

difference between IVW_MRE and IVW_FE is in the standard errors, which will be different 

in the presence of excess heterogeneity (between-ratio-estimators heterogeneity). The authors 

also explains that in this case the multiplicative model is superior to the fixed effects as the 

standard errors of the latter will be misleadingly small.  

�̂�1𝐼𝑉𝑊𝑀𝑅𝐸 = 

∑ 𝑤𝑘
∗ 𝜌𝑘

∗̂

𝜙�̂�
 𝐾

𝑘=1

∑ 𝑤𝑘
∗𝐾

𝑘=1

 

(20) 

 

In the multiplicative IVW model, weights are equal to the inverse of the ratio estimators’ 

variance times a measure of the heterogeneity among those (𝜔). 𝜔 is estimated in the model 

(see below) and it is set to one if the estimate is lower than one. (Thompson & Sharp, 1999).   

𝑤𝑘
∗(𝑀𝑅𝐸) =

1

(𝑣𝑎𝑟
𝜌�̂�
𝜙�̂�
) ∗ 𝜔 

 
(21) 

 

The standard errors are (Mawdsley et al, 2017; Borenstein et al. 2010):  



𝑠𝑒(�̂�1𝐼𝑉𝑊_𝑀𝑅𝐸) =  √

1

∑ (𝑣𝑎𝑟
𝜌�̂�
𝜙�̂�
)𝐾

𝑘=1

∗  √𝜔    
(22) 

 

The unbiasedness of the multiplicative IVW estimator, also requires the NOME condition 

(A15) condition to hold.  

The practical estimation of 𝛽1 is done by fitting the following weighted OLS-regression 

equation using 
1

𝜔∗𝜎𝜌𝑘
2  as weights.  𝜎𝜌𝑘

2  is within-ratio/sample variance of 𝜌�̂� while 𝜔 represents 

the between-ratio heterogeneity. In praxis,  𝜔 ∗ 𝜎𝜌𝑘
2  is set equal to the empirically estimated 

standard error the SNP-outcome estimator (𝑠𝑒2(𝜌𝑘)̂) (Hemani et. al., 2018a, 2918b) 𝜔 can be 

independently estimated as the mean standard error/deviation (MSE/MSD) of regression 

equation (24) .  

�̂�𝑘 =  𝛽1𝑖𝑣𝑤 �̂�𝑘 + 𝜖𝑘;  𝜖𝑘 ~𝑁(0, 𝜔 ∗ 𝜎𝜌𝑘
2 )   (23) 

 

The Egger method. This method handles the case when the horizontal pleiotropic 

effects do not cancel out. This situation is known as directional/unbalanced horizontal 

pleiotropy and will make the estimator of the causal effect of the IVW models to be biased even 

in large samples (Hemani et al., 2018). Hemani et al. (2018) point out that the Egger method 

would be consistent even if all variants were invalid instruments.  The causal effect (𝛽1𝐸 ) is 

estimated by a weighted regression equation using 
1

𝜎𝜌𝑘
2   as weights. In this case, the empirical 

standard errors of the SNP-outcome estimators (𝑠𝑒2(𝜌𝑘))̂ are regard a valid expression of  𝜎𝜌𝑘
2 .   

�̂�𝑘 =  𝛽0𝐸 + 𝛽1𝐸 �̂�𝑘 + 𝜖𝑘;  𝜖𝑘~𝑁(0, 𝜎𝜌𝑘
2 )    (24) 

 

The Egger method also requires the InSIDE condition to hold i.e 𝑐𝑜𝑟𝑟 (𝛼𝜅, 𝜙𝑘) = 0 

(A21). The Inside condition makes the Egger method to provide a bias-reduced estimate for the 

true causal effect as the sample sizes and number of instruments increases (Bowden et al. 2015): 

𝛽1�̂� =
𝑐𝑜𝑣 (𝜌𝑘

∗ ,�̂�)

𝑣𝑎𝑟 (�̂�)
= �̂�1 +

𝑐𝑜𝑣 (�̂�,�̂�)

𝑣𝑎𝑟 (�̂�)
 ; 𝑐𝑜𝑣 (�̂�, �̂�)

𝑁→∞
→   𝑐𝑜𝑣 (𝛼, 𝜙)

𝐾→∞
→   0     (25) 

 

The variance of the Egger estimate of the causal effect is inversely proportional to the 

weighted variance of the �̂� estimates using 𝜎𝜌𝑘
2  (in praxis,

1

𝑠𝑒2(𝜌𝑘)̂
) as weights (Burgess & 

Thompson, 2017). Hence the standard error of the estimator is:  
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𝑠𝑒(�̂�1𝐸) =
𝜔

(∑ (�̂�𝑘 − �̂�)
2

𝐾
𝑘=1 ) 𝜎𝜌𝑘

−2

  (26) 

 

X and �̂� are the weighted average SNP-exposure association using the inverse-variance 

weights 𝜎𝜌𝑘
−2 (Burgess & Thompson 2017). As before, 𝜔 is the estimated residual standard 

error/deviation from equation (23) and it is included to adjust the Egger standard errors for any 

potential between-ratio heterogeneity, while keeping the magnitude of the 𝛽1𝐸  unchanged 

(Bowden et al., 2017; Burgess & Thompson 2017) 

An advantage of the MR-Egger method is that it allows to test whether the intercept 

term (𝛽0𝐸 in equation (24) is different from zero (Bowden et al., 2015). Bowden et al. (2015) 

explain that a non-zero intercept would suggest the presence of unbalanced horizontal 

pleiotropy, as �̂�0𝐸 can be interpreted as the estimate of the average pleiotropic effects across 

genetic variants. This test is referred to as the MR-Eggers’ test. The MR- Egger intercept test 

does not require the Inside assumption to be valid (Burgess & Thompson, 2017). 

Bowden & Holmes, 2019 explains that the MR-Egger estimate is likely to be 

substantially less precise than its IVW counterpart and it is therefore suggested to use it in the 

context of a sensitivity analysis rather than as a replacement of the standard IVW 

estimators(Burgess et al., 2020). The precision of the Egger estimate, the authors explain, would 

depend on the amount of variation between the set of SNP-exposure associations. As in any 

regression model, an outlying point can influence the regression coefficients (𝛽0𝐸 , 𝛽1𝐸 ).  

The Egger method is especially sensitive to the orientation of the SNP-exposure 

association. Burgess & Thompson (2017) explain that the SNP-exposure estimates of 

associations should be oriented in the same direction (all positive or all negative associations) 

before fitting the MR-regression line. This is because different orientations would change the 

estimate of the intercept (𝛽0𝐸 ) in equation (24) as well as the sign of the pleiotropic effect of 

the instrument (𝛼𝑘) in (15) (Bowden, Davey Smith, et al., 2016). Burgess & Thompson (2017) 

remark that it is possible to reorient the estimates of genetic associations as there is no specific 

criterion to choose the allele of reference in GWAS studies. For example, in the case that a SNP 

can have a C and a T allele, the association could equally well be reported as for instance 0.243 

units per additional copy of the C allele, or as -0.243 units per additional copy of the T allele. 

SNP-exposure association are usually oriented to be positive, and, if necessary, the SNP-

outcome associations should also be altered to match the orientation of the SNP-exposure 

estimate (Bowden, Davey Smith, et al., 2016).  



Median and mode. I briefly present a category of robust methods which define the 

causal estimate as the median or mode of the distribution of the ratio estimates. They are usually 

referred to as consensus methods (Slob & Burgess, 2020) and they may be more appropriate in 

cases where the Egger estimator does not perform well (i.e. limited variation among the SNP-

exposure estimates and/or the presence of outliers) while relaxing the IVW-fixed effects 

assumption that all instruments are valid (A19) (Burgess & Thompson, 2017) and the 

assumption of balanced horizontal pleiotropy (A20).  

In contrast to the IVW method that requires all instruments to be valid, and the Egger 

method that allows all instruments to be invalid, the median and mode methods are based on 

the “majority” and “plurality” valid assumptions respectively. The former assumption (A22) 

ensures that as the sample size increases, the causal estimates from all valid instrumental 

variables will tend towards the same value, which will equal the median provided that at least 

50% of the instruments are valid (Burgess & Thompson, 2017). The latter assumption (A23) 

implies that, in large samples, the ratio estimates for all valid instruments should be equal to 

the true causal effect, while ratio estimates from invalid instruments will disperse towards 

different values. Based on this assumption the estimate of the true causal effect is the mode 

value of the ratio estimates. The plurality valid assumption is also known as the Zero Modal 

Pleiotropy Assumption (ZEMPA) (Slob & Burgess, 2020) 

Weighted variants of the median and mode estimators have been proposed, in these 

cases, the median and mode are taken from a distribution of the ratio estimates in which the 

more precise ratio estimates are given more weight (Burgess & Thompson, 2017; Hartwig et 

al. 2017). Additionally, there is a penalised version of the weighted median estimator which 

recognises and adjusts for the fact that although invalid instruments do not affect the median 

estimate asymptotically, they may, however, influence the position where the median value is 

to be found in finite samples, and bias the estimate (Bowden, Davey Smith, et al., 2016).  A 

weakness of the mode and median estimators is that they are sensitive to the addition and 

removal of variants from the analysis. Additionally, these methods may be less efficient 

compared to methods that base their estimates on all genetic variants (Slob & Burgess, 2020). 

Burgess et al. (2020) point out that, the mode methods have been found to have low precision 

when tested in some simulated and real datasets. 
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Heterogeneity – Gauging violations of the MR-assumptions 

Building on the assumption that there is a single overall causal effect where the only 

source of variation is the within-ratio sample variation (according to the IVW fixed effects 

model), it is expected that valid genetic instruments yield similar estimates of this effect 

(Bowden & Holmes 2019). Substantial heterogeneity can be interpreted as an expression of 

horizontal pleiotropy.   

Bowden & Holmes (2019) remark that it is important to note that heterogeneity does 

not prove that there are horizontally pleiotropic effects; in general, it is an indication that at 

least one of the assumptions of the model is not met, for instance the presence of weak 

instruments. Furthermore, Hemani et al., 2018, point out that homogeneous results could be due 

to perfect confounding; a situation where all the SNP-exposure instruments arise due to another 

trait influencing both the exposure and the outcome. 

Heterogeneity can be assessed by the Cochran’s Q statistic (Bowden and Holmes 2019): 

𝑄 =∑𝑄𝑘 =

𝐾

𝑘=1

 ∑𝑤𝑘

𝐾

𝑘=1

(�̂�1𝑘  −  �̂�1𝐼𝑉𝑊_𝐹𝐸) ~ 𝜒𝑘−1
2  

(27) 

 

Where 𝑤𝑘 are defined as in eq. (8) and �̂�1𝐼𝑉𝑊_𝐹𝐸 as in eq. (9).When Q is referred against a chi^2 

distribution with k-1 degrees of freedom it tests the underlying null hypothesis of the 

heterogeneity test that the true treatment effect is the same across studies and that variations are 

due to sample variation (H0: Q=0) (Bowden and Holmes 2019).  

A visual assessment of the heterogeneity can be done by examining funnel plots (Walker 

et al. 2019). A funnel plot is a scatter plot of the effect estimates from individual studies against 

some measure of precision originally used to gauge for, among other issues, publication bias 

and heterogeneity of treatment effects in meta-analyses (Sterne et al. 2011; Sterne & Egger, 

2001) and later used in MR-context by e.g. Bowden et al. (2015; 2016). In a funnel plot, the 

more precise results are at the top of the Y-axis on the graph. In the absence of 

heterogeneity/bias, the plot would resemble a symmetrical inverse funnel, centred on the overall 

causal effect estimate (Sterne & Egger, 2001). Asymmetry of the inverse funnel may be due to 

heterogeneity of the individual causal effect estimates therefore suggest violations to the IV/MR 

the assumptions.  



Violation of the NOME assumption  

The IVW and Egger methods relay on a pragmatic assumption that the variance (squared 

standard error) of the SNP-exposure effect estimator (𝜎𝜙𝑘
2 ) is small enough to be considered 

equal to zero i.e. the NO Measurement Error (NOME) assumption (A15).  The argument for 

this is that, even though, zero variance would only be true if we had infinite observations, 

association studies are often done in large samples often above 100 000 (approximately 300 000 

in our case) (Bowden et al., 2017). The violation of this assumption results in dilution bias of 

the causal effect estimator (Bowden, Del Greco, et al., 2016a).   

According to Hartwing (2017) dilution bias for the IVW method can be estimated by 

the following relations where F̅  defined as in equation (13) and F̅w defined as in equation (14) 

  
(�̅� − 1)

�̅� 
  

(28) 

  
�̅�𝑤 − 1

�̅�𝑤
  

(29) 

Dilution bias of the MR-Egger estimator can be estimated by the 𝐼𝐺𝑋
2  statistic suggested by 

Bowden, Del Greco, et al. (2016a) and defined as follows:  

𝐼𝐺𝑋
2 = (𝑄𝐺𝑋 − (𝐾-1))/ 𝑄𝐺𝑋 (30) 

Where 𝑄𝐺𝑋 is and the Cochrans’s Q (Bowden, Del Greco, et al., 2016b) .  

𝑄𝐺𝑋 = 
Σ𝑘=1
𝐾  (

�̂�𝑘

𝜎𝜌𝑘
2 −�̂�)2

𝜎𝜙𝑘
2

𝜎𝜌𝑘
2

 , �̂� =  
∑ �̂�𝑘 𝜎𝜙𝑘

2⁄𝐾
𝑘=1

∑ 1 𝜎𝜙𝑘
2⁄𝐾

𝑘=1

 

(31) 

Note that Bowden and Del Greco et al.’s (2016b) definition of the Cochrans’s Q in equation 

(31) is an extended version of equation (27) above. In the extended version, the weight term 

can incorporate uncertainty in the denominator of the ratio estimates (
𝜌

𝜙
)  i.e. does not require 

the NOME condition to be hold.   

Statistical analyses  

Data  

This study follows a liberal strategy for choosing instruments, which means that one 

uses relevant SNPs found along the genome. This is opposed to using SNPs for which the 
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researcher has a clear understanding of the biological path between the SNP and the trait of 

interest.  

SNP-years of schooling associations. The estimates of the SNP-years of schooling 

association (𝜙�̂�) were obtained from Okbay et al. (2016a). The authors performed 64 cohort 

specific association analyses comprising a total sample of 293,723 individuals of European 

descent (Okbay et al., 2016b) which were thereafter meta-analysed using simple sizes as 

weights. Okbay et al. (2016a) defined years of schooling as a continuous variable with the 

numbers of years of schooling completed (mean=14.3 and std. = 3.6) and identified 74 loci 

associated with the number of years of schooling completed at the genome-wide significant 

level. A summary of sample descriptive statistics and meta-analysis results are presented in 

Table 2. 

In their analysis, Okbay et al. (2016b) included demographic control variables such as 

year of birth, sex and combination of those. A set of dummy variables to mark significant 

societal events that affected part of the cohort observations such as World War II, or changes 

in the educational system in the individual’s country of origin were also included, finally, ten 

principal components indicating genetic ancestors were included as covariates (see Table 1). 

These principal components are estimated by a Principal components analysis (PCA) (Price et 

al., 2006 in Okbay et al., 2016b). Intuitively, the PCA recognises clusters of individuals in the 

sample by identifying genetic relationships among observations. In a GWAS with J SNPs, PCA 

analysis yields J-principal components (PC), each PC is interpreted as a marker of a specific 

ancestry. Including principal components as covariates is conceptually similar to using a set of 

dummies to mark the individual’s ancestral group  

Spelling out each of the p covariates in equation (2) in Okbay et al. (2016a) yields the 

following equation for each instrument (Rietveld, 2013): 

𝑋 = 𝜙𝑜𝑚 + 𝜙𝑘𝑍𝑘 +  𝜓1−10𝑚1−10
𝑥 +  𝜓11𝑚11

𝑥  +  𝜓12𝑚12
𝑥 +  𝜓13𝑚13

𝑥 +  𝜓14𝑚14
𝑥 +  𝜓15𝑚15

𝑥

+  𝜓16𝑚16
𝑥 +  𝜓17𝑚17

𝑥 +  𝜓18−𝑝𝑚18−𝑝
𝑥 + 𝜚𝑚 

Table 1 Description of variables included in regressions models by Okbay et al. (2016a)  

X US years of schooling equivalent 

 𝑍𝑘 One instrument –Number of effect alleles at the specific SNP. Can take values 0, 1 or 2. 

𝑚1−10
𝑥  Ten principal components 

𝑚11
𝑥  birth year 



𝑚12
𝑥  birth year^2 

𝑚13
𝑥  birth year^3 

𝑚14
𝑥  Sex 

𝑚15
𝑥  sex*birth year 

𝑚16
𝑥  sex*birth year^2 

𝑚17
𝑥  sex*birth year^3 

𝑚18−𝑝𝑥
𝑥

 dummies marking a significant societal affecting only parts of the cohorts 

individuals 

𝜚𝑚 Error term 

Source: Okbay et al. (2016b)   

Depending on the values of association, the authors defined a lead SNP in each of the 

loci being investigated, as the SNP in the area with the smallest P-value. The estimated effect 

sizes of the lead SNPs in Okbay et al.'s (2016a) study ranged from 0.014 to 0.048 standard 

deviations of completed schooling years corresponding to 2.7 and 9 weeks of schooling 

respectively (Table 2). The number of years of schooling completed was assessed at or above 

age 30 (Okbay et al., 2016a).  This study was chosen, as it does not contain data from the UK 

biobank dataset avoiding sample overlap.  

Table 2 Sample descriptive information of Okbay et al.'s (2016) sample and results.  

Meta-Analysis 

Variable  

 

Total Sample size N 293,723 

Cohort sample size (min-max) (318 – 76,155) 

Share of females (min-max; mean)  (0 – 1; 0.55) 

Mean year of birth (min-max)  (1921-1971) 

Year of birth (min-max) (1893-1985) 

Overall years of schooling completed. Mean (std)  14.3 (3.6) 

Number of lead SNPs  74 

Estimated lead SNP effect (min max)  (0.014 std.- 0.048 std) 

(2.9 to 9 weeks) 

R2 value of lead SNPs (min-max) (0.01 % – 0.035 %) 

Source: Okbay et al., 2016a; Okbay et al, .2016b 

Summary data from the Okbay et al. (2016a) study was retrieved from the IEU GWAS 

database (Hemani et al., 2018a) by applying the extract_instruments command from the MR 
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Instruments R-package (Hemani et al., 2018a; Hemani et al., 2018b). To increase the probability 

of using independent instruments, the available SNPs were revised to identify pairs of SNPs in 

linkage disequilibrium. Linkage disequilibrium is here defined by customary parameters used 

in MR-studies i.e. a SNP is in linkage disequilibrium if it shows a pairwise R2 greater than 

0.001 with another SNP within a distance of 10,000 kb. The R2 is a measure of association 

between allele frequencies that range from 0 to 1 where 0 shows perfect equilibrium 

(Slatkin,2008) i.e. random association. For each pair of SNPs in linkage disequilibrium, only 

one of them, the one with the strongest evidence of association with the exposure, was kept. 

This procedure is known as clumping (Hemani et al., 2018a) and led to the exclusion of one of 

the 74 SNPs identified by Okbay et al. (2016a). 

Two more SNPs were excluded for being palindromic with intermediate allele 

frequencies. Intuitively, a palindromic SNP makes it difficult to assess the direction in which 

the gene sequence is being read. This leads to technical challenges when coding the value of 

the instrument variable (i.e. the number of effect alleles that a person has at a given SNP). The 

ambiguity can be solved by looking at differences in frequencies of the variant/allele that is less 

common in the population (minor allele frequency), however, when there are no substantial 

differences between the minor and the major allele frequencies, the problem cannot be resolved, 

and the SNP should not be used (see Hartwig et al., 2016).  

SNP-health care costs associations. Summary data including coefficients of 

association between SNPs and healthcare costs were kindly provided by Senior research 

associate Sean Harrison at the University of Bristol. Harrison et al. (2021a) estimate healthcare 

costs as part of a Mendelian Randomisation study on the long-term cost-effectiveness of 

interventions for obesity in the UK based on a data set extracted from the UK biobank database 

(for an introduction to of the UK biobank, see e.g. Bycroft et al., 2018). The UK biobank 

contains information of approximately 500 000 people recruited among individuals who were 

registered at the National Health Service (NHS) and who lived within reasonable traveling 

distance of a total of 22 assessment centres across the UK between 2006 and 2010, moreover 

data from UK biobank has been linked to medical data from hospital episodes and primary care 

data (Harrison et al, 2021a).  

In their main analysis, Harrison et al. (2021a) use a restricted sample from UK biobank 

consisting of unrelated individuals of white British ancestry recruited at centres in England or 

Wales, as costs data were not available for other centres (Harrison et al., 2021b). British 

ancestry was defined as participants who self-reported being “White British” and who had very 



similar ancestral backgrounds according to the principal component analysis, additionally, 

participants without a BMI measure were also excluded from the analysis and are therefore not 

part of dataset on which my analysis is based. After exclusions, 310,913 participants aged 

between 39 and 72 years remained in the main dataset (Harrison et al., 2021b).  

Harrison et al. (2021a) use available follow-up data including primary healthcare costs, 

on average for a period of 8.1 years. Follow-up period for secondary healthcare costs was on 

average 6.1 years. For each participant, primary care costs were calculated between recruitment 

and 31 March 2017 or death in the case that it occurred before this date. Costs were estimated 

using 2019-tariffs (November). Those costs were then averaged over years of follow-up to get 

individual average yearly primary care healthcare costs. Average yearly secondary healthcare 

costs for all participants in Harrison et al.'s study were available from Dixon et al. (2020). Dixon 

et al. (2020) estimates covered the period from recruitment to 31 March 2015, death, or 

emigration, whichever occurred first, and were originally reported in 2016/17 pounds sterling. 

Harrison et al. adjusted costs to 2019-pounds sterling (GBP) (Harrison et al., 2021a).  

Average yearly total healthcare costs were estimated by combining the estimated 

average yearly primary and secondary care healthcare costs for each person yielding an average 

yearly estimate of total NHS-based healthcare including inpatient hospital care episodes, 

primary care appointments and primary care drug prescriptions and private healthcare received 

in NHS hospitals. The estimate excludes emergency care, outpatient appointments, private 

healthcare undertaken in private facilities as well as, diagnostic test costs in primary care 

(Harrison et al. 2021a). Estimated average yearly total health care costs as well as other relevant 

demographics of Harrison’s et al. dataset are presented in Table 3.Feil! Fant ikke 

referansekilden. 

Table 3 Summary demographics of sample used in Harrisons et al. (2021)   

Variable All Men Women 

N 310 913 144 032 166 881 

Age at recruitment, years [Mean (SD)] 56.9 (7.99) 57.1 (8.10) 56.7 (7.90) 

Years of follow-up primary s [Mean (SD)] 8.1 (0.80) 8.1 (0.80) 8.1 (0.80) 

Years of follow-up secondary costs   [Mean 

(Median)] 

6.1 (6.1) 
 

  

Average Total Healthcare costs per year [Median 

(IQR)]* 

£601 (£212 

to £1,217) 

£605 (£206 

to £1,240) 

£596 (£216 

to £1,199) 
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*Results from imputed data, median & IQR are the medians of 100 medians & IQRs 

Source: (Harrison et al., 2021a.; Dixon et al., 2020) 

Harrison et al.(2021a) included age at baseline assessment, sex, 40 principal 

components and UK Biobank recruitment centre location were included as covariates in their 

regression models (see Table 4). Spelling out the each of the p covariates in equation (3) yields 

the following equation for each instrument:  

𝑌 = 𝛿𝑜𝑚 + 𝜌𝑘𝑍𝑘 + 𝜐1𝑚1
𝑦
+ 𝜐2𝑚2

𝑦
+ 𝜐3−43𝑚3−43

𝑦
+ 𝜐44−𝑝𝑚44−𝑝𝑦

𝑦
+ 𝜈𝑚 

Table 4 Description of variables included in regressions models by Harrison et al., (2021a)  

Y Average yearly total healthcare costs in 2019 pounds sterling 

𝑍𝑘 One instrument –Number of effect alleles at the specific SNP. Can take 

values 0, 1 or 2. 

𝑚1
𝑦

 Age at baseline assessment  

𝑚2
𝑦

 Sex 

𝑚3−43
𝑦

 40 principal components 

𝑚44−𝑝𝑦
𝑦

 A set of dummies indicating UK Biobank recruitment centre location 

𝜈𝑚 Error term  

Source: (Harrison et al., 2021a) 

The estimated effect sizes per allele of the 71 SNPs being used as instruments, when 

SNPs-Exposure are positively oriented, the association range between, approximately, a 

reduction of £16 in 2019-GBP and an increment of £5 in 2019-GBP.  

Primary analysis 

The fixed effects model was in practice done by performing regression equation (15) 

using 
1

𝑠𝑒2(𝜌�̂�)
 as weights. Primary and sensitivity analysis were carried out by using the R 

package for performing 2-sample MR (Hemani et al., 2018a, 2918b).  

Assessment of assumptions validity  

Weak instruments. I only included SNPs with a significant association to the exposure 

at the customary genome-wide significant level of p< 5 x 10^-8 to avoid weak instruments 

(Zhao et al., 2020). Following Bowden et al. (2017), Bowden & Holmes (2019), and Bowden 

et al. (2016a), the strength of each individual instrument was assessed by the F statistic (eq.(12)) 

additional to the simple average instrument strength (eq.(13) ) and the weighted average 



instrument (eq.(14) ). In the practical calculations 𝑠𝑒2(𝜌�̂�) was used instead of 𝜎𝜙𝑘
2  by virtue of 

A16. 

Okbay et al. (2016a) was the first study to discover most of the SNPs used as instruments 

in this thesis, there was therefore reason to fear the winner’s curse problem in this thesis. In 

their GWAS, the authors examine the out-of-sample replicability of their results by using a 

subsample of the UK Biobank (n=11,349) released in 2015. Additionally, the SNP’s effect 

adjusted for the winner’s course was estimated by applying the methods described in a Rietveld 

et al.'s paper from 2014 (Rietveld et al., (2014) in Okbay et al. 2016b). Based on corrected 

effects, Okbay et al. find that 71.4 of the 74 SNPs were expected to have matching signs, 40.3 

SNPs were expected to be significant at the 5% level, and 0.6 SNPs were expected to be 

genome-wide significant. The observed numbers are, respectively, 72, 51 and 7. Okbay et al. 

(2016a) conclude that the observed associations between SNPs and the number of years of 

schooling completed observed in their primary analysis, is not driven by an overestimation of 

the genetic associations in their original dataset. Okbay et al. (2016a) results support the 

assumption that the instruments used in our analysis are of sufficient strength.  

Exogeneous condition. The risk of including instruments in linkage disequilibrium is 

handle by pruning the SNP (i.e. applying the clumping procedure describe in the methods 

chapter). I concentrate next on assessing population stratification and horizontal pleiotropy. 

Potential bias from assortative mating and dynastic effects can be avoided by within-family 

analysis (Brumpton et al., 2020). However, as this type of analysis requires individual data, it 

was not possible to carry out for this thesis.   

The risk of population stratification is reduced by using summary data from studies on 

assumed homogeneous populations i.e. individuals of European and white British ancestry our 

case. In addition, Okbay et al.(2016a) and Harrison et al.(2021a) took additional steps to assess 

and correct for population stratification in their analysis. Both studies carry out Principal 

Components Analysis (PCA) and used the t-th principal components as covariates in their 

regression equations. Furthermore, Okbay et al. (2016a) assessed remaining effects due to 

confounding factors, such as population stratification by performing a linkage disequilibrium 

score regression (Sullivan et al., 2015 in Okbay et al., 2016a), a common technique in GWAS 

studies, and concluded that the effects of population stratification were small. 

I estimate the overall causal effect by applying horizontal pleiotropy robust methods. 

Following Burgess et al. (2020), I applied the IVW-MRE, MR-Egger, the median based method 
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and the mode-based method. The IVW-MRE estimated was obtained by carrying out equation 

(23) using 
1

𝑠𝑒2(𝜌𝑘)̂
 as weights while the Egger-estimator was estimated by regression equation 

(24)  with the same weights. The necessary reorientation of the SNP-exposure estimates was 

done automatically when applying the “mr_egger_regression” option the R-MR package 

((Hemani et al., 2018a, 2918b) ).  The Egger test of the intercept was performed by the 

“mr_pleiotropy_test” command in same package. Additionally, I performed a leave-one-out 

analysis (Burgess& Thompson, 2017; Hemani et al., 2018a, 2018b) to detect influential data 

points. 

Heterogeneity. I assessed the risk for horizontal pleiotropy by evaluating heterogeneity 

among the ratio estimate of the causal effects (Hemani et al., 2018).In this study, the 

heterogeneity measure Q is in practice estimated by rearranging the Higgins’ metric 𝐻2 =

𝑄/(𝑘 − 1)  (Higgins & Thompson, 2002) to 𝑄 = 𝐻2(𝑘 − 1) and taking advantage of that  𝐻2 

is equivalent to the mean standard error/deviation MSE (𝜔) from the regression equation (23) 

so that 𝑄 = 𝜔(𝑘 − 1) (Mawdsley et al. 2017; Higgins & Thompson, 2002; Hemani et al., 

2018b).  

Additionally, heterogeneity was assessed by examining funnel plots (Walker et al. 

2019). A funnel plot (Figure 5) were created by the “mr_funnel_plot”-command included in 

the Two-sample MR R-package (Hemani et al., 2018b) and depict the effect estimates of each 

individual SNP as a separate instrument SNP on the X-axis against the inverse of the standard 

error of the each of the causal estimates. The overall causal effect in depicted in the graph as 

the vertical line from which symmetry is assessed (Hemani et al., 2018a, 2018b; Walker et al. 

2019).  

NOME Assumption. The magnitude of a potential dilution bias for the IVW estimates 

due to a violation of the NOME assumption (A15) was estimated by the relations described in 

eq. (28) and (29) (Hartwig et al., 2017). Dilution bias of the MR-Egger estimator was estimated 

by the 𝐼𝐺𝑋
2  (eq. (30)) statistic (Bowden, Del Greco, et al. (2016a).   

Results 

Under the assumption that changes in genetic variants influence years of schooling in 

the same direction for all individuals (A10), our results suggest that there a negative effect of 

years of schooling on total healthcare costs later in life.  



The standard Inverse Variance Weighted (IVW) method shows a reduction in yearly 

total healthcare costs of £219 per additional standard deviation of years of schooling (3.6 years) 

corresponding to £61 per additional year of schooling (Table 5and Figure 4). The effect of 

schooling on total healthcare costs remains negative across all additional methods, ranging 

between a reduction of £58 per additional years of schooling for the Weighted Median method 

and 29.4 for the MR-Egger method (£207 and £106 per standard deviation).  

Results are not highly sensitive to the varying assumptions regarding the validity of 

instruments across methods. Under the scenario where up to 50 % of the instruments are invalid, 

the effect of years of schoolings on healthcare costs remains negative, of similar magnitude to 

the IVW estimator (which assumes that all instruments are valid) and highly significant as 

shown by the Weighted Median estimator.   

The effect of years of schooling on healthcare costs also remains negative and 

significant under a scenario where the majority of instruments are invalid (Mode estimates). In 

the case that the majority of instruments were, in fact, invalid, we expect the Mode estimates 

of £-207 and £-186 (weighted and simple respectively) to be less biased than the Weighted 

Median and the IVW estimators (Hartwig et al., 2017). The weighted method being the less 

biased among the two mode estimators. The confidence intervals of the Mode estimators are, 

as expected (Hartwig et al., 2017), wider than those from the IVW and Weighted Median 

methods. The similarity in point estimates and the fact that they persist significantly across 

IVW, Weighted Median and Mode (weighted and simple) support the results of the 

conventional IVW-results showing a significant reduction in healthcare costs for an extra year 

of schooling.  

The Egger-estimate is not significant. However, under the assumption of no directional 

horizontal pleiotropy, simulation studies (Hartwig et al., 2017; Bowden et al.,2015) have shown 

that the MR Egger is a considerably less powered method to detect a causal effect compared to 

the IVW-method, especially when the SNP-exposure effect sizes are relative homogeneous. 

Therefore, the considerable wider confidence intervals of the MR-Egger could be compatible 

with a scenario with no horizontal pleiotropy. For comparison, the Simple Mode method was 

found the second less powered method, followed, in increasing order by the Weighted Mode, 

Weighted Median and the IVW methods. The MR- Egger intercept test show that the intercept 

was not significant different from zero (value: -2; Std error: 2.76; P-value: 0.48) supporting the 

assumption of no directional horizontal pleiotropy.  The MR- Egger intercept test does not 

require the Inside assumption to be valid (Burgess & Thompson, 2017).  
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The strength of each individual instrument (F) ranges from 22 to 81. The simple average 

instrument strength (�̅�) is 38 while the weighted average instrument ( 𝐹𝑤̅̅ ̅ ) is 41.  Potential 

dilution bias of the causal effect estimator due to violations of the No Measurement Error 

(NOME) for the IVW estimator was calculated by eq. (28) and estimated to be 3 %. Dilution 

bias of the MR-Egger estimator (𝐼𝐺𝑋
2  = 0.97) indicate a small dilution bias attenuation of 

approximate 3 %.   

Table 5 Results of the analysis. Estimates reflect changes in healthcare costs per one extra unit of years of schooling, 
standard errors, and confidence intervals of the estimates. Table shows changes for one additional year of schooling and for 
one extra standard deviation of years of schooling.   

Method  2019 

GBP/year 

2019 GBP/std. Years of schooling 

(3.6 years) 

P Value 

Beta_1 SE 95 % CI 

IVW-fixed effects  -60.8 -218.9 25.8 (-269.5, -168.3) 2.22E-17 *** 

IVW-multiplicative 

random effects  

-60.8 -218.9 30.6 (-278.8, -159) 8.10E-13 *** 

Weighted median  -57.6 -207.3 39.6 (-284.9, -129.7) 1.64E-07 *** 

Weighted mode  -51.6 -185.9 87.6 (-357.7, -14.1) 0.037446 * 

Simple mode  -52.8 -190.1 96.8 (-379.9, -0.34) 0.053554 * 

MR Egger -29.6 -106.5 158 (-416.4, 203.1) 0.502559 ns 
 

Note: All methods are calculated using N= 71 Snps.  Abbreviations:  IVW, inverse variance weighted; MR, Mendelian 
randomisation.  ns= P> 0.05, * = P ≤ 0.05, **= P ≤ 0.01, *** P ≤ 0.001 

  



Figure 4 Forest plot. The plot depicts the 71 ratio estimates of the effect size (𝛽1𝑘) and their 95% confidence intervals used in 
this analysis. The six red dots diamonds at the bottom of the plot represents the overall effect, using different estimation 
methods. All point estimates are negative and of similar size, but MR-Egger is not significant and associated with much 
greater uncertainty compared to the alternative methods. The overall impression suggests a reduction of total (average 
yearly) healthcare costs per additional standard deviation of years of schooling (3.6 years). 

 

I assess heterogeneity among ratio estimates to explore potential violations of the 

IV/MR assumptions, including, but not limited to, horizontal pleiotropy (Bowden & Holmes 

2019; Hemani et al., 2018). The Cochran’s Q statistic of the IVW and MR-Egger estimates 

were calculated (Qivw:98; Qivw_df: 70; QEgger:97; QEgger_df: 69) and test for a null of no 
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heterogeneity. The tests results show no indication of heterogeneity as both yielded P-values of 

approximately 0,014.  Heterogeneity was additionally assessed by visual inspection of funnel 

plots (Figure 5) which suggest no signs of considerable heterogeneity, supporting the 

impression that heterogeneity and directional pleiotropy are not a considerable issue for this 

study as suggested by the Cochran’s Q statistic and the MR- Egger test.   

Figure 5 Funnel Plot.  X-axis shows the estimated overall effect of an additional unit years of schooling on yearly healthcare 
costs per effect allele in 2019-punds sterling against the inverse of its standard error. The more precise results are at the top 
of the Y-axis. In the absence of heterogeneity, the plot would resemble a symmetrical inverse funnel, centred at the overall 
causal effect estimate (solid lines). 

 

Figure 6 is a graphical summary of the analysis. The estimates of an increase of one 

standard deviation of years of schooling per effect allele at the instrumental SNP (�̂�𝑘) are 

depicted on the X-axis. The estimates of association between an effect allele at the instrumental 



SNP and yearly healthcare costs measured in 2019-GBP (�̂�𝑘).  The gradient from the origo to 

each point is the ratio estimate (
�̂�𝑘

�̂�𝑘
) of the effect of years of schooling on healthcare costs. The 

slope of the lines represents the overall estimates of effect of years of schooling on healthcare 

costs according to the different methods. The scatter plot shows graphically that there are no 

extreme discrepancies among the ratio estimates and the overall estimates. We see however that 

there are some ratio estimates on the periphery. Those ratio estimates influence the overall 

results (except for the simple mode estimate) depending on their precision.  

Figure 6. Scatter Plot.  X-axis shows an increase of one standard deviation of years of schooling per effect allele. Y-axis shows 
the increase in yearly healthcare costs per effect allele in 2019-punds sterling. The slope of each line correspond to the 
overall effect estimate under each method. 

 

I investigate whether the results are dominated by a single variant/SNP, by carrying out 

a leave-one-out analyses. The results are summarised on Table 6 suggesting that the 

primary/original results were not driven by a single SNP. Figure 7 is a visual presentation of 

the results of leave-one-out analysis for the IVW-Multiplicative estimate. It presents the 

original overall effect IVW-Multiplicative estimate with confidence intervals (in red) along the 
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estimates and confidence intervals obtained by a series of iterations where one SNP was left 

out at the time. This plot shows that, for instance, the IVW-Multiplicative overall estimate 

becomes 209.24 when SNP rs62100767 at the top of panel is excluded from the analysis. 

Results indicated that the IVW-Multiplicative stimator is not driven by individual SNPS. 

Figures 8 to 11 in appendix 4 visualises the results for the leave-one-out analysis of the Egger, 

Weighted Median and Mode, and Simple Mode estimates 

Figure 7. Forest plot of the leave-one-analysis of the IVW-Multiplicative effects method. Each black dot represents the overall 
estimate using IVW multiplicative method when the analysis is replicated by leaving out one SNP. The overall IVW-
multiplicative estimate become, for instance, 209.24 when SNP rs62100767 at the top of panel is excluded from the analysis. 
Results suggest that the IVW-Multiplicative estimator is not driven by individual SNPS. 

 

  



 

Table 6 Summary of leave-one-out analyses. For each method, 71 regressions were run. Each regression left out one SNP 
and recovered an overall estimate of the causal effect. The original estimate (including 71 SNPs) is showed in column 2. 
Column 3 presents the range of estimates produced by the series of 71 regressions.   

Estimator Original estimate Range of estimates from leave-

one-out analyses 

Inverse variance weighted (fixed 

effects) 

-218.9 ( -228.5,-209.3 ) 

Inverse variance weighted 

(multiplicative random effects) 

-218.9 (-228.5,-209.3) 

MR Egger -106.5 (-241.7, -42.12) 

Weighted median -207.3 (-235.5, -186.18) 

Simple mode -190.1 (-215, - 159.9) 

Weighted mode -185.9 (-215.1, - 143) 

Discussion  

In this thesis, I have estimated the effect of a marginal increase in completed years of 

schooling on yearly total healthcare costs (primary and secondary healthcare). The aim of this 

thesis is to estimate a causal effect. However, this is challenging as the relationship involves 

potential confounding and reverse causation problems. Confounding and reverse causation 

problems in a naïve regression model would hamper a causal interpretation of the coefficients. 

Hence, instrumental variables in a Two-sample Mendelian Randomisation analysis were 

applied. This method might provide causal effects of education on health care costs, given that 

certain conditions are fulfilled. 

 

This thesis has two main empirical findings and provides some significant 

methodological insights. Firstly, my results show a reduction of healthcare costs of 

approximately £61 in 2019-GBP for an extra year of completed schooling (£219 per std in years 

of schooling (3.6 years); CI £267 - £168).). Secondly, estimates are not highly sensitive to the 

varying assumptions regarding the validity of instruments across the various methods applied, 

neither show signs of considerable heterogeneity or potential dilution bias, supporting our main 

results. The last conclusion that I draw from my experiences working on this thesis is that 
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genetic variants as instruments in a Two sample-MR with publicly available summary data 

from well powered GWAS can be used to carry out exploratory analyses of economic outcomes.  

To the best of my knowledge, this is the first paper that has studied the impact of 

education attainment/years of schooling for the general population on health care costs. 

However, the literature on the association between education and health, education and 

healthcare services utilisation, and education and health literacy reviewed earlier might provide 

some insight on the relationship between years of schooling and healthcare costs. Even though 

the causal effect of educational attainment on health is yet to be consistently stablished (Galama 

et al., 2018; Clark & Royer, 2013), a large and robust association between education and health 

have been documented, also after controlling for several background characteristics. My results 

are in line with studies that find a positive effect of education on indicators of health such as 

mortality by applied instrumental variable methods3  (e.g. Lleras-Muney (2006); Davies, 

Dickson, et al., 2019). However, my estimates would reflect potential additional mechanism 

highlighted in healthcare costs literature, which may work in opposite directions. There is, for 

instance, evidence suggesting that there are differences in the use of healthcare services, and 

types of treatment received related to education levels, even when comparing individuals with 

similar health status (e.g. Droomers & Wester, 2004; Fiva et al., 2014), and there are also 

empirical results showing that health literacy appears to be a predictor of factors influencing 

healthcare costs e.g. patients’ disengagement, and misuse of available health resources 

(Palumbo, 2017). Overall, my results suggest that a reduction in costs related to gains in health 

and health literacy associated with additional years of schooling may surpass potential costs’ 

increments linked to differences in services utilisation i.e., for given health, better educated 

individual may make more use of expensive services compared to less educated patients.  

Strengths. Under a set of conditions (summarised in appendix 2), Mendelian 

randomisation (MR)/IV methods allow to avoid endogeneity problems such as biases due to 

confounding and reverse causation and make it possible to make causal inferences from my 

results (Lawlor et al., 2008).  In this thesis, I reviewed a set of circumstances that may challenge 

the plausibility of the assumptions required by MR. Whenever possible, the likelihood of these 

assumptions was assessed by statistical means. Additionally, to reduce the threat of weak 

instruments, only SNPs associated with years of schooling at the genome-wide significant level 

of p<5x10^-8 were included. To increase the possibilities of using exogenous variation, SNPs 

 
3 It is worth mentioning that not all IV-analysis that have found such effect (e.g Mazumder (2008) or Fletcher 

(2015) in Galama et al., 2018). 



were pruned to only include independent instruments (not in Linkage Disequilibrium) and I 

used summary data from studies based on individuals of European and white British ancestry 

with non-overlapping samples. Moreover, I relay in Okbay et al.'s (2016a) and Harrison et al.'s 

(2021) efforts to produce valid estimates of the SNP-years of schooling, and SNP-costs 

associations.  

Provided that the MR/IV-assumptions hold, my results shed light on the powerful effect 

of education attainment on healthcare costs but, equally important, they provide some 

methodological insights about the use of genetic instruments in the analysis of economic 

outcomes. Von Hinke et al. (2016) pointed out that MR might not be a compelling method for 

the analysis effects of endogenous behavioural phenotypes (e.g. smoking or drinking) on 

economic outcomes. The distinctive characteristic of behavioural phenotypes is that much of 

the observed variation may stem from environmental factors, von Hinke et al.(2016)  presented 

a series of  arguments including the following: 1) genetic variants, while not weak in a statistical 

sense, will generally, only create small shifts in the exposure, this will be problematic as 

economic outcomes often require large changes in the exposure to impact the outcome, 2) the 

sample sizes of data sets containing data on relevant exposures and outcomes were too small 

(about 4000-5000 observations) to produce precise estimates.  

With these arguments in mind, it was therefore a somewhat unexpected results that the 

small amount of exogeneous variation in years of schooling introduced by the instruments (2.9 

to 9 weeks of additional education per effect allele; R-squared values ranged between 0.01 % 

and 0.035 %) lead to statistically significant changes in healthcare costs. This point is particular 

important when using a two sample MR approach with summary data. The reason behind it is  

that the use of aggregate data limits the possibilities to aggregate the variance induced by each 

SNPs into a single, more powerful instrument. For context, Davies, Dickson, et al. (2019) 

construct a single, combined instrument based on same SNPs as I use. Davies, Dickson, et al. 

(2019) observe that a unit increase in their combined instrument, is associated with 1.45 

additional years of education (std. 0.05), while the variation induces by each SNPs used 

individually in this study range between 2.9 and 9 weeks of additional education.  My results 

make the case that one should not discard using genetic variants solely on the argument that 

they won't induce enough variation to the exposure. The usefulness of SNPs as instruments, as 

von Hinke et al. (2016)   also suggested, would depend on how much of a change in the exposure 

is needed to produce a change in the outcome. In our case, had healthcare costs only be altered 

by large shifts in completed years of education, using SNPs as instruments may not detect the 
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causal effect. Thus, two-sample MR with free available summary data and statistical software 

(Hemani et al. 2018a), might therefore be an affordable method to analyse economic outcomes. 

Furthermore, my results are relative precise thanks to the rapid increase in sample sizes of the 

datasets, and the implementation of two-sample methods, which relax the need of having a 

single dataset containing genetic markers, information on the exposure, and information on the 

outcome. However, it is important to keep in mind is that my estimates may come to better use 

when analysing relatively modest changes in years of schooling as inferring the effects of a 

small change onto a larger one (e.g. one whole additional year of education) would require 

making assumptions on the way effects accumulate.  

Weaknesses. There are some concerning issues regarding the internal and external 

validity of my estimates. Firstly, it has been documented that participants UK biobank study 

are among other things, healthier, wealthier and are better educated  than the general British 

population (e.g. Dixon et al., 2020). Education and healthcare costs seems likely to have 

influenced their participation in the study, creating a selection bias, which will mean that my 

estimates could be distorted.  Secondly, as I did not have access to individual data, it was not 

possible to carry out analyses to assess potential bias from assortative mating and dynastic 

effects, or to test for non-linearity of the effects of years of schooling on healthcare costs.  

Furthermore, to my understanding, it has not been rigorously established which 

particular causal effect is identified when using genetic variants as instruments. Imbens & 

Angrist (1994)  showed that, under the monociticy assumption, IV-methods identify the local 

effect treatment effect (LATE) which is the causal effect for those individuals4 who received 

treatment only because they were induced by the instrument (Aronow & Carnegie, 2013). In 

many cases, however, the estimate of interest is the average treatment effect for the whole 

population of interest (ATE).  

On the one hand, some authors have proposed that, in MR studies, the LATE and ATE 

effects are equivalents (Davies, Dickson, et al., 2019; Dixon et al., 2020). Davies, Dickson, et 

al. (2019) compare using genetic variants to other types of instruments, specifically, an 

education reform in Britain, and suggest that while the education reform would only affect those 

at the end of the education distribution, genetic instruments, would affect individuals 

 
4 These individuals are known as compliers. For reference, Aronow & Carnegie (2013) explain that in a setting 

with a binary instrument and a binary treatment, population is made of three subpopulations additional to 

compliers: 1) defiers i.e. individuals who do the opposite of what is expected by the value of their instrumental 

variable/assignment, 2) never-takers who do not take the treatment regardless of the value of their instrumental 

variable and 3) always takers, those who take the treatment, whatever their assignment. 



independently of observed levels of education i.e. across the entire education distribution. 

Dixon et al. (2020) on their side, justify their conclusion by referring to the fact that the exposure 

in question (BMI) is a continuous variable. A supportive argument for assuming the LATE and 

ATE effects to be similar might be that, when using summary data, each ratio/IV estimate is 

generated from a single SNP, thus, each ratio estimate is associated with a different group of 

compliers. Therefore, as the set of ratio estimates in this study show no signs of considerable 

heterogeneity, we might imply that the estimated causal effects of years of schooling may be 

similar across the UK-biobank sample. This could in turn be interpreted as an indication of the 

similarity between the LATE and ATE effects of years of schooling on costs. 

On the other hand, the potential selection bias mentioned above may imply that the 

sample being studied only covers part of the distribution of educational attainment from the 

general population. Additionally, as, to my awareness, the knowledge on the biological paths 

making the effect alleles to result in more years of completed schooling is not extensive, we 

cannot rule out that various of SNPs being used work through the same biological mechanism. 

Thus, that the set of compliers across SNPs might, in fact, be substantially overlapping. This is 

particularly relevant to my results since Okbay et al. (2016a) concluded that the 74 SNPs 

affecting educational attainment were disproportionally found in genomic regions related to 

neural development and showed that they were genetically correlated to cognitive performance 

and intercranial volume. It may therefore be that the genetic variants do not affect the exposure 

independently of education levels as suggested by Davies, Dickson, et al. (2019) but rather, 

mostly affect those at the top of the education distribution, given the positive correlation 

between cognitive performance and education levels (Deary & Johnson, 2010). This would in 

turn weaken the belief that the LATE effects estimated by my MR-analysis are equivalent to 

the average treatment effect (ATE) for the population. 

Moreover, the genetic correlation between cognitive ability and completed years of 

schooling discovered by Okbay et al. (2016a) could potentially violate the exclusion criteria if 

there was any direct association between cognitive performance and health/healthcare unrelated 

to education attainment. A way to assess the likelihood of (horizontal) pleiotropy due to e.g. 

cognitive performance is to carry out a multivariable MR-analysis. With the data at hand, it was 

not possible to carry out this type of analysis.  

Furthermore, my estimates of healthcare costs do not include, among other things, costs 

of emergency care, outpatient care or diagnostic tests’ costs in primary care (Harrison et al., 

2021a), if those unobserved where to increase with a marginal increase in education, the effect 
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size could be closer to zero or even result in an increase in costs following an increment in 

education. However, to my knowledge, there is not conclusive evidence of an education 

gradient in the use of primary, emergency or outpatient healthcare. As seen earlier, existing 

studies have demonstrated either no association, a positive association between education and 

the use of preventive care, or a causal effect between education and the use of out-of-hours-

primary care (i.e., less educated individuals are more likely to use out- of-hours primary care 

services). While it is difficult to assess the way in which including costs of emergency care or 

diagnostic test costs in primary care would change my estimate, it seems rather likely that 

including those costs would increase the size of the effect and not change the direction 

Additionally, it may be argued that, from a societal point of view, the policy relevant 

question is whether there is an effect of years of schooling on the overall healthcare 

expenditure/costs5 instead of the governmental financed expenditure/costs that I have used in 

this thesis. Analyses of the overall healthcare expenditure might, for instance, yield effect 

estimates which take potential changes in financing patterns associated with higher levels of 

educational attainment into account (Cf. results suggesting that higher educated people and 

higher incomes tend to prefer private specialist services outside the governmental schemes). If 

the foregoing mechanisms were strong enough, they could lead to contradictory results when 

analysing overall healthcare costs, regardless of the financing source, and governmental 

financed healthcare costs. However, potential discrepancies would probably depend on the 

financing structure of the healthcare system in question. In our case, costs’ estimates are based 

on NHS data from the UK, which is characterised by universal access to healthcare and where 

governmental financed expenditure stands for most of the overall healthcare costs. For instance, 

in 2019, it was calculated that governmental financed expenditure corresponded to 79 % of the 

overall health care expenditure in the UK. The same year, out of pocket, private insurance and 

other financing sources shares were recorded to be 16 %, 3 % and 2 % respectively (Office for 

National Statistics, 2020). These figures might allow us to assume governmental financed costs’ 

estimates used here are proxies of the overall healthcare costs and, thus, one could expect to 

obtain a negative effect of an increment in years of schooling on healthcare costs, even when 

using costs estimated including both governmental and private expenditure.  

It is a methodological concern that the knowledge about the functions of genetic variants 

and the pathways in which they affect education attainment are, to the best of my knowledge, 

 
555 That is, adding expenditure financed by out-of-pocket expenditure, private health insurance and other sources 

of financing to the government-financed expenditure. 



still not well known. This is important because, if as von Hinke et al. (2016) argues, MR is a 

controversial approach within economics, because it is not possible to test the exogenous 

criteria. In that case, it is vital to gain that knowledge, so that one can make compelling 

theoretical arguments that support the exogenous assumption.   

 

Policy relevance and further research. Under the set of assumptions discussed 

through this paper, and if reading my results as estimates of the average treatment effect in the 

population, the findings of this thesis would be relevant for any policy maker facing a 

constrained healthcare budget, regardless of the economic power of their countries. Several 

examples of policy relevant questions that causal estimates of the effect of years of schooling 

on healthcare costs could inform come to mind. One being cost-benefits analysis of alternative 

interventions aiming to increase health literacy or to reduce healthcare costs, for instance, when 

comparing increasing years of formal schooling to information campaigns targeting the general 

population. Another example could be policy makers considering using education as a strategy 

to reduce future healthcare costs.  

However, further work is needed before it would be possible to make more confident 

use of the findings of this thesis. A natural next step in future research would be to replicate my 

analysis using a random sample of the population to avoid selection bias. Testing for non-linear 

effects and adjusting for e.g. cognitive performance by applying a multivariable MR-method 

would be a significant improvement on my analysis. Ideally, one would estimate the effect of 

years of schooling on healthcare costs using individual data on siblings and/or family trios to 

assess the risk of assortative mating and dynastic effects.  

In more general terms, there is a need to understand the biological pathways through 

which genetic instruments influence the exposure of interest. It would provide insights on the 

specific type of causal effects being estimated in Mendelian Randomisation studies. On a 

methodological note, it seems imperative to fully understand which causal effect a MR-analysis 

identifies. In that endeavour, it could be useful to explore the methods proposed by Aronow & 

Carnegie (2013) to deduce ATE estimates from the LATE ones.  

Conclusion  

This thesis finds that an extra year of completed schooling would reduce total healthcare 

costs (from primary and secondary healthcare) by approximately £61 in 2019-GBP (£219 per 

std in years of schooling (3.6 years); CI £267 - £168).). Furthermore, estimates are not highly 
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sensitive to the varying assumptions regarding the validity of instruments across the various 

methods applied, neither show signs of considerable heterogeneity or potential dilution bias, 

supporting our main results. However, only using summary data from previous studies pose 

some limitations to the analysis. Thus, these results should be treated with care. Given the 

financing system in Britain, from which the data on costs was collected, the reduction in costs 

seems to yield the overall healthcare costs, including both governmental and private 

expenditure.  

 Additionally, I conclude that, contrary to earlier concerns, a Two-sample MR with 

summary data can be used to perform exploratory analyses of economic outcomes. Genetic 

variants should not be dismissed as instruments beforehand on the argument that each SNP 

provides very little exogenous variation to heavily environmental-influenced exposures. This 

is because the usefulness of genetic instruments to identify a causal effect would depend on the 

strength of the relation between the exposure and the outcome, the mechanisms that mediate 

this relationship, and the size of the samples being used.  

Moreover, conducting this research has led to the conclusion that a Two sample-MR 

with non-disclosive and easily accessible summary data from well powered GWAS can be used 

as an affordable method to carry out exploratory analyses of economic outcomes. However, 

methodologically solid research results would require using individual data from a random 

sample. Ideally containing information on siblings and/or family trios.  

An important additional note regarding the MR-method is that there is a need to 

understand the biological pathways through which genetic instruments influence the exposure 

of interest. Without this knowledge it is difficult to make convincing arguments supporting the 

credibility of the exogenous condition, which cannot be tested otherwise. Finally, it seems of 

vital importance to fully understand and rigorously establish which specific causal effects a 

MR-analysis identifies.  
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Appendix A. Overview of equations 

Formula numbering refers to equation numbers in main text. References for definitions 

and theoretical results are to be found in the main text.  

Variables   

Y Total healthcare costs (Average yearly total healthcare costs in 2019-pounds 

sterling) 

X US years of schooling equivalent. 

𝛄𝐌 Row vector with the product of a P covariates times their corresponding 

coefficients in structural equation 1 

𝑍𝑘 Instrument k. Number of effect alleles at the specific SNP. Each individual is, at 

conception, assigned a number of effect alleles (𝑍𝑘𝑖). 𝑍𝑘𝑖  can take values 0, 1 or 

2. 

𝛙𝐌𝐱 Row vector with the product of 𝑝𝑥 covariates times their corresponding 

coefficients in reduced-form equation 2  

Covariates: 

𝑚1−10
𝑥  Ten principal components 

𝑚11
𝑥  Birth year 

𝑚12
𝑥  Birth year^2 

𝑚13
𝑥  Birth year^3 

𝑚14
𝑥  Sex 

𝑚15
𝑥  Sex*birth year 

𝑚16
𝑥  Sex*birth year^2 

𝑚17
𝑥  Sex*birth year^3 

𝑚18−𝑝𝑥
𝑥  Dummies marking a significant societal event affecting only parts 

of the cohort’s individuals 
 

𝛖𝐌𝐲 Row vector with the product of 𝑝𝑦 covariates times their corresponding 

coefficients in reduced-form equation 3  

Covariates: 

𝑚1
𝑦

 Age 

𝑚2
𝑦

 Sex 

𝑚3−43
𝑦

 40 principal components 

𝑚44−𝑝𝑦
𝑦

 A set of dummies indicating UK Biobank recruitment centre location 

 



𝜚𝑚 , 𝜈𝑚 Error terms 

 

Structural equation: 

𝑌 = 𝛽𝑜𝑚 + 𝛽1𝑋 +𝜸𝑴+휀𝑚  
 

(1) 

Where the years of schooling of individual i is correlated with unmeasured factors included in 

the error term i.e. 𝑐𝑜𝑟𝑟(𝑋𝑖, 휀𝑖) ≠ 0 . 

There is one instrument (𝑍𝑘) which ideally satisfies conditions A5-A9 yielding the following 

reduced forms. Each reduced-form equation was estimated in a separate sample:   

𝑋 = 𝜙𝑜𝑚 + 𝜙𝑘𝑍𝑘 +𝝍𝑴
𝒙 + 𝜚𝑚 (2) 

𝑌 = 𝛿𝑜𝑚 + 𝜌𝑘𝑍𝑘 + 𝝊𝑴
𝒚 + 𝜈𝑚 (3) 

Notice that the covariates in the structural equation are not well/unambiguously defined but 

represent a similar collection of demographic variables.  

The magnitude of a potential causal effect can, provided that the monotonicity assumption A10 

holds, be estimated by |the ratio of the OLS-estimator of association between the instrument 

and healthcare cost from reduced-form equation (3) to the OLS-estimator of association 

between the instrument and years of schooling from equation (2). Given conditions A11-A12 

The OLS estimators 𝜌𝑘  ̂ and ϕk̂ used as input data for my study were calculated in to separated 

samples assumed to satisfy conditions A13 and A14 (Okbay et al., 2016; Harrison et al., 2021). 

In total, this study utilises 71 instruments assumed to be independent. The resulting 71 ratio 

estimates of  𝛽1 are assumed to provide independent evidence (A17) of a common overall 

estimate (A18). Each ratio estimate is represented as follows:  

 �̂�1𝑘 = 
𝜌�̂�

𝜙�̂�
,  k=(1,…,71) (5) 

The standard errors and variance of the ratio is presented below. Those are estimated by the 

Taylor approximations formula while requiring conditions A15 and A16 to hold.  

𝑉𝑎𝑟�̂�1𝑘 = 𝑣𝑎𝑟
�̂�𝑘

�̂�𝑘
=
𝜎𝜌𝑘
2

�̂�𝑘
2

 
(6) 

𝜎𝜌𝑘
2  is the variance of 𝜌�̂�. 

Information from the 71 estimates is combined by using the Fixed-effects IVW method, 

originally from meta-analysis literature. The Fixed-effects IVW requires all included SNP’s to 

be valid instruments (A19): 
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�̂�1𝐼𝑉𝑊 = 

∑ 𝑤𝑘  
𝜌�̂�
𝜙�̂�

𝐾
𝑘=1  

∑ 𝑤𝑘
𝐾
𝑘=1

    

(7) 

In equation (7), weights are set equal to the inverse of the ratio estimators 

variance (eq. (6)):  

𝑤𝑘𝐹𝐸 =
1

𝑣𝑎𝑟
�̂�𝑘
�̂�𝑘

= 
�̂�𝑘
2

𝜎𝜌𝑘
2    

 

(8) 

The IVW_FE becomes:  

�̂�1𝐼𝑉𝑊𝐹𝐸 =  
∑  �̂�𝑘�̂�𝑘𝜎𝜌𝑘

−271
𝑘=1  

∑ �̂�𝑘
271

𝑘=1 𝜎𝜌𝑘
−2

 

(9)  

And the standard errors are:  

𝑠𝑒(�̂�1𝐼𝑉𝑊_𝐹𝐸) =  √

1

∑ 𝑣𝑎𝑟
�̂�𝑘
�̂�𝑘

𝐾
𝑘=1

 

(10) 

The practical estimation of the B1 is carried out by fitting the following OLS weighted 

regression:  

�̂�𝑘 = 𝛽𝑖𝑣𝑤 �̂�𝑘 + 𝜖k;   𝜖k~𝑁(0, 𝑠𝑒
2(𝜌𝑘)̂)  

𝑊𝑒𝑖𝑔ℎ𝑡𝑠 =
1

𝑠𝑒2(𝜌𝑘)̂
 

 

(11) 

Under the assumption (A16) that  𝑠𝑒2(𝜌𝑘)̂ = 𝜎𝜌𝑘
2  

 

Sensitivity analyses  

A major threat to instrument exogeneity when using genetic variants is that it might exist a 

direct effect from the SNP to the outcome. This is known as horizontal pleiotropy.   

Consider the following model with one instrument and no covariates for simplicity 

𝑌 = B𝑜 + 𝛼𝑘𝑍𝑘 + 𝛽1X + Σ 

 

(15) 

The reduced forms are then  



𝑋 = 𝜙0𝑘 + 𝜙𝑘𝑍𝑘 + 𝜚𝑘  (16) 

 

𝑌 = 𝛿0𝑘 + 𝜌𝑘
∗𝑍𝑘 + 𝜈𝑘,  𝜌∗ = 𝛼𝑘 + 𝛽1𝜙𝑘 

 

(17)  

 

So that 

𝛽1
∗ =

𝜌𝑘
∗

𝜙𝑘
= 𝛽1 + 

𝛼𝑘
𝜙𝑘

 
(18) 
 

And the overall IVW-estimate will tent towards:  

�̂�1𝑖𝑣𝑤
∗ ≈ 𝛽1 +

∑ 𝑤𝑘
𝐾
𝑘=1  𝛼𝑗
∑ 𝑤𝑘
𝐾
𝑘=1

= 𝛽1 + 𝐵𝑖𝑎𝑠 (𝛼, 𝜙)   
(19) 

 

Multiplicative random effects  

�̂�1𝐼𝑉𝑊𝑀𝑅𝐸 = 

∑ 𝑤𝑘
∗ 𝜌𝑘

∗̂

𝜙�̂�
 𝐾

𝑘=1  

∑ 𝑤𝑘
∗𝐾

𝑘=1

  

(20) 

By the additional assumptions of the model (A20 and A21), the pleiotropic effects of each 

instrument, cancel each other, eliminating the bias of the estimator. The magnitude of the 

multiplicative and the fixed effects IVW models are thus the same.   

In the multiplicative IVW model, weights are equal to the inverse of the ratio estimators’ 

variance times a measure of the heterogeneity among those (𝜔).  

𝑤𝑘
∗_𝑀𝑅𝐸 =

1

(𝑣𝑎𝑟
𝜌�̂�
𝜙�̂�
) ∗ 𝜔 

 
(21) 

With the following standard error: 

𝑠𝑒(�̂�𝐼𝑉𝑊_𝑀𝑅𝐸) =  √

1

∑ (𝑣𝑎𝑟
𝜌�̂�
𝜙�̂�
)𝐾

𝑘=1

∗  √𝜔 

(22) 

The practical estimation of B1 is done by fitting the following weighted OLS-regression 

equation using 
1

𝑠𝑒2(𝜌𝑘)̂
 as weights. In this case, the 𝑠𝑒2(𝜌𝑘)̂ is used as the empirical estimator of 

𝜔 ∗ 𝜎𝜌𝑘
2 .  𝜔 can be independently estimated as the mean standard error/deviation (MSE/MSD) 

of regression equation (24) .  
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�̂�𝑘 = 𝛽1𝑖𝑣𝑤 �̂�𝑘 + 𝜖𝑘;   𝜖𝑘~𝑁(0,𝜔 ∗ 𝜎𝜌𝑘
2 )   (23) 

 

The Egger estimator 

The Egger method handle the case when the pleiotropic effects do not cancel out (directional 

unbalanced horizontal pleiotropy). The Egger estimator would yield a consistent estimate of 𝛽1 

even in the caser where all instruments were invalid instruments.  The causal effect (𝛽1𝐸 ) is 

estimated by a weighted regression equation using 
1

𝑠𝑒2(𝜌𝑘)̂
  as weights. In this case, the empirical 

𝑠𝑒2(𝜌𝑘)̂ are consider to represent 𝜎𝜌𝑘
2 .   

�̂�𝑘 = 𝛽0𝐸 + 𝛽1𝐸 �̂�𝑘 + 𝜖𝑘;   𝜖𝑘~𝑁(0, 𝜎𝜌𝑘
2 ) (24) 

The Egger method also depends on the Inside condition (A21) i.e. 𝑐𝑜𝑟𝑟 (𝛼𝜅 , 𝜙𝑘) = 0  

𝛽1�̂� = 
𝑐𝑜𝑣 (𝜌∗̂,�̂�)

𝑣𝑎𝑟 (�̂�)
 = �̂�1 +

𝑐𝑜𝑣 (�̂�,�̂�)

𝑣𝑎𝑟 (�̂�)
   and 𝑐𝑜𝑣 (�̂�, �̂�)

𝑁→∞
→   𝑐𝑜𝑣 (𝛼, 𝜙)

𝐾→∞
→   0 

(25) 

With the following standard error:  

𝑠𝑒(�̂�1𝐸) =
𝜔

(∑ (�̂�𝑘−�̂�)
2

𝐾
𝑘=1 )𝜎𝜌𝑘

−2
     (26) 

�̂� is the weighted average SNP-exposure association using the inverse-variance weights 
1

𝜎𝜌𝑘
2 , 

1

𝑠𝑒2(𝜌𝑘)̂
 in praxis. 𝜔 is, as above, estimated as residual standard error/deviation of regression 

equation (). It is included to adjust the standard errors of the Egger estimator for potential 

between-ratio heterogeneity.  

  



 

 

Other metrics used in the analysis:  

Formula Eq. number 

in main text 

F = �̂�𝑘
2/𝜎𝜙𝑘

2  (12) 

�̅� =
∑ (�̂�𝑘

2/𝜎𝜙𝑘
2 )𝐾

𝑘=1

𝐾
 

(13) 

𝐹𝑤̅̅ ̅ =
∑ 𝑤𝑘(�̂�𝑘

2/𝜎𝜙𝑘
2 )𝐾

𝑘=1 

∑ 𝑤𝑘
𝐾
𝑘=1

, 𝑤𝑘 = 
�̂�𝑘
2

𝜎𝜌𝑘
2    

(14) 

𝑄 =∑𝑄𝑘 =

𝐾

𝑘=1

 ∑𝑤𝑘

𝐾

𝑘=1

(�̂�1𝑘  −  �̂�1𝐼𝑉𝑊_𝐹𝐸) ~ 𝜒𝑘−1
2      

(27) 

  
(𝐹−1)

𝐹 
   F̅  defined as in equation (13) 

 

(28) 

  
𝐹𝑤−1

𝐹𝑤
 ,  F̅w defined as in equation (14) 

 

(29) 

𝐼𝐺𝑋
2 = (𝑄𝐺𝑋 − (𝐾-1))/ 𝑄𝐺𝑋  

 

(30) 

𝑄𝐺𝑋 = 
𝛴𝑘=1
𝐾  (

�̂�𝑘

𝜎𝜌𝑘
2 −�̂�)2

𝜎𝜙𝑘
2

𝜎𝜌𝑘
2

 , �̂� =  
∑ �̂�𝑘 𝜎𝜙𝑘

2⁄𝐾
𝑘=1

∑ 1 𝜎𝜙𝑘
2⁄𝐾

𝑘=1

  

(31) 
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Appendix B. Overview of assumptions/conditions 

References in main text 

A1 The error term for individual  𝑖 (휀𝑚𝑖) has conditional mean 

zero given the explanatory/exposure variable: 𝐸(휀𝑚𝑖 |𝑋𝑖,𝐌𝒊) =

0 ,which implies that   𝑐𝑜𝑟𝑟(𝑋𝑖, 휀𝑚𝑖) = 0 

 

Multivariable 

OLS  

 

A2 The outcome, exposure and covariate values of (𝑋𝑖, 𝐌𝒊, 𝑌𝑖)are 

independent and identically distributed (i.i.d) drawn from their 

joint distribution. 

 

Multivariable 

OLS  

 

A3 Large outliers are unlikely: 𝑋𝑖, 𝑌𝑖  𝑎𝑛𝑑 𝐌𝒊 have nonzero finite 

fourth moments. 

Multivariable 

OLS  

  

A4 There is not perfect multicollinearity i.e. no one of the 

regressors (𝑋𝑖,M𝑝𝑖) is a perfect linear function of the other 

regressors.  

Multivariable 

OLS  

 

A5 
Instrument relevance: This condition is often presented 

as 𝑐𝑜𝑟𝑟(𝑍𝑘𝑖 , 𝑋𝑖) ≠ 0. A more precise definition (Wooldridge 

2010) of this condition is that the coefficient of a 

regression/projection of X on all exogenous covariates and 𝑍𝑘, 

is not zero i.e 𝜙 ≠ 0  

 

IV/MR (1) 

 

A6 Instrument exogeneity: 𝑍𝑘 is uncorrelated with the error term 

휀𝑚𝑖  i.e 𝑐𝑜𝑟𝑟(𝑍𝑘𝑖 , 휀𝑚𝑖) = 0 .  This mathematical expression 

comprises the independence and the exclusion assumption 

(Angrist & Pischke; 2009) presented in appendix X 

IV/MR 

(2,3) 

A7 We assume that X are the only endogenous variable, while the 

covariates  𝑴 are uncorrelated with the error term i.e. 

𝐸(휀𝑚𝑖 |𝐌𝑖) = (휀𝑚𝑖 |M1𝑖, … ,M𝑝𝑖) = 0. 

IV/MR 

 



A8 The values (𝑋𝑖, M1𝑖, … ,M𝑝𝑖, 𝑍𝑖, 𝑌𝑖) are independent and 

identically distributed (i.i.d) drawn from their joint 

distribution. 

IV/MR 

 

A9 Large outliers are unlikely: (𝑋𝑖, M1𝑖, … ,M𝑝𝑖, 𝑍𝑖 , 𝑌𝑖) have 

nonzero finite fourth moments. 

IV/MR 

 

A10 Monotonicity condition requires that the instrument affect all 

individuals in the same direction, in our case it implies that the 

allele of reference either increases or decreases years of 

schooling for all individuals.  

LATE effect  

A11 Reduced-form equation 2 and 3 are assumed to satisfy the OLS 

conditions stated above This means among other things that 

instruments are chosen so that Zk is not correlated with 

unmeasured confounders i.e 𝑐𝑜𝑣 (𝑍𝑘𝑖, 𝜚𝑚𝑖) = 0 and 

𝑐𝑜𝑣 (𝑍𝑘𝑖, 𝜐𝑚𝑖) = 0, i.e. the independence condition is satisfied. 

Two sample 

MR 

 

A12 𝜚𝑚𝑖 𝑎𝑛𝑑 𝜐𝑚𝑖 are independent of each other Two sample 

MR 

A13 The two datasets are drawn samples from the same population  Two sample 

MR 

 

A14 The two samples are independent i.e. there is not overlap of sample 

observations. 

Two sample 

MR 

A15 The instrument-exposure effect is estimated with negligible 

error (𝜎𝜙𝑘 
2 ≈ 0)  so that �̂� ≈  𝜙  and can be therefore be 

treated as a constant. This assumption is known as No 

Measurement error in the exposure (NOME) 

IVW, Egger,  

(median and 

median kan do 

it, but can also 

not do it)  

A16 𝜎𝜌𝑘
2  is the sample variance of 𝜌�̂� and 𝜎𝜙𝑘

2  is the sample variance 

of 𝜙�̂�, although commonly estimated in the data as the standard 

errors of  𝜌�̂� and 𝜙�̂�, are assumed to be known.  

Two sample 

MR 

A17 SNPs are uncorrelated Two sample 

MR with 

summary data  
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A18 Single overall effect i.e. all of the incorporated genetic 

variables provide evidence of the same causal effects. 

IVW Fixed 

effects, 

Multiplicative 

effect, Egger  

A19 All instruments are valid. A consequence of this condition is 

that the fixed effects IVW model supposes that all variation 

between ratio estimates of is exclusively due to within-

ratio/sample variation i.e. there is no between-ratio variation 

(Borestein et al. 2010).  

 

IVW Fixed 

effects  

A20 Balanced horizontal pleiotropy. The instrument specific bias 

term (horizontal pleiotropic effects)  
𝛼𝑘

𝜙𝑘
   in equation (16) 

cancel each other out so that the sum of the bias term in (17) is 

zero. 

IVW 

multiplicative 

random effects  

A21 Instrument Strength Independent of Direct Effect (InSide) :  

the direct effect of the instruments on healthcare costs are 

uncorrelated with the SNP-exposure effect i.e. 

𝑐𝑜𝑟𝑟 (𝛼𝜅, 𝜙𝑘) = 0 

IVW 

multiplicative, 

Egger  

A22 Majority valid assumption. As the sample size increases, the 

causal estimates from all valid instrumental variables will tend 

towards the same value, which will equal the median provided 

that at least 50% of the instruments are valid  

Median  

A24 ZEMPA Zero Modal Pleiotropy Assumption or Plurality valid 

assumption.  In large samples, the ratio estimates for all valid 

instruments should equal to the true causal effect, while ratio 

estimates from invalid instruments will disperse towards 

different values 

Mode  

 

 

  



Appendix C. Alternative presentation of the IV/MR assumptions 

It is customary, in epidemiological literature, to present the relevance and exogeneity conditions 

(A5 and A6) with a slightly different terminology than the one used in my main text .I use this 

opportunity to add some informative remarks about these assumptions.  

A. Relevance assumption: The instrument 𝑍𝑘 is associated with the exposure of interest X 

in a known direction (Smith & Hemani, 2014) some authors, however, sustain that there 

is a need for a causal relationship (Angrist & Pischke, 2015). Lawlor et al. (2008) points 

out that instruments used in many Mendelian Randomisation studies are not necessary 

causal but only correlated to the causal genetic variant affecting the exposure.  

 

B. Independence assumption: The instrument 𝑍𝑘 is independent of the confounding factors 

(U) that confound the association of the exposure and the outcome (Lawlor et al., 2008) 

i.e the instrument being randomly assigned or as “good as randomly assigned” in the 

sense that it is unrelated to potential omitted variables/confounders (Angrist & 

Pischke,2015). This assumption is known as the independence assumption (Ibid), 

exchangeability assumption, ignorable treatment assignment or described as no 

confounding for the effect of 𝑍𝑘 on Y (Labrecque & Swanson 2018).  

 

C. Exclusion restriction: The instrument 𝑍𝑘 is independent of the outcome Y given X and 

the confounding factors U (Lawlor et al., 2008). This is known as an exclusion 

restriction (Angrist & Pischke, 2015) and means that there is a single channel through 

which the instrument affects outcomes. 
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Appendix D. Leave-one-out analysis 

Figure 8-11 present the original overall effect estimates with confidence intervals (in 

red), along the estimates and confidence intervals obtained by a series of iterations where SNP 

was left out at the time. 

 

Figure 8 MR Egger 

 

 



Figure 9 Weighted Median 
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Figure 10 Weighted Mode 

 

  



Figure 11 Simple mode  

 

    


