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a b s t r a c t 

The success of convolutional neural networks (CNNs) in various applications is accompanied by a sig- 

nificant increase in computation and parameter storage costs. Recent efforts to reduce these overheads 

involve pruning and compressing the weights of various layers while at the same time aiming to not 

sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural 

network interpretability: The most relevant units, i.e. weights or filters, are automatically found using 

their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect 

the lines of interpretability and model compression research. We show that our proposed method can 

efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora 

are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. 

Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria 

when successive retraining is performed, but clearly outperforms these previous criteria in the resource- 

constrained application scenario in which the data of the task to be transferred to is very scarce and 

one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while 

maintaining or even improving accuracy. At the same time, it has a computational cost in the order of 

gradient computation and is comparatively simple to apply without the need for tuning hyperparameters 

for pruning. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Deep CNNs have become an indispensable tool for a wide range 

f applications [1] , such as image classification, speech recognition, 

atural language processing, chemistry, neuroscience, medicine 

nd even are applied for playing games such as Go, poker or Su- 

er Smash Bros. They have achieved high predictive performance, 
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t times even outperforming humans. Furthermore, in specialized 

omains where limited training data is available, e.g., due to the 

ost and difficulty of data generation (medical imaging from fMRI, 

EG, PET etc.), transfer learning can improve the CNN performance 

y extracting the knowledge from the source tasks and applying it 

o a target task which has limited training data. 

However, the high predictive performance of CNNs often comes 

t the expense of high storage and computational costs, which 

re related to the energy expenditure of the fine-tuned network. 

hese deep architectures are composed of millions of parameters 

o be trained, leading to overparameterization (i.e. having more pa- 

ameters than training samples) of the model [2] . The run-times 

re typically dominated by the evaluation of convolutional layers, 

hile dense layers are cheap but memory-heavy [3] . For instance, 
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he VGG-16 model has approximately 138 million parameters, tak- 

ng up more than 500MB in storage space, and needs 15.5 bil- 

ion floating-point operations (FLOPs) to classify a single image. 

esNet50 has approx. 23 million parameters and needs 4.1 bil- 

ion FLOPs. Note that overparameterization is helpful for an ef- 

cient and successful training of neural networks, however, once 

he trained and well generalizing network structure is established, 

runing can help to reduce redundancy while still maintaining 

ood performance [4] . 

Reducing a model’s storage requirements and computational 

ost becomes critical for a broader applicability, e.g., in embedded 

ystems, autonomous agents, mobile devices, or edge devices [5] . 

Neural network pruning has a decades long history with inter- 

st from both academia and industry [6] aiming to eliminate the 

ubset of network units (i.e. weights or filters) which is the least 

mportant w.r.t. the network’s intended task. For network prun- 

ng, it is crucial to decide how to identify the “irrelevant” subset 

f the parameters meant for deletion. To address this issue, pre- 

ious researches have proposed specific criteria based on Taylor 

xpansion, weight, gradient, and others, to reduce complexity and 

omputation costs in the network. Related works are introduced in 

ection 2 . 

From a practical point of view, the full capacity (in terms of 

eights and filters) of an overparameterized model may not be re- 

uired, e.g., when 

(1) parts of the model lie dormant after training (i.e., are per- 

anently ”switched off”), 

(2) a user is not interested in the model’s full array of possible 

utputs, which is a common scenario in transfer learning (e.g. the 

ser only has use for 2 out of 10 available network outputs), or 

(3) a user lacks data and resources for fine-tuning and running 

he overparameterized model. 

In these scenarios the redundant parts of the model will still 

ccupy space in memory, and information will be propagated 

hrough those parts, consuming energy and increasing runtime. 

Thus, criteria able to stably and significantly reduce the com- 

utational complexity of deep neural networks across applications 

re relevant for practitioners. 

In this paper, we propose a novel pruning framework based on 

ayer-wise Relevance Propagation (LRP) [7] . LRP was originally de- 

eloped as an explanation method to assign importance scores, so 

alled relevance , to the different input dimensions of a neural net- 

ork that reflect the contribution of an input dimension to the 

odel’s decision, and has been applied to different fields of com- 

uter vision (e.g., [8–10] ). The relevance is backpropagated from 

he output to the input and hereby assigned to each unit of the 

eep model. Since relevance scores are computed for every layer 

nd neuron from the model output to the input, these relevance 

cores essentially reflect the importance of every single unit of a 

odel and its contribution to the information flow through the 

etwork — a natural candidate to be used as pruning criterion. The 

RP criterion can be motivated theoretically through the concept of 

eep Taylor Decomposition (DTD) (c.f. [11–13] ). Moreover, LRP is 

calable and easy to apply, and has been implemented in software 

rameworks such as iNNvestigate [14] . Furthermore, it has linear 

omputational cost in terms of network inference cost, similar to 

ackpropagation. 

We systematically evaluate the compression efficacy of the LRP 

riterion compared to common pruning criteria for two different 

cenarios. 

Scenario 1 : We prune pre-trained CNNs followed by subse- 

uent fine-tuning. This is the usual setting in CNN pruning and 

equires a sufficient amount of data and computational power. 

Scenario 2 : In this scenario a pretrained model needs to be 

ransferred to a related problem as well, but the data available for 

he new task is too scarce for a proper fine-tuning and/or the time 
2 
onsumption, computational power or energy consumption is con- 

trained. Such transfer learning with restrictions is common in mo- 

ile or embedded applications. 

Our experimental results on various benchmark datasets and 

our different popular CNN architectures show that the LRP crite- 

ion for pruning is more scalable and efficient, and leads to bet- 

er performance than existing criteria regardless of data types and 

odel architectures if retraining is performed (Scenario 1). 

Especially, if retraining is prohibited due to external constraints 

fter pruning, the LRP criterion clearly outperforms previous crite- 

ia on all datasets (Scenario 2). Finally, we would like to note that 

ur proposed pruning framework is not limited to LRP and image 

ata, but can be also used with other explanation techniques and 

ata types. 

The rest of this paper is organized as follows: Section 2 sum- 

arizes related works for network compression and introduces the 

ypical criteria for network pruning. Section 3 describes the frame- 

ork and details of our approach. The experimental results are il- 

ustrated and discussed in Section 4 , while our approach is dis- 

ussed in relation to previous studies in Section 5 . Section 6 gives 

onclusions and an outlook to future work. 

. Related work 

We start the discussion of related research in the field of net- 

ork compression with network quantization methods which have 

een proposed for storage space compression by decreasing the 

umber of possible and unique values for the parameters [15,16] . 

ensor decomposition approaches decompose network matrices 

nto several smaller ones to estimate the informative parameters 

f the deep CNNs with low-rank approximation/factorization [17] . 

More recently, [18] also propose a framework of architecture 

istillation based on layer-wise replacement, called Lightweight- 

et for memory and time saving. Algorithms for designing efficient 

odels focus more on acceleration instead of compression by op- 

imizing convolution operations or architectures directly (e.g. [19] ). 

Network pruning approaches remove redundant or irrelevant 

nits — i.e., nodes, filters, or layers — from the model which are 

ot critical for performance [6,20] . Network pruning is robust to 

arious settings and gives reasonable compression rates while not 

or minimally) hurting the model accuracy. Also it can support 

oth training from scratch and transfer learning from pre-trained 

odels. Early works have shown that network pruning is effective 

n reducing network complexity and simultaneously addressing 

ver-fitting problems. Current network pruning techniques make 

eights or channels sparse by removing non-informative connec- 

ions and require an appropriate criterion for identifying which 

nits of the model are not relevant for solving a problem. Thus, 

t is crucial to decide how to quantify the relevance of the param- 

ters (i.e., weights or channels) in the current state of the learn- 

ng process for deletion without sacrificing predictive performance. 

n previous studies, pruning criteria have been proposed based on 

he magnitude of their 1) weights, 2) gradients, 3) Taylor expan- 

ion/derivative, and 4) other criteria, as described in the following 

ection. 

Taylor expansion: Early approaches towards neural network 

runing — optimal brain damage [4] and optimal brain sur- 

eon [21] — leveraged a second-order Taylor expansion based on 

he Hessian matrix of the loss function to select parameters for 

eletion. However, computing the inverse of Hessian is computa- 

ionally expensive. The work of [22,23] used a first-order Taylor 

xpansion as a criterion to approximate the change of loss in the 

bjective function as an effect of pruning away network units. We 

ontrast our novel criterion to the computationally more compara- 

le first-order Taylor expansion from [22] . 
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Algorithm 1 Neural Network Pruning. 

1: Input: model net , reference data x r , training data x t 
2: pruning t , pruning criterion c, pruning ratio r

3: while t not reached do 

4: // Step 1: assess network substructure importance 

5: for all layer in net do 

6: for all units in layer do 

7: � compute importance of unit w.r.t. c (and x r ) 

8: end for 

9: if required for c then 

10: � globally regularize importance per unit 
11: end if 

12: end for 

13: // Step 2: remove least important units in groups of r

14: � remove r units from net where importance is minimal 

15: � remove orphaned connections of each removed unit 
16: if desired then 

17: // Step 2.1: optional fine-tuning to recover performance 

18: � fine-tune net on x t 
19: end if 

20: end while 

21: // return the pruned network upon hitting threshold t (e.g., 

model performance or size) 

22: return net 
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Gradient: Liu and Wu [24] proposed a hierarchical global prun- 

ng strategy by calculating the mean gradient of feature maps in 

ach layer. They adopt a hierarchical global pruning strategy be- 

ween the layers with similar sensitivity. Sun et al. [25] proposes 

 sparsified back-propagation approach for neural network train- 

ng using the magnitude of the gradient to find essential and non- 

ssential features in Multi-Layer Perceptron (MLP) and Long Short- 

erm Memory Network (LSTM) models, which can be used for 

runing. We implement the gradient-based pruning criterion af- 

er [25] . 

Weight: A recent trend is to prune redundant, non-informative 

eights in pre-trained CNN models, based on the magnitude of the 

eights themselves. Han et al. [26] and Han et al. [27] proposed 

he pruning of weights for which the magnitude is below a cer- 

ain threshold, and to subsequently fine-tune with an l p -norm reg- 

larization. This pruning strategy has been used on fully-connected 

ayers and introduced sparse connections with BLAS libraries, sup- 

orting specialized hardware to achieve its acceleration. In the 

ame context, Structured Sparsity Learning (SSL) added group spar- 

ity regularization to penalize unimportant parameters by remov- 

ng some weights [28] . Li et al. [29] , against which we compare in

ur experiments, proposed a one-shot channel pruning method us- 

ng the l p -norm of weights for filter selection, provided that those 

hannels with smaller weights always produce weaker activations. 

Other criteria: [30] proposed the Neuron Importance Score 

ropagation (NISP) algorithm to propagate the importance scores 

f final responses before the softmax, classification layer in the 

etwork. The method is based on — in contrast to our proposed 

etric — a per-layer pruning process which does not consider 

lobal importance in the network. Luo et al. [31] proposed ThiNet, 

 data-driven statistical channel pruning technique based on the 

tatistics computed from the next layer. Further hybrid approaches 

an be found in, e.g. [32] , which suggests a fusion approach to 

ombine with weight-based channel pruning and network quan- 

ization. More recently, Dai et al. [33] proposed an evolutionary 

aradigm for weight-based pruning and gradient-based growing to 

educe the network heuristically. 

. LRP-based network pruning 

A feedforward CNN consists of neurons established in a se- 

uence of multiple layers, where each neuron receives the input 

ata from one or more previous layers and propagates its output 

o every neuron in the succeeding layers, using a potentially non- 

inear mapping. Network pruning aims to sparsify these units by 

liminating weights or filters that are non-informative (according 

o a certain criterion). We specifically focus our experiments on 

ransfer learning, where the parameters of a network pre-trained 

n a source domain is subsequently fine-tuned on a target domain, 

.e., the final data or prediction task. Here, the general pruning pro- 

edure is outlined in Algorithm 1 . 

Even though most approaches use an identical process, choos- 

ng a suitable pruning criterion to quantify the importance of 

odel parameters for deletion while minimizing performance 

rop (Step 1) is of critical importance, governing the success of the 

pproach. 

.1. Layer-wise relevance propagation 

In this paper, we propose a novel criterion for pruning neural 

etwork units: the relevance quantity computed with LRP [7] . LRP 

ecomposes a classification decision into proportionate contribu- 

ions of each network unit to the overall classification score, called 

relevances”. 

When computed for the input dimensions of a CNN and visu- 

lized as a heatmap, these relevances highlight parts of the input 
3 
hat are important for the classification decision. LRP thus origi- 

ally served as a tool for interpreting non-linear learning machines 

nd has been applied as such in various fields, amongst others for 

eneral image recognition, medical imaging and natural language 

rocessing, cf. [34] . The direct linkage of the relevances to the 

lassifier output, as well as the conservativity constraint imposed 

n the propagation of relevance between layers, makes LRP not 

nly attractive for model explaining, but can also naturally serve 

s pruning criterion (see Section 4.1 ). 

The main characteristic of LRP is a backward pass through the 

etwork during which the network output is redistributed to all 

nits of the network in a layer-by-layer fashion. This backward 

ass is structurally similar to gradient backpropagation and has 

herefore a similar runtime. The redistribution is based on a con- 

ervation principle such that the relevances can immediately be in- 

erpreted as the contribution that a unit makes to the network out- 

ut, hence establishing a direct connection to the network output 

nd thus its predictive performance. Therefore, as a pruning cri- 

erion, the method is efficient and easily scalable to generic net- 

ork structures. Independent of the type of neural network layer 

that is pooling, fully-connected, convolutional layers — LRP al- 

ows to quantify the importance of units throughout the network, 

iven a global prediction context. 

.2. LRP-based pruning 

The procedure of LRP-based pruning is summarized in Fig. 1 . In 

he first phase, a standard forward pass is performed by the net- 

ork and the activations at each layer are collected. In the sec- 

nd phase, the score f ( x ) obtained at the output of the network is 

ropagated backwards through the network according to LRP prop- 

gation rules [7] . In the third phase, the current model is pruned 

y eliminating the irrelevant (w.r.t. the “relevance” quantity R ob- 

ained via LRP) units and is (optionally) further fine-tuned. 

LRP is based on a layer-wise conservation principle that allows 

he propagated quantity (e.g. relevance for a predicted class) to 

e preserved between neurons of two adjacent layers. Let R (l) 
i 

be 

he relevance of neuron i at layer l and R (l+1) 
j 

be the relevance of 

euron j at the next layer l + 1 . Stricter definitions of conservation 
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Fig. 1. Illustration of the LRP-based sequential process for pruning. A. Forward propagation of a given image (i.e. here, of a cat) through a pre-trained model. B. Evaluation 

on relevance for weights/filters using LRP, C. Iterative pruning by eliminating the least relevant units (depicted by circles) and fine-tuning if necessary. The units can be 

individual neurons, filters, or other arbitrary grouping of parameters, depending on the model architecture. 
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hat involve only subsets of neurons can further impose that 

elevance is locally redistributed in the lower layers and we define 

 

(l) 
i ← j 

as the share of R (l+1) 
j 

that is redistributed to neuron i in the

ower layer. The conservation property always satisfies 

 

i 

R 

(l) 
i ← j 

= R 

(l+1) 
j 

, (1) 

here the sum runs over all neurons i of the (during inference) 

receeding layer l. When using relevance as a pruning criterion, 

his property helps to preserve its quantity layer-by-layer, regard- 

ess of hidden layer size and the number of iteratively pruned 

eurons for each layer. At each layer l, we can extract the global 

mportance of node i as its attributed relevance R (l) 
i 

. 

In this paper, we specifically adopt relevance quantities com- 

uted with the LRP- α1 β0 -rule as pruning criterion. The LRP- αβ- 

ule was developed with feedforward-DNNs with ReLU activa- 

ions in mind and assumes positive (pre-softmax) logit activa- 

ions f logit ( x ) > 0 for decomposition. The rule has been shown to 

ork well in practice in such a setting [35] . This particular vari- 

nt of LRP is tightly rooted in DTD [11] , and other than the crite-

ia based on network derivatives we compare against [22,25] , al- 

ays produces continuous explanations , even if backpropagation is 

erformed through the discontinuous (and commonly used) ReLU 

onlinearity [12] . When used as a criterion for pruning, its assess- 

ent of network unit importance will change less abruptly with 

small) changes in the choice of reference samples, compared to 

radient-based criteria. 

The propagation rule performs two separate relevance propaga- 

ion steps per layer: one exclusively considering activatory parts of 

he forward propagated quantities (i.e., all a (l) 
i 

w i j > 0 ) and another 

nly processing the inhibitory parts ( a (l) 
i 

w i j < 0 ) which are subse-

uently merged in a sum with components weighted by α and β
s.t. α + β = 1 ) respectively. 
4 
By selecting α = 1 , the propagation rule simplifies to 

 

(l) 
i 

= 

∑ 

j 

(
a (l) 

i 
w i j 

)+ 

∑ 

i ′ 
(
a i ′ (l) w i ′ j 

)+ R 

(l+1) 
j 

, (2) 

here R (l) 
i 

denotes relevance attributed to the i th neuron at layer 

, as an aggregation of downward-propagated relevance messages 

 

(l ,l +1) 
i ← j 

. The terms ( ·) + indicate the positive part of the forward 

ropagated pre-activation from layer l, to layer (l + 1) . The i ′ is

 running index over all input activations a 1 . Note that a choice 

f α = 1 only decomposes w.r.t. the parts of the inference signal 

upporting the model decision for the class of interest. 

Equation (2) is locally conservative , i.e., no quantity of relevance 

ets lost or injected during the distribution of R j where each term 

f the sum corresponds to a relevance message R j← k . For this rea- 

on, LRP has the following technical advantages over other pruning 

echniques such as gradient-based or activation-based methods: 

(1) Localized relevance conservation implicitly ensures layer- 

ise regularized global redistribution of importances from each 

etwork unit. 

(2) By summing relevance within each (convolutional) filter 

hannel, the LRP-based criterion is directly applicable as a mea- 

ure of total relevance per node/filter, without requiring a post-hoc 

ayer-wise renormalization, e.g., via l p -norm. 

(3) The use of relevance scores is not restricted to a global 

pplication of pruning but can be easily applied to locally and 

neuron- or filter-)group-wise constrained pruning without reg- 

larization. Different strategies for selecting (sub-)parts of the 

odel might still be considered, e.g., applying different weight- 

ngs/priorities for pruning different parts of the model: should the 

im of pruning be the reduction of FLOPs required during infer- 

nce, one would prefer to focus on primarily pruning units of the 

onvolutional layers. In case the aim is a reduction of the mem- 

ry requirement, pruning should focus on the fully-connected lay- 

rs instead. 
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In the context of Algorithm 1 , Step 1 of the LRP-based assess- 

ent of neuron and filter importance is performed as a single LRP 

ackward pass through the model, with an aggregation of rele- 

ance per filter channel as described above, for convolutional lay- 

rs, and does not require additional normalization or regulariza- 

ion. We would like to point out that instead of backpropagating 

he model output f c (x ) for the true class c of any given sample x

as it is commonly done when LRP is used for explaining a predic- 

ion [7,8] ), we initialize the algorithm with R (L ) 
c = 1 at the output 

ayer L . We thus gain robustness against the model’s (in)confidence 

n its predictions on the previously unseen reference samples x and 

nsure an equal weighting of the influence of all reference samples 

n the identification of relevant neural pathways. 

. Experiments 

We start by an attempt to intuitively illuminate the proper- 

ies of different pruning criteria, namely, weight magnitude, Tay- 

or, gradient and LRP, via a series of toy datasets. We then show 

he effectiveness of the LRP criterion for pruning on widely-used 

mage recognition benchmark datasets — i.e., the Scene 15 [36] , 

vent 8 [37] , Cats & Dogs [38] , Oxford Flower 102 [39] , CIFAR-10 1 ,

nd ILSVRC 2012 [40] datasets — and four pre-trained feed-forward 

eep neural network architectures, AlexNet and VGG-16 with only 

 single sequence of layers, and ResNet-18 and ResNet-50 [41] , 

hich both contain multiple parallel branches of layers and skip 

onnections. 

The first scenario focuses specifically on pruning of pre-trained 

NNs with subsequent fine-tuning, as it is common in pruning re- 

earch [22] . We compare our method with several state-of-the-art 

riteria to demonstrate the effectiveness of LRP as a pruning crite- 

ion in CNNs. 

In the second scenario, we tested whether the proposed prun- 

ng criterion also works well if only a very limited number of sam- 

les is available for pruning the model. This is relevant in case 

f devices with limited computational power, energy and storage 

uch as mobile devices or embedded applications. 

.1. Pruning toy models 

First, we systematically compare the properties and effective- 

ess of the different pruning criteria on several toy datasets in or- 

er to foster an intuition about the properties of all approaches, 

n a controllable and computationally inexpensive setting. To this 

nd we evaluate all four criteria on different toy data distribu- 

ions qualitatively and quantitatively. We generated three k -class 

oy datasets (“moon” ( k = 2 ), “circle” ( k = 2 ) and “multi” ( k = 4 )),

sing respective generator functions 2 , 3 . 

Each generated 2D dataset consists of 10 0 0 training samples 

er class. We constructed and trained the models as a sequence 

f three consecutive ReLU-activated dense layers with 10 0 0 hidden 

eurons each. After the first linear layer, we have added a DropOut 

ayer with a dropout probability of 50%. The model receives inputs 

rom R 

2 and has — depending on the toy problem set — k ∈ { 2 , 4 }
utput neurons: 

Dense(1000) → ReLU → DropOut(0.5) → 

Dense(1000) → ReLU → Dense(1000) → 

ReLU → Dense(k) 
We then sample a number of new datapoints (unseen dur- 

ng training) for the computation of the pruning criteria. During 

runing, we removed a fixed number of 10 0 0 of the 30 0 0 hidden

eurons that have the least relevance for prediction according to 
1 https://www.cs.toronto.edu/ ∼kriz/cifar.html . 
2 https://scikit-learn.org/stable/datasets . 
3 https://github.com/seulkiyeom/LRP _ Pruning _ toy _ example . 
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5 
ach criterion. This is equivalent to removing 10 0 0 learned (yet in- 

ignificant, according to the criterion) filters from the model. Af- 

er pruning, we observed the changes in the decision boundaries 

nd re-evaluated for classification accuracy using the original train- 

ng samples and re-sampled datapoints across criteria. This exper- 

ment is performed with n ∈ [1 , 2 , 5 , 10 , 20 , 50 , 100 , 200] reference

amples for testing and the computation of pruning criteria. Each 

etting is repeated 50 times, using the same set of random seeds 

depending on the repetition index) for each n across all pruning 

riteria to uphold comparability. 

Fig. 2 shows the data distributions of the generated toy 

atasets, an exemplary set of n = 5 samples generated for criteria 

omputation, as well as the qualitative impact to the models’ deci- 

ion boundary when removing a fixed set of 10 0 0 neurons as se- 

ected via the compared criteria. Fig. 3 investigates how the prun- 

ng criteria preserve the models’ problem solving capabilities as a 

unction of the number of samples selected for computing the cri- 

eria. Fig. 4 then quantitatively summarizes the results for specific 

umbers of unseen samples ( n ∈ [1 , 5 , 20 , 100] ) for computing the

riteria. Here we report the model accuracy on the training set in 

rder to relate the preservation of the decision function as learned 

rom data between unpruned (2nd column) to pruned models and 

runing criteria (remaining columns). 

The results in Fig. 4 show that, among all criteria based on ref- 

rence samples for the computation of relevance, the LRP-based 

easure consistently outperforms all other criteria in all reference 

et sizes and datasets. Only in the case of n = 1 reference sam- 

le per class, the weight criterion preserves the model the best. 

ote that using the weight magnitude as a measure of network 

nit importance is a static approach, independent from the choice 

f reference samples. Given n = 5 points of reference per class, the 

RP-based criterion already outperforms also the weight magni- 

ude as a criterion for pruning unimportant neural network struc- 

ures, while successfully preserving the functional core of the pre- 

ictor. Fig. 2 demonstrates how the toy models’ decision bound- 

ries change under influence of pruning with all four criteria. We 

an observe that the weight criterion and LRP preserve the models’ 

earned decision boundary well. Both the Taylor and gradient mea- 

ures degrade the model significantly. Compared to weight- and 

RP-based criteria, models pruned by gradient-based criteria mis- 

lassify a large part of samples. 

The first row of Fig. 3 shows that all (data dependent) measures 

enefit from increasing the number of reference points. LRP is able 

o find and preserve the functionally important network compo- 

ents with only very little data, while at the same time being 

onsiderably less sensitive to the choice of reference points than 

ther metrics, visible in the measures’ standard deviations. Both 

he gradient and Taylor-based measures do not reach the perfor- 

ance of LRP-based pruning, even with 200 reference samples for 

ach class. The performance of pruning with the weight magnitude 

ased measure is constant, as it does only depend on the learned 

eights itself. The bottom row of Fig. 3 shows the test performance 

f the pruned models as a function of the number of samples used 

or criteria computation. Here, we tested on 500 samples per class, 

rawn from the datasets’ respective distributions, and perturbed 

ith additional Gaussian noise ( N (0 , 0 . 3) ) added after data gener-

tion. Due to the large amounts of noise added to the data, we see 

he prediction performance of the pruned and unpruned models to 

ecrease in all settings. Here we can observe that two out of three 

imes the LRP-pruned models outperforming all other criteria. Only 

nce, on the “moon” dataset, pruning based on the weight criterion 

ields a higher performance than the LRP-pruned model. Most re- 

arkably though, only the models pruned with the LRP-based cri- 

erion exhibit prediction performance and behavior — measured in 

ean and standard deviation of accuracies measured over all 50 

andom seeds per n reference samples on the deliberatly heavily 

https://www.cs.toronto.edu/~kriz/cifar.html
https://scikit-learn.org/stable/datasets
https://github.com/seulkiyeom/LRP_Pruning_toy_example
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Fig. 2. Qualitative comparison of the impact of the pruning criteria on the decision function on three toy datasets. 1st column : scatter plot of the training data and decision 

boundary of the trained model, 2nd column : data samples randomly selected for computing the pruning criteria, 3rd to 6th columns : changed decision boundaries after the 

application of pruning w.r.t. different criteria. 

Fig. 3. Pruning performance (accuracy) comparison of criteria depending on the number of reference samples per class used for criterion computation. 1st row: Model 

evaluation on the training data. 2nd row: Model evaluation on an unseen test dataset with added Gaussian noise ( N (0 , 0 . 3) ), which has not been used for the computation 

of pruning criteria. Columns: Results over different datasets. Solid lines show the average post-pruning performance of the models pruned w.r.t. to the evaluated criteria 

weight (black), Taylor (blue), grad(ient) (green) and LRP (red) over 50 repetitions of the experiment. The dashed black line indicates the model’s evaluation performance 

without pruning. Shaded areas around the lines show the standard deviation over the repetitions of experiments. Further results for noise levels N (0 , 0 . 1) and N (0 , 0 . 01) 

are available on github 3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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oisy data — highly similar to the original and unpruned model, 

rom only n = 5 reference samples per class on, on all datasets. 

his yields another strong indicator that LRP is, among the com- 

ared criteria, most capable at preserving the relevant core of the 

earned network function, and at dismissing unimportant parts of 

he model during pruning. 

The strong results of LRP, and the partial similarity between 

he results on the training datasets between LRP and weight raises 

he question where and how both metrics (and Taylor and gradi- 
6 
nt) deviate, as it can be expected that both metrics at least select 

ighly overlapping sets of network units for pruning and preser- 

ation. We therefore investigate in all three toy settings — across 

he different number of reference samples and random seeds —

he (dis)similarities and (in)consistencies in neuron selection and 

anking by measuring the set similarities (S 1 ∩ S 2 ) / min (| S 1 | , | S 2 | )
f the k neurons selected for pruning (ranked first ) and preserva- 

ion (ranked last ) between and within criteria. Since the weight 

riterion is not influenced by the choice of reference samples for 

https://github.com/seulkiyeom/LRP_Pruning_toy_example
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Fig. 4. Comparison of training accuracy after pruning one third of all filters w.r.t one of the four metrics on toy datasets, with n ∈ [1 , 5 , 20 , 100] reference samples used for 

criteria computation for W eight, G radient, T aylor and L RP. The experiment is repeated 50 times. Note that the W eight criterion is not influenced by the number of reference 

samples n . Compare to Supplementary Table 1 . 

Table 1 

Similarity analysis of neuron selection between LRP and the other criteria, computed over 50 different random seeds. Higher values indicate higher similarity 

in neuron selection of the first/last k neurons for pruning compared to LRP. Note that below table reports results only for n = 10 reference samples for criteria 

computation ( W eight, T aylor, G radient and L RP) and k = 250 and k = 10 0 0 . Similar observations have been made for n ∈ [1 , 2 , 5 , 20 , 50 , 100 , 200] and k ∈ [125 , 500] 

and can be found on github 3 . 

Dataset first-250 last-250 first-10 0 0 last-10 0 0 

W T G L W T G L W T G L W T G L 

moon 0.002 0.006 0.006 1.000 0.083 0.361 0.369 1.000 0.381 0.639 0.626 1.000 0.409 0.648 0.530 1.000 

circle 0.033 0.096 0.096 1.000 0.086 0.389 0.405 1.000 0.424 0.670 0.627 1.000 0.409 0.623 0.580 1.000 

mult 0.098 0.220 0.215 1.000 0.232 0.312 0.299 1.000 0.246 0.217 0.243 1.000 0.367 0.528 0.545 1.000 

Table 2 

A consistency comparison of neuron selection and ranking for network pruning with criteria ( W eight, T aylor, G radient and 

L RP), averaged over all 1225 unique random seed combinations. Higher values indicate higher consistency in selecting the 

same sets of neurons and generating neuron rankings for different sets of reference samples. We report results for n = 10 

reference samples and k = 250 . Observations for n ∈ [1 , 2 , 5 , 20 , 50 , 100 , 200] and k ∈ [125 , 500 , 1000] are available on github 3 . 

Dataset first-250 last-250 Spearman Correlation 

W T G L W T G L W T G L 

moon 1.000 0.920 0.918 0.946 1.000 0.508 0.685 0.926 1.000 0.072 0.146 0.152 

circle 1.000 0.861 0.861 0.840 1.000 0.483 0.635 0.936 1.000 0.074 0.098 0.137 

mult 1.000 0.827 0.829 0.786 1.000 0.463 0.755 0.941 1.000 0.080 0.131 0.155 
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omputation, it is expected that the resulting neuron order is per- 

ectly consistent with itself in all settings (cf. Table 2 ). What is un-

xpected however, given the results in Fig. 3 and Fig. 4 indicating 

imilar model behavior after pruning to be expected between LRP- 

nd weight-based criteria, at least on the training data, is the mini- 

al set overlap between LRP and weight, given the higher set simi- 

arities between LRP and the gradient and Taylor criteria, as shown 

n Table 1 . Overall, the set overlap between the neurons ranked 

n the extremes of the orderings show that LRP-derived pruning 

trategies have very little in common with the ones originating 

rom the other criteria. This observation can also be made on more 

omplex networks at hand of Fig. 7 , as shown and discussed later 

n this Section. 

Table 2 reports the self-similarity in neuron selection in the ex- 

remes of the ranking across random seeds (and thus sets of refer- 

nce samples), for all criteria and toy settings. While LRP yields a 

igh consistency in neuron selection for both the pruning ( first- k ) 

nd the preservation ( last- k ) of neural network units, both gradient 

nd more so Taylor exhibit lower self-similarities. The lower con- 

istency of both latter criteria in the model components ranked last 

i.e., preserved in the model the longest during pruning) yields an 

xplanation for the large variation in results observed earlier: al- 

hough gradient and Taylor are highly consistent in the removal of 
7 
eurons rated as irrelevant, their volatility in the preservation of 

eurons which constitute the functional core of the network after 

runing yields dissimilarities in the resulting predictor function. 

he high consistency reported for LRP in terms of neuron sets se- 

ected for pruning and preservation, given the relatively low Spear- 

an correlation coefficient points out only minor local perturba- 

ions of the pruning order due to the selection of reference sam- 

les. We find a direct correspondence between the here reported 

in)consistency of pruning behavior for the three data-dependent 

riteria, and the explanation continuity” observed for LRP [12] (and 

iscontinuity observed for gradient and Taylor) in neural networks 

ontaining the commonly used ReLU activation function, which 

rovides an explanation for the high pruning consistency obtained 

ith LRP, and the extreme volatility for gradient and Taylor. 

A supplementary analysis of the neuron selection consistency 

f LRP over different counts of reference samples n, demonstrating 

he requirement of only very few reference samples per class in 

rder to obtain stable pruning results, can be found in Supplemen- 

ary Results 1. 

Taken together, the results of Tables 1 to 2 and Supplemen- 

ary Tables 1 and 2 elucidate that LRP constitutes — compared 

o the other methods — an orthogonal pruning criterion which is 

ery consistent in its selection of (un)important neural network 

https://github.com/seulkiyeom/LRP_Pruning_toy_example
https://github.com/seulkiyeom/LRP_Pruning_toy_example
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nits, while remaining adaptive to the selection of reference sam- 

les for criterion computation. Especially the similarity in post- 

runing model performance to the static weight criterion indicates 

hat both metrics are able to find valid, yet completely different 

runing solutions. However, since LRP can still benefit from the in- 

uence of reference samples, we will show in Section 4.2.2 that 

ur proposed criterion is able to outperform not only weight, but 

ll other criteria in Scenario 2, where pruning is used instead of 

ne-tuning as a means of domain adaptation. This will be dis- 

ussed in the following sections. 

.2. Pruning deep image classifiers for large-scale benchmark data 

We now evaluate the performance of all pruning criteria on 

GG-16, AlexNet as well as ResNet-18 and ResNet-50, — popu- 

ar CNNs in compression research [42] — all of which are pre- 

rained on ILSVRC 2012 (ImageNet). VGG-16 consists of 13 convo- 

utional layers with 4224 filters and 3 fully-connected layers and 

lexNet contains 5 convolutional layers with 1552 filters and 3 

ully-connected layers. In dense layers, there exist 4,096+4,096+ k 

eurons (i.e. filters), respectively, where k is the number of output 

lasses. In terms of complexity of the model, the pre-trained VGG- 

6 and AlexNet on ImageNet originally consist of 138.36/60.97 mil- 

ion of parameters and 154.7/7.27 Giga Multiply-Accumulate Oper- 

tions (GMACs) (as a measure of FLOPs), respectively. 

ResNet-18 and ResNet-50 consist of 20/53 convolutional layers 

ith 4,800/26,560 filters. In terms of complexity of the model, the 

re-trained ResNet-18 and ResNet-50 on ImageNet originally con- 

ist of 11.18/23.51 million of parameters and 1.82/4.12 GMACs, re- 

pectively. 

Furthermore, since the LRP scores are not implementation- 

nvariant and depend on the LRP rules used for the batch nor- 

alization (BN) layers, we convert a trained ResNet into a can- 

nized version, which yields the same predictions up to numer- 

cal errors. The canonization fuses a sequence of a convolution 

nd a BN layer into a convolution layer with updated weights 4 

nd resets the BN layer to be the identity function. This re- 

oves the BN layer effectively by rewriting a sequence of two 

ffine mappings into one updated affine mapping [43] . The sec- 

nd change replaced calls to torch.nn.functional methods 

nd the summation in the residual connection by classes derived 

rom torch.nn.Module which then were wrapped by calls to 

orch.autograd.function to enable custom backward com- 

utations suitable for LRP rule computations. 

Experiments are performed within the PyTorch and torchvi- 

ion frameworks under Intel(R) Xeon(R) CPU E5-2660 2.20GHz and 

VIDIA Tesla P100 with 12GB for GPU processing. We evalu- 

ted the criteria on six public datasets (Scene 15 [36] , Event 

, Cats and Dogs [38] , Oxford Flower 102 [39] , CIFAR-10, and 

LSVRC 2012 [40] ). For more detail on the datasets and the pre- 

rocessing, see Supplementary Methods 1. Our complete experi- 

ental setup covering these datasets is publicly available at https: 

/github.com/seulkiyeom/LRP _ pruning . 

In order to prepare the models for evaluation, we first fine- 

uned the models for 200 epochs with constant learning rate 0.001 

nd batch size of 20. We used the Stochastic Gradient Descent 

SGD) optimizer with momentum of 0.9. In addition, we also ap- 

ly dropout to the fully-connected layers with probability of 0.5. 

ine-tuning and pruning are performed on the training set, while 

esults are evaluated on each test dataset. Throughout the experi- 

ents, we iteratively prune 5% of all the filters in the network by 

liminating units including their input and output connections. In 
4 See bnafterconv_overwrite_intoconv(conv,bn) in the file 

rp_general6.py in https://github.com/AlexBinder/LRP _ Pytorch _ Resnets _ 

ensenet . 

f

r

a

8 
cenario 1, we subsequently fine-tune and to re-evaluate the model 

o account for dependency across parameters and regain perfor- 

ance, as it is common. 

.2.1. Scenario 1: Pruning with fine-tuning 

On the first scenario, we retrain the model after each itera- 

ion of pruning in order to regain lost performance. We then eval- 

ate the performance of the different pruning criteria after each 

runing-retraining-step. 

That is, we quantify the importance of each filter by the mag- 

itude of the respective criterion and iteratively prune 5% of all fil- 

ers (w.r.t. the original number of filters in the model) rated least 

mportant in each pruning step. Then, we compute and record the 

raining loss, test accuracy, number of remaining parameters and 

otal estimated FLOPs. We assume that the least important filters 

hould have only little influence on the prediction and thus incur 

he lowest performance drop if they are removed from the net- 

ork. 

Fig. 5 (and Supplementary Fig. 2 ) depict test accuracies with in- 

reasing pruning rate in VGG-16 and ResNet-50 (and AlexNet and 

esNet-18, respectively) after fine-tuning for each dataset and each 

riterion. It is observed that LRP achieves higher test accuracies 

ompared to other criteria in a large majority of cases (see Fig. 6 

nd Supplementary Fig. 1 ). These results demonstrate that the per- 

ormance of LRP-based pruning is stable and independent of the 

hosen dataset. 

Apart from performance, regularization by layer is a critical 

onstraint which obstructs the expansion of some of the crite- 

ia toward several pruning strategies such as local pruning, global 

runing, etc. Except for the LRP criterion, all criteria perform sub- 

tantially worse without l p regularization compared to those with 

 p regularization and result in unexpected network interruptions 

uring the pruning process due to the biased redistribution of im- 

ortance in the network (cf. top rows of Fig. 5 and Supplementary 

ig. 2 ). 

Table 3 shows the predictive performance of the different cri- 

eria in terms of training loss, test accuracy, number of remain- 

ng parameters and FLOPs, for the VGG-16 and ResNet-50 models. 

imilar results for AlexNet and ResNet-18 can be found in Supple- 

entary Table 2 . Except for CIFAR-10, the highest compression rate 

i.e., lowest number of parameters) could be achieved by the pro- 

osed LRP-based criterion (row “Params”) for VGG-16, but not for 

esNet-50. However, in terms of FLOPs, the proposed criterion only 

utperformed the weight criterion, but not the Taylor and gradient 

riteria (row “FLOPs”). This is due to the fact that a reduction in 

umber of FLOPs depends on the location where pruning is ap- 

lied within the network: Fig. 7 shows that the LRP and weight 

riteria focus the pruning on upper layers closer to the model out- 

ut, whereas the Taylor and gradient criteria focus more on the 

ower layers. 

Throughout the pruning process usually a gradual decrease in 

erformance can be observed. However, with the Event 8, Ox- 

ord Flower 102 and CIFAR-10 datasets, pruning leads to an ini- 

ial performance increase, until a pruning rate of approx. 30% 

s reached. This behavior has been reported before in the liter- 

ture and might stem from improvements of the model struc- 

ure through elimination of filters related to classes in the source 

ataset (i.e., ILSVRC 2012) that are not present in the target dataset 

nymore [44] . 

Supplementary Table 3 and Supplementary Fig. 2 similarly show 

hat LRP achieves the highest test accuracy in AlexNet and ResNet- 

8 for nearly all pruning ratios with almost every dataset. 

Fig. 7 shows the number of the remaining convolutional filters 

or each iteration. We observe that, on the one hand, as pruning 

ate increases, the convolutional filters in earlier layers that are 

ssociated with very generic features, such as edge and blob 

https://github.com/seulkiyeom/LRP_pruning
https://github.com/AlexBinder/LRP_Pytorch_Resnets_Densenet
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Fig. 5. Comparison of test accuracy in different criteria as pruning rate increases on VGG-16 (top) and ResNet-50 (bottom) with five datasets. Pruning with fine-tuning. 

Prematurely terminated lines in above row of panels indicate that during pruning, the respective criterion removed filters vital to the network structure by disconnecting 

the model input from the output. 

Fig. 6. Performance comparison of the proposed method (i.e., LRP) and other criteria on VGG-16 and ResNet-50 with five datasets. Each point in the scatter plot corresponds 

to the performance at a specific pruning rate of two criteria, where the vertical axis shows the performance of our LRP criterion and the horizontal axis the performance of 

a single other criterion (compare to Fig. 5 that displays the same data for more than two criteria). The black dashed line shows the set of points where models pruned by 

one of the compared criteria would exhibit identical performance to LRP. For accuracy, higher values are better. For loss, lower values are better. 
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Fig. 7. An observation of per-layer pruning performed w.r.t the different evaluated criteria on VGG-16 and two datasets. Each colored line corresponds to a specific (global) 

ratio of filters pruned from the network (black (top) : 0%, red : 15%, green: 30%, blue: 45%, violet: 75% and black (bottom) 90%). The dots on each line identify the ratio of 

pruning applied to specific convolutional layers, given a global ratio of pruning, depending on the pruning criterion. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Table 3 

A performance comparison between criteria ( W eight, T aylor, G radient with l 2 -norm each and L RP) and the U npruned model for VGG-16 (top) and 

ResNet-50 (bottom) on five different image benchmark datasets. Criteria are evaluated at fixed pruning rates per model and dataset, identified as 

〈 dataset 〉 @ 〈 percent_pruned_filters 〉 %. We report test accuracy (in %), (training) loss ( ×10 −2 ), number of remaining parameters ( ×10 7 ) and FLOPs (in 

GMAC) per forward pass. For all measures except accuracy, lower outcomes are better. 

VGG-16 Scene 15 @ 55% Event 8 @ 55% Cats & Dogs @ 60% 

U W T G L U W T G L U W T G L 

Loss 2.09 2.27 1.76 1.90 1.62 0.85 1.35 1.01 1.18 0.83 0.19 0.50 0.51 0.57 0.44 

Accuracy 88.59 82.07 83.00 82.72 83.99 95.95 90.19 91.79 90.55 93.29 99.36 97.90 97.54 97.19 98.24 

Params 119.61 56.17 53.10 53.01 49.67 119.58 56.78 48.48 50.25 47.35 119.55 47.47 51.19 57.27 43.75 

FLOPs 15.50 8.03 4.66 4.81 6.94 15.50 8.10 5.21 5.05 7.57 15.50 7.02 3.86 3.68 6.49 

Oxford Flower 102 @ 70% CIFAR-10 @ 30% 

U W T G L U W T G L 

Loss 3.69 3.83 3.27 3.54 2.96 1.57 1.83 1.76 1.80 1.71 

Accuracy 82.26 71.84 72.11 70.53 74.59 91.04 93.36 93.29 93.05 93.42 

Params 119.96 39.34 41.37 42.68 37.54 119.59 74.55 97.30 97.33 89.20 

FLOPs 15.50 5.48 2.38 2.45 4.50 15.50 11.70 8.14 8.24 9.93 

ResNet-50 Scene 15 @ 55% Event 8 @ 55% Cats & Dogs @ 60% 

U W T G L U W T G L U W T G L 

Loss 0.81 1.32 1.08 1.32 0.50 0.33 1.07 0.63 0.85 0.28 0.01 0.05 0.06 0.21 0.02 

Accuracy 88.28 80.17 80.26 78.71 85.38 96.17 88.27 87.55 86.38 94.22 98.42 97.02 96.33 93.13 98.03 

Params 23.54 14.65 12.12 11.84 13.73 23.52 13.53 11.85 11.93 14.05 23.51 12.11 10.40 10.52 12.48 

FLOPs 4.12 3.22 2.45 2.42 3.01 4.12 3.16 2.48 2.47 3.10 4.12 3.04 2.40 2.27 2.89 

Oxford Flower 102 @ 70% CIFAR-10 @ 30% 

U W T G L U W T G L 

Loss 0.82 3.04 2.18 2.69 0.83 0.003 0.002 0.004 0.009 0.003 

Accuracy 77.82 51.88 58.62 53.96 76.83 93.55 93.37 93.15 92.76 93.23 

Params 23.72 9.24 8.82 8.48 9.32 23.52 19.29 18.10 17.96 18.11 

FLOPs 4.12 2.55 1.78 1.81 2.38 1.30 1.14 1.06 1.05 1.16 
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5 http://www.image-net.org/archive/wordnet.is _ a.txt . 
etectors, tend to generally be preserved as opposed to those in 

atter layers which are associated with abstract, task-specific fea- 

ures. On the other hand, the LRP- and weight-criterion first keep 

he filters in early layers in the beginning, but later aggressively 

rune filters near the input which now have lost functionality as 

nput to later layers, compared to the gradient-based criteria such 

s gradient and Taylor-based approaches. Although gradient-based 

riteria also adopt the greedy layer-by-layer approach, we can 

ee that gradient-based criteria pruned the less important filters 

lmost uniformly across all the layers due to re-normalization of 

he criterion in each iteration. However, this result contrasts with 

revious gradient-based works [22,25] that have shown that units 

eemed unimportant in earlier layers, contribute significantly 

ompared to units deemed important in latter layers. In contrast 

o this, LRP can efficiently preserve units in the early layers — as 

ong as they serve a purpose — despite of iterative global pruning. 

.2.2. Scenario 2: Pruning without fine-tuning 

In this section, we evaluate whether pruning works well if 

nly a (very) limited number of samples is available for quan- 

ifying the pruning criteria. To the best of our knowledge, there 

re no previous studies that show the performance of pruning ap- 

roaches when acting w.r.t. very small amounts of data. With large 

mounts of data available (and even though we can expect rea- 

onable performance after pruning), an iterative pruning and fine- 

uning procedure of the network can amount to a very time con- 

uming and computationally heavy process. From a practical point 

f view, this issue becomes a significant problem, e.g., with limited 

omputational resources (mobile devices or in general; consumer- 

evel hardware) and reference data (e.g., private photo collections), 

here capable and effective pruning approaches are desired. 

To investigate whether pruning is possible also in these scenar- 

os, we performed experiments with a relatively small number of 
10 
ata on the 1) Cats & Dogs and 2) subsets from the ILSVRC 2012 

lasses. 

On the Cats & Dogs dataset, we only used 10 samples each from 

he “cat” and “dog” classes to prune the (on ImageNet) pre-trained 

lexNet, VGG-16, ResNet-18 and ResNet-50 networks with the goal 

f domain/dataset adaption. The binary classification (i.e., “cat” vs. 

dog”) is a subtask within the ImageNet taxonomy and correspond- 

ng output neurons can be identified by its WordNet 5 associations. 

his experiment implements the task of domain adaptation. 

In a second experiment on the ILSVRC 2012 dataset, we ran- 

omly chose k = 3 classes for the task of model specialization, se- 

ected only n = 10 images per class from the training set and used 

hem to compare the different pruning criteria. For each criterion, 

e used the same selection of classes and samples. In both experi- 

ental settings, we do not fine-tune the models after each prun- 

ng iteration, in contrast to Scenario 1 in Section 4.2.1 . The ob- 

ained post-pruning model performance is averaged over 20 ran- 

om selections of classes (ImageNet) and samples (Cats & Dogs) 

o account for randomness. Please note that before pruning, we 

rst restructured the models’ fully connected output layers to only 

reserve the task-relevant k network outputs by eliminating the 

0 0 0 − k redundant output neurons. 

Furthermore, as our target datasets are relatively small and only 

ave an extremely reduced set of target classes, the pruned mod- 

ls could still be very heavy w.r.t. memory requirements if the 

runing process would be limited to the convolutional layers, as 

n Section 4.2.1 . More specifically, while convolutional layers domi- 

antly constitute the source of computation cost (FLOPs), fully con- 

ected layers are proven to be more redundant [29] . In this re- 

pect, we applied pruning procedures in both fully connected lay- 

rs and convolutional layers in combination for VGG-16. 

http://www.image-net.org/archive/wordnet.is_a.txt
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Fig. 8. Test accuracy after pruning of n % of convolutional (rows) and m % of fully connected (columns) filters on VGG-16 without fine-tuning for a random subset of the 

classes from ILSVRC 2012 ( k = 3) based on different criteria (averaged over 20 repetitions). Each color represents a range of 5% in test accuracy. The brighter the color the 

better the performance after a given degree of pruning. 

Fig. 9. Test accuracy after pruning of n % of convolutional filters on ResNet18 and ResNet50 without fine-tuning for a random subset of the classes from ILSVRC 2012 ( k = 3) 

based on the criteria W eight, T aylor, G radient with l 2 -norm and L RP (averaged over 20 repetitions). Compare to Fig. 8 . 
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For pruning, we iterate a sequence of first pruning filters from 

he convolutional layers, followed by a step of pruning neurons 

rom the model’s fully connected layers. Note that both evaluated 

esNet architectures mainly consist of convolutional- and pooling 

ayers, and conclude in a single dense layer, of which the set of 

nput neurons are only affected via their inputs by pruning the be- 

ow convolutional stack. We therefore restrict the iterative pruning 

lters from the sequence of dense layers of the feed-forward archi- 

ecture of the VGG-16. 

The model performance after the application of each cri- 

erion for classifying a small number of classes ( k = 3) from 

he ILSVRC 2012 dataset is indicated in Fig. 8 for VGG 16 and 

ig. 9 for ResNets (please note again that ResNets do not have 
11 
ully-connected layers). During pruning at fully-connected layers, 

o significant difference across different pruning ratios can be 

bserved. Without further fine-tuning, pruning weights/filters 

t the fully connected layers can retain performance efficiently. 

owever, there is a certain difference between LRP and other 

riteria with increasing pruning ratio of convolutional layers for 

GG-16/ResNet-18/ResNet-50, respectively: (LRP vs. Taylor with 

 2 -norm; up to of 9.6/61.8/51.8%, LRP vs. gradient with l 2 -norm; 

p to 28.0/63.6/54.5 %, LRP vs. weight with l 2 -norm; up to 

7.1/48.3/30.2 %). Moreover, pruning convolutional layers needs 

o be carefully managed compared to pruning fully connected 

ayers. We can observe that LRP is applicable for pruning any 

ayer type (i.e., fully connected, convolutional, pooling, etc.) ef- 
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Fig. 10. Performance comparison of pruning without fine-tuning for AlexNet, VGG-16, ResNet-18 and ResNet-50 based on only few (10) samples per class from the Cats & 

Dogs dataset, as a means for domain adaption. Additional results on further target domains can be found in the Supplement with Supplementary Figure 3. 
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ciently. Additionally, as mentioned in Section 3.1 , our method 

an be applied to general network architectures because it can 

utomatically measure the importance of weights or filters in a 

lobal (network-wise) context without further normalization. 

Fig. 10 shows the test accuracy as a function of the pruning ra- 

io for the domain adaptation task from ImageNet to CatsNDogs. 

s the pruning ratio increases, we can see that even without fine- 

uning, using LRP as pruning criterion can keep the test accuracy 

ot only stable, but close to 100%, given the extreme scarcity of 

ata in this experiment. In contrast, the performance decreases sig- 

ificantly when using the other criteria requiring an application 

f the l 2 -norm. Initially, the performance is even slightly increas- 

ng when pruning with LRP. During iterative pruning, unexpected 

hanges in accuracy with LRP (for 2 out of 20 repetitions of the ex- 

eriment) have been shown around 50 - 55% pruning ratio, but ac- 

uracy is regained quickly again. However, only the VGG-16 model 

eems to be affected for this task. For both ResNet models, this 

henomenon occurs for the other criteria instead. A series of in- 

epth investigations of this momentary decrease in performance 

id not lead to any insights and will be subject of future work 6 . 

By pruning close to 99% of convolutional filters in the networks 

sing our proposed method, we can have 1) greatly reduced com- 

utational cost, 2) faster forward and backward processing (e.g. for 

he purpose of further training, inference or the computation of at- 

ribution maps), and 3) a lighter model even in the small sample 

ase, all while adapting off-the-shelf pre-trained ImageNet models 

owards a dog-vs.-cat classification task. 

. Discussion 

Our experiments demonstrate that the novel LRP criterion con- 

istently performed well compared to other criteria across various 

atasets, model architectures and experimental settings, and often- 

imes outperformed the competing criteria. This is especially pro- 

ounced in our Scenario 2 (cf. Section 4.2.2 ), where only little re- 

ources are available for criterion computation, and no fine-tuning 

fter pruning is allowed. Here, LRP considerably outperformed the 

ther metrics on toy data (cf. Section 4.1 ) and image processing 

enchmark data (cf. Section 4.2.2 ). The strongly similar results be- 

ween criteria observed in Scenario 1 (cf. Section 4.2.2 ) are also 

ot surprising, as an additional fine-tuning step after pruning may 

llow the pruned neural network model to recover its original per- 

ormance, as long as the model has the capacity to do so [22] . 

From the results of Table 3 and Supplementary Table 3 we can 

bserve that with a fixed pruning target of n % filters removed, LRP 
6 We consequently have to assume that this phenomenon marks the downloaded 

re-trained VGG-16 model as an outlier in this respect. A future line of research 

ill dedicate inquiries about the circumstances leading to intermediate loss and 

ater recovery of model performance during pruning. 

l  

m

c

o

12 
ight not always result in the cheapest sub-network after prun- 

ng in terms of parameter count and FLOPs per inference, however 

t consistently is able to identify the network components for re- 

oval and preservation leading to the best performing model after 

runing. Latter results resonate also strongly in our experiments 

f Scenario 2 on both image and toy data, where, without the ad- 

itional fine-tuning step, the LRP-pruned models vastly outperform 

heir competitors. The results obtained in multiple toy settings ver- 

fy that only the LRP-based pruning criterion is able to preserve the 

riginal structure of the prediction function (cf. Figs. 2 and 3 ). 

Unlike the weight criterion, which is a static quantity once the 

etwork is not in training anymore, the criteria Taylor, gradient 

nd LRP require reference samples for computation, which in turn 

ay affect the estimation of neuron importance. From the latter 

hree criteria, however, only LRP provides a continuous measure of 

etwork structure importance (cf. Sec 7.2 in [12] ) which does not 

uffer from abrupt changes in the estimated importance measures 

ith only marginal steps between reference samples. This quality 

f continuity is reflected in the stability and quality of LRP results 

eported in Section 4.1 , compared to the high volatility in neuron 

election for pruning and model performance after pruning observ- 

ble for the gradient and Taylor criteria. From this observation it 

an also be deduced that LRP requires relatively few data points to 

onverge to a pruning solution that possesses a similar prediction 

ehavior as the original model. Hence, we conclude that LRP is a 

obust pruning criterion that is broadly applicable in practice. Es- 

ecially in a scenario where no fine-tuning is applied after pruning 

see Section 4.2.2 ), the LRP criterion allows for pruning of a large 

art of the model without significant accuracy drops. 

In terms of computational cost, LRP is comparable to the Tay- 

or and Gradient criteria because these criteria require both a for- 

ard and a backward pass for all reference samples. The weight 

riterion is substantially cheaper to compute since it does not re- 

uire to evaluate any reference samples; however, its performance 

alls short in most of our experiments. Additionally, our experi- 

ents demonstrate that LRP requires less reference samples than 

he other criteria (cf. Fig. 3 and Fig. 4 ), thus the required com- 

utational cost is lower in practical scenarios, and better perfor- 

ance can be expected if only low numbers of reference samples 

re available (cf. Fig. 10 ). 

Unlike all other criteria, LRP does not require explicit regu- 

arization via l p -normalization, as it is naturally normalized via 

ts enforced relevance conservation principle during relevance back- 

ropagation, which leads to the preservation of important net- 

ork substructures and bottlenecks in a global model context. In 

ine with the findings by [22] , our results in Fig. 5 and Supple-

entary Fig. 2 show that additional normalization after criterion 

omputation for weight, gradient and Taylor is not only vital to 

btain good performance, but also to avoid disconnected model 
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egments — something which is prevented out-of-the-box with 

RP. 

However, our proposed criterion still provides several open 

uestions that deserve a deeper investigation in future work. First 

f all, LRP is not implementation invariant, i.e., the structure and 

omposition of the analyzed network might affect the computation 

f the LRP-criterion and “network canonization” — a functionally 

quivalent restructuring of the model — might be required for op- 

imal results, as discussed early in Section 4 and [43] . Furthermore, 

hile our LRP-criterion does not require additional hyperparame- 

ers, e.g., for normalization, the pruning result might still depend 

n the chosen LRP variant. In this paper, we chose the α1 β0 -rule 

n all layers, because this particular parameterization identifies the 

etwork’s neural pathways positively contributing to the selected 

utput neurons for which reference samples are provided, and is 

obust against the detrimental effects of shattered gradients af- 

ecting especially very deep CNNs [11] (i.e., other than gradient- 

ased methods, it does not suffer from potential discontinuities 

n the backpropagated quantities), and has a mathematical well- 

otivated foundation in DTD [11,12] . However, other work from lit- 

rature provide [14] or suggest [8,9] alternative parameterizations 

o optimize the method for explanatory purposes. It is an interest- 

ng direction for future work to examine whether these findings 

lso apply to LRP as a pruning criterion. 

. Conclusion 

Modern CNNs typically have a high capacity with millions of 

arameters as this allows to obtain good optimization results in 

he training process. After training, however, high inference costs 

emain, despite the fact that the number of effective parameters 

n the deep model is actually significantly lower (see e.g. [45] ). 

o alleviate this, pruning aims at compressing and accelerating the 

iven models without sacrificing much of predictive performance. 

n this paper, we have proposed a novel criterion for the iterative 

runing of CNNs based on the explanation method LRP, linking for 

he first time two so far disconnected lines of research. 

LRP has a clearly defined meaning, namely the contribution of 

n individual network unit, i.e. weight or filter, to the network out- 

ut. Removing units according to low LRP scores thus means dis- 

arding all aspects in the model that do not contribute relevance to 

ts decision making. Hence, as a criterion, the computed relevance 

cores can easily and cheaply give efficient compression rates with- 

ut further postprocessing, such as per-layer normalization. 

Besides, technically LRP is scalable to general network struc- 

ures and its computational cost is similar to the one of a gradient 

ackward pass. 

In our experiments, the LRP criterion has shown favorable com- 

ression performance on a variety of datasets both with and with- 

ut retraining after pruning. Especially when pruning without re- 

raining, our results for small datasets suggest that the LRP crite- 

ion outperforms the state of the art and therefore, its application 

s especially recommended in transfer learning settings where only 

 small target dataset is available. 

In addition to pruning, the same method can be used to visually 

nterpret the model and explain individual decisions as intuitive 

elevance heatmaps. Therefore, for future work, we propose to use 

hese heatmaps to elucidate and explain which image features are 

ost strongly affected by pruning to additionally avoid that the 

runing process leads to undesired Clever Hans phenomena [8] . 
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