
Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Static checking of GDPR-related privacy compliance
for object-oriented distributed systems

Shukun Tokas ∗, Olaf Owe, Toktam Ramezanifarkhani

Department of Informatics, University of Oslo, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2019
Received in revised form 24 May 2021
Accepted 27 October 2021
Available online 4 November 2021

Keywords:
Privacy
GDPR
Privacy compliance
Data protection by design
Static analysis
Language-based privacy

The adoption of information technology in foremost sectors of human activity such as
banking, healthcare, education, governance etc., increases the amount of data collected
and processed to enable these services. With the convenience the technology offers, it
also brings increased challenges pertaining to the privacy. In response to these emerging
privacy concerns, the European Union has approved the General Data Protection Regulation
(GDPR) to strengthen data protection across the European Union. This regulation requires
individuals and organizations that process personal data of EU citizens or provide services
in EU, to comply with the privacy requirements in the GDPR. However, the privacy
policies stating how personal information will be handled to meet regulations as well
as organizational objectives, are given in natural language statements. To demonstrate a
program’s compliance with privacy policies, a link should be established between policy
statements and the program code, with the support of a formalized analysis.
Based on this vision, we formalize a notion of privacy policies and a notion of compliance
for the setting of object-oriented distributed systems. For this we provide explicit
constructs to specify constituents of privacy policies (i.e., principal, purpose, access right)
on personal data. We present a policy specification language and a formalization of privacy
compliance, as well as a high-level modeling language for distributed systems extended
with support for policies. We define a type and effect system for static checking of
compliance of privacy policies and show soundness of this analysis based on an operational
semantics. Finally, we prove a progress property.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction . 2
2. Relevance to the GDPR and research focus . 3
3. Formalization of static privacy policies and policy compliance . 4

3.1. Policies . 5
3.2. Access rights for data subjects . 7
3.3. Policy compliance . 7
3.4. Policies in an object-oriented setting . 9
3.5. Compliance checking of OODS languages . 11

4. An imperative programming language . 12

* Corresponding author.
E-mail address: shukun.tokas@sintef.no (S. Tokas).
https://doi.org/10.1016/j.jlamp.2021.100733
2352-2208/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jlamp.2021.100733
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2021.100733&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:shukun.tokas@sintef.no
https://doi.org/10.1016/j.jlamp.2021.100733
http://creativecommons.org/licenses/by/4.0/

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
4.1. Data types and sensitive data types . 13
4.2. An example . 14

5. An effect system for privacy . 14
5.1. Static compliance checking of the example . 18

6. Awareness of subject . 22
7. Operational semantics . 23

7.1. Runtime policies . 25
7.2. Theoretical results . 25

8. Related work . 28
9. Conclusion . 29

Declaration of competing interest . 30
Acknowledgements . 30
Appendix A. Algorithmic version of the static analysis . 30
Appendix B. Notational conventions . 31
References . 32

1. Introduction

With the adoption of information technology in almost all areas of our life, the collection and processing of personal data
have intensified. This development depends on trustworthy functioning of information and communication technologies to
support the individual privacy rights and democratic values of society [17]. To address the challenges of data protection
and privacy of the individuals within the European Union (EU) and the European Economic Area (EEA), the European Union
Parliament approved the General Data Protection Regulation (GDPR) [19]. The GDPR is said to be “The single most important
change in data privacy regulation in 20 years” [39].

To promote data protection from the outset of the product/service development, requirements to data protection by design
and data protection by default have been formally embedded in Article 25 of the GDPR. Article 25 requires the controllers to
design and develop products with a built-in ability to demonstrate compliance towards the data protection obligations.
Note that the terms privacy by design [14] and GDPR’s data protection by design have similar goals, and are often used
interchangeably. The principle of data protection by default says that privacy is built into the system, i.e., no measures are
required by the data subject in order to maintain her privacy.

In this paper we follow the data protection by design and data protection by default principles, by integrating necessary
safeguards into the processing of personal information, using a language-based approach. Our ambition is to investigate how
to formalize fundamental privacy principles and to provide built-in abilities to fulfill data protection obligations under the
GDPR. As a step towards this goal, we develop a policy language that provides constructs for specifying privacy requirements
on personal data and then present a type and effect system [41] for analyzing a program’s compliance with respect to the
stated privacy policies. We will focus on privacy aspects and policies that can be checked statically. A privacy policy in this
setting is a statement that expresses permitted use of personal information of the declared program entities, such as data
types and methods of interfaces and classes. Static techniques range from manual or semi-automatic deductive methods to
automatic checking. We will only consider analysis methods that are fully automatic because they have a greater potential
for practical usage.

We define a notion of privacy policies given by sets of triples that put restrictions on what kind of principals may
access the personal information, for what purposes, and what kind of operations and access are permitted on this data,
i.e., restricting who, why, and what. A policy on declared program entities puts restrictions on how they are used and on
actions they perform. We define a notion of policy compliance, and show how compliance can be checked at compile time
by an extended type and effect system for an object-oriented, distributed modeling language centered around asynchronous
and synchronous method interaction, extended with policy specifications. The static checking of privacy policies is modular
and is performed on classes that are type-correct with respect to ordinary typing. In particular, the checking can be done
class-wise in the sense that one may check each class independently (assuming access to inherited code), and a class that
has passed the check need not be checked again, when other classes and subclasses are added. Information without a
policy is non-sensitive, and its access is not restricted. The static type-checker ensures that a non-sensitive method may not
access sensitive information and that a variable of a non-sensitive type may not be assigned sensitive information. In GDPR,
sensitive data is a special category of personal data that needs more protection, and in our language setting both sensitive
and personal data use the same policy specifications (with stricter policies on sensitive data). For our purposes we use the
term “sensitive” as a synonym of “personal”.

Certain aspects of the GDPR can be expressed by means of static concepts, whereas some can only be expressed at
runtime, such as subject or consent changes by external users, whereas others are not easily formalized, such as the economic
penalty rules. At compile time we let the statically declared policies provide privacy by default, and then give a framework
enabling change of consent at runtime. The static policies serve as initial policies for a program, while changes in consent
and policies can be handled at runtime, for instance through predefined functionalities. By annotating declared program
entities with privacy policies and developing a scheme of policy inheritance, we may limit the number of policy annotations
2

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
needed. This should make the approach simple and easy to use in practice, as demonstrated by our case study. At runtime
these policies, possibly extended with additional information such as data subject, can be attached to the data values and
objects.

The static compliance checking is done by a static type and effect system based on the kind of privacy policies outlined
here. Even though static notions may only cover limited parts of the GDPR, static compliance checking has the advantage
of ensuring that all programs passing the checks do comply with the static privacy policies, thereby providing a strong
guarantee before the programs are executed. The rules are syntax-directed, following the legal formation of expressions and
function applications as well as statements. The requirements to communication constructs are central.

We target distributed, object-oriented and service-oriented systems. We formalize a static notion of policy declarations in
this setting. To demonstrate the analysis of static policy compliance for imperative programs, we develop a type and effect
system for checking policy compliance for a high-level language supporting the active object paradigm [12,31,33,42], based
on the actor model [28]. This paradigm is considered to be one of the most promising candidates to model asynchronously
parallel and distributed computations in a safe manner [12]. In this programming model, objects are autonomous and
execute in parallel, communicating by so-called asynchronous method invocations. Object-local data structures are defined
by data types. We assume interface abstraction, i.e., an object can only be accessed though an interface and remote field
access is illegal. This allows us to focus on major challenges of modern architectures, without the complications of low-level
language constructs related to the shared-variable concurrency model. Remote field access would make the analysis less
precise and non-modular.

In summary, the main idea is to provide language constructs that express privacy policy specifications capturing static
aspects of the GDPR specific privacy principles and use these to statically analyze a program’s compliance with the policy
specifications. We make the following contributions:

1. Propose a policy specification language for specifying purpose, access, and policy requirements.
2. Formalize a notion of policy compliance.
3. Show how the policy language can be used with a modeling language for loosely coupled distributed systems.
4. Develop a mechanic type and effect system for analyzing a program’s compliance with the specified privacy policies.
5. Develop a runtime system with policy tags. Prove soundness/progress.

The two first contributions are independent of the choice of language, while the last three are not. The overall contribution
of the paper is to show how to approach the formalization of GDPR specific data protection requirements from a static point
of view.

Paper outline. The remainder of the paper is structured as follows. Our research focus and the relevance to the GDPR are
stated in the next section. Section 3 presents our formalization of the GDPR policies, including a policy specification lan-
guage and a formalization of policy compliance, and outlines how it applies to the setting of object-oriented distributed
systems (OODS). We discuss the usage of policies and include the first part of a case study. For the second part of the case
study, we define an executable, imperative, high-level language for active object systems, extended with policy specifica-
tions. Section 4 introduces this language. Section 5 presents the static compliance checking by means of a type and effect
system, and demonstrates the analysis on the case study. Section 6 briefly discusses an extension to deal with consent
and self access to personal data about a data subject. Section 7 presents an operational semantics and proves soundness
and progress. Section 8 discusses related work, and Section 9 concludes the paper. An algorithmic version of the static
compliance checking is shown in Appendix A and notational conventions used in the paper are listed in Appendix B.

2. Relevance to the GDPR and research focus

The GDPR contains 99 articles covering quite diverse aspects of privacy such as data protection principles, accountability,
data protection impact assessment, certification, penalties etc. However, we will focus on the intersection of mainly Article 5,
Article 15, and Article 25, due to their potential for establishing links with programming language mechanisms and in
particular static analysis. Fig. 1 illustrates this idea and our focus. Clearly, one may express a larger part of the GDPR
concepts by runtime entities than by compile time entities. Furthermore, it is clear that static analysis will in general be
less precise than runtime analysis and typically over-approximate the privacy restrictions. Thus static analysis may seem
like a less fruitful approach; however, static analysis has the advantage that problems caught during static checking can be
solved before runtime and thereby gives rise to more reliable software and fewer runtime errors. Therefore it is interesting
to investigate compile time aspects of the GDPR and to define a notion of static compliance of these aspects.

Article 5 lists the data protection principles related to personal data processing, which includes the following: lawfulness,
fairness, and transparency; purpose limitation; data minimization; accuracy; storage limitation; integrity and confidentiality.
Compliance with these principles is intrinsic for better data protection.

Article 15 creates a Right for access by the data subjects to have access to their personal data that an organization processes
and holds about them. The data subject is entitled to obtain, for example, the purposes of data processing; which recipients
(such as organizations) is the personal data shared with; how the personal information was collected; existence of right to
restrict processing or erasure of personal data. More on subject access rights are discussed in Section 3.
3

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
Pr
iv

ac
y

Pr
in

ci
pl

es

Article 5

Data Protection
by

D
esign

Article 25

SubjectAccessRights

Article 15

Runtime
Analysis

Static
Analysis

Fig. 1. Research Focus.

Article 25 introduces data protection by design and data protection by default obligations. It requires the organizations to
embed data protection into the design and later stages of product/service development. In addition, it requires that by
default, an organization may only process the personal data that is necessary for fulfillment of the stated purposes.

In addition to the articles mentioned above, Article 6 of the GDPR outlines six lawful grounds, such as consent or
fulfillment of contractual obligation, for processing of personal data. The regulation treats consent as one of the guiding
principles for legitimate processing, and Article 7 sets out the conditions for processing personal data (when relying on
consent). We sketched these articles very briefly. For more details, please refer to Articles and Recitals in [19].

In our setting, we specify privacy-by-default policies, which are statically checked. When the lawful basis of processing
of personal information is performance of the contract or other valid bases but not the consent, the policies should be
formulated in a way that ensures that they are built into the system by default, i.e., no measures are required by the data
subject in order to maintain her privacy. However, when consent is the basis of processing, the choices (or privacy settings)
of the data subjects are captured at runtime (as studied in [51]).

To verify formally that a system satisfies its privacy specification, the desired notions of privacy need to be expressed
explicitly. However, given these principles and obligations, not all privacy requirements are susceptible to formalization.
We study an intersection of these main concepts from the design as well as the legal point of view, with a motivation
to establish links between the two views. However, we do not cover all the aspects of the aforementioned articles. For
example, the requirements for data minimization, integrity, storage limitation, and accuracy require a different set of tools
and methods for assessing compliance.

We illustrate the research focus with an example. In order to provide healthcare services, a clinic collects information re-
lated to an individual‘s health. So as to collect and process this information, the clinic first needs to identify the purposes for
which this personal information will be used. This is done by statically declaring privacy policy requirements on the meth-
ods and data types. These requirements are expressed in a policy specification language, which allows designers to express
privacy requirements, contributing towards purpose limitation, transparency, data protection by design, data protection by
default, and accountability requirements. In the next section, we discuss the parts of the GDPR that can be formalized, i.e.,
what can be expressed as policies, and what can be checked. In particular, we focus on static policies and static checking.

3. Formalization of static privacy policies and policy compliance

In the object-oriented language setting, an object may assume different views, depending on the interaction context.
These views are expressed by specification of the externally observable behavior of objects, declared through interfaces.
We extend this specification of observable behavior of objects to provide language support for the enforcement of privacy
policies.

Clearly, at compile time we are limited to static entities, while at runtime we can deal with runtime entities. Thus,
compile time policies must in general be more coarse-grained than runtime policies, for instance the compile-time policy
of the value of a variable is based on a worst-case symbolic analysis while at runtime it can be based on the value itself.
At compile time, we may express and analyze the GDPR-related notions using static names, either names occurring in the
4

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
A ::= read | incr | write | self basic access rights
| no | full | rincr | wincr abbreviated access rights
| A � A | A � A combined access rights

P ::= (I, R, A) policy
Ps ::= {P∗} | Ps �Ps | Ps �Ps policy set
RD ::= purpose R+

[where Rel [and Rel] ∗] purpose declaration
Rel ::= R+ < R+ sub-purpose declaration

Fig. 2. BNF syntax definition of the policy language. I ranges over interface names and R over purpose names.

executable program text, or names occurring in specifications capturing GDPR-related aspects. Examples of the former are
method names, variable names, type names, class names, and interface names. Examples of the latter are names describing
purpose, access rights, and policies. The combination of these two categories of names gives a way of expressing static
policies restricting access to the sensitive information. At runtime, it is natural to associate the policies with objects and
data values, but these entities are not known at compile time. At compile time, policies on data values can be approximated
by policies on the corresponding data types. Static policies serve a double purpose: They should have an abstract view
meaningful to external users, so that they may understand and reconsider their privacy settings, and at the same time
should be meaningful to analysis in terms of program technical concepts at compile time.

3.1. Policies

We consider three vital constituents of the GDPR privacy policies, namely principal, purpose, and access right, specified by
triples (I, R, A) where I, R, and A denote the three constituents, respectively. The main emphasis of the policy specification
language is on the specification of privacy restrictions at the language level. It would be appropriate to link an external
user’s policy view with the system’s policy view. For example, a policy (Doctor, treatm, rincr) on a data subject’s health
information in the system is expressed in natural language to an external user as: A Doctor can process your personal
health information for treatment purposes, but is only allowed to read health records and add new ones without the right
to change or delete existing records. Below we give a general description of these policy constituents, as well as how they
can be related to the view of external users, and how they will be represented at the programming level.

Principals A principal identifies a real word individual or entity such as a person, authority, company, or organization,
or a role representing a set of such entities. At the programming level, an individual corresponds to an object
representing that individual or an interface representing all objects supporting that interface. An interface I is
used to restrict the access to information, by requiring that the accessing object supports I. (We say that an
object supports an interface if the class of the object implements the interface.) As not all interfaces represent
principals, we introduce an interface Principal, and require that an interface used to specify principals must be a
subinterface of Principal. Thus in compile time policies, principals are described by subinterfaces of Principal or by
object expressions. The interface Subject corresponds to a “data subject”, extending Principal.

Interfaces are organized in an open-ended inheritance hierarchy, as in object-oriented program development,
letting I < J denote that I is a subinterface of J. For example, Specialist < Doctor < HealthWorker. We do not define
a bottom element, since the hierarchy is open-ended. We let ≤ denote the transitive and reflexive extension of <.

Purposes A purpose R identified by a purpose name, allows us to specify that personal data must only be collected and pro-
cessed for the given purpose. At the user level, purposes are described by purpose names. At the programming
level, such purpose names are used in policy specifications. For instance, if a method is annotated with a purpose,
the annotation specifies that the method may only be called when the caller has (at least) this purpose. Pur-
pose names are defined by the keyword purpose and can be organized in a hierarchical structure, representing
a purpose hierarchy [26]. We allow purpose names to be organized in an open-ended acyclic graph. Examples of
purposes are treatment, research, or marketing. We let all be a predefined purpose, denoting the least specialized
purpose (Fig. 4). Consider the declaration

purpose a,b, c where a,b < c

This declaration makes a and b more specialized purposes than c. For example, treatm, diagnosis, research < health,
and monitoring < treatm. If data is collected for treatm purposes, then it can be used for treatm as well as purposes
subsumed under treatm purposes, but not for research. If data is collected for say diagnosis, then it can neither be
used for treatm nor for research.

We allow purpose names to be organized in an open-ended directed acyclic graph. Consider an example, where
healthcare, and shopping, have billing as a subpurpose; and treatment could be a subpurpose of both healthcare and
billing. This example indicates that a strict tree-structure could be too limiting. This allows a single purpose name
5

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
full

rincr wincr

read incr write

no

Fig. 3. The lattice for general access rights (without self). Note that rincr is the same as read � incr , wincr is the same as write � incr , and full is the same
as read � write.

{all}

{treatm} {research} {admin}

{monitoring} {diagnosis} {billing} {third_party}
Fig. 4. Sample purpose hierarchy.

to reflect a specialization of a set of more general purposes. We let ≤ denote the transitive and reflexive extension
of <.

Access rights The access right A restricts the access rights, restricting the kinds of operation that can be performed on
the data, such as read access (read), incremental access (incr), write access (write), or a combination of these. We
define a complete lattice of these general access rights (in Fig. 3) with no (no access) and full (full access) as
the least and greatest access rights, respectively. The read access right gives read-only access to the principal, and
similarly write allows for a write access. Incremental access, incr, gives the right to add new information without
changing or reading old information. For instance, a lab assistant may be allowed to add test results to a patient’s
health records, but without reading existing information.

The combination of read access and incremental access, read � incr denoted rincr, allows a principal to read the
information and to add more information, but not change existing information. This is quite useful in practice, for
instance a nurse may be allowed to read and add test results to a patient’s health records, but not overwrite or
change old information. The combination of write � incr, denoted wincr, allows a principal to change and add more
information, without reading, for instance she may overwrite, delete and add health records, but without the right
to look inside these records. The partial ordering of access rights is denoted �A . We have that incr �A (read�write)
holds, reflecting that the incremental update x : + e can be expressed as x := x + e.

Furthermore, read�write, incr�write, and incr � read give no access. The combination of read and write gives full
access (including incremental access), i.e., full is the same as read � write. This means that we have seven elements
in the lattice for basic access rights as seen in Fig. 3. In subsection 3.2, we extend this lattice with access rights
for a data subject to access data about herself. At the program level, the specified access rights can be checked for
a given program.

A policy is specified by a triple (I, R, A) restricting principals, purpose, and access rights, respectively. Such policy triples
can be combined to form policy sets, which are used to represent restrictions due to multiple policies.

Privacy policies and consent are supposed to be decided and changed upon need by the subjects, i.e., the external users
of a system that do not in general have insight into to program text. This means that external user defined restrictions on
6

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
principal, purpose, and access right should be given in terms of a vocabulary or language meaningful to such external users.
On the other hand, the external user defined restrictions must connect to concepts at the program level so that compliance
can be defined and checked. In our approach, consent is expressed by the presence of policies.

In order to limit the amount of policy definitions, we consider user-defined policies for data types and methods, and
define an effect system to deduce policy restrictions in each program state on the program variables. Policies on data type
declarations give a higher degree of reusability than policies on for instance variable declarations. When personal informa-
tion is limited to a relatively small number of methods and data types, this means that the privacy policy specifications
needed are relatively few. We use a special policy symbol • to denote non-sensitive information. The default policy of a
method is • if no policy is specified. Note that a method with no policy will not be able to access or use any sensitive
information, and variables of types with no policy cannot be assigned sensitive information. This will be checked statically.

For a method m that accesses sensitive information, the associated policy specifies which principals can invoke this
method, for what purpose, and an upper bound on permissible access operations. Similarly, a data type T with policy PT
expresses that all values of type T must respect the policy PT , which can be ensured by policy compliance checks during
static analysis.

In the GDPR, processing of personal data is defined in terms of any operation or set of operations such as collection,
storage, use, dissemination etc. (see Article 4 [19]). We focus on use and disclosure of personal information. At the program-
ming level, use corresponds to the access rights given by the access rights lattice and disclosure is expressed by the first
restriction on the policy (principal) i.e., a policy set on data describes to whom data is disclosed. Disclosure of information is
also captured when information is exchanged through method parameters. However, towards the external users, the terms
use and disclose may be meaningful.

3.2. Access rights for data subjects

Under Article 15 [19], the Right of Access by the data subject requires the data controller to give the data subject infor-
mation about the personal data that the controller has about the subject (including the purposes for which this information
is used). Based on this requirement, we introduce an interface Subject below interface Principal as the superinterface of all
classes representing external users. Moreover, we introduce an additional access right, self. By means of self , one may spec-
ify access rights on information about self, i.e., the data subject. One may then express general access rights in combination
with access rights on self data. The policy triple

(Subject,all, self � read)

supports Article 15 (1a) to (1c), by allowing each data subject read access to information about herself. It expresses the
principle of giving a subject read access to data about herself. This triple could be added as a default policy for every
sensitive data type. Note that the universal purpose all is needed to express this principle. With the addition of self , we
need to refine and revise our definition of access rights and their placement in a lattice. Mathematically, our lattice can be
defined by a pair lattice as follows:

Definition 1 (Lattice of access rights). Access rights are organized in a lattice with carrier set {(a, b) | a �A b} where both a
and b range over the lattice of general access rights (given in Fig. 3). We define

(a,b) �A (a′,b′) � a �A a′ ∧ b �A b′

(a,b) � (a′,b′) � (a � a′,b � b′)
(a,b) � (a′,b′) � (a � a′,b � b′)

It follows that the redefined �A is a partial order, and the carrier set has 22 elements. The element (a, b) is written
a � (self � b), and the access right a � (self � a) is abbreviated a. The access right a � (self � b) expresses that a is the access
right on data in general (including self data) and b is the added access right on self data. Thus the access on self data is
a � b.

We have that no is an identity element of �, and full an identity element of �. For instance, no � (self � full) is the same
as self , meaning full access to self data, but no access to data about others. Furthermore, self � rincr gives a principal the
right to read self data and add new information about herself. In contrast, read � self means full access to self data and read
access to other data, and read � (self � rincr) means that a principal may read all data and also increment self data.

The identity of data subjects can be captured at runtime, but not in general at compile time, since these identities are
in general not statically known. In order to check access rights about self , the static checking will try to detect if the data
subject is the same as this or caller. This is discussed in Section 6.

3.3. Policy compliance

Methods and types are annotated with policies. Annotating these program constructs with policies is a prerequisite
for assuring that processing is performed in accordance with the specified policies. The language syntax for policies is
7

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
summarized in Fig. 2 and some sample policies are found in Fig. 5. Optional parts are written in brackets (as in [...]), while
superscripts ∗ and + denote repetition and non-empty repetition, respectively.

purpose monitoring, treatm,health
where monitoring < treatm < health

policy PDoc = (Doctor, treatm, f ull)
policy PDocT ask = (Any, treatm, f ull)
policy PAddPresc = (Doctor, treatm, rincr)
policy PGet Presc = (Nurse, treatm, read)
policy PGetSelfPresc = (Nurse,health, read)

policy PPatientPresc = (Patient, treatm, read)
policy PStart = (Any, treatm,no)

policy PPresc = {PGet Presc,PAddPresc,PDoc}
type Presc = Patient ∗ String ::PPresc

interface Patient extends Subject {Void getSelfData() ::PStart }
interface AddPresc {Void makePresc(Presc newp):: PAddPresc}
interface GetPresc {Presc getPresc(Patient p) ::PGet Presc}
interface PatientData extends AddPresc, GetPresc {}
interface Nurse extends Principal {

Presc nurseTask() ::PGet Presc
with Patient

Presc getMyPresc() ::PPatientPresc }
interface Doctor extends Nurse{

Void doctorTask(Patient p) ::PDocT ask }

Fig. 5. Interface, type and policy definitions for the Prescription Example. Grey policy specifications are implicit while underlined ones need to be explicitly
stated.

Definition 2 (Policy compliance). The sub-policy relation less, expressing policy compliance, is defined by

(I ′, R ′, A′) � (I, R, A) � I ≤ I ′ ∧ R ′ ≤ R ∧ A′ �A A

with • as bottom element, representing non-sensitive information. It follows that � is a partial order. We let Any denote the
most general interface, such that I ≤ Any for each I .

A policy P ′ complies with the policy P if it has the same or larger principal, the same or more specialized purpose, and
if the access rights of P ′ are the same or weaker than that of P . We let Any denote the most general interface, such that
I ≤ Any for any I .

We say that a method respects a policy P if the policy of the method complies with P . The default policy of a method is
• if no policy is specified. Intuitively, P � P ′ is used to express that the policy of a method implementation/respecification
P complies with that of the method specification P ′ . In particular, • �P expresses that an implementation without access
to sensitive information complies with any policy.

Let PI,m denote the policy of a method m given in an interface I, and PC,m denote the policy of a method m given in
a class C . It is required that the implementation of a method in a class C respects the policy stated in the interface I, i.e.,
PC,m � PI,m . In addition, it is also required that a method redefined in an interface I respects the policy of that method in
a superinterface J, i.e., PI,m � P J ,m . By transitivity of �, a method implementation in a class that respects the policy given
in an interface also respects the policy of the method given in a superinterface, i.e., PC,m � PI,m and PI,m � P J ,m implies
PC,m �P J ,m .

For instance, consider an interface GetPresc with a method getPresc() with a policy (Nurse, treatm, read). An implemen-
tation of this method in a class must have a policy that complies with it, such as (Any, treatm, read), (Nurse, treatm, self �
read), or (Nurse, monitoring, read). In contrast, the implementation cannot have a policy (Doctor, treatm, read), as this
would not allow a Nurse as the caller object, and also not (Nurse, all, rincr), because this violates the purpose and the
access restriction.

Moreover, the use of self in the access part allows us to distinguish between different kinds of self access for different
purposes, for instance (Patient, all, read � self) and (Patient, privacy_settings, self). The latter gives full access to data about
self for purposes of privacy_settings, while the first gives read access to data about self for all purposes.

We define a lattice over sets of policies with meet and join operations, and generalize the definition of compliance to
sets of policies:
8

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
Definition 3 (Compliance of policy sets).

{P ′
i } � {P j} � ∀i .∃ j .P ′

i � P j

This expresses that a policy set S ′ complies with a policy set S if each policy in S ′ complies with some policy in S . When
no confusion occurs we simply write P instead of {P}. For instance, P � S denotes {P} � S , and P � S denotes {P} � S .
Furthermore we use the notation A �A (I, R, A′) when A �A A′ , and use the notation A �A {(I, R, A′)i} when A �A (I, R, A′)i
for some I (i.e., A �A A′

i).
We define meet and join operations over policy sets by set union and a kind of intersection, respectively, adding implic-

itly derivable policies:

Definition 4 (Join and meet over policy sets).

S � S ′ � closure(S ∪ S ′)
S � S ′ � closure({P | P � S ∧ P � S ′})

where the closure operation is defined by

closure(S) � S ∪ {(I, R, A � A′) | (I, R, A) � S ∧ (I, R, A′) � S}

We have a lattice with ∅ as the bottom element, S � S � S ′ , and S � S ′ � S . The closure operation adds implicitly derivable
policies, and ensures that {(I, R, A � A′)} � {(I, R, A)} � {(I, R, A′)}. For instance, we have that {(Doctor, treatm, read)} �
{(Doctor, treatm, write)} is the same as {(Doctor, treatm, full)}.

The meet operation typically reflects worst-case analysis. For an actual parameter (or method result) we need to check
that the policy set of the actual parameter allows all policies in the policy set of the corresponding formal parameter. For
this we use the following notion:

Definition 5 (Implication of policy sets). We define the notation

Ps′ =⇒ Ps

(Ps′ guarantees Ps) by {•} =⇒Ps and Ps �Ps′ for Ps′ other than {•}.

In particular, {•} =⇒Ps, expresses that a non-sensitive actual parameter always is acceptable. If Ps′ =⇒Ps we also say
that the former guarantees the latter. (Note that Ps′ and Ps denote policy sets.)

3.4. Policies in an object-oriented setting

Here, we proceed to discuss how to use policies in combination with interfaces, methods, and types. An imperative
programming language for defining classes is given in Section 4 by means of an imperative-style language for active objects.
An example with policies and interfaces is given in Fig. 5.

Definition 6 (Interface syntax). An interface is declared with the BNF syntax

interface I [extends J+] {D∗}
where I and J range over interface names, and D denotes a method declaration (without body), with its own (optional)
policy.

Here a new interface I is declared, extending a number of superinterfaces. A method redefined in I must have a policy
that complies with that of the method in a superinterface J . Methods may be inherited (keeping the superinterface method
policy) or redefined in I . For simplicity, we assume that a redefined version of the same method has the same parameter
and return types as in the superinterface. (Alternatively we could use a version of co/contra-variance.)

We consider next single class inheritance given by an implements clause. A class C extending a superclass inherits
all declarations of the superclass, apart from redefined methods and the implements clause (and class constructors are
concatenated). We may allow a subclass to implement different interfaces than its superclass, and we may allow a redefined
method to have a different policy than that of the superclass. In particular C does not need to support the interfaces of
its superclass. The motivation for this is to achieve better flexibility. This requires that typing of object variables is done
by interfaces, following the semantics of [44]. Thus, the policies of redefined methods need not comply with those in the
superclass, as long as they comply with the policies of the interfaces implemented by C . We let the policies of inherited
method be inherited as well, and must then comply with the requirements of the enclosing class C , unless a new policy is
specified (by renewing its signature).
9

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
Definition 7 (Method declaration syntax).

T m([Y y]∗) [:: P]
where T is the return type and Y is the type of parameter y.

An inherited method m inherits the policy of m in the superinterface, unless the interface declares its own policy for
m. As mentioned, the redefined policy of m in an interface cannot be more restrictive than that of the superinterface
(J), i.e., PI,m �P J ,m , ensuring that a class implementation of m satisfying PI,m also satisfies any declarations of m in a
superinterface.

Definition 8 (Type declaration syntax).

type N [T ype Parameters] =< type_definition > [:: Ps]
where the type parameters are optional. We let the policy of a type N, denoted PN , be a policy set. Types declared without
a policy are non-sensitive.

The predefined basic types (Nat, Int, String, Bool, Void) are non-sensitive. Furthermore, object variables (references) are
non-sensitive since a reference in itself does not carry any sensitive information. A user-defined type is sensitive if a policy
set is specified, or if the definition contains a sensitive data type constructor (as explained below). If there for instance is a
need for strings with sensitive information, restricted by a policy Ps, one would define a type for this by

type Info = String :: Ps

A list type List[T] is sensitive if T is sensitive, and has the policy of T , i.e., PList[T] � PT . The same principle applies to
other container types, such as sets and multisets. When T ′ is declared as a subtype of T , we require that the policy of the
subtype guarantees that of the supertype, i.e.,

T ′ ≤ T ⇒ (PT ′ =⇒ PT)

A sensitive data type can often be defined as a pair of (possibly non-sensitive) data, say

type Presc = Patient ∗ String

:: {(Doctor, treatm, full)), (Nurse, treatm, read)}
In this case the Presc constructor function (i.e., the pair operator) is considered sensitive, since it associates data to a

subject. An application of this constructor may create new sensitive information about a patient, and therefore we require
that the enclosing method has a policy with write access to treatm data (such as the policy PDoc). In general, an application
of a sensitive data type constructor requires write access, as will be formalized in the policy type rules for expressions
(Section 5).

We consider next sensitive functions, which create new sensitive data, for instance a product of individually non-sensitive
data may be sensitive. Generator functions (here called constructors) are considered sensitive if they i) combine information
about a subject with non-sensitive or sensitive information or ii) use sensitive information. We assume that sensitive gener-
ators produce sensitive types (with some exceptions, such as constructors of encrypted data). Defined functions are sensitive
if their type is sensitive and the definition directly or indirectly contains a sensitive application of a constructor. For instance
we may (recursively) define a parameterized list type by List[T] = empty() | append(List[T] ∗ T) meaning that lists have the
form empty() or append(l, x), where l is a list and x a value of type T . We let the notation l + x abbreviate append(l, x). The
list is sensitive if T is sensitive, in which case the append constructor function is also sensitive. The Presc type is sensitive
(even though String is not), and the pair (current_patient, “no health problems”) is a sensitive application of the product
constructor. These examples suffice for our purposes here. It can be detected statically if a function is sensitive (further
details are omitted). Some predefined type constructors including encryption functions could be defined as non-sensitive.

Applications of sensitive functions may create new sensitive data, something which require write access. In this way the
policy control of variables is driven by the declared types rather than variable declarations. The advantage is that policy
specifications on the defined types are reusable in the same way that the defined types are reusable, while policy specifica-
tions on variable declarations would not in general be reusable. Furthermore, reusable policy specifications developed over
time are likely to be more reliable than one-time adhoc specifications for program variables.

Example. The example in Fig. 5 shows a data type Presc with policy set {(Doctor, treatm, f ull), (Doctor, treatm, rincr),
(Nurse, treatm, read)}. The policy (Doctor, treatm, rincr) is redundant since (Doctor, treatm, rincr) � (Doctor, treatm, f ull),
and is colored grey to indicate that. Method makePresc has policy (Doctor, treatm, rincr), meaning that this method must
be called by a Doctor object (or a more specialized object), for purposes of treatment and with read and incremental access
10

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
(but not full write access). Thus a doctor can add new prescription but not change or remove old ones. Method getPresc has
policy (Nurse, treatm, read), meaning that this method must be called by a Nurse object (or a more specialized object such
as a Doctor object), for purposes of treatment and with read-only access. These two methods, with associated policies, are
inherited in interface PatientData. The method getMyPresc offered by the Nurse interface has policy (Patient, treatm, self),
meaning that this method must be called by a Patient object for treatment purposes and access is limited to data about
the caller patient but not other patients. Alternatively, the policy could be (Patient, treatm, self � read) if a patient is not
allowed to change her treatment records.

3.5. Compliance checking of OODS languages

Consider an OODS language extended with policy specifications as above. Thus, methods that may access personal in-
formation are annotated with single policies, and data types that may involve personal information are annotated with
policy sets reflecting the permitted usage by different principals. We assume pure expressions, while fields in objects are
mutable and can be updated by the methods defined in the class of the object. In this setting, static checking of compliance
consists of checking that interface extensions and implementations by classes respect the method policy specifications, and
that method calls and all program variable accesses are done according to the relevant policies. Since the policy sets of the
values of program variables may change from state to state, we use an effect system to keep track of the policy sets in a
given program state. The rules use an environment �, which is a mapping from program variable names to policy sets, such
that the policy set of a variable in a given state gives an upper bound of the permitted operations. The environment is also
used to determine the policy set of an expression. For each statement in a considered language there is one or more rules
explaining how the environment � is modified by the statement. This is normally reflected in the conclusions of the rules.
The premises of the rules incorporate policy checks, and in general this can be explained as follows:

• For a subinterface it is checked that the policy of a method complies with (�) that of the same method in the superin-
terface.

• For a class it is checked that
– the declared policy of each method complies with (�) that of the same method in any interface implemented by the

class (if any);
– the actual policy of the implementation of a method complies with (�) the declared policy in the class of that

method.
• For a method call, it is checked that

– the policy of the called method complies with (�) the policy of the calling context (as given by the enclosing method
body)

– the policy set of each actual parameter guarantees (=⇒) that of the corresponding formal parameter.
• For a new statement, a similar check is done on the actual parameters.
• For read/write/incr access to a program variable, it is checked that

– there is read/write/incr access in the policy set of the variable and also in the policy of the calling context (given by
the enclosing method).

– However, we may assume write access to local variables. This is harmless since they cannot be used to store infor-
mation after termination of the enclosing method.

• For a return statement, it is checked that
– the policy set of the returned value guarantees (=⇒) that of the method return type;
– the policy set of each field according to � guarantees (=⇒) the declared policy of that field according to the policy

on the type.
• For each application of a constructor function giving rise to sensitive information, it is checked that the enclosing

method has write access.

Justification

The specification of policies could be a burden on the programmer. Reuse of policies is advantageous, and it would be
desirable to keep the amount of policy specifications at a minimum. Therefore we let policies be specified for data types
and methods only, and not for individual variables and fields. Moreover, we imagine that only a limited amount of data
types/methods deal with sensitive information. Thus it is advantageous to limit the policy specification to those. The policy
inheritance of policies on methods increases policy reuse. We believe a single policy is appropriate for a method, and this
means that data access for other purposes than the one in the method policy is not allowed. For instance, a method body
with treatm as the method policy purpose cannot make calls to methods with marketing in the method policy.

If by mistake a data type/method is lacking a policy, the static detection would not be successful, since sensitive con-
structors are detected statically and require the corresponding data type to be sensitive. This implies that a subset of the
data types and methods must be sensitive and have a non-empty policy in order for the static checking to be OK. However,
there could be data types that should be sensitive but without a specified policy and without constructors detected as
sensitive, for instance text with embedded personal information. This is left as the programmer’s responsibility.
11

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
Another issue could be that a programmer specifies full access for all purposes on all methods, for instance intending to
shortcut the static checking of data manipulations in the body, and thereby hoping to allow everything. However, this will
not work well since the principal part I of the policy of a method would need to be less than the principal parts of the
policies on all the data types involved. In practice, that would mean that I must be less than a large number of interfaces,
which is not possible in an open-ended hierarchy without a bottom element.

In our formalization a method has a single policy because each method should be made with a certain user group
(principal) in mind. We have seen here that this decision has the benefit of making it harder to bypass the policy checks
(regardless of whether it is intended or unintended). These considerations make it harder to get away with “wrong” policy
specifications, but do not take away the programmers’ responsibility of making appropriate policy specifications. The static
checking is based on the given specifications and will complain when there is something wrong with the policies.

In the next section, we will consider a small imperative language for active object systems and then define a type and
effect system along the lines explained above. Fig. 7 defines classes corresponding to the interfaces in Fig. 5, using the
imperative language.

4. An imperative programming language

In order to give a high-level view of distributed systems, we choose a small language based on the active object paradigm
supporting high-level interaction mechanisms [12]. Although intended for system modeling, the language is executable and
has an interpreter written in Maude [15], and an extended language based on the same concurrency model has a compiler
to Erlang [1,53]. The active object paradigm is based on concurrent autonomous objects and offers both synchronous and
asynchronous communication, while avoiding shared variables and avoiding low level synchronization mechanisms such as
explicit signaling and notification. This setting allows a simple, compositional semantics, as in [31,45], which is beneficial to
analysis. All code is organized in methods definitions inside classes, something which is helpful for static policy declarations
and for class-wise static policy checking.

The language is imperative and strongly typed, using data types for defining data structure locally inside a class. The
data type sublanguage is side-effect-free. A type system (for checking type-correctness w.r.t. ordinary types) can be made as
in [32]. We formalize the analysis outlined in Section 3.5 for this language by incorporating policy specifications as defined
in the previous section for method declarations and data types. An effect system calculates the policy set of a variable in a
given program state and checks all variable accesses as well as policy restrictions on called methods and generated sensitive
data. We assume type-correct programs with respect to ordinary types.

The BNF syntax of the language is summarized in Fig. 6. The notation e denotes a list of expressions e. As before,
optional parts are written in brackets (except for type parameters, as in List[T], where the brackets are ground symbols).
The superscripts ∗ and + denote repetition and non-empty repetition, respectively. The cointerface of a method is given

Pr ::= [T | RD | In | Cl]∗ program
T ::= typeN [T] =<type_expression> [::Ps] type definition
T ::= Int| Any| Bool| String| Void| List[T]| I | N interfaces and types
In ::= interface I [extends I+] {D∗} interface declaration
Cl ::= class C ([T z]∗) class definition

[implements I+] [extends C] support, inheritance
{[T w [= ini]]∗ fields
[B [::P]] class constructor
[[with I] D]∗ renewed signatures
[[with I] M]∗} method declarations

D ::= T m([T y]∗) [:: P] method signature
M ::= T m([T y]∗) [B] [:: P] method definition
B ::= {[T x [= rhs];]∗ [s] [;return rhs]} method blocks
v ::= w | x assignable variable
e ::= v | y | z | this | caller | void() | f (e) | (e) pure expressions
ini ::= e | new C(e) initial value of field
rhs ::= ini | e.m(e) right-hand sides
s ::= skip | s; s sequencing

| v := rhs | v :+e | e!m(e) | I!m(e) assignment and call
| if e then s [else s] fi if statement
| while e do s od while statement

Fig. 6. BNF syntax of the core language, extended with policy specification. A field is denoted w, a local variable x, a method parameter y, a class pa-
rameter z, type names N, and list append is denoted +. The brackets in [T] and [T] are ground symbols. Function symbols f range over pre-/user-defined
functions/constructors with prefix/mixfix notation.
12

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
class PATIENTDATA() implements PatientData {
type PData = List[Presc] ::PPresc
PData pd = empty();

Presc getPresc(Patient p){return last(pd/p)} ::PGet Presc
Void makePresc(Presc newp) {

if newp �=emptyString() then pd:+ newp fi } :: PAddPresc
}

class NURSE(PatientData pdb) implements Nurse{
Presc nurseTask(Patient p){ return pdb.getPresc(p)} ::PGet Presc
with Patient

Presc getMyPresc() {return pdb.getPresc(caller)} ::PPatientPresc
}

class DOCTOR() extends NURSE //inherits class parameter pdb
implements Doctor{

Void doctorTask(Patient p){
Presc oldp = pdb.getPresc(p);
String text = ...; //new presc using symptoms info and oldp
Presc newp = (p, text);
pdb!makePresc(newp)}::PDocT ask

}

class PATIENT(String id, Doctor d, Nurse n) implements Patient{
Void getSelfData(){ n!getMyPresc() } ::PStart
}

class MAIN(){
PatientData pdbase = new PATIENTDATA();
Nurse n = new NURSE(pdbase);
Doctor d = new DOCTOR(pdbase);
Patient p = new PATIENT("P001",d,n);

{ d!doctorTask(p); p!getSelfData() } ::PStart // class constructor
}

Fig. 7. Doctor and Nurse classes accessing patient prescriptions.

by a with clause, and gives restrictions on the callee object: only objects supporting the cointerface may call methods in
the interface. Thus for a call o.m(. . .), the caller (available through the caller variable) will be typed by the cointerface. For
instance in the class implementation of Nurse in Fig. 7, the with clause is needed for method getMyPresc in order to make
the call to getMyPresc type correct since here it is required that caller is of interface Patient.

Class and method parameters, the implicit class parameter this, and the implicit method parameter caller are read-only.
A class may implement a number of interfaces, and for each method of an interface of the class, it is required that the
class defines the method such that the cointerface and types of each method parameter and return value are respected.
Additional methods may be defined in a class as well, but these may not be called from outside the class. The language
supports single class inheritance and multiple interface inheritance (using the keyword extends).

We assume that all inherited or implemented versions of a method m declared in an interface have the same input and
output types. A method body T x = e; s with initialization of the local variables can be understood as T x; x := e; s without
initialization of the local variables. We assume type-correct programs, and when needed include type information in the
programs subjected to static analysis: In the static analysis, we write eT for an expression of type T , where T results from
the underlying type checking. We write o.mI (e) when I is the interface of o as resulting from the underlying type checking.

As mentioned, we let ≤ denote the subtype relation. For instance, Nat ≤ Int , and for a subinterface I ′ of I , we have
I ′ ≤ I . We also write C ≤ I if class C implements interface I , or a subinterface of I . The only variable typed by a class is this
(allowing calls of form this!m(...) where m is a method of the class, including privates ones).

The language could be extended in various ways, for instance with non-blocking forms of two-way method interaction.
Local futures are supported by the runtime system and may trivially be included in the language. This would allow a future
generated by one method to be picked up by another method executed by the same object. Furthermore, the language may
be extended with cooperative scheduling (supporting suspended remote calls) as in [31]. This would be orthogonal to the
treatment of privacy policies.

4.1. Data types and sensitive data types

A data type is defined by a type expression, possibly recursive. For our purposes we consider type expressions composed
of disjoint unions and products, using names to distinguish the different cases (variants) of a disjoint union. These variants
13

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
are called constructor functions since they define the values of the data type. For instance we may define a parameterized
list type by List[T] = empty() + append(List[T] ∗ T), meaning that lists have the form empty() or append(l, x), where l is a list
and x a value of type T . A pair product type can be defined by PatientInfo = (Patient ∗ Nat) where Patient is a subinterface of
Subject. Then the pair (p, d) is of type PatientInfo for p of interface Patient and d of type Nat . (Here “(_,_)” is the constructor.)
Functions over a data type can then be defined by case expressions over the different variants of the type, or simply by
a set of equations representing the different cases. Consider the type List[PatientInfo]. We may define a projection operator
(proj : List[PatientInfo] ∗ Patient → List[PatientInfo]) by proj(empty(), p) = empty() and proj(append(l, (p, d)), p′) = if p = p′ then

append(proj(l, p′), (p, d)) else proj(l, p′). Using the infix notion / for proj and + for list append, this gives the defini-
tion empty()/v = empty() and (l + (v1, v2))/v = if v = v1 then (l/v) + (v1, v2) else l/v . The projection operator
is extracting those pairs which have a given first element. The last function on lists of PatientInfo is defined such that
last(append(l, x)) = x.

A data type is considered sensitive if its definition contains a variant with sensitive information or a product where
one component is of interface Subject , or a subinterface of Subject , because a value of this type could be used to encode
personal information about a data subject. (One could consider ways to override this, in cases where no personal information
may occur.) Similarly, a constructor is considered sensitive if it contains a sensitive component or a component of interface
Subject (or a subinterface). For instance the pair (p, d) is sensitive when p is of interface Patient. Moreover empty() is
not sensitive while append(l, (p, d)) is. A defined function is considered sensitive if the function type is sensitive and the
definition contains a sensitive subexpression. (Again the language could have ways to overrule this when required, for
instance in order to accommodate encryption functions.) An application of a constructor of a sensitive type and with an
argument which is either sensitive or of interface Subject, may create new sensitive information. This requires write access
(as checked by the type rules for expressions).

4.2. An example

An example program is given in Fig. 7, showing class implementations of the interfaces given in Fig. 5 as well as a main
class. The getPresc call is a blocking call while the other calls are asynchronous. Note that the tuple (p, text) in method
doctorTask is sensitive and requires write access by the enclosing method, which is satisfied by the policy PDocT ask =
(Any, treatm, full). If the policy had been PDoc , the call to doctorTask from the main program would fail the policy checking.
The expression last(pd/p) is sensitive since it gives a sensitive type, with policy PPresc . The enclosing method has policy
PGet Presc , which is sufficient for read access of this kind of information since PGet Presc � PPresc . The details of the policy
checking for the example are shown in Section 5.1.

5. An effect system for privacy

In general, a static type or effect system consists of a set of rules that establish safety properties that hold in all states of
an execution [41]. As we are interested in privacy policies, our rules ensure that a well-typed program enforces the specified
privacy policies correctly. (This is done after ordinary type checking.) The rules use an environment � expressing statically
derivable information about program variables in a given state, in our case privacy policies. As explained in Section 3.5, �
is a mapping from program variable names to policy sets, such that the policy set of a variable in a given state gives an
upper bound on the permitted usage. The environment may change from state to state, and therefore the rules will modify
the environment, which means that we have an effect system. We use the notation �[v] for map look-up and �[v �→ P]
for extending � with a new binding (replacing any old binding for v). The policy set of a variable v in the context of � is
simply given by �[v]. Our enforcement requires that the policies are respected when the variables are accessed. This gives
more fine-grained control letting the policies change with the program point.

To reflect changes related to branching constructs we use an addition program variable pc (the “program counter”) as
common in type systems for security aspects [46]. For instance, in the branches of an if statement with a sensitive test, pc is
adjusted by the policy set of the test. The statement l := h where l and h are boolean variables, is semantically equivalent to
if h then l := true else l := false fi, so both should result in a sensitive value for l when h has a sensitive value. The
presence of pc makes this possible since the level of l is adjusted by the level of the test (recorded in pc) in the branches.

We give an effect system for ensuring privacy policy compliance, formalized by five kinds of judgments: For a statement
(list) s, the judgment

C,m � [�] s [�′]
expresses that inside a method body m and an enclosing class C, the statement(list) s when started in a state satisfying
the environment � results in a state satisfying the environment �′ . We use a syntax similar to Hoare triples, letting � and
�′ express knowledge of the pre- and post-state, but in contrast to Hoare logic the rules can be applied mechanically. The
rules are right-constructive in the sense that �′ can be constructed from � and s.

For an expression or right-hand side e, the judgment

C,m � [�] e :: P

14

(P-interface)

PI,m �P J ,m for each J ∈ J and each m ∈ J

� interface I extends J {D} ok

(P-class)

PC,m � PI,m for each I ∈ I such that m ∈ I
C � M ok for each M ∈ M

� class C(Z z) implements I {W w; M} ok
defining �C = [z �→ PZ , w �→ PW , this �→ {•},pc �→ {•}]

(P-method)

C,m � [�C [y �→ PY , x �→ {•}, caller �→ {•}]] s [�]
C,m � [�] rhs :: P ′

P ′ =⇒ PT
�[w] =⇒ �C [w] for each field w

C � T m(Y y){X x; s;return rhs} ::P ok

Fig. 8. Policy Rules for Classes and Methods. (Note: read-only access for z and y.)

expresses that the expression e when evaluated in a state satisfying �, gives a value satisfying policy P , where m is the
enclosing method and C the enclosing class. For a method definition M in a class C, the judgment

C � M ok

expresses that a method complies with its privacy policy. Similarly, for a class definition Cl, the judgment

� Cl ok

expresses that the method definitions comply with the behavior described by the interfaces and that the method definitions
in the class are OK. For an interface definition In, the judgment

� In ok

expresses that any re-defined policy of the method in In must comply with that of the superinterface. The interface and
class judgments are analyzed in the context of earlier type and interface definitions (when needed). In the analysis of a
class, inherited code must be included, but no other class definitions need to be known. Thus class definitions are analyzed
independently. An algorithmic version of the analysis is provided in appendix A, showing that the analysis is terminating
and with a unique result.

The typing rules for interfaces, classes, and methods are given in Fig. 8, Fig. 9 defines the typing rules for expressions
and right-hand sides, and Fig. 10 defines the typing rules for statements. We let PI,m denote the policy of method m of
interface I, PC,m denote the policy of method m of class C, and PT denote the policy associated with a type T . If no policy
is specified for any declaration, we understand that there is no sensitive information, i.e., the policy is {•}. Note that, if by
mistake, no policy is specified on a method due to forgetfulness, the static compliance checking would detect any use of
sensitive information, and the method body would not pass the privacy checks. In particular data types with constructor
functions associating data to subjects will be considered sensitive. A non-sensitive method would not be able to access or
create sensitive data, and a non-sensitive type declaration would not allow assignment of sensitive information to variables
of that type.

The rule P-interface checks that a redeclared method m in an interface I respects the policy of m in a superinterface J.
The premise ensures that the policy declaration of m in I complies with the policy of m in J, i.e., PI,m �P J ,m . (The premise
is redundant when the policy of m is inherited from J.)

In Rules P-class and P-method, W is the type of field w, Z is the type of class parameter z, X is the type of local variable
x, and Y is the type of formal parameter y. Rule P-class checks that a class definition is OK, requiring that the policy
of each exported method complies with the policy of the method in the corresponding interface, and that each method
definition respects its policy. Here, M ranges over methods declared or inherited (possibly with renewed signatures). A class
constructor (if any) is treated like a method, with the name init (with an implicit return void() at the end). We therefore
need not show the case of the class constructor explicitly.

Rule P-method checks that a method definition respects the declared policy P , requiring that the method body relates the
starting environment to the resulting environment �, and that the policy on the return value evaluated in � must comply
with the policy of the return type. The starting environment of a method is the environment of the class, denoted by �C ,
defined by the declared policies of the types of the class parameters and fields, updated with the policies of the types of the
formal parameters, and those of the initial values of the local variables. The latter are all {•}, and so are the policies of this
and caller, since they are object references. Rule P-method also ensures that policies on the fields at method end according
S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
15

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733

(P-var)

read �A �[v] � (PC,m@(C,m))

C,m � [�] v :: �[v] � �[pc]

(P-constant)

C,m � [�] const() :: �[pc]

(P-func)

C,m � [�] ei ::Pi for each argument ei of a sensitive type
write �A PT � (PC,m@(C,m)) if f T is a sensitive constructor

C,m � [�] f T (e) ::PT � �[pc]

(P-call)

C � I PI,n �Co,R PC,m@(C,m)

C,m � [�] e :: P ′
C,m � [�] ei :: Pi Pi =⇒ Ppar(I,n)i for each i

C,m � [�] e.nI (e) ::Pout(I,n) � �[pc]

(P-LocalCall)

C ≤ I PI,n � PC,m@(C,m)

C,m � [�] e ::P ′
C,m � [�] ei ::Pi Pi =⇒ Ppar(I,n)i for each i

C,m � [�] e.nI (e) :: Pout(I,n) � �[pc]

(P-new)

C,m � [�] ei ::Pi Pi =⇒ �C ′ [zi]
C,m � [�] new C ′(e) :: �[pc]

Fig. 9. Policy Rules for Expressions and Right-Hand Sides.

(P-skip)

C,m � [�] skip [�]

(P-composition)

C,m � [�] s1 [�1] C,m � [�1] s2 [�2]
C,m � [�] s1; s2 [�2]

(P-write)

C,m � [�] rhs ::P
write �A �C [w] � (PC,m@(C,m))

C,m � [�] w := rhs [�[w �→P]]

(P-local-write)

C,m � [�] rhs ::P
C,m � [�] x := rhs [�[x �→ P]]

(P-incr)

C,m � [�] rhs :: P
incr �A �C [w] � (PC,m@(C,m))

C,m � [�] w :+rhs [�[w �→ �[w] �P]]

(P-asyncCall)

C,m � [�] e.nI (e) ::P
C,m � [�] e!nI (e) [�]

(P-broadcast)

PI,n �Co,R PC,m@(C,m)
C,m � [�] ei ::Pi Pi =⇒ Ppar(I,n)i for each i

C,m � [�] I!n(e) [�]

(P-if)

C,m � [�] e :: P
C,m � [�[pc �→ (�[pc] �P)]] s1 [�1]
C,m � [�[pc �→ (�[pc] �P)]] s2 [�2]

C,m � [�] if e then s1 else s2 fi [(�1 � �2)[pc �→ �[pc]]]

(P-while)

C,m � [�i] e ::Pi
C,m � [�i[pc �→ (�i[pc] �Pi)]] s [�′

i] i = 1 . . .n
�i+1 = �i � �′

i i = 1 . . .n

C,m � [�1] while e do s od [�n[pc �→ �1[pc]]]

Fig. 10. Policy Rules for Statements. In the last rule n is the least i such that �i+1 = �i .
16

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
to � guarantee the policies on the types. (The guarantee operator, =⇒, is defined in Definition 5). The presence of a with
clause gives no change in the premises, since the cointerface defines the interface of the caller, which has the default policy
{•}. Notice that the policies of declared types, methods, as well as �C , are constant, while the policies of �[v] change with
the program point.

To check variable accesses and calls made in a method body, we define the policy of the method body. This will allow the
caller to act as a principal inside the method body (with the purpose and access right of the method), something which is
needed when the current object does not in itself reflect a principal (i.e., when C does not implement a principal).

Definition 9 (Method body policy set). The policy set of the body of a method m in class C is defined by

(I, R, A)@(C,m) � {(I, R, A)} if I ≤ Principal

∪i {(Ii, R, A)} otherwise

where (I, R, A) is the policy of the method and where Ii ranges over all the interfaces of C that export m.

For example, PDocT ask@(DOCTOR, doctorT ask) will give {(Doctor, treatm, f ull)}. This allows the body of doctorTask to
call getPresc since it can act as a Doctor (and since PDocT ask is the policy on method doctorTask). As another exam-
ple, PAddPresc@(P AT I E NT D AT A, make Presc) will search for an interface which exports makePresc, which is the interface
AddPresc. This means that the method body policy set of makePresc is {(Doctor, treatm, rincr)}, which suffices for the incre-
mental update of pd.

The rules in Fig. 9 define the policies resulting from expressions and right-hand sides: The Rule P-Var says that the policy
set of a variable v is the policy of v according to the environment (�[v]) and the policy set of the program counter pc
according to �. The premise ensures that there is read access to v according to the policy set of the variable and according
to the policy of the enclosing method body. Note that read �A {•}, and the same holds for write, incr, and self as well.

Constant constructors represent non-sensitive information since they are not composed by sensitive information. The
policy set of a constant is therefore given by the policy of pc in the current environment �, as stated in Rule P-Const. This
rule also applies to predefined constants such as void().

The Rule P-func considers a function application f T (e) where T is the resulting type. The policy set of the function
application is the meet of the policy set of T and the policy of pc in the environment �. The first premise ensures that each
sensitive argument is OK. This implies that there is read access to each variable v, occurring in a sensitive argument. In case
the function f is a sensitive constructor, it is required that there is write access according to the policy set of T and the
policy set of the enclosing method body (premise 2). As constant constructor functions are considered non-sensitive and
have no arguments, Rule P-Const can be seen as a special case of Rule P-func.

In addition to controlling the information extracted from an object, one also needs to control the information flowing into
an object. This is checked by ensuring that the actual parameters respect the policies of the types of the formal parameters.
This is checked as part of the P-call rule, and similarly, the actual class parameters are checked in the P-new rule. The Rule
P-call ensures that the current object has sufficient access to call method n through interface I, that the arguments and
callee expressions are OK. We use the notation par(I, n) to denote these types, and out(I,n) to denote the return type.
The operation �Co,R is a simplified policy compliance check, which only compares the I and R parts of the policies, i.e.,
(I ′, R ′, A′) �Co,R (I, R, A) � I ≤ I ′ ∧ R ′ ≤ R . When a method n is called through an interface I, we check that the purpose of
the method body complies with that of n and that the calling object supports the cointerface of n. The call itself then gets
the policy given by the return type, as defined in the method n of interface I, and this is adjusted by the policy of pc.

Local calls are similar to remote calls, but as they may update the fields of the current object, it must be checked that
the access rights of the enclosing method is respected by the called method. Therefore Rule P-LocalCall is like Rule P-Call, but
the first premise is stronger than the case of remote calls, considering also the access right part. The first premise of checks
that the interface of the called method is either the current class C (in which case the call is local) or is implemented by C
(in which case the call is local if o is this). This overestimates the set of possible local calls in a sound manner (since the
condition o = this is beyond static control).

The Rule P-new ensures that the arguments are OK, and that the policy sets of each argument respects the policy of the
type of the corresponding formal class parameter (as defined in class C ′ using init as the name of the class constructor). The
value resulting from the object creation is a reference to the new object, and therefore has no sensitive information ({•}).
The value resulting from the object creation is then adjusted with the policy of pc.

The effect rules of Fig. 10 explain the handling of statements. The rule P-Skip says that a skip statement does not change
the environment. The rule P-Composition for sequential composition indicates that the environment resulting from one state-
ment can be used as the starting environment for the following statement.

The Rule P-write considers the case that the left-hand side variable is a field w and checks that there is write access
to this field, both with respect to the policy of the type of w and the policy of the enclosing method body. This check is
done in the second premise. The first premise ensures that the right-hand side is OK and results in a policy set P . This
policy set is then used as the policy associated with w in the environment resulting from the assignment statement. Thus
assigning non-sensitive values to fields is allowed if the enclosing method and the type have a policy with write access.
The rule P-LocalWrite is similar except that we need not check write access (since full access is allowed for local variables).
17

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
For simplicity, formal class and method parameters (as well as this and caller) are read-only in our language, and this is
enforced by the BNF syntax of assignments because it’s only allowed to write to the fields and local variables.

The rule P-incr for incremental assignment to a field w is similar to Rule P-write except that here incr access is required.
The resulting policy for w is the meet of the policy on the former value and the policy on the right-hand side since the
new value is w + rhs. Incremental assignment to a local variable, say x :+rhs, is semantically the same as x := x + rhs since
there is full access to local variables, and we omit a rule for this.

For Rules P-write, P-local-write, and P-incr, the policy on rhs also captures the change in sensitive context due to if and
while tests using the policy on pc, due to the rules for expressions. This ensures that the policy on rhs complies with that
of the program counter context, i.e., pc.

The rule P-asyncCall for an asynchronous call is similar to Rule P-call, except that the return type is ignored (since no
information is returned). The rule for broadcast calls P-broadcast is similar, but without a check on the callee. The call is
broadcast to all objects supporting interface I.

The rule P-If is straightforward, apart from two considerations: In case the if-test is sensitive, the pc of the starting
environment of each branch must be adjusted by the policy of the expression in the if-test. This is done by a meet operation
on �[pc], i.e., �[pc �→ (�[pc] �P)]. Secondly, the policy resulting from an if-statement is the meet of the policies at the end
of each branch, corresponding to a worst case analysis, with the policy of pc in the final environment reset to its value
before the if-statement. The rule P-While is somewhat similar to P-If, but the resulting policy is the least fix-point of the
iterated effect on the starting policy, reflecting that the number of iterations is unknown at compile time. The fix-point will
exist since the lattice hierarchy is finite, and since �i+1 is less than � �i since �i+1 = �i � �′

i . After the while statement, pc
is reset to its value before the while-statement.

5.1. Static compliance checking of the example

In Fig. 7, which is a continuation of the example in Fig. 5, we consider some classes implementing the interfaces,
including a main class that is automatically instantiated when running the program.

Note that all policies on the visible methods (those exported by an interface) are inherited from the respective interfaces,
and need not be repeated by the programmer. They are therefore marked as gray. Also the policy on the sensitive data type
PData follows from that on Presc since the policy of List[T] is the policy of T . Only the local class constructor of MAIN needs
an explicitly specified policy. The classes demonstrate most of the language features including blocking calls, asynchronous
calls, and broadcasts, as well as write access, incremental access, and read access. And they demonstrate privacy policy
specifications. A challenge here is that the construct (p, text) requires write access since it constructs sensitive data. As
discussed later this is acceptable in class DOCTOR since type Presc gives full treatment access to Doctor objects and class
DOCTOR has interface Doctor. This expression would not be allowed in class Nurse.

We show below the static analysis of the program in Fig. 7. The premises are handled one by one. The outline below
demonstrates that the program satisfies the static analysis.

1. Rule P-asyncCall. Consider the following snippet.

class MAIN(){ ...
{d!doctorTask(p)} ::PStart }

Here, e!nI (e) is d!doctorT ask(p). The premises are shown below:
1.1 [�] e.nI (e) ::P

1.1.1 C � I
M AI N � Doctor

PI,n �Co,R PC,m@(C, m)

PDocT ask,doctorT ask �Co,R PMAIN,init ⇔
(Any, treatm, full) �Co,R (Any, treatm, no)

1.1.2 [�] e ::P ′
[�] d :: {•} //object ref erences are not sensitive

1.1.3 [�] ei ::Pi
[�] p :: {•}
Pi =⇒Ppar(I,n)i{•} =⇒Ppar(Doctor,doctorT ask)

{•} =⇒Pp
{•} =⇒ {•} // trivially true
18

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
1.1.4 [�] e.nI (e) ::Pout(I,n) � �[pc]
[�] e.nI (e) :: {•} � {•}
[�] e.nI (e) :: {•}

1.2 [�] d!doctorT ask(p) [�]

2. Rules P-CALL, P-LOCAL-WRITE

class DOCTOR() extends NURSE implements Doctor{
Void doctorTask(Patient p){

Presc oldp = pdb.getPresc(p); ...}::PDocT ask
}

Here, x := rhs =⇒ Presc oldp = pdb.get Presc(p)

2.1 [�] rhs ::P // P-LOCAL-WRITE premise
rhs is pdb.get Presc(p)

2.1.1 C � I
DOCTOR � Get Presc
PI,n �Co,R PC,m@(C, m)

PGet Presc,get Presc �Co,R PDocT ask@(DOCTOR, doctorT ask) ⇔
PGet Presc,get Presc �Co,R (Any, treatm, full)@(DOCTOR, doctorT ask) ⇔
(Nurse, treatm, read) �Co,R (Doctor, treatm, full) ⇔ [(Def: Method Body Policy Set)]
(Nurse, treatm, read) �Co,R (Doctor, treatm, full) [(Def: Policy Compliance)]

Here, Interface Doctor inherits get Presc() from the Nurse interface, i.e., Doctor ≤ Nurse, and policy of the
inherited method complies with the policy in current context making this call valid.

2.1.2 [�] e ::P ′
[�] pbd :: {•} // object references are not sensitive

2.1.3 [�] ei ::Pi
[�] p :: {•}

Pi =⇒ Ppar(I,n)i{•} =⇒Ppar(Get Presc,get Presc)
{•} =⇒Pp

{•} =⇒ {•}

2.1.4 [�] pdb.get Presc(p) ::Pout(I,n) � �[pc]
[�] pdb.get Presc(p) ::PPresc � {•} // since pc is non-sensitive
i.e., [�] pdb.get Presc(p) ::PPresc

2.2 �[x �→P] =⇒ �[oldp �→PPresc]

3. Rules P-Func, P-Var, P-Local-Write, P-asyncCall

class DOCTOR() extends NURSE implements Doctor{
Void doctorTask(Patient p){...

String text = ...; //new presc using symptoms and oldp
Presc newp = (p, text);
pdb!makePresc(newp)}::PDocT ask

}

3.1 x := rhs
String text = rhs //P-LocalWrite

rhs :: {•}

�[x �→P] =⇒ �[text �→ {•}]
19

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
3.2 Presc newp = (p, text); //P-Func, P-Var, P-LocalWrite

3.2.1 [�] ei :: Pi

3.2.1.1 read �A �[v] � (PC,m@(C,m)) // P-Var

�[p] � (PDocT ask @ (DOCTOR,doctorT ask))

{•} � ((Any, treatm, full) ∪ (Doctor, treatm, full))
{•} � (Doctor, treatm, full)
i.e., (Doctor, treatm, full).

read �A (Doctor, treatm, full), which reduces to
read �A full

Likewise, for text as it is also non-sensitive and same method body context applies.

3.2.1.2 [�] p :: �[p] � �[pc] ⇔
[�] p :: {•}, since pc is non-sensitive here.

These premises ensure that the variables in the constructor function have read access as well as that
the current context complies with read access.

3.2.2 write �A PT � (PC,m@(C, m)), since the constructor (_, _) is sensitive
f T (p, text) and T is PPresc
write �A PT � (PC,m@(C, m))

write �A PPresc � (PDocT ask@(DOCTOR, doctorT ask))

write �A {(Nurse, treatm, read), (Doctor, treatm, full)} � (Doctor, treatm, full)
write �A (Doctor, treatm, full), which reduces to write �A full.

This premise checks if the sensitive information (p, text) can be constructed in the current context, and here
it can be constructed because the current context has write access.

3.2.3 [�] (p, text) :: PT � �[pc]
[�] (p, text) ::PPresc , since pc is non-sensitive here.

3.3 e!nI (e) = pdb!make Presc(newp)

3.3.1 C � I
Doctor � AddPresc

PI,n �Co,R PC,m@(C, m)

PAddPresc,make Presc �PDocT ask@(DOCTOR, doctorT ask) ⇔
(Doctor, treatm, rincr) �Co,R (Doctor, treatm, full) ⇔
(Doctor, treatm, rincr) �Co,R (Doctor, treatm, full)

3.3.2 [�] e ::P ′
[�] pdb :: {•}

3.3.3 [�] ei ::Pi
[�] newp ::PPresc // P-Var

Pi =⇒Ppar(I,n)i

Pnewp =⇒ Ppar(AddPresc,make Presc)
PPresc =⇒PPresc

4. Rules P-If, P-Incr

class PATIENTDATA() implements PatientData { ...
Void makePresc(Presc newp) {

if newp �=emptyString() then pd:+ newp fi } ::PAddPresc
}

if e then s1 else s2 fi
20

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
4.1 [�] e ::P // P-Var

[�] newp �= emptyString() ::P

read � �[v] � (PC,m@(C,m)) // P-Var

read �A �[newp] � (PAddPresc @ (PATIENTDATA,makePresc))
read �A PPresc �PAddPresc , since PatientData is not a principal.
read �A {(Nurse, treatm, read), (Doctor, treatm, full)} � (Doctor, treatm, rincr)
read �A (Doctor, treatm, rincr)

[�] newp :: �[newp] � �[pc]
[�] newp ::PPresc �PPresc

[�] newp ::PPresc

[�] emptyString() ::P // P-Constant

[�] emptyString() :: �[pc]
[�] emptyString() :: {•}, since pc is non-sensitive here.

[�] newp �= emptyString() ::PPresc

4.2 [�[pc �→ (�[pc] �P)]] s1 [�1]
[�[pc �→ (PPresc �PPresc)]] pd : +newp [�1]
[�[pc �→PPresc]] pd : +newp [�1]

Now, rule P-Incr, on s1

4.2.1 [�] rhs ::P
[�] newp ::PPresc // since �[pc �→PPresc]

4.2.2 incr �A �C [w] � (PC,m@(C, m))

incr �A �C [pd] � (PAddPresc@(PATIENTDATA, makePresc))
incr �A PPresc � (PDoctor,treatm,rincr)

incr �A PAddPresc
incr �A (Doctor, treatm, rincr)
which reduces to incr �A rincr

4.2.3 [�[w �→ (�[w] � �[pc])]
[�[pd �→ (�[pd] � �[pc])]]
[�[pd �→ (PPresc �PPresc)]]
[�[pd �→PPresc]]

4.3 [�] if e then s1 else s2 fi [�1 � �2[pc �→ �[pc]]]
�1[pc �→ �[pc]]
�1[pc �→PAddPresc]

Interface PatientData extends interfaces GetPresc and AddPresc, but does not redefine the policies on inherited methods. So
the policies on inherited methods trivially complies with that of the superinterfaces. Thus interface PatientData is well-
formed. Class PATIENTDATA is well-formed because

1. PPATIENTDATA,getPresc �PGetPresc,getPresc and PPATIENTDATA,makePresc �PAddPresc,makePresc , i.e., the policies on the method defini-
tions comply with those of the method declarations in the interfaces.

2. For method getPresc, the policy on the return value complies with the policy of the return type, i.e., PPresc =⇒ PPresc .
Moreover, for method makePresc,
• �C is defined by [newp �→PPresc, caller �→ {•}] and the if-statement is well-formed (as described above in 4).
• The policy on the field pd complies with that on the declared type, i.e., PPresc =⇒PPresc .

We may conclude that the static analysis is successful. However, with the current rules we cannot check if a Patient
accessing her own information, through method GetMyPresc, is valid. In particular, we can not check the self access. We
return to this in Section 6.
21

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
policy PDoc = (Doctor, treatm(Patient), f ull)
policy PGet Presc = (Nurse, treatm(Patient), read)
policy PPresc = {PGet Presc,PDoc}
class PATIENTDATA() implements PatientData {
type PData = List[Presc] ::PPresc
PData pd = empty();
Void makePresc(Presc newp) {

if newp �=emptyString() then pd:+ newp fi }
:: (Doctor, treatm(Patient), rincr)

Presc getPresc(Patient p){return last(pd/p)}
:: (Nurse, treatm(p), read)

with Patient
Presc getMyPresc() {return getPresc(caller)}

:: (Patient, treatm(caller), read)
// allowed since a subject has read access to self data

... }

Fig. 11. Example with subject awareness. As before, gray parts are implicit.

6. Awareness of subject

We discuss here how the above framework could be extended so that (static) awareness of the subject of sensitive
information is handled. In particular, we would like the analysis to detect that expressions such as last(pd/p) (with pd as
in the example) result in data with p as data subject, and therefore can be communicated/returned to p by the principle of
read access to data about self. With the formalism above it is required that the caller supports the Nurse interface.

Our framework uses interfaces to describe the visible aspects of the active objects and data types to define data struc-
tures, including personal data. We use subtyping to distinguish (potential) personal data from non-personal data. The data
type hierarchy is extended with a subtype PersonalData, and all sensitive data types must be of a subtype of PersonalData.
We introduce the interface Sensitive as the superinterface of all classes holding personal information. Interface Subject is be-
low Principal, and for instance interface Patient is below Subject. We let PersonalData support a function subjects returning
the set of the subjects of the data, of type Set[Subject]. Let p be a subject. For a pair (p, d) where d is non-sensitive, we
have that subjects((p, d)) is {p}, and for a sensitive constructor f we have that subjects(f (p, d)) is {p} when the list d is
non-sensitive.

We now specify purpose by terms of the form name(p) where name is a purpose name as before and p identifies the
subject, either by an object (for instance given by this or caller), an interface name, or a set of object expressions. In a
runtime tag, p will be a set of object references, while it may be over-approximated by an interface in the static setting.

In the example we would have that the policy for method makePresc could be (Doctor, treatm(Patient), rincr). Further-
more, we could make a policy (Doctor, treatm(p), rincr) where p is a Patient object. This way we may distinguish between
the treatment of individual patients. With the added notions, we may extract the subject(s) of sensitive information inside
a method. The data structure in the example with patient data pd is defined as a list of pairs as before, but now we can
express that subjects(pd/p) = {p} and subjects(last(pd)) = subjects(pd) for a Patient p.

As mentioned in Section 3, we may include the general policy

(Subject,all, self � read)

to give each subject read access to personal data about herself. This allows a more liberal policy checking than in the
previous section, by allowing the statement return e when subjects(e) is caller, and allowing a parameter e in a method
call to o when subjects(e) is o.

The main achievement with the renewed example (see Fig. 11) is that we detect statically that the getMyPresc method
complies with the static policies, even if patients have no specified access rights on PATIENTDATA objects, because this
method uses only self access. We will also be able to treat methods such as getMyPresc in class NURSE and getSelfData in
class PATIENT in Fig. 7.

In order to deal with dynamic changes in consent, we let interface Sensitive contain a method for updating the policies
of sensitive data, upd_consent , with the new consent settings as a parameter new_policy. A class supporting Sensitive must
then implement this method (preferably implemented directly in the runtime system) by changing the tag on any local data
in the object where the caller is the subject (as given in the purpose part). If this is the case, the runtime tag l must be
changed to l � new_policy. To initiate a change in consent settings with new policy np, a subject may make the broadcast

Sensitive!upd_consent(np)

which will go to all Sensitive objects and lead to adjustments of all sensitive data in the system where subject is caller.
22

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
v ::= . . . | pcs | nextFut added variables
s ::= . . . | v := get u added statement

Fig. 12. BNF syntax of additional constructs used in the operation semantics.

assign : o : ob(δ, v := e; s)
−→ o : ob(δ[v := e], s)

if-true : o : ob(δ,if b then s1 else s2 fi; s)
−→ o : ob(δ[pcs := push(pcs, l)], s1;pcs := pop(pcs); s)

if δ[b] = truel

if-false : o : ob(δ,if b then s1 else s2 fi; s)
−→ o : ob(δ[pcs := push(pcs, l)], s2;pcs := pop(pcs); s)

if δ[b] = falsel

while : o : ob(δ,while b do s1 od; s)
−→ o : ob(δ,if b then s1; while b do s1 od fi; s)

new : o : ob(δ, v := new C(e); s)
−→ o : ob(δ[v := o′], s)

o′ : ob(δC [this �→ o′, z �→ δ[e]], initC)
where o′ = (fresh, C), with fresh a fresh reference relative to C

async. call : o : ob(δ,a!m(e); s)
−→ o : ob(δ[nextFut := next(nextFut)], s)

msg o → δ[a].m(δ[nextFut, e])
sync. call : o : ob(δ, v := a.m(e); s)

−→ o : ob(δ,a!m(e); v := get δ[nextFut]; s)

start : msg o′ → o.m(u, c)
o : ob((α|β ′), idle)

−→ o : ob((α|(β[caller �→ o′,myfuture �→ u, y �→ c,pcs �→ empty()])), s)
where (m, y, β, s) is the body of m in the class of this

return : o : ob(δ,return e)
−→ o : ob(δ, idle)

msg δ[caller] ← δ[this].(δ[myfuture], δ[e])
query : msg o ← o′.(u, c)

o : ob(δ, v := get u ; s)
−→ o : ob(δ, v := c; s)

no-query : msg o ← o′.(u, c)
o : ob(δ, s)

−→ o : ob(δ, s)
if get u /∈ s

Fig. 13. Operational rules defining small-step semantics with policies.

7. Operational semantics

The operational semantics of the considered language is given in Fig. 13. Data values are tagged with policy sets. Com-
pared to the static analysis, we could use more expressive policies, in particular, we may use sets of objects to define the
principals, rather than interfaces. However, for simplicity we use interfaces as principals, letting each interface denote the
set of objects supporting the interface, making the correspondence with the type system easier. We could also let the op-
erational semantics define the subject and owner (i.e., creator) of the data, as well as other GDPR-relevant aspects such as
expiration time, but this is ignored here since we focus on the aspects of the static system.

We briefly explain the main elements of the runtime system used in the operational semantics. A runtime configuration
of an active object system is captured by a multiset of objects and messages (using blank-space as the binary multiset
union constructor). Each rule in the operational semantics deals with only one object o, and possibly messages, reflecting
the nature of concurrent distributed active objects, communicating asynchronously. Remote calls and replies are handled
23

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
by message passing. When a subconfiguration C can be rewritten to a C′ , this means that the whole configuration . . .C . . .

can be rewritten to . . .C′ . . ., reflecting interleaving semantics. Each object o is responsible for executing all method calls
to o as well as self-calls. An object has at most one active process, reflecting the remaining part of a method execution.
For our programming language we need not consider futures or suspended processes, but such mechanisms can be added
in a straightforward manner since they do not pose additional privacy challenges. In order to handle method returns, our
semantics creates an identity for each call (like a local future) passed as an implicit parameter, and inserts get statements
referring to the call identity (see Fig. 12). By lifting these call labels and get statements to the language syntax, we would
obtain support for object-local futures, as described in [33].

Objects have the form

o : ob(δ, s)

where o is the object identity, δ is the current object state, and s is a sequence of statements ending with a return,
representing the remaining part of the active process, or idle when there is no active process. A message has the form

msg o → o′.m(e)

representing a call to m with o as caller, o′ callee, and e actual parameters, or

msg o ← o′.(u,d)

representing a completion event where d is the returned value and u the identity of the call. In addition, msg o → I.m(e)
denotes a broadcast to all objects supporting interface I .

The operational rules reflect small-step semantics. For instance, the rule for skip is given by

o : ob(δ, skip; s) −→ o : ob(δ, s)

saying that the execution of skip has no effect on the state δ of the object.
The semantics in Fig. 13 formalizes the notion of idleness, and generation of objects and messages, including a rule (no-

query) for disposal of unused reply messages. Generation of identities for objects and method calls is handled by underlying
semantic functions and implicit attributes. The operational semantics uses some additional variables, like pcs (“program
counter stack”) for remembering the stack of policies corresponding to the nesting of if/while statements, and nextFut for
generating unique identities for calls. These appear as fields in the operational semantics (nextFut initialized with some
value and with a next function to generate new unique values). Furthermore, this is handled as an implicit class parameter,
while myfuture and caller appear as implicit method parameters, holding the identity of a call and its caller, respectively.
The operational semantics uses an additional query statement, get u, for dealing with the termination of call statements.
A synchronous call is treated as an asynchronous call followed by a get query. The query get u is blocking while waiting
for the method response with identity u. The added constructs are shown in Fig. 12. We let a denote an object expression,
b a Boolean expression, o an object identity, u a method call identity, d a value (a data value or an object identity), and c a
value tagged with a policy.

The state of an object is given by a twin mapping, written (α|β), where α is the state of the field variables w (includ-
ing nextFut) and class parameters z (including this), and β is the state of the local variables x and formal parameters y
(including myfuture and caller) of the current process. Look-up in a twin mapping, (α|β)[z], is simply given by (α + β)[z].
The notation α[z := e] abbreviates α[z �→ α[e]], and the notation (α|β)[v := e] abbreviates if v in β then (α | β[v �→
(α|β)[e]]) else (α[v �→ (α|β)[e]] | β), where in is used for testing domain membership.

Method invocation is captured by the rules async call/sync.call. The generated call identity is locally unique, and globally
unique in combination with the parent object. The call identity generated by this rule is passed through an invocation
message, which is to be consumed by the callee object by the Rule start. When an object has no active process, denoted
idle, a method call can be selected for execution by rule start. The invocation message is removed from the configuration
by this rule, and the identity of the call is assigned to the implicit parameter myfuture. With Rule return, a return value is
generated upon method termination and passed in a completion message together with the call identity stored in myfuture.
The return value is then fetched by Rule query. Note that a query statement blocks until the corresponding return value
is generated by Rule return, whereas asynchronous calls do not block. The query rule says that v := get u, in object o is
replaced by the assignment v := d when the completion msg o ← o′.(u, d) appears, and the completion message is removed
from the configuration. If object o does not contain get u then the completion message is removed without any effect on o.
This happens when the corresponding call was an asynchronous call, which is similar to one-way message passing. In Rule
start, we assume that m is bound to a method with local state β (including default values) and code s. Note that bindings
for the parameters y and the implicit parameter nextFut are added to the local state.

Object creation is captured by the rule new. The generated object identity is based on a non-deterministically generated
reference (reflecting factors outside the program). Note that an object reference encodes the class name, which makes the
rules more compact. Here initC denotes the initialization statements (the class constructor) of class C , and δC denotes the
initial state of class C with default or initial values for the fields. The binding of class parameters and this is added explicitly
in the rule. We obtain an active object by letting initC initiate internal activity, using asynchronous self calls to allow the
24

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
object to interleave continued internal activity with reaction to external calls. The initialization statements of a program
(given by the class constructor of an instantiation of the last class in the program) will typically create the other initial
objects.

The semantics of an if-statement without an else-part, if b then s fi, is usually equivalent to if b then s else skip
fi. However, this is not the case with respect to policy tags. For instance, the policy after x := false; if b then x := true fi
is not the same as after if b then x := true else x := false fi when b is sensitive, because in the latter case the
policy of x is not changed when the else branch is taken, while it is changed in the former case. A solution to this is
discussed at the end of the next section (on related work). A while loop is handled by expanding while b do s od to
if b then s; while b do s od fi upon execution of the while-statement. Void methods return the value void(). We
assume all methods end in a return statement, including class constructors, which end in return void() (although omitted
in the examples). We assume that assignments of the form w :+ e are represented by w := w + e at runtime, and that
initial values given to fields or local variables are expanded to assignments, as described earlier. A rule for broadcasting is
omitted; however, the semantics is similar to that of asynchronous calls.

The given language fragment may be extended with constructs for local (stack-based) method calls, e.g., by using the
approach of [30] and it may be extended with cooperative scheduling and synchronization control as in [31].

7.1. Runtime policies

We explain here the privacy aspects of the operational semantics. We assume that the program has passed the policy
typing, and therefore the operational semantics does not include a duplication of the static policy requirements during
reduction. We then prove that any policy level obtained at runtime guarantees the one calculated by the static policy
typing. This property, called policy soundness, is stated by Theorem 1. It guarantees that the policy checks will be satisfied
at runtime when based on the runtime policy levels. We also prove a progress property.

As mentioned, the semantics uses an additional variable pcs in each method, reflecting the stack of context policy levels
of enclosing if- and while-branches. The top of the pcs stack reflects the policy of the innermost branch. At an entry to an
if/while statement, pcs is pushed with the policy set of the test expression, and pcs is popped upon exit. Note that pcs can
be local since it must be empty upon method return. The relationship between pcs and pc as used in the static checking, is
given as part of Theorem 1.

At runtime the evaluation of an expression e gives a policy tag l, in addition to a (normal) value d. We let the tagged
value dl denote this result, and let c denote tagged values, and let dl .tag be l. When such a value is assigned to a program
variable v , the binding v �→ dl is added to the state. The state of an object is given by a twin-mapping as above, but the
values of variables are now bound to tagged values. Thus the values appearing in the semantics are all tagged. Each object
identity has the form of a pair (oid, C) where C is the class of the object and oid a unique identity relative to C .

The evaluation of an expression e in a state δ and with policy context pcs is denoted δ[e], where the data value d is
evaluated ignoring tags, resulting in a ground term, i.e., a term with only constructor functions, and where the tag is defined
by

level(δ[pcs]) � tag(d)

where level(δ[pcs]) is the meet of all the policies in the stack pcs, and where the tag of d is evaluated according to the
policies of the constructor functions in d, letting type constructors of non-sensitive types give a {•} policy.

The runtime policy level of a variable v in an execution state can differ from that of the static level in the corresponding
program point. There are several reasons for this. For instance, there can be many calls to the same method with actual
parameters of different policy levels. The runtime system uses the policies of actual parameters whereas the static analysis
uses that of the formal parameters. At the start of a method, the static analysis will assume the declared policy levels for
fields, whereas at actual runtime levels might differ. This is clarified below.

7.2. Theoretical results

In order to keep the operational rules simple, we have assumed that programs are well typed and have passed the static
policy checks. Still it is not obvious that a statically correct program cannot go wrong, if for instance the statically derived
policies are not respected at runtime. We therefore show results reflecting soundness and progress.

We observe that each state of an object of class C in an execution corresponds to a (static) program state in class C ,
and that each expression (other than future-related variables) evaluated at runtime corresponds to an occurrence of an
expression in the program text. To formalize this correspondence we associate a statement number with each statement
in the code, and when a statement s is executed we may obtain the statement number by the syntax #s. When an object
is about to execute a statement s appearing in the program code, the corresponding program state is given by the static
environment just before that statement, denoted �#s . The number also identifies the enclosing method and class. Since the
last statement of a then-branch has the same next statement as the last statement of the else-branch we cannot distinguish
these in the correspondence. We need a way to solve this, for instance by letting the execution of a method record the
trace of program statements executed as a list of statement numbers. This gives sufficient information to see which branch
25

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
is taken, but not to determine if the corresponding program state is before or after the end of the if-statement. However,
this can be determined by the presence of the pop-statement: After pop the corresponding state is the one after the if-
statement, and before pop the corresponding state is the last state of the branch as given by the trace. For a given state
o : ob(δ, s), we may therefore talk about the unique corresponding program state and its environment �. (Even runtime states
starting with a get-statement correspond to program states, since the values of all program variables are the same as before
the start of the call.)

Furthermore, we observe that the policies at runtime may differ from those at compile time, for instance in connection
with parameter passing since the runtime policies are driven by the actual parameters while the static ones are driven
by the declaration of the formal parameters. In general, the static rules use meet operations corresponding to worst-case
analysis, while the runtime rules give the actual policy.

We first prove a soundness result saying that the runtime value of a variable or expression will have a policy that
guaranteesthe one calculated statically according to � in the corresponding state: The run time value of a variable will have
a policy that guarantees the one in the corresponding �. This also holds for expressions. For the special variable pc, there is
a similar correspondence with pcs.

Theorem 1 (Soundness). Consider a given state o : ob(δ, s) of an object o, and let � be the policy environment of the corresponding
program state (as defined above) in method m of a class C. We have

(C,m � [�] v :: P) ⇒ (δ[v].tag =⇒ P) (1)

(C,m � [�] e :: P) ⇒ (δ[e].tag =⇒ P) (2)

level(δ[pcs]) =⇒ �[pc] (3)

where v is a program variable and e is an expression over program variables.

Proof. We first prove that property (2) follows from (1) and (3), and then prove property (1) and (3) by course-of-values
induction on the derivation of executions as given by the operational rules and by induction on the derivation of the static
compliance. We consider an arbitrary object o, which have state o : ob(δ, s) with m of class C as the enclosing method and
with � as the environment of the corresponding program state. Note that the derivation of static policies is terminating and
deterministic. Each program state is assigned a unique environment � defining the static policies in the state. We let �[e]
denote the unique policy set P such that C, m � [�] e ::P .

Consider expressions e (other than variables), and assume (1) and (3) in a (runtime) state δ corresponding to a static
program state with environment �. We prove that δ[e].tag =⇒ �[e]. This is trivial when δ[e].tag is {•} since {•} =⇒ P for
any P . It remains to prove that �[e] � δ[e].tag holds when δ[e].tag is not {•}. The static policy of a functional expression
f (e) of type T is given by PT � �[pc]. The runtime policy is based on the result of the evaluation. A functional expression
f (e) when evaluated gives a value d of type T ′ for T ′ ≤ T with policy level(δ[pcs]) � tag(d). It suffices that tag(d) =⇒ PT .
For T ′ ≤ T we have PT ′ =⇒ PT .

Consider next property (3), level(δ[pcs]) =⇒ �[pc]. The pc and pcs variables are only changed at the entry and exit of if-
and while-statements. The condition trivially holds over other statements. To simplify the connection between pc and pcs,
we could add a local variable pcs in the static policy type rules. We then let the starting environment of each branch in an
if- or while-statement modify pcs by �[pcs := push(pcs, P)] where P is the policy of the test, and let the final environment
update pcs by �[pcs := pop(pcs)]. We may prove that �[pc] = level(�[pcs]) by induction over the policy rules. Instead of
property (3), it then suffices to prove the property

level(δ[pcs]) =⇒ level(�[pcs]) (4)

The induction hypothesis IH is now the conjunction of (1), (2), and (4). Below we will look at proof cases of the form IH ⇒
IH ′ where IH ′ is IH with δ and � replaced by the state and environment after executing an arbitrary program statement.

Before entry to an if-statement with test b, we assume IH and must prove

level(δ[pcs �→ push(δ[pcs], l)][pcs]) =⇒ level(�[pcs �→ push(�[pcs],P)][pcs])
where l is δ[b].tag and P is given by C, m � [�] b ::P . This reduces to

level(δ[pcs]) � l =⇒ level(�[pcs]) �P
which follows from (2) and (4) of IH and monotonicity of � with respect to =⇒, i.e., (X =⇒ X ′ ∧ Y =⇒ Y ′) ⇒ (X � Y =⇒
X ′ � Y ′), which is obvious.

Before exit of an if-statement we have the induction hypothesis at the end of the chosen branch, and we need to prove

level(δ[pcs �→ pop(δ[pcs])][pcs]) =⇒ level((�1 � �2)[pcs �→ pop(�[pcs])][pcs])
where �1 and �2 are the respective environments at the end of the two branches. This reduces to
26

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
level(pop(δ[pcs])) =⇒ level(pop((�1 � �2)[pcs]))
which is trivial if pop(�1[pcs]) is the same as pop(�2[pcs]), which can easily be proved by induction over the derivations of
the type and effect system. The situation for while-loops is similar.

Finally we consider variables: We observe that � is only modified by assignment-like statements (to fields and local
variables), if- and while-statements, and method start, and program variables in δ are only updated by assignment-like
statements and method start. We consider below assignments, if-statements, and method start. Assume IH. For an assign-
ment x := e we need to prove that

C,m � [�[x �→ Pe]] v :: P ⇒ δ[x �→ δ[e]][v].tag =⇒ P

where C, m � [�] e ::Pe . For variables other than x this reduces to IH. For x we need to prove:

δ[e].tag =⇒ Pe

which holds by the second conjunct of IH. Consider next the end of an if-statement. Let IH hold at the end of the chosen
branch. We need to prove

C,m � [� � �′] v :: P ⇒ δ[v].tag =⇒ P

where �′ is the environment at the end of the branch not chosen. This reduces to

δ[v].tag =⇒ (� � �′)[v] � (� � �′)[pc]
which is trivial since �[v] =⇒ (� � �′)[v]. At method start, i.e., when o has the form o : ob(δ, idle), we need to prove for
the case of a field w

δ[w].tag =⇒ PW

where W is the type of field w (PW is the same as �C [w]) and δ is the state resulting from the previous method execution,
or the initial value of w . (The operational semantics ensures that a method start must follow a method end, or start from
initial values, because the former creates an idle state and the latter represents the only way to continue from an idle
state.) From IH we know that δ[w].tag =⇒ �[w] where � is the environment of the previous method execution. From the
premise of the P-method we have that �[w] =⇒ PW . By transitivity of =⇒ the rest follows. (The case of initial values is
straightforward since the operation semantics and static analysis use the same expressions for the initial values.)

The situation for method parameters y is similar. At the start of a method execution (Rule start), the runtime policies
of the method parameters y is given by the tags of the actual parameters, which by IH must guarantee the static policies
of the parameters, which by Rule P-call must guarantee the policies of the formal parameter types Y , which are fixed fora
method m of class C . Altogether we have that runtime polices guarantee that static ones at method start.

Consider a query statement where c is the value received by the caller. In the runtime system this value is the same
as the one returned by the callee, and the policy of the returned value at runtime must guarantee the static one by IH,
and the static policy of the returned value guarantees the policy of the method’s return type (say T) by Rule P-method. Thus
the runtime policy of c guarantees PT . On the caller side, the policy of the received result is that of c and in the static
system it is the type of the method result, i.e., PT . We have therefore proved (1) for queries. New statements are similar.
Asynchronous calls are simpler since no program variable is changed. �

The above result does not have so much value if the runtime system allows programs that do not progress when they
are supposed to do so, i.e., if no rule applies in a state where execution should continue. We therefore prove a progress
property of the operational semantics saying that the execution of each object in a program will continue, unless the object
is idle and there are no incoming messages reflecting method calls, or the object is blocked, i.e., trying to perform a get
statement when the corresponding reply message has not appeared. Moreover, no errors are generated apart from undefined
expressions.

Theorem 2 (Progress). Assume that the evaluation of program expressions is terminating normally with a defined value. If a configura-
tion C rewrites to C′ by the operation rules and C′ cannot be reduced further, then each object o : ob(δ, s) ∈ C′ is idle (s is idle) and there
is no invocation message msg o′ → o.m(...) ∈ C′ , or o is blocked (s starts with get u) and there is no message msg o ← o′.(u, c) ∈ C′ .

Proof. We show that for each statement one rule will apply as long as the conditions stated in the theorem do not hold.
There is one unconditional rule for each statement, except if, which has two complementary rules, one for each case of
the value of the if-test. No rules depend on a context condition, except the rules start and query, which require the presence
of an appropriate message, but these are exactly the acceptable conditions stated in the theorem. Consider next the well-
definedness of expressions over variables added in the operation semantics (pcs, nextFut, myfuture). The pop operations on
pcs will terminate normally since each pop is preceded by a push. Each return statement must be preceded by a start
statement, therefore myfuture will have a value. The special variable nextFut always has a value. �
27

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
In particular, there will be no errors or exceptions, apart from undefined values resulting from evaluation of expressions.
A call to a null object is possible, and this could lead to blocking of the caller object, if there is a get-statement for the call.
Method-not-understood errors is captured by the underlying type checking [32].

8. Related work

The focus of this paper is the intersection of the GDPR, privacy policy formalization, and programming languages. This
intersection is relatively recent and features several threads of active research such as policy specification, policy enforce-
ment, monitoring, privacy by design, language based privacy, privacy enhancing technology. The present work investigates
static aspects of privacy policies and compliance; while the dynamic aspects including consent management are considered
in [51].

Several attempts have been made to express privacy polices, through a language with formal syntax and semantics such
as XACML [50], EPAL [6], APPEL [37], and XPref [3]. An analysis of these policy languages can also be found in [8,34].
Privacy restrictions are also expressed formally using ontologies [11] or dedicated logics such as [7,10,13]. However, a direct
comparison of these policy languages and logics with our policy language is not straightforward, mainly because we focus
on policy aspects that can be verified statically and can only express limited aspect of a policy, while these policy languages
can express a wider range of privacy restriction. In contrast to the mentioned policy languages, we focus on static checking
and in particular check compliance of program, by class-wise analysis.

Access control models, such as discretionary access control (DAC) [35] and role based access control (RBAC) [47], have
been historically utilized in order to support security requirements [18]. In RBAC, permissions (to perform operations) are
associated with a role or set of roles [47]. Thus there are common features in our work and RBAC. In addition to the
hierarchies of roles and access rights supported by RBAC, our framework introduces hierarchies of purposes to control role
access. However, our work uses static analysis while RBAC uses runtime analysis. In a literature review [20], by Fernández-
Alemán et al. identifies the access control models deployed by electronic health records (EHR), where 35 of 45 reviewed
articles used access control methods. Interestingly, 27 of those 35 specifically used RBAC. However, these conventional
access models are not designed to enforce privacy policies [23], due to lack of several privacy protection requirements (e.g.
purpose). In order to express purpose (and other privacy-related aspects), the RBAC model is extended, as in [38,40,54].

Privacy by Design (PbD) has been discussed and promoted from several viewpoints such as formal approaches [36,48,52],
privacy engineering [17,24,43], privacy-enhancing technologies (PET) [22,25], and privacy design patterns [16,29]. Tschantz
and Wing, and Daniel Métayer, discuss the significance of formal methods for foundational formalizations of privacy related
aspects [36,52]. In [52], Tschantz and Wing point out the usefulness of mathematical formulations of privacy notions for
the purpose of guiding the development of privacy preserving technologies and making it easier to spot privacy violations.
In [48], Schneider discusses the main ideas of Privacy by Design and summarizes key challenges (purpose, right to be for-
gotten, consent, and compliance) in achieving privacy-by-construction and probable means to handle these challenges. Our
work addresses the challenges concerning purpose and (at least partially) compliance “by construction”. Hoepman, in [29]
derives and defines eight privacy design strategies, from existing privacy principles and data protection laws. The engineer-
ing aspects of privacy by design is addressed, but there is a lack on how to apply them in practice. In our work, we adhere
to several privacy design strategies such as separating and hiding the data and encapsulation in an object-oriented context.

Hayati and Abadi [26] describe a language-based approach based on information-flow control, to model and verify as-
pects of privacy policies in the Jif (Java Information Flow) programming language. In this approach data collected for a
specific purpose is annotated with Jif principals and then the methods needed for a specific purpose are also annotated
with Jif principals. Explicitly declaring purposes for data and methods ensures that the labeled data will be used only by
the methods with connected purposes. Purposes are organized in a purpose hierarchy, where sub-purposes can be declared
using the (Jif specific) acts-for relation. However, this representation of purpose is not sufficient to guarantee that princi-
pals will perform actions compliant with the declared purpose. In contrast, this can be checked statically in our approach,
because principals are restricted by purposes.

Basin et al. [9] propose an approach that relates a purpose with a business process and use formal models of inter-
process communication to demonstrate GDPR compliance. Process collection is modeled as data-flow graphs which depict
the data collected and the data used by the processes. Then these processes are associated with a data purpose and are
used to algorithmically generate data purpose statements (i.e., specifying which data is used for which purpose) and detect
violation of data minimization. Since in GDPR, end-users should know the necessary purpose of data collection, some works
such as [9] propose to audit logs and detect if a system supports a purpose. In a continuation of this work, in [5] Arfelt
et al., show how such an audit can be automated by monitoring. Automatic audits and monitoring can be applied to a
system like ours as a complementary step to verify how it complies with the GDPR. Besides, our work is more focused on
integrating such legal instruments during the design phase, using formal language semantics.

Anthonysamy et al. [4] demonstrate a semantic-mapping approach to infer function specifications from semantics of nat-
ural language. This technique is useful in compliance verification as it aids in identification of program constructs that
implements certain policies. The authors implement this technique in a tool, CASTOR, which takes policy statements (in
natural language) and source code as input and outputs a set of semantic mappings between policies and function specifi-
cations (function name, associated class, parameters etc.). In [49], Sen et al. develop and demonstrate techniques for policy
compliance checking in big data systems. Privacy policies are specified using a policy language LEGALEASE, restricting the
28

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
information-flow based on (data) store, purpose, role, and other considerations. The data inventory tool GROK maps code-
level schema elements to data types in LEGALEASE. Compliance checking then reduces to information flow analysis.

In [2], Adams and Schupp consider black-box objects that communicate through messages. The approach is centered
around algorithms that take as input an architecture and a set of privacy constraints, and output an extension of the
original architecture that satisfies the privacy constraints. This work is complementary to ours in that it puts restrictions
on the run-time message handling. In contrast to our work, the approach does not concern analysis of program code.
In [21], Ferrara and Spoto discuss the role of static analysis for GDPR compliance. The authors suggest combining taint
analyses and backward slicing algorithms to generate reports relevant for the various actors (i.e., data protection officers,
chief information officers, project managers, and developers) involved at various stages of GDPR compliance. In particular,
taint analysis is performed on each program statement and then the data-flow of sensitive information is reconstructed
using backward-slicing. These flows are then abstracted into the information needed by the compliance actors.

Dynamic flow sensitivity [27] also applies to privacy, as pointed out by Schneider in [48]. A branching statement with
sensitive information in the test, may indirectly leak privacy information if a variable changed in one branch is not changed
in the other branch. This is not a problem in the static analysis, since after a branching construct the information of all
branches are combined. But it is a problem in the operational semantics, since there you only see the chosen branch.
To avoid this problem in our operational semantics, we take the following approach: For an if-statement with sensitive
information in the test, we add trivial assignments v := v to ensure that the variables changed in one branch also are
changed in the other branch. Such an assignment will upgrade the privacy policy of v with level(pcs), which prevents
branching-related privacy leakage. (While-statements can be handled similarly.)

9. Conclusion

In this paper we started by investigating challenges and opportunities with the GDPR from a language-based perspective.
Specifically we focused on the data protection by design principle, embedding privacy requirements into a programming
language, and discussed the relevance for the OODS setting where all interaction between objects is made through interfaces,
so-called interface abstraction. We defined a specification language for formulating privacy policies, and discussed static and
runtime privacy polices, and formalized a concept of static privacy policies as well as the notion of policy compliance. We
chose three primary constituents of a privacy policy, namely principal, purpose, and access right. Such policies are meaningful
at compile time, but cover only a subset of the GDPR aspects. We show how privacy policies can be declared for methods
and data types, restricting the usage of sensitive data. The policy specification language can be added to any object-oriented
programming language supporting interface abstraction.

We have formulated rules for privacy policy compliance, and these rules are given by an extended type and effect sys-
tem for a high-level imperative modeling language supporting active objects, augmented with privacy policy specifications.
The problem of checking a program’s compliance reduces to efficient type-checking. If the program satisfies the checks,
then there is no violation of the stated privacy policies. Implication in the other direction is not guaranteed, due to over-
approximation in the static analysis. However, the case study demonstrates that the static analysis covers realistic scenarios.

We distinguish between read, write, and incr access rights. For a given principal and purpose, incr allows addition of
personal information but without read access to existing personal information, whereas the combination of read and incr
(rincr) allows both. These different access rights proved practically valuable in the healthcare case study, allowing us to
differentiate the roles of a nurse (read), doctor (rincr), and lab assistant (incr). We have briefly discussed how to improve
the analysis so that a data subject has access to personal data about herself, adding self as an additional access right.

The combination of method and data type policies allows class-wise static checking, so that a class may be checked
independently without access to the code of other classes, apart from code inherited from superclasses. It also encourages
reuse of policy specifications and makes it possible to detect too strong or too weak policies by means of the static analysis
(as discussed at the end of Section 3). A challenge of object-oriented programming is that not all classes represent principal
actors, and will therefore not be a natural part of policies on data types. We compensate this by a notion of transfer of
principle rights from caller to callee.

Furthermore, we have defined an operational semantics with policy tags on sensitive data, and proved soundness of the
static compliance analysis with respect to the operational semantics. Finally, we have shown a progress property.

Future work. In the future we would like to extend the specification language to include privacy notions, such as: data
controller and data processor to identify data controller and data processor in various stages of processing in distributed
projects; temporal validity to express data retention requirements and address storage limitation requirement; exceptions to
model restrictions within a given policy; distributed enforcement to express multiple applicable regulatory requirements.
Since the operational semantics deals with tags on data values, it is more practical to include information about applicable
regulations or sectoral laws in tags in order to check compliance. For now, this seems complicated because the regulations
and laws are extensive and may have conflicting expectations. Furthermore, identification of creator and information owner,
can easily be added to the tags. Perhaps the personal data could have both a data subject and a data owner (like national
tax office, national healthcare services), which will allow to model conditions such as the data subject may not remove the
data alone since the data is owned by other entities as well (for legitimate purposes, such as archiving, public interest, etc.).
This can be further extended to accommodate other legal bases (including overriding ones, i.e., exceptions such as public
29

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
interest, vital interest, emergencies etc.) by having separate policy lists for each legal basis, and a disjunction to chose from
these bases depending on the context. In addition, we would like to work out a larger case study, using an implementation
of the framework.

Declaration of competing interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the
article or revising it critically for important intellectual content; and (c) approval of the final version.

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.
The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter

discussed in the manuscript.

Acknowledgements

We thank the anonymous reviewers for extensive comments and substantial feedback, which have helped us to improve
the manuscript significantly.

This work was partially supported by the project IoTSec - Security in IoT for Smart Grids, with number 248113/O70, part
of the IKTPLUSS program funded by the Norwegian Research Council, and the project SCOTT (www.scott -project .eu) funded
by the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No. 737422.

Appendix A. Algorithmic version of the static analysis

In order to show how the type and effect system of Section 5 gives a terminating and fully automatic algorithm, resulting
in accept or fail, we here provide a functional definition of the analysis, obtained from the rules. The functional definition
has the advantage that it shows explicitly all cases of failure. The functional definition is formulated by a boolean function ok
for checking classes, interfaces, and method declarations, as well as the two functions EC,m(�, s) defining the environment
resulting from statement (list) s starting in environment �, and P C,m(�, s) defining the policy set of an expression/right-
hand-side e evaluated in environment �.

We first define EC,m below, following closely the rules of Fig. 10:

EC,m(�, skip) = �

EC,m(�, s1; s2) = EC,m(EC,m(�, s1), s2)

EC,m(�, x := rhs) = �[x �→ P C,m(�, rhs)]
EC,m(�, w := rhs) = �[w �→ P C,m(�, rhs)],

if write �A �C [w] � (PC,m@(C,m))

fail, otherwise

EC,m(�, w :+rhs) = �[w �→ P C,m(�, w) � P C,m(�, rhs)],
if incr �A �C [w] � (PC,m@(C,m))

fail, otherwise

EC,m(�, e!nI (e)) = �, if isok(P C,m(e.nI (e)))
fail, otherwise

EC,m(�, I!n(e)) = �, if P C,m(�, ei) =⇒ Ppar(I,n)i , for each i
and PI,n �Co,R PC,m@(C,m)

fail, otherwise

EC,m(�,if b then s1
else s2 fi) = (�1 � �2)[pc �→ �[pc]], if isok(P C,m(b))

fail, otherwise
where �i = EC,m(�′, si)

�′ = �[pc �→ (�[pc] � P C,m(�,b))]
EC,m(�,while b do sod) = �n[pc �→ �1[pc]]

where �i+1 = �i � EC,m(�′
i, s)

�′
i = �i[pc �→ �[pc] � P C,m(�,b)]

where n in the last equation is the smallest number such that �n + 1 = �n , and the boolean function isok takes a policy set
or an environment and returns false if it is fail, and true otherwise. In order to explicitly capture failures, we add a special
30

https://www.scott-project.eu

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
value f ail. The equations are written in the style of Maude, using conditions and otherwise to cover all remaining
cases [15]. The equations given here can be executed in Maude.

Similarly, the definition of the P C,m function follows directly from the rules in Fig. 9 (except that the two cases for call
are incorporated in one equation):

P C,m(�, v) = �[v] � �[pc], if read �A �[v] � (PC,m@(C,m))

fail, otherwise

P C,m(�, const) = �[pc]
P C,m(�, f T (e))) = PT � �[pc],if isok(P C,m(ei)), for ei of sensitive type

and write �A PT � (PC,m@(C,m)), if f T is sensitive
fail, otherwise

P C,m(�, e.nI (e)) = Pout(I,n) � �[pc], if isok(P C,m(�, e))
and P C,m(�, ei) =⇒ Ppar(I,n)i , for each i
and C � I implies PI,n �Co,R PC,m@(C,m)

and C ≤ I implies PI,n � PC,m@(C,m)

fail, otherwise

P C,m(�,newC ′(e)) = �[pc], if P C,m(�, ei) =⇒ �C ′ [zi]
fail, otherwise

In a conditional equation we use if to define the condition and otherwise to cover all other cases. We use
and and implies to reflect the premises of the effect rules, letting here implies bind tighter than and. Thus,
if C and C ′ implies C ′′ means if (C and (C ′ implies C ′′)).

With the use of fail and otherwise, it is clear that the functions are total and terminating since the boolean conditions
used are all executable and terminating. It is also clear that the left-hand-sides are disjoint and cover all cases of the effect
rules. Therefore the definitions of EC,m and P C,m are terminating with a unique result for each input.

Finally to check interface, class, and method definitions, we define the corresponding ok functions over these:

ok(interface I extends J
{D} :: P) = PI,m � P J ,m , for each J ∈ J ,m ∈ J

ok(class C(Z z)
implements I {W w; M}) = PC,m � PI,m , for each I ∈ I,m ∈ I

and okC (M), for each M ∈ M

okC (T m(Y y)

{X x; s;return rhs} :: P) = isok(�) and isok(P ′) and P ′ =⇒ PT

and �[w] =⇒ �C [w], for each field w
where � = EC,m(�m, s)

P ′ = P C,m(�, rhs)

In the last equation �m denotes the starting environment of the method as defined in the first premise of Rule P-method.
The ok checks for classes, interfaces, and methods follow directly from the rules in Fig. 8. It is clear that these functions are
total and terminating. Since EC,m and P C,m are total and terminating, the compliance check of a class or interface gives a
boolean result, true if it passes the check and false otherwise. The efficiency of the analysis is comparable to ordinary static
type checking, but as we have seen, while-statements require a (terminating) fix-point calculation and conditions involving
=⇒ require nested iteration over policy sets.

Appendix B. Notational conventions

For convenience, we here list the abbreviations used in the paper:

A - access
a - object expression
B - block
b - boolean expression
C - class
c - tagged data value

D - method declaration
31

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
d - data value
e - expression
f - function
I - interface
J - interface
l - policy level / tag

m - method
n - method
N - type name
o - object
P - policy

pr - program
p - subject
R - purpose
s - statement
S - policy set
T - type
u - method call identity
v - variable

w - field
x - local variable
y - method parameter
z - class parameter

References

[1] The ABS language https://abs -models .org/. (Accessed 14 May 2021).
[2] Robin Adams, Sibylle Schupp, Constructing independently verifiable privacy-compliant type systems for message passing between black-box compo-

nents, in: Verified Software. Theories, Tools, and Experiments, Springer, 2018, pp. 196–214.
[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu, An XPath-based preference language for P3P, in: Proceedings of the 12th International

Conference on World Wide Web, ACM, 2003, pp. 629–639.
[4] Pauline Anthonysamy, Matthew Edwards, Chris Weichel, Awais Rashid, Inferring semantic mapping between policies and code: the clue is in the

language, in: International Symposium on Engineering Secure Software and Systems, Springer, 2016, pp. 233–250.
[5] Emma Arfelt, David Basin, Søren Debois, Monitoring the GDPR, in: European Symposium on Research in Computer Security, Springer, 2019,

pp. 681–699.
[6] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, Matthias Schunter, Enterprise privacy authorization language (EPAL), IBM Res. 30 (2003) 31.
[7] A. Barth, A. Datta, J.C. Mitchell, H. Nissenbaum, Privacy and contextual integrity: framework and applications, in: 2006 IEEE Symposium on Security

and Privacy (S&P’06), May 2006, pp. 15–198.
[8] Adam Barth, Design and analysis of privacy policies, PhD thesis, Stanford University, 2008.
[9] David Basin, Søren Debois, Thomas Hildebrandt, On purpose and by necessity: compliance under the GDPR, in: Proceedings of Financial Cryptography

and Data Security, vol. 18, 2018, pp. 20–37.
[10] David Basin, Felix Klaedtke, Samuel Müller, Birgit Pfitzmann, Runtime monitoring of metric first-order temporal properties, in: IARCS Annual Conference

on Foundations of Software Technology and Theoretical Computer Science, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.
[11] Saliha Irem Besik, Johann-Christoph Freytag, Ontology-based privacy compliance checking for clinical workflows, in: LWDA, 2019, pp. 218–229.
[12] Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khames-

panah, Kiko Fernandez-Reyes, Albert Mingkun Yang, A survey of active object languages, ACM Comput. Surv. 50 (5) (October 2017) 76.
[13] Travis D. Breaux, Hanan Hibshi, Ashwini Rao, Eddy, a formal language for specifying and analyzing data flow specifications for conflicting privacy

requirements, Requir. Eng. 19 (3) (2014) 281–307.
[14] Ann Cavoukian, Privacy by design: origins, meaning, and prospects for assuring privacy and trust in the information era, in: Privacy Protection Measures

and Technologies in Business Organizations: Aspects and Standards, IGI Global, 2012, pp. 170–208.
[15] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-Oliet, José Meseguer, José F. Quesada, Maude: specification and programming

in rewriting logic, Theor. Comput. Sci. 285 (2) (2002) 187–243.
[16] Michael Colesky, Jaap-Henk Hoepman, Christiaan Hillen, A critical analysis of privacy design strategies, in: 2016 IEEE Security and Privacy Workshops

(SPW), IEEE, 2016, pp. 33–40.
[17] George Danezis, Josep Domingo-Ferrer, Marit Hansen, Jaap-Henk Hoepman, Daniel Le Métayer, Rodica Tirtea, Stefan Schiffner, Privacy and data protec-

tion by design-from policy to engineering, arXiv preprint arXiv:1501.03726, 2015.
[18] Steven A. Demurjian, Eugene Sanzi, Thomas P. Agresta, William A. Yasnoff, Multi-level security in healthcare using a lattice-based access control model,

Int. J. Privacy Health Inf. Manag. (IJPHIM) 7 (1) (2019) 80–102.
[19] European Parliament and Council of the European Union. The General Data Protection Regulation (GDPR), https://eur-lex .europa .eu /eli /reg /2016 /679 /oj.

(Accessed 24 November 2019).
[20] José Luis Fernández-Alemán, Inmaculada Carrión Señor, Pedro Ángel Oliver Lozoya, Ambrosio Toval, Security and privacy in electronic health records:

a systematic literature review, J. Biomed. Inform. 46 (3) (2013) 541–562.
[21] Pietro Ferrara, Fausto Spoto, Static analysis for GDPR compliance, in: Proceedings of the Second Italian Conference on Cyber Security, Milan, Italy, in:

CEUR Workshop Proceedings, vol. 2058, 2018, Aachen, Proceedings available online at http://ceur-ws .org /Vol -2058 /paper-10 .pdf.
[22] Simone Fischer-Hbner, Stefan Berthold, Privacy-enhancing technologies, in: Computer and Information Security Handbook, Elsevier, 2017, pp. 759–778.
[23] Simone Fischer-Hübner, IT-Security and Privacy: Design and Use of Privacy-Enhancing Security Mechanisms, Springer-Verlag, 2001.
[24] Seda Gürses, Carmela Troncoso, Claudia Diaz, Engineering privacy by design reloaded, in: Amsterdam Privacy Conference, 2015, pp. 1–21.
[25] Marita Hansen, Jaap-Henk Hoepman, Meiko Jensen, Stefan Schiffner, Readiness analysis for the adoption and evolution of privacy enhancing technolo-

gies: methodology, pilot assessment, and continuity plan, Technical report, ENISA, 2015.
32

https://abs-models.org/
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib35F07440141ADB684CF17506F76E5DD2s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib35F07440141ADB684CF17506F76E5DD2s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib84D2072DA5E7A42247ED900703BCCC4Fs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib84D2072DA5E7A42247ED900703BCCC4Fs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib55F1105D0D2D675BD1C9FF1372CCAF21s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib55F1105D0D2D675BD1C9FF1372CCAF21s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibEA554D290DE1285786ED26A95D9B4F6Bs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibEA554D290DE1285786ED26A95D9B4F6Bs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibE640E72A4D69B82B62D1D882DF34E0D1s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib751F6CB672D9E6F68924ADE4372B7EDAs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib751F6CB672D9E6F68924ADE4372B7EDAs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib252DA90642680CB5EE0106F0411283CDs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5B64F98DD2A4B90E34802A6198D8CF4As1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5B64F98DD2A4B90E34802A6198D8CF4As1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibE52B36389436A9EB3C51B0F4B1461BDBs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibE52B36389436A9EB3C51B0F4B1461BDBs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib4CD165112F1E6EB6EF31DC3D10DFE8E7s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibDD9F83ABFBBAC2475EC7F16FD16E85A8s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibDD9F83ABFBBAC2475EC7F16FD16E85A8s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib2234B1BF49F959C371FA12EE547A915Fs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib2234B1BF49F959C371FA12EE547A915Fs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibF5893D055EB6FDE1520C02EE6F99D3FEs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibF5893D055EB6FDE1520C02EE6F99D3FEs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib207C08A9DA220BF5218FC69516A631A0s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib207C08A9DA220BF5218FC69516A631A0s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibD5709B788817DB47CA1CAEACEF3D69EFs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibD5709B788817DB47CA1CAEACEF3D69EFs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibFD8D5EF7A24E2D6B3B30A324C1A38C3Bs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibFD8D5EF7A24E2D6B3B30A324C1A38C3Bs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibA9103B4FA12CD0A1D922D3959320A65Ds1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibA9103B4FA12CD0A1D922D3959320A65Ds1
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibAD3058761A3CBC4C4EE16A2E3561987As1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibAD3058761A3CBC4C4EE16A2E3561987As1
http://ceur-ws.org/Vol-2058/paper-10.pdf
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibBC305391AB9B22F6E389BA22B5F6AC6Es1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibAE9B15A513FD66034D9C4ED45F33AC36s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibD874C780425C520E16FF1A20C92CB887s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5B21ABEAC2E28F20AD57F897B9C6A4CDs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5B21ABEAC2E28F20AD57F897B9C6A4CDs1

S. Tokas, O. Owe and T. Ramezanifarkhani Journal of Logical and Algebraic Methods in Programming 125 (2022) 100733
[26] Katia Hayati, Martín Abadi, Language-based enforcement of privacy policies, in: International Workshop on Privacy Enhancing Technologies, Springer,
2004, pp. 302–313.

[27] Daniel Hedin, Luciano Bello, Andrei Sabelfeld, Information-flow security for JavaScript and its APIs, J. Comput. Secur. 24 (2) (2016) 181–234.
[28] Carl Hewitt, Peter Bishop, Richard Steiger, A universal modular ACTOR formalism for artificial intelligence, in: Proceedings of the Third International

Joint Conference on Artificial Intelligence, IJCAI’73, Morgan Kaufmann Publishers Inc., 1973, pp. 235–245.
[29] Jaap-Henk Hoepman, Privacy design strategies, in: IFIP International Information Security Conference, Springer, 2014, pp. 446–459.
[30] Christian Johansen, Olaf Owe, Dynamic structural operational semantics, J. Log. Algebraic Methods Program. 107 (2019) 79–107.
[31] Einar Broch Johnsen, Olaf Owe, An asynchronous communication model for distributed concurrent objects, Softw. Syst. Model. 6 (1) (Mar 2007) 39–58.
[32] Einar Broch Johnsen, Olaf Owe, Ingrid Chieh Yu. Creol, A type-safe object-oriented model for distributed concurrent systems, Theor. Comput. Sci.

365 (1–2) (2006) 23–66.
[33] Farzane Karami, Olaf Owe, Toktam Ramezanifarkhani, An evaluation of interaction paradigms for active objects, J. Log. Algebraic Methods Program. 103

(2019) 154–183.
[34] Ponnurangam Kumaraguru, Lorrie Faith Cranor, Jorge Lobo, Seraphin B. Calo, A survey of privacy policy languages, in: Workshop on Usable IT Security

Management (USM 07): Proceedings of the 3rd Symposium on Usable Privacy and Security, ACM, 2007.
[35] Butler W. Lampson, Protection, Oper. Syst. Rev. 8 (1) (1974) 18–24.
[36] Daniel Le Métayer, Formal methods as a link between software code and legal rules, in: International Conference on Software Engineering and Formal

Methods, Springer, 2011, pp. 3–18.
[37] Massimo Marchiori, Lorrie Cranor, Marc Langheinrich, Martin Presler-Marshall, Joseph Reagle, The platform for privacy preferences 1.0 (P3P1.0) speci-

fication, in: World Wide Web Consortium Recommendation REC-P3P-20020416, 2002.
[38] Amirreza Masoumzadeh, James B.D. Joshi Purbac, Purpose-aware role-based access control, in: OTM Confederated International Conferences “On the

Move to Meaningful Internet Systems”, Springer, 2008, pp. 1104–1121.
[39] medium.com. The single most important change in data privacy regulation in 20 years: GDPR, https://medium .com /datadriveninvestor /the -single -most -

important -change -in -data -privacy-regulation -in -20 -years -gdpr-b9026b9acfa9. (Accessed 20 December 2019).
[40] Qun Ni, Elisa Bertino, Jorge Lobo, Carolyn Brodie, Clare-Marie Karat, John Karat, Alberto Trombeta, Privacy-aware role-based access control, ACM Trans.

Inf. Syst. Secur. 13 (3) (2010) 24.
[41] Flemming Nielson, Hanne R. Nielson, Chris Hankin, Principles of Program Analysis, Springer Publishing Company, Incorporated, 2010.
[42] Nierstrasz Oscar, A tour of hybrid – a language for programming with active objects, in: Advances in Object-Oriented Software Engin., Prentice-Hall,

1992, pp. 67–182.
[43] Nicolás Notario, Alberto Crespo, Yod-Samuel Martín, Jose M. Del Alamo, Daniel Le Métayer, Thibaud Antignac, Antonio Kung, Inga Kroener, David

Wright, PRIPARE: integrating privacy best practices into a privacy engineering methodology, in: 2015 IEEE Security and Privacy Workshops, IEEE, 2015,
pp. 151–158.

[44] Olaf Owe, Verifiable programming of object-oriented and distributed systems, in: Luigia Petre, Emil Sekerinski (Eds.), From Action Systems to Dis-
tributed Systems - the Refinement Approach, Chapman and Hall/CRC, 2016, pp. 61–79.

[45] Toktam Ramezanifarkhani, Olaf Owe, Shukun Tokas, A secrecy-preserving language for distributed and object-oriented systems, J. Log. Algebraic Meth-
ods Program. 99 (2018) 1–25.

[46] Andrei Sabelfeld, Andrew C. Myers, Language-based information-flow security, IEEE J. Sel. Areas Commun. 21 (1) (2003) 5–19.
[47] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, Charles E. Youman, Role-based access control models, Computer 29 (2) (1996) 38–47.
[48] Gerardo Schneider, Is privacy by construction possible?, in: International Symposium on Leveraging Applications of Formal Methods, Springer, 2018,

pp. 471–485.
[49] Shayak Sen, Saikat Guha, Anupam Datta, Sriram Rajamani, Janice Tsai, Jeannette Marie Wing, Bootstrapping privacy compliance in big data systems, in:

2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 327–342.
[50] OASIS Standard, Extensible access control markup language (XACML) version 2.0, 2005.
[51] Shukun Tokas, Olaf Owe, A formal framework for consent management, in: Formal Techniques for Distributed Objects, Components, and Systems -

40th IFIP WG 6.1 International Conference, FORTE 2020, in: Lecture Notes in Computer Science, vol. 12136, Springer, 2020, pp. 169–186.
[52] Michael C. Tschantz, Jeannette M. Wing, Formal methods for privacy, in: International Symposium on Formal Methods, Springer, 2009, pp. 1–15.
[53] Peter Y.H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer, Rudolf Schlatte, The ABS tool suite: modelling, executing and analysing

distributed adaptable object-oriented systems, Int. J. Softw. Tools Technol. Transf. 14 (5) (2012) 567–588.
[54] Naikuo Yang, Howard Barringer, Ning Zhang, A purpose-based access control model, in: Third International Symposium on Information Assurance and

Security, IEEE, 2007, pp. 143–148.
33

http://refhub.elsevier.com/S2352-2208(21)00096-1/bib615880308D098DF8FAC5E99E759B53B9s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib615880308D098DF8FAC5E99E759B53B9s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib6EC6E56CC9125AAF5E0B1A08164639E7s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib8E62561C3AC6D3FB0016E9A34A2CAA5Ds1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib8E62561C3AC6D3FB0016E9A34A2CAA5Ds1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib20F53B27BCC0CBD3ED8C4409892039EDs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib4BBEBCDF217730C036DB15CE11D14A96s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5CB510D8AF2D4742AB0F73889425BD78s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib0CB82B49959E413343D7C1253EA58019s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib0CB82B49959E413343D7C1253EA58019s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib3298C70CA25F4BD7C5090779E0F8C60Ds1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib3298C70CA25F4BD7C5090779E0F8C60Ds1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibF668309FC430B283E812841611295436s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibF668309FC430B283E812841611295436s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibF5540D891ECA67F6D2AADC98EAC65AE9s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibC833EDFD77A7DFB956C99FBF1C6B4A41s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibC833EDFD77A7DFB956C99FBF1C6B4A41s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib32A628EC2BB188A7648E8FC31ED228F1s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib32A628EC2BB188A7648E8FC31ED228F1s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibEA0196DF20BB9421DE39369A43CD7DC3s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibEA0196DF20BB9421DE39369A43CD7DC3s1
https://medium.com/datadriveninvestor/the-single-most-important-change-in-data-privacy-regulation-in-20-years-gdpr-b9026b9acfa9
https://medium.com/datadriveninvestor/the-single-most-important-change-in-data-privacy-regulation-in-20-years-gdpr-b9026b9acfa9
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib3DAE634C5752709629D80857E86DEA2Bs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib3DAE634C5752709629D80857E86DEA2Bs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib3A069BD313936C9CBBEBE0A4693F7718s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib1B60869B4229E433B60BDEE241995344s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib1B60869B4229E433B60BDEE241995344s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib03B7A1B58F8E8A84722A3FECE6272FD7s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib03B7A1B58F8E8A84722A3FECE6272FD7s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib03B7A1B58F8E8A84722A3FECE6272FD7s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibD92C6A5BDA6B251B41FD454556BDD42Fs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibD92C6A5BDA6B251B41FD454556BDD42Fs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib6F0050473A37038008201F280D4545BBs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib6F0050473A37038008201F280D4545BBs1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib8C98156EB6EFBB1491C62C740B410388s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib4992156BC34E4DEC0635825DBA79E77Es1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib40EEE692F45835536C4A6B5AD4A91998s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib40EEE692F45835536C4A6B5AD4A91998s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib24A2D7DAC6DBFD30E60468366FD43A3Es1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib24A2D7DAC6DBFD30E60468366FD43A3Es1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5865963F5621181D9B185FADB5C12C1As1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib5865963F5621181D9B185FADB5C12C1As1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bibBA3ED2EBCB8D3C936CA6D65EBC8CD7A6s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib41BD153B7F25D2E74FF58CB8EDC6539Es1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib41BD153B7F25D2E74FF58CB8EDC6539Es1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib975832CE110121EFFCDB76F6F0E6BFC1s1
http://refhub.elsevier.com/S2352-2208(21)00096-1/bib975832CE110121EFFCDB76F6F0E6BFC1s1

	for object-oriented distributed systems
	1 Introduction
	2 Relevance to the GDPR and research focus
	3 Formalization of static privacy policies and policy compliance
	3.1 Policies
	3.2 Access rights for data subjects
	3.3 Policy compliance
	3.4 Policies in an object-oriented setting
	3.5 Compliance checking of OODS languages

	4 An imperative programming language
	4.1 Data types and sensitive data types
	4.2 An example

	5 An effect system for privacy
	5.1 Static compliance checking of the example

	6 Awareness of subject
	7 Operational semantics
	7.1 Runtime policies
	7.2 Theoretical results

	8 Related work
	9 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Algorithmic version of the static analysis
	Appendix B Notational conventions
	References

