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ABSTRACT
Galaxy–galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter haloes, which is
important both for galaxy evolution and cosmology. We extend the measurement and modelling of the galaxy–galaxy lensing
signal in the recent Dark Energy Survey Year 3 cosmology analysis to the highly non-linear scales (∼100 kpc). This extension
enables us to study the galaxy–halo connection via a Halo Occupation Distribution (HOD) framework for the two lens samples
used in the cosmology analysis: a luminous red galaxy sample (REDMAGIC) and a magnitude-limited galaxy sample (MAGLIM).
We find that REDMAGIC (MAGLIM) galaxies typically live in dark matter haloes of mass log10(Mh/M�) ≈ 13.7 which is roughly
constant over redshift (13.3−13.5 depending on redshift). We constrain these masses to ∼15 per cent, approximately 1.5 times
improvement over the previous work. We also constrain the linear galaxy bias more than five times better than what is inferred
by the cosmological scales only. We find the satellite fraction for REDMAGIC (MAGLIM) to be ∼0.1−0.2 (0.1−0.3) with no clear
trend in redshift. Our constraints on these halo properties are broadly consistent with other available estimates from previous
work, large-scale constraints, and simulations. The framework built in this paper will be used for future HOD studies with other
galaxy samples and extensions for cosmological analyses.

Key words: gravitational lensing: weak – cosmology: dark matter – large-scale structure of Universe.
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1 IN T RO D U C T I O N

Understanding the connection between galaxies and dark matter, i.e.
how the galaxy properties relate to the properties of their dark matter
halo hosts, is essential in forming a comprehensive interpretation
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of the observed Universe. Cosmological analyses of large-scale
structure (LSS) in modern galaxy surveys have reached a point
where ignoring the details of this connection (McDonald & Roy
2009; Baldauf et al. 2012), can lead to significant biases in the
inferred cosmological constraints (Krause et al. 2017). To avoid this
problem, typically we remove data points on the smallest scales
until the remaining data is in the linear to quasi-linear regime, and a
simple prescription of the galaxy–halo connection (e.g. linear galaxy
bias) is sufficient (such as Abbott et al. 2018a). Alternatively, one can
invoke more complicated galaxy bias models on small scales (such as
Heymans et al. 2021) and marginalize over the model parameters. For
either approach, a data-driven model of the galaxy–halo connection
on scales below a few Mpc could allow us to significantly improve
the cosmological constraints achievable by a given data set. It should
be stressed, however, that galaxy bias has inherently non-linear
characteristics (as discussed, for example, in Dvornik et al. 2018),
and should therefore be treated accordingly. Thus, accurate galaxy–
halo connection models provide a wealth of crucial information
when modelling galaxy bias. On the other hand, understanding the
connection between different galaxy samples and their host haloes
also has implications for galaxy evolution (see Wechsler & Tinker
2018, for a review of studies for galaxy–halo connection).

A powerful probe of the galaxy–halo connection is galaxy–galaxy
lensing. Galaxy–galaxy lensing refers to the measurement of the
cross-correlation between the positions of foreground galaxies and
shapes of background galaxies. Due to gravitational lensing, the
images of background galaxies appear distorted due to the deflection
of light as it passes by foreground galaxies and the dark matter haloes
they are in. As a result, this measurement effectively maps the average
mass profile of the dark matter haloes hosting the foreground galaxy
sample. This is one of the most direct ways to connect the observable
properties of a galaxy (brightness, colour, size) to its surrounding
invisible dark matter distribution (Tyson et al. 1984; Hoekstra, Yee
& Gladders 2004; Mandelbaum et al. 2005; Seljak et al. 2005). A
common approach to modelling this measurement is to invoke the
Halo Model (Seljak 2000; Cooray & Sheth 2002) and the Halo
Occupation Distribution (HOD) framework (Zheng, Coil & Zehavi
2007; Zehavi et al. 2011). In this framework, we consider dark matter
haloes to be distinct entities with a large luminous central galaxy in
their centres and smaller, less luminous satellite galaxies distributed
within the halo, which are also surrounded by their own sub-haloes.
The particular way that central and satellite galaxies occupy the dark
matter halo is parametrized by a small number of HOD parameters,
while all the dark matter haloes contribute separately to the total
galaxy–galaxy lensing signal according to the Halo Model. In this
paper, we will invoke this HOD framework to model a new set of
galaxy–galaxy lensing measurements using the Dark Energy Survey
(DES) Year 3 (Y3) data set.

Several previous studies have used galaxy–galaxy lensing to
constrain the galaxy–halo connections for particular samples of
galaxies. Mandelbaum et al. (2006a) performed an analysis with
the MAIN spectroscopic sample from the Sloan Digital Sky Survey
(SDSS) DR4, characterizing the HOD parameters for galaxies split
in stellar mass, luminosity, morphology, colours, and environment.
The study was followed up by Zu & Mandelbaum (2015) using SDSS
DR7 with a more sophisticated HOD model. The fact that all lens
galaxies used in these studies have measured spectra allowed for
good determination of the stellar mass and other galaxy properties.
More recently, rapid development of large galaxy imaging surveys
provide much more powerful weak lensing data sets to perform
similar analyses. Gillis et al. (2013), Velander et al. (2013), and
Hudson et al. (2014) used measurements from the Canada–France–

Hawaii Telescope Lensing Survey (CFHTLenS; Heymans et al. 2012;
Erben et al. 2013), while Sifón et al. (2015), Viola et al. (2015), and
van Uitert et al. (2016) used data from the Kilo Degree Survey (KiDS;
de Jong et al. 2013; Kuijken et al. 2015) to study the galaxy–halo
connection for a range of different galaxy samples. Noticeably, these
studies extend to higher redshifts as well as lower mass (including
Ultra-Diffused Galaxies at low redshift). Furthermore, Bilicki et al.
(2021) used photometry from KiDS, exploiting some overlap with
Galaxy And Mass Assembly (GAMA; Driver et al. 2011) spec-
troscopy, to derive accurate galaxy–galaxy lensing measurements,
split in red and blue bright galaxies, to constrain the stellar-to-halo
mass relation by fitting the data with a halo model. All together,
these studies provide us with pieces of information to constrain
models of galaxy formation. In parallel, Clampitt et al. (2017) derived
constraints on the halo mass of a luminous red galaxies sample, the
red-sequence Matched-filter Galaxy Catalog (REDMAGIC) galaxies
(Rykoff et al. 2014), using DES Science Verification (SV) data. The
REDMAGIC sample is particularly interesting as it is used heavily in
many cosmological studies of LSS due to its excellent photometric
redshift precision. For that reason, REDMAGIC is one of the two
samples we study in this work. From the studies above, it becomes
evident that the basic HOD framework is capable of successfully
describing the halo occupation statistics for a wide variety of galaxy
samples, as long as it is modified accordingly to account for the
specific features of the data set at hand.

The Clampitt et al. (2017) study was later combined with galaxy
clustering to constrain cosmological models in Kwan et al. (2016),
illustrating how understanding the small-scale galaxy–halo connec-
tion (and effectively marginalizing over them) could improve the
cosmological constraints. Similar studies include Mandelbaum et al.
(2013), Cacciato et al. (2013), Park et al. (2016), Krause & Eifler
(2017), and Singh et al. (2020). In particular, Park et al. (2016)
demonstrated that to obtain robust constraints from combining large
and small scale information, it is necessary to consistently model the
full range of scales, and to have good priors on the HOD parameters
due to degeneracies between HOD and cosmological parameters.
When including the small-scale modelling from HOD in a cosmology
analysis using galaxy clustering and weak lensing, Krause & Eifler
(2017) showed that the statistical constraints on the dark energy
equation of state w improves by up to a factor of three compared
to standard analyses using only large-scale information. We leave
for future work the exploration of gain in cosmological constraints
including our HOD modelling in the DES Y3 cosmology analysis.

Many studies (e.g. Leauthaud et al. 2017; Lange et al. 2019; Singh
et al. 2019; Wibking et al. 2019; Yuan, Eisenstein & Leauthaud
2020; Lange et al. 2021) have shown that fitting galaxy clustering
measurements with small-scale galaxy–halo connection models, at
fixed cosmology, provides precise predictions of the lensing ampli-
tude which is higher than the measured signal. This is the so-called
‘lensing is low’ problem, which becomes especially evident when
small scales are considered in the analysis. Figuring out whether
this discrepancy can be explained by new physics, cosmology, or by
reconsidering our galaxy formation models is an open question. A
better understanding of the galaxy–halo connection can play a crucial
role in solving this mystery. For example, Zu (2020) found that the
‘lensing is low’ tension can be resolved on small scales; however,
the satellite fraction has to be very high, which is not in agreement
with observations (e.g. Guo et al. 2014; Reid et al. 2014; Saito et al.
2016)

In this paper, we make use of data from Y3 of DES to study
the galaxy–halo connection of two galaxy samples: REDMAGIC and
an alternative magnitude-limited galaxy sample defined in Porredon
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et al. (2021). These two samples are used in the DES Y3 cosmological
analysis combining galaxy clustering, galaxy–galaxy lensing, and
cosmic shear (commonly referred to as the 3 × 2pt analysis as it
combines three two-point functions; DES Collaboration et al. 2021).
We measure the galaxy–galaxy lensing signal to well within the
one-halo regime, demonstrating the extremely high signal-to-noise
ratio coming from the powerful, high-quality data set. We model
the measurements by combining the Halo Model and the HOD
framework, fixing the background cosmology to be consistent with
the DES Y3 cosmology analysis. This work presents one of the
most powerful data sets for studying the galaxy–halo connection
in a photometric survey and includes two main advances compared
to previous work of similar nature: First, we include a number of
model components that were previously mostly ignored in studies
of the galaxy–halo connection via galaxy–galaxy lensing. Secondly,
we borrow heavily from the tools used in cosmological analyses
and carry out a set of rigorous tests for systematic effects in the
data and modelling, making our results very robust. Both of these
advances were driven by the supreme data quality – as the statistical
uncertainties shrink, previously subdominant systematic effects in
both the measurements and the modelling become important.

With our analysis, we place constraints on the HOD parameters,
and derive the average halo mass, galaxy bias and satellite fraction
of these samples. Our analysis provides complementary information
from the small-scales to the large-scale cosmological analysis in
Prat et al. (2021) and informs future cosmology analyses using
these two galaxy samples. As shown in Berlind & Weinberg (2002),
Zheng et al. (2002), and Abazajian et al. (2005), combining HOD
with cosmological parameter inference can greatly improve the
cosmological constraints. Our results can also be incorporated into
future simulations that include similar galaxy samples.

The structure of the paper is as follows. In Section 2, we describe
the baseline formalism for the HOD and Halo Model framework
used in this paper. In Section 3, we detail the different components
that contribute to the galaxy–galaxy lensing signal that we model.
In Section 4, we describe the data products used in this paper.
In Section 5, we describe the measurement pipeline, covariance
estimation, and the series of diagnostics tests performed on the data.
In Section 6, we describe the model fitting procedure and the model
parameters that we vary. We also describe how we determine the
goodness-of-fit and quote our final constraints. In Section 7, we
show the final results of our analysis. We conclude in Section 8 and
discuss some of the implications of our results.

2 TWO T H E O R E T I C A L P I L L A R S

In this section, we describe the two fundamental elements in our
modelling framework: the HOD model and the halo model. As we
discuss later, the combination of the two allows us to predict the
observed galaxy–galaxy lensing signal to very small scales given a
certain galaxy–halo connection.

2.1 Halo occupation distribution

The halo occupation distribution (HOD) formalism describes the
occupation of dark matter haloes by galaxies. There are two types
of galaxies that can occupy the halo: central and satellite galaxies.
A central galaxy is the large, luminous galaxy which resides at the
centre of the halo. The HOD model does not allow for more than
one central galaxy to exist inside the halo. On the other hand, the
HOD allows for many satellite galaxies to exist in a halo. The higher
the mass of the halo the more satellites are expected to exist around

the central. Satellite galaxies are smaller and less luminous than
the central. They orbit around the centre of the halo and give rise
to the non-central part of the galaxy–galaxy lensing signal, as we
discuss in more detail later. In what follows, we define the HOD of a
galaxy sample which has a minimum luminosity threshold, similarly
to Clampitt et al. (2017).

The central galaxy is assumed to be exactly at the centre of the halo,
i.e. our model does not account for effects that might come from mis-
centering of the central galaxy in its dark matter halo. The number
of centrals in our HOD framework is given by a lognormal mass–
luminosity distribution (Zehavi et al. 2004; Zheng et al. 2005; Zehavi
et al. 2011) and its expectation value is denoted by 〈Nc(Mh)〉. The
scatter in the halo mass–galaxy luminosity relation is parametrized
by σ log M. The mass scale at which the median galaxy luminosity
corresponds to the threshold luminosity will be denoted as Mmin .
A third parameter is the fraction of occupied haloes, fcen, which is
introduced specifically for REDMAGIC and accounts for the number
of central galaxies that did not make it into our sample due to how
the galaxies are selected. In more detail, due to the selection process
of the REDMAGIC algorithm, for haloes of a fixed mass, not all the
central galaxies associated with those haloes will be selected into the
lens sample. More specifically, the REDMAGIC selection depends on
the photometric-redshift errors, which could result in excluding some
galaxies even though they are above the mass limit for observation.1

For most galaxy samples that are selected via properties intrinsic
to the sample (luminosity, stellar mass, etc.), however, fcen = 1 is a
natural choice.

The expectation value for the number of centrals is the smooth
step function

〈Nc(Mh)〉 = fcen

2

[
1 + erf

(
log Mh − log Mmin

σlog M

)]
, (1)

where erf is the error function. Note that Mmin in this expression
essentially sets the mass of the lens haloes, which makes it a crucial
parameter to constrain.

The expectation number of satellites is modelled using a power
law of index α and normalization mass-scale M1, and is written as

〈Ns(Mh)〉 = 〈Nc(Mh)〉
(

Mh

M1

)α

. (2)

This relation implies a power-law behaviour for the satellite galaxies
at high halo masses only, as 〈Ns(Mh)〉 is coupled to 〈Nc(Mh)〉. The
total number of galaxies in a dark matter halo is 〈N(Mh)〉 = 〈Nc(Mh)〉
+ 〈Ns(Mh)〉. Fig. 1 shows the number of galaxies as a function of halo
mass as calculated by the HOD model described above. We note that
significant modifications on top of our model have been developed
for samples specifically defined by stellar mass or colours (Singh
et al. 2020). Also, simple variants of the HOD we have adopted have
been used in the literature, but given the nature of the two samples
we study in this work, we do not expect these modifications to be
necessary as we discuss in Section 7.3.4.

1Our model is slightly different from Clampitt et al. (2017) in that fcen is
multiplied to both the centrals and the satellites. This choice results in better
matching to the MICE simulations (see Appendix A2) and therefore facilitates
our testing. Since fcen and M1 are fully degenerate, this difference does not
alter the physical form of the model, although we have adjusted the prior
ranges on M1 to account for that.
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Figure 1. The HOD prediction for the expectation number of central
(dashed), satellite (dash–dotted), and the total (solid) number of galaxies
as a function of the mass of the dark matter halo inside of which they reside.
The HOD parameters used to produce this plot are: Mmin = 1012 M�, M1 =
1013 M�, fcen = 0.2, α = 0.8, σ log M = 0.25.

2.2 Halo model

In the framework of the current cosmological model, the LSS in
the Universe follows a hierarchy based on which smaller structures
interact and merge to give rise to structure of larger scale. The
abundance of dark matter haloes is described by the halo mass
function (HMF) which is denoted by dn/dM and is a function of
the halo mass Mh at redshift z. In this work, we utilize analytic fitting
functions to model the HMF following Tinker et al. (2008).

The root-mean-square (rms) fluctuations of density inside a sphere
that contains on average mass Mh at the initial time, σ (Mh), is defined
as the square root of the variance in the dark matter correlation
function and is written as

σ 2(Mh) ≡
∫

k2dk

2π2
|W̃ (kR)|2P (k), (3)

where P(k) is the dark matter power spectrum and k denotes the
wavenumber. In equation (3), the variance in the initial density field
has been smoothed out with a top-hat filter W(R) over scales of
R = (3Mh/4πρm)1/3, where ρm is the mean matter density of the
Universe, and W̃ is the Fourier transform of the top-hat filter. We
use this expression to calculate σ 8, the rms density fluctuations in a
sphere of radius R = 8 Mpc h–1, which we use as the normalization
of the matter power spectrum.

For computing the distribution of the dark matter within a hal,o
we assume a NFW density profile (Navarro, Frenk & White 1996)
with characteristic density ρs and scale radius rs. To calculate the
concentration parameter of the dark matter distribution, cdm(Mh, z),
we follow Bhattacharya et al. (2013).

In order to calculate the linear matter power spectrum, P lin
m (k, z),

we make use of accurate fitting functions from Eisenstein & Hu
(1998) (hereinafter EH98). These fitting functions are accurate to
∼5 per cent and we use them instead of other numerical codes that
calculate the power spectrum, such as CAMB (Lewis, Challinor &
Lasenby 2000), to make our numerical code more efficient. We have
performed the necessary numerical tests to show that this modelling

choice does not affect the final results. The linear power spectrum,
however, poorly describes the power at the small, non-linear scales.
In our modelling, we correct for this by using the non-linear matter
power spectrum, P nl

m (k, z), by adopting the HALOFIT approximation
based on Takahashi et al. (2012) to modify the EH98 linear spectrum.
To account for massive neutrinos in the power spectrum, we have
modified the base Takahashi et al. (2012) prediction using the
corrections from Bird, Viel & Haehnelt (2012). Note that our method
is different from the implementation in CAMB where the Bird et al.
(2012) corrections use, as base, the Takahashi et al. (2012) model.
For further discussion on the different HALOFIT versions, see also
Appendix B in Mead et al. (2021). We also note that more accurate
non-linear corrections exist, for example HMCODE,2 but they are not
necessary given the required accuracy in our analysis.

3 MODELLI NG THE OBSERVABLE

Building on Section 2, we now describe our model for the galaxy–
galaxy lensing signal. We first describe the individual terms in the
matter-cross-galaxy power spectrum Pgm(k, z) (Section 3.1), then
we project the 3D Pgm(k, z) into the 2D lensing power spectrum
Cgm(�) and finally into the observable, the tangential shear γ t(θ )
(Section 3.2). In Sections 3.3–3.6, we describe additional astrophys-
ical components that are considered in our model. In Appendix A, we
perform a series of tests on our model with simulations and external
codes to check for the validity of our code.

Throughout this paper, we fix the cosmological parameters to
the σ 8 and 
m values from the DES Y3 analysis and use Planck
2018 (Planck Collaboration VI 2020) for remaining parameters. The
cosmological analyses on the two lens samples in DES Y3 give
consistent results (DES Collaboration et al. 2021), albeit slightly
different, with 
m and σ 8 being the best constrained parameters. For
this reason, we choose to only use the DES Y3 results for these two
cosmological parameters and use the values as constrained for each
lens galaxy sample separately. For REDMAGIC, we use 
m = 0.341
and σ 8 = 0.735, while for MAGLIM, we use 
m = 0.339 and σ 8

= 0.733. For the remaining cosmological parameters, we set 
b =
0.0486, H0 = 67.37, ns = 0.9649, 
νh2 = 0.0006, where h is the
Hubble constant in units of 100 km s–1Mpc–1. Since we consider the
λ-cold dark matter (CDM) cosmological model, we set w = −1
for the dark energy equation of state parameter. In addition, all the
halo masses use the definition of M200c, based on the mass enclosed
by radius R200c so that the mean density of a halo is 200 times the
critical density at the redshift of the halo. We note that the choice
of cosmological parameters mostly affects the inferred large-scale
galaxy bias, as we show in Section 7.3.1.

In the DES Y3 3 × 2pt cosmological analysis (DES Collaboration
et al. 2021) using the REDMAGIC lens sample, it was found that the
best-fitting galaxy clustering amplitude, bw , is systematically higher
than that of galaxy–galaxy lensing, namely bγt

. To account for this,
a de-correlation parameter Xlens was introduced, that is defined as
the ratio of the two biases, Xlens ≡ bγt

/bw . This parameter varies
from 0 to 1 and allows for the two biases to vary independently, thus
enabling the model to achieve simultaneously good fits to both γ t and
w. Nevertheless, the impact of Xlens on the main 3 × 2pt cosmological
constraints, especially on S8 ≡ σ 8(
m/0.3)1/2, were negligible. The
exact origin of this inconsistency in REDMAGIC, caused by some
measurable unknown systematic effect, is still an open question.
Given that we do not know if this systematic is affecting the galaxy

2https://github.com/alexander-mead/HMcode
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clustering or galaxy–galaxy lensing signal, or both to some degree,
in our galaxy–galaxy lensing analysis, we choose to use the fiducial
cosmological results from the 3 × 2pt analysis and assume Xlens =
1 throughout. However, we briefly discuss the impact on our derived
halo properties from changing to the 3 × 2pt best-fitting value of
roughly Xlens ≈ 0.877 when we present our results in Section 7.2.
We do note, however, that this is the most pessimistic case where
the systematic is completely found in γ t. Given that γ t is a cross-
correlation, while e.g. w is an auto-correlation of the lenses, it is likely
that clustering is the most affected by the systematic and not galaxy–
galaxy lensing. In our case, this means that the shift in constraints
we quote later would not be as dramatic in reality.

3.1 Correlations between galaxy positions and the dark matter
distribution

The galaxy-cross-matter power spectrum, Pgm(k, z), is composed
two terms. The one-halo term, P 1h

gm(k, z), quantifies correlations
between dark matter and galaxies inside the halo. The two-halo term,
P 2h

gm(k, z), quantifies correlations between the halo and neighbouring
haloes. Each of these terms receives a contribution from central and
satellite galaxies. Below, we summarize the formalism for these four
terms separately. The modelling we follow below is similar to what
is being commonly used in the literature; for example, see Seljak
(2000), Mandelbaum et al. (2005), and Park et al. (2015).

The central one-halo term describes how the dark matter density
distribution inside the halo correlates with the central galaxy, and is
thus written as

P c1h
gm (k, z) = 1

ρmn̄g

∫
dMh

dn

dMh

Mh〈Nc(Mh)〉udm(k|Mh), (4)

where udm(k|Mh) is the Fourier transform of the dark matter density
distribution as a function of wavenumber k given a halo of mass Mh.

The satellite one-halo term describes how the satellite galaxies
are spatially distributed within the dark matter host halo and can be
written as

P s1h
gm (k, z) = 1

ρmn̄g

∫
dMh

dn

dMh

×Mh〈Ns(Mh)〉udm(k|Mh)usat(k|Mh) (5)

with usat being the Fourier transform of the satellite distribution
in the halo. For both udm and us, we assume NFW profiles with
concentration parameters cdm and csat, respectively. The distribution
of satellite galaxies is typically less concentrated than that of the dark
matter (Carlberg, Yee & Ellingson 1997; Nagai & Kravtsov 2005;
Hansen et al. 2005; Lin, Mohr & Stanford 2004). To account for this,
we allow csat to be smaller than cdm by introducing the free parameter
a = csat/cdm, which is allowed to take values between 0 and 1. The
total one-halo power spectrum is then given by

P 1h
gm(k, z) = P c1h

gm (k, z) + P s1h
gm (k, z). (6)

To introduce the two-halo terms, we define the following quanti-
ties: the average linear galaxy bias and the average satellite fraction
of our sample.

The average linear galaxy bias is given by

b̄g =
∫

dMh

dn

dMh

bh(Mh)
〈N (Mh)〉

n̄g

. (7)

The halo bias relation bh(Mh) quantifies the dark matter clustering
with respect to the linear dark matter power spectrum; and we adopt
the functions in Tinker et al. (2010) for it. In the above equation, we

define the average number density of galaxies as

n̄g =
∫

dMh

dn

dMh

〈N (Mh)〉, (8)

and is thus also determined by the HOD.
The satellite galaxy fraction is expressed as

αsat =
∫

dMh

dn

dMh

〈Ns(Mh)〉
n̄g

. (9)

With b̄g and αsat defined, the two-halo central galaxy-dark matter
cross power spectrum is then given by

P c2h
gm (k, z) = P nl

m (k, z)
∫

dMh

dn

dMh

Mh

ρm

bh(Mh)udm(k|Mh)

×
∫

dM ′
h

dn

dM ′
h

〈Nc(M ′
h)〉

n̄g

bh

(
M ′

h

)
. (10)

At large scales, where udm(k|Mh) → 1, the first integral in the above
equation must go to unity, which implies that the halo bias relation
must satisfy the consistency relation that the dark matter is unbiased
with respect to itself (Scoccimarro et al. 2001). Furthermore, at the
same limit, the second integral approaches (1 − αsat)b̄g . Therefore,
the k → 0 limit of equation (10) reduces to P c2h

gm (k → 0, z) ≈ (1 −
αsat)b̄gP

lin
m (k, z).

Similarly, we can express the two-halo matter-cross-satellite power
spectrum as

P s2h
gm (k, z) = P nl

m (k, z)
∫

dMh

dn

dMh

Mh

ρm

bh(Mh)udm(k|Mh)

×
∫

dM ′
h

dn

dM ′
h

〈Ns(M ′
h)〉

n̄g

bh(M ′
h)usat(k|M ′

h). (11)

Similar as above, equation (11) reduces to P s2h
gm (k → 0, z) ≈

αsatb̄gP
lin
m (k, z). Therefore, putting it all together, at the large-scale

limit the two-halo galaxy-dark matter cross power spectrum reduces
to

P 2h
gm(k, z) = P c2h

gm (k, z) + P s2h
gm (k, z)

≈ b̄gP
lin
m (k, z), (12)

which is what is used in cosmological analyses.
In the two-halo central galaxy-dark matter cross power spectrum

of equation (10), in order to avoid double-counting of haloes
sometimes the halo exclusion (HE) technique is used. Based on the
HE principle (see e.g. Tinker et al. 2005), given a halo of mass Mh1,
we only consider nearby haloes of mass Mh2 that satisfy the relation
R200c(Mh1) + R200c(Mh2) ≤ r12, where R200c(Mh) is the radius of a halo
of mass Mh, and r12 represents the distance between the centres of the
two haloes. However, accounting for HE this way is computationally
expensive. For this reason, many effective descriptions have been
suggested in the literature to bypass this restriction. After performing
tests using a simplified HE model in Appendix C, we find that in our
case, HE has little to no impact on our model, and we thus decide to
neglect it in our fiducial framework.

Finally, in order to get the total power spectrum, Pgm(k, z), we
combine the one- and two-halo components. We do so by taking the
largest of the two contributions at each k. We perform this operation
in real space by transforming the power spectrum to its corresponding
3D correlation function ξ (r, z) and taking the maximum

ξgm(r, z) =
{

ξ 1h
gm(r, z) if ξ 1h

gm ≥ ξ 2h
gm

ξ 2h
gm(r, z) if ξ 1h

gm < ξ 2h
gm

. (13)

We then transform ξ gm(r, z) back to the total galaxy-cross-matter
power spectrum Pgm(k, z). This is the same approach followed by
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Hayashi & White (2008) and Zu et al. (2014) and is also utilized by
Clampitt et al. (2017). We note here that modelling the transition
regime from one- to two-halo scales is not straightforward, and
different prescriptions of how to combine the one- and two-halo
components have been suggested. Furthermore, we note that having
adopted the common way of modelling the two-halo component,
we have made the assumption that haloes are linearly biased tracers
of the underlying dark matter distribution, and we make use of a
scale-independent halo bias model. As stressed by Mead & Verde
(2021), a linear halo bias is not necessarily a good description of
the clustering relation between the haloes and matter, especially on
the transition scales. It could, thus, be important to incorporate a
non-linear halo bias model into the halo model. Implementing such a
‘beyond-linear’ halo bias model, as described in that paper, into our
framework would change the shape of the two-halo component as a
function of k, especially around the scales corresponding to the size
of individual dark matter haloes. We leave this aspect of the model
to be investigated in future work.

3.2 Modelling the tangential shear γ t

Armed with the HOD-dependent galaxy-cross-matter power spec-
trum, we can now follow the standard procedure in deriving the
tangential shear γ t as done in other large-scale cosmological analyses
(Cacciato et al. 2009; Mandelbaum et al. 2013; Clampitt et al. 2017;
Prat et al. 2017, 2021). We first construct the lensing angular power
spectrum, Cgm, and then transform it to real space. Under the Limber
approximation we define the projected, two-dimensional lensing
power spectrum as

Cgm(�|z�, zs) = ρm�−1
c (z�, zs)

a2(z�)χ2(z�)
Pgm

(
� + 1/2

χ (z�)
, z�

)
, (14)

where the critical surface density at lens redshift z� and source
redshift zs is given by

�c(z�, zs) = c2

4πG

a(z�)χ (zs)

χ (z�)χ (z�, zs)
. (15)

Here, a(z) is the scale factor of the Universe at redshift z. In the
above expression, χ (z�) and χ (zs) are the comoving distances to the
lens and source galaxies, while χ (z�, zs) is the comoving distance
between the lens and source redshifts. The a(z�) factor comes from
the use of comoving distances, while c and G are the speed of light
and Newton’s gravitational constant, respectively.

The expressions we have introduced above are for specific lens and
source galaxy redshift pairs; however, in practice, we are working
with distribution of galaxies in redshift. We denote the probability
density functions (PDF) of the lens and source redshift by n�(z�) and
ns(zs), respectively. The observed lensing spectrum is given by

Cgm(�) =
∫

dz�n�

(
z� − �zi

�

)
×

∫
dzsns

(
zs − �zj

s

)
Cgm(�|z�, zs)

= 3

2

H 2
0 
m

c2

∫
dz�n�

(
z� − �zi

�

)
× g(z�)(1 + z�)

χ (z�)
Pgm

(
� + 1/2

χ (z�)
, z�

)
, (16)

where the projection kernel is

g(z) =
∫ ∞

z

dz′ns(z
′ − �zs)

χ (z′) − χ (z)

χ (z′)
. (17)

The parameters �z� and �zs in this equation represent the bias of
the mean of the lens and source redshift distributions, similar to that
used in Krause et al. (2021).

The tangential shear, under the flat-sky approximation, then
becomes

γt (θ ) = (1 + m)
∫

�d�

2π
Cgm(�)J2(�θ ), (18)

where J2(x) is the second-order Bessel function of the first kind.
Again following Krause et al. (2021), the multiplicative bias pa-
rameter m in this expression quantifies uncertainties in the shear
estimation. We note here that, our analysis differs from that of Krause
et al. (2021), as well as Prat et al. (2021), which does not make the
flat-sky approximation. We have checked that this makes a negligible
difference in our analysis over the angular scales we use.

3.3 Tidal stripping of the satellites

In addition to the four components described in Section 3.1, corre-
sponding to the one- and two-halo, satellite and central component
of Pgm, as we get to higher accuracy in the measurements higher
order terms in the halo model could become important. The next-
order term in the Halo Model is commonly referred to as the satellite
strip component, which we denote by γ

strip
t . This term is effectively a

one-halo term correlating the satellite galaxies and its own subhalo.
As tidal disruptions in the outskirts of the host halo strips off the
dark matter content of the satellite subhalo, the density profile of
the subhalos drops off at large scales. Therefore, we model this term
as a truncated NFW profile which is similar to that of the central
one-halo, γ c1h

t , out to the truncation radius R and falls off as ∝r−2 at
larger radii r. The truncation radius is set to R = 0.4R200c and thus
does not introduce free parameters to our model. Additionally, since
this is a satellite term, it needs to be multiplied by αsat, therefore
resulting in

γ
strip
t (θ ) = αsat ×

⎧⎨
⎩

γ c1h
t (θ ) if r ≤ R

γ c1h
t (R)

(
R

r

)2

if r > R
, (19)

where r = r(θ ; z�) is the radius from the centre of the (sub-)halo
at redshift z� that corresponds to angular scale θ . Note that this is
similar to what is used in Mandelbaum et al. (2005) and Velander
et al. (2013), but is using a mass definition based on ρ200c = 200ρc

for the haloes.

3.4 Point-mass contribution

An additional term to γ t is the contribution to lensing by the baryonic
content of the central galaxy (e.g. Velander et al. 2013). This term is
simply modelled as a point-source term given by

γ PM
t (θ ) =

∫
dz�n�(z�)

M�

πr2(θ, z�)

∫
dzsns(zs)�

−1
c (z�, zs). (20)

Here, M� is an effective mass parameter that quantifies the amplitude
of the point mass (PM) component.

In practice, the amplitude parameter would be allowed to vary
as a free parameter or be set to the average stellar mass inside the
redshift bin of interest. When let to vary, it accounts for any imperfect
modelling of the galaxy-matter cross-correlation on scales smaller
than the smallest measured scale used in the model fit. This is similar
to the point-mass term derived in MacCrann et al. (2020a) and used
in Krause et al. (2021).
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3.5 Lens magnification

We now consider the effects of weak lensing magnification on the
estimation of our observable. In addition to the distortion (shear)
of galaxy shapes, weak lensing also changes the observed flux and
number density of galaxies – this effect is referred to as magnification.
Following Prat et al. (2021), here we only consider the magnification
in flux for the lens galaxies, as that is the dominant effect for galaxy–
galaxy lensing.

Similar to shear, magnification is expected to be an increasing
function of redshift. In the weak lensing regime, the magnification
power spectrum involves an integration of the intervening matter up
to the lens redshift and is given by (Unruh et al. 2020)

C lmag
gm (�) = 9H 3

0 
2
m

4c3

∫
dz�n�(z�)

×
∫ z�

0
dz

χ (z, z�)glmag(z)

χ (z)a2(z)
P nl

m

(
� + 1/2

χ (z)
, z

)
, (21)

where we have defined

glmag(z) =
∫

dzsns(zs)
χ (z, zs)

χ (zs)
. (22)

The contribution to the tangential shear can then be written as

γ
lmag
t (θ ) = 2(αlmag − 1)

∫
�d�

2π
C lmag

gm (�)J2(�θ ), (23)

where αlmag is a constant that can be estimated from simulations
and C lmag

gm (�) is the average of (21) over the redshift distributions of
the lenses and sources. In this work, we fix αlmag following the Y3
3 × 2pt analysis and use the values computed in which are αlmag

= {1.31, −0.52, 0.34, 2.25} for our REDMAGIC and αlmag = {1.21,
1.15, 1.88, 1.97} for our MAGLIM lens redshift bins.

3.6 Intrinsic alignment

Galaxies are not randomly oriented even in the absence of lensing.
On large scales, galaxies can be stretched in a preferable direction
by the tidal field of the LSS. On small scales, other effects such as
the radial orbit of a galaxy in a cluster can affect their orientation.
This phenomenon, where the shape of the galaxies is correlated with
the density field, is known as intrinsic alignment (IA); for a review,
see Troxel & Ishak (2015).

The contamination of shear by IA can become important in some
cases, especially when the source galaxies are physically close to
the lenses and gravitational interactions can modify the shape of the
galaxies. IA is commonly modelled using the non-linear alignment
(NLA) model proposed by Hirata & Seljak (2004), Bridle & King
(2007), and Joachimi et al. (2013). In NLA, the galaxy-cross-matter
power spectrum receives an additional term

PNLA(k, z) = −AIAC1ρc
mD−1
+ (z)

×bP lin
m (k, z)

(
1 + z

1 + z0

)ηIA

. (24)

In the above equation, D+(z) is the linear structure-growth factor
at redshift z normalized to unity at z = 0, b is the linear bias, AIA

determines the overall amplitude, C1 = 5 × 10−14h−2 M−1
� Mpc

3
is a

constant, and the power-law index ηIA models the redshift evolution
defined so that the pivot redshift is set to z0 = 0.62.

The IA contribution to galaxy–galaxy lensing simply depends
on the galaxy density and has a different projection kernel than
equation (16). The projected 2D power spectrum for NLA is then

Figure 2. This plots illustrates the theory prediction for the shear (solid
black) and how the various components contribute to it. The one- and two-
halo components from the central and satellite galaxies are labelled ‘Cen-1h’,
‘Cen-2h’, ‘Sat-1h’, and ‘Sat-2h’, respectively. We also show the contribution
from IA, lens magnification (‘Lens-mag’), satellite strip (‘Sat-Strip’), and
point mass (‘PM’). The HOD parameters used are the same as in Fig. 1; the
stellar mass we used is M� = 2 × 1010 M�; for IA, we used the amplitude
and power-law parameters AIA = 0.1 and ηIA = −0.5, respectively; for the
lens magnification coefficient, we set the value to αlmag = 1.3.

given in the Limber approximation by

CNLA(�) =
∫

dz�

n�(z�)ns(z�)

χ2(z�)(dχ/dz)|z�

PNLA

(
� + 1/2

χ (z�)
, z(χ�)

)
, (25)

where (dχ/dz)|z�
is the derivative of the comoving distance with

respect to redshift at z = z�. To obtain the NLA contribution to the
tangential shear, we perform a Hankel transform on CNLA(�) using
J2(�θ ), as in equation (18).

A simple extension of NLA in our HOD framework will be to
use our HOD-based Pgm instead of bgP

nl
m in equation (24). However,

the IA modelling near the one-halo term is likely more complex
and would warrant more detailed studies such as those carried
out in Blazek, Vlah & Seljak (2015). In this paper, we avoid the
complex modelling by choosing redshift bin pairs that are sufficiently
separated so that they have significantly low IA contribution (see
Section 5.1) and we, thus, choose not to include this component
in our fiducial model. However, in Section 7.3.4, we test the full
model that includes this IA contribution and show that the results are
consistent with our fiducial which does not include IA. We show an
example of what all the γ t components look like in Fig. 2.

Although we have ignored IA in this paper, given that it is
negligible for our purposes, we emphasize that its contribution to
lensing can be of high importance to future cosmological studies, as
it can produce biases in the inference of the cosmological parameters
(e.g. Samuroff, Mandelbaum & Di Matteo 2019). In addition, if not
properly accounted for, IA can affect the inference of the lens halo
properties in lensing analyses. In this case, a halo-model description
of IA would be necessary to capture its sample dependence. Fortuna
et al. (2021) described a halo model for IA on small and large scales
from central and satellite galaxies which is capable of incorporating
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the galaxy sample characteristics. We leave the further investigation
of IA and its modelling for future work.

4 DATA

For this work, we make use of data from the Dark Energy Survey
(DES; Flaugher 2005). DES is a photometric survey, with a footprint
of about 5000 deg2 of the southern sky, that has imaged hundreds
of millions of galaxies. It employs the 570-megapixel Dark Energy
Camera (DECam; Flaugher et al. 2015) on the Cerro Tololo Inter-
American Observatory (CTIO) 4-m Blanco telescope in Chile. We
use data from the first three years (Y3) of DES observations. The
basic DES Y3 data products are described in Abbott et al. (2018b)
and Sevilla-Noarbe et al. (2020). Below, we briefly describe the
source and galaxy samples used in this work. By construction, all the
samples are the same as that used in Prat et al. (2021) and in the DES
Y3 3 × 2pt cosmological analysis (DES Collaboration et al. 2021).

4.1 Lens galaxies – REDMAGIC

For our first lens sample, we use REDMAGIC galaxies. These are
red luminous galaxies which provide the advantage of having small
photometric redshift errors. The algorithm used to extract this sample
of luminous red galaxies is based on how well they fit a red sequence
template, calibrated using the red-sequence Matched-filter Proba-
bilistic Percolation cluster-finding algorithm (REDMAPPER; Rykoff
et al. 2014, 2016).

To maintain sufficient separation between lenses and sources, we
only use the lower four redshift bins used in Prat et al. (2021).
The first three bins at z = {[0.15, 0.35], [0.35, 0.5], [0.5, 0.65]}
consist of the so-called ‘high-density sample’. This is a sub-sample
which corresponds to luminosity threshold of Lmin = 0.5L�, where
L� is the characteristic luminosity of the luminosity function and
comoving number density of approximately n̄ ∼ 10−3 (h/Mpc)3.
The fourth redshift bin of z = [0.65, 0.8] is characterized by Lmin

= L� and n̄ ∼ 4 × 10−4 (h/Mpc)3, and is referred to as the ‘high-
luminosity sample’. The redshift distributions for all these bins are
shown in Fig. 3. As we will discuss in Section 6, we use the number
density values as an additional data point in our fits, which helps
constrain the fcen HOD parameter. The data we used to derive the
mean of n̄i

g and its variance in each lens bin i is the same as what
is used in Pandey et al. (2021), and the specific values we used are
the following: n̄i

g ≈ {9.8 ± 0.6, 9.6 ± 0.3, 9.6 ± 0.2, 3.8 ± 0.02} ×
10−4 (h/Mpc)3, respectively for i = 1, 2, 3, 4. We note here that
we have also fit our data without the addition of n̄i

g and our main
conclusions hold, except that fcen becomes unconstrained.

4.2 Lens galaxies – MAGLIM

The second sample we use for lens galaxies is MAGLIM, which is
defined with a redshift-dependent magnitude cut in i-band. This
results in a sample with ∼four times more galaxies compared to
REDMAGIC and is divided into six bins in redshift with ∼30 per cent
wider redshift distributions, also compared to the REDMAGIC sample.
In this sample, galaxies are selected with a magnitude cut that
evolves linearly with the photometric redshift estimate: i < azphot

+ b. The optimization of this selection, using the DNF photometric
redshift estimates (De Vicente, Sánchez & Sevilla-Noarbe 2016),
yields a = 4.0 and b = 18. This optimization was performed taking
into account the trade-off between number density and photometric
redshift accuracy, propagating this to its impact in terms of cosmolog-
ical constraints obtained from galaxy clustering and galaxy–galaxy

Figure 3. Redshift distribution of the lenses (solid filled) and of the source
(dashed) galaxies, for REDMAGIC (upper) and MAGLIM (lower).

lensing in Porredon et al. (2021). Effectively this selects brighter
galaxies at low redshift while including fainter galaxies as redshift
increases. Additionally, we apply a lower cut to remove the most
luminous objects, i > 17.5. Single-object fitting (SOF) magnitudes
[a variant of multi-object fitting (MOF) described in Drlica-Wagner
et al. 2018] from the Y3 Gold Catalog were used for sample selection
and as input to the photometric redshift codes. See also Porredon et al.
(2021) for more details on this sample. The redshift distributions of
the MAGLIM sample are shown in Fig. 3.

4.3 Source galaxies

We use the DES Y3 shear catalogue presented in Gatti et al. (2020).
The galaxy shapes are estimated using the METACALIBRATION (Huff
& Mandelbaum 2017; Sheldon & Huff 2017) algorithm. The shear
catalogue has been thoroughly tested in Gatti et al. (2020), and
tests specifically tailored for tangential shear have been presented
in Prat et al. (2021). In this paper, we perform additional tests on this
shear catalogue for tangential shear measurement on small scales
(Section 5.3).

Following Prat et al. (2021), we bin the source galaxies into four
redshift bins, where details of the redshift binning and calibration is
described in Myles et al. (2020). The redshift distributions for the
source samples are shown in Fig. 3.

5 MEASUREMENTS

Our γ t measurements are carried out using the fast tree code
TREECORR3 (Jarvis, Bernstein & Jain 2004). We use the same
measurement pipeline as that used in Prat et al. (2021), where details
of the estimator, including the implementation of random-subtraction
and METACALIBRATION are described therein. The main difference is

3https://github.com/rmjarvis/TreeCorr
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we extend to smaller scales and add 10 additional logarithmic bins
from 0.25 to 2.5 arcmin. The full data vector in our analysis contains
30 logarithmic bins from 0.25 to 250 arcmin.

Figs 4 and 5 show the final measurements using the REDMAGIC and
MAGLIM samples as lenses, respectively. The six panels represent the
six lens-source redshift bin pairs. The total signal-to-noise ratio for
the six redshift bins [Lens, Source] = {[1, 3], [1, 4], [2, 3], [2, 4], [3,
4], [4, 4]} are ∼{65.5, 59.9, 58.2, 65.5, 55.2, 36.6} for REDMAGIC

and ∼{104.4, 100.9, 76.6, 99.2, 60.5, 45.5} for MAGLIM numbers.
For comparison, the signal-to-noise ratio for the same bin pairs,
only accounting for the scales used in the cosmological analysis in
Prat et al. (2021) are ∼{25.1, 26.8, 18.7, 22.1, 18.5, 12.3} for the
REDMAGIC sample, and ∼{41.2, 35.9, 29.4, 30.4, 21.1, 15.7} for the
MAGLIM galaxies. The additional small-scale information from this
work increases the signal-to-noise ratio by a factor of 2–3. This again
demonstrates that if modelled properly, there is significant statistical
power in this data to be harnessed.

Below, we briefly describe two elements specifically relevant for
this work, the boost factor (Section 5.1) and the Jackknife (JK)
covariance matrix (Section 5.2). We also describe briefly the addi-
tional data-level tests that we perform to identify any observational
systematic effects (Section 5.3). Our shear estimator, which includes
the boost-factor correction and random-point subtraction (i.e. re-
moving the measured tangential shear measured around isotropically
distributed random points in the survey footprint; see Prat et al. 2021
for a more in-depth discussion), is written as (Pandey et al. 2021;
Prat et al. 2021):

γt (θ ) = 1

〈R〉

[∑
k wrk∑
i w�i

∑
ij w�i

wsj e
LS
t,ij (θ )∑

kj wrk wsj

−
∑

kj wrk wsj e
RS
t,kj (θ )∑

kj wrk wsj

]
,

(26)

where w�i
, wrk = 1, and wsj are the weights associated with the

lens galaxy i, random point k, and source galaxy j, respectively.
Furthermore, the weighted average METACALIBRATION response is
〈R〉 = ∑

j wsj Rsj /
∑

j wsj , averaging over the responses Rsj of each
source galaxy j, while eLS

t,ij and eRS
t,kj are, respectively, the measured

tangential ellipticity of the source galaxy j around the lens galaxy i
and random point k.

5.1 Boost factors

While computing the lensing signal, we need to take into account
that, since galaxies follow a distribution in redshift namely n�(z�) and
ns(zs) for lenses and sources, respectively, their spatial distributions
may overlap. This is something that is naturally accounted for in
equation (17) as the lensing efficiency is set to zero when the source
is in front of the lens. However, by using fixed n�(z�) and ns(zs)
in equation (16), we implicitly assume there is no spatial variation
in the lens and source redshift distribution across the footprint. In
reality, galaxies are clustered, and the number of sources around
a lens can be larger than what we would expect from a uniform
distribution. This is usually quantified by the boost factor (Sheldon
et al. 2004), B(θ ), estimator which is the excess in the number of
sources around a lens with respect to randoms. The difference in our
γ t measurements with and without boost factors are shown in Figs B1
and B2 (for the full figures, with all lens-source bin combinations,
see Prat et al. 2021). As can be seen from the plots, the contribution
from this effect can be large at small scales, especially when the bins
are more overlapped in redshift. In our analysis, we take the boost
factors into account by correcting for it before carrying out the model
fit. That is, the measurements shown in Figs 4 and 5 have already

been corrected for the boost factor. In addition, since large boost
factors will also signal potential failures in parts of our modelling
(specifically IA and magnification), we choose to work only with
bins that have small boost factors, for which we set a maximum
threshold of ∼20 per cent deviation from unity, that result in lens
and source redshift bin combinations that are largely separated in
redshift. We carry out our analysis with six lens-source pairs for both
lens samples: [Lens 1, Source 3], [Lens 1, Source 4], [Lens 2, Source
3], [Lens 2, Source 4], [Lens 3, Source 4], [Lens 4, Source 4].

5.2 Covariance matrix

We use a JK covariance in this work defined as

Cij ≡ C(γt (θi), γt (θj )) = NJK − 1

NJK

NJK∑
k=1

�γ k
i �γ k

j , (27)

where γ k
t (θi) is the shear in the i’th angular bin for the k’th JK

resampling, 〈γ t(θ i)〉k is the average over all NJK realizations of the
shear for the i’th angular bin and we have defined �γ k

i ≡ γ k
t (θi) −

〈γt (θi)〉k .
We use NJK = 150 JK patches for this work defined via the

KMEANS4 algorithm. NJK is chosen so that the individual JK regions
are at least as large as the maximum angular scale we need for our
measurements. See Prat et al. (2021) for a comparison between the
JK diagonal errors and the halo-model covariance errors, which are
in good agreement.

When inverting the covariance matrix in the likelihood analysis,
a correction factor is needed to account for the bias introduced
from the noisy covariance (Friedrich et al. 2016). This correction is
often referred to as the Hartlap (Hartlap, Simon & Schneider 2007)
correction. When inverting the JK covariance matrix C, we multiply
it by a factor H to get the unbiased covariance (Kaufman 1967)

C−1
H = HC−1 =

(
NJK − Nθ − 2

NJK − 1

)
C−1 , (28)

where the number of angular bins we use is Nθ = 30, since we analyse
each lens-source redshift bin combination independently. As shown
in Hartlap et al. (2007), for Nθ /NJK < 0.8, the correction produces an
unbiased estimate of the inverse covariance matrix; in our case, we
find Nθ /NJK = 0.2. However, it is also shown in Hartlap et al. (2007)
that as this factor increases, Nθ /NJK → 0.8, the Bayesian confidence
intervals can erroneously grow by up to 30 per cent. Furthermore,
it was shown that in order for the confidence intervals to not grow
more than 5 per cent the factor Nθ /NJK � 0.12. For our results this
means that, although our covariance matrix gets unbiased, our error
bars increase and our constraints can, thus, look less significant than
they actually are.

We finally discuss our choice of a JK covariance matrix in this
work. The fiducial covariance used in the 3 × 2pt analysis in DES
Y3 is derived from an analytic halo-model formulation presented
in Friedrich et al. (2020). Since our halo model implementation is
different from that work (e.g. the modelling of the one- to two-
halo regime and the HOD parametrization), we cannot use the same
framework. Furthermore, since our goal is to model very small scales,
where the HOD is needed to model the galaxy bias, using as input to
the covariance calculation the HOD would lead to a circular process.
Therefore, we opt to use the JK covariance which is not relying on
halo-model assumptions.

4https://github.com/esheldon/kmeans radec
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3128 G. Zacharegkas et al.

Figure 4. The best-fitting model (solid black) to REDMAGIC for each lens-source redshift bin combination and the residuals with respect to the data (points)
attached below each panel. The various components of the model are also shown: central one-halo (solid blue) and two-halo (dashed blue), satellite one-halo
(solid red) and two-halo (dashed red), satellite strip (dash–dotted orange), PM (dash–dotted cyan), and lens magnification (dash–dotted green). The blue shaded
area marks the scales used in cosmological analyses, while the rest corresponds to the additional small-scale points used in this work. In each panel, we also
show the total χ2 of the fit, after applying the Hartlap correction to the inverse covariance matrix, and the number of degrees of freedom.

5.3 Systematics diagnostic tests

Similar to Prat et al. (2021), we carry out a series of data-level tests
to check for any systematic contamination in the data products. As
this work extends from Prat et al. (2021) in terms of the scales used
for the analysis, we extend the following tests to the 0.25–2.5 arcmin
scales. The tests we performed are the following

(i) Cross component: The tangential shear, γ t, is one of the two
components when we decompose a spin-2 shear field. The other
component is γ ×, which is defined by the projection of the field
on to a coordinate system which is rotated by 45◦ relative to the
tangential frame. For isotropically oriented lenses, the average of

γ × due to gravitational lensing alone should be zero. It is, thus, a
useful test to measure this component in the data and make sure that
it is consistent with zero for all angular scales. To be able to decide
whether this is the case, we report the total χ2 calculated for γ ×
when compared with the null signal.

(ii) Responses: In this work, to measure the shear, we make use of
the METACALIBRATION algorithm (Sheldon & Huff 2017; Zuntz et al.
2018). Based on this, a small known shear is applied to the images
and then the galaxy ellipticities e are re-measure on the sheared
images to calculate the response of the estimator to shear. This can
be done on every galaxy, and the average response over all galaxies
is 〈Rγ 〉. Then, the average shear is 〈γt 〉 = 〈Rγ 〉−1〈e〉. Moreover, the
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Figure 5. Same as Fig. 4, but for the MAGLIM sample.

METACALIBRATION framework allows us to also correct for selection
responses, 〈RS〉, produced due to selection effects (e.g. by applying
redshift cuts). The final response would then be the sum of the
two effects, 〈R〉 = 〈Rγ 〉 + 〈RS〉. In practice, this procedure can be
performed in an exact, scale-dependent way or be approximated by an
average scale-independent response, 〈Rγ 〉. In this test, we show that
this approximation is sufficiently good by comparing the measured
shear derived from both of these methods.

(iii) LSS weights: Photometric surveys are subject to galaxy den-
sity variations throughout the survey footprint due to time-dependent
observing conditions. This variation in the density of the lenses must
be accounted for by applying the LSS-weights, which removes this
dependence on observing conditions, such as exposure time and
air-mass. In galaxy–galaxy lensing, since it is a cross-correlation
probe, the impact of observing conditions is small compared to
e.g. galaxy clustering. Therefore, in this test, we compare the shear

measurements with and without the application of the LSS-weighting
scheme and report the difference between the two.

We show in Appendix B the results of these tests, where we do
not find significant signs of systematic effects in our data vector.

6 MODEL FI TTI NG

In this section, we discuss how we have performed the fitting of
the HOD model introduced in Section 2 to our data. We have five
HOD parameters (Mmin , σ log M, fcen, M1, α), two parameters that
correspond to the additional contributions to lensing from point-
mass (M�) and the different satellite spatial distribution compared to
that of the dark matter (a = csat/cdm), and three parameters to account
for systematic uncertainties (�zi

�, �zi
s , mi). For the MAGLIM sample,

we have additional parameters (�i
�) that correspond to the stretching
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Table 1. Priors on model and uncertainty parameters. If the prior is
flat, we present its range, while for Gaussian priors, we list the mean
and variance.

Parameter Prior (REDMAGIC) Prior (MAGLIM)

log (Mmin /M�) U [11, 13] U [11, 12.5]
log (M1/M�) U [12, 14.5] U [11.5, 14]
σ log M U [0.01, 0.5] U [0.01, 0.5]
fcen U [0.0, 0.3] –
α U [0.8, 3] U [0.1, 2.5]

log (M�/M�) U [9, 12] U [9, 12]
a = csat/cdm U [0.1, 1.1] U [0.1, 1.1]

�z1
� N (0.006, 0.004) N (−0.009, 0.007)

�z2
� N (0.001, 0.003) N (−0.035, 0.011)

�z3
� N (0.004, 0.003) N (−0.005, 0.006)

�z4
� N (−0.002, 0.005) N (−0.007, 0.006)

�z3
s N (0.0, 0.006) N (0.0, 0.006)

�z4
s N (0.0, 0.013) N (0.0, 0.013)

m3 N (−0.0255, 0.0085) N (−0.0255, 0.0085)
m4 N (−0.0322, 0.0118) N (−0.0322, 0.0118)

�1
� – N (0.975, 0.062)

�2
� – N (1.306, 0.093)

�3
� – N (0.870, 0.054)

�4
� – N (0.918, 0.051)

αsat U [0, 0.2] –

factors of the lens redshift distributions, which are further discussed
in Porredon et al. (2021).

Our priors on these parameters are shown in Table 1. We will
discuss in Section 7 the effects of these priors and whether they
are appropriate in fitting all redshift bins. The choice of priors on
the HOD parameters was based on previous works on red galaxies
(Brown et al. 2008; White et al. 2011; Rykoff et al. 2014, 2016), and
is similar to the priors in Clampitt et al. (2017) but modified to better
suit our HOD parametrization. As for the �zi and mi parameters,
our Gaussian priors on them are the same as in Myles et al. (2020)
and in MacCrann et al. (2020b). The priors we apply on M� and a =
csat/cgm are derived from our tests in Section 7.3.3.

Our full data vector for the REDMAGIC sample consists of the γ t

measurements to which we append the additional data point n̄i
g , the

average number density of galaxies in each lens redshift bin i, as
mentioned in Section 4.1. As we discuss in Section 7.1, the addition
of this information helps control some of the model parameter
constraints. To account for this in the covariance, we formed the
full covariance matrix of our data vector by appending to Cij the
variance of n̄i

g on the diagonal, with zero off-diagonal entries. Our
usage of n̄i

g effectively serves as a prior in our fits. We note here that
we do not add n̄i

g in the data vector of MAGLIM, as we discuss in
Section 7.1.

Finally, for reasons we will discuss in more detail in Section 7.1,
we apply a prior on the satellite fraction specifically in the highest-
redshift bin we fit, namely [Lens 4, Source 4], for the REDMAGIC

sample. In summary, this prior is based on the observation that most
of the galaxies in that redshift range are expected to be central and
thus we choose to use the flat prior range [0,0.2] for αsat. Note
that a similar approach is adopted in van Uitert et al. (2011) (see
Appendix C therein) and Velander et al. (2013) for high-redshift red
galaxies.

To sample the posterior of each data set, we utilize the MULTINEST5

sampler, which implements a nested sampling algorithm (see for
example Feroz, Hobson & Bridges 2009). In our analysis, we assume
that our data is generated by an underlying Gaussian process, thus
making its covariance Gaussian in nature. Therefore, for data vector
d of length Nd and model prediction vector m of the same length, we
express the log-likelihood as

lnL(θ ) = −1

2
(d − m)T C−1

H (d − m) ≡ −χ2

2
, (29)

where θ is the parameter vector of our model M and C−1
H is

the Hartlap-corrected data covariance matrix (see discussion in
Section 5.2). Notice that we have neglected the constant factors
which are not useful while sampling the likelihood.

For our model fits, we report the total χ2 of our best-fitting model
to the data, as a measure of the goodness of fit. Alongside this, we
report the number of degrees of freedom (dof), which we calculate as
the effective number of parameters that are constrained by the data,
Neff = tr

[
C−1

� CH

]
, subtracted from the number of data points, Nd

Ndof = Nd − tr
[
C−1

� CH

]
, (30)

where the prior covariance is C�. We should note here that a
goodness-of-fit estimation based on finding an effective number of
parameters is not always straightforward when the parameters do
not enter the model linearly, as discussed in Section 6.3 of Joachimi
et al. (2021). Therefore, our approach of calculating a reduced χ2

using equation (29) based on the Ndof from (30) yields a conservative
answer if model underfitting is the main concern.

7 R ESULTS

In this section, we present the results from our analysis.6 Before
unblinding, we performed several validation tests of our pipeline
using simulations and simulated data vectors. After the tests were
successfully passed, and after unblinding of the data, we applied
our full methodology to the unblind measurements to derive our
main results. We first present in Section 7.1 the model fits to the
data and the parameter constraints. We then show in Section 7.2
several derived quantities from our model fits: the average halo mass,
galaxy bias, and satellite fraction for our samples. We compare these
quantities with literature as well as estimations using only the large,
cosmological scales. Finally in Section 7.3, we perform a series of
tests to demonstrate the robustness of our results to various analysis
choices.

7.1 Model fits

Best-fitting models for all the lens-source redshift bin combinations
for the REDMAGIC and MAGLIM lens samples are shown in Figs 4
and 5, respectively, with the χ2 of the fits and the corresponding
number of dof listed on the plots. We show the decomposition
of the different components that contribute to the final model as
described in Section 3. The parameter constraints are shown in Figs 6
and 7, respectively. These plots only show the parameters that are
constrained by the data. The best-fitting parameters are listed in
Tables D1 and D2.

5https://github.com/JohannesBuchner/MultiNest
6In what follows, we discuss our results after unblinding the data (see Muir
et al. 2020 for details on the data blinding procedure).
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Galaxy–halo connection in DES Y3 3131

Figure 6. Parameter constraints for REDMAGIC using the fiducial cosmology. Combinations with the same lens bin but different source bins are presented with
the same colours (solid versus dashed).

From Figs 4 and 5, we observe that our model generally describes
the data well between the measured scales of 0.25–250 arcmin. The
χ2 per dof is close to 1 for most bins, with the largest value ∼2
for REDMAGIC bin [Lens 2, Source 4] and MAGLIM bin [Lens 1,
Source 4], and the smallest value ∼0.5 for REDMAGIC bin [Lens
2, Source 3]. We do not consider this very problematic given that
there is no apparent trends in the model residuals and that these
data sets are much more constraining compared to previous work.
Nevertheless, the slightly high χ2 values could motivate additional
modelling improvements beyond this work. We also note that not all
the components in our model are contributing significantly to the fit.
For a detailed discussion on how different components contribute to
the model, see Section 7.3.4.

From Figs 6 and 7, we observe that the mass parameters Mmin

and M1 are well-constrained, with Mmin for the fourth REDMAGIC

bin being higher than the first three as a result of the luminosity
threshold being higher in that redshift bin. The satellite power-law
index parameter α is also constrained mainly by the inclusion of
small scales (see discussion in Section 7.3.2). The tight degeneracy
between M1 and α is expected to be based on equation (2), since a
higher normalization M1 requires a larger α to keep αsat the same and

vice versa. The point-mass parameter, M�, is not constrained, which
means that it is not needed to improve the χ2 of the fits. This implies
that our current model for the mass distribution below the scales we
measure (∼0.25 arcmin) is not significantly different from what the
data prefers.

As a side note, we have found that the inclusion of n̄i
g values in the

REDMAGIC data vector (see Section 6) constrains the fcen parameter
to low values, which indicates that the model prefers a significant
number of centrals not being included in our REDMAGIC lens sample
by the selection algorithm. Without this additional information, fcen

is not constrained.7 On the other hand, for MAGLIM since fcen = 1,
we do not see this effect and there is no need to incorporate n̄i

g into
the data vector of that sample.

7To understand this, we need to look at equations (7) and (9) which define
the average galaxy bias and satellite fraction, respectively. Since in our
HOD parametrization both the expectation number for centrals and satellites
(equations 1 and 2) are proportional to fcen, and since n̄g ∝ fcen as well, fcen

cancels out in b̄g and αsat. It is therefore only through n̄g that we can constrain
fcen.
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Figure 7. Same as Fig. 6, but for the MAGLIM sample.

7.2 Halo properties

Given the model fit, we can derive a number of quantities that describe
the properties of the haloes hosting the lens galaxies. Specifically,
we discuss the average lens halo mass as estimated by

〈Mh〉 = 1

n̄g

∫
dMhMh

dn

dMh

〈N (Mh)〉, (31)

the average satellite fraction using equation (9) and the average
galaxy bias calculated from equation (7).

Figs 8 and 9 show the average halo mass (top panel), the average
linear galaxy bias (middle panel), and the satellite fraction (bottom
panel) for the REDMAGIC and MAGLIM lens samples in the four
redshift bins. The points represent the best-fitting maximum posterior
and the error bars represent the 68 per cent confidence intervals
from the MCMC chain. To derive these constraints, we calculate
equations (31), (7), and (9) at each step of our chains to build the
distributions of these three quantities and then estimate the reported
constraints.

We first focus on REDMAGIC. For the average halo mass, we
compare our results with that derived in the DES Science Verification
(SV) data in Clampitt et al. (2017). The SV sample is broadly similar
to the first three lens bins in terms of the luminosity selection and

number density. Note, however, that there are some differences in
the lens samples between SV and our three lower redshift bins. In
particular, the photometry pipeline and the REDMAGIC code have
both been updated since SV, and the redshift bins are not identical.
With these differences in mind, our results appear broadly consistent
with Clampitt et al. (2017) in the HOD-inferred halo mass, with
roughly ∼2 times tighter error bars on average. We point out,
however, that due to adding more free parameters to our model
compared to Clampitt et al. (2017), our error bars should not be
directly compared. Rather, we should take into account that our
error bars would be roughly an additional factor of ∼1.5 tighter,
had we considered the simplified model in Clampitt et al. (2017), as
illustrated in Fig. E2.

The halo mass in the first three redshift bins appears to decrease
with redshift. A big part of this is the pseudo-evolution of halo mass
due to the mass definition we use. This effect is also mentioned in
Clampitt et al. (2017) and is studied in Diemer, More & Kravtsov
(2013). In short, since we use the critical (or mean in our plots and
tables) density of the Universe at every redshift to define the halo
mass, we observe a pseudo-evolution of our mass constraints over
redshift as the reference density evolves. According to Diemer et al.
(2013), from z ∼ 0.2 to ∼ 0.6 the pseudo-evolution of the 200ρm
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Figure 8. Redshift evolution of REDMAGIC properties. Bin combinations with
the same lenses but different sources are shown in different markers (square
for source bin 3 and circle for source bin 4) and a small offset of 0.005 between
the two has been applied in the horizontal axis to make the plot easier to read.
As we discuss in Section 3, these results assume the de-correlation parameter
Xlens = 1. Top panel: The average halo mass, compared with results from
Clampitt et al. (2017) (red pentagon). Middle panel: The average galaxy
bias, compared to constraints from DES Collaboration et al. (2021) (cyan
diamond). Bottom panel: the average satellite fraction; the dashed horizontal
line shows the prior on αsat applied to the last redshift bin.

Figure 9. Same as Fig. 8, but for the MAGLIM sample.

mass, namely M200m, corresponds to �log (M200m/M�) ∼ 0.11 for
a halo of 200ρm mass ∼1013.8 M� at z = 0. This can account for
most of the difference between the first two bins and the third one.
Therefore, we do not find significant change in mass beyond this
pseudo-evolution. For the last redshift bin, in addition to the pseudo-
evolution in mass, we note that the sample is more luminous (see
Section 4.1) compared to the first three bins and thus we are looking
at more massive haloes, which acts opposite to the trend from the

pseudo-evolution. We point out here that the overall trend we observe
in redshift for the mass is consistent with that seen in simulations
(see Appendix A2). As a further test, we note that we have roughly
calculated the ratio of halo mass to stellar mass for the REDMAGIC

sample and found it to be a few times 102. This result is reasonable for
∼3 × 1013 M�-mass galaxies, based on stellar-to-halo mass relation
constraints (for a review, see Wechsler & Tinker 2018).

For the average galaxy bias, we first compare our results with con-
straints from large-scale cosmology for the same sample presented
in DES Collaboration et al. (2021). The large-scale constraints come
from combining galaxy–galaxy lensing and two other two-point
functions (galaxy density–galaxy density correlation and shear–
shear correlation) to form the so-called 3 × 2pt probes, so they
are not expected to agree trivially. We find that the DES Y3 3 × 2pt
constraints on galaxy bias is quite consistent with our HOD-inferred
galaxy bias. The main additional information that our HOD analysis
adds to the picture here is the small-scale information, which is
consistent with the large-scale information in galaxy–galaxy lensing
only (see cyan points in Fig. 8) – as we will show later in Section 7.3.2,
most of the constraining power comes from the one-halo regime
and our galaxy bias constraints does not change whether or not we
include the large cosmological scales. The small-scale constraints
are tighter than the large-scale only constraints by a factor of roughly
5. In particular, we note that the main improvement is not coming
from the increased signal-to-noise ratio. Rather, it is the wealth of
information in the one-halo regime that improves the constraints.
The higher galaxy bias measured for the last redshift bin, compared
to the first three bins, is mainly a result of the different selection
criteria. We remind the reader here that the galaxies which form the
last bin are selected using a higher luminosity threshold, as discussed
in Section 4.1.

For the satellite fraction, we find that our REDMAGIC sample prefers
a low (∼0.2) satellite fraction in all redshift bins we consider. We note
that this trend and the values appear quite different from that observed
in the MICE simulations (see Appendix A2). They are, however,
in good agreement with the high-resolution Buzzard simulations
(discussed also in Appendix A2) which show an average satellite
fraction of REDMAGIC which is ∼0.2 in all three bins. When looking
at a red galaxy sample that is likely to share characteristics with
REDMAGIC, Velander et al. (2013) constrained the satellite fraction to
be small and decreasing with redshift to ∼0.2 or less, which broadly
confirms that our constraints on the REDMAGIC satellite fraction
appear reasonable.

As we have discussed in Section 3, throughout our analysis, we
assume the de-correlation parameter Xlens = 1. If we were to use the
best-fitting value of Xlens ≈ 0.877 from the 3 × 2pt analysis with
free Xlens, our constraints would change. Specifically, given that the
galaxy–galaxy lensing signal’s amplitude, being multiplied by Xlens,
would decrease, our bias constraints would increase by ∼10 per cent.
This would also increase the average lens halo mass by the same
factor, and our satellite fractions would increase too as a result. Given
our little understanding of what is causing the inconsistency between
clustering and galaxy–galaxy lensing in REDMAGIC, we choose to
keep Xlens fixed to 1 and have these results being our fiducial. Further
investigating this issue is out of the scope of this paper.

Next, we turn our attention to the MAGLIM sample. By construction,
the MAGLIM sample is designed to be close to a luminosity-selected
sample, while maximizing the cosmological constraints when using it
as lenses in galaxy clustering and galaxy–galaxy lensing. Compared
to REDMAGIC, this sample does not include additional selection on
colour or photometric redshift. On the other hand, since it is not
exactly a luminosity selection, the physical interpretation of the
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redshift trends of this sample is not straightforward. There is also
no previous literature for comparison.

As shown in Fig. 9, we find the average halo mass of the MAGLIM

sample to be on average lower than that of REDMAGIC, with the
lower two redshift bins appear more massive than the higher redshift
bins by ∼30 per cent. Contrary to intuition, the uncertainties on the
halo masses are larger compared to REDMAGIC even though the error
bars on the measurements are ∼4 times smaller. This is because the
priors in the nuisance parameters for MAGLIM is larger than that of
REDMAGIC – this trend has also been seen in DES Collaboration et al.
(2021). The galaxy bias appears quite similar to that of REDMAGIC,
with the first and last bins somewhat lower. Compared to the 3x2pt
constraints we find overall good agreement with our results, with the
last bin having a slightly higher bias in our HOD fits. Finally, we find
the satellite fraction for the MAGLIM sample to be ∼0.1−0.2 for all
bins, except for the third one which is significantly higher at ∼0.35
and not as well-constrained.

Overall, we also observe that for bin combinations that share the
same lens bin, the derived halo properties are consistent when using
different source bins. This is assuring and a useful check that our
model is indeed capturing properties of the lens samples instead of
fitting systematic effects.

7.3 Robustness tests

In this section, we study the robustness of our results to a number
of analysis choices: cosmology, scale cuts, parameter priors, and the
addition of higher order model components. In particular, we are
interested in how the average lens halo mass 〈Mh〉, average galaxy
bias b̄gal, and average satellite fraction αsat change under the different
analysis choices. We show all the tests in this section for REDMAGIC

only, but we expect similar results with the MAGLIM sample.

7.3.1 Robustness to cosmology

In this paper, we present our main results assuming a specific fixed
cosmology, namely our fiducial cosmological values introduced in
Section 3. We study here the sensitivity to this assumption. The top
panel of Fig. 10 shows how our results change when two alternative
assumptions for cosmology: (1) best-fitting CDM parameters from
Planck 2018 (Planck Collaboration VI 2020) and (2) freeing σ 8.

The average mass of REDMAGIC galaxies and the fraction of
satellite galaxies are robust to changing the cosmological parameters
to Planck 2018. Given that these quantities are best constrained by
the small-scale information (the points below the one-halo to two-
halo transition), this implies that varying the cosmology, to a small
degree with respect to our fiducial one, leaves the one-halo central
model prediction almost unchanged. We remind the reader here that
our fiducial cosmology is similar to Planck with the difference that
σ 8 we use is slightly lower and our 
m is slightly higher compared
to Planck. The average galaxy bias, on the other hand, is degenerate
with σ 8 on the large scales. This means that changing to the Planck
2018 cosmology directly changes the inferred galaxy bias as seen in
Fig. 10 – using the Planck 2018 cosmology with a higher σ 8 value
results in lower values for the galaxy bias.

Next, we allow for σ 8 to freely vary within the prior range [0.4,1.2],
fixing all other cosmological parameters to our fiducial cosmology.
Fig. 11 presents our results for the σ 8 and galaxy bias constraints
from this test for the REDMAGIC galaxy sample. In addition, we have
compared the average halo mass, galaxy bias, and satellite fraction
from these chains in Fig. 10 to the fiducial results. As we can see, our

constraints on σ 8 from the first three lens bins recover the fiducial
value of σ 8 quite well. The last bin prefers a lower value of σ 8,
and a slightly higher galaxy bias – these are still consistent within
1σ though. Overall, the constraints on all these quantities remain
consistent with our fiducial ones. We can, therefore, conclude that
freeing the matter power spectrum’s amplitude does not alter our
constraints in a meaningful way.

7.3.2 Angular scale cuts

Next, we study how removing data points on different scales from
the fits affects our results. For these tests, we first cut out small
scales by setting the minimum θ to the threshold values θ t = {2.5,
1, 0.6, −} arcmin for each lens redshift bin, after which we find
the data is not constraining enough and this leads to non-physical
constraints and projection effects.8 This happens because using only
the θ > θ t scales in our fits, the total central component of γ t,
namely γ cen

t , becomes identical to γ sat
t , the total satellite term. These

two are then identical to the total shear and therefore the fit cannot
distinguish between the two. This means the satellite fraction cannot
be determined accurately and the other two halo properties suffer too
as a result.

To determine the maximum scale cut we can use in each redshift
bin without being dominated by projection effects, we perform the
following analysis using simulated data vectors.

The simulated data vectors are produced with our model using
parameters that correspond to the best-fitting maximum posterior
values from our fiducial runs on the REDMAGIC data, as they are
presented in Section 7.1. We first fit all angular scales and confirmed
our pipeline can recover the input. Next, we remove data points
from the smallest scales and repeat the fitting and analysis. We
then compared both the constraints on the model parameters and the
inferred halo properties from all these runs with different scale cuts.
From this comparison, we were able to identify the scale cut with the
maximum θmin which was still able to give us results consistent with
the full-scale simulated-data runs. At high redshift, the threshold θ

was found to be lower since the same angular scale corresponds to
higher physical scale. This is especially evident in the last redshift
bin where we cannot remove any of the scales since they are all
needed to constrain the HOD parameters, and it even requires the
additional prior on the satellite fraction, as discussed in Section 6, in
order to keep αsat under control.

We also test the case where we remove scales used in the
cosmological analysis, derived in Krause et al. (2021), which we
refer to as cosmological scales and we denote by θ3 × 2. Since small
scales are expected to provide most of the constraining power, we
put that to test by comparing our constraints from fitting only the
small scales, excluding the cosmology scales.

The middle panels of Fig. 10 present our results for the derived halo
properties from applying the above angular scale cuts on REDMAGIC

data. For comparison, in the same plots, we have included the vertical
bands that correspond to the fiducial chains which use the full range
of angular scales. As we can see, using the scale cuts discussed
above, all our results stay consistent with our fiducial constraints.
In addition to this, we can see that the small scales-only fits are
also consistent with all other points. Furthermore, these fits, despite
using fewer points, can constrain all halo properties almost as well

8Projection effect here means that when we project a multidimensional
parameter space to the one-dimensional posterior distributions sometimes
the constraints could appear biased.
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Galaxy–halo connection in DES Y3 3135

Figure 10. Testing the robustness of the halo properties for different cosmologies (upper panels), to applying angular scale cuts (middle panels), and to changing
the prior range on our parameters (lower panels) on the REDMAGIC sample. The vertical bands correspond to the fiducial constraints and we added them for an
easier comparison with the rest of our results. Note that, to reduce the size of this figure, we have combined bins with the same lenses and different sources by
presenting the mean of the best-fitting values and, to be conservative, the maximum of the error bars.

as the full-scale runs, showcasing the rich information contained in
the small scales.

7.3.3 Effect of the priors

In our main analysis, we have performed various tests on how and
whether the priors on our model parameters can have an impact on
our results. Here, we demonstrate that our parameter priors are not
too restrictive and informing the constrained parameters. For our
tests in this section, we test the sensitivity of our results when we use
roughly two times wider priors than that used in the fiducial analysis
for all model parameters, keeping the prior centre the same.

The bottom row of panels of Fig. 10 shows the inferred halo
property constraints with the widened priors compared to the fiducial,
for the REDMAGIC sample. We see that the derived parameters appear
consistent. We note here, however, that during our tests, we found
that small shifts in the best-fitting points can occur if the prior range

changes or if it is kept the same but the sampler starts at a different
position in parameter space. These effects are not significant, though,
in our runs and thus our results stay robust, as discussed above.

7.3.4 Model complexity

In Section 3, we described the details of the various model compo-
nents. In this section, we explain the process we have used to decide
whether or not a component has been included in our fiducial model
based on how each of them affects the fits and the inferred halo
properties.

Our fiducial framework starts with the basic HOD modelling where
γ t is composed of the following four terms: the one-halo central and
satellite contributions γ c1h

t and γ s1h
t , respectively, and their two-halo

counterparts γ c2h
t and γ s2h

t . We will refer to the combination of these
four components as the HOD-only model. As a first step we like to see
if HOD-only can describe our data well. For the six bin combinations,
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Figure 11. Robustness to freeing σ 8 for REDMAGIC galaxies. We present the
joint constraints on σ 8 and the derived average galaxy bias for all redshift
bins we consider. The vertical dashed line shows the fixed value of σ 8 used
in our fiducial cosmology.

we find that the HOD-only model achieves reduced χ2 of {0.585,
1.144, 1.019, 2.101, 0.879, 1.119}. These fits are already good, but
there is room for improvement on bin [Lens 2, Source 4] which has
noticeably the worst χ2. Our fiducial model improves the reduced
χ2 over the HOD-only model by {0.055, 0.094, 0.023, 0.030, 0.066,
0.181} for REDMAGIC.

The procedure we use to determine our fiducial framework is
discussed in detail in Appendix E and goes as follows: Using the
HOD-only model as a baseline, we systematically include additional
components and test whether the fits to the data improve, by
calculating and comparing the reduced χ2 of the corresponding data
fits. In addition to a change in the reduced χ2, we also check in
each case if the inferred halo properties change significantly as a
result of adding a contribution to γ t. This step is intended to check if
omitting a term would introduce a bias in our constraints. Finally, we
consider whether it makes physical sense to include a component. If
a component is physically well-motivated, we may decide to keep it
even if it does not significantly improve the fit. On the other hand, if
a contribution is not well motivated and its modelling is uncertain,
we may decide to discard it even if it makes a difference in the
goodness-of-fit.

From Appendix E, we decide to include the following additional
modelling components to γ t from the HOD-only model: (1) Point-
mass contribution; (2) Tidal stripping of the satellites; (3) A concen-
tration parameter for the satellites which is different from that of the
dark matter’s distribution; (4) Magnification of the lenses. This is the
fiducial model which we used to derive the main results in Section 7.

As a further note, the particular choice of the HOD model itself
is another aspect of the full model that can be much more complex
than, or different from, what we used in this work as described in
Section 2.1. To that end, we experimented with various treatments of
the galaxy–halo connection and did not find that adding additional
parameters to it or modifying its parametrization made a significant
difference to our results. Specifically, we have tested the following

modifications to our fiducial HOD. We modified the satellite HOD,
〈Ns(Mh)〉 of equation (2), by multiplying it by an exponential
cutoff exp (Mh/Mcut), with mass cutoff Mcut, following, for example,
Leauthaud et al. (2011) and Zu & Mandelbaum (2015) where the
authors expanded the standard HOD to include the stellar mass
function in a robust framework to study the galaxy–halo connection.
Another similar variance of the HOD model we tested was to modify
the satellite terms by replacing (Mh/M1)α by [(Mh − M0)/M1]α , as
in Guo et al. (2016) for instance where the HOD was compared to
subhalo matching in order to determine which describes better the
clustering statistics in SDSS DR7, where we introduce the additional
mass cutoff parameter M0, setting 〈Ns(Mh)〉 to zero if Mh/M0 < 1.
We, furthermore, tested altering the satellite term by not multiplying
〈Ns(Mh)〉 by fcen, considering this parameter only through 〈Ns(Mh)〉,
as in Clampitt et al. (2017). Finally, we modified our model by
decoupling the satellites from the central galaxies, setting 〈Ns(Mh)〉
= (Mh/M1)α , thus not multiplying the satellite term by the number
of central galaxies. These variants of the HOD framework we tested
did not significantly alter our results.

We also compare our HOD modelling choices to previous lit-
erature. For instance, Clampitt et al. (2017), which performed an
HOD study on REDMAGIC galaxies from the DES SV data, used a
basic HOD model that was sufficient to fit their data, given that their
statistical uncertainties were much larger compared to this work and
the range of scales used was narrower. In another study, Velander
et al. (2013) used 154 deg2 of CFHTLenS lensing data, splitting
galaxies into blue and red, and considered a more complex model
where they included the effects from baryons as a point-mass source
and satellite stripping, similarly to our work, although they did not
use the full five-parameter HOD model we employ here but rather
one similar to Mandelbaum et al. (2005) that fixes the satellite power-
law index. Therefore, compared to both Velander et al. (2013) and
Clampitt et al. (2017), we have used a more complex model which,
although increased our error bars on the parameter constrains, was
required to capture the features of our more constraining data. In
addition to that, we have taken into account systematic uncertainties
by introducing the �zi and mi parameters (discussed in Section 6)
which further increased our error bars.

8 SUMMARY AND DI SCUSSI ON

In this work, we have carried out a detailed analysis on modelling
the small-scale galaxy–galaxy lensing measurements for the two lens
samples REDMAGIC and MAGLIM using an HOD framework. Our lens
samples were divided into four tomographic bins each spanning a
redshift range about 0.2–0.9. In this work, we have extended the
measurements in Prat et al. (2021) to smaller scales, totalling 30
logarithmic bins in angular scales from 0.25 to 250 arcmin (physical
scales from ∼70 kpc in the lowest redshift bin to ∼110 Mpc in the
highest redshift bin). Our main findings are as follows:

(i) These measurements increase the signal-to-noise ratio of our
measurements by a factor of 2–3 compared to the signal-to-noise
ratio from scales used by cosmology analyses.

(ii) We constrain the average halo mass of our REDMAGIC

(MAGLIM) sample to ∼1013.6 M� (1013.4 M�) in the lowest redshift
bin and ∼1013.3 M� (1013.3 M�) at the highest redshift bin. The
uncertainty on these mass constraints are about ∼15 per cent. The
REDMAGIC constraints are consistent with previous work in Clampitt
et al. (2017). The halo masses of MAGLIM are overall lower compared
to REDMAGIC, especially at lower redshift.
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(iii) We constrain the average linear galaxy bias for the REDMAGIC

(MAGLIM) sample to be ∼1.7 (1.5) at low redshift and ∼2.1 (2) at
high redshift. Our results are consistent with those inferred only from
the large scales from DES Collaboration et al. (2021), but with about
five times smaller uncertainties due to the small-scale information.

(iv) We constrain the satellite fraction for the REDMAGIC (MAGLIM)
sample to be 0.1−0.2 (0.1−0.3) with no clear redshift trend. Our
REDMAGIC results appear to be in agreement with other studies which
measured the satellite fraction of red galaxies, e.g. in Velander et al.
(2013). Our results for MAGLIM, which consists of a more wide variety
of galaxies than REDMAGIC, also appear reasonable and in agreement
with studies like Mandelbaum et al. (2006b), Coupon et al. (2012),
and Velander et al. (2013). In these studies, the authors concluded
that the fraction of satellite galaxies is reducing with increasing halo
mass and that αsat is roughly what our constraints point to.

Motivated by the increased signal-to-noise ratio, we consider
additional model complexity on top of the basic HOD framework:
a point-mass component, stripping of the satellites of their outer
dark matter, magnification of the lenses, and modifying the spatial
distribution of the satellite galaxies by varying its concentration
parameter with respect to the distribution of dark matter in the
lens haloes. Using this model, we were able to obtain good fits
to the measurements over all angular scales and for all redshift bins
we considered. We note that two out of twelve bin combinations
show a best-fitting χ2 per dof ∼ 2, which could motivate additional
modelling developments for the future, or indicate some residual
systematic effect that is not well-understood.

To further test our analysis, we have performed various tests where
we vary parts of our modelling and fitting procedure to make sure
that our results remain robust under small changes around the fiducial
framework. We tested the sensitivity of our results to the assumption
of cosmology, the angular scales used in the model fit, and the width
of our priors – we find that our results are robust to these changes.

There are a number of limitations in our analyses that we point out
here for the readers to appropriately interpret our findings. First, in
Appendix A2, we showed a series of tests that we performed using
available simulations. However, the resolution of these simulations
were insufficient for us to conclusively validate our model and
methodology on scales deep in the one-halo regime. That is, it is
plausible that our fiducial model, although well-fitted to the data,
is not the true description of the galaxy–halo connection. Higher
resolution simulations exist (Illustris TNG; Nelson et al. 2019), but
the simulation volume is much smaller and to exactly match our
sample, we would require running the REDMAPPER algorithm on the
simulations. We point these out both as caveats for interpreting our
results and as inspirations for future studies. The second element
that would benefit from future advances is the modelling of the
covariance matrix. An analytic covariance model on this large range
of scales is possible to calculate, but there are differences in the halo-
model assumptions and HOD parametrization between the existing
covariance modelling (Friedrich et al. 2020) and our assumptions.
Furthermore, we would need to find a sophisticated way of treating
the HOD in the analytic covariance calculations, given that the HOD
is what we are constraining in our analysis and we, thus, should
avoid the resulting circularity. As a result, we have adopted a data-
based JK covariance, which has its own issues of being noisy and
often overestimated (Friedrich et al. 2016). This is an area of active
research and it would be interesting for future studies to re-analyse
this data using a more advanced covariance model. Finally, as we
mention in Section 3.6, in our analysis an accurate and tested model
for IA is missing in the one-halo regime. Therefore, although we

found that our simple IA model to contribute insignificantly in our
analysis (see relevant discussion in Section 7.3.4), it is plausible that
a more accurate IA model could have a larger effect on the full model
fit. This again can serve as a starting point for exploration of better
IA models in the one-halo regime, now that our data is becoming
sufficiently constraining.

In this work, we established a framework to systematically explore
a number of modelling choices in the galaxy–galaxy lensing signal
from deep in the one-halo regime to the cosmological two-halo
regime. Many of these effects were ignored in earlier work as the
statistical uncertainties were large relative to these effect. In the
final DES Y6 data set, we expect 1.5–2 times more source galaxies
and a reach to higher redshift for the lens sample, which will allow
us to further test the different model components. What we learn
will feed into future analyses with the Rubin Observatory’s Legacy
Survey of Space and Time, the Nancy Roman Space Telescope, and
the ESA’s Euclid mission. We expect these future data sets to be
qualitatively different in terms of data quantity and quality, and a
combination of modelling techniques (HOD models like what we
studied here, hydrodynamical simulations and emulator approaches)
will be needed to understand how galaxies and dark matter haloes
are connected at the very small scales.
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National Accelerator Laboratory, the University of Illinois at Urbana-
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APPEN D IX A : MODEL VA LIDATION

In this appendix, we present tests validating our modelling code using
both external code and numerical simulations.

Comparison with DES cosmology pipeline

As part of validating our code, we have done thorough comparisons
with COSMOSIS (Zuntz et al. 2015). COSMOSIS is the official code
basis for DES cosmological analyses. As a result, it is important

to establish consistency with COSMOSIS on the regimes used for
cosmology analysis, effectively the two-halo regime. We compare
the galaxy-cross-matter power spectrum Pgm, the projected lensing
power spectrum Cgm, and the tangential shear γ t. For this purpose,
we used constant galaxy bias values within a redshift bin to match
the predictions from COSMOSIS at large scales, θ � 30 arcmin. In
Fig. A1, we present the residuals between what our code produces
and COSMOSIS. For our comparisons, we have used the same n(z)
distributions and cosmological parameters in both COSMOSIS and our
code. The parameter and bias values we used for this comparison are
listed in the caption of Fig. A1. We note here that the cosmology,
bias, and redshift distributions we used are not the same as what is
used or derived from the main analysis of this work.

The first panel of Fig. A1 validates that our implementation of
the Eisenstein & Hu (1998) fitting functions for the linear matter
power spectrum and our usage of HALOFIT to calculate the non-
linear spectrum is in good agreement with the results from COSMOSIS

which uses CAMB for the linear spectrum prediction and HALOFIT

to apply non-linear corrections to it. Going from Pgm to Cgm in the
second panel, we are also testing whether our treatment of the redshift
distributions in our averaging procedure works as expected. Finally,
to translate Cgm into γ t and thus go from the second to the third panel,
we are confirming that our code is in agreement with COSMOSIS when
transforming to real space. Note also that COSMOSIS is using the full-
sky formalism to calculate the tangential shear, while we opt for the
Hankel transform, i.e. flat-sky approximation, approach to gain in
speed. However, for the angular scales we are interested in, we have
tested both approaches to confirm that the flat-sky approximation
is sufficient, which is what the last panel of Fig. A1 essentially
demonstrates.

The upper and middle panels of Fig. A1 show that our galaxy-
dark matter cross power spectrum and, as a result, the projected
lensing power spectrum, respectively, appear to be systematically
lower than the COSMOSIS output. We trace that to a difference in the
matter power spectrum from the two codes, as we are utilizing the
Eisenstein–Hu fitting functions to calculate the dark matter transfer
function whereas COSMOSIS is calling CAMB to evolve the primordial
spectrum. Moreover, the presence of baryonic acoustic oscillations
complicate the spectrum and the residuals appear worse around the
scales that correspond to these wiggles. In addition to that, the
calculation of Cgm involves the multiplication of Pgm by geometrical
factors (equation 14). COSMOSIS is using a constant value in each
redshift bin for �−1

c , while we are calculating that quantity as a
function of redshift within a given bin, which leads to more differ-
ences in the resulting lensing power spectra when averaging over
the n(z) distributions. Overall, we find a non-significant ∼2 per cent
deviation in Cgm and we also find a good overall agreement to within
∼2 per cent for the tangential shear outputs. In order to quantify the
impact on our derived halo properties from using the EH98 functions
instead of CAMB, we have produced a simulated data vector using
CAMB which we then fitted with our fiducial model. From this test,
we found that the galaxy bias is recovered to ∼1 per cent accuracy,
while the halo mass and satellite fraction is unchanged. To take this
into account, we have incorporated this uncertainty into our error
bars on the galaxy bias from our main analysis.

Validation against simulations

Although a full end-to-end simulation test is not possible due to
the limitations of existing simulations (resolution in mass, spatial
resolution in ray-tracing, galaxy selection, etc.), we can validate
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Figure A1. COSMOSIS code comparison residuals for Cgm(�) and γ t(θ ) for 6 bins of interest. The bias values per each of the four lens bins [1,2,3,4] are
b̄g = [1.2, 1.6, 1.7, 1.7], respectively. For the first panel, we have used the mean redshift of each lens redshift bin to calculate and compare the galaxy-matter
cross power spectra. The other two panels show the projected power spectrum and tangential shear comparison for the average over the redshift distributions.
These comparisons are done using the following parameters for a flat CMD cosmology: 
m = 0.25, 
b = 0.044, σ 8 = 0.8, n5 = 0.95, H0 = 70 km s–1Mpc–1

and 
ν = 0. Furthermore, note that the redshift distributions, n(z), are not the same as what we used throughout this paper, but both our and the COSMOSIS

results used the same n(z) for lenses and sources.

different components of our analysis pipeline with simulations to
ensure robustness of our results.

First, we test whether our fiducial HOD model (equations 1
and 2) is sufficiently flexible to describe the underlying HOD of
the lens galaxy sample. We note that this is not trivial especially
for REDMAGIC given the particular selection used in the algorithm
(see Section 4.1). We check this by measuring the HOD from a set
of high-resolution Buzzard mock galaxy catalogue (DeRose et al.
2019), and fit the HOD with our fiducial model. A REDMAGIC sample
is constructed from the mocks using the same algorithm as applied
to data, and should capture qualitatively the characteristics of the
REDMAGIC sample. Fig. A2 shows the measurement from the mocks
together with our fit using equations (1) and (2). We find that our
model describes qualitatively the REDMAGIC HOD well. The inferred
satellite fraction from the fits to the Buzzard HOD is ∼0.2.

Next, we perform a series of tests with the MICE simulations
(Carretero et al. 2015; Crocce et al. 2015; Fosalba et al. 2015). The
galaxies in the MICE simulations are populated according to a given
HOD. This makes a similar a priori test as what was described above
for Buzzard slightly circular. We can, however, perform a number of
other tests. First, for given HOD of galaxy samples, we check if our
derived halo mass, galaxy bias, satellite fraction, and galaxy number
density agrees with what is measured directly from the simulations.
Fig. A3 shows these comparisons. As we can see, our calculations
are in good agreement with the MICE measurements, although they
differ slightly. The trends followed by the points as a function of
redshift, however, are always in very good agreement.

Figure A2. Fits to the HOD measured from Buzzard high-resolution. Each
panel corresponds to a different redshift bin. We fit the HOD directly using our
model for central (magenta squares) and satellite (orange triangles) galaxies,
as well as the total number of galaxies (blue points). The three panels, from
top to bottom, correspond, respectively, to the following redshift bins: z ∈
[0.0, 0.32], [0.32,0.84], [0.84,2.35].
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Figure A3. Comparison between average halo mass, galaxy bias, satellite
fraction, and galaxy number density from our model prediction (blue points)
and the corresponding measured quantities from MICE (orange squares) for
the first four lens redshift bins. The HOD parameter vector (log10Mmin ,
log10M1, α, fcen, σ log M) used in the calculations are, for all four redshift
bins, respectively, (12.38,12.61,0.73,0.18,0.5), (12.15,12.74,0.84,0.16,0.22),
(12.16,12,72,0.85,0.17,0.27), (12.51,13.3,0.82,0.2,0.26).

Figure A4. Comparison of the measured γ t as a function of θ in MICE
simulations (points) and our model prediction (lines) for the lens-source
redshift bins indicated in each panel. The HOD parameters used for each
model line are the input to the simulations and are listed in the panels of
Fig. A3.

Secondly, for given HOD parameters and redshift distributions,
we can compare our model prediction for γ t with the measurements
from the mock galaxy catalogue. This is shown in Fig. A4 for six
lens-source redshift bin combinations, as indicated in each panel. The
large-scale measurements are generally in good agreement compared
to the model prediction, especially for the higher lens redshifts.
The small scales in each panel, however, are always in tension.
Specifically, the measured γ t is consistently lower than the model.

Part of the explanation for this is the mass resolution in MICE which
limits what we can measure, thus leading to lower signal. This could
also explain why the large-scale agreement is worse at the lowest
redshift bin (Lens 1), since the same angular scale corresponds
to smaller objects at low redshifts compared to higher redshifts.
However, we do not expect this to be a big limitation in our case,
given the big masses of REDMAGIC galaxies. More importantly, the
dominant factor of the small-scale disagreement is that, in MICE, the
galaxy positions do not correlate exactly with the underlying dark
matter distribution. Instead, galaxies and dark matter trace each other
on the mean, which could lead to small one-halo power spectrum,
and thus γ 1h

t measurements. We have checked that the scales where
we see the largest disagreement correspond to the one-halo regime
in each redshift bin.

APPENDI X B: R ESULTS FROM SYSTEMATICS
DIAG NOSTICS TESTS

In this appendix, we present the results from the diagnostic tests
we describe in Section 5.3, following the methodology from Prat
et al. (2021). Figs B1 and B2 show a summary of all these tests
for REDMAGIC and MAGLIM, respectively, which include: the cross
component, LSS weights, and the responses. We also include the
boost factor on this plot as discussed in Section 5.1. In the figures,
we also list the χ2 between each curve, and the null hypothesis, using

Figure B1. Systematics tests, as discussed in Section 5.3, for the REDMAGIC

sample. Boosts: comparison of γ t with and without applying the boost factor
correction; Cross component: the cross-component of shear; Responses:
effect from using the scale-dependent responses compared to applying the
average responses in each angular bin; No LSS weights: effect from not
applying the LSS weights to correct for observing conditions; Gray area:
the error bars on the shear measurement. In each panel, we also list the χ2

between each test and the null, using the covariance of our γ t measurements.
The number of points for each of the lines is 30.

MNRAS 509, 3119–3147 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3119/6425763 by U
niversity of O

slo Library user on 29 January 2022



3142 G. Zacharegkas et al.

Figure B2. Same as Fig. B1, but for the MAGLIM sample.

the covariance matrix of our γ t measurements. We discuss below our
findings for each test.

Cross component

The measurements of γ × at large scales are consistent with zero.
At smaller scales, below a few arcmin, γ × fluctuates around zero,
roughly within the error bars. The most noticeable exception is bin
[Lens 1, Source 4] for which the smallest-scale measurements for the
cross component get close approaches ∼0.004. Considering that at
small scales the level of noise increases, we do not find the behaviour
of γ × worrisome. Furthermore, the reduced χ2, even for bin [Lens
1, Source 4], is close to 1, which indicates the absence of significant
problems.

Responses

Based on our results, when we compare our fiducial measurements
which use a scale-averaged response per bin versus the same mea-
surements when the exact scale-dependent responses are utilized, we
find no strong evidence for disagreement between the two methods.
In all the bins that we use in this work, this difference is subdominant
to the statistical uncertainties, and the reduced χ2 values always very
small. We therefore conclude that our analysis based on the scale-
averaged responses is good enough for our purposes.

LSS weights correcting for observing conditions

Comparing the measured shear with and without applying the LSS
weights leads to no significant differences, as also indicated by the
very small reduced χ2 of each panel. This is shown by the fact that
the difference between the two is always close to zero and smaller
than our error bars. Thus, we find no problems with this test.

APPENDI X C : H ALO EXCLUSI ON

In this appendix, we discuss the effect of incorporating Halo Exclu-
sion (HE) into our modelling. Based on HE, haloes that overlap with
each other are excluded from the two-halo components of the galaxy–
galaxy lensing model prediction, in order to avoid double counting.
There are many different prescriptions for HE in the literature, some
of which can be very computationally expensive. Some authors (e.g.
Zheng 2004; Tinker et al. 2005; Yoo et al. 2006) adopt the approach
of choosing the appropriate upper limits to the halo masses when
integrating over the mass function in equations (10) and (11). The
maximum masses, namely Mh1 and Mh2, in these models, under the
spherical-halo assumption, satisfy the requirement that the distance
between the centres of the haloes, r12, is at least equal to the sum
of their radii, R200c(Mh1) + R200c(Mh2) ≤ r12. Since this prescription
is usually very computationally intensive, simplified versions of HE
have been suggested (e.g. Magliocchetti & Porciani 2003; Cacciato
et al. 2009) which capture the effects of HE while making the
computations more efficient.

We follow a simplified approach in this appendix based on the
following prescription. For a given redshift bin of our lens sample
and a set of HOD parameters, we estimate the average lens halo mass,
〈Mh〉, based on equation (31) and the radius 〈Rh〉 ≡ R200c(〈Mh〉) it
corresponds to. We then set the correlation function of the central
two-halo component, ξ c2h

gm (r), to −1 for r < 〈Rh〉. Since the HE
effect is stronger in the central two-halo term (Cacciato et al. 2009),
compared to the satellite two-halo component ξ s2h

gm , we did not apply
HE on ξ s2h

gm . Fig. C1 shows the fractional differences between the
fiducial constraints on the average lens halo mass, galaxy bias,
and satellite fraction, and the constraints from fits that take HE, as
described above, into account. We find that our results do not change
significantly between the two cases. We also did not find a significant
difference in the χ2 of our fits. We therefore do not include HE in
our fiducial model.

Figure C1. Effect on our average lens halo mass, galaxy bias, and satellite
fraction constraints when HE is considered in our fits. This plot presents the
fractional differences between the constraints from our fiducial fits and runs
where we take into account HE, denoted by the ‘HE’ superscript.
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Table D1. Statistical analysis summary of the chains for Y3 unblind REDMAGIC data (30 data points) using the fiducial cosmology; the average halo masses
shown here use the 200ρm-based definition. The error bars correspond to the 1σ posteriors.

REDMAGIC

Redshift bin log (Mmin /M�) log (M1/M�) σ log M α fcen log (M�/M�) csat/cdm log (Mh/M�) b̄gal αsat

Lens 1 11.97+0.08
−0.07 13.51+0.16

−0.17 0.26+0.15
−0.15 1.88+0.26

−0.27 0.12+0.02
−0.02 11.18+0.74

−0.75 1.09+0.28
−0.29 13.66+0.06

−0.06 1.73+0.03
−0.03 0.16+0.05

−0.05
Source 3

Lens 1 12.13+0.09
−0.08 13.64+0.16

−0.15 0.50+0.15
−0.16 2.06+0.26

−0.25 0.13+0.02
−0.02 11.09+0.70

−0.79 0.99+0.27
−0.29 13.67+0.06

−0.05 1.71+0.03
−0.04 0.13+0.04

−0.04
Source 4

Lens 2 12.03+0.08
−0.08 13.79+0.17

−0.16 0.34+0.14
−0.16 2.61+0.34

−0.33 0.13+0.02
−0.02 9.77+0.63

−0.61 1.08+0.25
−0.26 13.59+0.07

−0.07 1.83+0.03
−0.03 0.08+0.03

−0.04
Source 3

Lens 2 12.08+0.08
−0.08 13.73+0.12

−0.11 0.49+0.14
−0.16 2.48+0.25

−0.25 0.13+0.01
−0.01 9.48+0.64

−0.62 1.08+0.22
−0.23 13.59+0.05

−0.05 1.81+0.03
−0.03 0.09+0.02

−0.02
Source 4

Lens 3 11.86+0.09
−0.08 13.18+0.12

−0.11 0.42+0.14
−0.15 1.65+0.18

−0.17 0.08+0.01
−0.01 10.92+0.62

−0.62 0.65+0.22
−0.21 13.36+0.04

−0.04 1.86+0.03
−0.03 0.18+0.03

−0.03
Source 4

Lens 4 12.16+0.12
−0.11 13.26+0.19

−0.19 0.46+0.12
−0.13 1.59+0.24

−0.24 0.06+0.03
−0.02 11.01+0.58

−0.59 0.71+0.24
−0.23 13.27+0.09

−0.07 2.12+0.06
−0.06 0.19+0.06

−0.06
Source 4

Table D2. Similar to Table D1 but for the MAGLIM sample.

MAGLIM

Redshift bin log (Mmin /M�) log (M1/M�) σ log M α log (M�/M�) csat/cdm log (Mh/M�) b̄gal αsat

Lens 1 11.74+0.05
−0.05 13.32+0.19

−0.20 0.27+0.12
−0.12 1.66+0.31

−0.30 11.26+1.09
−1.10 0.41+0.23

−0.22 13.44+0.07
−0.07 1.57+0.03

−0.03 0.14+0.04
−0.04

Source 3

Lens 1 11.76+0.08
−0.07 13.41+0.20

−0.21 0.29+0.15
−0.15 1.74+0.30

−0.31 9.38+0.86
−0.89 0.76+0.27

−0.27 13.43+0.09
−0.10 1.54+0.03

−0.03 0.12+0.06
−0.05

Source 4

Lens 2 11.96+0.07
−0.06 13.44+0.12

−0.11 0.26+0.14
−0.14 1.82+0.22

−0.21 10.83+1.08
−1.12 0.63+0.30

−0.28 13.46+0.04
−0.04 1.84+0.04

−0.04 0.14+0.03
−0.03

Source 3

Lens 2 11.91+0.08
−0.07 13.42+0.12

−0.13 0.30+0.15
−0.15 1.85+0.17

−0.18 8.50+0.94
−0.94 1.07+0.28

−0.26 13.45+0.04
−0.04 1.82+0.05

−0.04 0.13+0.05
−0.04

Source 4

Lens 3 11.88+0.09
−0.09 12.84+0.31

−0.30 0.21+0.14
−0.14 1.24+0.24

−0.23 8.59+0.96
−0.96 0.21+0.25

−0.24 13.27+0.06
−0.05 1.99+0.04

−0.04 0.37+0.13
−0.13

Source 4

Lens 4 11.82+0.10
−0.10 13.44+0.17

−0.15 0.31+0.14
−0.15 2.29+0.24

−0.24 8.53+1.06
−1.04 1.19+0.29

−0.31 13.31+0.05
−0.05 2.01+0.04

−0.05 0.09+0.03
−0.04

Source 4

A P P E N D I X D : C O N S T R A I N T S FO R A L L
M O D E L PA R A M E T E R S

In Tables D1 and D2, we summarize the best-fitting parameters
and derived quantities for the REDMAGIC and MAGLIM samples,
respectively. We report the best-fitting model parameters and the
constraints on the average halo mass, linear galaxy bias, and satellite
fraction. The error bars show the 1σ posteriors.

APP ENDIX E: MODEL COMPLEXITY

In Section 7.3.4, we discuss how adding complexity to our model
changes our results. In this appendix, we provide details on our
tests that led us to deciding what our fiducial framework is in this
paper.

In Fig. E1, we show for all REDMAGIC redshift bins, the fractional
differences between the best-fitting γ t using the HOD-only model,
and the HOD-only model plus one additional contribution at a time.
This plot shows how adding various terms to γ t changes the best-
fitting model as a function of θ , providing more information than

the difference in χ2. Fig. E2 shows the constraints on the average
halo mass, galaxy bias, and satellite fraction corresponding to these
fits, with the vertical bands representing the constraints from our
fiducial runs and each point shows the constraints from adding an
additional contribution to the model. In the same plot, we also report
in parenthesis the difference in goodness-of-fit as the difference
in the reduced χ2 between each tested model and the HOD-only
fits.

Although adding complexity to the basic HOD-only model is
informative, we point out that interactions between additional terms,
when more than one of them are considered, can have a much
different net effect. Due to the large number of combinations we could
explore, it was not feasible to do this full analysis, but we also note
that we did not have strong indications that specific combinations of
model components lead to radically different results in our fits or halo
property constraints. To test for that, as a complement to our tests in
Fig. E2, we have performed a test where we start from the full model
which includes all additional contributions from Section 3, removing
one component at a time and re-fitting the data. Fig. E3 presents our
findings from this test.
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3144 G. Zacharegkas et al.

Figure E1. Comparing the basic HOD-only best-fitting γ t model prediction for all REDMAGIC lens-source redshift bins to the best-fitting γ t after considering
additional model complexity.

Below, we discuss the effect of each contribution to the model fits
separately when we simply add it to the basis of only HOD or remove
it from the full model with all γ t terms.

Point mass (PM)

We find that the PM component mostly affects the small scales in the
first lens bin, with the largest effect being ∼10 per cent at the smallest
angular scales. This is due to the fact that the smallest angular bins
of that redshift bin correspond to the smallest physical scales we
consider in this work. We have included PM in our fiducial model
as a conservative approach to account for modelling uncertainties at
scales below what we measure.

Satellite strip

The effect from striping of satellite galaxies to γ t can make a quite
significant change on the constraints in some redshift bins, especially
in the last one. This component also introduces a nice physical
picture to our modelling – it captures the tidal interactions between
the central galaxy and the substructure in the lens haloes. We have
included this term in our fiducial model.

Satellite galaxy concentration parameter

Allowing for the concentration parameter for the spatial distribution
of the satellite galaxies to vary mostly affects the bias constraints.
This is because a = csat/cdm modifies the shape of the satellite terms
in the one-halo regime making the model more flexible and able
to better fit small and large scales at the same time, which forces
the large-scale bias to change and adjust accordingly. Furthermore,
as discussed in Section 3.1, there is good motivation to allow the
concentration of the satellite-galaxy distribution to be different from
that of the dark matter’s distribution. We have included this term in
our fiducial model.

Lens magnification

The effect of lens magnification becomes stronger at higher redshift
bins. Especially in the [Lens 4, Source 4] bin it can have a large impact
on the final constraints, even on the halo mass, which is overall the
most robust to changes in the model. Furthermore, magnification
of lenses is well-motivated and its modelling is straightforward. Our
magnification model only depends on fixed coefficients, as discussed
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Figure E2. Testing the robustness of the halo properties to adding complexity to our model. We begin from our basic HOD-only model and we add one
additional component to it at a time. In parenthesis, we report the difference in the reduced χ2 between the best-fitting HOD-only and the tested model fit. The
vertical bands correspond to our constraints from the fiducial model and are added here for a direct comparison with our tests. Note that, to reduce the size
of this figure, we have combined bins with the same lenses and different sources by presenting the mean of the best-fitting values and, to be conservative, the
maximum of the error bars.

in Section 3.5 and therefore does not introduce free parameters. We
have included this term in our fiducial model.

Intrinsic alignment

Despite the uncertainty in the IA model in the one-halo term (see
discussion in Section 3.6), we test here this term’s contribution to
our fits. We find that the change in the best-fitting model can be
heavily impacted as a function of angular scale by this component.
The constraints can also be significantly affected by IA. In particular,
Lens Bin 2 is mostly affected by the addition of IA to our basis HOD
model, and the largest effect is noticed on large scales. This is caused
by a combination how much overlap in the n(z) distributions of the
lenses and sources there is and how much of the one-halo component
we can observe in Lens Bin 2. Since a significant number of points

in that bin’s measurements belong to the one-halo regime, if the
HOD-only model cannot describe both small and large scales well at
the same time, the added model flexibility from the inclusion of IA
essentially accounts for that and improves the model fit. However,
after adding other needed model complexity, besides IA, this effect
is ameliorated and IA becomes negligible for the specific lens-source
bin combinations we consider in this work. Therefore, and given that
we do not trust that our modelling of IA is accurate at small scales,
we decide to not take this term into account as part of our fiducial
framework.

As a general note, we find that the constraints in the fourth bin
are mostly affected by additional contributions to γ t, while overall
the bias constraints are the most sensitive to changes in our model.
We note that our fiducial framework is effectively the ‘All-IA’
model.
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Figure E3. Testing the robustness of the halo properties to adding complexity to our model. We begin from our basic HOD-only model and we add one
additional component to it at a time. In parenthesis, we report the difference in the reduced χ2 between the best fit from the runs with all components included
and each tested model. The vertical bands correspond to our constraints from the fiducial model and are added here for a direct comparison with our tests. Note
that, to reduce the size of this figure, we have combined bins with the same lenses and different sources by presenting the mean of the best-fitting values and, to
be conservative, the maximum of the error bars.
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