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Chapter 1

Introduction

Modern computing systems, such as supercomputers, data centers and multicore processor inte-
grated circuit chips, generally require efficient communication between their different system units;
tolerance towards component faults; flexibility to expand or merge; and a high utilization of their
resources. Interconnection networks are used in a variety of such computing systems in order to en-
able communication between their diverse system units. Supercomputers, such as those ranked by
the Top500 list [237], typically host traditional high performance computing applications, exam-
ples of which include simulations of medical, meteorological and geological processes. Important
tasks for an interconnection network of a supercomputer include the provisioning of low latency
and high throughput communication between a set of computing nodes that cooperate in execut-
ing a parallel application. Data centers, such as those operated by Google [85] and Amazon [9],
are often large facilities which include huge collections of computing and storage resources. Such
systems face a number of challenges, some of which are related to reliability, resource utilization
and energy-efficiency. This set of challenges is also highly relevant for a multicore (also known as
manycore) processor environment, where an interconnection network embedded in the integrated
circuit chip links cores to each other as well as to other units such as cache memory. (An example
of a multicore chip is Intel’s [106] terascale prototype processor [100, 244] which has 80 cores.)
In general, the various units of a computing system can be connected in a number of ways, and
interconnection networks can thus assume many different structures (topologies).

Most traditional routing algorithms are relatively simple mechanisms designed for a specific
regular network structure. A main topic of this thesis is topology agnostic routing, which does not
assume a particular network structure. Topology agnostic routing algorithms were initially moti-
vated by interconnection network technologies – such as Autonet [204] and Myrinet [31] – that
allowed the units of a computing system to be connected in an arbitrary (irregular) manner. When
compared to routing algorithms tailored to specific topologies, early topology agnostic routing algo-
rithms (such as the one proposed in [204]) typically achieved an inferior performance. More recent
topology agnostic routing algorithms perform significantly better than their predecessors, however.

Topology agnostic routing algorithms are essential for the operation of systems that include in-
terconnection networks with irregular topologies. Furthermore, such algorithms play an important
part in the provisioning of fault tolerance in systems that include interconnection networks with
regular topologies. As no particular network structure is assumed, topology agnostic routing algo-
rithms are also usable for the non-regular topologies that may result from faults in originally regular
topologies.
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For a single network component (such as a switch or communication channel) the expected
time between failures may be relatively long. Nevertheless, the risk of a faulty network component
increases when computing systems grow larger. A faulty network component could be present at
the start-up of a computing system, or occur while the system is in operation. The former situation
requires static fault handling, whereas the latter situation requires dynamic fault handling and is
in general more challenging. An attractive quality of topology agnostic routing algorithms is their
inherent static fault tolerance. Unplanned topology changes, such as network component faults,
are not the only type of topology change that may occur over the lifetime of a computing sys-
tem. Topology agnostic routing algorithms also provide flexibility with respect to planned topology
changes, such as extensions of existing interconnection networks or mergers of computing systems
with different interconnection network solutions.

Unplanned or planned changes in the topology of an interconnection network could disrupt
communication between the various units of a computing system. A new routing function is needed
if – as a result of a topology change – an existing routing function can no longer provide connectivity
between the communicating system units. The change-over from one routing function to another
is referred to as reconfiguration, and is a main topic of this thesis. An efficient reconfiguration
strategy is important for the maintenance of a predictable network service after the occurrence of a
topology change.

Due to strict requirements on high system throughput and low packet latency, interconnec-
tion networks in modern communication systems must in general support lossless communication.
Thus, in order to avoid packet loss due to a lack of buffer space, flow control is exercised over each
communication channel. Such a flow control mechanism entails a risk of packet deadlock. (In a
deadlocked set of packets none of the packets can advance until another packet in the set advances.)
A deadlock generally has a devastating effect on the performance of a computing system. Dead-
lock recovery methods, such as [13, 116], aim to resolve an established deadlock. Unfortunately,
for many applications deadlock recovery methods may cause a system to stall for an unacceptably
long period of time. Thus, a deadlock must in general be avoided. The requirement of deadlock
avoidance is a major challenge in the design of routing and reconfiguration algorithms for inter-
connection networks. On the purpose to avoid deadlock, routing and reconfiguration algorithms
typically enforce restrictions on packet transmission, and some of these restrictions may significantly
reduce the performance of a computing system.

Applications running in multiprocessor systems such as supercomputers, data centers or mul-
ticore processor integrated circuit chips are typically parallel, which means that separate tasks are
executed concurrently on a set of different computing nodes. Such a set of computing nodes – often
referred to as a partition – is selected and assigned by a processor allocation algorithm. As processor
allocation involves aggregation of a set of physical computing nodes into a virtual processor that is
assigned to execute a parallel application, it is a kind of virtualization. It is also a main topic of this
thesis. Efficient processor allocation is an important challenge for multiprocessor systems that host
a number of different parallel applications at a time. A high utilization of a system’s computing
resources; short queuing times and running times for applications; as well as isolation of traffic
between partitions (traffic-containment) are examples of desirable qualities of a processor allocation
algorithm. Some of these qualities are hard to combine. In particular, many processor allocation
algorithms achieve traffic-containment only at the cost of a significantly reduced utilization of a
system’s computing resources.
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1.1 Contributions

Investigation and proposal of new or improved solutions to topology agnostic routing and recon-
figuration of interconnection networks are main objectives of this thesis. In addition, topology
agnostic routing and reconfiguration algorithms are utilized in the development of new and flexible
approaches to processor allocation. We aim to present versatile solutions that can be used for the
interconnection networks of a number of different computing systems, including supercomputers,
data centers and multicore processor integrated circuit chips.

The main focus of this thesis is on performance issues. Nevertheless, efficient methods for
routing, reconfiguration and processor allocation are also important for the realization of energy-
efficient computing systems. A manifestation of the overall increased awareness of environmental
challenges in high performance computing is the emergence of the Green500 list [88] which ranks
supercomputers according to their energy-efficiency.

1.1.1 Routing

The Advanced Switching Interconnect (ASI) specification [17] did not prescribe a particular rout-
ing algorithm. On the purpose to select a suitable routing algorithm for the ASI technology [150],
we perform a systematic evaluation of a number of existing routing algorithms. We state a set of
criteria that a routing algorithm for ASI should comply with, and show that one of the existing
topology agnostic routing algorithms fulfils all of the criteria. This routing algorithm – Layered
Shortest Path (LASH) [144,218] – is recommended to be used with ASI. We demonstrate the abil-
ities of LASH as a static fault tolerance mechanism for mesh and torus topologies. Moreover, we
introduce an optimization which allows LASH to achieve as high performance for mesh topologies
as one of the established routing algorithms tailored for mesh topologies achieves. In addition,
we demonstrate how the optimization allows LASH to maintain its qualities as a static fault toler-
ance mechanism. After our study was conducted, the ASI specification process was discontinued.
Nevertheless, the ASI technology is now incorporated in Dolphin Express [122], and the results
of our study are thus still of interest for this technology. In addition, we explain how most of our
considerations regarding routing in ASI are also relevant for routing in InfiniBand [105].

1.1.2 Reconfiguration

Reconfiguration is a deadlock prone process, and some existing reconfiguration strategies include
deadlock avoidance mechanisms that significantly reduce the network service offered to running
applications. We propose a new dynamic reconfiguration algorithm, RecTOR, which supports a
replacement of the routing function without causing performance penalties. RecTOR is conceptu-
ally simple, and targets systems that apply the flexible and topology agnostic Transition-Oriented
Routing (TOR) algorithm [200]. As RecTOR does not require complex network switches, it is also
simple to realize.

Overlapping Reconfiguration (OR) [139,140] is a versatile and highly efficient reconfiguration
algorithm that was previously only usable in distributed routing systems. We introduce an adapta-
tion that allows using OR also in source routing systems (such as Dolphin Express). Furthermore,
we investigate how the performance of OR is influenced by different levels of synchronization of
the initiation of a reconfiguration process. In addition, we propose an optimization of OR which,
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during a reconfiguration of a source routing system, aims to provide a better network service to the
running applications.

1.1.3 Processor allocation (virtualization)

Processor allocation strategies that guarantee traffic-containment commonly pose strict require-
ments on the shape of partitions, and thus achieve only a limited utilization of a system’s comput-
ing resources. We introduce two new approaches to traffic-contained processor allocation which
are more flexible, and which are also conceptually simple. Our first approach is a new processor
allocation algorithm – UDFlex – for systems that use the Up*/Down* routing algorithm [204].
Our second approach is a framework for developing new processor allocation algorithms. Both
approaches utilize the properties of a topology agnostic routing algorithm in order to enforce
traffic-containment within arbitrarily shaped partitions. Consequently, our approaches achieve a
high resource utilization as well as isolation of traffic between different applications. To different
degrees, both of our approaches depend on reconfiguration. When compared to the use of a tra-
ditional processor allocation strategy (such as one that allocates sub-mesh shaped partitions in a
mesh or torus topology) the use of either UDFlex or our framework is expected to entail a certain
amount of allocation and communication overhead. We assess the amount of such overhead that
can be tolerated before the advantages of UDFlex over sub-mesh allocating strategies are neutral-
ized. In addition, for a large set of arbitrarily shaped partitions, each executing a communication
intensive application, we investigate costs and benefits of traffic-containment (as prescribed by our
framework) versus non-traffic-containment.

1.2 Thesis organization

Chapter 2 provides background information on various topics within the area of interconnection
networks that are relevant to this thesis. Examples include topology, flow control, deadlock, fault
models, routing, reconfiguration and topology agnosticism. In addition, processor allocation and
virtualization are introduced in Chapter 2. Chapter 3 presents the research methods used in our
studies and provides a general description of our simulator models. (The particular setups of our
simulation experiments are explained in Chapters 4, 5 and 6 for each of the individual studies.)
Chapter 4 presents our endeavours to realize efficient routing for the ASI/Dolphin Express technol-
ogy. Our contributions to the field of reconfiguration are found in Chapter 5, whereas Chapter 6
presents our studies on processor allocation. Each of Chapters 4, 5 and 6 also includes a discussion
on related work and our contribution; a critical view on our own research; and possible paths for
future research. Finally, Chapter 7 summarizes our conclusions and plans for future research.

1.3 Publications

The research results presented in Chapters 4, 5 and 6 of this thesis are mainly based on the following
publications.

• Å. G. Solheim, O. Lysne, T. Skeie, T. Sødring, I. Theiss, and I. Johnson. Routing for the ASI
Fabric Manager. IEEE Communications Magazine, 44(7):39–44, July 2006.
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• Å. G. Solheim, O. Lysne, A. Bermúdez, R. Casado, T. Sødring, T. Skeie, and A. Robles-
Gómez. Efficient and deadlock-free reconfiguration for source routed networks. In 9th

Workshop on Communication Architecture for Clusters, 2009.

• Å. G. Solheim, O. Lysne, and T. Skeie. RecTOR: A new and efficient method for dynamic
network reconfiguration. In 15th International Euro-Par Conference, pages 1052–1064, 2009.

• Å. G. Solheim, O. Lysne, T. Sødring, T. Skeie, and J. A. Libak. Routing-contained virtualiza-
tion based on Up*/Down* forwarding. In 14th International Conference on High Performance

Computing, pages 500–513, 2007.

• Å. G. Solheim, O. Lysne, T. Skeie, T. Sødring, and S.-A. Reinemo. A framework for routing
and resource allocation in network virtualization. In 16th International Conference on High

Performance Computing, pages 129–139, 2009.

• O. Lysne, S.-A. Reinemo, T. Skeie, Å. G. Solheim, T. Sødring, L. P. Huse, and B. D. Johnsen.
Interconnection networks: Architectural challenges for utility computing data centers. IEEE

Computer, 41(9):62–69, September 2008.
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Chapter 2

Interconnection networks

This chapter provides background information on various topics within the area of interconnection
networks that are of relevance to this thesis. The term interconnection network normally refers to
a high capacity communication network of limited physical extent that provides high throughput,
low latency and lossless communication. This is also the definition assumed in this thesis (although
the two main textbooks on interconnection networks [57,68] do not distinguish between intercon-
nection networks and computer networks in general).

Interconnection networks are used in a variety of computing systems in order to enable commu-
nication between their diverse system units. For instance, such networks are used to interconnect
computing nodes in a cluster or supercomputer; processing units, memory modules and input/out-
put devices within a computer; ports and processing elements within a router or switch; cores and
caches on a multicore chip; and computing nodes, storage devices and gateways towards external
networks in a data center. For simplicity, we collectively refer to the diverse communicating system
units as processing nodes.

The extent of interconnection networks typically spans from small networks on integrated cir-
cuit chips (NoCs) up to networks as large as local-area networks. Often, interconnection networks
are classified according to their structure, and the main categories used by [68] are shared-medium,
direct, indirect and hybrid networks. Shared-medium networks share a common multidrop bus;
both direct and indirect networks are point-to-point switched structures; whereas hybrid networks
contain elements both from the shared-medium and point-to-point switched networks. A mul-
tidrop bus is a common but simple interconnection network where all the processing nodes share
a single communication medium, the bus. Only one processing node at a time can utilize the bus
for message transmission, and a message is broadcast to all the processing nodes connected to the
bus. Thus, a bus interconnection network prohibits parallel transmission of messages. This limits
performance as the size of computing systems increases. A point-to-point switched interconnection
network, on the other hand, encourages parallel transmission of messages, and thereby supports
scalability and higher performance. In such a network, a physical communication channel con-
nects two nodes, where a node is either a processing node, a switch, or a combined node (which
contains both processing and switching elements). A message may traverse one or more intermedi-
ate nodes on its path from a source to destination node. Figures 2.1(a) and 2.1(b) illustrate a bus
and a point-to-point switched interconnection network, respectively.

Historically, most interconnection networks used a shared communication medium. Nowa-
days, however, point-to-point switched networks are widespread. The focus of this thesis is on
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(a) Bus network. (b) Point-to-point switched network.

Figure 2.1: Examples of a bus and point-to-point switched interconnection network.

point-to-point switched networks, not on shared-medium or hybrid networks. A number of dif-
ferent network technologies exist that support the construction of point-to-point switched inter-
connection networks, including Ethernet [102,206], InfiniBand [105] and Dolphin Express [122].
Point-to-point switched networks can be assembled in a number of different manners, and a variety
of strategies exist for transportation of data through such networks. An interconnection network’s
structure, flow control and switching strategy, as well as its routing algorithm, are factors which may
have a significant influence on the performance of a computing system. Sections 2.1, 2.2 and 2.5
provide background information on each of these issues.

The risk of packet deadlock is an important challenge for interconnection networks that provide
lossless communication. Section 2.3 discusses how the deadlock risk arises from dependencies
between the buffers of different communication channels in such networks.

Reliable interconnection networks are essential for the operation of current high-performance
computing systems. The ability to efficiently reconfigure an interconnection network is an impor-
tant challenge in the effort to support a reliable network service. A reconfiguration is needed in
order to restore a connected routing function when changes in the structure of an interconnection
network have caused a disconnection of the present routing function. Such changes could be the
result of component faults, and Section 2.4 gives an overview of the most relevant fault models
for interconnection networks. Furthermore, Section 2.6 introduces the concept of reconfiguration,
which is one of the main topics of this thesis.

Another main topic of this thesis – processor allocation (virtualization) – is presented in Sec-
tion 2.7. Processor allocation involves assignment of sets of processing nodes to execute parallel
jobs that run concurrently in a multiprocessor system such as a supercomputer, multicore chip or
data center. The processor allocation strategy has impact on the running and queuing times of indi-
vidual jobs, as well as on the utilization of resources and throughput of jobs in a system. Processing
nodes are connected by an interconnection network; many existing processor allocation strategies
are conscious of network issues such as topology and routing (see e.g. [251,255]); and the methods
developed in this thesis are routing aware (but topology agnostic). Therefore, we chose to include
the background information on processor allocation into this chapter on interconnection networks.
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The main objective of this thesis is to investigate and propose methods for routing, reconfig-
uration and processor allocation that do not assume a particular topology for the interconnection
network. Therefore, Section 2.8 provides a discussion on topology agnostic methods, including an
overview of existing strategies.

A large part of this chapter is based on information found in [57,68]. In addition, information
has been derived from [171].

2.1 Topology

The nodes and communication channels of a point-to-point switched interconnection network can
be connected in a variety of patterns, and the structure of a network is referred to as the network’s
topology. A node is either a switch, a processing node or a combined node, where a combined node
comprises a switching element and one or more processing elements.

(a) Switch. (b) Combined node.

Figure 2.2: A typical switch and combined node architecture.

Figure 2.2(a) gives an example of a switch architecture. Switches may either be input buffered,
output buffered or both. In this thesis, unless otherwise stated, we assume that switches contain
both input (ingress) buffers and output (egress) buffers. Figure 2.2(b) illustrates a corresponding
combined node with one processing element (details regarding buffering and control between the
processing and switching elements are not shown). Both the switch and combined node have four
bidirectional ports, where the input physical channels are labelled I0 − I3 and the output physical
channels are labelled O0 − O3. Each physical channel has two virtual channels (VCs) [54], la-
belled VC0 and VC1, with a separate control unit (Ctrl). The routing and arbitration unit decides
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which ingress to egress connections are set up by the switching element. Some switches implement
virtual output queuing, which means that an input buffer is organized in such a way that packets
bound for different output channels are enqueued separately. The purpose of such a buffer organi-
zation is to avoid head-of-line blocking. Head-of-line blocking occurs when a packet bound for one
output channel blocks subsequent packets bound for other vacant output channels. (Virtual output
queuing is not illustrated in Figure 2.2.)

The topology of an interconnection network is often visualized as a graph. The mapping of
an interconnection network I onto a graph G is then expressed formally as I = G(N,C), where
the vertexes N and the edges C of the graph represent, respectively, the network’s switching ele-
ments and the communication channels that connect these switching elements. The graph may
be directed or undirected, depending on whether the communication channels are unidirectional
or bidirectional. The graph representation eases the reasoning about various issues related to the
topology of an interconnection network, such as connectivity, path lengths, path diversity and
bisection bandwidth (all of which will be discussed in this section). Furthermore, the graph repre-
sentation is advantageous as it enables the use of graph theory in the development of solutions to
many of the challenges faced by interconnection networks – such as deadlock avoidance, routing
and reconfiguration (all of which will be discussed in later sections).

Interconnection networks can assume a number of different topologies, and Figure 2.3 illus-
trates a few of the alternatives. Torus topologies are often called k-ary n-cubes (sometimes a mesh
is also referred to as a k-ary n-cube or k-ary n-mesh). Such topologies consist of n dimensions with
k switching elements in each dimension, where the radix, k, can be different for each dimension.
Figures 2.3(a) and 2.3(b) depict a 5 × 5 torus (5-ary 2-cube) and 3 × 3 × 2 mesh ([3, 3, 2]-ary
3-mesh), respectively. Meshes and tori are described in [68] as strictly orthogonal topologies, as the
switching elements are arranged in an n-dimensional grid with k nodes in each dimension, and
every switching element is an intersection between all dimensions. Assume that in each dimension
each switching element is assigned a coordinate i, where 0 ≤ i ≤ k−1. Then, a mesh is assembled
by connecting switching element number i with the switching elements numbered i− 1 and i + 1,
for each value of i and for each dimension. These connections are also used for the torus topology.
In addition, a torus utilizes so called wraparound channels, which means that, in each dimension,
the switching elements numbered 0 and k − 1 are also interconnected. The wraparound channels
effectively make a torus topology a set of interconnected rings.

Multistage interconnection networks are a group of networks that consist of several stages of
switches where processing nodes are connected only to the first and final stages of switches (possibly
only on one side of the network if it is bidirectional). Examples of multistage interconnection
networks include fat-trees [126], Clos [48], Benês [24] and Delta [169] networks. Some of these
subgroups of multistage interconnection networks overlap. For instance, according to [176], a k-
ary n-tree [176] is both a class of fat-trees and a Delta network. A k-ary n-tree is constructed
by interconnecting n stages of switches such that, except in the first and final stage, each switch
connects to k switches in the previous stage and k switches in the next stage of the tree. A 2-ary
3-tree is depicted in Figure 2.3(c).

Multistage interconnection networks are often used for large high capacity systems, and, in gen-
eral, they are expensive due to the high number of switches relative to the number of processing
nodes. In addition, long cables are in general required. Expansion of such topologies either requires
switches with a higher number of ports or a large number of additional switches. Torus and mesh
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(a) 5 × 5 torus (5-ary 2-cube). (b) 3 × 3 × 2 mesh ([3, 3, 2]-ary 3-mesh).

(c) Fat-tree (2-ary 3-tree). (d) Irregular.

Figure 2.3: Example topologies.

topologies, on the other hand, can be expanded without the requirement of larger switches. Fur-
thermore, cable lengths can be kept short, and simple routing algorithms can be implemented in
hardware (without the need for routing tables). The Top500 list of supercomputers [237] shows
that, for the most powerful supercomputers, fat-trees and tori are common interconnection net-
work topologies. Currently, many data centers are based on Ethernet [206], and, as this technology
by default uses a spanning tree protocol for routing, tree topologies are frequently used for the in-
terconnection network. Arguments for fat-trees as an appropriate topology for data centers based
on Ethernet are presented in [8]. For on-chip interconnection networks, two-dimensional meshes
and tori have been suggested as suitable topologies (see e.g. [56, 124]), and those were evaluated
in [167] together with a few other candidate topologies.

In the interconnection network literature, network topologies with nodes and communication
channels arranged according to one of a set of standard structures are commonly denoted regular.
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Network topologies with no such standard structure, on the other hand, are commonly denoted
irregular. We adopt this convention.1 Examples of regular network topologies include meshes, tori,
hypercubes (2-ary n-cubes), fat-trees, Delta, Clos and Benês networks.

A network of workstations [12] is a computer cluster consisting of a set of commodity com-
puters interconnected by a number of switches and communication channels. The switches and
communication channels are typically arranged in an arbitrary pattern. Thus, a network of work-
stations commonly has an irregular topology. Typically, for an irregular network topology, some of
the switches have one or more processing nodes attached, whereas others are solely connected to
other switches. Irregular network topologies are easily expandable as no particular structure must
be maintained. Some issues, such as routing which is described in more detail in Section 2.5, are
in general more challenging for an irregular topology than for a regular topology. Figure 2.3(d)
gives an example of an irregular network topology. A non-regular (or semi-irregular) topology may
also be the result of faults in switching elements or communication channels of an initially regular
network topology.

Point-to-point switched interconnection networks are commonly categorized as either direct or
indirect networks. All the nodes of a direct network are combined nodes (see Figure 2.2(b)) which
include both switching and processing elements. In an indirect network, on the other hand, a
switch and processing node are separate entities connected by a communication channel. Typical
examples of indirect networks are multistage interconnection networks (where processing nodes
are connected only to the first and final stages of switches) and networks of workstations (where
individual computers are connected by switches). Torus, mesh, ring and hypercube topologies,
on the other hand, are often realized using combined nodes, and are thus often direct networks.
However, all direct networks can be implemented as indirect networks by replacing each combined
node with a switch node and a processing node [57]. Thus, this thesis will not further emphasize
the distinction between direct and indirect networks, and in the following a “switch” could also
refer to the switching element of a combined node.

A topology is connected if at least one path exists from every source to every destination process-
ing node. Faults in switches or communication channels could disconnect a previously connected
topology. Path diversity, which quantifies the existence of alternative paths between sources and
destinations in a network, is an important characteristic of a topology for several reasons, e.g. for
traffic balancing and fault tolerance. Assume that m disjoint paths exist from a source processing
node s to a destination processing node d. Then, if a flexible routing strategy is used and in-order
packet delivery is not required, traffic balancing could be achieved by distributing messages across
the m paths. Congestion might result if several different sources and destinations share a section
of their paths. Such congestion could be prevented if alternative paths were used such that fewer
sources and destinations shared sections of the paths. Assume that a fault in a switch or communi-
cation channel destroys a path p0 from s to d. Then, if p0 was the only available path from s to d,
the topology has been disconnected by the fault, and s and d can no longer communicate. If, on
the other hand, m disjoint paths existed from s to d before the fault, another path (p1 . . . pm−1)
could be taken into use after the destruction of p0.

The minimum length of a path from s to d is another important property of a network’s topol-
ogy. Path lengths are decided by the number of intermediate switches that must be traversed, and

1Even though according to the strict definition given in [68] a network topology is regular only if every switch has
the same number of neighbours – which e.g. includes tori but excludes meshes.
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the diameter of a topology is the length of the longest minimal path.
The number of communication channels that connect a switch to other switches is referred to

as the node degree. A fully connected topology of a significant size, where each switch is connected
to all other switches, is an example of a topology with a high node degree. A ring, on the other
hand, is an example of a topology with a low node degree, as each switch is connected to only two
other switches. When comparing two equally large network topologies where one has a high node
degree and the other has a low node degree, the former most likely has a shorter diameter than the
latter.

A bisection of the topology results from a supposed removal of the smallest set Smin of com-
munication channels that would cut the topology into two equally large halves. The bisection

bandwidth is the aggregated transmission capacity of the communication channels in Smin, and
quantifies the amount of data that can be transferred from one part of the topology to the other
within a certain time frame. As opposed to the bisection bandwidth, the effective bisection band-

width introduced in [97] takes the routing function into consideration.
Physically, interconnection networks can be implemented in a number of different ways, rang-

ing from small networks on a silicon die, via larger networks spanning a number of circuit boards, to
large networks interconnecting racks or containers of processing nodes and switches in a data center.
Numerous restrictions and tradeoffs apply for the physical implementation of an interconnection
network. A few of them are related to issues such as the quality of the silicon chip manufacturing
process, the pin count of a chip, the length and width of the communication channels on a circuit
board, and the selection of the optical or electrical cables for connecting racks or containers. The
physical layout of an interconnection network is an important challenge. It is, however, not within
the scope of this thesis.

2.2 Flow control and switching

Due to strict requirements on high system throughput and low packet latency, packet loss and
subsequent retransmission are in general not acceptable for an interconnection network.

Thus, flow control mechanisms are needed in order to ensure that data transfer is not started
unless sufficient buffer space is available at the receiving end. Such mechanisms are needed both for
the transfer of data through a single switch and for the transfer of data from one switching/process-
ing node to another.

This thesis refers to the mechanisms used for controlling data transfer from an ingress to an
egress buffer within a switch as switching mechanisms (recall that we assume input and output
buffered switches), whereas the mechanisms used between two separate nodes are referred to as flow

control mechanisms.
Switching and flow control are closely intertwined, which is illustrated by the different ap-

proaches taken to explain these concepts by the two main textbooks on interconnection net-
works [57, 68]. Whereas [57] refers to both the intra and inter node mechanisms as flow con-
trol (and does not even include the word "switching" in its index), switching is an emphasized term
in [68].

A message is the unit of information input from a source processing node for transportation
through the interconnection network and delivery to a destination processing node. The intercon-
nection network segments a message into several packets if it is longer than the maximum allowed
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packet size. A packet may be further segmented into several flow control units (flits2), which, as the
name implies, is the unit of information on which flow control is enforced. A flit can be segmented
into several physical units (phits), where one phit represents the width of a physical communication
channel – that is, the amount of information that can be transmitted on a physical communication
channel per clock cycle.

2.2.1 Switching mechanisms

Virtual cut-through [114] and wormhole [54] switching are common switching mechanisms for
current interconnection networks. Like store-and-forward switching, and unlike circuit switch-
ing, virtual cut-through and wormhole switching do not reserve resources in advance of the data
transmission.3 On its path from a source to destination processing node, a packet must share the
available buffer space of an intermediate switch with other packets that traverse the same switch.
However, the virtual cut-through, wormhole and store-and-forward switching mechanisms differ
with respect to the point in time when data transmission from an ingress to egress buffer of a switch
can be started. Each packet carries the routing information in its header. Nevertheless, with store-
and-forward switching the entire packet must have been received by an ingress buffer before the
decision on which egress buffer to forward the packet to is taken. Virtual cut-through and worm-
hole switching, on the other hand, support reduced latency by making the routing decision as soon
as the routing information contained in the packet header has been received. Thus, provided that
sufficient egress buffer space is available and that the packet is selected by the arbitration algorithm,
the head of the packet can be forwarded through the switch before the tail of the packet has reached
the ingress buffer.

Virtual cut-through, wormhole and store-and-forward switching also differ with respect to the
flit size. Both virtual-cut through and store-and-forward switching require that the flit size equals
the packet size. Then, when the head of a packet is blocked, the tail catches up and the entire
packet is stored in the same buffer. Wormhole switching (which supports small and cheap buffers
and is currently a popular choice for on-chip networks), on the other hand, does not assume a
maximum packet size, and each buffer typically does not have space for an entire packet. Thus,
while the head of a packet is blocked, the packet may span several switches. Due to these different
characteristics, ensuring deadlock-freedom is more challenging for wormhole switching than for
virtual cut-through and store-and-forward switching. The deadlock issue will be further discussed
in Section 2.3.

2.2.2 Flow control mechanisms

The most commonly used flow control mechanisms for interconnection networks ensure that an
upstream switch or processing node defers transmission of flits until a sufficient amount of buffer
space is available to store the flits in a downstream node. This requires that a downstream node
informs an upstream node about buffer space availability. The two most common flow control
mechanisms for interconnection networks are called credit-based and on/off flow control [57].

With credit-based flow control the upstream node maintains a credit counter which indicates
the amount of free buffer space in the downstream node, and thus the number of flits that can

2Also known as flow control digits.
3See e.g. [68] for a description of store-and-forward and circuit switching.
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currently be transmitted. The credit counter is decremented according to the number of flits trans-
mitted from the upstream node to the downstream node. The credit counter is incremented upon
reception of credit updates from the downstream node, which are sent in order to communicate to
the upstream node that buffer space has become available. Thus, with credit-based flow control, a
significant amount of information is normally transmitted merely to update the credit counter.

On/off flow control is a simpler mechanism that reduces the transmitted amount of control
information concerning available buffer space in the downstream node. The upstream node main-
tains a flag to indicate whether or not flits can currently be transmitted. If the value of the flag is
on the upstream node can transmit flits, whereas transmission must be deferred if the value of the
flag is off. The downstream node need only inform the upstream node when the value of the flag
must be changed. The flag must be turned off if the amount of available buffer space decreases
below a certain threshold. Likewise, the flag must be turned on if the amount of available buffer
space increases above a certain threshold. The threshold values that decide when data transmission
is switched on and off respectively, are not necessarily the same.

A number of VCs may share a single physical communication channel. In that case, all VCs
transmit packets over the same physical communication channel, whereas each VC has a separate
set of buffers and a separate flow control mechanism [52] (as illustrated in Figure 2.2). This means
that the upstream node keeps state information (a credit counter or flag) for each VC, and the
downstream node transmits updates with regard to buffer availability for each VC. Thus, VCs
enable other packets to bypass a blocked packet, and are useful e.g. for implementation of deadlock
avoidance and service differentiation mechanisms.

In this thesis, a virtual layer is a virtual network that consists of all the switches and processing
nodes of the physical network. In addition, the virtual layer includes a subset of the VCs such that,
for each physical communication channel, one VC in each direction belongs to the virtual layer. (A
virtual layer is sometimes referred to as a layer for short.)

The flow control mechanism has an important impact on the performance of the interconnec-
tion network. A bad flow control mechanism could keep a communication channel idle for part
of the time, and thus cause increased packet latency and decreased system throughput. In order to
support a constant flow of data on a communication channel, the buffer size – and, for on/off flow
control, the on/off threshold values – must be carefully set, considering such parameters as channel
bandwidth, round-trip time and flit length.

Optimistic flow control mechanisms, such as ACK/NACK (acknowledgement/negative ac-
knowledgement), are not commonly used for interconnection networks due to inefficient use of
buffers and communication channels. With ACK/NACK the upstream node does not keep track of
free buffer space in the downstream node, and simply transmits a flit at any time. When buffer space
is not available, the downstream node discards the flit and returns a NACK. Such a mechanism re-
quires retransmission of the discarded flits and, as flits may be received out of order, reordering of
the received flits in the downstream node.

2.3 Channel dependency and deadlock

The flow control mechanism enforced on each communication channel in order to support lossless
communication prevents a packet from moving until sufficient buffer space is available on the
receiving end of a communication channel. This causes a risk of deadlock as several packets may
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be mutually waiting for each other to move. In a deadlocked set of packets none of the packets
in the set can advance until another packet in the set advances. All the packets in the set are
thus blocked forever, and the blockage spreads as packets in the deadlocked set block subsequently
arriving packets. Such a situation is not consistent with a successful operation of an interconnection
network.

Another potential problem caused by lossless flow control arises in the case of congestion. As the
flow control mechanism does not allow a packet to advance until free buffer space is available on the
receiving end of a communication channel, saturation trees [178] may form. That is, the congestion
spreads out in the network, possibly also affecting traffic not heading towards the original point
of congestion. Congestion management mechanisms are studied e.g. in [66, 87, 92]. Although
congestion control is an important topic for interconnection networks, it is not a main topic of this
thesis.

In the following, we first give an introduction to the theory concerning deadlock, before two
alternative approaches to handling this problem are presented. In this thesis, we do not focus on
high-level deadlocks that may result from a lack of buffer management for request-reply protocols
used e.g. for memory read or write operations.

(a) Ring network. (b) Channel dependency graph.

Figure 2.4: A 6-node unidirectional ring network and the corresponding channel dependency
graph.

If a flit can use a communication channel cb immediately after a communication channel ca

there is a direct channel dependency [55] from ca to cb. A channel dependency expresses that the
advancement of a flit from ca to the next channel cb depends on available buffer space in cb. A
channel dependency graph [55], which visualizes all the direct channel dependencies of an intercon-
nection network, is a useful aid for reasoning about deadlock-freedom. The vertexes and edges
of this directed graph represent the communication channels of the interconnection network and
the dependencies between these channels, respectively. For wormhole switching, a blocked packet
might spread out over the buffers of several consecutive switches. Thus, strictly speaking, there are
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also direct dependencies between non-adjacent channels. These are normally not included in the
channel dependency graph, however, as they do not provide new information for reasoning about
deadlock.

Figure 2.4(a) shows an interconnection network with six combined nodes labelled u through z

connected in a ring topology. The communication channels are unidirectional, packets are routed
in the clockwise direction, and VCs are not supported. The corresponding channel dependency
graph is shown in Figure 2.4(b), where each communication channel is labelled according to its
source and sink nodes. Deadlock-freedom cannot be guaranteed for this interconnection network.
Let us consider a situation where all the buffers of the network are full. Assume that the first packet
in the input buffer of node u, v, w, x, y, and z is destined for node v, w, x, y, z, and u, respectively. In
this set of packets none of the packets can advance before one of the other packets advances. Thus,
this example illustrates an established deadlock.

We will discuss various aspects of routing in Section 2.5. For now, we briefly mention two
definitions. First, for deterministic routing, as opposed to adaptive routing, only one path is provided
from a source to destination processing node. Second, a routing function is connected if it provides
at least one path between every pair of source and destination processing nodes.

For deterministic routing, [55] showed that a necessary and sufficient condition for deadlock-
freedom is that the channel dependency graph is free of cycles. This also follows as a corollary of
the theorems provided for adaptive routing in [64] for wormhole switched networks and in [65]
for virtual cut-through and store-and-forward switched networks. These theorems state that an
adaptive routing function R is deadlock-free given that a connected routing subfunction R

′

⊆ R

exists that does not have cycles in its extended channel dependency graph [64]. For virtual cut-
through and store-and-forward switching, an extended channel dependency graph may include
both direct dependencies and direct cross dependencies. For a wormhole switched network, where
a blocked packet can occupy several buffers, indirect dependencies and indirect cross dependencies
may be present in addition to direct dependencies and direct cross dependencies. Let us refer to the
channels ce ∈ R

′

as escape channels, and the channels cne ∈ R
′′

, where R
′′

= R − R
′

, as non-
escape channels. Then, an indirect dependency [63] from one escape channel to another occurs
when a packet holds one or more non-escape channels in between two escape channels. Indirect
dependencies can be avoided by prohibiting subsequent use of a non-escape channel for a packet
that has already used an escape channel. Cross dependencies [64] occur when the set of escape
channels overlaps with the set of non-escape channels. According to [57], such overlap is rare in
real networks, however. In summary, the theorems provided in [64, 65] express that the channel
dependency graph for an adaptive routing function may contain cycles as long as escape channels,
which are not part of any cycle, enable dissolution of potential deadlocks.

Two different groups of mechanisms are used to prevent a deadlock from ruining the perfor-
mance of an interconnection network. Deadlock avoidance mechanisms, which are most commonly
used, ensure that deadlocks cannot occur, whereas deadlock recovery mechanisms detect and resolve
a deadlock as it occurs. (In addition, a third group of mechanisms – referred to as deadlock preven-

tion – allocates the resources to be used in advance. This may significantly limit the utilization of a
network’s resources [68].)

In order to break cycles of channel dependencies, most deadlock avoidance mechanisms either
use VCs or restrict the set of physical paths included in a routing function. Each of these approaches
has possible drawbacks, and for both approaches load imbalance may be an issue. For the former
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approach the number of VCs required in each switch may be prohibitive. The latter approach
causes a reduced path diversity and may thus also cause reduced fault tolerance. Furthermore,
for simple routing strategies, restrictions on physical paths alone may not be sufficient to avoid
deadlock for topologies that include cycles. (This is further explained in Section 2.5.1 for torus
topologies.) These drawbacks may be alleviated by using combined mechanisms that apply both
VCs and a restricted routing function in order to achieve deadlock-freedom. Section 2.8.1 presents
a number of existing topology agnostic routing algorithms, including their deadlock avoidance
mechanisms. In addition, Section 2.5.1 provides examples of routing algorithms for meshes and
tori, the topologies used in the performance evaluation experiments of this thesis.

Bubble flow control [35] takes a different approach to avoid deadlocks in k-ary n-cube topolo-
gies. It assumes that virtual cut-through switching is used and that each buffer has space for at
least two packets. Effectively, k-ary n-cube topologies consist of a set of rings. Bubble flow control
ensures that a packet is inserted into a ring only if, after the insertion, the ring will have buffer space
for at least one more packet. This ensures that at any time the ring has at least one free buffer – a
“bubble”. Thus, at least one of the packets in the ring is always allowed to advance, which means
that deadlock cannot occur. (Starvation is a challenge that should be addressed, however.)

Another approach is proposed in [72] for source routing networks. In order to avoid cycles of
channel dependencies, the path of a packet may be split such that the packet is ejected from – and
subsequently re-injected into – the network at an intermediate switch. The so-called in-transit
buffers, where ejected packets are temporarily stored, are located in processing nodes. Thus, all
switches must have one or more processing nodes attached.

Deadlock recovery mechanisms (such as [13, 116]) are only useful if deadlocks rarely occur.
Moreover, running applications must be able to endure a deadlock. A deadlock can be detected
by searching for a cycle of blocked packets. Simpler, but less precise, methods based on timeouts
have also been proposed. A detected deadlock must be resolved, for instance by discarding one or
more packets. This thesis assumes that deadlock must be avoided, and does not focus on deadlock
recovery.

2.4 Fault models

A variety of component faults can occur in an interconnection network, and the faults can have a
number of different reasons. In order to simplify the reasoning about faults in an interconnection
network, a few categories or models of faults have been introduced [57, 68].

One of the categories is referred to as transient faults, and includes temporary faults such as bit
errors on a physical channel. A metric commonly used to quantify the frequency of such errors is
the bit-error rate. Bit errors can be detected and corrected, e.g. by cyclic redundancy checking [175]
and forward error correction [94] schemes, respectively.

Another category of faults is the permanent faults, which, as the name implies, includes faults
that are not temporary. An example of a permanent fault is a switch with a lasting error in the
logic of one of its central units, such as the unit responsible for routing and arbitration illustrated
in Figure 2.2. The frequency of permanent faults is commonly quantified by the metric mean-time
between failures.

Byzantine faults [125] represent a category of faults which is normally difficult to handle. A
Byzantine fault implies that the failing component does not halt or shut down. On the contrary, in
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an erroneous and arbitrary way it proceeds operation.
This thesis addresses challenges related to routing and reconfiguration after the occurrence of

faults. In particular, we focus on deadlock avoidance and performance issues. Our interest in faults
is restricted to permanent failures of the physical communication channels and switches of an inter-
connection network. Faults may also occur in other components of a computing system, however,
such as in processing nodes, power supplies, clocks and fans. We assume that transient faults, such
as bit errors on a physical communication channel, are corrected locally and do not focus on this
type of faults. If a specific network component produces transient faults more frequently than ac-
ceptable, the component may be shut down and the fault can then be considered permanent [57].
Our attention is restricted to permanent faults that can be described as fail-stop [203]. Basically,
a fail-stop fault implies that some internal or external supervisory module detects the failure of a
network component and subsequently informs neighbouring components. Furthermore, we as-
sume the presence of robust fault detection systems which are able to detect a Byzantine fault, shut
down the faulty network component, inform the neighbours, and thereby reduce the Byzantine
fault to a fail-stop. In this thesis, we focus on both static and dynamic faults. The former category
includes faults that are present at the start-up of a computing system, whereas the latter category
includes faults that occur while a system is in operation. In general, handling dynamic faults is
more challenging than handling static faults.

2.5 Routing

A routing algorithm is responsible for providing the path that a packet is to take from its source
to destination processing node. Existing routing algorithms vary in a number of different re-
spects – such as in the following: where the routing decision is taken; number of destinations for
each packet; input parameters; deadlock avoidance mechanism; implementation (by programmable
routing tables or hardware logic circuits); whether several alternative paths are provided (and how
one of them is selected); whether a specific network topology is assumed; whether the paths pro-
vided correspond to the shortest paths in the physical topology; and whether in-order delivery of
packets, load balancing and fault tolerance are supported.

Two separate units, a routing function and a selection function, constitute the routing algorithm.
A routing function must be connected, that is, it must provide at least one path between every
pair of source and destination processing nodes in the network. Otherwise, the routing function
is disconnected, which means that some of the system’s processing nodes cannot communicate. As
input some routing functions accept a pair of nodes (either the source and destination processing
nodes, or the current switch and the destination processing node). Others accept the current input
channel of a switch and the destination processing node as input. As output some routing functions
return a set of alternative paths that the packet could follow from its source to destination processing
node, whereas others return a set of alternative output channels from the current switch. The
selection function chooses one of the alternative paths or output channels, and thus decides the
exact route of the packet.

This thesis is only concerned with unicast routing, where a packet is transmitted from one
source to one destination, and not with multicast routing, where a packet can be transmitted from
one source to several destinations.

A routing decision may be taken either once at the source processing node or incrementally
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at each intermediate switch. Using the former approach, referred to as source routing, the entire
path of a packet is set at the source processing node and included in the header of the packet.
Using the latter approach, referred to as distributed routing, a packet merely carries the address of
its destination processing node. Upon arrival at an input channel of an intermediate switch, this
switch decides the output channel on which to forward the packet. For the switch illustrated in
Figure 2.2, this decision would be taken by the routing and arbitration module.

Source and distributed routing have their own advantages and disadvantages. In general, the
total amount of routing table information is higher in a source routing system than in a distributed
routing system. In addition, with source routing, the overhead in each packet is normally larger as
the entire path is included in the packet header. On the other hand, a source routing switch may be
simpler and faster than a distributing routing switch. A packet may be forwarded more quickly by a
source routing switch as the output channel is included in the packet header. A distributed routing
switch must perform a lookup in its routing table, and possibly select one of several alternative
output channels. As the path of a source routed packet cannot be changed at an intermediate
switch, source routing is in some respects less flexible than distributed routing is. In other respects,
source routing provides more flexibility than distributed routing does: Assume that two source
processing nodes, s0 and s1, transmit packets towards a common destination processing node, d,
and that these packets arrive on the same input channel of an intermediate switch i. Then, with
distributed routing, the packets from s0 and s1 are bound to share the same set of paths from i to
d. With source routing, on the other hand, the set of paths from s0 to d is independent of the set
of paths from s1 to d. Dolphin Express [122] and InfiniBand [105] are examples of source and
distributed routing interconnection network technologies, respectively.

Routing tables, included in either source processing nodes or intermediate switches, are flexible
since they are programmable. At the cost of flexibility, some simple routing algorithms for regular
network topologies can be implemented in hardware. Such an approach can provide fast routing
without requiring storage space for routing information, and is often referred to as algorithmic

routing. Dimension-Order Routing (DOR) [231] for mesh and torus topologies is an example of a
routing algorithm that can be implemented in hardware. At the expense of some additional logic
per switch port, Logic-Based Distributed Routing (LBDR) [73] enables hardware implementations
of more flexible routing algorithms than DOR. LBDR targets on-chip networks that conform to
a defined set of regular and semi-irregular mesh-based topologies. Flexible DOR (FDOR) [219]
is another algorithmic routing method designed for on-chip networks. When compared to DOR,
FDOR only requires a single additional configuration bit in each switch. Thus, FDOR has lower
implementation costs, but in some respects also less flexibility, than LBDR has. Recently, [209]
added multicast capability to FDOR as well as an increased flexibility with respect to the supported
shapes of mesh-based topologies. These extensions entail a higher implementation cost, however.

A routing algorithm may be either deterministic, oblivious or adaptive. A deterministic algo-
rithm (see e.g. [231]) provides only one path from a source to destination processing node. That
is, the routing function returns only one path or output channel, and a selection function is not
needed. The set of deterministic algorithms is a subset of the set of oblivious algorithms. Oblivious
algorithms (see e.g. [160]) may support more than one path from a source to a destination, and
for each packet one of the alternative paths is selected without consideration of network state. The
selection function may for instance randomly choose one path/channel from the set of paths/chan-
nels returned by the routing function. Like oblivious algorithms, adaptive algorithms (see e.g. [53])
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provide more than one possible path from a source to a destination. As opposed to oblivious al-
gorithms, however, adaptive algorithms take network state into account when selecting one of the
alternative paths. For instance are the alternative output channels’ queue lengths – which represent
the output channels’ load – commonly used in the routing decision [57].

For some applications it is important that packets are delivered at the destination in the same
order as they were sent from the source. The packets that must be delivered in order constitute a
flow, and a flow identifier can be included in each packet. A deterministic routing algorithm delivers
all packets in order as all packets take the same path from a source to a destination. Oblivious
routing algorithms can ensure in-order delivery of packets that belong to the same flow by letting
the selection function base its choice of path on the flow identifier instead of randomly choosing a
path [57]. Adaptive routing algorithms which base the selection of the paths of individual packets
on network state do not support in-order delivery of packets.

A routing algorithm may be shortest path, minimal, or non-minimal. This thesis differentiates
between shortest path routing and minimal routing, although in the literature the two terms are
sometimes used as synonyms. A shortest path routing algorithm provides a set of paths which are
the shortest possible according to the physical topology. A minimal routing algorithm, on the other
hand, provides a set of paths which are the shortest possible according to some routing restriction.
An example of such a routing restriction is a prohibited down-link to up-link turn according to the
Up*/Down* routing algorithm [204] described in Section 2.8.1. (A “turn” denotes a traversal from
one communication channel to another, and for a switch with both input and output buffering this
means a traversal from one of its input buffers to one of its output buffers.) A non-minimal routing
algorithm is not restricted to providing shortest or minimal paths but may also provide longer paths.
The motivation for non-minimal routing may be to better load balancing or to bypass congested
communication channels.

Deadlock avoidance is an important concern for most of the routing algorithms proposed for
interconnection networks. Section 2.3 explained that, in order to avoid deadlocks, routing re-
strictions are commonly applied, sometimes in combination with network resources such as VCs.
Sections 2.5.1 and 2.8.1 present some of the most important routing algorithms proposed in the
literature and their mechanisms for achieving deadlock-freedom.

For routing algorithms that allow misrouting (see e.g. [53]), another important issue is the
avoidance of livelock. Misrouting is a routing decision that brings a packet further away from its
destination processing node, for instance in order to stay away from a congested communication
channel. A packet is livelocked if it moves around in the network indefinitely without reaching
its destination. Livelock is not an issue in source routing systems as the entire path of a packet
is decided at the source processing node. For a distributed routing system, a possible approach
to livelock avoidance is to limit the number of times a packet can be misrouted in intermediate
switches. This thesis is not concerned with the livelock issue, and the routing algorithms in focus
do not use misrouting.

Load balancing is important for the performance of an interconnection network, as an imbal-
ance may cause network congestion, increased packet latency and decreased system throughput. As
only a single path is supported from a source to a destination, deterministic routing algorithms do
not take advantage of any path diversity that the topology might offer in order to balance traffic load
throughout the network. Thus, for non-uniform traffic patterns, deterministic routing can cause
severe performance degradation. Oblivious routing algorithms, on the other hand, may achieve
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load balancing by spreading traffic over the available paths, possibly according to some probabil-
ity distribution. Examples of randomized oblivious routing algorithms that address load balancing
include [215, 243]. Adaptive routing algorithms do not necessarily achieve better load balancing
than oblivious routing algorithms do. Their path selection, which is often solely based on local
knowledge of network state, may not favour global load balancing.

During the operation of an interconnection network, faults may occur in its communication
channels and switches. Such faults may disconnect the routing function and disable communication
between some of the processing nodes. As only one possible path is provided from a source to
a destination, a deterministic routing algorithm, such as [231], is not fault-tolerant in its basic
version. Oblivious or adaptive algorithms, on the other hand, may select an alternative path which
is not affected by a fault (if such a path exists).

Some fault-tolerant routing algorithms, such as [84, 95], are only able to handle faults stat-
ically – that is, they can handle faults that are present at the start-up of the system. Other al-
gorithms, such as [33, 162, 258], can handle faults dynamically, which means that they support
continued operation of the system without requiring a restart.

A semi-irregular network topology may be the result of faults in the switches and communica-
tion channels of an originally regular network topology. Such faults could occur while a system is
in operation, or they could be present at the start-up of the system. For instance, for an on-chip
network, which commonly uses strictly orthogonal topologies such as two-dimensional meshes, a
semi-irregular topology could result from faults introduced during the production process. Many
routing algorithms assume a specific topology or group of topologies. These algorithms are referred
to as topology specific routing algorithms, and some of them are described in Section 2.5.1. For
semi-irregular topologies that result from faults in regular topologies, such algorithms may not be
able to calculate a connected routing function. A number of extensions have been proposed in order
to introduce fault tolerance into topology specific routing algorithms, however. Such fault-tolerant
algorithms (see e.g. [81, 162]) have the ability to route around a faulty area, and thereby maintain
a connected routing function after the failure of some of the communication channels or switches
of a network.

When routing around faulty regions, care must be taken in order to ensure deadlock-freedom,
as new channel dependencies may be introduced. Deadlock may result if these new channel depen-
dencies cause the formation of a cycle in the channel dependency graph of the routing function.
A number of solutions, such as [33, 37, 39] depend on VCs for deadlock avoidance. Most of the
fault-tolerant routing algorithms designed for a specific topology are limited with respect to the
combinations of component failures that are supported. Requirements for successful operation
may include the shape of faulty regions – such as for [33] (which handles convex faults in mesh
topologies) and for [37,39] (which in addition handle some types of non-convex faults). In order to
represent one of the supported fault-combinations, healthy switches and communication channels
could be turned off [37].

Topology agnostic routing algorithms constitute a category of routing algorithms that do not
assume a specific interconnection network topology. Such a routing algorithm can be used for any
network topology, and is thus an obvious choice for a network with an irregular topology. Perhaps
more importantly, topology agnostic routing algorithms also support fault tolerance in networks
with regular topologies. Topology agnosticism is further discussed in Section 2.8.

A vast number of routing algorithms are available in the literature, and Section 2.5.1 provides
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an overview of a few important algorithms for mesh and torus topologies (the topologies used in
the performance evaluation experiments of this thesis). Section 2.8.1 presents some of the most im-
portant topology agnostic routing algorithms. In general, our focus is on the algorithms’ approach
to deadlock avoidance.

2.5.1 Selected algorithms for meshes and tori

Dimension-Order Routing (DOR) [231] is used in mesh and torus (k-ary n-cube) topologies.
Recall from Section 2.1 that these topologies consist of n dimensions with k switches in each
dimension (where k can be different for each dimension). By routing a packet in one dimension at
a time, DOR ensures that a change of dimension cannot result in a cycle in the channel dependency
graph. In mesh topologies this is sufficient to avoid deadlock, as routing within one dimension
cannot cause a cycle of channel dependencies. For a torus topology, on the other hand, each
dimension constitutes a ring, and thus a cycle. Therefore, the use of DOR in torus topologies
depends on an additional mechanism, such as VCs (see [55]) or Bubble flow control (see [35]),
for the avoidance of deadlock. In a two-dimensional mesh or torus, the two dimensions are often
called X and Y, and DOR is often referred to as either XY-routing or YX-routing, depending on
which of the turns are allowed. For XY-routing, the turns from the X-dimension to Y-dimension
are allowed, whereas the turns from the Y-dimension to X-dimension are prohibited.

In strictly orthogonal topologies, such as meshes, at least four turns are needed in order to close
a cycle between two dimensions. We have seen that DOR prohibits two of these turns. The Turn
Model [80] – which refers to the four routing directions of a two-dimensional mesh as west, south,
east and north, and also defines a positive direction (east or north) and negative direction (west or
south) within each dimension – supports path diversity and more flexible routing by only prohibit-
ing one of the four turns. This forms the basis of algorithms such as West-First (where any turn
from south, east or north towards the west direction is prohibited), North-Last (where any turn
from the north direction towards west, south or east is prohibited), and Negative-First (where any
turn from a positive to a negative direction is prohibited).

A number of fault-tolerant routing algorithms are based on DOR or the Turn Model. Some
examples are found in [33,81,162,216]. Another example is the solution proposed in [95], where a
number of healthy processing nodes in a mesh topology are sacrificed so that the remaining healthy
processing nodes can communicate. Healthy switches are kept operative, however. Two rounds of
DOR routing might be needed to deliver a packet to its destination, and a separate VC is required
for each round.

We will not consider the details of other topology specific routing algorithms, as this group of
algorithms is outside the main focus of attention of this thesis. Numerous other routing algorithms
have been proposed for mesh and torus topologies, however (see e.g. [42, 134, 160, 214]).

2.6 Reconfiguration

In some cases the routing function of an interconnection network has to be replaced, and the
change-over from one routing function to another is referred to as reconfiguration. In this thesis,
reconfiguration is applied for two different purposes. First, it is used as an important fault tolerance
mechanism for interconnection networks. Second, as part of our work on processor allocation,
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reconfiguration is used in order to ensure isolation of traffic between different parts of an intercon-
nection network (such that traffic that belongs to one job cannot interfere with traffic that belongs
to other jobs). The latter application of reconfiguration is discussed in Chapter 6, and will not be
further considered in this section. (Examples of other areas of application for reconfiguration are
found in [155] and [77]. In [155] reconfiguration is used by a power saving strategy for computer
clusters, whereas in [77] reconfigurable routing algorithms are utilized for load balancing purposes
in on-chip environments.)

A change in the topology of an interconnection network could be a result of faults in one or
more of the network’s components. The risk of a fault in any of the switches or communication
channels of a network increases as a computing system grows larger. On the other hand, a topology
change could also be a result of planned system updates, where network components are removed
or added.

Recall from Section 2.5 that a routing function is disconnected if, for any pair of processing
nodes, packets sent from one of the nodes cannot reach the other node. The routing function of
an interconnection network may be disconnected as a consequence of a topology change, even if
the physical topology is still connected. In case network components have been removed (either
due to a fault or a planned update), a loss of packets must be expected as some packets will attempt
to cross missing network components. A number of network management functions are involved
in order to restore a connected routing function. First, the change of topology must be detected
and the resulting topology discovered. Then, a set of new paths, which constitutes a connected
routing function, must be computed. Finally, the existing (disconnected) routing function must be
replaced by the new routing function. An overview of the entire process is given in [25, 186]. The
focus of this thesis is on the final step of the process – the reconfiguration. In the following we will
refer to the routing function to be replaced as Rold and to its successor as Rnew.

A main challenge related to reconfiguration is deadlock avoidance. Even though both Rold and
Rnew alone are deadlock-free, deadlock might occur during the transitional phase [67]. In a source
routing system (where each packet is routed from its source to destination entirely according to one
of the routing functions) cyclic channel dependencies and deadlock may form if packets that belong
to Rold take turns that are not allowed in Rnew or vice versa. For a distributed routing system,
the problem of avoiding cyclic channel dependencies between packets that follow two different
routing functions is principally the same as for a source routing system. Additional challenges may
be experienced for a distributed routing system, however. As the switches of an interconnection
network operate asynchronously, some of the switches may have taken Rnew into use while other
switches still use Rold. Thus, underway from its source to destination, a packet may be routed
according to different routing functions in different switches. Assume that both Rold and Rnew

accept as input parameters the input channel of the current switch and the destination processing
node. Also assume that a packet with destination d arrives at input channel c of an intermediate
switch s. Then, if the routing function in use in s does not expect packets destined for d to arrive at
c, the packet becomes unroutable. Furthermore, for distributed routing systems, the risk of packets
looping is a challenge that must be addressed.

The various reconfiguration strategies proposed for interconnection networks include different
mechanisms for deadlock avoidance, and are commonly divided into two main categories – static

and dynamic reconfiguration. Most static reconfiguration methods, such as [31, 190, 204, 233],
do not allow application traffic into the network during the reconfiguration. For this category
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of methods, all packets routed according to Rold are drained from the network before any packet
routed according to Rnew is allowed into the network. Thus, the risk of deadlock is eliminated,
as packets routed according to only one of the deadlock-free routing functions are present in the
network at a time. With this approach, the network service becomes unavailable during the change
of routing function, and such a high cost of deadlock-freedom could be unacceptable for some
applications and unfortunate for others. Dynamic reconfiguration methods, such as [36, 140, 179,
185], aim at improving the network service availability during the change of routing function. This
category of methods allows application traffic into the network during the reconfiguration, and
therefore requires sophisticated deadlock avoidance mechanisms. Some of these deadlock avoidance
mechanisms cause a temporary degradation of performance, however. When such mechanisms are
applied, applications must tolerate issues such as a temporary decrease of throughput and increase
of latency. An extensive theory for deadlock-free dynamic reconfiguration is introduced in [67].
Based on this theory, a methodology is presented in [141] for developing procedures for deadlock-
free reconfiguration.

The necessity of a reconfiguration is indisputable if a routing function has been disconnected
due to a change of the topology. In other cases, a connected routing function could be sustained by
a fault-tolerant routing algorithm (as explained in Section 2.5). Fault-tolerant routing algorithms
include mechanisms that allow packets to be routed around a faulty area. In some cases, however,
disabling non-faulty network components may become necessary (see e.g. [37]). Permanent per-
formance penalties could result from a sub-optimal routing function provided by a fault-tolerant
routing algorithm, or from its deactivation of healthy network components. In such cases, a re-
configuration – which causes only temporary performance penalties – could be a better option.
Reconfiguration can also be combined with fault-tolerant routing in order to reduce, or perhaps
even avoid, a temporary loss of packets (due to missing network components) while an optimal
routing function is being restored – see e.g. FRoots [236] which is a topology agnostic approach.

A number of reconfiguration methods are available in the literature, and some of the most
important are the approaches discussed in Section 2.8.2.

2.7 Processor allocation and virtualization

In this thesis, a parallel job or parallel application denotes a program for which separate tasks are
executed concurrently on a number of different processing nodes in a multiprocessor system – such
as a computer cluster, data center or multicore chip. A parallel job typically executes on a subset of
the processing nodes available in a multiprocessor system, and is more or less communication and
computation intensive.

Two main categories of multiprocessor systems exist – shared memory and message-passing. A
shared memory multiprocessor includes a single address space, and a set of processing nodes that
cooperate in executing a parallel job communicates through operation on shared variables. This
requires synchronized access to the shared variables, which can be ensured through a mechanism for
mutual exclusion, such as monitors [96]. In a message-passing multiprocessor, on the other hand,
each processing node has a separate address space, and a set of processing nodes that cooperate
in executing a parallel job communicates (and implicitly synchronizes) by sending and receiving
messages.

Amdahl’s law [11] is commonly used to estimate the maximum speed-up that can be expected
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from parallelization of a certain fraction of a sequential program onto a given number of pro-
cessing nodes [171, 250]. Application programming interfaces such as Message Passing Inter-
face (MPI) [158] and OpenMP [164] have been proposed in order to support development of
parallel applications. For several reasons, development of a parallel application is more challenging
than development of a sequential application [171]. A programmer must identify the parts of the
application to be parallelized. Efficient parallelization also involves considerations of such issues
as the number of processing nodes to apply and the balance between computation and commu-
nication. Furthermore, synchronization of the access to shared variables, or exchange of messages
between different processing nodes, must be explicitly handled by the programmer. Many research
studies, such as [21, 30, 93], have attempted to develop compilers with support for automatic par-
allelization of sequential programs. Satisfactory solutions seem hard to obtain, however.

Figure 2.5: Resource management sub-system.

Processor allocation is the assignment of a set of nodes4 with available capacity to execute a par-
allel job. Such a set of nodes will also be referred to as a partition. In a multiprocessor system some
resource management sub-system is responsible for the allocation of nodes. Figure 2.5 illustrates
such a sub-system with 16 nodes interconnected in a 4 × 4 mesh topology. Two parallel jobs are
currently running (one on a 3 × 2 sub-mesh and the other on a 2 × 2 sub-mesh), while a queue
holds a number of waiting jobs. Each of the waiting jobs has requirements on such aspects as num-
ber of nodes and running time. From the waiting queue a scheduler selects the next parallel job to
be started. An allocator then selects a set of nodes to execute the job. In the literature, the terms
processor allocation and scheduling are sometimes used interchangeably. In this thesis, however, the
allocator and scheduler are consistently assumed to be responsible for separate tasks (in accordance
with the explanation above). Furthermore, our focus is on allocation, not on scheduling. (A status
report on the research area of scheduling was presented in [69].)

Another research area related to processor allocation that is not in the focus of this thesis is
task mapping. A parallel job is often represented as a graph of separate tasks, where the edges
of the graph represent communication between tasks. Task mapping involves assignment of the
individual tasks of a job to the individual nodes of the partition allocated to the job. (In cases
where an entire system is allocated to a job, the entire system constitutes a single partition.) Task

4For simplicity, we assume that a node refers to a combined node which contains both processing and switching
elements.
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mapping corresponds to the mapping problem discussed in [32]. Examples of studies that focus on
task mapping include [26, 27]. We did not include a task mapper in Figure 2.5.

Processor allocation is a form of virtualization. Virtualization is a general term that denotes the
abstraction of logical entities from physical entities. Roughly, virtualization can be used both to
have one physical unit appear as several logical units, and to aggregate several physical units into
one logical unit. In this thesis, we are mainly interested in the latter approach. We have adopted
the space-sharing model commonly assumed in the literature on processor allocation. Space-sharing
implies that a set of nodes is exclusively assigned to a single parallel job which runs uninterruptedly
until completion. (Time-sharing, on the other hand, allows more than one job to be assigned to a
particular node at a time.) According to [127], space-sharing was also applied in the Computational
Plant (Cplant) [49] supercomputer at Sandia National Laboratories [201]. In a space-sharing mul-
tiprocessor system, processor allocation essentially implies aggregation of a set of physical processing
nodes into a virtual processor which is assigned to execute a parallel job. Virtualization techniques
are used in various parts of computing systems. It is found in processing (examples include some
of the processors from Intel and AMD which offer hardware support for virtualization [10, 107]);
storage (examples include RAID systems [170]); and communication channels (examples include
VCs [54]). Although in recent years it has again received much attention, virtualization is not a new
concept. For instance, in [180] – published in 1974 – a set of necessary and sufficient conditions
was stated for a third generation computer to support a virtual machine monitor5, a software entity
for controlling multiple virtual machines running on a single physical machine. Although virtual
machines are important in processor allocation and parallel processing, for instance with respect to
issues such as security and migration of jobs, their role is not in focus in this thesis.

A significant number of processor allocation strategies have been proposed for multiprocessor
systems. Although hybrid strategies such as [230] have been introduced, the majority of the al-
gorithms fall into one of two categories – they are either contiguous such as [113, 253, 262], or
non-contiguous such as [34, 127, 137]. A contiguous algorithm designates a set of adjacent nodes
to a parallel job, whereas a non-contiguous algorithm may designate a set of nodes that are not
adjacent. There are advantages and disadvantages associated with either of the two categories. Ex-
ternal fragmentation6 is an inherent issue for contiguous algorithms that can be completely avoided
by non-contiguous algorithms. It occurs when a sufficient number of nodes are available, but the
allocation attempt nevertheless fails due to some restriction. For instance, many allocation strategies
for mesh topologies require that a region of available nodes constitutes a sub-mesh. Internal frag-
mentation occurs if more nodes than requested must be allocated to a job. For instance, in [130]
the allocated area must be a quadratic sub-mesh for which the side lengths are powers of 2. Both
external and internal fragmentation cause a reduced utilization of a system’s processing resources.

Modern interconnection network technologies could use VCs to separate traffic. Nevertheless,
when using a non-contiguous processor allocation strategy, contention for the capacity of a physical
communication channel between messages that belong to concurrent jobs may be unavoidable.
Such contention often has unfortunate consequences, both with respect to the performance of
individual jobs and with respect to the performance of a computing system. It increases the time
spent on communication for a parallel job, and thereby also increases the job’s running time. Thus,
subsequent jobs must await service for a longer time, and the system’s throughput of jobs decreases.

5A virtual machine monitor is also referred to as a hypervisor.
6In the following, external fragmentation will often be referred to simply as fragmentation.
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Some contiguous processor allocation strategies have a characteristic that we refer to as traffic-

containment (or traffic isolation). For these allocation strategies, the set of nodes to be assigned to
a job is selected in accordance with the underlying routing function such that no communication
channels are shared between messages that belong to different jobs. With traffic-contained pro-
cessor allocation, each job can be guaranteed a fraction of the interconnection network’s capacity,
regardless of the properties of concurrent jobs. Thus, if one parallel job introduces severe congestion
within the interconnection network, other jobs should not be affected. The importance of traffic-
containment, both with respect to security requirements and avoidance of inter-job congestion, is
emphasized in [14, 15]. In studies on processor allocation the concept of traffic-containment is
often not discussed explicitly. Nevertheless, many strategies, like those that allocate sub-meshes in
meshes (see e.g. [61, 253]), will be traffic-contained whenever the predominant routing algorithm,
DOR, is used. (DOR was described in Section 2.5.1.)

The processor allocation strategies referred to above are typically proposed for off-chip environ-
ments – that is, not for systems found within integrated circuit chips. In the following paragraphs
we will consider issues related to allocation of nodes (cores) in on-chip systems.

In [74], we identified a set of problems to be addressed for a network interconnecting a number
of cores in a multicore chip. It was assumed that, in the design of a multicore chip, the main
metrics to be optimized are performance, fault tolerance/yield7 and power consumption/silicon
area. As improvements to one of these metrics may have an opposite effect on another metric, an
optimization that comprises all of the metrics represents a challenge. For instance, inclusion of a
sophisticated routing algorithm may improve connectivity between the on-chip components (such
as cores and caches), and thereby increase the yield as more of the chips with manufacturing defects
can be utilized. If the sophisticated routing algorithm requires advanced logic or large routing
tables, however, the improvement might come at the cost of increased power consumption and
silicon area. We argue in [74] that virtualization is a useful tool for supporting optimization of
the three metrics, and that the following issues are the most important ones to address. First,
partitioning mechanisms that maximize resource utilization and minimize contention between the
traffic of concurrent jobs should be used. Second, coherency domains should be applied in order
to enhance cache coherency. Third, in order to increase yield, connectivity should be improved
for chips with production faults. Fourth, power consumption should be reduced by turning off

idle components. Among these four issues, the first one is the most relevant for this thesis, and we
recognize it from the above discussion on processor allocation in off-chip systems. This illustrates
that, in many respects, the challenges related to processor allocation are similar for on-chip and
off-chip environments.

Meshes and tori are relevant topologies for on-chip systems [56,124]. Moreover, DOR is a sim-
ple routing algorithm that can be implemented in hardware, which makes it suitable for on-chip
interconnection networks. Thus, some of the sub-mesh allocating strategies referred to above for
off-chip systems could be adopted into on-chip systems. While ensuring traffic-containment when
DOR is used, the allocation of sub-meshes will cause fragmentation in on-chip systems – as it does
in off-chip systems – and thereby reduce the utilization of available cores. In [74] we discussed how
the utilization of cores could be improved if restrictions regarding the shape of partitions were re-
laxed (this is also a main topic in Chapter 6). In such a case, traffic-containment could be sustained
by the use of a more flexible routing algorithm than DOR, and a closer cooperation between the

7Yield denotes the fraction of a set of manufactured integrated circuit chips that is approved for use.
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units responsible for allocation and routing would be required. For most off-chip systems, the im-
plementation of a topology agnostic routing algorithm is straightforward. The most flexible routing
algorithms depend on either source or distributed routing. In an on-chip environment, however, a
routing algorithm that requires routing tables represents an increased demand for memory space, sil-
icon area and power. Furthermore, some topology agnostic routing algorithms, such as [200, 217],
also depend on VCs (and VC-transitions) for deadlock avoidance. For some on-chip systems, the
requirements of such algorithms are expected to be unacceptable. In these cases, logic-based rout-
ing algorithms such as [73, 192, 209] could be considered. These algorithms support more flexible
routing than DOR does, which is advantageous with respect to traffic-contained processor alloca-
tion as well as with respect to fault tolerance. In addition, [191] – an extension of [73] – applies a
simple mechanism in order to implement traffic isolation between different network regions.

Additional challenges for resource management in computer clusters with multiprocessor multi-
core nodes are addressed in [20]. Issues to consider for such environments include locality, on-chip
contention and off-chip contention. In general, finer granularity allocation than supported in tra-
ditional systems with fewer levels of processing units is required.

The research community has put relatively little effort into developing topology agnostic so-
lutions for processor allocation. For mesh and torus topologies, on the other hand, a number of
processor allocation strategies can be found in the literature. Thus, as only a few topology agnostic
allocation strategies are described in Section 2.8.3, we have included a larger number of allocation
strategies for meshes and tori – the topologies used in the performance evaluation experiments of
this thesis – in Section 2.7.1. Examples of studies that target processor allocation in another group
of regular topologies, fat-trees, are found in [168, 210].

2.7.1 Selected strategies for meshes and tori

Section 2.7 explained that there are two main categories of processor allocation strategies – con-
tiguous and non-contiguous algorithms. Non-contiguous processor allocation in general alleviates
the fragmentation problem inherent in contiguous processor allocation. On the other hand, a main
challenge for non-contiguous allocation algorithms is contention between the traffic of concurrent
jobs. In order to minimize such contention, many non-contiguous allocation strategies attempt to
limit the dispersal of the nodes assigned to a parallel job. Examples of non-contiguous allocation
strategies for mesh and torus topologies that – using various metrics – aim at maximizing the con-
centration of allocated nodes include [23, 127, 146]. In [145], a number of metrics were suggested
to quantify the dispersal of nodes, and a good correlation was demonstrated between these metrics
and traffic contention. For an assigned set of nodes, the metrics consider such issues as the number
of nodes and communication channels involved; aggregated distances from a center-node; and av-
erage, aggregated and maximum pairwise distance between nodes. In [137], the tradeoff between
fragmentation (for a strategy that allocates contiguous sub-meshes) and traffic contention (for vari-
ous non-contiguous allocation strategies) was investigated, and the overall conclusion was in favour
of non-contiguous processor allocation. Nevertheless, a main goal of this thesis is to contribute to
the development of processor allocation strategies that support traffic-containment. Therefore, our
main interest is in contiguous – rather than non-contiguous – processor allocation strategies.

A number of contiguous processor allocation algorithms have been proposed for mesh and
torus (k-ary n-cube) topologies. Many of them restrict the allowed partitions to sub-meshes or
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sub-cubes. Few of the studies ( [251] is an exception) discuss that, when DOR is used and sub-
meshes are allocated in a topology that has wraparound channels, the shortest path between two
nodes may include intermediate nodes that are not part of the partition. (Traffic-containment is
thus not supported.) In such cases, messages that are routed outside a partition risk interference
with messages that belong to concurrent jobs. According to [14], this issue may be alleviated by the
application of the particular torus topology introduced with the Blue Gene/L supercomputer [29].
This topology has additional communication channels, compared to an ordinary torus, and is
referred to as a multi-toroidal topology.

First Fit and Best Fit [262] were proposed for two-dimensional meshes to solve problems related
with the Two-dimensional Buddy [130] and Frame Sliding [45] processor allocation strategies. The
applicability of Two-dimensional Buddy is restricted to square mesh systems, and partitions are
restricted to square sub-meshes, where the lengths of the sides of the squares are powers of 2. If a
parallel job requests a number of nodes that are not a power of 2, internal fragmentation follows
as a higher number of nodes than required must be allocated. As a result of the sliding of frames
in fixed strides through a mesh, Frame Sliding will not always recognize a free sub-mesh even if
one is available. First Fit and Best Fit keep track of free and busy nodes. For each scheduled job,
they determine which of the free nodes can constitute a bottom left corner of a free sub-mesh of
the requested size a × b. First Fit allocates the first free sub-mesh found, whereas Best Fit attempts
to reduce external fragmentation by selecting the smallest free region for allocation (and thereby
leaving larger free regions for future and possibly larger jobs). Two other allocation schemes that
aim to reduce external fragmentation by well considered placements of new sub-meshes in two-
dimensional mesh topologies are presented in [3].

In case a scheduled parallel job requests a rectangular region of a× b nodes, Adaptive Scan [61]
may rotate the original request by 90 degrees and also search for a free sub-mesh b × a. Adaptive
Scan does not scan through every node in the mesh, and achieves a complete sub-mesh recognition
capability as it does not fix the strides.

Flexfold [91] has complete sub-mesh recognition capability, and searches first for a sub-mesh of
size a × b or b × a. It may in addition, after consideration of a possible communication overhead,

fold the originally requested sub-mesh, and search for a sub-mesh of size
a

2
× 2b, 2a ×

b

2
, 2b ×

a

2
,

or
b

2
× 2a (if a or b is an odd number some of these alternatives are of no interest).

The All Request Shapes (ARS) strategy [4] addresses the fragmentation issue by – in response
to a request for n nodes – allowing allocation of a sub-mesh of any shape that includes n nodes and
fits within the two-dimensional mesh topology.

In [43], another processor allocation strategy is proposed for two-dimensional mesh based sys-
tems. It places an allocation in a vacant sub-mesh that has a left border towards an occupied
region or towards the edge of the mesh. This principle is also used by the Leapfrog method [253]
which introduces a more efficient data structure for faster recognition of free sub-meshes in a mesh
topology. In [253], analytical models concerning the execution cost of the allocation process and
the probabilities of finding free sub-meshes under different load levels are presented. The focus of
both [43] and [253] is more on allocation efficiency than on the fragmentation issue, and the results
presented do not indicate a significant reduction of fragmentation when compared to e.g. Adaptive
Scan. The Turning Busy List presented in [22] and the Compacting Free List presented in [1],
which allocate sub-meshes in three-dimensional and two-dimensional mesh topologies respectively,
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are other examples of strategies that aim to improve allocation efficiency.
In order to improve the performance of processor allocation strategies such as those presented

in [45, 61, 253], [83] introduces an improved search order for identification of free sub-meshes, as
well as two different approaches to job migration.

The main idea of both [261] and [232], which target two-dimensional meshes and three-
dimensional tori respectively, is to reduce fragmentation by allocating adjacent partitions to jobs
with similar finishing times (in order to make larger contiguous regions of nodes available to sub-
sequent jobs).

The allocation strategies presented in [211] and [227] target mesh topologies and attempt to
alleviate fragmentation by allowing partitions that are not sub-mesh shaped. L-shaped partitions
are allowed in [211], whereas partitions of any shape are allowed in [227]. Neither [211] nor [227]
discusses routing and deadlock, and neither strategy can support traffic-containment when DOR is
used. However, [211] seems to presuppose that a set of paths can be identified within a partition.
We observe that routing algorithms such as Logic-Based Distributed Routing (LBDR) [73] and
Flexible DOR (FDOR) [209] could actually realize traffic-containment within an L-shaped parti-
tion. (Section 6.3 explains how LBDR can be used for a b-shaped topology – which corresponds to
an L-shaped partition.)

In [181], multi-dimensional sub-meshes are allocated for systems based on three-dimensional
tori. The strategy has complete sub-mesh recognition capability; does not restrict the orientation
of sub-meshes; and may allocate sub-meshes across wraparound channels. Routing issues are not
discussed in [181]. We observe, however, that the use of DOR cannot ensure traffic-containment
since the shortest path between two nodes may traverse nodes outside the assigned sub-mesh.

The scan search scheme [44] allocates three-dimensional sub-meshes in torus topologies (where
the sub-meshes may be allocated across wraparound channels). It has complete sub-mesh recog-
nition capability, allows flexible orientation of the sub-meshes, but is not traffic-contained with
DOR. A particular data structure is used to reduce the three-dimensional information on a torus
to two-dimensional information, and this decreases the average allocation time when compared
to [181].

The Extended Tree-Collapsing strategy [46] mainly addresses the internal fragmentation issue,
and accepts requests for any r-ary m-cube partition in systems based on k-ary n-cube topologies.
The scheme is affected by significant external fragmentation, and cannot ensure traffic-containment

with DOR (consider e.g. an r-ary m-cube partition with r >
k

2
).

The main idea of the Isomorphic allocation strategy [113] is to partition a k-ary n-cube in a

series of recursive steps such that, after the ith step, the number of
k

2i
-ary n-cube partitions is 2n.

The strategy is, however, not restricted to k-ary n-cube systems nor to the allocation of n-cubes.
Several n-cubes can be merged in order to form a region of nodes of a different shape. The strategy
cannot always ensure traffic-containment if DOR is used. Consider e.g. a system based on an 8-ary
3-cube topology, where the resource requests have the form x×y×z where 1 ≤ x, y, z ≤ 8. Then,

if either of x, y, z >
8

2
, messages may be routed outside their partition due to the wraparound

channels.
The k-ary Partner strategy [251] uses a tree structure to represent sub-cubes, and the tree is

searched with an aim to localize free m-dimensional sub-cubes (slices) of a k-ary n-cube topology.
The strategy supports traffic-containment with DOR, but does not have complete sub-cube recog-
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nition capability. It may also be affected by internal fragmentation, due to the requirement that the
allocated sub-cubes have radix k.

For faulty meshes and tori the contiguous processor allocation strategies described above will,
in general, not perform satisfactorily. Therefore, particular allocation strategies have been proposed
for faulty topologies – see e.g. [115] that identifies virtual sub-meshes in a faulty mesh topology,
and [40] that uses a distributed procedure to acquire intact sub-meshes from a faulty mesh or torus
topology.

Traditional processor allocation strategies may encounter scalability issues as the size of systems
increases. In [15] the approach taken by the Blue Gene/L supercomputer – which consists of
64 × 32 × 32 nodes interconnected in a multi-toroidal topology – is presented. Scalability is
achieved by grouping N nodes into one allocation unit (in [15] N is 512). Such a coarse granularity
for allocations implies a risk of internal fragmentation and decreased resource utilization, however,
unless the parallel jobs request a multiple of N nodes.

For on-chip environments based on two-dimensional mesh and torus topologies, [263] and
[264] recently presented slightly optimized and adapted versions of some traditional sub-mesh allo-
cating algorithms (such as First Fit [262], Adaptive Scan [61] and the schemes referred to as Quick
Allocation [256] and Stack-Based Allocation [255, 259]). Moreover, in [265] energy consump-
tion was evaluated for an on-chip allocator that runs some of these adapted processor allocation
algorithms.

The allocation strategy proposed in [131] aims to promote heat balance in an on-chip system
based on a mesh network topology. Thus, the temperature of the cores is taken into account when
virtual sub-meshes are allocated.

2.8 Topology agnostic methods

This thesis is concerned with topology agnostic methods for routing and reconfiguration, as well
as with the use of such methods as a means to achieve flexible and traffic-contained processor allo-
cation. For interconnection networks with irregular topologies, most methods tailored for specific
regular topologies are not applicable. Topology agnostic methods are therefore essential for the
operation of such networks. Construction of arbitrary topologies are supported by most intercon-
nection network technologies, such as InfiniBand [105] and Dolphin Express [122]. Nevertheless,
regular topologies such as fat-trees and tori are heavily represented at the top of the Top500 list of
supercomputers [237], and for on-chip networks two-dimensional meshes and tori are predomi-
nant [56, 124]. As topology agnostic methods do not assume a particular topology, they are also
usable for any regular topology. In particular, topology agnostic methods play an important part in
the provisioning of fault tolerance for regular topologies.

Routing algorithms developed for a specific topology will often not work correctly if the topol-
ogy is altered by a fault in one or more of the switches or communication channels. A topology
agnostic routing algorithm, on the other hand, does not assume a particular topology, and can
therefore be used on a topology that are no longer regular due to faulty network components. This
quality of topology agnostic routing algorithms is useful both with respect to static and dynamic
fault handling.

Static fault tolerance is important for various types of computing systems. Given that the topol-
ogy of an interconnection network is physically connected, a topology agnostic routing algorithm
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is able to provide a connected routing function for the network. Thus, when using topology ag-
nostic routing, static fault tolerance is inherently supported, and any fault present at the start-up of
a system is trivially handled. As an example, consider an on-chip network interconnecting a num-
ber of cores. For such a system, faults that result from the chip production process are relatively
common [171], and may alter an intended two-dimensional mesh or torus topology. The use of a
topology agnostic routing algorithm can maximize connectivity and thereby possibly increase the
number of useful cores on a chip. This could improve the yield of the production process, given
that the overhead of a topology agnostic routing algorithm is acceptable (routing tables are typically
required). Static fault handling by using topology agnostic routing may also be advantageous for
computing systems that tolerate a restart in case a fault occurs in a network component.

Topology agnostic routing algorithms are also particularly useful for dynamic fault handling. In
some cases, a connected routing function can not be sustained after the occurrence of a fault. Then,
a new routing function is needed and a reconfiguration must be performed. A topology specific
routing algorithm might not be able to provide a new connected routing function, or it might need
to impose rigid restrictions, such as disabling non-faulty network components (see e.g. [37]). A
topology agnostic routing algorithm, on the other hand, can provide a new routing function for
any physically connected topology, including one that results from faults (regardless of the topol-
ogy or routing function in use before the fault occurred). Reconfiguration processes are commonly
motivated by topology changes in general and component faults in particular. Thus, reconfigu-
ration strategies are typically topology agnostic. Both the theoretical framework presented in [67]
and the methodology presented in [141] for development of deadlock-free dynamic reconfiguration
strategies support topology agnosticism.

Reconfiguration might not be necessary if a connected routing function can be supported after
the fault of a network component. An approach to fault-tolerant routing for InfiniBand is proposed
in [154], where the deadlock-free and topology agnostic Transition-Oriented Routing [200] algo-
rithm is used to compute a set of disjoint paths for each pair of source and destination processing
nodes. If, during the operation of a system, a path is disrupted by a fault, an unaffected path can
be applied. A similar principle for fault-tolerant routing could be utilized by other interconnection
network technologies, provided that migration of paths is supported. In addition, an alternative
topology agnostic routing algorithm could be applied.

Much research effort has been made to develop solutions for topology agnostic routing and
reconfiguration, and some of the strategies available in the literature are described in Sections 2.8.1
and 2.8.2. Our contributions to these research areas are presented in Chapters 4 and 5.

Most of the processor allocation strategies found in the literature are developed for a particular
network topology, and some of the strategies for meshes and tori were described in Section 2.7.1.
Fragmentation – which reduces the utilization of the available computing resources of a system – is
an inherent problem in contiguous processor allocation. Nevertheless, a topology agnostic proces-
sor allocation strategy could alleviate the problem of fragmentation by allowing increased flexibility
with respect to the shape of contiguous partitions. (Recall that many of the traditional processor
allocation strategies for mesh and torus topologies only support allocation of sub-mesh shaped par-
titions – see e.g. [253, 255].) Section 2.7.1 also described special strategies needed for processor
allocation in systems with faulty mesh and torus topologies [40, 115]. A topology agnostic ap-
proach to processor allocation also has advantages with respect to fault tolerance, as no particular
considerations are needed for a topology altered by some fault. Topology agnostic processor allo-
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cation has not attracted much attention from the research community, however. Thus, only a few
such strategies (some of them non-contiguous) are included in Section 2.8.3. Our contributions to
the area of processor allocation are presented in Chapter 6, where both topology agnostic routing
and reconfiguration are utilized in order to ensure containment of traffic within arbitrarily shaped
partitions.

2.8.1 Selected routing algorithms

A number of topology agnostic routing algorithms avoid deadlock by prohibiting a set of turns in
the interconnection network (and thereby breaking cycles of channel dependencies). The Up*/Do-
wn* algorithm [204] assigns up and down directions (called up-links and down-links, respectively)
to all the communication channels of a network in order to form a directed acyclic graph (DAG).
Communication channels and switches are represented in the DAG by edges and vertexes, respec-
tively. The root node of the DAG is the one vertex that has only incoming up-links. The DAG
can have one or more leaf nodes – vertexes with only outgoing up-links. Figure 2.6(a) illustrates an
Up*/Down* DAG in a 4 × 4 mesh topology with one node (number 10) missing. In this DAG,
node 0 is the root and node 15 is the only leaf. According to convention, an arrow indicates the di-
rection of an up-link (and the opposite direction of a down-link). In a correct Up*/Down* DAG, all
other nodes can reach the root node by following a sequence of one or more up-links, and the root
node can reach all other nodes by following a sequence of one or more down-links. Up*/Down*
avoids cycles of channel dependencies by prohibiting a turn from a down-link to an up-link. Thus,
any legal route comprises zero or more up-links followed by zero or more down-links. One of
the main advantages of Up*/Down*, in addition to being topology agnostic and conceptually sim-
ple, is that VCs are not needed for deadlock avoidance. On the other hand, the performance of
Up*/Down* is limited by congestion that tends to form in the area around the root node, as the
forwarding restrictions (the prohibited down-link to up-link turns) make this region a hotspot.
Another, perhaps less critical, issue caused by the forwarding restrictions is that some of the legal
paths could be longer than the shortest physical paths. For instance, consider the long path from
node 11 to node 14 in Figure 2.6(a). In this case, the shortest path (through node 15) is prohibited
as it would imply a down-link to up-link turn. In the original version of Up*/Down* [204], the
DAG was based on a tree identified by a breadth-first search. Improved performance was achieved
in [198] where the use of a depth-first search resulted in fewer forwarding restrictions. Moreover,
new heuristics for calculating the DAG were introduced in [196], e.g. for selecting the best root
node. These results were combined in [199].

Several other routing algorithms have emerged that also base deadlock avoidance on turn
prohibition, while attempting to achieve improved performance by addressing the weaknesses of
Up*/Down*. Belonging to this category of routing algorithms are Smart Routing [41], Flexible
Routing (FX) [197], Multiple Roots (MRoots) [71, 143, 144], Left-Up First Turn (L-Turn) [117],
Tree Based Turn Prohibition (TBTP) [174], Simple Cycle-Breaking (SCB) [129] and Segment-
Based Routing [151].

Smart Routing aims at balancing traffic better than Up*/Down* does. It computes a channel
dependency graph, and uses a greedy approach to break each individual cycle until an acyclic chan-
nel dependency graph is obtained. The assignment of prohibited turns depends on heuristic cost
functions that attempt to minimize the average length of paths as well as maximize the dispersion
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(a) Up*/Down*. (b) TOR.

Figure 2.6: Up*/Down* and TOR routing from node 11 to node 14 in a 4× 4 mesh network with
one node missing. (An arrow indicates the direction of an up-link.)

of the disallowed turns.

By breaking a cycle of channel dependencies in different locations for the clockwise and coun-
terclockwise directions of the cycle, FX achieves better load balancing than Up*/Down* does.

We will refer to the strategy that was independently suggested in [143] and [71] (and later
included in [144]) as MRoots. MRoots calculates a separate DAG for each virtual layer. (The
concept of a virtual layer was explained in Section 2.2.2.) By distributing the root nodes of each
DAG throughout the topology, MRoots improves load balancing and reduces congestion when
compared to Up*/Down*.

L-Turn introduces two new directions, left and right, in addition to up and down, and defines a
DAG which includes edges with directions left-up, right-up, left-down and right-down. Deadlock
is avoided by prohibiting all turns towards a left-up channel. Moreover, an additional restriction
is needed to break cycles of channel dependencies that do not include any left-up channel. When
compared to Up*/Down*, L-Turn achieves better load balancing and shorter paths due to a better
distribution of prohibited turns. A related routing algorithm called Right-Down Last Turn (R-
Turn) was introduced in [112], and both L-Turn and R-Turn were further elaborated on in [111].

For TBTP, which was proposed for Gigabit Ethernet [206], guarantees are given that 50% is the
maximum fraction of prohibited turns in any topology. When compared to Up*/Down*, TBTP
is reported to disallow around 10% fewer turns. On the other hand, the newer SCB algorithm
provides a tighter guarantee (33%) on the maximum fraction of prohibited turns.

Although its main strength is perhaps as a static fault tolerance mechanism for meshes and tori,
Segment-Based Routing is usually considered a topology agnostic routing algorithm (see e.g. [75]).
It divides the topology into smaller autonomous units, referred to as segments, such that the (bidi-
rectional) turns to prohibit can be appointed independently for each segment.

Like the routing algorithms described above, the strategies recently presented in [135], [260]
and [157] base deadlock-freedom on turn prohibition. The routing algorithm presented in [135]
targets nano-scale on-chip environments and reduces the storage space required for routing in-
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formation when compared to Up*/Down*. The Tree-Turn model presented in [260] assigns six
different directions to the communication channels of an interconnection network – as opposed to
Up*/Down* and L-Turn which assign two and four directions, respectively. According to [260],
a routing algorithm based on the Tree-Turn model performs better than Up*/Down* and L-Turn
perform. In [157] a methodology is presented for developing a class of routing algorithms referred
to as zone-ordered label-based routing algorithms. This class of routing algorithms also includes
existing algorithms such as Up*/Down* and L-Turn.

Another approach to deadlock-free topology agnostic routing depends on VCs for avoiding cy-
cles of channel dependencies (in some cases, computation of a spanning tree or DAG is also needed).
This group of algorithms includes such approaches as Layered Shortest Path (LASH) [144, 218],
Transition-Oriented Routing (TOR) [200], LASH-TOR [217], and Descending Layers [119]. In
general, shortest path routing can be supported, and the paths could for instance be computed in
accordance with Dijkstra’s shortest path algorithm [60].

LASH distributes the paths of an interconnection network over a number of virtual layers, such
that none of the layers include any cycle of channel dependencies. This is the basic mechanism
for ensuring a deadlock-free routing function. LASH is a main subject of Chapter 4, and a more
thorough explanation of the algorithm is given there.

Whereas LASH forwards a packet within the same virtual layer all the way from its source to
destination, LASH-TOR allows a transition from a layer l to the next higher layer, l + 1, wherever
required to avoid a cycle of channel dependencies in l. Thus, compared with LASH, LASH-TOR
normally achieves a reduction of the number of virtual layers needed for deadlock avoidance.

TOR, which plays an important role in Chapters 5 and 6, calculates a DAG in the same manner
as Up*/Down* does. Its calculation of paths is, however, fundamentally different from that of
Up*/Down*. TOR calculates a path without regard to the underlying DAG. For TOR, the purpose
of the DAG is solely to identify the breakpoints – the turns where cycles of channel dependencies
must be broken. As with Up*/Down*, the breakpoints are the down-link to up-link turns. TOR
prevents deadlock by requiring that when a packet crosses a breakpoint (traverses from a down-link
to an up-link) it makes a transition to the next higher VC. Figure 2.6 illustrates the differences
in path calculation between TOR and Up*/Down*, using the route from node 11 to node 14 as
an example. For Up*/Down* (Figure 2.6(a)) the shortest path through node 15 is prohibited by
a down-link to up-link turn. This turn is allowed for TOR (Figure 2.6(b)), but requires a VC-
transition.

Descending Layers is based on a similar principle as TOR. The combination of deadlock avoid-
ance and flexible path calculation is enabled by allowing a packet to transfer from a virtual layer k

to the next lower layer k − 1 when a restricted turn is crossed. Alternatives to pure Up*/Down* for
defining the turn-restrictions are discussed. Variants of Up*/Down* may be used, where different
turn-restrictions are applied in different virtual layers in order to reduce the number of restricted
turns. Another possibility is the use of L-Turn.

Many of the routing algorithms above are thoroughly discussed and evaluated in [75]. As
opposed to these algorithms, Adaptive Trail [182] and Minimal Adaptive [212] are examples of
topology agnostic routing algorithms that exclusively operate in an adaptive mode. The deadlock
avoidance mechanism of the former is based on Eulerian trails, whereas the latter relies on escape
channels.
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2.8.2 Selected reconfiguration methods

As explained in Section 2.6, deadlock is a potential risk when a routing function is to be replaced
while a system is in operation. The easiest solution is to stop accepting application traffic into the
interconnection network while the routing function is being replaced – an approach taken by static
reconfiguration strategies (see e.g. [31, 190, 204, 233]).

This thesis is more focused towards dynamic reconfiguration strategies. In an attempt to pro-
vide a better service to running applications, such strategies allow traffic to be injected into the
network during a change-over from an existing routing function (Rold) to a succeeding routing
function (Rnew). Thus, dynamic reconfiguration strategies in general require sophisticated dead-
lock avoidance mechanisms, although approaches such as [152] which depends on deadlock recov-
ery have also been proposed.

The strategies referred to as Partial Progressive Reconfiguration (PPR) [36] and Close Graph-
based Reconfiguration (CGR) [185,187] are based on the Up*/Down* routing algorithm, and both
restore a correct Up*/Down* DAG from a DAG that has been rendered incorrect by a topology
change. PPR changes the direction of a subset of the edges of the DAG through a sequence of partial
routing table updates, and is only useful in distributed routing systems. CGR restricts the new
Up*/Down* DAG such that packets belonging to Rold and Rnew can coexist in the network without
causing deadlocks, and thereby supports an unaffected network service during a reconfiguration
process. Neither PPR nor CGR requires VCs to achieve deadlock-freedom. Both methods depend
on relatively complicated procedures to establish Rnew, however.

Double Scheme [179] avoids deadlock during a reconfiguration process by utilizing two sets of
VCs in order to separate packets routed according to Rold from packets routed according to Rnew.
Each set of VCs accepts application traffic in turn while the other is being drained and reconfigured.
Double Scheme can be used between any pair of routing algorithms. However, in order to avoid
deadlock, Double Scheme generally requires a number of available VCs that resemble the sum of
the number of VCs demanded by Rold and Rnew.

Overlapping Reconfiguration (OR) [139, 140] is a versatile reconfiguration method that can
be used between any pair of routing algorithms. It ensures in-order packet delivery, and does
not depend on the availability of VCs. For deadlock avoidance OR depends on special packets,
called tokens, which prevent ordinary packets that follow different routing functions from mixing.
Originally, OR could only be applied in distributed routing systems. However, in Chapter 5 we
propose a solution that also allows use of OR in source routing systems. OR has been categorized
both as a dynamic reconfiguration method (in [140]) and as a static reconfiguration method with
overlapping phases (in [139]). For this thesis, the functionality of OR is the important aspect, not
its categorization. Nevertheless, according to the definitions of static and dynamic reconfiguration
used in Section 2.6, OR falls into the dynamic reconfiguration category. (Section 2.6 emphasized
whether or not application traffic is accepted into the network at all times.) A more in-depth
description of OR is given in Chapter 5.

Some mechanisms, such as NetRec [19], Agent NetReconf [6, 7], LORE [235], and Sky-
line [138] attempt to restrict a reconfiguration process to part of the topology. NetRec, Agent
NetReconf, and LORE are dynamic reconfiguration methods designed for distributed routing sys-
tems. Skyline is not a reconfiguration method in itself. It is rather an auxiliary mechanism for
reconfiguration of Up*/Down* routed interconnection networks. Skyline singles out a confined
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part of the topology where a complete reconfiguration must be performed, and can thereby support
faster reconfiguration processes.

NetRec is not tied to a particular routing algorithm, and does not depend on the availability of
VCs. With NetRec, the reconfiguration process affects a confined region around each component
fault. Included in this region are the immediate neighbours of a faulty component and the in-
termediate components traversed to reestablish the connections among the immediate neighbours.
Within the region a number of messages are exchanged in order to update the routing tables, and
during this update application traffic is not accepted.

Agent NetReconf is fundamentally similar to NetRec, but uses autonomous mobile agents
rather than message exchange. Furthermore, its complexity is reduced. In [7], Agent NetReconf
was enhanced to handle a situation where a new fault occurs during an ongoing reconfiguration.

LORE depends on virtual layers for deadlock avoidance while rerouting packets around the
area defined as affected by a fault. Like OR, LORE supports in-order packet delivery during a
reconfiguration process.

The dynamic reconfiguration methods referred to above are general approaches that are not tied
to a particular interconnection network technology. The approaches presented in [257] and [25],
on the other hand, target the InfiniBand technology. In [257], a realization of Double Scheme
in InfiniBand, solely utilizing standardized properties, is demonstrated. For an Up*/Down* routed
interconnection network based on InfiniBand, [25] covers the entire management process, from the
detection of a topology change up to and including the change of routing function. The solutions
presented are in accordance with the InfiniBand specification, and the reconfiguration strategy
included (which is referred to as “pseudo-dynamic”) achieves deadlock-freedom by disallowing a
limited set of turns.

2.8.3 Selected processor allocation strategies

For the contiguous version of the distributed Leak [194, 195] processor allocation strategy, the
following allegory of leaking water is used to illustrate the main concept. An amount of water,
equivalent to the requested number of nodes, leaks out from an unallocated starting node, through
other unallocated nodes, until the requested number of nodes are covered by water. Thus, Leak
supports partitions of arbitrary shapes, and thereby reduces the fragmentation problem. Traffic-
containment is not ensured when DOR is used, however. (For the communication experiments
of [194], XY-routing was used in combination with a non-contiguous version of Leak.) In [194,
195], Leak mainly seems to be directed towards mesh and torus topologies. The basic principles of
the strategy resemble a traditional breadth-first search, however, and a processor allocation strategy
applying a breadth-first search around an unallocated node would not be restricted to a particular
topology.

To the best of our knowledge, few of the existing contiguous processor allocation strategies are
independent of topology. Therefore, for lack of contiguous topology agnostic strategies, we also
include non-contiguous topology agnostic strategies in the following paragraphs.

The Generic Algorithm presented in [123] strives for compact partitions. It is a polynomial
time approximation of the NP-hard [79] problem of selecting a given number of nodes from a
defined set of nodes, while minimizing some distance metric between the selected subset of nodes.
The Generic Algorithm is not tied to a specific topology, but generally expects distances to satisfy
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the triangle inequality. Non-contiguous partitions are allowed.
Random [137] is a non-contiguous processor allocation strategy that allocates the requested

number of nodes to a parallel job without regard to their relative location. Thus, no attempt
is made to achieve a compact partition. A likely result is a significant interference between the
traffic of concurrent jobs. Random, as a fragmentation-free processor allocation strategy, is used in
Chapter 6 to indicate the upper limit for resource utilization.
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Chapter 3

Research methods

An important part of the development of a new solution for a particular problem (for instance
within processor allocation, deadlock-free routing and reconfiguration – the research areas of inter-
est in this thesis) is an evaluation of the performance of a new method relative to the performance of
existing methods. Furthermore, an evaluation of a method’s sensitivity towards certain parameters
may be needed.

Three main alternative approaches exist for undertaking a performance evaluation – analytical
modelling, simulation and measurement [108]. The design of an analytical model normally in-
volves considerable simplifications, and when using analytical modelling the accuracy of the results
of a performance evaluation is expected to be low [108]. The systems considered in this thesis are
relatively large and complex, and due to an in general limited scalability of analytical models we do
not expect such models to be useful for our studies. A performance evaluation based on measure-
ments depends on access to a relevant computing system where new and existing solutions could
be implemented and their performance measured. Some of the solutions investigated in this thesis
depend on mechanisms that are not available in current hardware. Furthermore, the investments
related to purchase and maintenance of the necessary amount of relevant hardware for interconnec-
tion network research are prohibitive. Thus, for the interconnection network research community
performance evaluation by simulation is a common choice. We also chose simulation for the per-
formance evaluations of this thesis, and our simulator models are described in Section 3.1.

Our simulation experiments were run on a Condor [50] cluster available at the University of
Oslo [241]. Statistics gathered during the simulations were dumped to text files. These files were
parsed by scripts written in the Perl programming language [205], and Gnuplot [82] was used to
plot the results.

A number of different metrics were applied for the studies included in this thesis. The relevant
metrics for each individual study are presented in Chapters 4, 5 and 6.

In order to get an overview of existing approaches to solve a given problem – including their
strengths and limitations – a literature study is needed in most research projects. Relevant litera-
ture for this thesis have mainly been obtained from full text libraries such as IEEE Xplore [103],
ACM Digital Library [5], SpringerLink [226], and CiteSeerx [47]. In addition, we have used the
Inspec [104] reference database. Most of these services are accessible via the University of Oslo
Library – Science Library, Informatics [242]. The library has also been helpful in providing infor-
mation that was not available on-line. Google Scholar [86] has been a useful tool in the search for
research papers.
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3.1 The simulator models

Two different discrete-event simulator models – the communication simulator and the allocation

simulator – are used in the performance evaluations of this thesis. The communication simulator is
used to model detailed packet transfer from a source processing node, via intermediate switches and
communication channels (possibly including storage in ingress and egress buffers of the switches),
towards a destination processing node. The allocation simulator is used to model the assignment
of a set of nodes (a partition), from the pool of available nodes, to each job in a series of incoming
jobs.

Both of the simulator models are developed in the J-Sim [240] environment. The models are
written in the Java programming language [109], and are built on top of the lowest layer of J-
Sim.1 This layer includes an implementation of J-Sim’s architecture of autonomous components
and simulation runtime environment. A simulation experiment is initialized by a seed obtained by
the random integer generator available in the java.util package.

Our simulator models support evaluation of interconnection networks with a number of dif-
ferent topologies. The solutions proposed in this thesis are topology agnostic and do not assume a
particular topology. Mesh and torus topologies (with or without component faults) have been used
in our simulation experiments.

Both the communication simulator and the allocation simulator measure time in cycles – an
abstract time unit. However, an allocation simulation typically represents jobs that may run for
seconds, minutes or hours, whereas a typical communication simulation could represent packet ex-
change over a few milliseconds. Some of the processor allocation experiments require evaluation of
internal communication among nodes that cooperate in executing a job. The different time-scales
of the two types of experiments make this task challenging. The completion of a significant number
of jobs is needed to obtain representative results for the allocation experiments, and the exchange
of a significant number of packets is needed to obtain representative results for the communication
experiments. In order to overcome these challenges, the allocation simulator outputs a given num-
ber of snapshots of currently allocated partitions. These snapshots are evenly spread out over the
data collection period, and are stored for subsequent input to the communication simulator. There,
packet-exchange experiments are performed only for this set of snapshots.

Sections 3.1.1 and 3.1.2 present more details of the communication and allocation simulator
models, respectively. (The detailed setup of each simulation experiment is described in Chap-
ters 4, 5 and 6.) Validation and verification of the simulator models are discussed in Section 3.1.3.

3.1.1 The communication simulator

The basic building blocks of our communication simulator are switches and processing nodes that
are connected by communication channels. For each experiment, the topology (including the size)
of the interconnection network and the number of virtual channels (VCs) available are set. The
mesh and torus topologies used in our experiments are implemented as indirect networks, where
one processing node is connected to every switch. The communication simulator supports faults of
both switch ports (communication channels) and entire switches, and various routing algorithms

1We do not use the network models offered by the higher layers of J-Sim, as these are mainly modelled on the
Internet.

42



and reconfiguration strategies are available.

A transparent synthetic workload model is applied in the experiments. A normal approxima-
tion of the Poisson distribution is used to decide the interarrival time of packets. This means that
the packet injection rate is decided by two parameters – mean and standard deviation – which
are input to a normal distribution for which any output value below 1 is set to 1. Several traffic
patterns (destination address distributions) are supported by the simulator model, and the traffic
pattern to use is a parameter in each experiment. In all of our experiments, packets are exchanged
solely between processing nodes belonging to the same partition. In many cases, such as for the
routing and reconfiguration experiments presented in Chapters 4 and 5, the entire system con-
stitutes a single partition. However, as described above, communication experiments for a set of
concurrent partitions are also supported.

In all of our experiments, the total size of a packet, including header and payload, is 256 bytes.
The size of the packet header is not specified, but assumed to be negligible compared to the size
of the entire packet. A packet size of 256 bytes is supported by such technologies as Dolphin
Express [122] (see e.g. [120]) and InfiniBand [105] (see e.g. [177]).

Virtual cut-through switching and credit-based flow control are implemented in the simulator
model. Switches are non-blocking, which means that packets heading for different egress ports are
not a hindrance to each other. In the cases where several packets are competing for the same egress
port, priority is given to the packet that has the earliest arrival time in its ingress buffer. Thus, a fair
scheduling policy is implemented.

A source processing node has a transmission queue per VC of finite size. This queue overflows
when the network cannot deliver packets at the rate they are injected, and the size of the queue is
set for each experiment.

For the packet size used, two cycles are needed to transmit an entire packet onto a communica-
tion channel. From the first bit of the header is transmitted onto the communication channel until
the entire header is received in the buffer at the other end of the communication channel, two cycles
are consumed. (Except, as discussed in Section 3.1.3, on the last leg of a packet’s route – from the
last switch towards the destination processing node – where only one cycle is consumed.) We as-
sume high capacity processing nodes, such that packets are immediately removed from the network
upon reaching their destination processing node.

The ingress and egress buffers per VC of a switch port apply first in, first out (FIFO) ordering,
and the size of these buffers is a simulation parameter. Let us assume that an egress buffer, eB, has
free space for at least one packet, and that no other packet is currently in transfer across the switch
fabric from an ingress buffer, iB, towards eB. Then, from the header of a packet is available at
the front of iB, one cycle is consumed for routing, arbitration and transfer of some initial bits of
the packet across the switch fabric and into eB, where transmission onto the next communication
channel could potentially start immediately. The transmission rate within a switch, from an ingress
buffer onto the internal switch fabric, equals the transmission rate onto an external communication
channel. This means that there is no speed-up within a switch, and that two cycles are needed for
transmitting an entire packet.

The length of the data collection period, a number of cycles, is set for each experiment. For most
of our experiments (an exception is found in Chapter 6), the steady-state behaviour of the system is
of interest. Thus, for these experiments, data collected during the initial transient period (while the
occupancy of buffers is increasing and the system has not yet reached a balanced condition) should
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not be included in the final statistics. Several approaches for deciding the length of the initial
transient period are discussed in [172] and [108]. In our experiments, two different approaches are
used. For the first experiments, mean latency was computed and collected for a moving window of
10 consecutive batches. Based on the formula for a least squares regression line given in [28], a line
representing this data set was identified. We assumed that the first occurrence of a zero or negative
value for the line’s gradient indicated the end of the transient period. However, in some cases, this
method seemed to suggest a duration of the initial transient period which was shorter than the
actual transient period. Therefore, for subsequent experiments another approach was used. This
approach simply involves setting a fixed length of the transient period which is significantly longer
than any transient period found by the first approach. No data are collected after packet generation
is stopped, while the final packets are drained from the interconnection network.

3.1.2 The allocation simulator

Main components of the allocation simulator are a job generator, a queue of infinite size of parallel
jobs awaiting execution, a first-come, first-served scheduler, and an allocation module. For a 4 × 4

mesh topology, Figure 3.1 illustrates the homogeneous environment assumed in our experiments,
where all the resources are equivalent and where single processors are the only type of resource
eligible for allocation. For simplicity, combined nodes are assumed.

Figure 3.1: The allocation simulator model.

A synthetic workload model is used in the experiments. The interarrival times of jobs into
the queue are exponentially distributed. Each job has certain resource requirements, which either
include a number of nodes, |R|, or a defined sub-mesh of a × b nodes. The value of |R| is drawn
from a uniform distribution with minimum size |R|min and maximum size |R|max. The values
of a and b are drawn from separate uniform distributions with minimum sizes amin and bmin and
maximum sizes amax and bmax, respectively.

Upon termination of a running job, or upon arrival of a new job (if the queue was previously
empty), the scheduler selects the first job(s) in the queue as the next candidate(s) for assignment of
nodes.

The allocation module runs one of the various processor allocation algorithms supported, and
attempts to localize a set of free nodes that meets the resource requirements of the scheduled job.
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We adopt the common assumption (see e.g. [127]) that, after a successful assignment of nodes to a
job, the job runs uninterruptedly until completion on this set of nodes. The running time is drawn
from an exponential distribution, and will be referred to as the job’s service time.

In our experiments, the nodes are interconnected in a mesh or torus topology. The input load

for a mesh or torus of width w and height h is
|R|mean × STmean

w × h × ITmean

(in accordance with [44]), where

|R|mean is the mean number of nodes requested by the jobs, STmean is the mean service time of
jobs, and ITmean is the mean interarrival time of jobs.

Each experiment runs until a number of jobs, given by a simulation parameter, have been
allocated and completed. Both the initial and final 10% of the observations are discarded in order
to exclude data collected during initial and final transient periods from the results. However, a
steady state can only be reached for input load levels less than or equal to 1. For higher load levels
the arrival rate of jobs is higher than the departure rate, and the number of jobs in the infinite queue
will increase until the generation of new jobs is stopped.

3.1.3 Validation and verification of the models

According to [108], validation of a simulator model involves an evaluation of how well the sys-
tem being modelled is represented, and, thus, to what extent the design of the model is based
on appropriate assumptions. Verification of a simulator model, on the other hand, is an assess-
ment of whether its implementation is of sufficient quality, that is, without serious programming
errors [108].

Our models have been verified through incremental testing and debugging during the develop-
ment process, where a number of serious and less serious programming errors were identified and
corrected. However, after our experiments were performed, we became aware of one remaining
implementation error in the communication simulator that has an influence on packet latency. For
the final communication channel traversed by a packet, the time consumption is only one cycle (not
two cycles as for the other communication channels) from the first bit of the header is transmitted
from the port of the final switch until the header is received by the destination processing node.
Due to this error, the latency registered for each packet is one cycle too short. However, as the
period of time that each packet occupies the communication channel is correctly set, the arrival
times of subsequent packets are not affected. For our experiments, the relative behavior of different
algorithms, as well as an algorithm’s sensitivity towards certain parameters (which are unaffected by
the implementation error), are of greater interest than absolute figures for latency. In summary, the
remaining implementation error is a constant error that does not affect our conclusions.

Part of the process of validating our simulator models involved a comparison of their output
with the output of other simulators. For instance, the relative performance of some existing rout-
ing algorithms, according to our communication simulator, was compared and found sufficiently
similar to the output of another simulator model2 already in use at Simula Research Laboratory.

One version of the communication simulator was implemented solely for the purpose of im-
proved modularity and parametrization, and is basically similar to the communication simulator
applied in this thesis. For this version of the communication simulator, after a careful calibration of
parameters a close match was established with throughput and latency results measured on a small

2This model was e.g. used in [161, 234].
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InfiniBand cluster available at Simula Research Laboratory.

In a confidential report submitted to the EU-funded SIVSS project [202] in 2005, an adapted
version of our communication simulator was compared to a simulator that was developed at Xyra-
tex [254] in order to support the development of a new Advanced Switching Interconnect [17,150]
switch. For the packet size used in our experiments, a high similarity between the throughput
results of the two models was demonstrated.

For some existing processor allocation algorithms, such as First-Fit and Best-Fit [262], system
utilization (or fragmentation) results found in the literature (see e.g. [137]) were compared and
found similar to the results output from our allocation simulator.

In the following, we include a discussion about some of the decisions that were made, both
regarding the development of the simulator models and the design of the experiments. Both the
communication and allocation simulators use simple synthetic workload models. Compared to
synthetic models, traces often constitute more realistic workloads, and could have further added
credibility to some of our conclusions. However, care must be exercised when using traces in or-
der to verify their relevance to the system under study. For instance, for the studies of processor
allocation presented in Chapter 6, a trace of job arrivals, job sizes, etc. from one data center or
supercomputer is not necessarily representative of the workload of another data center or super-
computer. To the best of our knowledge, representative traces do not exist for internal packet
exchange within the arbitrarily shaped partitions that we consider. It was stated in [136] that the
relative performance (the ranking) of the investigated allocation and scheduling algorithms was
similar regardless of whether a synthetic workload model or a trace was applied. We are mainly
interested in the relative performance of algorithms – not in absolute performance figures – and do
not expect that the use of traces would have significantly altered our conclusions.

Although multistage topologies such as fat-trees are widespread in several types of systems, we
also believe that meshes and tori are relevant topologies for our experiments. For the processor
allocation studies, the choice of mesh and torus topologies allows a comparison between our new
allocation strategies and a number of allocation strategies previously proposed for these topologies.
Mesh and torus topologies have advantages as networks can be expanded without requiring larger
switches, and communication channels can be kept short. Such topologies are often preferred for
on-chip networks [56, 124]. Furthermore, a significant share of the machines at the top of the
Top500 list of supercomputers [237] are based on torus topologies. Many current data centers
are based on the Ethernet technology [102, 206], and tree topologies are commonly used as they
match the spanning tree protocol [207] which is Ethernet’s original routing algorithm. As sug-
gested in [183], a simple modification of Ethernet’s flow control mechanism will enable use of the
topology agnostic routing algorithm LASH [144,218]. The use of LASH and other flexible routing
algorithms could facilitate a more widespread use of mesh and torus topologies in data centers based
on Ethernet.

In our communication simulator, two cycles are required for transmission of a 256-byte packet
onto a communication channel. Thus, the transmission rate of a communication channel is
128 bytes (1024 bits) per cycle. The corresponding transmission rate, tr, in gigabits per second

depends on the length of a cycle, cl, in nanoseconds (ns) as follows: tr =
1024

cl
. Thus, roughly,

in order to model for instance the data rate of the 10 Gigabit Ethernet technology [102], a cl of
102.4 ns could be assumed. On the other hand, for the absolute figures (e.g. for packet latency)
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output from our communication simulator to be fully representative of a particular interconnec-
tion network technology, the time consumption in various parts of the system should have been
further calibrated. As previously mentioned, our main focus is on relative performance rather than
on absolute figures of performance. Issues such as the acceptable running time of experiments and
the required accuracy of results were considered when the level of detail to include in our simulator
models was decided. Such considerations are generally needed in modelling activities.

The interface between the allocation simulator and the communication simulator comprises a
given number of snapshots of current partitions, which are output from the allocation simulator
for subsequent input to the communication simulator. Ideally, communication experiments should
be executed for every partition. Due to the different time scales of the two simulator models, and
the number of jobs that should be studied, such experiments would not finish within an acceptable
period of time. The chosen solution is a compromise that allows us to run long and detailed sim-
ulations of the exchange of packets for a set of snapshots. The main unfavourable consequence of
this arrangement is perhaps that, for the results output from the allocation simulator, any commu-
nication overhead is not reflected in the service time of a job, and neither in the queuing time of
subsequent jobs.

Using the already available ProcSimity simulator tool [252] could perhaps have been a reason-
able alternative to developing our own allocation simulator. In retrospect, this alternative could
have been more thoroughly considered. (Although we do not have indications that our conclusions
would have been influenced by the use of a different simulator tool.)

Our studies of processor allocation focus on the effect of the allocation strategy, in particular
on metrics such as system utilization and fragmentation. We are aware that, given an adequate mix
of job sizes, backfilling scheduling could also reduce fragmentation and improve the utilization of
a system’s resources. A backfilling scheduler allows smaller jobs to bypass larger jobs in the queue
under such conditions that the first job in the queue is not delayed – as in the Extensible Argonne
scheduling system (EASY) [133, 220] – or – as in more conservative approaches – that none of
the jobs ahead are delayed. A comparison of these two variants of backfilling is provided in [159],
whereas [70] discusses various theoretical and practical approaches to scheduling. Nevertheless, in
order to emphasize the effect of the allocation strategy, we apply a simple first-come, first-served
scheduler in our experiments.

As recommended in [108, 172], an experiment should be stopped when the desired level of
accuracy of the results (normally based on the width of confidence intervals) is ensured. However,
neither of our two simulator models includes an on-line calculation of confidence intervals that
could help deciding the running time of a simulation. Thus, as previously mentioned, each exper-
iment is stopped after the execution of a predetermined number of cycles or jobs. Thereafter, we
have to control, off-line, that the results have sufficient accuracy.
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Chapter 4

Routing

An important aspect of the operation of an interconnection network is the ability to identify a
routing function that allows efficient transport of packets from their sources to their destinations.
This chapter is mainly based on a study [224] that aims at enabling efficient routing in a specific
interconnection network technology – Advanced Switching Interconnect (ASI) [17, 150]. ASI is a
source routing technology that extends PCI Express [173]. PCI Express only supports communi-
cation within a system that consists of a single master processing node (which controls the commu-
nication) and a number of slave nodes. ASI addresses this limitation, and enables communication
between multiple autonomous processing nodes.

No particular routing algorithm was declared in the ASI specification [17]. A main goal of our
study is to identify a suitable routing algorithm for ASI among a large number of routing algorithms
available in the literature. Section 4.1 states a set of requirements for a routing algorithm to be used
with ASI. We demonstrate how one routing algorithm, Layered Shortest Path (LASH) [144, 218],
matches all of these requirements, and we recommend that LASH is used with ASI.

Section 4.2 discusses a number of issues related to realization of LASH in ASI, and Sec-
tions 4.4 and 4.5 include a performance evaluation. For instance, we investigate some static fault
tolerance characteristics of LASH. (This investigation is based on a confidential report submitted to
the EU-funded SIVSS project [202] in 2005.) Moreover, we propose and evaluate an optimization
of LASH with respect to route calculation for mesh topologies.

At the time our study was conducted, the ASI technology attracted much attention. Later, the
ASI specification process was discontinued. The results of our study are still of interest, however, as
the ASI technology is now incorporated in Dolphin Express [122].1 In addition, most of our con-
siderations regarding routing in ASI are also relevant for routing in InfiniBand [105]. In Section 4.3
we discuss how the requirements for a routing algorithm to be used with ASI are also reasonable
guidelines for selecting a routing algorithm to be used with InfiniBand. Moreover, we discuss how
a number of issues related to realization of LASH in ASI are also relevant for realization of LASH in
InfiniBand. These considerations – and the conclusion that LASH is also a highly suitable routing
algorithm for InfiniBand – had a significant impact on the inclusion of LASH in the OpenFabrics
Enterprise Distribution [163] software stack for InfiniBand.

Section 4.6 discusses related work and our contribution; Section 4.7 includes critical comments
regarding our own work; and Section 4.8 presents some remaining issues for future research.

1The technology is referred to as ASI throughout this chapter.
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4.1 Requirements to a routing algorithm for ASI

As ASI uses source routing (except for multicast), the routing algorithm must support a deter-
ministic routing approach. This requirement excludes purely adaptive algorithms such as Adaptive
Trail [182] and Minimal Adaptive [212], but includes algorithms such as Up*/Down* [199, 204]
and Transition-Oriented Routing (TOR) [200], which in principle support both deterministic and
adaptive routing.

The rest of this section presents and discusses the following set of additional requirements that
a routing algorithm for ASI should fulfil. The routing algorithm should be deadlock-free, support
shortest path routing, and require no transitions from one virtual layer to another. It should not assume

any particular topology, but nevertheless be highly efficient for regular topologies. We give reason for
each of these requirements, and demonstrate how all but one of the candidate routing algorithms
fall short of one or more of the requirements.

4.1.1 No assumptions on topology

ASI itself does not limit the choice of topology for an interconnection network, and neither should
its routing algorithm introduce such a limitation. Thus, a routing algorithm for ASI should be
topology agnostic.

Other arguments in favour of using a topology agnostic routing algorithm for ASI are related
to fault tolerance and incremental scalability. A topology agnostic routing algorithm can calculate
a connected routing function for any network topology, including an originally regular topology
with faulty switches or communication channels – given that the resulting topology is physically
connected. A topology specific routing algorithm, on the other hand, may not be usable for a non-
regular topology that results from faulty network components. Furthermore, a topology agnostic
routing algorithm allows flexibility with respect to an extension of a network or a join of different
networks, whereas a topology specific routing algorithm generally requires that the regularity of a
network topology is strictly maintained.

The requirement of topology agnosticism excludes such routing algorithms as Dimension-
Order Routing (DOR) [231] and those based on the Turn Model [80]. In [75] a thorough overview
and evaluation of topology agnostic routing algorithms are given. The most relevant topology ag-
nostic routing algorithms include Up*/Down*, Left-Up First Turn (L-Turn) [117], Flexible Rout-
ing (FX) [197], Multiple Roots (MRoots) [71, 143, 144], Segment-Based Routing [151]2, Smart
Routing [41], LASH, TOR, Descending Layers [119], and LASH-TOR [217]. All of these algo-
rithms were described in Section 2.8.1.

4.1.2 Deadlock-freedom

The deadlock issue is one of the main concerns in the design of a routing algorithm for an intercon-
nection network. Section 2.3 explained that interconnection networks are prone to deadlocks due
to their support of lossless communication (which typically requires enforcement of flow control
across each communication channel).

2Segment-Based Routing was published after our study [224] was performed, but is nevertheless included in this
thesis.
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According to [68], deadlock recovery mechanisms (see e.g [13, 116]), which discover and re-
solve – rather than avoid – deadlocks, are only usable if deadlocks occur infrequently and can be
endured. For ASI – an interconnection network technology designed to support various higher
layer protocols in diverse communication, storage and embedded systems – such an assumption
on the frequency and acceptability of deadlocks should not be made. A routing algorithm for ASI
should neither rely on mechanisms for deadlock prevention. In order to prevent deadlocks such
mechanisms allocate the resources to be used in advance, which may significantly limit the uti-
lization of a network’s resources [68]. Thus, a routing algorithm for ASI should comply with the
principles presented in [55], where it is stated that, for a deterministic routing function, an acyclic
channel dependency graph is a prerequisite for deadlock-freedom.

All of the topology agnostic routing algorithms listed in Section 4.1.1 are deadlock-free. Thus,
the requirement on deadlock-freedom alone does not exclude any of these algorithms. As explained
in Section 2.8.1, these algorithms take different approaches to deadlock-freedom. Up*/Down*,
L-Turn and MRoots base the calculation of deadlock-free paths on a spanning tree of the topology;
LASH and LASH-TOR use virtual channels (VCs); whereas TOR and Descending Layers use both
a spanning tree and VCs. Segment-Based Routing divides the topology into segments and applies
restrictions on turns independently for each segment, whereas Smart Routing uses heuristics and
greedily breaks cycles in the channel dependency graph.

4.1.3 Shortest path routing

In order to efficiently utilize an interconnection network’s resources, switch-based technologies such
as ASI should apply shortest path routing. Thus, the routing function should ensure that the path
provided from a source processing node s to a destination processing node d is no longer than the
shortest distance from s to d in the physical topology.

Among the topology agnostic routing algorithms listed in Section 4.1.1, LASH, TOR, De-
scending Layers and LASH-TOR can support shortest path routing – given that a sufficient num-
ber of VCs are available. Up*/Down*, L-Turn, FX, MRoots, Segment-Based Routing and Smart
Routing, on the other hand, do not support shortest path routing.

4.1.4 No transitions from one virtual layer to another

Recall from Section 2.2.2 that a virtual layer is a virtual network that consists of all the switches
and processing nodes of the physical network. In addition, the virtual layer includes a subset of the
VCs such that, for each physical communication channel, one VC in each direction belongs to the
virtual layer. (Also recall that a virtual layer is sometimes referred to as a layer for short.)

Up to 16 VCs for unicast traffic (8 ordered-only and 8 bypass-capable) are supported by the
ASI specification. In ASI, rather than letting each packet hold explicit information about VC-use,
each communication channel has a traffic class (TC) to VC mapping. A TC value is included in
the packet at the time of its creation and kept during its lifetime. For each communication channel
to traverse on a packet’s path from its source to destination, the VC to be used is decided by the
communication channel’s TC to VC mapping. This means that ASI cannot support deadlock
avoidance mechanisms where packets must perform transitions from one virtual layer to another.
This excludes routing algorithms such as LASH-TOR, TOR and Descending Layers.
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4.1.5 High efficiency for regular topologies

ASI supports arbitrary interconnection network topologies. Nevertheless, regular network topolo-
gies such as meshes, tori and fat-trees may in many cases be preferred. Thus, for a particular regular
topology, the topology agnostic routing algorithm chosen for ASI should ideally achieve similar
performance as a routing algorithm tailored to the topology. Furthermore, the chosen topology
agnostic routing algorithm should perform well for non-regular topologies that may result from
failing switches or communication channels of originally regular topologies.

Among the alternative topology agnostic routing algorithms listed in Section 4.1.1, LASH is the
only algorithm that has not been excluded by any of the previous requirements. Results presented
in [224] show that, for a uniform traffic pattern, LASH (in its original version) achieves a signifi-
cantly lower throughput than DOR achieves for a 6 × 6 mesh topology. However, the difference
in performance between DOR and LASH decreases for a pairwise traffic pattern, and both for a
neighbour and hotspot traffic pattern LASH performs slightly better than DOR. In Section 4.2.5
we introduce an optimization of LASH for mesh topologies which enables LASH to select the
same routes as DOR, and thus to achieve equal performance for any traffic pattern. The perfor-
mance evaluation presented in Sections 4.4 and 4.5 considers the optimization of LASH for mesh
topologies as well as some static fault tolerance qualities of LASH for mesh and torus topologies.

We conclude that LASH is a suitable routing algorithm for ASI. Issues related to realization of
LASH in ASI are discussed in Section 4.2.

4.2 Realization of LASH in ASI

Section 4.1 demonstrates that, whereas a number of existing algorithms do not meet the require-
ments stated for a routing algorithm to be used with ASI, one algorithm – LASH – fulfils all of
these requirements. Thus, we recommend LASH as the routing algorithm to be used with ASI.

For our purposes, LASH is a deterministic shortest path routing algorithm within the category
of Layered Routing [144]. Layered Routing is an approach that uses virtual layers to obtain topology
agnostic, deadlock-free routing in interconnection networks.

In the following, we explain how LASH works, how it can be implemented in ASI, and elab-
orate on how it fulfils the requirements stated in Section 4.1. We propose a service differentiation
mechanism, an optimized route selection for mesh topologies, and study some static fault tolerance
qualities of LASH.

In order to compute the routing function, LASH first explores the network topology and iden-
tifies the shortest paths between all pairs of source and destination switches3. Second, to ensure
deadlock-freedom, these shortest paths are distributed among virtual layers, such that no layer con-
tains any cyclic channel dependency. One virtual layer is available initially, and additional layers are
put to use on demand. A packet is forwarded in the same virtual layer all the way from its source
to its destination.

LASH is applicable for source routing interconnection network technologies such as ASI, where
the complete path from the source to destination is decided by the source processing node and
included in the header of each packet. (LASH is also applicable for interconnection network tech-

3One or more source processing nodes are attached to a source switch, whereas one or more destination processing
nodes are attached to a destination switch.
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ASI ROUTING REQUIREMENT LASH PROPERTY

N    T 

D- E     - -
  

S   U D’   

  

N      



A       

     

H     O   

  DOR  

Table 4.1: How LASH fulfils the requirements to a routing algorithm for ASI.

nologies based on distributed routing, such as InfiniBand.) Table 4.1 summarizes how LASH fulfils
the requirements to a routing algorithm for ASI that were stated in Section 4.1.

Figure 4.1: The LASH routing algorithm.

The use of LASH in ASI requires implementation of the following three fundamental steps that
are also outlined in Figure 4.1:

1. LASH determines the shortest paths between all pairs of source and destination switches,
using a suitable algorithm such as Dijkstra’s [60]. There may be several alternative shortest
paths from a source to a destination. In order to balance the traffic load, LASH may randomly
select one of the paths, or a more advanced traffic balancing concept could be applied. (See
e.g. [41, 118, 196] for examples of traffic balancing algorithms.)

2. LASH ensures deadlock-freedom by analyzing channel dependencies in order to ascertain
which of the paths can be placed in the same virtual layer. For each shortest path, LASH
searches for a virtual layer where the path may be included without introducing a cyclic
channel dependency. If a virtual layer is found, the path is assigned to it. Otherwise, a
new virtual layer is created, and the path is included there. Section 4.2.2 discusses how the
resulting number of virtual layers depends on such factors as topology and network size.

3. At this point LASH has settled the number of virtual layers required. However, the numbers
of paths assigned to each virtual layer may differ. Without a layer balancing mechanism,
densely filled layers may experience performance degradation compared to scarcely filled lay-
ers. In order to achieve as high performance as possible, the last (and optional) step of the
LASH algorithm balances the number of paths in each virtual layer. This ensures similar
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levels of head-of-line blocking within the layers, and is feasible since most of the paths can
be assigned to more than one layer.

4.2.1 Complexity

In the selection of a routing algorithm, its computational complexity is an important concern.
According to [144], for an interconnection network that includes N switches, the complexity of
LASH is N2 × l × N , where N2 is the number of pairs of source and destination switches; l is
the number of virtual layers; and N comes from inspection of cyclic channel dependencies. Tests
performed in [144] indicated that, for current computers, the relatively high complexity of LASH
is not an issue for interconnection networks consisting of less than 256 switches. We note that
the size of ASI fabrics is limited by the length of a packet’s routing structure (turn pool) of only
31 bits [17].

However, if the complexity of LASH should become a problem, an alternative mode of oper-
ation of LASH offers reduced complexity at the expense of a slightly increased number of layers.
Here, LASH reduces the requirement of a single shortest path from each source to each destination,
allowing for a simultaneous evaluation of a tree of shortest paths from a single source to multiple
destinations. In [218], this mode is referred to as directed acyclic graph granularity, whereas the
mode explained above is referred to as single source-destination granularity.

4.2.2 Need for virtual layers

Interconnection network technologies traditionally provide VCs for three main purposes: quality
of service, deadlock-free routing, and improved network performance (due to reduced head-of-line
blocking). ASI provides a limited number of VCs, and, according to [17], these primarily seem to
be intended for the provisioning of quality of service. Thus, occupation of an unreasonable amount
of these resources on the purpose to achieve deadlock-freedom is not acceptable if different levels of
service are needed.

The number of virtual layers required by LASH mainly depends on the topology, size and con-
nectivity of an interconnection network. For irregular topologies, the need for layers has been thor-
oughly investigated in [144, 218, 234]. For an interconnection network consisting of N switches,

the theoretical upper bound on LASH’s layer requirements given in [218, 234] is as high as
N

2
.

However, it is indicated that a tighter upper bound may exist, and the simulation experiments
included in [144, 218, 234] suggest than the practical number of virtual layers needed by LASH
is moderate. Figure 4.2(a) [234] depicts how the need for layers varies with the number of com-
munication channels for an irregular network consisting of 32 switches. When the number of
communication channels is around twice the number of switches, the requirement for virtual layers
is at the highest. For this degree of connectivity, Figure 4.2(b) [234] shows the number of virtual
layers required as the number of switches increases. It was stated in [234] that the need for virtual
layers appears to increase logarithmically as the number of switches grows – and, thus, that a modest
number of layers are needed, even for large irregular interconnection networks.

Let us now turn our attention to some well known regular topologies. For a fat-tree, being
representative of multistage networks, there are no cyclic channel dependencies between the shortest
paths in the absence of faults. Hence, LASH requires only a single layer.
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(a) The need for virtual layers as connectivity increases
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(b) The need for virtual layers as the number of
switches, N , increases. The number of communication
channels is 2N .

Figure 4.2: The need for virtual layers as a function of connectivity and size of irregular topolo-
gies (numbers obtained from [234]).

For tori, as with irregular topologies, the need for layers generally increases as the size of a
network grows. Our simulation experiments indicated that for a 6 × 6 torus LASH needs at most
4 layers; for an 8 × 8 torus 5 layers are normally required (6 layers are required in rare cases);
whereas for a 12 × 12 torus 8 layers are normally required (9 layers are required in rare cases).
For a two-dimensional mesh of arbitrary size, on the other hand, our simulations show that LASH
requires at most 2 layers.

The virtual layer requirements stated above for some regular topologies are based on the as-
sumption that the switches are interconnected via arbitrary port numbers. In Section 4.2.5, we
suggest an optimization for mesh topologies that enables LASH to select the same paths as DOR.
When using this optimization, LASH requires only one virtual layer in a mesh topology.

For interconnection networks with originally regular topologies, failing switches and commu-
nication channels may have an impact on LASH’s requirements of virtual layers. In [132], only a
moderate increase (or no increase at all) in the required number of layers was found when LASH’s
layer requirements were analyzed for a 18 × 18 torus with 0, 1, 2 and 3% of its communication
channels failing. For up to 8 switch faults, our own simulation experiments indicated that at most
4 virtual layers are needed for an 8 × 8 and 16 × 16 mesh (where 2 layers are needed in the fault-
free case). For an 8 × 8 torus, at most 6 layers are needed (which is not a higher layer-requirement
than occasionally observed in the fault-free case).

4.2.3 Deadlock-freedom and quality of service

When using LASH, a packet traverses an ASI fabric with a fixed TC-assignment. Section 4.1.4
described how each communication channel in the ASI fabric has a TC to VC mapping. It must
be ensured that the TC to VC mappings are consistent with LASH’s usage of layers. In order to
maintain deadlock-freedom, each switch in the fabric must support a minimum number of VCs
equal to the number of virtual layers required by LASH.

ASI specifies TCs for quality of service provisioning, and the level of service given to a packet
depends on the packet’s TC-value. In order to provide service differentiation when LASH is used,
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VIRTUAL LAYER PRIORITY-CLASS

0 0
1 0
2 1
3 1
4 2
5 2
6 3
7 3

Table 4.2: Example of a layer to priority-class mapping in a case where LASH needs two virtual
layers for deadlock avoidance and eight VCs are available.

we suggest to introduce a layer to priority-class mapping. In the cases where LASH needs less than
half of the available number of VCs to ensure deadlock-freedom, at least two different priority levels
can be provided for service differentiation. However, in the cases where LASH settles for a single
layer, no such novel mappings are required for service differentiation.

As an example, let us assume that in a system where eight VCs are available LASH needs
two virtual layers in order to ensure deadlock-freedom. Then, four different priority levels can be
supported. Table 4.2 illustrates a possible layer to priority-class mapping for this case.

4.2.4 Static fault tolerance

Topology agnostic routing algorithms, such as LASH, do not assume that an interconnection net-
work has a specific topology. An important consequence is that a topology agnostic routing algo-
rithm can compute a connected routing function for a topology that results from faults in switches
and communication channels of an originally regular topology (provided that the resulting topol-
ogy is physically connected). If such faults are present at system start-up, no special precautions are
required for calculation and application of the routing function. Thus, topology agnostic routing
algorithms in general, and LASH in particular, inherently provide static fault tolerance.

As a static fault tolerance mechanism, an important quality of a topology agnostic routing
algorithm is the ability to sustain an acceptable performance as switches and communication chan-
nels of an interconnection network fail. A gradual deterioration of performance – rather than a
collapse – as an increasing number of faults occur is often referred to as a graceful performance
degradation. Section 4.1.5 stated that a routing algorithm for ASI should also perform well for
a non-regular topology that may result from failing network components in an originally regular
topology. For a set of static fault scenarios, Sections 4.5.1 and 4.5.3 investigate how the perfor-
mance of LASH is affected by an increasing number of failing switches in a mesh or torus topology.

4.2.5 Route optimization for mesh

Section 4.1.5 stated that, for a particular regular topology, the topology agnostic routing algorithm
chosen for ASI should ideally achieve similar performance as a routing algorithm tailored to the
topology. Even though LASH is a topology agnostic routing algorithm, it is possible to configure
LASH and connect a mesh in such a way that the selected paths correspond to the paths found
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by DOR. In that case, a single virtual layer will suffice to ensure deadlock-freedom for a fault-free
mesh.

The optimization strategy can be generalized to meshes of any dimension. Let us for the purpose
of illustration consider a mesh with two dimensions, X and Y. Then, the main idea is, for every
visited switch, to search for a path in the X-dimension before the Y-dimension. The first path found
corresponds to the DOR (XY) path in a fault-free mesh. Assume that the four lowest port numbers
in every switch are 0, 1, 2 and 3. Then, the optimization could, for instance, be implemented in
ASI as follows. Connect the two-dimensional mesh such that the negative X-port is labelled 0, the
positive X-port is labelled 1, the negative Y-port is labelled 2, and the positive Y-port is labelled 3.
Configure LASH such that a shortest path from a source to a destination is searched for in increasing
port number order in every visited switch, and select the first path found. This path complies with
DOR (XY) in a fault-free mesh. (A search in decreasing port number order, on the other hand,
would find a path that complies with YX.) With this configuration the topology agnosticism of
LASH is kept, and LASH can still be used with other topologies – including a mesh topology with
faulty switches or communication channels. (In that case a single virtual layer may no longer be
sufficient, however.) Sections 4.5.2 and 4.5.3 evaluate the route optimization.

4.3 Relevance for InfiniBand

Most of our considerations regarding routing in ASI are also relevant for routing in InfiniBand.
Section 4.3.1 discusses how the requirements for a routing algorithm to be used with ASI are
also reasonable guidelines for selecting a routing algorithm to be used with InfiniBand. Moreover,
Section 4.3.2 discusses how a number of issues related to realization of LASH in ASI are also
relevant for realization of LASH in InfiniBand.

4.3.1 Guidelines for selecting a routing algorithm

In Section 4.1 we argued that a routing algorithm for ASI should support deterministic routing, be
topology agnostic and deadlock-free; provide shortest paths and high efficiency for regular topolo-
gies; and not require transitions from one virtual layer to another.

ASI is a source routing technology and does not support adaptive routing. Although InfiniBand
is a distributed routing technology, adaptive routing is not supported in the current InfiniBand spec-
ification. Mechanisms to enable adaptive routing in InfiniBand have been proposed, however (see
e.g. [148]).

A routing algorithm for InfiniBand should be topology agnostic for the same reasons as a routing
algorithm for ASI should be topology agnostic: The InfiniBand technology itself does not limit the
choice of topology for an interconnection network, and a topology agnostic routing algorithm is
advantageous with respect to fault tolerance and incremental scalability. (Nevertheless, fat-trees
and tori are much used topologies for current interconnection networks based on InfiniBand, and
topology specific routing algorithms are commonly applied.)

A routing algorithm for InfiniBand should be deadlock-free. Recall that the usability of dead-
lock recovery mechanisms depends on an assumption that deadlocks occur infrequently and that
running applications are able to endure a deadlock. Such assumptions are unreasonable for Infini-
Band which – like ASI – supports different higher layer protocols in various types of computing
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systems. Deadlock prevention mechanisms should neither be applied as such mechanisms may
significantly limit the utilization of an interconnection network’s resources.

Efficient utilization of an interconnection network’s resources is also a main argument for using
shortest path routing in switch-based technologies such as InfiniBand (and ASI).

A fixed service level (SL) is assigned to a packet in InfiniBand (in like manner as a fixed TC
value is assigned to a packet in ASI). The InfiniBand specification supports 16 SLs and 16 virtual
channels (called virtual lanes – VLs). Each InfiniBand switch holds an SL to VL mapping, and
the VL onto which a packet will be forwarded is found by a lookup based on the packet’s SL,
the input physical channel used, and the output physical channel to be used. As opposed to ASI,
InfiniBand allows transitions from one virtual layer to another. Nevertheless, the use of a routing
algorithm that depends on such transitions are challenging in InfiniBand. In [200] a thorough
explanation is given of how mapping conflicts may occur – and be resolved – when using the TOR
algorithm with InfiniBand. (Recall that TOR depends on virtual layer transitions for deadlock
avoidance.) A mapping conflict may arise in a switch between packets that carry the same SL; that
arrive at the switch in different VLs of the same input physical channel; and that will depart the
switch in different VLs of the same output physical channel. Extra SLs are consumed in order to
resolve mapping conflicts, and shortest path routing can only be supported if a sufficient number
of SLs are available. Results presented in [200] demonstrate how the number of required SLs
grows as the size of interconnection networks (with irregular topologies) increases. The InfiniBand
specification supports only a limited number of SLs. These are also intended for quality of service
provisioning (so that a packet is given a level of service in accordance with the SL value included in
its header). Thus, using a routing algorithm that consumes a large share of the available SLs may
obstruct the support of service differentiation. As explained in [200], mapping conflicts could have
been avoided if the InfiniBand specification also included the input VL in the set of factors that
decides the output VL. This would have improved InfiniBand’s support of routing algorithms that
depend on virtual layer transitions for deadlock avoidance.

As many computing systems are based on interconnection networks with regular topologies,
a (topology agnostic) routing algorithm to be used with InfiniBand should be highly efficient for
regular topologies as well as for non-regular topologies that may result from faults in originally
regular topologies.

Section 4.1 showed how one of the evaluated routing algorithms – LASH – fulfils all of the
requirements stated for an algorithm to be used with ASI. The discussion presented in this section
shows that these requirements are also reasonable guidelines for a routing algorithm to be used
with InfiniBand. Thus, we conclude that LASH is also a highly suitable routing algorithm for
InfiniBand.

4.3.2 Realization of LASH in InfiniBand

In Section 4.2 we discussed a number of issues related to realization of LASH in ASI: computational
complexity; need for virtual layers; deadlock-freedom and quality of service; static fault tolerance
abilities; and a route optimization for mesh topologies.

The computational complexity of a routing algorithm is equally important for the InfiniBand
technology as for the ASI technology. The complexity of LASH is relatively high – O(N3 × l),
where N is the number of switches in a network and l is the number of virtual layers required.
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In comparison, the computational complexity of the TOR algorithm [200] that was proposed for
InfiniBand is O(N3) – or O(N2) if a simpler mechanism is applied to balance traffic. Section 4.2.2
explained that the number of virtual layers required by LASH is normally moderate. Thus, the
complexity of LASH is practically the same as the complexity of TOR (with its original traffic
balancing mechanism). Whereas the size of an interconnection network based on ASI is limited by
the length of a packet’s routing structure, InfiniBand can support large networks. (The number of
processing nodes on an InfiniBand network is limited by the 16 bit local identifier packet header
field.) If the complexity of LASH should become a problem for a large InfiniBand network, recall
from Section 4.2.1 that an alternative mode of operation exists for LASH. This mode of operation
offers reduced computational complexity at the expense of a slightly increased number of virtual
layers.

Section 4.2.2 explained that the number of virtual layers required by LASH mainly depends
on the topology, size and connectivity of an interconnection network. Recall that for irregular
topologies, as well as for tori, the need for virtual layers generally increases as the size of networks
grows. The main difference between InfiniBand and ASI with respect to LASH’s virtual layer
requirements is related to ASI’s lack of support for large networks.

We explained in Section 4.2.3 that, in order to ensure deadlock-freedom in a network based
on ASI, the number of available VCs cannot be less than the number of virtual layers required
by LASH. Moreover, the TC to VC mappings must be consistent with LASH’s usage of layers.
Corresponding requirements apply to the number of available VLs and to the SL to VL mappings
of a network based on InfiniBand.

In order to provide service differentiation when LASH is used with InfiniBand, a virtual layer to
priority-class mapping similar to the one suggested for ASI (see Section 4.2.3) could be introduced.
Then, at least two different priority levels could be provided for InfiniBand in the cases where
LASH needs less than half of the available number of VLs.

LASH is a topology agnostic routing algorithm and does therefore inherently provide static
fault tolerance. Sections 4.5.1 and 4.5.3 investigate how the performance of LASH is affected by
an increasing number of static switch faults in mesh and torus topologies. The results presented are
relevant both for InfiniBand and ASI.

Section 4.2.5 describes a route optimization for mesh topologies that allows LASH to identify
the same set of paths as the DOR algorithm identifies. This route optimization is equally relevant
for InfiniBand and ASI.

4.4 Experiment setup

We have suggested LASH as an appropriate routing algorithm for ASI. In order to evaluate the
performance of LASH in an ASI fabric, an ASI simulator model was built on top of the generic
communication simulator described in Section 3.1.1. The ASI simulator model implements the
main characteristics of ASI, such as its buffer organization and flow control, as well as its lack of
support for transitions from one virtual layer to another. However, in order to obtain results that
are of relevance also outside ASI, ASI’s limitation on the length of a packet’s routing structure (turn
pool) of 31 bits is ignored. This enables simulation of medium and large sized topologies.

Our considerations regarding routing in ASI were subsequently found to be highly relevant for
routing in InfiniBand, and we concluded that LASH is also a suitable routing algorithm for In-
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finiBand (see Section 4.3). We explained above that our ASI simulator model implements ASI’s
buffer organization and flow control, and does not support transitions from one virtual layer to
another. The particular bypass-capable VCs of ASI are not used in our experiments, and – like
ASI – InfiniBand uses credit-based flow control. Furthermore, LASH does not require transitions
from one virtual layer to another. Thus, we believe that the results of our evaluation of the per-
formance of LASH in ASI are also representative of the performance of LASH in InfiniBand. The
most important objection is perhaps that – as explained in Section 2.5 – for a distributed routing
technology (such as InfiniBand) packets transmitted from different source processing nodes towards
a common destination processing node are bound to share the same path from any common inter-
mediate switch towards the destination, whereas for a source routing technology (such as ASI) the
paths are independent. Nevertheless, when the optimization of LASH is used, the same set of paths
is computed by a source routing technology and a distributed routing technology.

We have studied LASH’s need for virtual layers under the assumption that a layer lsd (from
a source s to a destination d) and a layer lds (for the return path from d to s) can be chosen
independently. Some technologies, such as implementations of InfiniBand, demand that lsd = lds,
and this requirement was also stated in the ASI specification. According to [132], when demanding
lsd = lds an increase should be expected in LASH’s layer-requirement, especially for topologies such
as tori which consist of numbers of rings. We notice, however, that in the cases where LASH needs
only a single layer for lsd 6= lds (such as when the optimization described in Section 4.2.5 is used
in a mesh), a single layer also suffices for lsd = lds.

We consider an 8 × 8 and 16 × 16 mesh topology, as well as an 8 × 8 torus topology. In
addition to the fault-free case, four different static fault-scenarios are simulated, where 1, 2, 4 and 6
randomly selected switches are faulty at system start-up.4 In the following we refer to a processing
node connected to a non-faulty switch as active.

The two metrics used in this study quantify the average throughput per active processing
node and the average packet latency, and are referred to as Thrn and Lat, respectively. Thrn =
packets

m
, where packets are the total number of packets received over the data collection period

of 100 000 cycles by the m active processing nodes in a system. Lat =

∑
Latpkt

packets
, where Latpkt

is the latency for a single packet. That is, the time that elapses from when the packet is generated
and injected into the transmission queue of the source processing node until the packet header is
received by the destination processing node. Each experiment is repeated 30 times (with a different
seed), and the mean values of these repetitions are presented together with their 95% confidence
intervals.

We study two different traffic patterns – a uniform destination address distribution, and a
hotspot traffic pattern where 50% of the packets are destined for a randomly selected hotspot node
whereas the remaining 50% of the packets are uniformly distributed.

The transmission queue of a source processing node has space for 12 packets per VC, and
overflows when the network cannot deliver packets at the rate they are injected. Both an ingress
and egress buffer of a switch port can hold 6 packets per VC, and an ingress VC implements virtual
output queuing.

An initial set of simulation experiments was performed in order to determine the maximum

4A test is included to ensure that the faults do not disconnect the topology.
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numbers of virtual layers needed by LASH for the regular mesh and torus topologies as well as for
the non-regular topologies that result from switch faults. The output of these experiments (which
was also briefly summarized in Section 4.2.2) was used as input to the subsequent experiments.

The first of our main sets of experiments considers LASH’s qualities as a static fault tolerance
mechanism. The route optimization suggested in Section 4.2.5 is not applied, and LASH randomly
selects one path from the set of possible shortest paths from a source to a destination. For these
experiments, at most 4 virtual layers are required for an 8 × 8 and 16 × 16 mesh, whereas for an
8 × 8 torus at most 6 virtual layers are required. These numbers of layers are at the disposal of
LASH for all levels of switch faults (including the fault-free case).

The second set of experiments compares LASH to DOR. In these experiments, the same num-
ber of VCs as required by LASH is also made available for DOR. Without the optimization de-
scribed in Section 4.2.5, LASH needs 2 virtual layers in the mesh topologies. When the optimiza-
tion is applied, only a single virtual layer is needed in the fault-free case. However, as indicated
in Section 4.2.5, a single virtual layer may no longer be sufficient in the presence of faults. The
third set of experiments evaluates LASH’s qualities as a static fault tolerance mechanism when route
optimization is applied. In this case, our experiments suggest that 2 virtual layers are sufficient for
the levels of switch faults under study.

4.5 Results

Being a topology agnostic routing algorithm, LASH inherently supports static fault tolerance. In
Section 4.5.1 we present a study on how the performance of LASH is affected by an increasing
number of static switch faults in an initially regular mesh or torus topology. Moreover, Section 4.5.2
evaluates the optimization of LASH proposed for mesh topologies in Section 4.2.5, which allows
the paths computed by LASH to comply with the paths computed by DOR. Finally, Section 4.5.3
considers how this optimization affects some fault tolerance properties of LASH. We cannot show
the results from all of our experiments, but have selected and included a set of representative plots.

4.5.1 Static fault tolerance

In this section, we present a study of how the performance of LASH is affected by an increasing
number of switch faults in an originally fault-free mesh or torus topology. We consider the fault-free
case, as well as 1, 2, 4 and 6 randomly selected switch faults. We apply a set of traffic load levels,
ranging from an insignificant load up to well above network saturation.

For a uniform traffic pattern, Figures 4.3(a) and 4.3(b) show Thrn and Lat, respectively, for
a 16 × 16 mesh. Figure 4.3(a) shows that, as the number of failing switches increases, the knee-
point (saturation point) of the Thrn curve gradually occurs at a lower traffic load level (per active
processing node), and we observe a virtually proportional decrease in the maximum reached Thrn.
Figure 4.3(b) shows a corresponding development for Lat, which, above the knee-point, gradually
increases as additional switches become faulty. Thus, the observed performance degradation is
graceful.

For hotspot traffic the results are different. Figure 4.3(c) shows that Thrn increases slightly as a
higher number of switches fail in an originally 8 × 8 mesh. Likewise, Figure 4.3(d) demonstrates a
decrease in Lat as switches disappear.
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(a) Thrn, 16 × 16 mesh, uniform traffic.
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(b) Lat, 16 × 16 mesh, uniform traffic.
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(c) Thrn, 8 × 8 mesh, hotspot traffic.
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Figure 4.3: Using LASH: Effects of an increasing number of switch faults for mesh topologies.
4 virtual layers are used.

Figure 4.4 confirms that, both for uniform and hotspot traffic, the results for an 8× 8 torus are
similar to the results for the mesh topologies. In the following, we attempt to explain the differences
in the results observed for the hotspot and uniform traffic patterns.

A comparison of Figure 4.4(a) with Figure 4.4(c) illustrates that saturation occurs at a signif-
icantly lower traffic load level for hotspot traffic than for uniform traffic. This is expected as, for
the hotspot traffic pattern, 50% of the packets are directed towards a single destination, which may
cause significant congestion already for a relatively low traffic load. For the uniform traffic pattern,
on the other hand, the packets are evenly distributed towards all destinations, and a higher traffic
load is sustainable. When switches disappear, the total capacity of the interconnection network is
reduced, although the actual reduction depends on the location of the faults. Thus, for uniform
traffic, the observed (graceful) performance degradation is reasonable. Also, when switches fail,
the processing nodes attached to them become inactive, resulting in a decreased traffic load in the
network. This may alleviate congestion which, particularly for a hotspot traffic pattern, is an im-
pending risk. For hotspot traffic, the positive effects of alleviated congestion resulting from switch
faults seem to compensate for the negative effects of reduced network capacity. This explains the
increase in performance observed for hotspot traffic as additional switches fail.
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(a) Thrn, uniform traffic.
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(b) Lat, uniform traffic.
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(c) Thrn, hotspot traffic.
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Figure 4.4: Using LASH: Effects of an increasing number of switch faults for an 8 × 8 torus.
6 virtual layers are used.

4.5.2 Route optimization

In this section, we compare the performance of LASH – with and without the route optimization
described in Section 4.2.5 – with the performance of DOR. First, we let LASH randomly select
one path from a set of possible paths from a source to a destination. In this case two virtual layers
are needed, and we refer to LASH as “LASH-2VLs”. Second, the route optimization is applied
for LASH. Then, only a single virtual layer is needed, and for this scenario we refer to LASH as
“LASH-OPT-1VL”. Likewise, we refer to DOR, when granted two virtual layers, as “DOR-2VLs”
and, when granted only a single layer, as “DOR-1VL”.

For the uniform traffic pattern, Figures 4.5(a) and 4.5(b) show Thrn and Lat, respectively, for
LASH-2VLs, DOR-2VLs, LASH-OPT-1VL and DOR-1VL in a fault-free 8 × 8 mesh topology.
We observe how DOR-2VLs achieves significantly higher Thrn and significantly lower Lat than
LASH-2VLs does (remember that route optimization is not applied for LASH). This is not sur-
prising, as DOR is known to achieve very good performance for uniformly distributed traffic. The
route optimization allows LASH to select the exact same set of paths as DOR uses – the XY-paths in
these experiments. Thus, as demonstrated in Figures 4.5(a) and 4.5(b), LASH-OPT-1VL achieves
the same performance as DOR-1VL achieves for uniformly distributed traffic. We observe how
the performance of LASH-OPT-1VL and DOR-1VL is slightly inferior to that of DOR-2VL. The
reason is that, when compared to using only a single virtual layer, the use of two virtual layers re-
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(a) Thrn, 8 × 8 mesh, uniform traffic.
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(b) Lat, 8 × 8 mesh, uniform traffic.
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(c) Thrn, 16 × 16 mesh, hotspot traffic.
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Figure 4.5: A comparison of LASH with DOR. LASH is shown with route optimization (LASH-
OPT-1VL) and without route optimization (LASH-2VLs), for which 1 and 2 virtual layers are
needed, respectively.

duces head-of-line blocking within each virtual layer. With the optimization, a single virtual layer is
sufficient for LASH to ensure deadlock-freedom in a fault-free mesh topology. Nevertheless, more
virtual layers may be granted in order to boost performance.

For the hotspot traffic pattern, Figures 4.5(c) and 4.5(d) show Thrn and Lat, respectively, for
LASH-2VLs, DOR-2VLs, LASH-OPT-1VL and DOR-1VL in a fault-free 16 × 16 mesh topol-
ogy. We observe that Thrn achieved by LASH-2VLs and DOR-2VLs are similar (although slightly
higher for LASH-2VLs for the very highest traffic load levels). On the other hand, Lat is signifi-
cantly higher for LASH-2VLs than for DOR-2VLs for traffic load levels above network saturation.
This suggests that the route optimization for LASH is advantageous also for other traffic patterns
than for uniformly distributed traffic. When comparing LASH-OPT-1VL and DOR-1VL with
DOR-2VLs, we observe no difference in Thrn, but perhaps even a slightly lower Lat for the two
former. Thus, in this case, an additional virtual layer does not improve performance. This suggests
that head-of-line blocking within each virtual layer becomes an insignificant factor compared with
the heavy network congestion resulting from the hotspot traffic pattern itself.
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4.5.3 Static fault tolerance when using route optimization

Section 4.5.1 demonstrated that LASH is able to provide static fault tolerance in mesh and torus
topologies, and that a graceful performance degradation results from an increasing number of switch
faults. For fault-free mesh topologies, Section 4.5.2 showed that, by using the route optimization
suggested in Section 4.2.5, LASH can provide the same set of paths as DOR, and thereby achieve
the same performance. When compared to DOR, a significant advantage of LASH is that, even
when the optimization is applied, it is usable – without special precautions – for a non-regular
topology that may result from network component faults in a mesh topology.5 In this section, we
study how the performance of LASH with route optimization is affected by an increasing num-
ber (1, 2, 4, 6) of switch faults.

For uniform traffic, Figures 4.6(a) and 4.6(b) show Thrn and Lat, respectively, for an 8 × 8

mesh topology. When compared to the fault-free case, a significant performance degradation is
observed when a single switch fault has occurred, both for Thrn and Lat. In particular, the knee-
point – which indicates network saturation – occurs at half the traffic load (per active processing
node). However, as additional switch faults occur, the performance degradation is more gradual.

For hotspot traffic, Figures 4.6(c) and 4.6(d) show Thrn and Lat, respectively, for a 16 ×

16 mesh topology. For Thrn, the differences between the fault-free case and any of the fault-
scenarios are negligible. Lat, on the other hand, tends to increase as more switches fail. (For traffic
load levels well above saturation, relatively large variations can be observed, however.) Recall from
Section 4.5.1 that, for the hotspot traffic pattern, there is a tradeoff (with respect to performance)
between the reduced network capacity and the alleviated congestion that result from switch faults.
For the 16×16 mesh, Figure 4.6(d) indicates that reduced network capacity is the dominant factor
when LASH’s route optimization is applied. For the 8 × 8 mesh, on the other hand, alleviated
congestion seems to be more dominant (see Figure 4.7(b)).

In the rest of this section, we refer to LASH with route optimization as “optimized LASH” and
LASH without route optimization as “original LASH”. For an 8 × 8 mesh topology, Figure 4.7
compares Thrn for the optimized LASH with Thrn for the original LASH, both for the fault-free
case and in the presence of 1, 4 and 6 switch faults.6 As previously stated, the original LASH needs
at most 4 virtual layers for these scenarios. Thus, in order to get a fair comparison, the optimized
LASH is also granted 4 virtual layers for the experiments presented here.

Figure 4.7(a) shows the results for the uniform traffic pattern. As we already know from Sec-
tion 4.5.2, the optimized LASH achieves a significantly higher performance than the original LASH
achieves in the fault-free case. However, already for a single switch fault, the saturation point oc-
curs at a somewhat higher traffic load level (per active processing node) for the original LASH than
for the optimized LASH. (Although for even higher load levels, the Thrn curve for the optimized
LASH seems to grow past the Thrn curve for the original LASH.) In the cases of 4 and 6 switch
faults, Thrn for the original LASH stabilizes at a higher level than Thrn for the optimized LASH,
although the difference is not dramatic. Thus, for systems where a traffic pattern resembling the
uniform pattern is expected, the decision of whether to apply route optimization for LASH in-
volves a tradeoff between a higher performance in the fault-free case and a reduced performance in
the presence of switch faults. However, the advantage of the route optimization in the fault-free

5We assume that the topology remains physically connected.
6For improved clarity, the curve representing 2 switch faults (which did not add further information) was not

included in the plots.
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(a) Thrn, 8 × 8 mesh, uniform traffic.
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(b) Lat, 8 × 8 mesh, uniform traffic.
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(c) Thrn, 16 × 16 mesh, hotspot traffic.
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Figure 4.6: Using LASH with route optimization: Effects of an increasing number of switch faults
for mesh topologies. 2 virtual layers are used.

case appears to be more significant than the disadvantage in the case of switch faults.

Figure 4.7(b) shows the results for the hotspot traffic pattern. As was also observed in Sec-
tion 4.5.1, Thrn increases as switch faults occur (due to alleviated congestion when fewer process-
ing nodes generate traffic). Contrary to the observations for uniform traffic, the differences in Thrn

between the original and optimized versions of LASH are negligible for hotspot traffic.

4.6 Related work and our contribution

The ASI specification [17] did not prescribe a particular routing algorithm. Thus, guidelines were
needed in order to select an appropriate routing algorithm for this – at the time our study was
conducted – new and promising interconnection network technology. We stated a number of cri-
teria that a routing algorithm for ASI should fulfil. These are presented in Section 4.1, where we
argue that a routing algorithm for ASI should support deterministic routing, be topology agnostic
and deadlock-free; provide shortest paths and high efficiency for regular topologies; and not require
transitions from one virtual layer to another. Based on these criteria, we evaluated a number of
routing algorithms and finally recommended one algorithm – LASH, which fulfils all of the crite-
ria – to be used with ASI. Section 4.1 gives reason for why each of the other algorithms fall short
of the requirements that a routing algorithm for ASI should fulfil.
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(a) Thrn, uniform traffic.
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(b) Thrn, hotspot traffic.

Figure 4.7: A comparison of LASH with route optimization (prefixed “OPT-” ) and without route
optimization (no prefix) for an 8 × 8 mesh. 4 virtual layers are used.

We are not aware of any other studies than our own that have performed a systematic evaluation
of routing algorithms in order to find an appropriate routing algorithm for ASI. In [236] it was
stated that FRoots, a fault-tolerant routing mechanism based on Up*/Down* routing, is applicable
for ASI. We do not disagree that FRoots can be used with ASI. However, as it is tied to Up*/Down*
routing, FRoots does not meet the criteria stated in Section 4.1.3 that shortest path routing should
be supported.

Some studies of congestion control (see e.g. [66, 78, 121]) and quality of service (see e.g. [149,
184]) for ASI are available in the literature. Although few studies have directly focused on effi-
cient routing in ASI, some of the papers that target ASI fabric management also consider routing.
Management procedures for assimilating topological changes in ASI fabrics are the main topics
of [188, 189]. These studies assume that Up*/Down* routing (which does not meet the criteria
stated in Section 4.1.3) is used. In [188] all paths are calculated by a centralized entity (called
Fabric Manager in ASI). In order to reduce path computation time, [189] proposes a distributed
approach, where each processing node computes the set of paths for which it is the source. We
notice that such a distributed path calculation is more suitable for Up*/Down* than for LASH.
For Up*/Down*, a directed acyclic graph representing the topology and turn-restrictions can be
disseminated to all the processing nodes (a new data structure must be defined for ASI, however).
For LASH, on the other hand, a distributed approach would complicate the assignment of paths to
virtual layers.

The performance of LASH in comparison to the performance of alternative routing algorithms
has been assessed by previous studies. Moreover, some general properties of LASH, such as its
computational complexity and need for layers, have also been investigated. In addition, realiza-
tion of LASH in Ethernet has been discussed. The deterministic LASH algorithm was first pro-
posed in [218], where the need for virtual layers was evaluated. LASH was further elaborated
on in [144,234], where different variants of LASH (also supporting multiple paths and adaptivity)
were presented and their performance compared to existing routing algorithms such as Up*/Down*,
MRoots and Escape Routing [213]. Regarding the complexity of LASH, the most explicit assess-
ment and discussion are found in [144]. LASH has been proposed as a routing algorithm for the
Gigabit Ethernet technology [206]. In [183], a modification of Ethernet’s flow control mecha-
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nism is proposed in order to support the use of LASH. Furthermore, the performance of LASH
is compared to (and found significantly better than) the performance of Ethernet’s spanning tree
protocol [207] and the Tree Based Turn Prohibition algorithm [174].

Previous studies [144, 218, 234] mainly focused on assessing LASH’s requirements of virtual
layers for irregular topologies. Our study, as well as [132]7, considered LASH’s requirements of
virtual layers for regular topologies such as fat-trees, meshes and tori. (For the latter two, faulty
network components were also taken into account.)

Our study discusses main principles regarding realization of LASH in ASI, without touching
upon implementation details. Virtual layers are relatively straightforwardly realized by utilizing the
TC to VC mapping supported by ASI. However, when more than one virtual layer is needed by
LASH for deadlock avoidance, a service differentiation mechanism depending on TCs cannot be
used as originally intended. For such cases, we propose a novel layer to priority-class mapping
which, given a sufficient number of available VCs, supports service differentiation. In [149], a
framework for quality of service provisioning in ASI is proposed, covering such issues as traffic clas-
sification (according to bandwidth, latency and jitter), scheduling and admission control. However,
in [149] ASI’s original TC to VC mapping is assumed.8

We study the performance of LASH as a static fault tolerance mechanism, a quality of LASH
that has not previously been thoroughly investigated. We show that LASH supports a graceful
degradation of performance as an increasing number of switches fail. The focus of [132], which
followed our studies, was on the effect of communication channel failures on LASH’s requirements
of virtual layers in a two-dimensional torus topology.

In a mesh topology, for uniformly distributed traffic in particular, the original version of LASH
could not compete with DOR with respect to performance. We proposed an optimization which al-
lows LASH to select the same paths, and thus achieve the same performance, as DOR in a fault-free
mesh topology. (A single virtual layer is then sufficient for LASH). Moreover, with the optimiza-
tion, LASH’s abilities as a static fault tolerance mechanism are maintained. Our findings regarding
the static fault tolerance abilities and the route optimization possibilities of LASH are also relevant
for usage of LASH outside ASI.

The route optimization of LASH for mesh topologies was suggested by us in [224]. Later, the
same principle was applied to quadratic two-dimensional torus topologies in [132]. For such k-ary
2-cube topologies, [132] shows that only 3 virtual layers are needed for any k > 3. Recall from
Section 2.5.1 that the use of DOR in torus topologies depends on an additional mechanism, such as
VCs (see [55]) or Bubble flow control (see [35]), for the avoidance of deadlock. For interconnection
network technologies that allow transitions from one virtual layer to another, DOR would only
need 2 VCs in order to ensure deadlock-freedom for k-ary 2-cubes where k > 3. However, as ASI
does not support such transitions, 3 VCs are the minimum requirement for DOR as well as for
LASH.

Other topology agnostic routing algorithms can also calculate paths that correspond to the
paths calculated by DOR in a mesh topology. We remember from Section 2.8.1 that Flexible Rout-
ing (FX) [197] improves the Up*/Down* algorithm by permitting a cycle of channel dependencies
to be broken in different places for the clockwise and counterclockwise directions. In [197], this
allowed FX to identify the DOR (XY) paths in a two-dimensional mesh. However, FX cannot

7A Master’s thesis for which the author of this PhD thesis was one of the supervisors.
8Traffic classes are called service classes in [149].
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guarantee shortest path routing in arbitrary topologies, and does therefore not meet the require-
ment of a routing algorithm for ASI stated in Section 4.1.3. Like LASH, Descending Layers [119],
Transition-Oriented Routing (TOR) [200] and LASH-TOR [217] can also calculate any set of
paths, including a set of paths corresponding to DOR for a mesh topology. However, Descending
Layers and TOR generally implement VC-transitions also for the XY or YX paths in a mesh (de-
pending on their underlying directed acyclic graphs). As previously explained, since these algo-
rithms depend on VC-transitions for deadlock avoidance, they do not comply with the requirement
of a routing algorithm for ASI stated in Section 4.1.4.

High-level discussions on the suitability of LASH as a routing algorithm for InfiniBand [105]
were included in [144, 218, 234]. (In addition, [144] briefly mentioned a potential use of LASH
in ASI.) After our studies of routing in ASI were performed, our considerations were found also to
be highly relevant for routing in InfiniBand. The requirements stated for a routing algorithm to
be used with ASI also provide directions for selecting a routing algorithm to be used with Infini-
Band (see Section 4.3.1). Furthermore, various issues related to realization of LASH in ASI are also
relevant for realization of LASH in InfiniBand (see Section 4.3.2). In addition, as explained in Sec-
tion 4.4, the results of our evaluation of the performance of LASH in ASI are also representative of
the performance of LASH in InfiniBand. Our considerations were taken into account when LASH
was included into the OpenFabrics Enterprise Distribution [163] software stack for InfiniBand.
Practical experience has confirmed our conclusion that LASH is also a suitable routing algorithm
for InfiniBand.

A recently proposed topology agnostic routing algorithm called Deadlock-free single-source-
shortest-path (DFSSSP) [62] is also suitable for InfiniBand. DFSSSP utilizes the principles of
LASH on the purpose to realize deadlock-freedom for the previously proposed Single-source-
shortest-path (SSSP) routing algorithm [99] which aims to optimize load balancing. It is proven
in [62] that for an arbitrary network topology the problem of deciding the minimum number of
virtual layers that ensures deadlock-freedom is NP-complete [79]. DFSSSP introduces new heuris-
tics to distribute a set of shortest paths across a set of virtual layers in such a way that no virtual
layer includes a cyclic channel dependency. The virtual layers are processed in turn, and every cyclic
channel dependency is broken by selecting one of the channel dependencies that forms the cycle
for removal. (All the paths that give rise to the selected channel dependency are relocated to the
next higher virtual layer.) Results presented in [62] show that, when compared to LASH, DFSSSP
reduces virtual layer requirements as well as computation time. DFSSSP increases the demand for
memory space, however.

Another topology agnostic routing algorithm that builds upon the principles of LASH is In-
FIR [208] which handles a single fault dynamically and supports shortest paths. InFIR is partly
based on an algorithm that targets the Internet (where packet deadlock is generally not an issue),
and the principles of LASH were applied to ensure deadlock-freedom in an interconnection net-
work environment.

4.7 Critique

When our studies were initiated in 2005, ASI was a promising interconnection network technol-
ogy with support from a significant part of the high performance computing industry. Contrary
to expectations, ASI did not become widespread, and the specification process was discontinued.
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Nevertheless, the ASI technology is now incorporated in Dolphin Express, and is therefore still of
interest. Furthermore, as previously explained, our considerations regarding routing in ASI also
turned out to be relevant for routing in InfiniBand. LASH is now available in the OpenFabrics
Enterprise Distribution software stack for InfiniBand, where it has proved to be a useful routing
algorithm.

Apart from a relatively high computational complexity, the main drawback of LASH is, in our
opinion, that its requirements of virtual layers are not fully predictable. According to [218,234], the

theoretical upper bound on the number of virtual layers required by LASH is as high as
N

2
for an

interconnection network of N switches, although experiments indicate that a moderate number of
virtual layers are normally sufficient [144, 218, 234]. The number of virtual layers required mainly
depends on the topology, size and connectivity of an interconnection network. The requirement
of virtual layers also depends on which path is selected (from a set of possible paths), and on the
sequence that the selected paths are arranged into the virtual layers. In addition, for faulty regular
topologies, the number of virtual layers needed by LASH depends on the location of the failed
switches and communication channels. The DFSSSP algorithm (which was recently presented
in [62]) builds upon main principles of LASH, but introduces new heuristics that reduce virtual
layer requirements as well as computation time.

4.8 Future work

Although a number of studies have focused on LASH (see e.g. [144,183,218]), some issues are still
open. The perhaps most important remaining challenge concerns LASH’s usage of virtual layers.
Improved predictability is desirable – both with respect to the number of virtual layers required, and
with respect to the particular virtual layer that a path between a source s and a destination d is placed
in. The latter may be an issue of particular importance in the case of a network reconfiguration. A
reconfiguration could cause a change of virtual layer for a path between s and d. When using the
OpenFabrics Enterprise Distribution for InfiniBand, for example, such a change of virtual layer in
general necessitates a restart of an application that runs on a set of processing nodes which includes
s and d. (Unless the mechanism recently proposed in [90] – and made more efficient in [89] – is
used. This mechanism, which is implemented as a research prototype, supports a dynamic update
of the data structures in the processing nodes – including the data structures holding SL values – and
is transparent to running applications.)

An important objective for future research is to provide some kind of guarantee on LASH’s usage
of virtual layers, both for regular topologies such as tori and – even more challenging – for arbitrary
topologies. Recall that [62] proves that for an arbitrary topology the problem of deciding the
minimum number of virtual layers that ensures deadlock-freedom is NP-complete [79]. Also recall
that the DFSSSP routing algorithm [62], which builds upon main principles of LASH, introduces
new heuristics to distribute a set of shortest paths across a set of virtual layers in such a way that no
virtual layer includes a cyclic channel dependency. When compared to LASH, the new heuristics
introduced by DFSSSP presuppose storage of more information (concerning which paths that give
rise to which channel dependencies). The approach taken by DFSSSP should be further studied
in order to assess its usefulness as a means to improve the predictability of LASH’s usage of virtual
layers.
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Chapter 5

Reconfiguration

Replacement of an interconnection network’s routing function sometimes becomes necessary, for
instance in a case where the routing function has been disconnected due to a topology change.
Whether such a topology change is planned or unplanned is unimportant in this thesis. Recall
from Section 2.6 that a number of network management functions (fault detection, topology dis-
covery, path computation and reconfiguration) are involved in order to restore a connected routing
function. This chapter focuses on the final step of the restoration process – the reconfiguration.

A reconfiguration comprises the change-over from one routing function to another, an oper-
ation which, as explained in Section 2.6, is prone to deadlock. Some reconfiguration strategies
include a rigid deadlock avoidance mechanism which causes performance degradation, such as in-
creased latency and decreased throughput, during the routing change-over. For the provisioning
of a predictable network service, an efficient reconfiguration strategy is crucial. Such a reconfigu-
ration strategy minimizes the performance-penalties imposed on a running application during the
transition from one routing function to another. The research presented in this chapter aims at
improving the availability of efficient reconfiguration strategies.

In Section 5.1, we expand the area of application for one of the most versatile and efficient
reconfiguration strategies available in the literature – Overlapping Reconfiguration (OR) [139,140].
Previously, OR was only applicable for distributed routing systems. We propose an adaptation of
OR in order to enable using it also in source routing systems. For source routing systems, we also
propose an optimization of the OR algorithm in order to improve the network service offered to
running applications during a reconfiguration. Furthermore, we study how different degrees of
synchronization of the start of a reconfiguration process affect the performance of OR. Section 5.1
is based on [221].

In Section 5.2, we present a new reconfiguration strategy, RecTOR, which ensures deadlock-
freedom during a reconfiguration process without causing performance degradation. RecTOR is
applicable for both source and distributed routing systems, is based on a simple concept, is easy
to implement, and assumes Transition-Oriented Routing (TOR) [200] which supports excellent
performance. Section 5.2 is based on [222].

Both of the reconfiguration strategies focused in this chapter allow application traffic into the
network during the reconfiguration, and thus fall within the category of dynamic reconfiguration.1

Throughout this chapter, we refer to the routing functions in use before and after a reconfiguration

1Although in [139], OR was categorized as a static reconfiguration scheme with overlapping phases.
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process as Rold and Rnew, respectively. Each of the routing functions is assumed to be deadlock-
free. Furthermore, we refer to packets that exclusively follow either Rold or Rnew as packetsold or
packetsnew, respectively.

Following the presentation of our research, Section 5.3 discusses related work and our contri-
bution, Section 5.4 includes critical comments regarding our work, and Section 5.5 presents issues
for further study.

5.1 OR for source routing environments

OR [139,140] is probably the most versatile of the reconfiguration strategies found in the literature.
It ensures in-order packet delivery, does not require virtual channels (VCs), nor is it designed for
a particular topology, technology or pair of routing algorithms. OR is the only reconfiguration
scheme for lossless networks that possesses all of these qualities.

Previously, OR was only available for systems that apply distributed routing. The design of a
general2 reconfiguration scheme is usually more complicated for a source routing technology (such
as Dolphin Express [122]) than for a distributed routing technology (such as InfiniBand [105]),
as a distributed routing environment is more flexible with respect to packet routing. In a source
routing system, the path of a packet is decided and included in the packet’s header by the source
processing node, and can thus not be changed by an intermediate switch. In a distributed routing
system, on the other hand, each of the intermediate switches traversed from a source to destination
processing node decides the next hop of a packet’s path.

We propose an adaptation of the OR algorithm in order to expand its area of application to
include source routing environments. Section 5.1.1 first describes the original OR algorithm as
designed for distributed routing systems, whereas Section 5.1.2 presents the adaptations which
enable use in source routing systems. Furthermore, targeting source routing systems, Section 5.1.3
introduces an optimization of the OR algorithm that aims to reduce the performance penalties
experienced by running applications during a reconfiguration. The performance impact of this
optimization is evaluated in Sections 5.1.5 and 5.1.6.

OR uses a special packet called a token to control that deadlock does not occur during the
transition from one routing function to another. Section 5.1.4 discusses how the injection of tokens
by different traffic sources may be more or less synchronized, and Sections 5.1.5 and 5.1.6 evaluate
how performance is affected by different degrees of synchronization.

5.1.1 The original OR algorithm

Before we propose adaptations of OR in order to enable using it in source routing systems, this
section describes the essence of the original OR algorithm [139, 140] which was proposed for
distributed routing systems.

OR strictly requires that a packet is routed the entire path from its source to its destination
according to only one routing function. We already mentioned that both Rold and Rnew are by
themselves deadlock-free, and that OR uses a special packet called a token to prevent that deadlock
occurs during the transition from Rold to Rnew. The task of the token is to separate packetsold

2We refer to a reconfiguration scheme which is not developed for a particular interconnection network technology
as a general reconfiguration scheme.
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from packetsnew on each (physical or virtual) communication channel, such that each channel first
transmits packetsold, then the token, and finally packetsnew. This means that tokens must propagate
through an interconnection network in accordance with the channel dependency graph of Rold.
The core of the OR algorithm is the following set of rules which governs the propagation of tokens
through the network. These rules control the behaviour of injection channels (communication
channels from source processing nodes to switches – the points where packets are injected into the
interconnection network); input channels of switches; and output channels of switches:

• Each injection channel inserts a token to indicate the boundary between the last packetold and
the first packetnew originating from this channel.

• A switch input channel routes packets according to Rold until the token is processed, and
thereafter routes packets according to Rnew. After having processed the token, the input
channel may dispatch packets solely to output channels which have already transmitted their
token. Packets bound for output channels that have not yet transmitted the token are tem-
porarily held back.

• A switch output channel, co, must not transmit the token until all input channels, ci, for which
channel dependencies3 exist according to Rold from ci to co, have processed the token. If no
such channel dependency exists for an output channel, it could transmit the token as soon as
a token has been processed by any of the switch’s input channels.

5.1.2 Adaptations for use in source routing systems

In this section, we propose adaptations of the OR algorithm in order to enable using it in sys-
tems that apply source routing. In [139, 140], proofs are presented that OR provides deadlock-
free reconfiguration, and the central statements in [140] are included in Lemma 1, Lemma 2 and
Corollary 1. With adaptation of OR to a source routing environment in mind, we extract two
invariants as fundamental for ensuring deadlock-freedom during the reconfiguration process. In-
variants A and B below correspond to Lemma 2 and Corollary 1, respectively, of [140]. Given
that Invariants A and B are obeyed by the OR algorithm adapted for source routing environments,
deadlock-freedom follows from Lemma 14, Lemma 2, and Corollary 1 of [140].

Invariant A A packet must be routed from its source to its destination according to only one of
the routing functions (either Rold or Rnew).

Invariant B Any communication channel must initially transmit packetsold, thereafter the token,
and finally packetsnew.

For the practical adaptation of OR to source routing environments, let us return to the set
of rules summarized in the three bullet points of Section 5.1.1. These constitute the core of the
OR algorithm, and regulate the behaviour of injection channels from traffic sources as well as

3Remember from Section 2.3 that if a packet may use a channel cb immediately after a channel ca there is a channel
dependency from ca to cb.

4Lemma 1 of [140] states that – under the assumption that all packets follow only one of the routing functions (ei-
ther Rold or Rnew) – some deadlocked set of packets resulting from a reconfiguration from Rold to Rnew must include
packetsold permanently blocked by packetsnew.
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the behaviour of input and output channels of switches. In the following we consider each of
these bullet points, and, where necessary, recommend adaptations that enable use of OR in source
routing environments. In order to guarantee deadlock-free reconfiguration processes, it is essential
that the resulting algorithm complies with Invariants A and B above.

We immediately observe that, for a source routing system, Invariant A is trivially fulfilled. A
source routed packet will follow either Rold or Rnew as its entire path is included in the header.
Thus, in the following the focus will be on compliance with Invariant B.

• Each injection channel inserts a token to indicate the boundary between the last packetold and
the first packetnew originating from this channel.

– For compliance with Invariant B, which states that a token must separate packetsold

from packetsnew on each communication channel, this requirement must also be adop-
ted by a source routing system. The realization is straightforward.

• A switch input channel routes packets according to Rold until the token is processed, and
thereafter routes packets according to Rnew.

– For a source routing system this requirement is redundant. It relates to Invariant A,
which is trivially fulfilled as explained above.

After having processed the token, the input channel may dispatch packets solely to output
channels which have already transmitted their token. Packets bound for output channels that
have not yet transmitted the token are temporarily held back.

– For compliance with Invariant B, this requirement must also be adopted by a source
routing system. The realization is straightforward.

• A switch output channel, co, must not transmit the token until all input channels, ci, for
which channel dependencies exist according to Rold from ci to co, have processed the token.
If no such channel dependency exists for an output channel, it could transmit the token as
soon as a token has been processed by any of the switch’s input channels.

– For compliance with Invariant B, this requirement must also be adopted by a source
routing system. The realization of this requirement becomes the main challenge in the
adaptation of OR to a source routing environment. In order to decide when the token
may be transmitted on an output channel each switch must know the dependencies
from its input channels to its output channels. For distributed routing switches such
information could be extracted from the routing tables. Below we propose how source
routing switches (which do not hold routing tables) can obtain channel dependency
information.

Channel dependency aware switches

We suggest a new procedure that allows a source routing switch to acquire channel dependency
information while forwarding data packets. This procedure enables utilization of OR in source
routing systems. It is useful for source routing systems that depend on distributed route calculation,
and also for centralized source routing systems where uploading channel dependency information
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to the switches is not feasible (e.g. if an appropriate packet format for such communication with
the switches has not been defined).

On the other hand, if a source routing system uses a central unit for route calculation, and if
extraction and upload of channel dependency information to the switches is possible, the procedure
may not be needed. Then, the central unit – which knows the entire routing function – could sim-
ply assemble the channel dependency information relevant for each individual switch and upload
it.

The channel dependency acquisition procedure is as follows:

• When a data packet is forwarded from an input channel cix to an output channel coy, register
the channel dependency from cix to coy (if not already registered). Registration of channel
dependencies should commence at system startup. During reconfiguration an output channel
should reset its records and restart registration as soon as the token has been transmitted. In
each switch, a routing and arbitration unit (see Figure 2.2) could be responsible for registering
and maintaining the channel dependencies (which typically will be held in a random access
memory).

• At the start of a reconfiguration process a switch may not be aware of all its channel depen-
dencies. Therefore, in order to prevent deadlock during the reconfiguration, caution must be
exercised when data packets are to be forwarded. Assume that a packet bound for an output
channel co2 arrives before the token on an input channel ci1; that the dependency from ci1

to co2 was previously unknown; and that co2 has already transmitted the token. Then, the
packet must be discarded since forwarding it might cause deadlock (as the packet is routed
according to Rold and the output channel has already transmitted the token). If the system
has been running for a reasonable amount of time (since startup or a previous reconfigura-
tion) we believe that there is only a low probability of such packet discarding due to unknown
channel dependencies. However, if any packet discarding is unacceptable and transmission
of dummy information in an all-to-all fashion is acceptable, disclosure of all channel depen-
dencies could be forced by letting each of the processing nodes transmit dummy packets to
all other processing nodes (at system startup and, in case of a reconfiguration, immediately
following the token).

Figures 5.1, 5.2 and 5.3 present a pseudocode, inspired by Java syntax, to illustrate channel
dependency acquisition and reconfiguration using OR in a source routing environment. For sim-
plicity, we assume that only one reconfiguration process is ongoing at a time. Figure 5.1 shows
an example data structure for state information to be gathered and maintained by a switch. In
addition, Figure 5.1 includes a method for dispatching packets that arrive at the head of the buffer
of an input channel. We assume that packets are input to this method according to a suitable
scheduling scheme. The arrival of a token packet results in a call to the method shown in Fig-
ure 5.2, whereas the arrival of a data packet results in a call to the method shown in Figure 5.3.
Some of the methods called in Figures 5.1, 5.2 and 5.3, such as GetType, TransmitToken
and ForwardDataPacket, are not detailed, but their purposes should be obvious from their
names and from the accompanying comments. The pseudocode examples are included to illustrate
main principles, not to present a minimal data structure or an efficient implementation of OR in a
source routing environment.
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boolean Recon f / / I s a r e c o n f i g u r a t i o n i n p r o g r e s s ?

c o n s t i n t NUM_IN / / Number o f in−c h a n n e l s
c o n s t i n t NUM_OUT / / Number o f ou t−c h a n n e l s

i n t InID / / C u r r e n t in−c h a n n e l , [ 0 . . NUM_IN−1]
i n t OutID / / C u r r e n t ou t−c h a n n e l , [ 0 . . NUM_OUT−1]

i n t NumProc / / Number o f in−c h a n n e l s w i t h p r o c e s s e d t o k e n
i n t NumTrans / / Number o f ou t−c h a n n e l s w i t h t r a n s m i t t e d t o k e n

boolean [NUM_IN] P r o c / / Has InID p r o c e s s e d t o k e n ?
boolean [NUM_OUT] T r a n s / / Has OutID t r a n s m i t t e d t o k e n ?

boolean [NUM_IN] [NUM_OUT] ChDep / / C h a n n e l d e p e n d e n c y InID−>OutID ?

vo id D i s p a t c h P a c k e t ( P a c k e t , InID ) {
/ / D i s p a t c h t h e p a c k e t a t t h e h e a d o f InID ’ s b u f f e r
/ / a c c o r d i n g t o i t s t y p e ( t o k e n o r d a t a )
i f ( GetType ( P a c k e t ) == TOKEN_PACKET) {

P r o c e s s T o k e n ( InID ) ;
}
e l s e i f ( GetType ( P a c k e t ) == DATA_PACKET) {

P r o c e s s D a t a ( InID , P a c k e t ) ;
}

}

Figure 5.1: Reconfiguration and channel dependency acquisition in a source routing switch: Ex-
ample data structure and method for dispatching an incoming packet.

5.1.3 A performance optimization

We know from [139, 140] that the deadlock avoidance mechanism of OR causes performance
penalties in terms of increased latency and decreased throughput during a reconfiguration, due
to a number of packetsnew being held back awaiting transmission of tokens on output channels.
In order to alleviate such performance penalties for source routing environments, we propose an
optimization of OR that takes advantage of the fact that during a reconfiguration a number of
packetsnew may follow routes that are also legal routes according to Rold. We will refer to such
packets as packetsoldCompatible, whereas packetsnew that do not follow legal routes according to Rold

will be referred to as packetsoldIncompatible.

As an example, let us consider a 4 × 4 mesh topology, and assume that Rold is based on the
Up*/Down* [204] graph shown in Figure 5.4(a), and that node 4 is suddenly removed from the
topology. Remember that Up*/Down* assigns up and down directions to all the communication
channels in a network to form a directed acyclic graph rooted in one of the nodes, and that deadlock
is avoided by prohibiting the turn from a down-link to an up-link. (In Figure 5.4 an arrow indicates
the direction of an up-link.) The removal of node 4 disconnects Rold since nodes 8 and 12 can
no longer communicate with all other nodes. Let us further assume that Rnew is based on the
modified Up*/Down* graph shown in Figure 5.4(b), where the directions have been changed for
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vo id P r o c e s s T o k e n ( InID ) {
/ / P r o c e s s t h e t o k e n a t t h e h e a d o f InID ’ s b u f f e r
P r o c [ InID ] = t r u e ;
NumProc + + ;

/ / I f f i r s t i n p u t c h a n n e l t o p r o c e s s t o k e n ,
/ / mark r e c o n f i g u r a t i o n i n p r o g r e s s
i f ( ! Recon f ) {

Recon f = t r u e ;
}

/ / Can t o k e n now b e t r a n s m i t t e d on any o u t p u t c h a n n e l ?
f o r ( i n t outCh = 0 ; outCh < NUM_OUT; outCh ++) {

i f ( T r a n s [ outCh ] ) {
/ / ou tCh h a s a l r e a d y t r a n s m i t t e d t o k e n
c o n t i n u e ;

}

/ / Have a l l inCh w h e r e d e p e n d e n c y inCh−>outCh p r o c e s s e d t o k e n ?
boolean a l l P r o c = t r u e ;
f o r ( i n t inCh = 0 ; inCh < NUM_IN; inCh ++) {

i f ( ChDep [ inCh ] [ outCh ] && ! P r o c [ inCh ] ) {
/ / inCh h a s n o t y e t p r o c e s s e d t o k e n
a l l P r o c = f a l s e ;
break ;

}
}

i f ( a l l P r o c ) {
/ / A l l inCh w h e r e d e p e n d e n c y inCh−>outCh h a v e p r o c e s s e d t o k e n
/ / T r a n s m i t t o k e n on ou tCh
Transmi tToken ( outCh ) ;
NumTrans + + ;

/ / R e s e t a l l d e p e n d e n c i e s t o w a r d s ou tCh t o p r e p a r e f o r
/ / r e g i s t r a t i o n o f d e p e n d e n c i e s f o r new r o u t i n g f u n c t i o n
S e t A r r a y ( ChDep [ ] [ outCh ] , f a l s e ) ;

}
}

i f ( NumProc == NUM_IN && NumTrans == NUM_OUT) {
/ / R e c o n f i g u r a t i o n o v e r , p r e p a r e f o r s u b s e q u e n t r e c o n f i g u r a t i o n
Recon f = f a l s e ;
NumProc = 0 ;
NumTrans = 0 ;
S e t A r r a y ( Proc , f a l s e ) ;
S e t A r r a y ( Trans , f a l s e ) ;

}
}

Figure 5.2: Reconfiguration and channel dependency acquisition in a source routing switch: Ex-
ample of processing an incoming token.
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vo id P r o c e s s D a t a ( InID , P a c k e t ) {
/ / P r o c e s s t h e d a t a p a c k e t a t t h e h e a d o f InID ’ s b u f f e r

/ / E x t r a c t t h e o u t p u t c h a n n e l f r o m t h e p a c k e t
OutID = GetOutputChanne l ( P a c k e t ) ;

i f ( Recon f ) {
/ / R e c o n f i g u r a t i o n o n g o i n g

i f ( ! P r o c [ InID ] ) {
/ / InID h a s n o t p r o c e s s e d t o k e n

i f ( ! T r a n s [ OutID ] ) {
/ / OutID h a s n o t t r a n s m i t t e d t o k e n
/ / P a c k e t c a n b e f o r w a r d e d s a f e l y
F o r w a r d D a t a P a c k e t ( P a c k e t ) ;

/ / R e g i s t e r d e p e n d e n c y d e s p i t e o n g o i n g r e c o n f i g u r a t i o n
ChDep [ InID ] [ OutID ] = t r u e ;

}
e l s e {

/ / OutID h a s t r a n s m i t t e d t o k e n .
/ / D e p e n d e n c y InID−>OutID p r e v i o u s l y unknown
/ / P a c k e t c a n n e v e r b e f o r w a r d e d , and i s d i s c a r d e d
D i s c a r d D a t a P a c k e t ( P a c k e t ) ;

}
}
e l s e i f ( T r a n s [ OutID ] ) {

/ / InID h a s p r o c e s s e d and OutID h a s t r a n s m i t t e d t o k e n
/ / F o r w a r d p a c k e t
F o r w a r d D a t a P a c k e t ( P a c k e t ) ;

/ / R e g i s t e r d e p e n d e n c y ( f o r new r o u t i n g f u n c t i o n )
ChDep [ InID ] [ OutID ] = t r u e ;

}
e l s e {

/ / InID h a s p r o c e s s e d b u t OutID h a s n o t y e t t r a n s m i t t e d t o k e n
/ / P a c k e t m u s t b e h e l d b a c k u n t i l OutID h a s t r a n s m i t t e d t o k e n
/ / I t w i l l b e r e− e n t e r e d i n t o m e t h o d D i s p a t c h P a c k e t
/ / No a c t i o n
;

}
}
e l s e {

/ / R e c o n f i g u r a t i o n n o t o n g o i n g
/ / F o r w a r d p a c k e t
F o r w a r d D a t a P a c k e t ( P a c k e t ) ;

/ / R e g i s t e r d e p e n d e n c y
ChDep [ InID ] [ OutID ] = t r u e ;

}
}

Figure 5.3: Reconfiguration and channel dependency acquisition in a source routing switch: Ex-
ample of processing an incoming data packet.

78



all four (gray coloured) communication channels connected with the nodes in the leftmost column
of the mesh. Then, for Rnew, the route indicated from node 15 to node 6 is an example of a route
compatible with Rold, whereas the route indicated from node 12 to node 10 is an example of a
route incompatible with Rold.

(a) Up*/Down* graph for Rold. (b) Up*/Down* graph for Rnew. One of the
marked routes is compatible with Rold whereas the
other is incompatible.

Figure 5.4: Examples of Rnew-routes compatible and incompatible with Rold.

We propose the following optimization of the OR algorithm. Assume that a reconfiguration is
in progress, and that a packetoldCompatible is transmitted from a source s to a destination d. Then, in
every switch traversed from s to d, this packet may be forwarded to an output channel regardless of
whether the token has already been transmitted on the output channel. This relaxation of the OR
algorithm will not cause deadlock since the packet follows a route that is compatible with Rold (see
Lemma 5.1 and its proof ).

For an elaboration on how the optimization can be realized within a switch, assume that the
switch has channel dependencies from input channels ci0, ci1, and ci2 to output channel co2; that
ci0 and ci2 have not yet processed the token; and that a packetoldCompatible bound for co2 arrives after
the token on ci1. Then, the optimization allows immediate forwarding of the packet to co2, even
if co2 has not yet transmitted the token. Thus, the packet escapes any delay caused by the token
forwarding regime.

Remember that the OR algorithm consists of a set of rules controlling the behaviour of packet
injection channels, input channels of switches, and output channels of switches. Our optimization
of OR only affects the behaviour of switch input channels, not injection channels and switch output
channels. For a source routing system to apply the optimized OR algorithm, the rule that governs
the behaviour of a switch input channel (the second bullet point discussed in Section 5.1.2) becomes
as follows:

• After having processed the token, a switch input channel may dispatch packetsoldIncompatible

solely to output channels which have already transmitted their token. PacketsoldIncompatible

bound for output channels that have not yet transmitted the token are temporarily held
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back. PacketsoldCompatible may be forwarded regardless of whether an output channel have
transmitted its token.

Lemma 5.1. The optimized OR algorithm provides deadlock-free reconfiguration in a source routing

environment.

Proof. The proof is by contradiction. Assume that a deadlocked set of packets, Sd, is a set of packets
where none of the packets can advance before another packet in the set advances. Assume also that
a reconfiguration from Rold to Rnew, where the optimized OR algorithm is applied, results in some
non-empty Sd.

As both Rold and Rnew are by themselves deadlock-free, Sd must include a mix of packetsold and
packetsnew which are mutually waiting for each other to advance. We must consider the three dif-
ferent situations that could lead to a non-empty Sd consisting of a mix of packetsold and packetsnew:

1. Assume that at least one packetold is transmitted after the token on a communication channel.
This contradicts the optimized (as well as the non-optimized) OR algorithm.

2. Assume that at least one packetnew is transmitted before the token on a communication chan-
nel, and that the packet follows a route that is incompatible with Rold. This contradicts the
optimized OR algorithm which states that packetsoldIncompatible bound for output channels
that have not yet transmitted the token are temporarily held back.

3. Assume that at least one packetnew is transmitted before the token on a communication
channel, and that the packet follows a route that is compatible with Rold. The optimized
OR algorithm allows packetsoldCompatible to be transmitted before the token on a communica-
tion channel. However, any claim that a set of packets consisting of packetsoldCompatible and
packetsold may be deadlocked contradicts the assumption that Rold is deadlock-free.

Assuming that both Rold and Rnew are deterministic routing functions, [140] shows how the
original OR algorithm ensures in-order packet delivery by enforcing the rules of token propagation
also on the final hop of any path – the (internal or external) communication channel connecting
a switch to a destination processing node. However, if the final hop has multiple (virtual or phys-
ical) communication channels, a token aware mechanism is also needed on the receiving end of
the final hop to ensure in-order packet delivery. Assume that the final hop has k communication
channels. Then, in-order packet delivery could be realized by treating the receiving end of the final
hop as a switch with k input channels and a single output channel, where a channel dependency
exists from each of the k input channels to the single output channel, and where the non-optimized
OR algorithm applies.

As described above, the optimization of OR allows immediate forwarding of a packetnew that
follows a route which is compatible with Rold. However, such a route is not necessarily identical to
the corresponding route of Rold. Although the version of the optimization described above ensures
deadlock avoidance during a reconfiguration, it cannot ensure in-order delivery of packets.

The following example illustrates the risk of out-of-order packet delivery. Assume that s and
d are a source and destination processing node, respectively; that d is connected to a switch D;
that ro and rn are the routes from s to d according to Rold and Rnew, respectively; and that rn
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is compatible with Rold although rn 6= ro. Then, a risk exists that D may forward some packet
following rn to d before having forwarded all packets following ro to d.

A more restrictive version of the optimization could allow immediate forwarding only of those
packetsnew that follow a route which is identical to the corresponding route of Rold, and thereby
support in-order packet delivery. Assume that Sidentical refers to the set of routes in Rnew for which
identical routes exist in Rold, and that Scompatible refers to the set of routes in Rnew which are
compatible with Rold. Then, Sidentical is a subset of Scompatible. Thus, Lemma 5.1 and its proof are
equally valid for the more restrictive version of the optimization.

The optimized OR algorithm requires that each packetnew carries information stating whether
or not its route is also a legal (either compatible or identical) route of Rold. The implementation of
the optimization thus requires a new status bit in each packet, and additional logic to set this status
bit. Furthermore, additional logic is also needed in the switches to check whether or not a packet
can be forwarded independently of the token forwarding status.

Given that a central entity is responsible for the route calculation, it could also set and distribute
the status bit for each of the routes in Rnew. For checking whether a route that belongs to Rnew

is compatible with Rold, the use of such a central entity is perhaps the most straightforward solu-
tion. However, such a check for compatibility is also conceivable if distributed route calculation is
used – see e.g. [189] where Up*/Down* routing is assumed and the entire directed acyclic graph is
distributed to the processing nodes.

When using OR for reconfiguration of a source routing system, a continuous injection of traffic
generally presupposes that the processing nodes keep the routing tables for Rold (and do not inject
tokens) until their routing tables for Rnew are fully available. Thus, as each processing node must
have storage space for the routing tables of both Rold and Rnew, the check of whether a route
that belongs to Rnew is identical with the corresponding route in Rold could be performed in the
following alternative manner. Assume that a packetnew, pkt, is to be sent from a source s to a
destination d; that rn is returned as the result of a route-lookup in Rnew; and that ro is returned
as the result of a route-lookup in Rold. Then, the status bit in pkt should be set if rn and ro are
equal. This check should be performed for each packetnew to be injected for the duration of the
reconfiguration process.

For a source routing switch, Figure 5.5 illustrates how a simple modification of the empty else-
clause in the ProcessData method from Figure 5.3 could realize the optimization of OR. For
simplicity, the registration of channel dependencies for Rnew is assumed not to start until the token
has been transmitted on the output channel.

The optimization of OR is evaluated in Sections 5.1.5 and 5.1.6, where its least restrictive
version is assumed.

5.1.4 Token injection synchronization

When using OR, all traffic sources inject a token to indicate that the last packet that follows Rold has
been sent on an injection channel, and that subsequently injected packets will be routed according
to Rnew. Token injection could be fully synchronized if all traffic sources injected their tokens
simultaneously.

Due to such factors as clock skew or reception of routing or control information at different
times such synchronization is hard to achieve. A traffic source may inject the token and change
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vo id P r o c e s s D a t a ( InID , P a c k e t ) {
/ / P r o c e s s t h e d a t a p a c k e t a t t h e h e a d o f InID ’ s b u f f e r

.

.

.

e l s e {
/ / InID h a s p r o c e s s e d b u t OutID h a s n o t y e t t r a n s m i t t e d t o k e n
/ / P a c k e t m u s t b e h e l d b a c k u n t i l OutID h a s t r a n s m i t t e d t o k e n
/ / I t w i l l b e r e− e n t e r e d i n t o m e t h o d D i s p a t c h P a c k e t
/ / No a c t i o n
;

}

.

.

.
}

vo id O p t i m i z e d P r o c e s s D a t a ( InID , P a c k e t ) {
/ / P r o c e s s t h e d a t a p a c k e t a t t h e h e a d o f InID ’ s b u f f e r
/ / O p t i m i z a t i o n i n c l u d e d

.

.

.

e l s e {
/ / InID h a s p r o c e s s e d b u t OutID h a s n o t y e t t r a n s m i t t e d t o k e n

i f ( P a c k e t O l d C o m p a t i b l e ( p a c k e t ) ) {
/ / P a c k e t c o m p a t i b l e w i t h o l d r o u t i n g f u n c t i o n : F o r w a r d
F o r w a r d D a t a P a c k e t ( P a c k e t ) ;

}
e l s e {

/ / P a c k e t n o t c o m p a t i b l e w i t h o l d r o u t i n g f u n c t i o n :
/ / Hold b a c k u n t i l OutID h a s t r a n s m i t t e d t o k e n
/ / P a c k e t w i l l b e r e− e n t e r e d i n t o m e t h o d D i s p a t c h P a c k e t
/ / No a c t i o n
;

}
}

.

.

.
}

Figure 5.5: Else-clause (from Figure 5.3) affected by the optimization: Comparison of original and
optimized OR algorithm.
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routing function as soon as it has received or calculated the new routing information. This ap-
proach may lead to highly unsynchronized token injection as the traffic sources may have their
routing information ready (and thus inject their tokens) over a significant period of time. For a
technology that utilizes a central control, improved synchronization may be achieved. Then, each
traffic source could – after having received updated routing information – defer injection of the
token until a following control packet that enables token injection is received. In this case the level
of synchronization depends on such issues as varying distance between the central control unit and
the individual traffic sources, and on whether or not the technology supports packet broadcast. If,
on the other hand, token injection is triggered at a predetermined time, the injection of tokens
will be as synchronized as clock skew allows. A drawback of the latter alternative is the need to
postpone reconfiguration for a period of time to ensure that all traffic sources possess the updated
routing information. This could cause considerable packet loss, for instance in the case of a network
component failure.

The following example, which assumes that the optimization suggested in Section 5.1.3 is not
used, illustrates why token injection synchronization is an issue when using OR. Assume that a
switch has channel dependencies from input channels ci0, ci1 and ci2 to output channel co2; that
ci0 and ci2 have not yet processed the token; and that a packetnew bound for co2 arrives after the
token on ci1. This packet cannot be forwarded to co2 until co2 has transmitted the token, which
depends on prior token processing by both ci0 and ci2. If the token arrival at ci0 or ci2 depends on
processing nodes that inject tokens at a late stage, the packet may experience a significant delay.

The performance impact of token injection synchronization for a source routing environment
is evaluated in Sections 5.1.5 and 5.1.6.

5.1.5 Experiment setup

Our evaluation of the performance of OR in source routing environments focuses on the impact of
token injection synchronization as well as on the impact of the new optimization of OR proposed
in Section 5.1.3.

The results presented in [139] show that OR performs significantly better than traditional static
reconfiguration and has similar performance to the Double Scheme [179], one of the most efficient
general dynamic reconfiguration methods available in the literature. The adaptations we suggested
to utilize OR in a source routing environment should not significantly affect the performance of
the method itself (given that all channel dependencies are known at the start of a reconfiguration).
Thus, as another comparison of OR with alternative reconfiguration schemes is not expected to
provide new information, it is not performed here.

We consider both mesh and torus topologies of size 8 × 8 and 16 × 16. A reconfiguration is
triggered after 8 000 cycles, either by a switch fault (for evaluation of the proposed optimization of
OR) or by a change of routing function (for evaluation of token injection synchronization). Packets
are removed from the network upon reaching a faulty switch. At the start of a reconfiguration pro-
cess all switches are assumed to know their channel dependencies. Thus, no packets are discarded
due to unknown channel dependencies.

In the case of a switch fault, notification messages are distributed to all unaffected processing
nodes, whereas the processing nodes are notified immediately if the reconfiguration is caused by
a change of routing function. When all processing nodes have been notified to initiate reconfigu-
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ration, each processing node draws a token injection time ttoken from a normal distribution with
a mean of 500 cycles and where the standard deviation is a simulation parameter (tokenstd) that
assumes the values 0, 5, 10, 20, 30, 40, 50 and 100 to model different levels of token injection
synchronization. A tokenstd = 0 represents fully synchronized token injection, and the higher the
tokenstd is, the more unsynchronized the token injection becomes. Each processing node starts a
timer according to ttoken and continues injecting packetsold until the timer expires, then injects the
token, and thereafter injects packetsnew.

Data are collected for a period of 20 000 cycles, and several metrics are considered. Thrt and
Latt result from the division of the data collection period into 200 time intervals, each with a
duration of 100 cycles. For a time interval int, Thrt is the number of packets that are generated
by any processing node in int and that subsequently reach their destination processing node. Latt

for int is the average latency of all packets that are generated by any processing node in int and
that subsequently reach their destination processing node. The latency for a single packet is the
time that elapses from when the packet is generated and injected into the transmission queue of the
source processing node until the packet header is received by the destination processing node.

For each int the values for Thrt and Latt are plotted in the middle of the interval, whereas in
the same plots the start and end times of the reconfiguration period are plotted without regard to
interval borders. The reconfiguration period is the time that elapses from when the first token is
injected by a processing node (start of reconfiguration) until the last token is received by a processing
node (end of reconfiguration). We also monitor the number of packets rejected by source processing
nodes during reconfiguration, which indicates the severity of the service interruption experienced
by running applications. Each experiment is repeated 16 times (with a different seed), and the
mean values of these repetitions are presented together with their 95% confidence intervals.

We study two different traffic patterns – a uniform destination address distribution, and a
hotspot traffic pattern where 80% of the packets are destined for a hotspot node located in the
middle5 of the topology whereas the remaining 20% of the packets are uniformly distributed.

A transmission queue in a processing node has space for 6 packets, and overflows when the
network cannot deliver packets at the rate they are injected. Both an ingress and egress buffer of a
switch port can hold 6 packets. OR does not require VCs for deadlock avoidance, and we do not
assume availability of VCs in these experiments.

Our focus is on the performance of OR – which can be used for any routing algorithm – not
on the performance of specific routing algorithms. The topology agnostic Up*/Down* routing
algorithm was chosen for these experiments as it is conceptually simple, well known, and does not
depend on VCs for deadlock avoidance. We use the original method proposed in [204] since it
allows the Up*/Down* root to be set by a simulation parameter (in [196, 199] new heuristics were
applied, e.g. for identifying the best root).

An initial set of experiments – simulating neither reconfiguration nor component faults – was
performed in order to ensure relevant load levels for the subsequent experiments. For every com-
bination of topology and traffic pattern we first identified the network saturation point – the
load level where traffic sources start to discard packets due to transmission queue overflow. Fig-
ures 5.6(a) and 5.6(b) show the network saturation point (corresponding to the knee-point of the
Up*/Down* curve) for a 16 × 16 torus topology under uniform and hotspot traffic, respectively.

5In order to simplify the discussion, we visualize a torus topology laid out in a plane as a mesh topology with
wraparound channels.
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(b) Hotspot traffic.

Figure 5.6: The high and low load levels (90% and 60% of the network saturation point, respec-
tively) used in the experiments for the 16 × 16 torus.

For uniform traffic the saturation point occurs when approximately 110 000 packets are injected
into the network over the simulation period of 20 000 cycles, whereas for hotspot traffic saturation
occurs at the injection of approximately 12 500 packets. After having identified the network sat-
uration point, two load levels were selected for use in the following experiments. The lowest and
highest load levels correspond to 60% and 90%, respectively, of the saturation point. These two
load levels are indicated in Figures 5.6(a) and 5.6(b).

For all of our experiments, Rold is based on an Up*/Down* graph with the root in the upper
left corner node of the topology. Remember that the root of an Up*/Down* graph is the one node
with only incoming up-links, and that a leaf is a node with only outgoing up-links.

The first of our main sets of experiments evaluates how different degrees of synchronization of
the token injection affect the performance of OR for source routing systems. A reconfiguration
from Rold to Rnew is assumed to be triggered by a need – not caused by a topology change – to
change the routing function. Rnew is based on an Up*/Down* graph with the root in the upper
right corner node of the topology. The optimization of the OR algorithm is not applied.

The second set of experiments evaluates the performance impact of the optimization of OR.
The least restrictive version of the optimization is applied, and we study two different scenarios.
The first scenario represents a case where a significant part of the routes of Rnew are incompatible
with Rold. We assume that a reconfiguration process is triggered by a disconnection of Rold caused
by a fault in the root node of the Up*/Down* graph, and let Rnew be based on a new Up*/Down*
graph with the root in the upper right corner node of the topology. The second scenario represents
a case where all the routes of Rnew are compatible with Rold. In order to represent such a best-case
scenario for the optimization of OR, a fault induced in the leaf node of the Up*/Down* graph of
Rold triggers a reconfiguration process (although, strictly speaking, a reconfiguration is not necessary
when a leaf node fails), and Rnew is based on the resulting Up*/Down* graph.

5.1.6 Results

In the following, we present the results of our evaluations of two different matters that may affect
the performance of the OR algorithm in source routing environments. We first evaluate the impact
on performance of different levels of token injection synchronization. Recall from Section 5.1.4
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that traffic sources may transmit their tokens in an unsynchronized manner due to such factors as
clock skew or reception of routing or control information at different times. Secondly, we evaluate
the optimization of the OR algorithm introduced in Section 5.1.3 which allows packetsnew with
routes compatible to Rold to be forwarded independently of the token propagation status. We have
selected and included a set of plots which is representative of the results of our experiments.

Token injection synchronization

Recall that these experiments are based on the following assumptions: Reconfiguration is triggered
by a change of routing function (not caused by topology change); the reconfiguration moves the
root of the Up*/Down* graph from the upper left to the upper right corner of the topology; and
the new optimization of the OR algorithm is not applied. Also recall that the range of tokenstd

values represents different levels of token injection synchronization.

Figures 5.7 and 5.8 show Latt and Thrt, respectively, for a 16 × 16 mesh under a high traffic
load for tokenstd values of 0, 40, and 100. The vertical lines indicate the start and end times of
a reconfiguration process. Figures 5.7(a), 5.7(c), and 5.7(e) show Latt for hotspot traffic for a se-
lected period of time that includes the reconfiguration period. Corresponding results for uniform
traffic are shown in Figures 5.7(b), 5.7(d), and 5.7(f ). Figures 5.7(a) and 5.7(b) show the cases
of fully synchronized token injection (tokenstd is 0) and thus represent baselines for the consid-
eration of Latt for hotspot and uniform traffic, respectively. Our experiments show crests in the
Latt curves during reconfiguration even in the cases where token injection is fully synchronized.
Tokens flow through the network according to the channel dependency graph of Rold, and – even
if all processing nodes inject tokens simultaneously – the tokens that must be collected before an
output channel of a switch can transmit its token may reach their input channels at different times.
Packetsnew bound for an output channel of a switch must be held back until the token has been
transmitted on the output channel. The withheld packets experience increased latency that results
in the observed crests of the Latt curves. As token injection becomes more unsynchronized, both
the height and width of the crests of the Latt curves increase. Figure 5.7 illustrates how the ratios
of the peaks of the Latt curves to the latency values before reconfiguration starts are 2.6, 6.7, and
14.1 (hotspot traffic) and 2.5, 6.2, and 12.0 (uniform traffic) for tokenstd values of 0, 40, and 100,
respectively.

Figures 5.8(a), 5.8(c), and 5.8(e) show Thrt for hotspot traffic. For hotspot traffic the packet
throughput is limited due to 80% of the traffic being directed towards one particular node, and,
for the values of tokenstd that we have studied, no reconfiguration-related troughs are observed in
the Thrt curves.

Figures 5.8(b), 5.8(d), and 5.8(f ) show Thrt for uniform traffic. Figure 5.8(b) shows the case
of fully synchronized token injection and thus represents the baseline for the consideration of Thrt

for uniform traffic. The plots illustrate how increasingly unsynchronized token injection results in
a more severe fall in Thrt during a prolonged reconfiguration period. For tokenstd values of 40
and 100 the lowest points of the Thrt curves are, respectively, 0.98 and 0.40 times the throughput
values before reconfiguration starts.

Congestion effects following a reconfiguration were in many cases observed for the combination
of a high traffic load and highly unsynchronized token injection. The second crests of the Latt

curves of Figures 5.7(e), and 5.7(f ) (and also, less expressed, of Figure 5.7(c)) and the second
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(a) Hotspot, tokenstd = 0.
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(b) Uniform, tokenstd = 0.
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(c) Hotspot, tokenstd = 40.
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(d) Uniform, tokenstd = 40.
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(e) Hotspot, tokenstd = 100.
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(f ) Uniform, tokenstd = 100.

Figure 5.7: Latt and start/end times of reconfiguration (rc) for a 16× 16 mesh under a high traffic
load.
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(a) Hotspot, tokenstd = 0.
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(b) Uniform, tokenstd = 0.
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(c) Hotspot, tokenstd = 40.
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(d) Uniform, tokenstd = 40.
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(e) Hotspot, tokenstd = 100.
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(f ) Uniform, tokenstd = 100.

Figure 5.8: Thrt and start/end times of reconfiguration (rc) for a 16× 16 mesh under a high traffic
load.
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(a) Reconfiguration time, 16 × 16 torus.
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(b) Packet rejection by traffic sources during reconfigu-
ration, 8 × 8 torus.

Figure 5.9: Reconfiguration time and packet rejection (uniform traffic).

trough of the Thrt curve of Figure 5.8(f ) are manifestations of such congestion effects. For these
cases, we observe how the normalization of latency or throughput after reconfiguration is delayed.
We believe that such congestion effects are due to the release of a high number of packets that were
held back during reconfiguration while awaiting token forwarding.

We observe from Figures 5.7 and 5.8 that the reconfiguration period is significantly lengthened
for increasingly unsynchronized token injection. Figure 5.9(a) shows reconfiguration time as a
function of tokenstd for a 16 × 16 torus under uniform traffic. Our results demonstrate a close to
linear relation between the tokenstd and the duration of the reconfiguration period. We also note
that the duration of the reconfiguration period is similar for high and low traffic load. The reason
is that a considerable part of the data traffic is held back while awaiting token forwarding, and thus
does not significantly delay the tokens.

The two load levels under study represent load levels below network saturation. Thus, the
number of packets rejected by source processing nodes during a reconfiguration process gives an
indication of the service interruption – caused by the reconfiguration – experienced by running
applications. Whereas for hotspot traffic no such packet rejection occurred for any of our experi-
ments, most of our experiments for uniform traffic show that a number of packets are rejected for
the highest value(s) of tokenstd. Figure 5.9(b) shows packet rejection by source processing nodes
during a reconfiguration (as a function of tokenstd) for an 8 × 8 torus under uniform traffic.

Algorithm optimization

Two scenarios are presented in this section. In the first scenario we study the performance impact
of the proposed optimization of OR for a case where a significant number of the routes of Rnew

are incompatible with Rold. We let a fault occur in the root node of the Up*/Down* graph, and
during the reconfiguration process the root of the graph is moved from the upper left to the upper
right corner of the topology.

In our plots, the prefix "OPT-" or suffix "-OPT" indicates that the optimization of OR is
applied, whereas the lack of such a prefix or suffix indicates that the optimization is not applied.

Figure 5.10 shows Latt for an 8 × 8 mesh under a low traffic load with a hotspot pattern
for tokenstd values of 0 and 50. We observe how the optimization significantly reduces the crests
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of the Latt curves that result from reconfiguration. For hotspot traffic we did not observe any
troughs in the Thrt curves caused by reconfiguration. This leaves no improvement potential for
the optimization with respect to the Thrt metric, and none of these plots are included.

For uniform traffic, Figure 5.11 shows Latt and Thrt for an 8 × 8 mesh under a low traf-
fic load for tokenstd values of 0 and 50. Figures 5.11(a) and 5.11(c) show Latt, whereas Fig-
ures 5.11(b) and 5.11(d) show Thrt. The reduction of Thrt that starts at time 8 000 is due to
packet loss in the faulty root node. In general, our results show that the effect of the optimization
is less pronounced for uniform traffic than for hotspot traffic. Nevertheless, for uniform traffic the
optimization does, in most cases, reduce the troughs of the Thrt curves and the crests of the Latt

curves that result from a reconfiguration.
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(b) tokenstd = 50.

Figure 5.10: Latt and start/end times of reconfiguration (rc) for an 8 × 8 mesh under a low traffic
load with a hotspot pattern. 33% of packetsnew were found to follow routes incompatible with
Rold (see Table 5.1).

The performance improvement potential of the optimization partly depends on two metrics
that we will refer to as Lfrac and Llength. Lfrac is the fraction of packetsnew that are sent during a
reconfiguration that also have legal (compatible) routes according to Rold. Llength is the lengths of
the routes of those packets in proportion to the lengths of the routes of all packetsnew that are sent
during the reconfiguration. The larger Lfrac is, the more packets can be forwarded by the switches
without regard to token forwarding status, and thus, the more packets avoid additional delays due
to the reconfiguration. The larger Llength is, the more significant the reductions in latency become.

For the current scenario, Table 5.1 presents Lfrac and Llength for the topologies and traffic
patterns included in our study. These numbers, which are the average over our eight tokenstd values
and two load levels, show that Lfrac is 58–74%, whereas Llength is 72–93%. For the 8 × 8 mesh
we found that Lfrac is similar for hotspot and uniform traffic (66.9% and 66.6%, respectively),
whereas Llength is somewhat larger for hotspot traffic (85.6%) than for uniform traffic (81.8%).
However, we do not believe that the difference in Llength alone explains why the benefit of the
optimization is significant for hotspot traffic but more limited for uniform traffic (as demonstrated
in Figures 5.10 and 5.11).

Virtual output queuing is not used in these experiments, and we believe that head-of-line block-
ing explains the limited effect of the optimization for uniform traffic when compared to hotspot
traffic. In any switch packetsnew that follow routes compatible with Rold may be blocked by
packetsnew that are bound for a different output port and that follow routes incompatible with
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(c) Latt, tokenstd = 50.
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Figure 5.11: Latt, Thrt, and start/end times of reconfiguration (rc) for an 8× 8 mesh under a low
traffic load with a uniform pattern. 33% of packetsnew were found to follow routes incompatible
with Rold (see Table 5.1).

Rold. For the uniform traffic pattern every processing node is an equally likely packet destination,
whereas for our hotspot traffic pattern 80% of the packets are destined for the same processing
node. Thus, uniform traffic is more vulnerable to such head-of-line blocking effects than hotspot
traffic is.

OR could also be used in a system that applies virtual output queuing. Then, a token that arrives
on an input channel must be replicated and inserted into all virtual output queues. Assume that a
switch has channel dependencies from input channels ci0, ci1, and ci2 to an output channel co2, and
that an input channel cix has n virtual output queues, [cix,0, cix,1 . . . cix,n−1], where n corresponds
to the number of output channels. Output channel co2 must then wait until tokens have been
processed by virtual output queues ci0,2, ci1,2, and ci2,2 before transmitting the token.

In the second scenario all the routes of Rnew are compatible with Rold, which gives the maxi-
mum improvement potential for the optimization: Lfrac = 100%; Llength = 100%; and no head-
of-line blocking effects are caused by the token forwarding regime. Recall that, in order to represent
such a best case scenario, a fault is induced in a leaf node of the Up*/Down* graph, whereas the
root node is not moved by the reconfiguration process.

For an 8 × 8 torus under a high traffic load, and for tokenstd values of 0 and 100, Figure 5.12
shows Latt for hotspot traffic, whereas Figure 5.13 shows Latt and Thrt for uniform traffic. We
observe that, for the current scenario, the optimization eliminates the troughs of the Thrt curves
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Table 5.1: Lfrac and Llength when a reconfiguration, caused by a failure of the Up*/Down* root
node, moves the root node from the upper left to upper right corner of the topology.

(a) Hotspot traffic pattern.

8 × 8 Mesh 16 × 16 Mesh 8 × 8 Torus 16 × 16 Torus

Lfrac 66.9 60.1 74.3 72.1
Llength 85.6 92.9 80.9 82.0

(b) Uniform traffic pattern.

8 × 8 Mesh 16 × 16 Mesh 8 × 8 Torus 16 × 16 Torus

Lfrac 66.6 59.4 59.7 57.6
Llength 81.8 92.1 72.3 72.7

as well as the crests of the Latt curves. Furthermore, Figure 5.14(a) demonstrates how the opti-
mization eliminates congestion effects caused by the release of a bulk of packets that were held back
awaiting token forwarding. Finally, Figure 5.14(b) shows that, with the optimization, no pack-
ets were rejected by source processing nodes during the reconfiguration process. In the previous
experiments, such packet rejection indicated service interruption for running applications.

Figure 5.14(a) demonstrates that the optimization of OR may in some cases prolong the re-
configuration period (since increased data traffic may delay token forwarding). However, when the
negative effects of a reconfiguration have been eliminated, a prolonged reconfiguration period be-
comes an issue of little importance (except perhaps with respect to an increased risk of out-of-order
packet delivery for the least restrictive version of the optimization). Furthermore, for this absolute
best case scenario with respect to optimization potential, token injection synchronization becomes
another issue of little importance.
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Figure 5.12: Latt and start/end times of reconfiguration (rc) for an 8× 8 torus under a high traffic
load with a hotspot pattern. A best case scenario for the optimization: All the routes of Rnew are
compatible with Rold.

5.2 Reconfiguration without performance penalties

A reconfiguration process is prone to deadlock, and available reconfiguration strategies commonly
include deadlock avoidance mechanisms that cause performance degradation, such as increased
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Figure 5.13: Latt, Thrt, and start/end times of reconfiguration (rc) for an 8 × 8 torus under a
high traffic load with a uniform pattern. A best case scenario for the optimization: All the routes of
Rnew are compatible with Rold.
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latency and decreased throughput, during the transition from Rold to Rnew. We propose a new
dynamic reconfiguration strategy – RecTOR – which does not impose such performance penalties
during a reconfiguration.

RecTOR is based on a simple principle which ensures deadlock-freedom during the reconfig-
uration while packets that follow either Rold, Rnew or both can coexist in the network without
restrictions. It assumes the topology agnostic Transition-Oriented Routing (TOR) algorithm [200]
which supports excellent performance. For instance, given sound path selection, TOR matches
the performance of the topology specific Dimension-Order Routing (DOR) in meshes and tori.
In addition to the advantages related to performance, RecTOR also has other merits. It does not
require complex network switches; does not need more VCs than a routing function needs; and is
useful for both source and distributed routing systems.

Section 5.2.1 presents RecTOR, whereas its performance is evaluated in Sections 5.2.2 and
5.2.3.

5.2.1 RecTOR

RecTOR assumes that an interconnection network applies the TOR routing algorithm. TOR was
briefly presented in Section 2.8.1, and, as its manner of operation is essential for RecTOR, it is also
recapitulated here.

TOR allows selection of any available path between a source and destination processing node,
and depends on VC-transitions for deadlock avoidance. As was also assumed in [200], we assume in
the following that such VC-transitions are based on a directed acyclic graph (DAG) corresponding
to an Up*/Down* [204] graph. Communication channels and switches are represented in the
DAG by edges and vertexes, respectively. TOR selects paths without regard to the edge directions
of the underlying DAG. (Thus, in this respect, TOR considers the DAG simply as an undirected
graph representing the topology.) For TOR, the main purpose of the DAG is to identify the
breakpoints – the turns where cycles of channel dependencies must be broken. The breakpoints
are the down-link to up-link turns (as with the Up*/Down* routing algorithm). TOR prevents
deadlock by requiring that when a packet crosses a breakpoint (traverses from a down-link to an
up-link), it makes a transition to the next higher VC. Thus, TOR supports a flexible shortest path
routing.

RecTOR is based on the following observations concerning TOR. During the operation of a
network, changes in the topology can be reflected in the DAG. TOR selects paths independently of
the edge directions of the underlying DAG (which main purpose is to define the breakpoints that
decide VC-transitions). Thus, after a topology change, a set of new paths that restores connectivity
can always be found, provided that the topology is still physically connected and that a sufficient
number of VCs are available. Note in particular that, for computation of a connected routing
function, TOR does not require the DAG to be a correct Up*/Down* graph.

Assume that Gold and Gnew are the DAGs that apply before and after a topology change,
respectively; that Rold is a deadlock-free routing function which includes VC-transitions according
to Gold; and that Rnew is a deadlock-free routing function which includes VC-transitions according
to Gnew. For a 4× 4 mesh topology, Figure 5.15 shows an example of a Gold and Gnew as the root
node of the DAG (node 0) is removed. Figure 5.15(a) shows that the TOR route from node 8

to node 2 according to Rold crosses the root node of the DAG. When this node disappears TOR
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must calculate a new route from node 8 to node 2, and one of the alternative choices is depicted in
Figure 5.15(b). We observe how crossing node 6 represents a turn from a down-link to an up-link.
Thus, TOR orders a transition to the next higher VC to guarantee deadlock-freedom. Notice, as
an aside, that Gnew is not a correct Up*/Down* graph as it has more than one root node.

(a) Gold. (b) Gnew.

Figure 5.15: Example of DAG evolution and update of a route when a switch (the root of the
DAG) is removed. An arrow indicates the direction of an up-link.

In order to ensure that packets routed according to Rold, Rnew or both can coexist in the
network without causing deadlock, RecTOR makes only one assumption on the evolution of the
DAG: No breakpoint must be moved during the transition from Gold to Gnew. Thus, as a general
rule, an edge that persists from Gold to Gnew must keep its (up or down) direction. However,
breakpoints (and turns in general) can be removed or added as vertexes and edges are removed or
added.

Assume that TOR is used, and that Rold (which is deadlock-free and includes VC-transitions
according to Gold) applies when a topology change occurs for an interconnection network. Then,
RecTOR prescribes the following procedure to reconfigure the network:

1. Update the underlying DAG to reflect the change in topology. If a communication chan-
nel or switch was removed, simply remove the corresponding edge or vertex (including its
connecting edges). If a communication channel or switch was added, add an edge or ver-
tex (including its connecting edges). Avoid introduction of cycles when assigning directions
to newly added edges (see the Up*/Down* method).

2. Let TOR calculate a new deadlock-free routing function, Rnew as follows: First, select a new
set of paths which restore connectivity. Then, for each path, insert a transition to the next
higher VC wherever the path crosses a breakpoint in Gnew.

3. Rnew can be applied instantly. Packets routed according to Rold and Rnew – or possibly both
in the case of distributed routing – can coexist in the network without causing deadlock.
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With regard to step 3 above, there is a risk of a packet looping if the packet is routed according to
Rold in some of the switches and Rnew in others (which could happen if the system uses distributed
routing). Such looping could cause packet loss, as a packet that has reached the highest available VC
and still needs to make another VC-transition must be rejected. A simple approach that prevents
this problem implies that each switch holds routing tables for both Rold and Rnew during the
reconfiguration, and that each packet is tagged to indicate which of the routing functions should be
used. However, a better solution could be adopted from the Internet research community, where
several studies (e.g. [76]) have focused on preventing packets from looping during the update of
routing tables.

Like e.g. the Double Scheme [179], RecTOR cannot guarantee in-order packet delivery during
a reconfiguration process.

As deadlock avoidance is an inherent challenge in dynamic reconfiguration, we include and
prove Lemma 5.2.

Lemma 5.2. RecTOR provides deadlock-free reconfiguration.

Proof. The proof is by contradiction. Assume that a deadlocked set of packets, Sd, is a set of packets
where none of the packets can advance before another packet in the set advances. Assume also that
a reconfiguration from Rold to Rnew, where RecTOR is applied, results in some non-empty Sd.

Both Rold and Rnew are, by themselves, deadlock-free. Thus, Sd must include at least one
packet that is taking a turn which is present in both Gold and Gnew, and which is either a breakpoint
in Gold and not a breakpoint in Gnew, or a breakpoint in Gnew and not a breakpoint in Gold. In
either case some breakpoint must have been moved during the transition from Gold to Gnew, which
contradicts the premise of RecTOR.

5.2.2 Experiment setup

For the evaluation of the performance of RecTOR, we include a comparison with Overlapping
Reconfiguration (OR) [139, 140]. OR is one of the most efficient and versatile reconfiguration
strategies available in the literature, and was shown in [139] to have similar performance to the
Double Scheme [179]. An adaptation of OR for use in source routing environments was a main
topic of Section 5.1.

We consider both mesh and torus topologies of size 8 × 8 and 16 × 16. In order to compare
the performance of RecTOR with the performance of OR, we conducted a number of experiments
where a communication channel fault and, subsequently, a switch fault were introduced and han-
dled by reconfiguration. The communication channel (port) fault occurs after 6 000 cycles and the
switch fault occurs after 28 000 cycles. In each case a reconfiguration process is triggered.

As previously explained, RecTOR assumes that TOR is the routing algorithm used by an inter-
connection network. OR can be used between any pair of routing algorithms, and we consider two
different alternatives. In the first case (referred to as ORTOR), TOR is used. In the second case (re-
ferred to as ORDOR/UD), DOR is used initially (for the fault-free topology) whereas Up*/Down* is
used after the first network component has failed. As both DOR and Up*/Down* are simple and
well established routing algorithms, this is a likely arrangement.

Whereas TOR and Up*/Down* are topology agnostic routing algorithms, DOR only works
for fault-free meshes and tori. Recall from Section 2.5.1 that, for a two-dimensional mesh, DOR
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avoids deadlock by first routing a packet in the X-dimension until the offset in this dimension is
zero. Thereafter the packet is routed in the Y-dimension until it reaches its destination. For a torus,
in addition, DOR needs two VCs for deadlock avoidance [55].

We use the original version of the Up*/Down* routing algorithm [204], and let the switch in
the upper left corner6 of the topology be the root of the Up*/Down* graph. (Unless this switch
or one of its communication channels has failed, in which case a neighbour switch with healthy
communication channels is selected as the root.)

TOR can calculate shortest path routes in a number of different ways. In these experiments an
out-port in the X-dimension is preferred over an out-port in the Y-dimension in every intermediate
switch. For a fault-free mesh or torus, this gives similar paths as DOR, although the VC-use is
different for many of the paths. In these experiments, the switch in the upper left corner of the
topology is the root of the underlying Up*/Down* graph.

The number of VCs available is 4. Each routing algorithm, TOR, DOR or Up*/Down*, evenly
distributes the paths among the available VCs in order to achieve a balanced load.

We assume a source routing environment, and compare RecTOR and OR for different de-
grees of synchronization of the start of a reconfiguration process. For a source routing system,
the change-over from Rold to Rnew could be fully synchronized if all traffic sources performed the
change simultaneously. As explained in Section 5.1.4, due to such factors as clock skew or reception
of routing or control information at different times by the different traffic sources, such synchro-
nization is hard to achieve. In these experiments, the processing nodes perform the change-over
from Rold to Rnew as follows. When all processing nodes have been notified to initiate reconfigu-
ration, each processing node draws its own change-over time, tchange, from a normal distribution
with a mean of 500 cycles and where the standard deviation is a simulation parameter, changestd.7

Each processing node starts a timer according to tchange and continues injecting packetsold until
the timer expires, then, if OR is used, injects the token, and thereafter injects packetsnew. The
higher changestd is, the more unsynchronized the change of routing function becomes. In these
experiments, changestd assumes the values 0 and 100, where the former value represents the fully
synchronized case.

Although a source routing system is assumed in these experiments, RecTOR is also applicable
for a distributed routing system. As it allows packets routed according to Rold and Rnew – or
possibly both in a distributed routing system – to coexist in the network without restrictions, we
expect the behaviour of RecTOR to be relatively similar for source and distributed routing systems.
The optimization of the OR algorithm, which was proposed in Section 5.1.3, is only applicable for
source routing systems and is not applied in these experiments.

We study two different traffic patterns – a uniform destination address distribution, and a
hotspot traffic pattern where 80% of the packets are destined for an appointed hotspot node whereas
the remaining 20% of the packets are uniformly distributed.

A transmission queue in a processing node has space for 12 packets per VC, and overflows when
the network cannot deliver packets at the rate they are injected. Both an ingress and egress buffer
of a switch port can hold 6 packets per VC.

6As in Section 5.1, in order to simplify the discussion, we visualize a torus topology laid out in a plane as a mesh
topology with wraparound channels.

7For OR, tchange and changestd correspond to ttoken and tokenstd, respectively, which were introduced in
Section 5.1.5.
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Data are collected over 100 000 cycles. We consider the metrics Thrt and Latt which result
from the division of the data collection period into 500 time intervals, each with a duration of
200 cycles. For a time interval int, Thrt is the number of packets that are generated by any
processing node in int and that subsequently reach their destination processing node. Latt for
int is the average latency of all packets that are generated by any processing node in int and that
subsequently reach their destination processing node. The latency for a single packet is the time
that elapses from when the packet is generated and injected into a transmission queue in the source
processing node until the packet header is received by the destination processing node.

For each int the values for Thrt and Latt are plotted in the middle of the interval, whereas
in the same plots the start and end times of the reconfiguration period are plotted without regard
to interval borders. For OR the reconfiguration starts when the first token is injected and ends
when the last token is received by a processing node. For RecTOR the reconfiguration starts when
the first processing node takes Rnew into use and ends when the last packet that follows Rold is
removed from the network. The mean values that result from 30 repetitions of each experiment are
presented in our plots. Each repetition is initialized by a different seed.

A communication channel (port) fault, switch fault and hotspot node (in the case of hotspot
traffic) are selected randomly, but under the restriction that unique component faults and a unique
hotspot node are used for each repetition of an experiment.
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Figure 5.16: The load levels used in the experiments.

In order to ensure relevant load levels for the main experiments described above, an initial
set of experiments was performed where neither network component faults nor reconfiguration
occurred. For each of the three routing algorithms – TOR, DOR and Up*/Down* – the load
level where the transmission queues of the processing nodes start to overflow was identified. Such
saturation points are shown in Figure 5.16(a) for a 16 × 16 torus under uniform traffic and in
Figure 5.16(b) for an 8 × 8 mesh under hotspot traffic. For uniform traffic, Up*/Down* has the
lowest saturation point (Satmin) of the three routing algorithms, whereas the highest saturation
point (Satmax) is achieved for TOR and DOR for the mesh topology, and for DOR for the torus
topology. Figure 5.16(a) indicates the three load levels selected for use in the main experiments.
The low, medium and high load levels correspond to 90% of Satmin, the center between Satmin

and Satmax, and 110% of Satmax, respectively. For hotspot traffic, the saturation point (Sat) is
the same for all three routing algorithms (as the saturation point is mainly decided by the congestion
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that results from 80% of the traffic being directed towards one of the processing nodes). The two
load levels selected for use in the main experiments are indicated in Figure 5.16(b), where the low

and high load levels correspond to 80% and 110%, respectively, of Sat.

5.2.3 Results

In the following, we present the results of our comparison of RecTOR with OR. First, the results of
the experiments for the uniform traffic pattern are discussed. Second, we discuss the results of the
experiments for the hotspot traffic pattern. A representative set of plots was selected and included.

Uniform traffic

For the uniform traffic pattern, Figure 5.17 compares RecTOR with ORTOR and ORDOR/UD for an
8×8 mesh under a low traffic load; an 8×8 torus under a medium traffic load; and a 16×16 torus
under a high traffic load. The vertical lines indicate the start and end times of reconfiguration
for each of the three cases (some of the lines are plotted on top of each other). The reduction of
Thrt seen at times 6 000 and 28 000 is due to packet loss in the faulty communication channel
and switch, respectively (and is more pronounced for the low and medium load levels than for the
highest load level where the network operates above its saturation point).

Figures 5.17(a), 5.17(c) and 5.17(e) show that, after the first reconfiguration, RecTOR and
ORTOR achieve a significantly higher Thrt than ORDOR/UD does. Likewise, Figures 5.17(b), 5.17(d)
and 5.17(f ) show that, after the first reconfiguration, RecTOR and ORTOR achieve a significantly
lower Latt than ORDOR/UD does. The low load applied in Figures 5.17(a) and 5.17(b) is below
the saturation point for the Up*/Down* routing algorithm in the fault-free case. Nevertheless,
the fault of only a single communication channel causes a significant performance degradation for
Up*/Down* when compared to TOR.

Using DOR for a fault-free mesh or torus – and relying on Up*/Down* to calculate new routes
if a network component fails – is a probable arrangement (remember that DOR only works for
fault-free meshes and tori). However, at least for a traffic pattern that resembles uniform, Fig-
ure 5.17 clearly demonstrates the drawbacks of such an approach. RecTOR assumes TOR, which
not only achieves better performance than Up*/Down* after a fault has occurred, but also matches
the performance of DOR in the fault-free case. Furthermore, using only one routing algorithm
could simplify the implementation of a fault-tolerant interconnection network.

Recall that the deadlock avoidance mechanism of OR in many cases causes a decreased through-
put and increased latency during a reconfiguration process (since a number of packetsnew are tem-
porarily held back in the switches awaiting token propagation). For ORTOR, Figure 5.17(e) provides
examples of the characteristic troughs of the Thrt curves, whereas the crests of the Latt curves are
barely noticeable in Figure 5.17 due to the scale of these plots. Figure 5.18, on the other hand,
clearly shows the advantages of RecTOR over ORTOR in the case of uniform traffic. In order to
better compare RecTOR with ORTOR, ORDOR/UD is not included in these plots. (We have already
concluded from Figure 5.17 that the performance of ORDOR/UD is inferior to the performance of
RecTOR and ORTOR.)

Figures 5.18(a) and 5.18(b) show Thrt and Latt, respectively, for a 16 × 16 mesh under a low
traffic load; Figures 5.18(c) and 5.18(d) show Thrt and Latt, respectively, for a 16×16 torus under
a medium traffic load; whereas Figures 5.18(e) and 5.18(f ) show Thrt and Latt, respectively, for
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(a) Thrt, 8 × 8 mesh, low load.
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(b) Latt, 8 × 8 mesh, low load.
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(c) Thrt, 8 × 8 torus, medium load.
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(d) Latt, 8 × 8 torus, medium load.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  10000  20000  30000  40000  50000

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(e) Thrt, 16 × 16 torus, high load.
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Figure 5.17: Thrt, Latt, and start/end times of reconfiguration (rc) for RecTOR, ORTOR and
ORDOR/UD (uniform traffic, synchronized change-over to Rnew).

100



an 8× 8 torus under a high traffic load. These plots demonstrate that, in most cases, the Thrt and
Latt curves for ORTOR have significant troughs and crests, respectively. For RecTOR, on the other
hand, there are no troughs in the Thrt curves nor crests in the Latt curves, as no restrictions are
placed on the forwarding of packets during a reconfiguration process. The decreased throughput
and increased latency observed for RecTOR after the occurrence of a component fault are merely
due to the reduced capacity of the network when packets can no longer be forwarded across the
faulty communication channel or switch. The same effect is naturally also observed for ORTOR.

RecTOR performs equally well in the case of a less synchronized change-over (changestd =

100) from Rold to Rnew as in the case of a fully synchronized change-over (changestd = 0).
Therefore, Figure 5.18 includes only the less synchronized case for RecTOR, whereas both the
fully and less synchronized cases are included for ORTOR. Figures 5.18(e) and 5.18(f ) show that,
for a traffic load well above saturation, the performance of ORTOR seems independent of how
synchronized the change-over from Rold to Rnew is. For low and medium traffic load, on the other
hand, Figures 5.18(a) – 5.18(d) demonstrate that, for ORTOR, the troughs of the Thrt curves grow
deeper and the crests of the Latt curves grow higher as the change-over from Rold to Rnew gets less
synchronized.

Our results show that during a reconfiguration process RecTOR provides a better network ser-
vice than OR provides to a running application with a uniform communication pattern. Moreover,
the advantages of using RecTOR become even more apparent if the change-over from Rold to Rnew

is not fully synchronized.

Hotspot traffic

Figure 5.19 compares RecTOR with ORTOR and ORDOR/UD for the hotspot traffic pattern. For a
16 × 16 torus under a low traffic load, Latt resulting from a fully synchronized and less synchro-
nized change-over from Rold to Rnew is shown in Figures 5.19(a) and 5.19(b), respectively. For a
synchronized change-over from Rold to Rnew, Figures 5.19(c) and 5.19(d) show Thrt and Latt,
respectively, for a 16 × 16 mesh under a low traffic load, whereas Figures 5.19(e) and 5.19(f ) show
Thrt and Latt, respectively, for an 8 × 8 mesh under a high traffic load.

RecTOR guarantees that packets routed according to Rold and Rnew can safely coexist in the
network without causing deadlock. No restrictions are needed on packet forwarding during the
transition between the two routing functions. Thus, for a low traffic load, the Latt curves for Rec-
TOR are smooth, without any crests (see Figures 5.19(a), 5.19(b) and 5.19(d)). For ORTOR and
ORDOR/UD, on the other hand, the crests of the Latt curves are in most cases pronounced. Fur-
thermore, a comparison of Figure 5.19(a) with Figure 5.19(b) demonstrates that, for both ORTOR

and ORDOR/UD, the heights of the crests of the Latt curves increase significantly as the change-over
from Rold to Rnew gets less synchronized. The performance of RecTOR is independent of how
synchronized the transition from Rold to Rnew is. Thus, for hotspot traffic – as for uniform traf-
fic – the advantages of RecTOR over OR become even more apparent when the change-over from
Rold to Rnew is not fully synchronized.

For a torus topology, Figures 5.19(a) and 5.19(b) indicate that, after the first reconfiguration,
Latt for ORDOR/UD is higher than for RecTOR and ORTOR. This is due to inferior performance
of Up*/Down* when compared to TOR (which was also demonstrated for uniform traffic in Fig-
ure 5.17 – both for mesh and torus topologies). For a mesh topology, the stable latency levels
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(a) Thrt, 16 × 16 mesh, low load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5000  10000  15000  20000  25000  30000  35000  40000

L
a
te

n
c
y
 (

c
y
c
le

s
)

Packet generation time (cycles)

rc ORTOR (u)
rc RecTOR (u)
ORTOR (s)
ORTOR (u)
RecTOR (u)

(b) Latt, 16 × 16 mesh, low load.
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(c) Thrt, 16 × 16 torus, medium load.
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(d) Latt, 16 × 16 torus, medium load.
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(e) Thrt, 8 × 8 torus, high load.
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(f ) Latt, 8 × 8 torus, high load.

Figure 5.18: Thrt, Latt, and start/end times of reconfiguration (rc) for RecTOR and ORTOR under
synchronized (s) and unsynchronized (u) change-over to Rnew (uniform traffic).
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observed outside reconfiguration periods for the hotspot traffic pattern are similar for Up*/Down*
and TOR (see Figure 5.19(d)). When based on a breadth-first search, the spanning tree of the
Up*/Down* algorithm will typically be shallower and wider for a torus than for a mesh. Thus, for
the torus, the area around the root switch to a larger extent becomes a traffic bottleneck. This could
explain the differences observed for the mesh and torus topologies.

For hotspot traffic, the packet throughput is limited due to 80% of the traffic being directed
towards one particular node. This explains the results for Thrt presented in Figures 5.19(c) and
5.19(e). For a low traffic load, the Thrt curves simply resemble horizontal lines (except that, for
some plots not included here, falls related to packet loss in a faulty communication channel or
switch are visible). For a high traffic load, the characteristic troughs in the Thrt curves for OR are
barely visible. Furthermore, we believe that the small increase in Thrt immediately after the start of
each reconfiguration in Figure 5.19(e) is due to more packets being accepted into the network when
the new routes around a faulty communication channel or switch are taken into use. Figure 5.19(f )
shows that such an increase in Thrt corresponds to an increase in Latt for RecTOR as well as for
ORDOR/UD and ORTOR.

Figure 5.19(f ) demonstrates that, for a load level well above saturation, RecTOR experiences
fluctuations in Latt to a less extent than OR does. During a reconfiguration with OR, a number
of packetsnew are held back in the switches awaiting token propagation. This explains the decrease
in Latt for ORTOR and ORDOR/UD observed for packets injected over a period of time before a
reconfiguration. As a number of packetsnew are temporarily held back in the switches, a number
of packetsold experience lower latency due to reduced network load. However, this should not be
interpreted as an advantage of OR over RecTOR. As packetsnew may be considerably delayed as a
result of the token propagation procedure, some significant crests in the Latt curves are observed
for ORTOR and ORDOR/UD. Figures 5.19(e) and 5.19(f ) represent an extreme scenario – a heavy
hotspot traffic pattern in combination with a workload well above saturation. However, even in
this case, we conclude that RecTOR supports a more stable network service than OR does.

5.3 Related work and our contribution

A number of mechanisms are available in the literature for performing reconfiguration of an inter-
connection network, and an overview of the most relevant approaches was given in Section 2.8.2.
Our contribution is to the area of general dynamic reconfiguration methods. Such methods allow
application traffic into the network during a change-over from one routing function to another,
and are not tied to any particular interconnection network technology. For our focus area the most
relevant of the existing reconfiguration methods are Partial Progressive Reconfiguration (PPR) [36],
Double Scheme [179], NetRec [19], Agent NetReconf [6,7], LORE [235], and Close Graph-based
Reconfiguration (CGR) [185, 187]. Their manners of operation, including their main strengths
and shortcomings, were discussed in Section 2.8.2.

Recall that PPR, NetRec, Agent NetReconf, and LORE are all designed for distributed routing
systems. A distributed routing system is more flexible with respect to packet routing than a source
routing system is, since in the former intermediate switches can affect, and thus change, the path of
a packet. This kind of flexibility is usually advantageous for the development of a general dynamic
reconfiguration method, and could explain why more such methods are currently available for
distributed routing systems than for source routing systems.
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(a) Latt, 16× 16 torus, low load, synchronized change-
over to Rnew.
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(b) Latt, 16 × 16 torus, low load, unsynchronized
change-over to Rnew.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  5000  10000  15000  20000  25000  30000  35000  40000

R
e
c
e
iv

e
d
 p

a
c
k
e
ts

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(c) Thrt, 16×16 mesh, low load, synchronized change-
over to Rnew.
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(d) Latt, 16×16 mesh, low load, synchronized change-
over to Rnew.
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(e) Thrt, 8 × 8 mesh, high load, synchronized change-
over to Rnew.
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Figure 5.19: Thrt, Latt, and start/end times of reconfiguration (rc) for RecTOR, ORTOR and
ORDOR/UD (hotspot traffic).

104



CGR and Double Scheme are applicable for source routing systems as well as for distributed
routing systems. (In [185] CGR was presented as a reconfiguration strategy for both source and
distributed routing networks, whereas in [187] it was presented as a reconfiguration strategy for
source routing networks.) CGR does not require VCs for deadlock avoidance. It depends on a
relatively complicated procedure to create an Rnew such that packets routed according to Rold and
Rnew can coexist in the network without causing deadlocks. Thus, CGR supports an unaffected
network service during a reconfiguration process. However, CGR is tied to the Up*/Down* rout-
ing algorithm, which (as explained in Section 2.8.1) has performance issues, mainly related to the
congestion that tends to form close to the root switch. Double Scheme does not assume a particular
routing algorithm (or pair of routing algorithms). However, it depends on VCs for deadlock avoid-
ance and does not support in-order delivery of packets during a reconfiguration process without
heavy synchronization.

Up to now OR has been available only for distributed routing systems. However, OR possesses
a number of qualities which are also attractive for source routing systems. Like Double Scheme, OR
can be used between any pair of routing algorithms (and in [139] OR was shown to provide similar
performance as Double Scheme). Furthermore, as opposed to Double Scheme, OR supports in-
order packet delivery and does not require VCs. In Section 5.1, we proposed an adaptation that
expands OR’s area of application to include source routing systems. Moreover, we introduced an
optimization of OR for source routing systems, and demonstrated how a relaxed token propagation
procedure reduces performance penalties during a reconfiguration process.

As explained in Section 5.1.4, a complete synchronization of token injection – meaning that all
traffic sources inject their tokens simultaneously – is hard to achieve. Our simulation results show
that the degree of token injection synchronization has a significant impact on the increased latency,
decreased throughput and congestion effects related to a reconfiguration process managed by OR.
The less synchronized the injection of tokens is, the more significant such performance penalties
become.

Our investigation of the effects of token injection synchronization is relevant for source routing
systems where routing tables are kept in the processing nodes rather than in the switches. In [139]
two different realizations of OR were evaluated for a distributed routing environment, and here we
refer to these two implementations as ORv1 and ORv2. For ORv1 the control packets that trigger
token injection and the new routing tables are distributed in parallel from a central management
entity. For ORv2, on the other hand, the new routing tables are fully downloaded to the switches
before the control packets that trigger token injection are distributed by the central management
entity. When using ORv1, traffic sources may inject their tokens before all switches have received
complete new routing tables. This is a highly relevant synchronization issue for distributed routing
systems using OR. As an aside, plots of [139] (showing traffic injected by processing nodes) indicate
that the degree of synchronization of the token injection is similar for ORv1 and ORv2.

In Section 5.2 we proposed RecTOR, a new general dynamic reconfiguration method which is
applicable both for source and distributed routing systems. Like CGR, RecTOR allows the packets
routed according to Rold and Rnew to coexist in the network without restrictions, and does therefore
not cause performance penalties during a reconfiguration process. However, whereas CGR depends
on a relatively complicated procedure to establish Rnew, RecTOR is based on the simple principle
explained in Section 5.2.1. Furthermore, CGR assumes the Up*/Down* routing algorithm which
achieves only limited performance. RecTOR, on the other hand, is based on the flexible TOR
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routing algorithm which, given sound path selection, achieves excellent performance. In particular,
as opposed to Up*/Down*, TOR supports shortest path routing and does not invite hotspots.

Like Double Scheme, RecTOR requires VCs and does not support in-order delivery of packets.
Assume that |V Cold| and |V Cnew| are the number of VCs needed by Rold and Rnew, respectively,
and that int Max(int a, int b) is a function that takes two integers as input and returns
the one with the highest value. Then, whereas Double Scheme generally requires |V Cold|+|V Cnew|

VCs, RecTOR does not require more VCs than Max(|V Cold|, |V Cnew|).
A comparison of the two reconfiguration methods focused in this chapter – OR and Rec-

TOR – shows that there are advantages and disadvantages related to either of the methods. Whereas
RecTOR cannot guarantee in-order delivery of packets during a reconfiguration process, OR sup-
ports in-order packet delivery (unless the least restrictive version of the optimization is used). Fur-
thermore, OR can be used in systems where VCs are not available for the routing function, whereas
RecTOR is based on TOR and depends on VCs for deadlock avoidance.

Our results show that, as RecTOR ensures deadlock-freedom without causing temporarily de-
graded throughput and latency, it supports a better network service during a reconfiguration process
than OR does. Only in a best case scenario (where all the routes of Rnew are also legal routes accord-
ing to Rold), and only for a source routing system, can the optimized OR support an uninterrupted
network service during a reconfiguration process. Furthermore, as opposed to the performance of
OR, the performance of RecTOR is independent of how synchronized the change-over from Rold

to Rnew is.
OR can be used between any pair of routing algorithms, and is in this respect more flexible

than RecTOR is. The choice of routing algorithm(s) is important for the performance of an inter-
connection network. Our results demonstrate how the performance degrades when – after having
used the topology specific DOR algorithm for a fault-free mesh or torus topology – the topology
agnostic Up*/Down* algorithm are taken into use for a non-regular topology that results from the
fault of only a single communication channel. The topology agnostic TOR algorithm, on the other
hand, could match the performance of DOR in a fault-free mesh and torus, and continue to sup-
port high performance in a non-regular topology that results from a fault. RecTOR is based on
TOR, and – in addition to the advantages related to the performance of TOR – the use of only one
routing algorithm could ease the implementation of a reconfiguration mechanism.

OR requires implementation of special functionality in the switches in order to govern the
propagation of tokens throughout the network. RecTOR is simpler to realize as it does not re-
quire additional functionality in the network switches (except perhaps for preventing packets from
looping in a distributed routing environment).

5.4 Critique

OR requires particular network switches as each switch must hold and process information regard-
ing the reception and transmission of tokens. Our adaptation of OR for applicability in source
routing systems assumes that each switch acquires the dependencies from its input to output chan-
nels while forwarding data packets. The acquisition of channel dependencies and registration of
token propagation, as well as the proposed optimization of OR, demand additional logic in the
switches. As source routing switches often are expected to be simple, the need for relatively com-
plex switches may be a disadvantage for a reconfiguration scheme targeting a source routing envi-
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ronment. Nevertheless, we believe in the usefulness of OR for such systems. OR has a number
of desirable qualities, and the selection of general dynamic reconfiguration methods applicable for
source routing systems is currently limited.

The optimization of OR proposed in Section 5.1.3 adds an overhead bit to each data packet,
and requires additional logic in switches and processing nodes. In the case where reconfigurations
are expected to occur infrequently, the implementation of the optimization might not be justified.
However, our results demonstrate that congestion induced by a reconfiguration process may cause
network instability for a significant period of time following the reconfiguration. Preventing or
alleviating such congestion may motivate the use of the optimization even in cases where reconfig-
urations do not occur frequently. The least restrictive version of the optimization of OR cannot
guarantee in-order packet delivery. However, this version of the optimization in general has the
highest improvement potential. Thus, the decision on whether to apply the optimization – and,
if so, which version to use – involves a tradeoff between acceptable overhead, reconfiguration fre-
quency, required performance, and need for in-order packet delivery.

As OR does not depend on VCs for deadlock avoidance, and as a routing algorithm capable
of handling non-regular topologies was required, the well established Up*/Down* algorithm was
chosen for the performance evaluation of OR in Section 5.1.6. However, Up*/Down* achieves rel-
atively low performance, and our choice of routing algorithm could perhaps therefore be criticized.
On the other hand, the results of the experiments in Section 5.2.3 – where OR was also used with
the TOR algorithm – mainly confirm the behaviour of OR observed when using Up*/Down*.

RecTOR is in several respects less versatile than OR is. It is tied to a specific routing algo-
rithm – TOR; depends on the availability of VCs; cannot ensure in-order packet delivery; and may
require mechanisms to prevent packets from looping in a distributed routing environment. On
the other hand, TOR supports excellent performance; the use of a single routing algorithm could
ease the implementation of a fault-tolerant interconnection network; RecTOR does not require
complex network switches; and – perhaps most importantly – RecTOR does not cause degraded
performance during a reconfiguration process. Thus, provided that a system has VCs available
for the routing function and that out-of-order packet delivery is acceptable, RecTOR may be an
attractive general dynamic reconfiguration method.

5.5 Future work

Our results indicate that, for traffic patterns close to uniform, the benefit of the optimization of
OR is in some cases limited by head-of-line blocking effects that result from the token propagation
procedure. A future study could aim at improving the gain of the optimization for such traffic
patterns, e.g. by introducing virtual output queues.

In our experiments, time is represented by an abstract unit called cycles. For an interconnection
network, the duration of a reconfiguration process might be an important parameter. This parame-
ter is probably more important when using OR than when using RecTOR, however, as temporary
performance penalties must be expected as a result of a reconfiguration process managed by OR. A
future study could address the real-time behaviour of reconfiguration strategies, either by applying
a more detailed simulator model or by implementing the reconfiguration strategies in a real system
and performing measurements.

Like RecTOR, the fault-tolerant routing algorithm proposed in [154] – referred to as Transition-
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Based Fault-Tolerant Routing (TFTR) – is based on the TOR routing algorithm. TFTR assumes
the InfiniBand interconnection network technology [105] and uses TOR to compute a set of dis-
joint paths for each pair of source and destination processing nodes in a system. If, during the
operation of the system, the primary path is disrupted by a fault, the Automatic Path Migration
hardware mechanism of InfiniBand supports a transition to an alternate path. The minimum num-
ber of faults tolerated by TFTR corresponds to the lowest number of disjoint paths calculated for
any pair of processing nodes. As indicated in [154], a reconfiguration is needed when, for some
pair of processing nodes, all of the calculated paths have been disrupted by component faults.
Since TOR depends on VC-transitions for deadlock avoidance, using TOR (as well as RecTOR
or TFTR) for interconnection networks based on the InfiniBand technology is not unproblematic.
Recall from Section 4.3 that in InfiniBand – where VCs are called virtual lanes (VLs) – each packet
carries a particular service level (SL) which cannot be changed by intermediate switches. The num-
ber of SLs are limited in InfiniBand, and the VL to use on each communication channel is decided
by an SL to VL mapping table in each switch. Due to these factors VL-transitions cannot be used
unrestrictedly in InfiniBand. TFTR may require a high number of SLs, and in [153] an alternative
approach – which demands a low number of SLs and VLs – was proposed for calculating a set
of disjoint paths in torus networks based on InfiniBand. However, for interconnection network
technologies that support more flexible mechanisms for VC-transitions than InfiniBand does (and
also support migration of paths), a future study could aim at combining RecTOR with the main
principles of TFTR in order to provide an even more powerful fault tolerance mechanism than
RecTOR is alone.
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Chapter 6

Processor allocation

Processor allocation is a form of virtualization where sets of physical processing nodes are aggregated
into virtual processors and assigned to execute parallel jobs. A set of processing nodes – often
referred to as a partition – typically includes only a subset of the processing nodes available in
a multiprocessor system such as a computer cluster, data center or multicore chip. In order to
achieve a reasonable utilization of the resources available in a multiprocessor system, an efficient
processor allocation strategy is important. Furthermore, for the parallel jobs to be executed in a
multiprocessor system, the processor allocation strategy has an influence on such factors as running
time, queuing time and interference between concurrently running jobs.

Recall from Section 2.7 that traffic-containment is a quality of some contiguous processor allo-
cation strategies that prevents concurrently running jobs from sharing communication channels.
Isolation of intra-job traffic within each partition may be advantageous both for performance,
anonymity and security reasons. Such isolation ensures that the communication overhead for a
job is independent of concurrently running jobs, and that one job cannot analyze nor tamper with
the traffic belonging to another job. Unfortunately, fragmentation – and thus a suboptimal utiliza-
tion of a system’s processing resources – is a consequence of the enforcement of traffic-containment.
Many of the processor allocation strategies found in the literature, such as those that allocate sub-
mesh shaped partitions in mesh topologies (see Section 2.7.1), are rigid approaches which achieve
traffic-containment only at the cost of a significantly reduced resource utilization. The research
presented in this chapter aims at providing more flexible processor allocation strategies which are
able to ensure traffic-containment as well as a high resource utilization. For development of such
flexible allocation strategies, we assume a close collaboration between the sub-system responsible for
processor allocation and the sub-system responsible for routing. Our new approaches to processor
allocation depend on topology agnostic routing, and in some cases reconfiguration is also needed.

Apart from the collaboration with the routing sub-system, we assume a traditional model of a re-
source management sub-system where jobs arrive in a waiting queue, and each job has requirements
on such aspects as number of processing nodes and running time (see Section 2.7 and Figure 2.5).
A scheduler decides the sequence in which the queued jobs are selected, and an allocator attempts to
locate and assign a set of free processing nodes that meets the requirements of the selected job. The
set of processing nodes is exclusively assigned to a single parallel job, which runs uninterruptedly
until completion.

In Section 6.1 we present a novel traffic-contained processor allocation algorithm, UDFlex,
which is based on the topology agnostic Up*/Down* routing algorithm [204]. UDFlex may be
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used on any topology, and the only restriction on an allocated partition is that the set of nodes
must constitute a sub-graph of the overall Up*/Down* graph. This provides increased flexibility
and potentially reduced fragmentation when compared to the algorithms that restrict the allocated
partitions to specific shapes. Section 6.1 is based on [225].

In Section 6.2 we introduce a new framework which combines flexible processor allocation,
topology agnostic routing and reconfiguration in order to achieve both a high resource utiliza-
tion (low fragmentation) and traffic-containment. The framework is conceptually simple and
does not prescribe a particular processor allocation strategy, routing algorithm or reconfiguration
method. Section 6.2 is based on [223].

After the presentation of our research, Section 6.3 discusses related work and our contribution,
whereas Section 6.4 presents a critical view of our own work. Section 6.5 considers possibilities for
future research and is based on [142].

Throughout the chapter, in order to simplify the discussion, we assume that some entity referred
to as the routing module is responsible for maintaining the routing function. We also assume that
the assignment of processing resources is performed sequentially, meaning that an allocator only
handles a single request for resources at a time. Furthermore, we assume that a node refers to a
combined node which contains both processing and switching elements. A free node is a node
which is currently not allocated to any job. A busy node, on the other hand, is a node which is
currently allocated to a job.

6.1 Traffic-contained allocation in an Up*/Down* routed sys-

tem

In this section we present a novel processor allocation strategy, UDFlex, which may alleviate the
fragmentation problem inherent in contiguous processor allocation algorithms by being flexible
with respect to the allowed shape of partitions. This means that UDFlex has the potential of
achieving a high utilization of a system’s processing resources. Moreover, UDFlex ensures traffic-
containment within each partition, and thereby prevents interference between the traffic belong-
ing to concurrently running jobs. Section 6.1.1 presents the basic UDFlex algorithm, whereas
Section 6.1.2 discusses an example implementation. The performance of UDFlex is evaluated in
Sections 6.1.3 and 6.1.4.

6.1.1 The UDFlex algorithm

UDFlex assumes a close collaboration between an allocator and a routing module, and it assumes
that the interconnection network applies the Up*/Down* routing algorithm [204]. Recall that
Up*/Down* assigns up and down directions to all the communication channels in the network to
form a directed acyclic graph (DAG) rooted in one of the nodes, and that deadlock is avoided by
prohibiting the turn from a down-link to an up-link.

We include definitions of a correct Up*/Down* graph, and a valid sub-graph of an Up*/Down*
graph as both are important concepts for the UDFlex algorithm:

Definition 6.1. A correct Up*/Down* graph is a DAG with only one root node, where all other
nodes can reach the root by following a sequence of one or more up-links, and the root can reach
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all other nodes by following a sequence of one or more down-links.

Definition 6.2. A valid sub-graph of an Up*/Down* graph G consists of a subset of the nodes and
communication channels of G, and is itself a correct Up*/Down* graph.

Assume that an Up*/Down* graph has been constructed for an interconnection network that
connects a number of nodes. For simplicity, we also assume a stable topology during the period
of interest, such that changes in the Up*/Down* graph are not needed. The main idea behind
UDFlex is to allocate to each job a set of free nodes that form a valid Up*/Down* sub-graph. The
assignment of a valid Up*/Down* sub-graph to a scheduled job presupposes that the allocator has
received information about the Up*/Down* graph from the routing module.

UDFlex has several attractive qualities. The allocation of partitions that constitute valid
Up*/Down* sub-graphs allows flexibility with regard to the shape of partitions, and may thereby
cause low fragmentation. It also supports containment of traffic within each partition. However, in
order to ensure that no packet is routed outside its partition, the routing module needs information
from the allocator about a new partition (or at least about the boundaries of a new partition). UD-
Flex can recognize a free Up*/Down* sub-graph given that one is available. (A free sub-graph is a
valid sub-graph of an Up*/Down* graph where none of the nodes are currently busy.) Any number
of nodes can constitute a partition to be allocated to a scheduled job, which means that internal
fragmentation is completely avoided. Moreover, UDFlex is a topology agnostic algorithm, and is
thus also useful for a non-regular topology that may result from faults in a regular topology.

The UDFlex allocation algorithm is presented next. Assume that the allocator and the routing
module cooperate in running UDFlex; that the routing module has calculated an Up*/Down* graph
G for the topology; that the allocator knows G; and that the routing module knows all possible
paths between every pair of source and destination nodes in G and can activate or deactivate paths
as required. Further assume that a parallel job just selected by the scheduler requests a number of
nodes |R|.

1. The number of free nodes, |Nfree|, of G is checked. The request can only be granted if
|Nfree| ≥ |R|. If |Nfree| < |R|, the scheduled job is returned to the waiting queue, pending
termination of a running job.

2. A valid sub-graph P of G consisting of exactly |R| free nodes is identified and reserved for
the scheduled job.

3. The allocator notifies the routing module of the new partition P .

4. For every pair of nodes inside P , the routing module must ensure that any path in G that
traverses an intermediate node outside P is deactivated, and that at least one path in G that
does not traverse an intermediate node outside P is activated.

5. The routing module notifies the allocator that the routing function is ready.

6. The allocator assigns P to the scheduled job.

The status of the nodes that are part of P are typically changed from free to busy during step 2
or step 6 of the UDFlex allocation algorithm. However, in order to ensure traffic-containment and
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connectivity, the scheduled parallel job is not started on P until step 6 has completed. Note that if
a scheduled job is returned to the waiting queue (which may happen during step 1 or step 2), the
remaining algorithmic steps are skipped, and the job must be rescheduled.

In order to establish that UDFlex guarantees isolation of the traffic belonging to different par-
allel jobs, we include and prove Lemma 6.1.

Lemma 6.1. UDFlex ensures traffic-containment within each partition.

Proof. The proof is by contradiction. Assume that an arbitrary node s and another arbitrary node d

are both part of a partition P , and that underway from its source s to its destination d a packet
crosses an intermediate node i which is not part of P . This contradicts step 4 of the UDFlex
algorithm which prescribes that, for every pair of nodes inside P , any path in G that traverses an i

outside P is deactivated. Thus, for a job running on P , no packet from s to d can leave P .

Lemma 6.1 verifies that, when using UDFlex, packets passed between a set of nodes assigned
to run a parallel job cannot be routed through any node that is not a member of the set. Next, in
order to establish that UDFlex enables communication between all the members of the set of nodes
assigned to run a parallel job, we include and prove Lemma 6.2.

Lemma 6.2. UDFlex provides a connected routing function within each partition.

Proof. The proof is by contradiction. Assume that an arbitrary node s and another arbitrary node d

are both part of a partition P , and that no path exists within P from s to d. Let a legal path denote
a path that obeys the turn-restrictions of G. We then have to consider the following two alternative
situations:

1. No legal path exists within P from s to d. This contradicts step 2 of the UDFlex algorithm
which demands that P is a valid sub-graph of G. According to Definition 6.2, a valid sub-
graph of G is itself a correct Up*/Down* graph. Thus, according to Definition 6.1, at least
one path that crosses zero or more up-links before crossing zero or more down-links must
exist within P from s to d.

2. One or more legal paths exist within P from s to d but are deactivated. This contradicts
step 4 of the UDFlex algorithm which prescribes that, for every pair of nodes inside P , at
least one path in G that does not traverse an intermediate node outside P is activated.

When a parallel job has finished running on a partition P , the UDFlex deallocation algorithm
simply changes the status of each of the nodes which are part of P from busy to free. In the
following, "UDFlex" or "the UDFlex algorithm" refers to the allocation algorithm, rather than the
deallocation algorithm, unless otherwise stated.

Figure 6.1 illustrates UDFlex allocation in a 6 × 6 mesh multiprocessor system. A configura-
tion where three parallel jobs are running on partitions of sizes 2, 7 and 13 nodes is displayed in
Figure 6.1(a). Immediately afterwards, a partition of 4 nodes is assigned to a new job, and the new
configuration is displayed in Figure 6.1(b). Notice how each of the partitions is a valid sub-graph
of the overall Up*/Down* graph. Also notice how the latest assignment is one of several possible
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(a) Snapshot of running jobs immediately before
granting a request for 4 nodes.

(b) Snapshot of running jobs immediately after
granting a request for 4 nodes.

Figure 6.1: Example of UDFlex allocation in a 6 × 6 mesh multiprocessor system. (An arrow
indicates the direction of an up-link.)

placements of a 4-node job. Assuming minimal routing, for three of the partitions deactivation
of paths is not required in order to ensure traffic-containment. However, for the 7-node parti-
tion, packets originating from node 33 and destined for node 24, 25 or 26 may be routed through
node 27 (which is not part of the partition), unless the routing module has deactivated this path.
(The corresponding return path must also be deactivated.)

6.1.2 An example implementation

In this section, we include and discuss a particular implementation of UDFlex that is also used in
the performance evaluation presented in Sections 6.1.3 and 6.1.4. As previously explained, UDFlex
presupposes a cooperation between an allocator and a routing module. However, the main focus of
this chapter is on the operation of the allocator, rather than on the operation of the routing module.
This section mainly aims to provide an example of a realization of step 2 of the UDFlex algorithm
which determines that the partition reserved for a scheduled job must constitute a valid sub-graph
of an Up*/Down* graph. However, towards the end of this section we will also include comments
pertaining to step 4 of the UDFlex algorithm which provides directions for the activation and
deactivation of paths necessary to ensure connectivity and traffic-containment within a partition.
We will not consider further details related to the communication between the allocator and the
routing module.

Recall that a free sub-graph is a valid Up*/Down* sub-graph where none of the nodes are cur-
rently busy. Assume that the allocator and the routing module cooperate in running UDFlex; that
the routing module has calculated an Up*/Down* graph G for the topology; that the allocator
knows G; that the routing module knows all possible paths between every pair of source and des-
tination nodes in G and can activate or deactivate paths as required; that the distance (number of
hops) from the root of G to every other node in G is known; and that the number of nodes in
some free sub-graph x of G is denoted |x|. Further assume that a parallel job just selected by the
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scheduler requests a number of nodes |R|. Then remember that step 2 of the UDFlex algorithm is
as follows: A valid sub-graph P of G consisting of exactly |R| free nodes is identified and reserved for

the scheduled job.

In many cases, several candidates for P may exist. (Recall from the example illustrated in Fig-
ure 6.1 that the latest partition allocated was one of several alternative placements of a 4-node job.)
This gives room for a variety of implementations, ranging from simple "first-fit" approaches (where
the first free sub-graph encountered is selected) to more sophisticated "best-fit" approaches (where
measures are typically taken to increase the probability of successful accommodation of subsequent
jobs). Our example implementation leans towards the latter category of approaches.

The primary aim of our implementation is to place P in the smallest possible free sub-graph.
(This free sub-graph may itself be part of a larger free sub-graph.) The motivation is to encourage
defragmentation of the set of nodes that remains free after the allocation, in order to increase the
chance of success for later allocation attempts. In order to minimize dispersion within an allocated
set of nodes, our implementation first searches for a complete free sub-graph. For a complete free
sub-graph a rooted in a node ar, no other free sub-graph a′ rooted in ar exists where a is a subset
of a′. In Figure 6.1(a) the 5-node free sub-graph consisting of nodes 27, 28, 29, 34, 35 and rooted in
node 27 is complete. On the other hand, the 3-node free sub-graph consisting of nodes 27, 28, 34,
which is also rooted in node 27, is not complete.

The secondary aim – which applies for instance if several equally small free sub-graphs exist – is
to place P in the candidate sub-graph that has its root node farthest away from the root node of G.
The motivation is to keep the area around the root node of G as free and defragmented as possible
in order to promote a successful allocation of any subsequent job requesting a high number of
nodes.

The allocation of the 4-node partition illustrated in Figure 6.1 is in accordance with our example
implementation. In Figure 6.1(a), two complete free 4-node sub-graphs satisfy our primary aim.
One of the sub-graphs, sg1, consists of the nodes 12, 13, 18, 19 and the other, sg2, consists of
the nodes 28, 29, 34, 35. In order to satisfy our secondary aim, sg2 was chosen and assigned to
the scheduled job. An alternative implementation could have prioritized different aims. Assume
that H refers to a free sub-graph in G that is not itself part of a larger free sub-graph in G. Then,
for instance, an alternative secondary aim could have been to place P in the candidate sub-graph
inside the smaller H . Returning to our example from Figure 6.1, we observe that sg1 is part of
a 6-node H , whereas sg2 is part of an 8-node H . Thus, with an alternative secondary aim, sg1

could have been chosen and assigned to the scheduled job.

Our example implementation of step 2 of the UDFlex algorithm is presented in the following.

1. Let an Hr be the root node of an H . An Hr is then any free node that does not have an
up-link towards some free node in G. Identify every Hr and store the resulting set of nodes
in SHr

.

2. Search every H rooted in an Hr ∈ SHr
and identify the smallest complete free sub-graph g

of any H where |g| ≥ |R|. See the primary aim above.

• If no g was found, the scheduled job must be returned to the waiting queue, pend-
ing termination of a running job. (The remaining steps of the UDFlex algorithm are
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skipped, and the job must be rescheduled.) This is an example of external fragmenta-
tion (step 1 of the UDFlex algorithm already checked that a sufficient number of nodes
in G were free).

• Else if more than one candidate was found for g, let g be the candidate that has its root
farthest away from the root of G (if there are still several candidates, a random selection
is performed). See the secondary aim above.

3. For the scheduled job, reserve g or a valid Up*/Down* sub-graph of g that contains exactly
|R| nodes.

• If |g| = |R| then reserve g for the job.

• Else if |g| > |R| then the redundant number of nodes, |g| − |R|, must be excluded
from the set of nodes reserved for the job (in order to avoid internal fragmentation).
Identify the smallest valid Up*/Down* sub-graph g′ of g where |g′| ≥ (|g| − |R|).
Then g′ contains the |g| − |R| nodes to be excluded from the reservation. If more than
one candidate was found for g′, let g′ be the candidate that has its root node nearest to
the root node of G. (Recall that we attempt to keep the area close to the root of G as
free and defragmented as possible.)

– If |g′| = (|g|−|R|) then reserve g−g′ for the job. The purpose of the exclusion of
a valid Up*/Down* sub-graph, g′, from the reservation (rather than any arbitrary,
possibly fragmented, |g| − |R| nodes) is to increase the probability of a successful
accommodation of a subsequent job.

– Else if |g′| > (|g| − |R|) then apply a breadth-first search from the root of g′ in
order to identify a valid Up*/Down* sub-graph, g′′, where |g′′| = |g′|−(|g|−|R|),
and reserve g − g′ + g′′ for the job. This approach is chosen for simplicity, and
may scatter the redundant |g| − |R| nodes.

Assume that the Up*/Down* graph calculated by the routing module can be expressed as G =

(V,E), where V is the set of vertexes representing the nodes and E is the set of edges representing
the communication channels of the interconnection network. The numbers of vertexes and edges
are |V | and |E|, respectively. In the following, the complexity of our example implementation of
step 2 of the UDFlex algorithm is roughly estimated.

Step 1 of the example implementation involves identification of every Hr in the system. The
complexity of this step is O(|V | × |p|) where |p| is the number of ports per node.

Step 2 of the example implementation, which identifies the complete free sub-graph g where
the new partition is to be located, involves a depth-first search from every Hr. The complexity of
a depth-first search on G is O(|E| + |V |) [248], and the complexity of Step 2 becomes O(|V | ×

(|E| + |V |)).
Step 3 of the example implementation involves selection and reservation of exactly |R| nodes for

the scheduled job. Depending on the size and shape of g, alternative procedures will be executed.
A breadth-first search constitutes the most complex part of the most expensive procedure. Thus,
the complexity of Step 3 becomes O(|E| + |V |) [248].

Let us consider two-dimensional mesh and torus topologies as examples since these topolo-
gies are used in the performance evaluation presented in Sections 6.1.3 and 6.1.4. For a two-
dimensional torus |p| = 4 and |E| = 2 × |V |, whereas for a two-dimensional mesh |p| ≤ 4 and
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|E| < 2 × |V |. Thus, for such topologies, the complexity of steps 1, 2 and 3 of the example
implementation can roughly be expressed as O(|V |), O(|V |2) and O(|V |), respectively, which may
collectively be expressed as O(|V |2).

The routing module could precalculate all alternative paths between every pair of source and
destination nodes in a system. Step 4 of the UDFlex algorithm states that the routing module
must activate and deactivate paths in order to ensure traffic-containment within a partition as well
as connectivity between every pair of nodes in the partition. The complexity of such activation
and deactivation of paths will typically be at least O(|V |2) as it must be performed for every pair of
nodes in a partition. For the sake of traffic-containment and connectivity a scheduled job cannot be
started until the updated routing function is ready. However, we notice that starting the job earlier
would not have caused deadlock as the routing functions in use before and after the update are based
on the same Up*/Down* graph and are therefore compatible. In this study we have not explicitly
simulated packet-exchange between nodes, and we will not further discuss implementation details
concerning the routing module’s activation and deactivation of paths.

Finally, let us consider the complexity of the UDFlex deallocation algorithm. As we recall,
UDFlex deallocation simply implies a traversal through the nodes assigned to a finishing job to
change their status from busy to free. Thus, the complexity of UDFlex deallocation becomes
O(|V |).

6.1.3 Experiment setup

In order to evaluate the performance of UDFlex, traditional contiguous allocation strategies are used
as our main points of reference. We do, however, also include the Random [137] allocation strategy
in our experiments. Recall from Section 2.8.3 that Random is an allocation strategy that fails only
when the next job to be served requires a higher number of nodes than the number of currently
free nodes. Thus, fragmentation is not an issue when using Random. The reason for including
Random is to visualize the upper performance benchmark with respect to our metrics (as long as
communication overhead is not considered). For practical purposes, communication overhead may
reduce the attractiveness of Random.

We consider both mesh and torus topologies of size 16 × 16, 32 × 16, and 32 × 32. In these
experiments, UDFlex assumes an Up*/Down* graph based on a tree identified by a breadth-first
search (as proposed in [204]). The root of the Up*/Down* graph is in the upper left corner1 of the
topology.

For meshes, we compare UDFlex with the contiguous allocation algorithms First Fit [262],
Best Fit [262], Adaptive Scan [61] and Flexfold [91]. All of these allocation strategies are described
in Section 2.7.1.

For tori, we compare UDFlex with a contiguous strategy that allocates sub-meshes (possibly
across wraparound channels) and has complete sub-mesh recognition capability. This allocation
strategy is based on Adaptive Scan and fitted to torus topologies. First, allocation of the originally
requested sub-mesh a×b is attempted, and, if no such sub-mesh is available, the 90 degrees rotation
of the original request (b×a) is attempted. We believe that for the metrics considered this strategy is
a reasonable representative of algorithms that allocate sub-meshes in two-dimensional tori. As with

1In order to simplify the discussion, we visualize a torus topology laid out in a plane as a mesh topology with
wraparound channels.
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most of the allocation strategies for k-ary n-cubes included in Section 2.7.1, this strategy is not
traffic-contained when Dimension-Order Routing (DOR) [231] is used. Nevertheless, for the eval-
uation of UDFlex with respect to a metric such as system utilization, we believe that a comparison
with this strategy is more interesting than a comparison with a strategy such as k-ary Partner [251].
Recall from Section 2.7.1 that the k-ary Partner strategy supports traffic-containment, but does not
have complete sub-cube recognition capability and may also be affected by internal fragmentation.

For every experiment, data collection spans the execution of 16 000 jobs. In order to evaluate
the performance of the various allocation algorithms we consider the metrics system utilization and
queuing time. Assume that a mesh or torus has width w and height h; that the position of any node
can be expressed as a pair of coordinates (x, y) where 1 ≤ x ≤ w and 1 ≤ y ≤ h; that the node in
position (i, j) has been busy for the aggregated time busyi,j ; and that data have been collected for a

period of time T . Then, as in [262], we define the system utilization to be

∑
1≤i≤w,1≤j≤h busyi,j

w × h × T
,

and the system fragmentation is then 1 − system utilization. The queuing time is the average time
that a job is held in the waiting queue, from the time of the arrival of a job until its requested nodes
have been allocated. Each experiment is repeated 16 times (with a different seed), and the mean
values of these repetitions are presented together with their 95% confidence intervals.

For a fair comparison between algorithms that allocate sub-meshes and those that do not, the
resource demand of jobs (the number of nodes requested) should be equal for either group. Each
job requests a× b nodes, which is considered a product of numbers by UDFlex and Random and a
defined sub-mesh by the remaining allocation strategies. Recall from Section 3.1.2 that the values
of a and b are drawn from separate uniform distributions with minimum sizes amin and bmin and
maximum sizes amax and bmax, respectively. We conducted experiments for jobs with a potential
for high, medium, and low resource demand. For all of the experiments amin = 1 and bmin = 1.
For a potentially high resource demand amax is set to w and bmax is set to h; for a potentially

medium resource demand amax is set to
w

2
and bmax is set to

h

2
; and for a low resource demand

amax is set to
w

4
and bmax is set to

h

4
.

Recall from Section 3.1.2 that for a mesh or torus of width w and height h the input load is
|R|mean × STmean

w × h × ITmean

, where |R|mean is the mean number of nodes requested by the jobs; STmean is

the mean service time (running time) of jobs; and ITmean is the mean interarrival time of jobs.
Our first set of experiments aims to assess the ability of UDFlex to reduce fragmentation, when

compared to strategies that allocate sub-meshes. We simulated input load levels ranging from 0.1
to 1.1, where a load higher than 1 indicates that the arrival rate of jobs exceeds the departure
rate. The desired range of input load levels originates from variation of STmean or ITmean, as for
a particular group of experiments w, h and |R|mean are given. Two subsets of experiments were
conducted. In one subset, ITmean was varied while STmean was fixed at 1 000 cycles. In the other
subset (which was only performed for jobs with a potentially high resource demand), STmean was
varied while ITmean was fixed at 500 cycles.

For several reasons, the allocation and communication overhead may be higher for UDFlex than
for the strategies that allocate sub-meshes. In general, UDFlex has a higher complexity than the
strategies that allocate sub-meshes have. For instance, for two-dimensional meshes, the complexity
of UDFlex allocation is roughly O(|V |2) (perhaps even higher when considering path activation
and deactivation), whereas both First Fit and Best Fit have complexity Θ(w × h) [262], which can
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also be written as Θ(|V |) or O(|V |). Moreover, the Up*/Down* routing algorithm has performance
issues related to congestion that tends to form close to the root node. Thus, when using UDFlex,
rather than allocating sub-meshes and using DOR, a potentially higher packet latency may increase
the service time of jobs.

Up*/Down* imposes such restrictions on packet forwarding that the legal path between a pair
of nodes may be longer than the shortest physical path. In addition, UDFlex allows allocation of
irregularly shaped partitions. Thus, when compared to sub-mesh allocation and the use of DOR,
the use of UDFlex may alter the distance between nodes. If the packet latency grows, a likely result
is an increased service time of jobs. However, for an interconnection network that uses cut-through
switching [114] a small increase in the number of hops between nodes is expected to have a limited
impact on packet latency.

Although alleviating fragmentation is the primary objective of this study, the effect of the po-
tential allocation and communication overhead of UDFlex should also be considered, and this is
the focus of our second set of experiments. To anticipate the course of events, the results from our
first set of experiments confirmed that, when compared to using strategies that allocate sub-meshes,
using UDFlex alleviates fragmentation. The aim of the second set of experiments is to quantify
the amount of allocation and communication overhead that can be tolerated before the advantage
of UDFlex with respect to fragmentation is neutralized. We compare UDFlex with Adaptive Scan,
Best Fit and First Fit, three traffic-contained allocation strategies which allocate sub-meshes with-
out manipulating the shape of the requested sub-meshes.2 For UDFlex, the service time of jobs is
gradually extended in order to model a growing allocation and communication overhead, and the
extension is relative to the resource demand of the jobs. For Adaptive Scan, Best Fit and First Fit, on
the other hand, the service time of jobs is not extended. In these experiments, the potential alloca-
tion and communication overhead of UDFlex are modelled together as a total overhead. Whether
the allocation overhead or the communication overhead contributes most to the total overhead may
depend on the service time of the jobs. For jobs with long service times the communication over-
head may be the main factor, whereas for jobs with shorter service times the allocation overhead may
become more important. The second set of experiments is conducted for mesh topologies and for
jobs with a potentially high resource demand. A load level of 0.9 (with an STmean of 1 000 cycles
and an ITmean of 314 cycles) is selected as the basis. Given that UDFlex is used and that a job re-
quests a number of nodes |R| > 1, the service time ST (drawn from an exponential distribution) is

extended according to the following formula: Extended service time ST ′ = ST +
ST × d × |R|

100 × w × h
,

where d represents the desired increase (a certain percentage) in the job’s service time, whereas w

is the width and h is the height of the mesh. We simulated a set of levels for d ranging from 0
to 130%.

6.1.4 Results

In the following, we present the results of our evaluation of the UDFlex allocation strategy. Frag-
mentation is an inherent issue for contiguous allocation strategies. In order to study whether the
use of UDFlex is advantageous with respect to fragmentation, we compared UDFlex with a num-
ber of strategies that allocate sub-meshes. The results of these experiments are presented in the first

2Flexfold, which may alter the shape of a requested sub-mesh and thereby change the original distance between
nodes, is not included in these experiments.
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subsection below. When compared to using a strategy that allocate sub-meshes, using UDFlex may
entail a higher allocation and communication overhead. The second subsection below presents
the results of the experiments conducted to assess the amount of allocation and communication
overhead that can be tolerated for UDFlex before its advantages with respect to fragmentation are
neutralized. A set of representative plots was selected and included.

Fragmentation

System utilization and queuing time versus input load are shown in Figures 6.2 and 6.3 for the
32 × 32 mesh and torus topologies, respectively. For jobs with a potentially medium and a low
resource demand, Figures 6.2(c) and 6.2(d) show queuing time for the 32 × 32 mesh, whereas
Figures 6.3(c), and 6.3(d) show queuing time for the 32 × 32 torus. As the input load increases,
we observe how the queuing time for UDFlex stays significantly lower than the queuing time for
the methods that allocate sub-meshes. For all of the allocation strategies the queuing time starts
to increase steeply at some input load level. However, when compared to the sub-mesh allocating
strategies, UDFlex sustains a higher input load before such a steep increase in queuing time occurs.
These results indicate that using UDFlex, rather than using a strategy that allocates sub-meshes,
reduces fragmentation. As expected, Random, which is a fragmentation-free and non-contiguous
allocation strategy, achieves an even lower queuing time than UDFlex does.

For the 32 × 32 mesh, system utilization for jobs with a potentially high and a low resource
demand are shown in Figures 6.2(a) and 6.2(b), respectively. We observe how the knee-point of the
curves (the point where the maximum system utilization is reached) occurs for a higher input load
when using UDFlex than when using any of the other contiguous allocation strategies. Thus, UD-
Flex achieves a significantly higher system utilization than the other contiguous allocation strategies
do. As expected, Flexfold has the best performance of the algorithms that allocate sub-meshes. Re-
call from Section 2.7.1 that Flexfold allows more flexibility with respect to the shape of a sub-mesh
than the alternative strategies do. Flexfold can fold the originally requested a × b sub-mesh into
two other, differently shaped, sub-meshes comprising the same number of nodes, and the three
alternative sub-meshes may also be rotated by 90 degrees. For jobs with a potentially high resource
demand, the maximum system utilization for Flexfold is 0.53; for UDFlex it is 0.68 (28.3% higher
than Flexfold); whereas for Random, the upper bound performance indicator, it is 0.73 (not more
than 7.4% higher than UDFlex). For jobs with a low resource demand, the maximum system
utilization for Flexfold is 0.73; for UDFlex it is 0.86 (17.8% higher than Flexfold); whereas for
Random it is 0.98 (14.0% higher than UDFlex). Random is a fragmentation-free allocation strat-
egy, but does not achieve a maximum system utilization of 1 for any of our scenarios. The reason
is that, in some situations, the first job in the waiting queue is larger than the number of free nodes
in the system. The probability that such situations occur is higher for jobs with a potentially high
resource demand than for jobs with a lower resource demand, and both for Random, UDFlex and
Flexfold the maximum achieved system utilization is higher the lower the resource demand of the
jobs is.

For the 32 × 32 torus, system utilization for jobs with a potentially high and a low resource
demand is shown in Figures 6.3(a) and 6.3(b), respectively. As with the mesh topology, we observe
how the knee-point of the curves occurs for a higher input load when using UDFlex than when
allocating sub-meshes. When compared to the strategy that allocates sub-meshes, UDFlex signifi-
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Table 6.1: In percentage increase of the maximum system utilization when using UDFlex rather
than using the best sub-mesh allocating strategy. (Topology size versus resource demand of jobs.)

(a) Mesh

High demand Medium demand Low demand

16 × 16 23.6 % 20.9 % 8.6 %
32 × 16 38.8 % 25.0 % 14.5 %
32 × 32 28.3 % 27.0 % 17.8 %

(b) Torus.

High demand Medium demand Low demand

16 × 16 17.2 % 17.4 % 11.4 %
32 × 16 30.8 % 23.1 % 16.0 %
32 × 32 21.4 % 23.1 % 19.4 %

cantly improves the maximum achieved system utilization (with 21.4% and 19.4% for jobs with a
potentially high and a low resource demand, respectively).

A torus topology may be considered a mesh topology with an additional set of communication
channels – the wraparound channels. Random does not consider communication channels when
allocating a set of nodes to a job. Thus, the results for meshes and tori are identical when using
Random. Recall that, when based on a breadth-first search, the spanning tree of the Up*/Down*
algorithm will typically be shallower and wider for a torus than for a mesh topology. Nevertheless,
our results indicate that a similar maximum system utilization is achieved for the meshes and tori
when using UDFlex.

Let k refer to the in percentage increase of the maximum system utilization observed when using
UDFlex rather than using the best sub-mesh allocating strategy. For every combination of topology
size and resource demand of jobs Tables 6.1(a) and 6.1(b) show k for the mesh and torus topologies,
respectively. These results show that, in most cases, k is higher the larger the topology is. However,
for jobs with a potentially high resource demand, an exception is observed for the 32 × 16 mesh
and torus. In these cases, UDFlex achieves a more than 30% higher system utilization than the
best sub-mesh allocating strategy achieves. The reason is that the traditionally best-performing sub-
mesh allocating strategies perform relatively worse in the case of a non-quadratic mesh or torus – as
a request for a sub-mesh a × b cannot be rotated by 90 degrees if a > 16. In addition, some of
the folded alternative sub-meshes supported by Flexfold may not fit the 32 × 16 mesh topology.
Figure 6.4 shows system utilization and queuing time for the 32 × 16 mesh and torus. The greater
advantage of UDFlex – due to the relatively worse performance of the traditionally best-performing
sub-mesh allocating strategies – is perhaps most easily spotted for the 32×16 mesh, where Adaptive
Scan and Flexfold do not perform better than Best Fit (see Figures 6.4(a) and 6.4(c)).

For our first subset of experiments (to which the results presented above belong), the desired
range of load levels resulted from a variation of ITmean whereas the value of STmean was fixed.
For our second subset of experiments, the value of ITmean was fixed whereas the desired range
of load levels resulted from a variation of STmean. A comparison of the results obtained for the
two different subsets of experiments is presented in Figure 6.5: Figures 6.5(a) and 6.5(b) compare
the system utilization obtained for a 16 × 16 torus, whereas Figures 6.5(c) and 6.5(d) compare
the queuing time obtained for a 16 × 16 mesh. We observe that the system utilization is similar
regardless of which of the two parameters (STmean or ITmean) is varied. On the other hand, the
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(a) System utilization, high resource demand.
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(b) System utilization, low resource demand.
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(c) Queuing time, medium resource demand.
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(d) Queuing time, low resource demand.

Figure 6.2: System utilization and queuing time for a 32 × 32 mesh.

queuing time obtained when STmean is varied differs from the queuing time obtained when ITmean

is varied. In this study, the ranking of the allocation strategies is more important than the absolute
numbers obtained for some metric, and, also with respect to queuing time, the ranking of the
processor allocation strategies is the same regardless of which of the two parameters (STmean or
ITmean) is varied.

Allocation and communication overhead

The results presented in the previous subsection showed that, due to reduced fragmentation, UD-
Flex obtains a significantly higher system utilization and lower queuing time than the strategies that
allocate sub-meshes do. However, as we recall, UDFlex may have a higher allocation and commu-
nication overhead than the sub-mesh allocating strategies have, and the previously presented exper-
iments did not take such a potential overhead into consideration. As it could reduce the advantage
of UDFlex over the strategies that allocate sub-meshes, the potential allocation and communication
overhead of UDFlex should eventually be considered. This subsection presents the results of a set
of experiments which aims to quantify the amount of overhead that could be tolerated before the
advantage of UDFlex with respect to fragmentation is neutralized.

Assume that d refers to a given in percentage increase in the service time of jobs, representing
a certain level of allocation and communication overhead when using UDFlex. Then, Figure 6.6
shows queuing time and system utilization as functions of d. Figure 6.6(d) shows system utilization
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(a) System utilization, high resource demand.
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(b) System utilization, low resource demand.

 0

 200

 400

 600

 800

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Q
u
e
u
in

g
 t
im

e
 (

c
y
c
le

s
)

Load

Submesh
Random
UDFlex

(c) Queuing time, medium resource demand.
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(d) Queuing time, low resource demand.

Figure 6.3: System utilization and queuing time for a 32 × 32 torus.

for the 32 × 32 mesh, and we observe how this metric is barely affected as the overhead increases.
The queuing time, on the other hand, is affected. Figures 6.6(a), 6.6(b) and 6.6(c) show queuing
time for the 16× 16, 32× 16 and 32× 32 meshes, respectively. For the 16× 16 mesh an overhead
of around 60% can be tolerated for UDFlex before its queuing time crosses the queuing time of
Adaptive Scan, whereas for the 32×32 mesh the crossing occurs at an overhead of around 70%. As
discussed in the previous subsection, Adaptive Scan performs relatively worse for the 32× 16 mesh
for jobs with a potentially high resource demand (since a request for a sub-mesh a × b cannot be
rotated by 90 degrees if a > 16). Our results show that for the 32 × 16 mesh UDFlex tolerates an
overhead of around 90% before its queuing time crosses the queuing time of Best Fit and Adaptive
Scan. First Fit has the highest queuing time of the three strategies that allocate sub-meshes, and an
overhead of at least 100% can be tolerated for UDFlex before its queuing time crosses the queuing
time of First Fit.

6.2 A framework for developing traffic-contained allocation st-

rategies

In this section we present a topology agnostic and conceptually simple framework for developing
processor allocation strategies. The framework introduces the combination of a flexible processor
allocation strategy, a topology agnostic routing algorithm and static reconfiguration as a means to
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(a) System utilization, 32 × 16 mesh.
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(b) System utilization, 32 × 16 torus.
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(c) Queuing time, 32 × 16 mesh.
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(d) Queuing time, 32 × 16 torus.

Figure 6.4: Non-quadratic topologies: System utilization and queuing time for jobs with a poten-
tially high resource demand.

achieve low fragmentation and ensure traffic-containment within partitions.

Section 6.2.1 presents the framework, whereas Section 6.2.2 discusses an example configuration.
A performance evaluation is included in Sections 6.2.3 and 6.2.4. Finally, Section 6.2.5 proposes
and evaluates an alternative approach which aims to allocate partitions with an improved support
for traffic-containment.

6.2.1 The framework

The main motivation behind our framework is to introduce a generic approach to designing traffic-
contained allocation strategies that support a low fragmentation of the processing resources available
in a system. The following two observations are at the basis of the framework: First, although
fragmentation is an inherent issue for contiguous allocation algorithms, flexibility with respect
to the shape of the allocated partitions may result in reduced fragmentation. Second, a routing
algorithm that does not assume a particular topology could be utilized to ensure traffic-containment
within contiguous partitions with non-regular shapes.

The framework assumes a close collaboration between an allocator and a routing module. It
prescribes the assignment of an arbitrarily shaped contiguous partition to a parallel job; calculation
of a new set of routes that ensures traffic-containment for each new partition; and local reconfigu-
ration of the routing function for each job to be started. The requirement that each partition must
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(b) System utilization, 16 × 16 torus, fixed ITmean,
varying STmean.
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(c) Queuing time, 16×16 mesh, fixed STmean, varying
ITmean.
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(d) Queuing time, 16×16 mesh, fixed ITmean, varying
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Figure 6.5: Sensitivity of the system utilization and queuing time metrics towards the parameters
STmean and ITmean.

consist of a contiguous region of nodes is due to the intention of supporting traffic-containment
within each partition. We believe that by not imposing any restrictions on the shape of partitions,
fragmentation may be significantly alleviated, resulting in a high utilization of a system’s available
processing resources. For such arbitrarily shaped partitions, a topology agnostic routing algorithm
is needed in order to calculate routes that keep the traffic within the partitions. Furthermore, as par-
titions will be differently sized and shaped, in order to ensure traffic-containment and connectivity,
the routing function must in general be reconfigured locally for each new partition before a job is
started. Such an update of the routing function is performed on a region of the interconnection
network where no job is currently running. Thus, sophisticated dynamic reconfiguration strategies
are in general not needed – simple static reconfiguration is sufficient.

Our focus is on how the routing function can be updated with the purpose of ensuring traffic-
containment and connectivity within partitions. However, in order to forward control traffic (traf-
fic that is not part of the intra-partition traffic related to the execution of a parallel job), a globally
connected routing function is generally needed. Such a routing function allows communication
between pairs of nodes in an interconnection network that are not part of the same partition. In
order to simplify the discussion, we assume that a globally connected routing function is imple-
mented on a separate network for control traffic, and thus that interference between control traffic
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(b) Queuing time, 32 × 16 mesh.
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Figure 6.6: Tolerance for the potential allocation and communication overhead of UDFlex. (Such
overhead is represented by an in percentage increase of the service time of jobs.)

and intra-partition traffic does not occur.
Next, our generic algorithm for developing traffic-contained and low-fragmentation allocation

strategies is presented. We refer to this generic algorithm as a framework since no particular set
of algorithms for contiguous processor allocation, topology agnostic routing and reconfiguration is
assumed. Thus, a number of combinations of allocation, routing and reconfiguration algorithms
are conceivable, and a particular example configuration is discussed in Section 6.2.2. However, as
simple static reconfiguration algorithms are in general sufficient, reconfiguration is not discussed
in detail in the following. Assume that a system contains an interconnection network I which
consists of a set of nodes and communication channels; that the routing module runs a topology
agnostic routing algorithm; that the allocator and the routing module are able to communicate;
that a routing function F applies for I that ensures traffic-containment and connectivity within
those partitions where jobs are already running; and that a parallel job just selected by the scheduler
requests a number of nodes |R|. Further assume that a legal path refers to a path that obeys any
restrictions imposed by the system and by the routing algorithm. (Examples of such restrictions
include the number of virtual channels (VCs) available and turn-restrictions.)

1. The number of free nodes, |Nfree|, of I is checked. The request can only be granted if
|Nfree| ≥ |R|. If |Nfree| < |R|, the scheduled job is returned to the waiting queue, pending
termination of a running job.
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2. A new contiguous region P consisting of exactly |R| free nodes is identified and tentatively
reserved for the scheduled job.

3. The allocator notifies the routing module of the new partition P .

4. The routing module must calculate a set of deadlock-free paths for P and locally reconfigure
F as follows: For every pair of nodes inside P , F must contain at least one legal path that
does not traverse an intermediate node outside P , and F must contain no path that traverses
an intermediate node outside P .

• For some pair of nodes inside P a legal path that does not traverse an intermediate
node outside P may not exist. In such a case, the tentative reservation of |R| nodes is
cancelled.

– If there are more candidate partitions that could be tested, then the algorithm may
return to step 2.

– Else the scheduled job is returned to the waiting queue, pending termination of a
running job.

5. The routing module notifies the allocator that the routing function is ready.

6. The allocator assigns P to the scheduled job.

The status of the nodes that are part of P is changed from free to busy during step 6 of the
algorithm, and the scheduled parallel job is not started on P until step 6 has completed. Note that
if a scheduled job is returned to the waiting queue, the remaining algorithmic steps are skipped,
and the job must be rescheduled.

We need to prove that any allocation strategy developed using our framework ensures isolation
of the traffic belonging to different jobs as well as communication between every pair of nodes that
are part of the same partition. Thus, we include and prove Lemmas 6.3 and 6.4 below.

Lemma 6.3. The framework ensures traffic-containment within each partition.

Proof. The proof is by contradiction. Assume that an arbitrary node s and another arbitrary node d

are both part of a partition P , and that underway from its source s to its destination d a packet
crosses an intermediate node i which is not part of P . This contradicts step 4 of the framework
which states that, for every pair of nodes inside P , F must contain no path that traverses an i

outside P . Thus, for a job running on P , no packet from s to d can leave P .

Lemma 6.4. The framework provides a connected routing function within each partition.

Proof. The proof is by contradiction. Assume that a job runs on a partition P ; that an arbitrary
node s and another arbitrary node d are both part of P ; and that no legal path exists within P from
s to d. This contradicts step 4 of the framework which directs that a scheduled job is not started
on P unless at least one legal path (that does not traverse an intermediate node outside P ) exists
for every pair of nodes inside P . Thus, for a job running on P , at least one legal path must exist
within P from s to d.

When a parallel job has finished running on P , the nodes that constituted P must be deal-
located. That is, their status must be changed from busy to free. We will not further discuss
deallocation of nodes.
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6.2.2 An example configuration

Our framework for developing traffic-contained and low-fragmentation allocation strategies sup-
ports the use of various pairs of processor allocation strategies and routing algorithms. This section
gives an example of one of a number of possible combinations of algorithms that are usable with the
framework. The chosen allocation strategy is described in the first subsection below, and the cho-
sen topology agnostic routing algorithm is described in the second subsection below. The former
is a slightly modified version of an existing allocation algorithm, whereas the latter is an existing
routing algorithm. The algorithms below are also used in the performance evaluation presented in
Sections 6.2.3 and 6.2.4.

A flexible allocation strategy

For the example configuration we have chosen slightly modified (contiguous) versions of the
MC [146] and MC1x1 [34] allocation strategies. MC evaluates the costs of the allocation al-
ternatives centered around every free node in a mesh or torus topology, and selects the alternative
with the lowest cost. The cost of an allocation alternative is decided by using expanding shells cen-
tered around a free node, where a node in shell 0 has cost 0, a node in shell 1 has cost 1, and so on.
In the following, a two-dimensional mesh or torus topology is assumed. For a sub-mesh request of
size a × b, both the orientation where shell 0 is a × b and the 90 degrees rotation where shell 0 is
b × a are evaluated. The selection of the allocation alternative with the lowest cost means that a
sub-mesh is allocated if one is available. Figure 6.7(a) illustrates an example where, for a request of
3 × 1 nodes, the cost of an allocation alternative centered around node 21 is 1 (nodes 20 and 21
are in shell 0 and node 14 is in shell 1).

MC1x1 is an adaptation of MC for a system that requests a certain number of nodes rather
than a specific sub-mesh. The main difference from MC is that for MC1x1 shell 0 is a sub-mesh
of size 1 × 1. For a request of three nodes, Figure 6.7(b) shows that for MC1x1 the cost of an
allocation alternative centered around node 21 is 2 (node 21 is in shell 0 and nodes 14 and 20 are
in shell 1).

MC and MC1x1 allow non-contiguous allocation. In this study we are interested in the effect of
traffic-containment and thus need contiguous allocation strategies. We restricted MC and MC1x1
to only consider the allocation alternatives that constitute contiguous regions, and refer to the
resulting allocation strategies as Contiguous-MC (CMC) and Contiguous-MC1x1 (CMC1x1). For
a request of 3 × 1 and 3 nodes, respectively, nodes 14, 20 and 21 in Figures 6.7(a) and 6.7(b)
constitute a contiguous region of nodes and thus a valid partition according to CMC and CMC1x1.

In order to support a high utilization of a system’s processing resources, our framework allows
allocation of arbitrarily shaped partitions. CMC and CMC1x1 recognize any available and suffi-
ciently large contiguous region of nodes. The strategies aim at minimizing the dispersal of the allo-
cated nodes, and are conceptually simple. On the negative side, CMC and CMC1x1 have relatively
high computational complexity and are not topology agnostic. Nevertheless, for our framework we
consider CMC and CMC1x1 suitable examples of strategies that can be used with the allocator.

A topology agnostic routing algorithm

For the example configuration we have chosen the Transition-Oriented Routing (TOR) algo-
rithm [200]. TOR’s manner of operation was discussed in Sections 2.8.1 and 5.2, and is therefore
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(a) CMC evaluates a request for 3 × 1 nodes. (b) Shell 0 is always a sub-mesh of size 1 × 1 for
CMC1x1.

Figure 6.7: The CMC and CMC1x1 strategies use shells around every free node in order to evaluate
the costs of different allocation alternatives. The broken lines indicate the shells, and the white and
black squares represent free and busy nodes, respectively. The illustrations are inspired by [146].

only briefly repeated here. TOR allows selection of any available path between a source and desti-
nation node, and depends on VC-transitions for deadlock avoidance. As was also assumed in [200],
we assume that such VC-transitions are based on a directed acyclic graph (DAG) corresponding to
an Up*/Down* [204] graph. TOR prevents deadlock by requiring that when a packet traverses
from a down-link to an up-link it makes a transition to the next higher VC.

In order to support traffic-containment as well as connectivity within each partition, our frame-
work prescribes the use of a topology agnostic routing algorithm. TOR is topology agnostic, sup-
ports a flexible shortest path routing, and thus has the potential of providing excellent performance.
For a partition of any shape TOR can calculate a set of routes that guarantees traffic-containment
as well as connectivity between all the nodes of the partition (given that a sufficient number of VCs
are available). Thus, for our framework we consider TOR a suitable example of an algorithm that
can be used with the routing module.

6.2.3 Experiment setup

Our simulation experiments demonstrate application of the framework proposed in Section 6.2.1,
and evaluate performance – with respect to both allocation and communication – assuming the use
of the processor allocation and routing strategies described in Section 6.2.2.

Recall from Section 3.1 that, in order to overcome the challenges related to the different time-
scales of the two types of experiments, two different simulator models – an allocation simulator
and a communication simulator – are used. Also recall that the packet-exchange (communication)
experiments will be run only for a number of snapshots output from the allocation experiments,
not for every allocated partition. A snapshot (like one of those in Figure 6.10) depicts the jobs
running at a certain moment in time.
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The first subsection below describes the setup of the experiments to investigate the efficiency
of fully flexible contiguous processor allocation. For these experiments the allocation simulator is
used. The second subsection below describes the setup of the packet-exchange experiments. For
these experiments the communication simulator is used.

The allocation model

The main purpose of this set of experiments is to study whether our framework’s support of con-
tiguous partitions with fully arbitrary shapes will result in a significantly improved utilization of a
system’s processing resources.

The experiments compare the performance of CMC and CMC1x1 with the performance of
the UDFlex strategy presented in Section 6.1.1. UDFlex is implemented in accordance with the
description in Section 6.1.2 (which explains how, with future allocation attempts in mind, some op-
timizations are included in order to keep regions of free nodes defragmented). For UDFlex, the root
of the Up*/Down* graph is in the upper left corner3 of the topology. We also include a sub-mesh al-
locating strategy similar to Adaptive Scan [61] in our experiments. Furthermore, the Random [137]
allocation strategy is included. Recall that Random is a non-contiguous, fragmentation-free, allo-
cation strategy that fails only when the next job to be served requires a higher number of nodes
than the number of currently free nodes. Random is included to visualize the upper performance
benchmark with respect to our metrics (not considering communication overhead).

We consider both a mesh and torus topology of size 16 × 16. In order to evaluate the perfor-
mance of the allocation algorithms we use the metrics system utilization and queuing time. Assume
that a mesh or torus has width w and height h; that the position of any node can be expressed as
a pair of coordinates (x, y) where 1 ≤ x ≤ w and 1 ≤ y ≤ h; that the node in position (i, j)

has been busy for the aggregated time busyi,j ; and that data have been collected for a period of

time T . Then, as in [262], we define the system utilization to be

∑
1≤i≤w,1≤j≤h busyi,j

w × h × T
, and the

system fragmentation is then 1− system utilization. The queuing time is the average time that a job is
held in the waiting queue, from the time of the arrival of a job until its requested nodes have been
allocated.

CMC and the sub-mesh allocating strategy expect the requests for nodes to be in the form of
sub-meshes, whereas CMC1x1, UDFlex and Random expect requests for certain numbers of nodes.
For a fair comparison, the resource demand of jobs (the number of nodes requested) must be equal
for either group of allocation strategies.

In the first subset of experiments, we let each job request a × b nodes, which is considered a
sub-mesh by CMC and the sub-mesh allocating strategy, and a product of numbers by UDFlex and
Random. The values a and b are drawn from separate uniform distributions with minimum sizes
amin and bmin and maximum sizes amax and bmax, respectively. For 80% of the jobs amin = 1,
bmin = 1, amax = 4 and bmax = 4, and we refer to this group of jobs as small jobs. The remaining
20% of the jobs are referred to as large jobs and have amin = 8, bmin = 8, amax = 12 and
bmax = 12.

In the second subset of experiments, CMC1x1 is compared with UDFlex and Random. (The
sub-mesh allocating strategy is not applicable as the request is not for a sub-mesh of nodes.) The

3As in Section 6.1, in order to simplify the discussion, we visualize a torus topology laid out in a plane as a mesh
topology with wraparound channels.
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resource demand, |R|, of each job is drawn from a uniform distribution. 80% of the jobs, the
small jobs, have |R|min = 1 and |R|max = 16, whereas the remaining 20%, the large jobs, have
|R|min = 64 and |R|max = 144.

Recall from Section 3.1.2 that for a mesh or torus of width w and height h the input load is
|R|mean × STmean

w × h × ITmean

, where |R|mean is the mean number of nodes requested by the jobs; STmean is

the mean service time (running time) of jobs; and ITmean is the mean interarrival time of jobs. In
our experiments, STmean is fixed at 1 000 cycles and the desired load levels result from variation of
ITmean.

For subsequent input to the communication simulator, 25 snapshots were stored. These snap-
shots were collected for a load of 1.0, and evenly spread out over the data collection period. For
every experiment, data collection spans the execution of 200 000 jobs.

The communication model

Reduced fragmentation is the main motivation for allowing allocation of arbitrarily shaped regions
of nodes to parallel jobs. However, the performance of the allocation strategy should also be con-
sidered in connection with packet communication. A high communication overhead could cause
longer service times of jobs, which would increase the queuing time of subsequent jobs and reduce
the throughput of jobs in the system.

When considering fragmentation and communication overhead (and ignoring a potential al-
location overhead), it is quite obvious that allowing allocation of arbitrarily shaped partitions is
beneficial when applications are not communication intensive. For communication intensive appli-
cations, we conduct experiments to investigate the costs and benefits of two alternative approaches
to communication: traffic-containment and non-traffic-containment.

As input to these experiments we use the snapshots of running jobs that were output from
the allocation experiments. Each of the snapshots contains a number of partitions allocated for a
16 × 16 mesh or torus topology either by CMC or by CMC1x1.

For the experiments where traffic-containment is not ensured (non-traffic-containment), Dim-
ension-Order Routing (DOR) [231] is used. Recall that for a two-dimensional mesh topology
DOR (XY) avoids deadlock by first routing a packet in the X-dimension until the offset in this
dimension is zero. Thereafter the packet is routed in the Y-dimension until it reaches its des-
tination. For a two-dimensional torus topology DOR in addition needs two VCs for deadlock
avoidance [55].

For the experiments where traffic-containment is ensured, TOR was selected. The choice of
TOR as the routing algorithm to be used with our framework was motivated in Section 6.2.2.
In particular, we expect that for a sub-mesh shaped partition TOR has the potential of matching
the performance of DOR. For every pair of nodes inside a partition, TOR must select a shortest
path which ensures both that traffic is contained within the partition and that the number of VCs
needed to avoid deadlock is within the number of VCs available. If, for some candidate partition,
the number of VCs needed to ensure deadlock-freedom exceeds the number of VCs available, then
in a real system the scheduled job cannot be started until another partition becomes available.

These experiments attempt to use a representative number of VCs. An analysis of the snapshots
output from the allocation experiments revealed that for the 16 × 16 mesh only 1 of 459 par-
titions (0.22%) needed 4 VCs, whereas for the 16 × 16 torus only 3 of 465 partitions (0.65%)
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needed 5 VCs. The snapshots which contained these 4 partitions were not included in the com-
munication experiments, and the number of VCs available for the mesh and torus was set to 3 and
4, respectively.

In order to achieve a balanced load on the VCs, the paths calculated by DOR or TOR are evenly
divided among the available VCs.

Two different traffic patterns are applied – one uniform and one hotspot pattern. When using
the uniform traffic pattern, for a packet generated by one of the nodes of a partition P each of
the other nodes of P is an equally likely destination. Each P has a unique identity-number. For
the hotspot traffic pattern, a P with an odd/even numbered ID is a hotspot/uniform-partition which
communicates in a hotspot/uniform pattern. Within a hotspot-partition, Ph, 50% of the traffic
is directed towards a randomly selected hotspot node, whereas the remaining 50% is uniformly
distributed within Ph.

Both the ingress and egress buffers of a switch port can hold 2 packets per VC. The transmission
queue of a node has space for 4 packets per VC, and overflows when the network cannot deliver
packets at the rate they are injected.

The packet injection rate is gradually increased over 100 intervals (each of length 10 000 cycles).
Each experiment is run for 1 000 000 cycles in order to ensure representative results.

For a partition P , saturation is reached when the first source node – due to transmission
queue overflow – has rejected 10% of the packets it has generated in an interval. Assume that
P reaches saturation in an interval where, on average, a node generates a packet every m cycles.

Then, the metric Saturation∗ is
t

m
, and represents the number of packets generated in a pe-

riod of time t. In the following equations, which define SatRatioAll/One and SatRatioTC/NTC ,
t is cancelled. For each P , SaturationAll is measured when all the partitions of a snapshot run
together, which means that – unless traffic-containment is ensured – interference may occur be-
tween traffic belonging to different partitions. SaturationOne, on the other hand, is measured
when P runs alone on the 16 × 16 mesh or torus, and there is thus no interference with traf-
fic belonging to any other partition. For each P , both SaturationTC and SaturationNTC

are measured when all the partitions of a snapshot run together. Thus, both SaturationTC

and SaturationNTC are instances of SaturationAll. SaturationTC applies when the use of
TOR ensures traffic-containment, whereas SaturationNTC applies when the use of DOR im-

plies a risk of non-traffic-containment. We now define SatRatioAll/One =
SaturationAll × 100

SaturationOne

and SatRatioTC/NTC =
SaturationTC × 100

SaturationNTC

. Then, for any P , SatRatioAll/One quanti-

fies the effect of the interference between the traffic of P and the traffic of concurrent partitions,
whereas SatRatioTC/NTC quantifies the advantage or disadvantage of traffic-containment versus
non-traffic-containment.

6.2.4 Results

The results of our experiments are presented in three parts. The first subsection below presents the
results of the allocation experiments which evaluate the effect of allowing full flexibility contiguous
processor allocation. The results of the communication experiments are presented in the second and
third subsections below. The former discusses the consequences of allowing interference between
traffic belonging to different partitions, whereas the latter discusses the advantages and disadvan-

131



tages related to enforcement of traffic-containment within partitions. A set of representative plots
was selected and included.

Flexible allocation

The system utilization and queuing time for the different processor allocation strategies are shown in
Figure 6.8. Figures 6.8(a) and 6.8(d) demonstrate that CMC and UDFlex, which allow allocation
of non-regular regions of nodes, achieve significantly better performance than when allocations
are restricted to sub-meshes. (For the experiments behind Figures 6.8(b) and 6.8(c) allocation of
sub-meshes is not applicable as nodes are not requested in the form of sub-meshes.)
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(c) Queuing time, mesh.
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(d) Queuing time, torus.

Figure 6.8: System utilization and queuing time for a 16 × 16 mesh and torus.

Figure 6.8 shows that CMC and CMC1x1 improve the system utilization and queuing time
when compared to UDFlex. This was expected as CMC and CMC1x1 may allocate any suffi-
ciently large contiguous region of nodes to an incoming job, whereas UDFlex may only allocate a
region which constitutes a valid Up*/Down* sub-graph. We also observe that the performance of
CMC and CMC1x1 approach that of Random, although contiguous allocation strategies cannot
be fragmentation-free.

Consequences of non-traffic-containment

Recall that traffic-containment is not ensured when DOR is used. Figure 6.9 illustrates the perfor-
mance consequences of allowing the traffic of one job to be routed into regions of nodes allocated to
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other jobs. Some jobs achieve a SatRatioAll/One of 100% which indicates that their performance
is not significantly affected by traffic from concurrent jobs.4 For a number of jobs, however, satu-
ration occurs for a significantly lower packet generation rate when traffic belonging to concurrent
jobs are allowed to interfere. A comparison of Figure 6.9(a) with Figure 6.9(c) and a comparison
of Figure 6.9(b) with Figure 6.9(d) illustrate that the performance degradation caused by such in-
terference depends on the traffic pattern: In general, it is more severe for hotspot traffic than for
uniform traffic. In addition, in particular for uniform traffic, the performance degradation is more
severe for small jobs than for large jobs.

In order to study in detail how concurrent partitions may affect each other when traffic-
containment is not ensured, let us consider some of the partitions. Figure 6.10 depicts a few of the
snapshots of allocated partitions that were input to our communication experiments. Partition 7 in
the snapshot of Figure 6.10(a) is a 9-node partition which achieves a SatRatioAll/One of 53% and
16% for the uniform and hotspot traffic patterns, respectively (these numbers are extracted from
our data files). Figure 6.10(a) reveals that, as DOR (XY) routing is used, traffic belonging to the
99-node partition 4 is routed through – and reduces the performance of – partition 7.

Partition 5 in Figure 6.10(b) is a 108-node partition which is significantly affected by the traffic
of the surrounding 99-node partition 2. For the hotspot traffic pattern, 5 is a uniform partition
whereas 2 is a hotspot partition. The SatRatioAll/One of partition 5 is 71% and 9% for uniform
and hotspot traffic, respectively. These results demonstrate how the performance of partition 5 de-
pends on the communication pattern of partition 2 when traffic-containment within each partition
is not enforced.

When comparing the results for partitions allocated using CMC with the results for partitions
allocated using CMC1x1, we observed no principal differences.

Traffic-contained versus non-traffic-contained communication

We have seen that a lack of traffic-containment negatively affects the performance for a num-
ber of jobs, and that the performance of a job may depend on the communication patterns of
concurrent jobs. An important goal of this study is to investigate whether the enforcement of
traffic-containment (as prescribed by our framework) is advantageous with respect to performance.
Thus, in the following, we evaluate consequences of enforcing traffic-containment versus allowing
non-traffic-containment. Recall that traffic-containment ensures isolation between concurrent par-
titions (meaning that the performance of one job is independent of the packet-exchange of any
other job), whereas non-traffic-containment implies a risk of interference between traffic belonging
to different partitions. Further recall that in these experiments TOR is used to calculate a set of
paths that ensures traffic-containment, whereas DOR is used to calculate a set of paths that does
not ensure traffic-containment.

Figure 6.11 illustrates that the majority of the small jobs benefit from traffic-containment.
These jobs sustain a higher traffic load before saturating in the contained case than in the non-
contained case.5 For hotspot traffic, Figure 6.11(c) shows that for the mesh topology a few of the
small jobs achieve a SatRatioTC/NTC as high as 5 000%, and Figure 6.11(d) shows that for the

4The few instances where SatRatioAll/One is above 100% are due to the coarse granularity in which the packet
generation rate is increased, especially for the lower load levels.

5We use the terms contained and non-contained, respectively, for cases where traffic-containment is and is not
ensured.
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(a) Mesh, uniform traffic.
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(b) Torus, uniform traffic.
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(c) Mesh, hotspot traffic.
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(d) Torus, hotspot traffic.

Figure 6.9: Non-traffic-containment: SatRatioAll/One for a 16×16 mesh and torus, DOR, CMC.

torus topology a few of the small jobs achieve a SatRatioTC/NTC of more than 3 500%. Accord-
ing to Figures 6.11(a) and 6.11(b), the maximum SatRatioTC/NTC that any job achieves for the
uniform traffic pattern is an order of magnitude less – below 500% for the mesh topology and
around 350% for the torus topology. Nevertheless, we do observe that a few of the small jobs per-
form significantly worse when traffic-containment is enforced. A comparison of Figure 6.11(a)
with Figure 6.11(e) and a comparison of Figure 6.11(b) with Figure 6.11(f ) demonstrate that
the performance degradation is comparable for the uniform and hotspot traffic patterns. (Fig-
ures 6.11(e) and 6.11(f ) are sections of Figures 6.11(c) and 6.11(d), respectively.)

Let us consider the 14-node partition 5 in Figure 6.10(c). This partition has a long, narrow
shape, and in the contained case such a shape inevitably implies a significant load on the com-
munication channels. In addition, the contained paths are longer than the non-contained paths
for a significant part of the source-destination pairs. For instance, the longest contained path
includes 12 hops (between the upper and lower leftmost nodes), whereas the corresponding non-
contained path includes only 6 hops. On the other hand, in the non-contained case the traffic
of partition 5 interferes with the traffic of partitions 1, 3, 4 and 6. For uniform traffic, parti-
tion 5 achieves a SatRatioTC/NTC of only 77%, which means that in this case the drawbacks
of traffic-containment are more significant than the drawbacks of non-traffic-containment. For
hotspot traffic, on the other hand, partition 5 achieves a SatRatioTC/NTC as high as 587%. Both
4 and 6 are hotspot partitions with their hotspot nodes located close to partition 5 (which commu-
nicates in a uniform pattern). This is another example that the benefit of traffic-containment versus
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(a) Mesh, CMC, snapshot 11.
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(b) Mesh CMC, snapshot 23.
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(c) Torus, CMC1x1, snapshot 19.
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(d) Torus, CMC1x1, snapshot 1.
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(f ) Torus, CMC1x1, snapshot 3.

Figure 6.10: Snapshots of allocations for a 16 × 16 mesh and torus (wraparound channels are not
shown). Each running job is represented by a number or letter (0 indicates a free node). Hotspot
nodes are marked by a circle (applicable only for the hotspot traffic pattern).
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(a) Mesh, uniform traffic.
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(b) Torus, uniform traffic.
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(c) Mesh, hotspot traffic.
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(d) Torus, hotspot traffic.
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(e) Mesh, hotspot traffic, section of Figure 6.11(c).
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(f ) Torus, hotspot traffic, section of Figure 6.11(d).

Figure 6.11: Traffic-containment versus non-traffic-containment: SatRatioTC/NTC for a 16 × 16
mesh and torus, CMC1x1.

136



non-traffic-containment for a job depends on the communication patterns of concurrent jobs.

Whereas the majority of the small jobs benefit from traffic-containment, regardless of the traffic
pattern, for uniform traffic only a few of the large jobs achieve a SatRatioTC/NTC above 100% (see
Figures 6.11(a) and 6.11(b)). For hotspot traffic, on the other hand, a significantly larger amount
of the large jobs benefit from traffic-containment. Figures 6.11(c) – 6.11(f ) illustrate that traffic-
containment is an advantage for roughly 25% – and a disadvantage for another 25% – of the large
jobs. Thus, for hotspot traffic, approximately 50% of the large jobs show similar performance for
traffic-containment and non-traffic-containment.

In order to exemplify consequences of traffic-containment versus non-traffic-containment, let
us consider some of the large partitions. The 137-node partition 2 in Figure 6.10(d) is highly
irregular and forms several obvious bottlenecks. It achieves a SatRatioTC/NTC of only 13% and
29% for uniform and hotspot traffic, respectively. For a number of source-destination pairs the
contained paths are significantly longer than the non-contained paths. Let us denote the lower left
and upper right corner nodes (0, 0) and (15, 15), respectively. Then, for instance, the contained
paths between nodes (2, 3) and (4, 3), between nodes (14, 3) and (14, 5), and between nodes (7, 9)
and (11, 9) are 13, 7 and 4 times longer, respectively, than the corresponding non-contained paths.
In addition, some of the non-contained paths cross unallocated areas.

The 112-node partition 1 in Figure 6.10(e) has a less irregular shape which to a lesser extent
forms bottlenecks. Nevertheless, its SatRatioTC/NTC is only 17% and 32% for uniform and
hotspot traffic, respectively. Again, a number of the contained paths are longer than the non-
contained paths, and a number of the non-contained paths cross the unallocated areas that surround
partition 1.

Partition 2 in Figure 6.10(f ) is near sub-mesh shaped and consists of 96 nodes. Some of the
contained paths for partition 2 are longer than the corresponding non-contained paths. Let us
again denote the lower left and upper right corner nodes (0, 0) and (15, 15), respectively. Then, for
instance, the contained path between nodes (2, 4) and (2, 10) is 67% longer than the corresponding
non-contained path. When DOR is used, the traffic of partition 2 is contained in the X-direction,
but interferes with the traffic of partitions 5 and 6 in the Y-direction.6 (No communication channels
are shared with partition 7.) In addition, part of the traffic of partition 2 traverses unallocated
areas. These factors favour non-traffic-containment as long as all partitions communicate in a
uniform pattern – then the SatRatioTC/NTC of partition 2 is 64%. For the hotspot traffic pattern,
the 15-node partition 6 is a hotspot partition, whereas partitions 2 and 5 still communicate in a
uniform pattern. In this case, partition 2 achieves a SatRatioTC/NTC of 153%, which means that
traffic-containment is advantageous as it prevents propagation of the congestion of partition 6.

In summary, we found that the benefit of traffic-containment versus non-traffic-containment
for a job is dependent on the communication patterns of concurrent jobs. However, the majority
of smaller jobs benefit from traffic-containment, regardless of the communication pattern. We
identified the following main potential drawbacks related to traffic-containment: bottlenecks due
to the shape of partitions; higher load on communication channels; and longer paths.

6In our implementation, a path that does not cross a wraparound channel is preferred over a path of equal length
that crosses a wraparound channel.
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6.2.5 An alternative approach

The performance evaluation presented in Sections 6.2.3 and 6.2.4 showed that an unrestricted
contiguous allocation strategy reduces fragmentation, but also that the enforcement of traffic-
containment has potential drawbacks due to bottlenecks formed by highly irregular partitions;
higher load on communication channels; and longer paths. In the experiments of Sections 6.2.3
and 6.2.4, a scheduled job is always started if a sufficiently large contiguous region of nodes is
available, even if the region has a shape that obviously forms bottlenecks or implies long contained
paths. This section investigates whether, in some cases, a better alternative could be to postpone
the allocation, awaiting a more fortunate partition to become available.

We propose a simple extension to the CMC allocation strategy, and evaluate whether it could
improve the support of traffic-containment. The main purpose of the extension is to limit unfor-
tunate irregularities of partitions, and, as far as possible, the advantages of CMC with respect to
fragmentation should be maintained.

Section 6.2.2 described how the CMC allocation strategy minimizes the dispersal of the nodes
that constitute a partition by selecting the allocation alternative with the minimum cost. In the fol-
lowing, this minimum cost of CMC will be denoted CostCMC . The extended approach introduces
a new cost metric, the relative cost. The relative cost takes the partition size, |R|, into account, and

is calculated as
CostCMC × 100

|R|
. The extended approach simply sets an upper limit, MaxCost,

on the relative cost, and a scheduled job is started only if the relative cost of an allocation is less than
MaxCost. The motivation is the assumption that a partition with disadvantages such as severe
bottlenecks often has a higher relative cost than a more fortunately shaped partition.

First, we conducted a set of allocation experiments in order to study how the MaxCost affects
the system utilization and queuing time for a 16 × 16 torus. The extended allocation strategy is
denoted CMC-N, where N is a parameter that represents the MaxCost. Figure 6.12(a) shows, not
surprisingly, that the lower the MaxCost is set, the lower system utilization is achieved. Similarly,
Figure 6.12(b) shows that the lower the MaxCost is set, the higher the queuing time becomes. In
particular, when comparing CMC-25 with UDFlex, we observe that, for some of the load levels,
CMC-25 achieves inferior queuing time.

Second, we conducted a set of packet-exchange experiments in order to compare the Sat-
RatioTC/NTC of partitions allocated with, respectively, CMC (no cost limit) and CMC-32.5.
Based on the results presented in Figures 6.12(a) and 6.12(b) as well as on a manual inspection
of a sample of partitions, a MaxCost of 32.5% appeared to give a reasonable tradeoff between
fragmentation and irregularity of partitions.

SatRatioTC/NTC for the uniform and hotspot traffic patterns is shown in Figures 6.12(c)
and 6.12(e), respectively, for CMC, and in Figures 6.12(d) and 6.12(f ), respectively, for CMC-
32.5. Only large jobs are included in these experiments since the results presented in Section 6.2.4
showed that a number of large jobs suffer from the enforcement of traffic-containment, whereas
the majority of the small jobs benefit. For the hotspot traffic pattern, only a section of the y-axis
is included, as we are mainly interested in the partitions with a low SatRatioTC/NTC . The two
horizontal lines indicate a SatRatioTC/NTC of 50% and 75%.

A comparison of Figure 6.12(c) with Figure 6.12(d) and a comparison of Figure 6.12(e) with
Figure 6.12(f ) indicate that the introduction of a MaxCost of 32.5% reduces the fraction of large
jobs that achieve a SatRatioTC/NTC less than or equal to, respectively, 50% and 75%. This is
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(a) System utilization.

 0

 500

 1000

 1500

 2000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

Q
u

e
u

in
g

 t
im

e
 (

c
y
c
le

s
)

Load

Random
CMC
CMC-40
CMC-32.5
CMC-25
UDFlex
Submesh

(b) Queuing time.
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(c) SatRatioTC/NTC , uniform traffic, CMC (no
cost limit).
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(d) SatRatioTC/NTC , uniform traffic, CMC-32.5
(MaxCost = 32.5%).
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(e) SatRatioTC/NTC , hotspot traffic, CMC (no cost
limit), section of y-axis.
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(f ) SatRatioTC/NTC , hotspot traffic, CMC-32.5
(MaxCost = 32.5%), section of y-axis.

Figure 6.12: The effect of limiting the irregularity of partitions by introducing a MaxCost, 16×16
torus.
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Table 6.2: The fraction of large jobs with a SatRatioTC/NTC less than or equal to, respectively,
50% and 75%.

(a) Uniform traffic.

No cost limit MaxCost = 32.5%

SatRatioTC/NTC ≤ 50% 54% 33%
SatRatioTC/NTC ≤ 75% 71% 55%

(b) Hotspot traffic.

No cost limit MaxCost = 32.5%

SatRatioTC/NTC ≤ 50% 14% 0%
SatRatioTC/NTC ≤ 75% 20% 6%

confirmed by Table 6.2 which summarizes the results presented in Figures 6.12(c) – 6.12(f ). Thus,
limiting the irregularity of partitions reduces the fraction of large jobs for which traffic-containment
is a significant disadvantage.

6.3 Related work and our contribution

Our contribution to the field of contiguous processor allocation includes the introduction of two
new and flexible approaches. In Section 6.1 we presented the UDFlex processor allocation strategy,
and in Section 6.2 we presented a framework for developing processor allocation strategies. Both
approaches are topology agnostic and support traffic-containment as well as a high utilization of the
available processing resources in a system. Furthermore, both approaches presuppose a close col-
laboration between an allocator which applies a flexible processor allocation strategy and a routing
module which applies a topology agnostic routing algorithm.

To the best of our knowledge, UDFlex was the first processor allocation strategy that exploited
the characteristics of a topology agnostic routing algorithm in order to provide flexible partitions as
well as traffic-containment. Although both UDFlex and our framework aim at achieving isolation
of traffic between partitions while supporting a low level of fragmentation, the approach taken by
UDFlex is fundamentally different from the approach taken by the framework. UDFlex requires a,
possibly irregularly shaped, partition to constitute a valid sub-graph of an overall Up*/Down* [204]
graph. Apart from any faults of nodes or communication channels, the overall Up*/Down* graph
remains fixed during the operation of a system. Before a job is started on a new partition, reconfig-
uration is only needed in the form of activation and deactivation of paths in order to keep traffic
contained within the partition as well as to ensure connectivity between every pair of nodes that
are part of the partition. The framework, on the other hand, allows allocation of any sufficiently
large contiguous region of nodes to a parallel job, and therefore supports a further reduction of
fragmentation when compared to UDFlex. Before a job is started, the framework directs that a
topology agnostic routing algorithm must calculate a new set of paths that prevents packets from
being routed outside the partition, and that the affected region of the interconnection network
must be reconfigured (static reconfiguration is sufficient). The framework is not tied to a particular
pair of allocation strategy and routing algorithm, and also in that respect it supports a high degree
of flexibility. In particular, as opposed to UDFlex, the framework supports the use of topology
agnostic routing algorithms with better performance than Up*/Down*.

In order to evaluate our framework, we introduced and used the contiguous processor allo-
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cation strategies CMC and CMC1x1. These strategies are the result of a simple modification of
the non-contiguous strategies MC [146] and MC1x1 [34], and allow allocation of an arbitrarily
shaped contiguous region of nodes to a parallel job. Not surprisingly, our studies show that, when
compared to UDFlex, CMC and CMC1x1 further alleviate fragmentation. After our studies were
performed, [110] presented an optimization of MC1x1 that aims to select the best allocation al-
ternative in cases where several allocation alternatives have the same (lowest) cost. We expect that
adoption of this optimization could reduce fragmentation even further.

The results of our communication experiments show that there are unpredictabilities related to
both traffic-containment and non-traffic-containment, and that the benefit of traffic-containment
versus non-traffic-containment for a job is highly dependent on the communication patterns of
concurrent jobs. We also introduced a simple extension to the CMC allocation strategy, and this
extension shows promise with regard to increasing the benefit of traffic-containment (at the cost of
increased fragmentation).

Like CMC and CMC1x1 which are used in the evaluation of our framework, the contiguous
version of the Leak strategy [194,195] supports allocation of any sufficiently large contiguous region
of nodes to a parallel job, regardless of the shape of the region. However, no attempts were made to
ensure traffic-containment for the arbitrarily shaped partitions allocated by Leak, and we observe
in particular that the contiguous version of Leak is not traffic-contained when Dimension-Order
Routing (DOR) [231] is used. (For the communication experiments of [194], XY-routing was used
in combination with a non-contiguous version of Leak.)

Arbitrarily shaped contiguous partitions are also supported by the allocation strategy presented
in [165] for on-chip environments based on two-dimensional mesh topologies. (Dynamic changes
of the size of partitions are also supported.) Like the Leak strategy, [165] is inspired by some of
the qualities of fluids. An allocation is compared to a fluid pouring out from an unallocated node
until a drop (partition) of the required size is formed. Routing is not discussed in [165], although
it seems to be presupposed that a set of paths can be identified within a partition. The allocation
strategy presented in [165] is used in the performance evaluation of [166] which introduces a
router that supports simultaneous transmission of both packet switched and circuit switched data.
For packet switched data transmission, DOR XY-routing is applied in order to avoid deadlock.
For circuit switched data transmission, a router may alternate between XY-routing and YX-routing.
(Deadlock does not occur as communication channel resources are reserved in advance.) It seems,
however, that connections that are set up are allowed to leave and re-enter partitions. Thus, traffic-
containment is not guaranteed for arbitrarily shaped partitions for either type of data transmission.

The study presented in [98] concludes that network noise – which includes interference be-
tween concurrently running parallel jobs – primarily depends on the type of interconnection net-
work as well as on the routing algorithm and allocation strategy used.

Recall that fragmentation is an inherent issue for contiguous allocation strategies, and that only
a non-contiguous allocation strategy can achieve fragmentation-freedom. However, due to our
requirement of traffic-containment, non-contiguous processor allocation strategies (such as those
presented in [2, 18, 22, 38, 247]) are not a main focus of this thesis.

To the best of our knowledge, few of the existing contiguous processor allocation strategies are
independent of topology. Thus, for lack of topology agnostic contiguous allocation strategies, we
have given the strategies that target mesh and torus topologies a larger focus in our discussions,
although both UDFlex and our framework are topology agnostic.
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An example of an approach that may be categorized as highly topology-specific is found in [14],
which describes how a multi-toroidal topology (a particular torus topology with additional com-
munication channels that was introduced with the Blue Gene/L supercomputer [29]) may promote
traffic isolation between partitions. On the other hand, [59] which focuses on the Blue Gene/P
system [101] (Blue Gene/L’s successor) shows that allocation of mesh-shaped – rather than torus-
shaped – partitions may be advantageous. Different racks of nodes may share wraparound channels
that only one partition can use at a time. Thus, a job running on a partition A may hinder the start
of another job on a different partition B if A and B share such wraparound channels.

For mesh and torus topologies, a number of contiguous processor allocation strategies are avail-
able in the literature. A selection of those strategies was included – and the strategies’ manners
of operation were explained – in Section 2.7.1. Many traditional processor allocation strategies,
such as First Fit [262], Best Fit [262], Adaptive Scan [61] and Flexfold [91], restrict the allo-
cated regions to sub-meshes (or sub-cubes), and this is also the case for the strategies presented
in [4,43,44,46,58,113,147,181,228,229,251,253]. This restriction results in a high level of frag-
mentation and thus a relatively low utilization of a system’s processing resources. The performance
evaluation presented in this chapter confirms that, when compared to the allocation of sub-meshes,
both of our approaches significantly alleviate fragmentation, and thereby support an improved uti-
lization of the available processing resources in systems based on two-dimensional meshes and tori.

Allocation of sub-mesh shaped regions of nodes in a mesh topology ensures traffic-containment
when DOR is used. Thus, assuming the use of DOR, processor allocation strategies such as those
proposed in [43, 61, 91, 253, 262] support traffic-containment. However, for a topology which
includes wraparound channels, such as a torus or k-ary n-cube, strategies that allocate sub-meshes or
sub-cubes can often not guarantee traffic-containment when DOR is used. Recall that in such cases
the shortest path between two nodes that are part of the same partition may include intermediate
nodes outside the partition, and that packets that are routed outside their partition risk interference
with packets belonging to concurrently running jobs. This is an issue for allocation strategies such
as [44, 46, 113, 181], whereas the k-ary Partner strategy [251] is able to ensure traffic-containment
in a k-ary n-cube topology.

Some of the processor allocation strategies for mesh and torus topologies, such as Frame Slid-
ing [45] and k-ary Partner [251], are not always able to recognize an available sub-mesh or sub-cube,
and the result is a high level of fragmentation. UDFlex, on the other hand, can recognize a free
valid sub-graph of an Up*/Down* graph given that one is available. Likewise, our framework sup-
ports the use of processor allocation strategies, such as CMC and CMC1x1, that can recognize a
contiguous region of free nodes given that one is available.

We explained in Section 2.7.1 that some of the allocation strategies for mesh and torus topolo-
gies, such as Two-dimensional Buddy [130] and k-ary Partner [251], are affected by internal frag-
mentation. Furthermore, although most strategies that allocate sub-meshes or sub-cubes in meshes
or tori do not cause as severe internal fragmentation as [130] does, these strategies are nevertheless
restricted to allocate a number of nodes that can be expressed as a product of numbers a× b× . . . .
Consider e.g. a two-dimensional mesh or torus of size w × h where internal fragmentation may
occur if the required number of nodes cannot be expressed as a product a × b, where a ≤ w and
b ≤ h, and as a result a higher number of nodes than required must be allocated. UDFlex, on
the other hand, can allocate any number of nodes, and thus eliminates this source of internal frag-
mentation. In addition, our framework supports the use of strategies, such as CMC1x1, that may
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allocate any number of nodes.
Many of the traditional contiguous allocation strategies for mesh and torus topologies will not

perform satisfactorily for faulty meshes and tori. Therefore, particular solutions such as those de-
scribed in [40,115] have been proposed for faulty topologies. UDFlex is a topology agnostic proces-
sor allocation strategy. Thus, no particular considerations are needed for faulty regular topologies
when using UDFlex. Our framework is also topology agnostic, and therefore in itself able to sup-
port faulty regular topologies – thus, the fault tolerance abilities depend on the actual processor
allocation strategy applied.

Processor allocation has previously been studied for systems that use topology agnostic rout-
ing – see e.g. [128] where Up*/Down* routing was used initially (a shortest path routing based
on the principles of [55] was later developed). However, although message contention and proces-
sor locality were discussed in [128], the properties of the Up*/Down* routing algorithm were not
utilized to realize traffic-containment within partitions.

We mentioned in Section 2.5 that the Logic-Based Distributed Routing (LBDR) [73] algo-
rithm targets on-chip networks that conform to a defined set of regular and semi-irregular mesh-
based topologies. LBDR can be used for topologies where the set of paths connecting all nodes
corresponds to the shortest paths in an imaginary surrounding regular two-dimensional mesh. This
includes topologies shaped as the characters "+", "q", "p", "b" and "d". LBDR is thus not topology
agnostic, but can, for the defined set of topologies, implement the forwarding restrictions imposed
by such routing algorithms as Up*/Down* and Segment-Based Routing [151]. Furthermore, at the
expense of a more complex switch design, an extension of LBDR, uLBDR [192], increases flexibil-
ity by supporting any topology than can be derived from a two-dimensional mesh. It was briefly
mentioned in [73] that LBDR can implement traffic isolation (containment) for a set of regular
and semi-irregular partitions. This was further developed and investigated in [191] for bLBDR,
a broadcast and multicast extension of LBDR. With LBDR, each port of a node has a so called
connectivity bit which states whether or not the node is connected to another node through this
port. Exploiting this feature of LBDR by simply resetting the connectivity bits for the ports along
the borders of network regions, bLBDR implements traffic isolation for the regions.

Like UDFlex and our framework, [191] discusses how the routing function should be taken
into account in order to achieve connectivity and traffic isolation within partitions. For a net-
work where the forwarding restrictions of Up*/Down* is applied, [191] also provides an example
which effectively illustrates UDFlex allocation.7 Thus, algorithmic routing schemes such as LBDR,
uLBDR, bLBDR and their recent successors mentioned below could promote the use of UDFlex
in multicore chip environments where the use of routing tables may be disadvantageous.

As in the performance evaluation of our framework, traffic isolation versus traffic contention
is a topic of both [74] and [191]. The focus of [191] is different from our focus. Whereas we
study the results of traffic-containment versus non-traffic-containment for the exact same set of
partitions (and for unicast traffic), [191] studies broadcasts within defined domains (partitions)
versus broadcasts across an entire 8 × 8 mesh network. Furthermore, in the evaluation of our
framework we investigate a significant number of arbitrarily shaped partitions, whereas only four
partitions are included in the performance evaluation of [191] (three of those partitions are sub-
mesh shaped and the fourth partition is shaped like the character "d"). As opposed to UDFlex and
our framework, bLBDR is not topology agnostic. Furthermore, in its original form bLBDR does

7UDFlex [225] was published before [191].
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not support arbitrarily shaped partitions. Recently, however, the mechanisms of bLBDR (and a
successor denoted Signal Bit Based Multicast) and the mechanisms of uLBDR have been combined
into eLBDR which supports irregular partitions in a two-dimensional mesh-based topology [193].
Like the family of algorithms based on LBDR, another logic-based routing algorithm – Flexible
DOR (FDOR) [209] – is also able to support traffic isolation within non-rectangular partitions in
a mesh-based on-chip environment.

Similar experiments as those presented in [191] and [225] were also included as examples
in [74]. In addition, [74] briefly included simulation results which demonstrated that a lack of
traffic isolation caused reduced throughput and increased latency for a partition when its neigh-
bouring partition was congested. Better throughput and latency were achieved when LBDR was
used to implement the forwarding restrictions of the Up*/Down* and Segment-Based Routing al-
gorithms, both of which provided routes that ensured traffic isolation within each of the partitions.
Whereas the evaluation of our framework included a large number of arbitrarily shaped partitions,
only two partitions (one sub-mesh shaped and one shaped as the character "b") were studied in the
examples included in [74].

Like bLBDR, the strategy recently presented in [239] is based on LBDR and realizes traffic
isolation between network regions in an on-chip environment by resetting the connectivity bits for
the node ports along the borders of the regions. The partitions can take on any of the shapes that are
supported by LBDR. Whereas only a few static scenarios are considered in [239], reconfiguration
of LBDR’s connectivity bit and two routing bits (per node port) is proposed in [238] in order to
support traffic-containment for a changing set of partitions. As with our framework, which is based
on a similar principle, static reconfiguration is sufficient. The performance evaluations of [239]
and [238] also have similarities with the performance evaluation of our framework. For a given
set of partitions, performance in the traffic-contained case is compared with performance in the
non-traffic-contained case. (In addition, a random assignment of nodes to applications is included
as a benchmark in [239] and [238].) Other metrics are used in [239] and [238] than in our study.
Moreover, the conclusions of [239] and [238] appear to be more unambiguously in favour of traffic-
containment than our conclusions are. We believe the main reason is that, when compared to our
experiments, the experiments of [239] and [238] include only small partitions (of size 4 nodes
in [239] and of size 2 – 8 nodes in [238]). Recall that our study also shows that the majority of
smaller jobs benefit from traffic-containment. The network topology modelled in [239] and [238]
is a 4× 4 mesh, as opposed to the 16× 16 mesh and torus topologies considered in our study. On
the other hand, the workload models used in [239] and [238] are in general more realistic than our
synthetic workload models.

Several other studies which target the consequences of interference between traffic belonging
to different partitions are available in the literature, and in the following we include some of the
most relevant studies. In [137] the effect of contention between messages belonging to concur-
rently running jobs is evaluated for several non-contiguous processor allocation strategies, using
the contiguous First-Fit allocation strategy as a benchmark. Furthermore, the impact of different
message sizes is studied. Similar experiments are conducted in [194], although their focus is dif-
ferent from the focus of [137]. In [194] a version of the Leak processor allocation strategy that
allows non-contiguous partitions is implemented in a distributed manner. Nodes exchange con-
trol messages as part of the allocation algorithm, and the focus of the experiments is on potential
contention between such control messages and the messages related to the execution of the parallel
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jobs (assuming that a separate network for control traffic8 is not available). Our study, on the other
hand, focuses on contiguous processor allocation and assumes that control traffic is transmitted in
a separate network.

Advantages and disadvantages of contention-free allocation versus low-contention allocation
and fragmentation-free allocation are discussed in [156]. Among their conclusions is the obser-
vation that contention-free allocation is advantageous for applications which are communication
intensive or exchange large messages. Our focus is different from the focus of [156]. We study
the costs and benefits of traffic-containment versus non-traffic-containment for the exact same set
of partitions, whereas [156] compares partitions (of the same size) generated using different alloca-
tion principles (contention-free, low contention, and fragmentation-free allocation). In [156], two
concurrent jobs – each of size 8 nodes – are running in a 4 × 4 mesh or in a 16 node multistage
interconnection network, which means that all the nodes are busy at any time. Our study includes
a larger interconnection network and a large set of partitions, where the contiguous partitions are
of variable size and shape. Furthermore, in our study, not all the nodes are busy at all times. We
observed in Section 6.2.4 that this may have an impact on the conclusions about the advantages of
traffic-containment versus non-traffic-containment.

Interference between concurrent partitions is also discussed in [249] which addresses a Cray
XT3 system [51] (a three-dimensional torus). Several optimized allocation strategies are suggested
in [249]. The different allocation strategies target different categories of jobs, and partitions may
be either sub-mesh shaped, non-regular contiguous or non-contiguous. When compared to a non-
contiguous allocation strategy that was originally used, the use of an optimized allocation strategy
with a higher degree of contiguity results in significant performance improvements for communi-
cation intensive applications. In [246] the implementation of the optimized allocation strategies
is further elaborated on. We observe, however, that the optimized allocation strategies in general
cannot guarantee traffic-containment when DOR is used.

6.4 Critique

Compared to many of the strategies that allocate sub-meshes, both UDFlex and our framework
are expected to have a higher allocation and communication overhead. The UDFlex example im-
plementation discussed in Section 6.1.2 has a higher computational complexity than many of the
traditional strategies that allocate sub-mesh shaped partitions have. However, as discussed in Sec-
tion 6.1.2, a simpler "first-fit" approach to the implementation of UDFlex is possible, and such
an approach may reduce the computational complexity of UDFlex (probably at the expense of in-
creased fragmentation). UDFlex is tied to the Up*/Down* routing algorithm which has known
performance issues. Most importantly, the Up*/Down* routing algorithm is prone to congestion
in the area around the root node of the Up*/Down* graph. In addition, due to prohibited down-
link to up-link turns, a legal path from one node to another is not necessarily the shortest path in
the physical topology. (For interconnection networks that use virtual cut-through switching, the
latter concern is normally of less importance.) Two decades after its release, the topology agnostic
Up*/Down* routing algorithm still plays an important part in the operation of systems that con-
tain a non-regular interconnection network – possibly as a result of faults in an originally regular

8Recall that control traffic refers to traffic that is not part of the intra-partition traffic related to the execution of a
parallel job.
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network. Our results indicate that, when compared to traditional sub-mesh allocating strategies,
an allocation and communication overhead of at least 60% could be tolerated before the advan-
tages of UDFlex with respect to fragmentation are neutralized. Thus, we believe that UDFlex,
which takes advantage of the characteristics of the Up*/Down* routing algorithm in order to realize
traffic-containment, is a useful contribution.

For our framework, the allocation and communication overhead will depend on the chosen
pair of allocation strategy and routing algorithm. However, regardless of the pair of algorithms
chosen, the framework directs that in order to ensure traffic-containment a static reconfiguration
process must in general be performed before a new job is started. Such a reconfiguration will
inevitably imply a certain amount of allocation overhead when compared to traditional allocation
strategies (which do normally not require reconfiguration).

An increased allocation overhead will in general be more acceptable for jobs that are running
for a long – rather than a short – period of time. When compared to traditional contiguous strate-
gies that allocate sub-mesh shaped partitions, both UDFlex and our framework have significant
advantages with respect to reduced fragmentation. Thus, the choice between using a traditional al-
location strategy versus using one of our new approaches implies a tradeoff where tolerance towards
such factors as fragmentation, allocation overhead and communication overhead should be taken
into account, as should the expected running times of jobs.

As opposed to the use of many of the strategies that allocate sub-meshes, the use of UDFlex
and our framework presupposes flexibility with respect to the relative distances and locations of the
nodes that constitute a partition. This is also the case for a number of other processor allocation
strategies, however – see e.g. Random [137], MC [146], ARS [4] and Flexfold [91].

Our strong focus on traffic-containment could perhaps be criticized. Traffic-containment pre-
supposes a contiguous processor allocation algorithm. As opposed to non-contiguous allocation
algorithms, contiguous allocation algorithms cannot be fragmentation-free, and are thus bound to
achieve a lower utilization of a system’s processing resources. Furthermore, as the communication
experiments conducted for our framework demonstrate – in particular for large partitions – traffic-
containment is not always beneficial over non-traffic-containment. Our results show that, when
traffic-containment is enforced within unfortunately shaped partitions, a significant communica-
tion overhead may result from such factors as bottlenecks, higher load on communication channels
and longer paths. However, our results also indicate that, rather than uncritically assigning an
unfortunately shaped partition to a scheduled job, enforcing an upper limit on the irregularity of
partitions reduces the fraction of jobs for which traffic-containment is disadvantageous. (Recall
that we developed a simple metric in order to quantify the irregularity of partitions.) Increased
fragmentation is a cost of such a more selective allocation strategy, and a reasonable balance must
be found between an acceptable level of fragmentation and an acceptable level of partition irregular-
ity. The benefit of traffic-containment over non-traffic-containment for a job is highly dependent
on the communication patterns of concurrently running jobs. An important advantage of traffic-
containment is that it prevents propagation of congestion from one partition to other partitions.
For environments which require that the communication overhead of one job is independent of
concurrently running jobs, or for environments where a firm insurance is needed that one job can-
not analyze or tamper with traffic belonging to other jobs, a contiguous processor allocation strategy
that ensures traffic-containment may be preferred. Consider as an example applications running in
a cloud computing [245] data center. Such applications are diverse and generally not under control
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of the cloud provider. When applications ranging from those in a debugging phase of development
to applications in the high performance computing segment are running concurrently, isolation of
the traffic belonging to different partitions becomes a crucial issue. For environments with less strict
requirements on traffic isolation, on the other hand, a non-contiguous processor allocation strategy
may be advantageous. A logical separation of traffic could then be realized if more than one virtual
channel is offered per physical communication channel.

In their current versions, both UDFlex and our framework target homogeneous environments
where all the resources are equivalent and where single processors are the only type of resource eli-
gible for allocation. In addition to single processors, real systems may consist of various other types
of resources, such as multicore chips, hardware accelerators, gateway nodes and storage nodes. Al-
though a homogeneous system model is a simplification of most real systems,9 such a homogeneous
environment is commonly assumed in studies on processor allocation. Thus, the adoption of this
assumption allows us to compare our new solutions with established processor allocation strategies.

In the evaluation of UDFlex we did not perform packet-exchange experiments. On the other
hand, we conducted a set of experiments where the probable allocation and communication over-
head of UDFlex were represented by an extended service time (running time) for the jobs. These
experiments allowed us to quantify the amount of allocation and communication overhead that
can be tolerated for UDFlex until its advantages (with respect to fragmentation) over traditional
sub-mesh allocating strategies are eliminated.

In the evaluation of our framework, separate simulator models were used for the allocation
experiments and the communication experiments, and the packet-exchange experiments were per-
formed only on a number of snapshots output from the allocation experiments. Section 3.1 explains
the reasons behind such a simulator model setup, and the usability of the setup was further discussed
in Section 3.1.3.

The metrics used in the evaluation of our framework, Saturation∗ and SatRatio∗/∗, are per-
haps relatively complex and not immediately intuitive. We did, however, consider using an alter-
native pair of metrics – Throughput∗ and ThrRatio∗/∗, where, for a partition P , Throughput∗

is the total number of packets received by all nodes of P and the relation between ThrRatio∗/∗

and Throughput∗ corresponds to the relation between SatRatio∗/∗ and Saturation∗. For a few
jobs, we observed that ThroughputAll was significantly higher than ThroughputOne. That is, for
such a job, j, a significantly higher throughput was observed when all the jobs of a snapshot ran to-
gether than when j ran alone. We found the following explanation for this counterintuitive effect,
which was only observed for large jobs: Interfering traffic from one or more of the other jobs of
the snapshot unintentionally imposes congestion control on j by slowing down traffic for part of j,
and thereby allowing speed-up of traffic for other parts of j. This means that the ThrRatioAll/One

metric has significant limitations. It assumes that the traffic of one node of a partition P is fully
independent of the traffic of the other nodes of P . This assumption is in general not valid for
jobs that require some kind of barrier synchronization. Thus, we believe that Saturation∗ and
SatRatio∗/∗ – which register when the first source node of a partition reaches saturation – consti-
tute a more representative pair of metrics.

The use of mesh and torus topologies in the experiments conducted to evaluate UDFlex and our
framework – both of them topology agnostic approaches to processor allocation – could perhaps be

9An example of a homogeneous system is Intel’s [106] terascale prototype processor [100, 244] with its 80 homo-
geneous cores.
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criticized. We believe, however, that meshes and tori are relevant topologies for our experiments,
and give reasons for this opinion in Section 3.1.3.

Our framework was evaluated on 16 × 16 mesh and torus topologies. The reasons for not
including larger topologies in the evaluation are related to the feasibility of the communication ex-
periments. First, for every snapshot, we performed a relatively long-running simulation experiment
where all the partitions of the snapshot ran together. Then, for every partition of every snapshot,
we performed a relatively long-running simulation experiment where the partition ran alone on
the 16 × 16 mesh or torus. Thus, a large number of simulation experiments were needed. Given
similar sizes of the partitions, the number of partitions per snapshot would have increased for larger
topologies (recall that the snapshots were collected for a load of 1.0). Conducting the communica-
tion experiments for significantly larger topologies was therefore considered too demanding.

The processor allocation strategies used in the evaluation of our framework, CMC and
CMC1x1, are based on MC [146] and MC1x1 [34], respectively, which were developed for mesh
and torus topologies. Thus, CMC and CMC1x1 are not topology agnostic, and the use of such
allocation strategies could be objected to since the framework itself supports topology agnosticism.
To the best of our knowledge, few existing contiguous processor allocation strategies are indepen-
dent of topology. We found that CMC and CMC1x1 are suitable examples of strategies that can be
used with our framework. CMC and CMC1x1 are conceptually simple; able to allocate partitions
of any shape; able to recognize any available and sufficiently large contiguous region of nodes; and
able to minimize the dispersal of the allocated nodes. On the other hand, we could probably have
realized a topology agnostic allocation algorithm by basing the calculation of the contiguous parti-
tions on ordinary breadth-first searches around the free nodes. We do not expect, however, that the
use of such an algorithm would have altered our conclusions.

In order to increase the benefit of traffic-containment, an upper limit on the irregularity of
partitions created by CMC was introduced in Section 6.2.5. The enforcement of such an upper
limit was evaluated for only a limited scenario, however. Only the torus topology and large jobs
were studied, and the number of jobs included in the experiments was restricted. Nevertheless, the
promising results motivate further work aiming to develop more sophisticated allocation strategies
which increase the benefit of traffic-containment.

6.5 Future work

Potential hindrances and opportunities for the development of cloud computing are discussed
in [16], which concludes with an optimistic prediction of the future of cloud computing. We
argued in [142] that emerging cloud computing environments need new and more flexible solu-
tions to the problem of partitioning (or virtualization) of their resources. This problem is related to
processor allocation, but is in general more challenging. Recall that for the development of UDFlex
and our framework we assumed a homogeneous environment where all the resources are equiva-
lent and where single processors are the only type of resource to be allocated. This is a common
assumption in traditional studies on processor allocation. A cloud computing data center, on the
other hand, represents a more heterogeneous environment, where the existing resources can roughly
be grouped into the following three categories: computing nodes – ranging from single processors
to different types of multicore processors; storage nodes which include storage media (such as disks
or tapes) with a range of different characteristics; and gateway nodes towards external networks.
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During the operation of a cloud computing data center, the resources (which are linked by an
interconnection network) are dynamically partitioned into virtual servers. The virtual servers are
assigned on demand to customers, and released when no longer needed. A customer is typically
billed according to the amount of resources assigned as well as the duration of the assignment.

The space-sharing model is commonly assumed in the literature on processor allocation, and is
also adopted by us for the development of UDFlex and our framework. Recall that space-sharing
implies that a set of resources is exclusively assigned to a single parallel job, which runs uninterrupt-
edly until completion. For several reasons, a space-sharing model may be unsuitable for a cloud
computing environment. A cloud computing data center will typically demand a high profitability,
and thus also a high utilization of its resources. Overlapping partitions may increase the utilization
of resources – or grant several jobs access to a scarce resource. The resources that are used by more
than one partition must then be accessed in a time-sharing fashion (that is, the partitions alternate
in using the shared resource). Migration of running jobs may be desirable, for instance in order
to escape from faulty resources. Moreover, migration of running jobs could also allow – or en-
hance – the placement of a scheduled job, and thereby increase the overall utilization of the system’s
resources. During the lifetime of a virtual server, its amount of resources may need to be scaled
up or down. For instance, a scale up of a virtual server could be the result of a customer request-
ing additional resources, whereas a scale down could be the result if a higher priority virtual server
required additional resources (possibly due to faults in some of its assigned resources).

Although we refer to UDFlex and our framework as topology agnostic, their usefulness in a
system based on a multistage interconnection network is questionable. We argue in [142] that mul-
tistage interconnection networks are highly relevant for cloud computing environments, and such
topologies should be considered during the development of new resource partitioning strategies for
cloud computing data centers.

A number of different applications – ranging from applications in the high performance com-
puting segment to applications in a debugging phase of development – may run concurrently in
a cloud computing data center. In general, the applications running in a cloud computing data
center are not under control of the cloud provider; the quality of the applications cannot be guar-
anteed; and misbehaving applications must be expected. Such an environment poses a number of
challenges, with respect to security, anonymity as well as performance.

Traffic-containment could have solved the security and anonymity issues by ensuring isolation
between partitions. If such isolation is implemented, one job cannot analyze the traffic – nor tamper
with the resources, application, data or traffic – belonging to a concurrently running job. However,
although traffic-containment could also have ensured that the communication overhead for a job is
independent of concurrently running jobs, the results presented in Section 6.2.4 demonstrate that
the enforcement of traffic-containment does not always result in a lower communication overhead
for a job. Furthermore, due to such factors as high requirements on resource utilization and a
probable need to share scarce resources among a number of partitions, a cloud computing data
center can in general not rely on traffic-containment. Thus, other means must in general be applied
in order to isolate the traffic that belongs to different partitions. For instance, the use of virtual
channels could promote traffic isolation on shared communication channels. A combination of
Multiple Roots (MRoots) [71,143,144] and UDFlex could potentially support traffic-containment
within each virtual layer for a system that allows overlapping partitions. (Recall from Section 2.8.1
that MRoots is a topology agnostic routing algorithm that calculates a separate directed acyclic
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graph (DAG) for each virtual layer and distributes the root nodes of each DAG throughout the
network topology.)

For several reasons discussed above, our new solutions for processor allocation presented in this
chapter are not directly portable to a cloud computing environment. However, we believe that the
main idea behind UDFlex and our framework – utilization of a topology agnostic routing algorithm
in order to achieve flexible partitioning – may also be useful in the development of flexible and
fault-tolerant partitioning solutions for cloud computing data centers. Furthermore, in order to
minimize the interference between jobs, maximizing the degree of isolation between partitions may
be advantageous even if complete traffic-containment is not feasible. (Recall that a misbehaving job
could induce severe performance degradation in concurrently running jobs.)

In addition to flexible partitioning of resources, in [142] we emphasized predictable service and
fault tolerance as important challenges to be addressed for an interconnection network in a cloud
computing environment. The jobs running in a cloud computing data center will typically have
different service requirements and importance. In order to successfully offer predictable services in
such an environment, mechanisms for implementing service differentiation at the level of partitions
are needed, as well as mechanisms for congestion control and admission control. A fault in a
resource node, switch or communication channel of a cloud computing data center will probably
affect only a small subset of the running jobs. Thus, a fault tolerance mechanism for such an
environment should be aware of partitions, and aim to minimize the negative influence on jobs that
are not directly affected by the fault. Any reassignment of resources or termination of jobs should
be performed in accordance with the importance of the jobs involved. Finally, the combination
of mechanisms for flexible partitioning of resources, predictable service and fault tolerance is an
important challenge facing an interconnection network in a cloud computing environment.
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Chapter 7

Conclusion

Topology agnostic methods for routing and reconfiguration of interconnection networks are main
topics of this thesis. In addition, we utilized such methods to realize flexible processor allocation
strategies that support traffic-containment (traffic isolation) within partitions. The solutions pro-
posed in this thesis do not target specific computing systems, but are versatile mechanisms that
can be used for a number of different computing systems such as supercomputers, data centers and
multicore processor integrated circuit chips.

7.1 Routing

We performed a systematic evaluation of a number of existing routing algorithms in order to iden-
tify an appropriate routing algorithm for the Advanced Switching Interconnect (ASI) [150] tech-
nology. The motivation for such an evaluation was that the ASI specification [17] did not prescribe
a particular routing algorithm. (Later, the ASI specification process was discontinued, and the ASI
technology is now incorporated in Dolphin Express [122].) We argued that a routing algorithm for
ASI should support deterministic routing, be topology agnostic and deadlock-free; provide shortest
paths and high efficiency for regular topologies; and not require transitions from one virtual layer to
another. One routing algorithm, Layered Shortest Path (LASH) [144, 218], was found to fulfil all
of these criteria. We proposed that LASH is used with ASI, and discussed main principles regarding
the realization of LASH in ASI.

LASH is a topology agnostic routing algorithm that uses virtual layers for deadlock avoidance.
In addition to being essential mechanisms that enable communication in interconnection networks
with irregular topologies, topology agnostic routing algorithms may be important fault tolerance
mechanisms for networks with regular topologies. We studied the usability of LASH as a static
fault tolerance mechanism, and demonstrated how LASH supports a graceful degradation of per-
formance as an increasing number of switches fail in networks with mesh and torus topologies.

We also proposed an optimization that allows LASH to select the same paths, and thus achieve
the same performance, as Dimension-Order Routing (DOR) [231] in a fault-free mesh topology.
With this optimization a single virtual layer ensures deadlock-freedom for a fault-free mesh. Fur-
thermore, the abilities of LASH as a static fault tolerance mechanism are maintained.

The main weakness of LASH is perhaps that the number of virtual layers needed for practical
applications is not fully predictable. We studied LASH’s requirements of virtual layers for regular
topologies such as fat-trees, meshes and tori. In addition to the fault-free topologies, faulty network
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switches were considered for the latter two categories of topologies. The results show that, in
most cases, the number of virtual layers required is within the number of virtual channels (VCs)
supported by the ASI specification (even though some of the investigated topologies are larger than
the maximum size of an ASI fabric).

In order to support service differentiation when LASH is used with ASI, we proposed a novel
layer to priority-class mapping. For cases where LASH needs less than half of the available number
of VCs to ensure deadlock-freedom, at least two different priority levels can be provided for service
differentiation. (In the cases where LASH settles for a single layer, no such novel mappings are
required.)

We explained how most of our considerations regarding routing in ASI are also relevant for
routing in InfiniBand [105]. The requirements for a routing algorithm to be used with ASI are also
reasonable guidelines for selecting a routing algorithm to be used with InfiniBand. Furthermore,
a number of issues related to realization of LASH in ASI are also relevant for realization of LASH
in InfiniBand. In addition, the results of our evaluation of the performance of LASH in ASI are
also representative of the performance of LASH in InfiniBand. Our considerations were taken into
account when LASH was included into the OpenFabrics Enterprise Distribution [163] software
stack for InfiniBand.

7.2 Reconfiguration

The change-over from one routing function to another – reconfiguration – is a deadlock prone
operation. Some reconfiguration strategies include a deadlock avoidance mechanism that causes
a significant performance degradation, and thus a reduced network service, during the routing
change-over. We proposed a new dynamic reconfiguration method called RecTOR, and expanded
the area of application for Overlapping Reconfiguration (OR) [139,140] – one of the most versatile
and efficient reconfiguration methods available in the literature.

RecTOR is based on a simple principle which, during a transition from one routing function
to another, allows packets routed according to either – or both – of the routing functions to coexist
in the network without restrictions. Our results confirm that RecTOR ensures deadlock-freedom
during a reconfiguration process without causing performance penalties. RecTOR is based on the
flexible Transition-Oriented Routing (TOR) algorithm [200] which, given sound path selection,
achieves excellent performance. TOR depends on VCs for deadlock avoidance, and RecTOR does
not require additional VCs during a reconfiguration process. RecTOR is applicable for both source
and distributed routing systems.

OR was previously only usable for distributed routing systems. We proposed an adaptation of
OR in order to enable using it also in source routing systems. A main part of the adaptation is
a new procedure that allows source routing switches to acquire channel dependency information
while forwarding data packets.

For source routing systems, we also proposed an optimization of the OR algorithm in order
to improve the network service offered to running applications during a reconfiguration. OR de-
pends on special packets – tokens – for deadlock avoidance, and our results demonstrate how the
optimization, which implies a relaxed token propagation procedure, reduces performance penalties.

We studied how different degrees of synchronization of the token injection may affect the per-
formance of OR, and concluded that the degree of synchronization has a significant impact on the
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increased latency, decreased throughput and congestion effects related to a reconfiguration process
managed by OR.

A comparison of OR and RecTOR shows that there are advantages and disadvantages related
to either of the methods. OR can support in-order packet delivery, whereas RecTOR cannot. OR
can be used in systems where VCs are not available for the routing function, whereas RecTOR
is based on TOR which depends on VCs for deadlock avoidance. OR can be used between any
pair of routing algorithms, and is in this respect more flexible than RecTOR is. On the other hand,
RecTOR supports an uninterrupted network service during a reconfiguration process, which OR in
general cannot. RecTOR does not require additional functionality in the network switches (except
perhaps for some packet loop prevention mechanism for distributed routing environments), and is
thus simpler to realize than OR which requires relatively complex switches. Finally, as opposed to
the performance of OR, the performance of RecTOR is independent of how synchronized the start
of a reconfiguration process is.

7.3 Processor allocation (virtualization)

Minimization of fragmentation and of interference between different partitions are two main chal-
lenges for a processor allocation algorithm. Traffic-containment ensures isolation of intra-job traf-
fic within each partition. Unfortunately, fragmentation – and thus a suboptimal utilization of a
system’s processing resources – is a consequence of enforcing traffic-containment (which presup-
poses contiguous processor allocation). Many of the existing processor allocation strategies cannot
guarantee traffic-containment. Moreover, a number of allocation strategies are rigid approaches
which achieve traffic-containment only at the cost of a significantly reduced resource utilization.
We introduced two new and flexible approaches – the UDFlex processor allocation strategy and a
framework for developing processor allocation strategies. Both approaches are conceptually simple,
and support traffic-containment as well as a high utilization of the available processing resources in
a system.

Both UDFlex and the framework presuppose a close collaboration between an allocator which
applies a flexible processor allocation strategy and a routing module which applies a topology agnos-
tic routing algorithm (and, when required, initiates a reconfiguration). Allowing arbitrarily shaped
partitions is a key to reduce fragmentation. Although both UDFlex and the framework exploit
the characteristics of a topology agnostic routing algorithm in order to provide traffic-containment
within arbitrarily shaped partitions, their approaches are fundamentally different. UDFlex in some
cases requires a simple activation and deactivation of paths in order to ensure traffic-containment
and connectivity within a partition. The framework, on the other hand, directs that a new set of
paths must be calculated for a new partition, and that the affected region must be statically recon-
figured. UDFlex assumes the use of the Up*/Down* routing algorithm [204], and allocates a valid
sub-graph of an overall Up*/Down* graph to a parallel job. The framework, on the other hand, is
not tied to a particular pair of allocation strategy and routing algorithm, and allows allocation of
any sufficiently large contiguous region of nodes to a parallel job. Thus, the framework supports
the use of topology agnostic routing algorithms with better performance than Up*/Down*, and the
use of contiguous processor allocation strategies which, when compared to UDFlex, further reduce
fragmentation. Examples of the latter include CMC and CMC1x1, allocation strategies which
were introduced in this thesis, and which result from simple modifications of the non-contiguous
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allocation strategies MC [146] and MC1x1 [34], respectively.
In addition to supporting allocation of arbitrarily shaped partitions, two other qualities of UD-

Flex and the framework contribute to low fragmentation. First, UDFlex can recognize a free valid
sub-graph of an Up*/Down* graph given that one is available, and the framework supports the use
of processor allocation strategies that can recognize any suitable contiguous region of free nodes.
Second, UDFlex can allocate any number (not restricted to e.g. a product of numbers) of nodes,
and the framework supports the use of processor allocation strategies that can allocate any number
of nodes.

On the negative side, the use of either UDFlex or the framework is expected to entail a rel-
atively high allocation and communication overhead. Our results indicate, however, that – when
compared to traditional sub-mesh allocating strategies – an allocation and communication overhead
of at least 60% could be tolerated before the advantages of UDFlex with respect to fragmentation
are neutralized. In addition to the overhead related to reconfiguration, the allocation and com-
munication overhead for the framework will depend on the chosen pair of allocation strategy and
routing algorithm.

When considering fragmentation and communication overhead (and ignoring a potential al-
location overhead), it is quite obvious that allowing allocation of arbitrarily shaped partitions is
beneficial when applications are not communication intensive. For communication intensive ap-
plications, we investigated the costs and benefits of traffic-containment (as prescribed by the frame-
work) versus non-traffic-containment. Our results show that there are unpredictabilities related to
both approaches to communication, and that the benefit of traffic-containment versus non-traffic-
containment for a job is highly dependent on the communication patterns of concurrent jobs. The
main advantages of traffic-containment are that the communication overhead of one job is inde-
pendent of concurrently running jobs, and that one job cannot analyze or tamper with the traffic
belonging to other jobs. On the other hand, we identified bottlenecks; higher load on commu-
nication channels; and longer paths as main potential drawbacks related to the enforcement of
traffic-containment within unfortunately shaped partitions. Subsequently, we introduced a simple
extension to the CMC allocation strategy that shows promise with regard to increasing the benefit
of traffic-containment (at the cost of a higher fragmentation).

Many of the traditional processor allocation strategies for regular topologies will not perform
satisfactorily for faulty topologies. Thus, particular solutions may be required when faults emerge.
UDFlex, on the other hand, is a topology agnostic processor allocation strategy, and is thus also
useful for non-regular topologies that may result from faults in regular topologies. For the frame-
work, which supports various processor allocation strategies (including topology agnostic ones), the
fault tolerance abilities depend on the actual allocation strategy applied.

7.4 Future work

Topology agnostic methods have a number of advantages, and are therefore expected to be attractive
mechanisms for emerging and future computing systems. Such methods are flexible with respect to
the topology of an interconnection network that connects various parts of a computing system, and
thus simplify addition or removal of network components as well as merging or splitting of systems.
Furthermore, topology agnostic methods may also simplify the provisioning of fault tolerance, and
this aspect becomes even more important as the probability of component faults increases when
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computing systems grow larger.
Efficient routing and reconfiguration are expected to play important roles in the operation of

the interconnection networks of future and emerging computing systems. For the routing and
reconfiguration algorithms under study in this thesis – LASH, OR and RecTOR – some challenges
remain. Improved predictability with respect to LASH’s usage of virtual layers is desired. For OR,
an open question is whether a small change of the characteristics of an interconnection network,
such as the introduction of virtual output queues, could increase the benefit of the optimization
of OR for scenarios where the gain is currently limited. Furthermore, in order to provide an even
more powerful fault tolerance mechanism than RecTOR alone, RecTOR could be combined with
the main principles of a fault-tolerant routing algorithm such as Transition-Based Fault-Tolerant
Routing (TFTR) [154].

Stricter requirements on energy-efficient operation of computing systems are expected in the
future. Thus, in addition to an efficient operation of an interconnection network, a high utilization
of a system’s computing resources may become even more important in future systems than it is in
current systems.

Our new processor allocation strategy, UDFlex, could be used in a number of different comput-
ing systems. Nevertheless, its (and Up*/Down*’s) dependency on routing tables may be disadvan-
tageous for some multicore chip environments. We believe that algorithmic routing schemes, such
as the family of algorithms [193] based on Logic-Based Distributed Routing (LBDR) [73] which is
able to implement the forwarding restrictions of Up*/Down*, could promote the use of UDFlex in
multicore chip environments where routing tables are undesirable.

We argued that cloud computing environments need new and more flexible solutions to the
problem of partitioning (or virtualization) of their resources [142]. This problem is related to pro-
cessor allocation, but is in general more challenging. For the development of UDFlex and our
framework we adopted the common assumptions of a space-sharing model and of a homogeneous
environment where all the resources are equivalent. These assumptions are in general not useful
for a cloud computing environment. A cloud computing data center represents a heterogeneous
environment. It typically demands a high profitability, and thus a high utilization of its resources.
Such an environment may require overlapping partitions; migration of running jobs; as well as up or
down scaling of the amount of resources allocated to a running job. Furthermore, different jobs may
have different degrees of priority. In addition, the applications running in a cloud computing data
center are not under control of the cloud provider; the quality of the applications cannot be guar-
anteed; and misbehaving applications must be expected. Such an environment poses a number of
challenges, with respect to security, anonymity as well as performance. Traffic-containment – which
could have solved the security and anonymity issues and ensured that the communication overhead
for a job is independent of concurrently running jobs – is in general not an option for a cloud
computing environment. Nevertheless, maximizing the degree of isolation between partitions may
be desirable, and for the development of flexible and fault-tolerant partitioning solutions the use of
topology agnostic routing methods may be advantageous.
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