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Preface
The thesis is a collection of three papers in the field of real algebraic geometry,
presented in chronological order of writing. The first paper is about hyperbolic
varieties, the second one about hyperbolic curves near the tropical limit, and
the third one about real algebraic curves near the tropical limit, so that the
second paper connects the two others. The research is funded by the Trond
Mohn Stiftelse (TMS) project “Algebraic and topological cycles in complex and
tropical geometry”.

Cédric Le Texier
Oslo, November 2021
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Chapter 1

Introduction
In this thesis, we study hyperbolic varieties and the topology of real algebraic
varieties, which are two important subjects in real algebraic geometry, and the
link between those subjects and tropical geometry.

1.1 Real algebraic geometry

Real algebraic geometry is the study of geometric objects which are the set
of solutions of a system of polynomial equations with real coefficients. This
subject has connections to many areas in mathematics such as analytic geometry,
algebraic topology and analysis, as well as many applications in interdisciplinary
fields such as computer-aided design, optimisation, computer vision and robotics.
The three papers presented in this thesis have real algebraic geometry as their
common theme.

The ground field will be a real closed field R, which is a field such that its
extension by the square root of −1 is algebraically closed [BCR13, Theorem
1.2.2]. By Tarski-Seindenberg’s principle [BCR13, Theorem 1.4.2], a statement
of the first order of logic is true over every real closed field if and only if it is
true over the field of real numbers R. Therefore, a lot of questions over any real
closed field can be treated as questions over R, and vice versa.

An affine real algebraic variety over a real closed field R is a topological
space X isomorphic to a real algebraic set V (f1, . . . , fm) ⊂ Rn equipped with
both Zariski and Euclidean topology, where

V (f1, . . . , fm) := {x ∈ Rn | f1(x) = 0, . . . , fm(x) = 0},

for f1, . . . , fm polynomials in R[x1, . . . , xn]. For instance, by [BCR13, Propo-
sition 3.2.10], the Zariski-open subset U := V ∩ (R×)n of a real algebraic set
V ⊂ Rn is an affine real algebraic variety. A real algebraic variety over R is a
topological space X such that there exists a finite Zariski-open cover (Ui)i∈I of
X with each Ui being an affine real algebraic variety. For instance, for X a real
algebraic variety in the real algebraic torus (R×)n, the compactification X of
X inside a projective space Pn is a real algebraic variety. More generally, the
compactification X of X inside a projective toric variety PΣ defined by a fan Σ
of dimension n is a real algebraic variety.

In this thesis, we will consider real algebraic varieties over R = R and over
R = KR, for KR the real closed field of locally convergent generalised Puiseux
series with real coefficients [IMS09]. An element of KR is of the form

α(t) :=
∑
r∈R

αrt
r,

1



1. Introduction

Figure 1.1: Harnack’s construction of a maximal quartic curve.

with R ⊂ R a well-ordered set, all coefficients αr belong to the real numbers
R and the series is convergent for t ∈ R>0 small enough. A real algebraic
variety X over KR can be seen as a family of real algebraic varieties (Xt)t over
R parametrised by t in the interval ]0, ε[⊂ R>0, with ε chosen so that all the
coefficients α(t) ∈ KR of the polynomials defining X are convergent on ]0, ε[.
Similarly, let K be the algebraic closure of KR, corresponding to the locally
convergent generalised Puiseux series with complex coefficients [IMS09]. Then
an algebraic variety X over K can be seen as a family of algebraic varieties
(Xt)t over C. This time, the parameter t belongs to the punctured open disc
D(ε) − {0} ⊂ C× of radius ε ∈ R>0, with ε chosen so that all the coefficients
α(t) ∈ K of the polynomials defining X are convergent on D(ε)− {0}.

Any real closed field R possesses orderings [BCR13], so that we can consider
polynomial inequalities in addition to polynomial equalities. A basic open
semi-algebraic set is a subset W (f1, . . . , fm) ⊂ Rn defined as

W (f1, . . . , fm) := {x ∈ Rn | f1(x) > 0, . . . , fm(x) > 0},

for polynomials f1, . . . , fm ∈ R[x1, . . . , xn] in the ordered real closed field (R,≤).
A general semi-algebraic set is a finite sequence of unions, intersections and
complements of basic open semi-algebraic sets.

For X a real algebraic variety over R a real closed field, we denote by X(R)
the set of real points of X and by X(R) the set of complex points of X, for
R the algebraic closure of R. We call an algebraic variety defined by a single
polynomial a hypersurface. If a hypersurface has defining polynomial of degree
1, we call it a hyperplane.

1.2 Topology of real algebraic varieties

The study of the Euclidean topology of real algebraic varieties dates back to the
19th century, with Harnack-Klein’s inequality ([Har76], [Kle73]), which states
that for C a non-singular real algebraic curve of genus g, the number of connected
components of C(R) is less than or equal to g + 1. Moreover, Harnack gave a
construction of maximal non-singular real algebraic curves in P2 for any degree
d [Har76] (see for instance Figure 1.1 for Harnack’s construction of a maximal

2



Topology of real algebraic varieties

Figure 5: Maximal perturbations of the triple of ellipses shown in Figure 3.

6 Complex Vision of Real Curves

A real algebraic curve is something more than just the set of its real points
{(x, y) 2 R2 : f(x, y) = 0}. It also has imaginary points, i.e., points of the
complex plane C2 satisfying the same equation f(x, y) = 0. When studying the
topology of the set of real points of a curve, it is very useful to keep in mind
the set of all its complex points.

Proofs of most prohibitions of the prohibitions stated in Section 5 demand
consideration of the set of complex points. However, it is impossible to confine
the complex domain to the proofs. Sooner or later, it shows up in the formu-
lations. Without a complex vision many phenomena in the real domain are
impossible to describe.

Topologically the set of complex points of a real curve is a surface, which
may have a finite number of (imaginary) singular points. By a perturbation
of the equation one can make the set of complex points topologically standard:
homeomorphic to a sphere with 1

2 (m°1)(m°2) handles punctured at m points.
Since a perturbation does not change the topology of the set of real points, we
assume that such a perturbation has been done.

As a result, the set of real points of a curve can lie in the set of its complex
points in two ways. It may happen that the former divides the latter into two
connected halves, which are interchanged by the complex conjugation involution
C2 ! C2 : (z, w) 7! (z̄, w̄). In this case the curve is said to be of type I, or
dividing. Otherwise, the complement of the set of real points of the curve in the
set of its complex points is connected. Then the curve is said to be of type II,
or nondividing.

An ellipse is of type I: its set of complex points is homeomorphic to S1 £R,
the real part lies in it as the fiber S1 £ 0, and the conjugation acts as the
symmetry (z, t) 7! (z,°t). A curve of degree 2 without real points is of type II:
the empty set cannot divide anything.

A curve of degree m with 1
2 (m ° 1)(m ° 2) + 1 ovals (recall that this is

the maximal number of ovals for degree m) is of type I, because that many
ovals necessarily divide a sphere with 1

2 (m ° 1)(m ° 2) handles. In fact a
similar argument proves the Harnack inequality: a sphere with 1

2 (m°1)(m°2)
handles cannot be divided into less than three connected pieces by a collection
of > 1

2 (m ° 1)(m ° 2) + 1 disjoint embedded circles. Furthermore, the number
of ovals of a dividing curve of degree m = 2k is congruent to k modulo 2. This

7

Figure 1.2: The Harnack, Gudkov and Hilbert sextics

quartic curve from a given maximal cubic curve). That is he constructed for each
degree d a non-singular real algebraic curve of degree d with g + 1 connected
components in its real part. The bound has been generalised to any dimension as
Smith-Thom inequality, stating that for X a non-singular real algebraic variety,
the sum of Betti numbers of the real part X(R) is bounded by the sum of Betti
numbers of the complex part X(C). However, the existence of a non-singular real
algebraic variety with a maximal prescribed Betti number is an open question in
most cases, see for instance [Bih99] in the case of degree 5 surfaces in P3, and
[Bih01], [Ren15] for the case of degree 6 surfaces in P3.

Inspired by Harnack-Klein inequality, Hilbert asked in his 16th problem
([Hil91], [Hil00]) for a classification of the possible isotopy types for the real
part of a degree 6 non-singular real algebraic curve in P2. In the same problem,
Hilbert asked for a classification of the possible isotopy types for the real part
of a degree 4 non-singular real algebraic surface in P3. A generalisation of
this question would be to classify the possible topological pairs (Pn(R), X(R)),
for X a non-singular real hypersurface of fixed degree d in PnR. In the case of
non-singular real algebraic curves, the real part is homeomorphic to a disjoint
union of circles S1 [BR91]. If, in addition, such a curve is of degree d in P2

R, the
real part consists only of ovals, which are connected components disconnecting
P2(R)), and a pseudo-line if d is odd, which is a connected component that does
not disconnect P2(R) [BCR13, Proposition 11.6.1].

The initial question for degree 6 curves was solved 70 years later by Gudkov
[Gud69], by constructing the last missing isotopy types (see Figure 1.2 for the
missing maximal isotopy type), and the analogue in degree 7 was completed by
Viro [Vir80] using patchworking. The idea of Viro’s patchworking in [Vir80] was
to construct a real algebraic curve by gluing several real algebraic curves with
some specified topological types and singularities, and classify the topological
types of the possible smoothings of the constructed curve.

Nowadays, we still do not know the complete classification of isotopy types
in degree 8, but a relaxation of this problem to pseudo-holomorphic maximal
curves instead of maximal algebraic curves has been solved by Orevkov [Ore02].
Similarly, the initial question for degree 4 surfaces was solved by Kharlamov
[Kha76]. As we saw, we do not have a complete classification of topological types
starting from degree 5 surfaces, hence we cannot have a complete classification

3



1. Introduction

of isotopy types in those cases.
In relation to the 16th Hilbert problem, one can study the semi-algebraic sets

defined by a unique polynomial. Indeed, if f is a homogeneous real polynomial
defining a non-singular hypersurface X ⊂ Rn, then the basic open semi-algebraic
set W (f) is the subset of Rn\X(R) where the polynomial f is positive. If f
is of even degree, we say that the homogenisation f̃ of f is positive at a point
p ∈ Pn(R) if p belongs to the projective compactification W (f̃) ⊂ Pn(R)\X̃(R)
of the semi-algebraic set W (f), for X̃ the projective compactification of X in PnR.
Then obtaining topological information on W (f̃) allows us to obtain topological
information on the pair (Pn(R), X̃(R)).

In the case of non-singular real algebraic curves of even degree in P2
R, the

question of characterising a semi-algebraic set of the form W (f̃) can be reformu-
lated into studying even and odd ovals. An oval is said to be even if it lies in
the interior of an even number of ovals, and is said to be odd otherwise. Let C
be a smooth real algebraic curve in P2 of degree 2k defined by a homogeneous
polynomial f̃ , such that f̃ is negative on the connected component of P2(R)\C(R)
outside every oval of C(R). Then the number p of even ovals of the real part C(R)
is the number of connected components of W (f̃), and the number n of odd ovals
of C(R) is one less than the number of connected component of P2(R)\W (f̃).

For C a non-singular real algebraic curve of degree 2k in P2
R, with p and n its

number of even and odd ovals, Ragsdale [Rag06] made the conjecture that

p ≤ 3k2 − 3k
2 + 1, n ≤ 3k2 − 3k

2 .

Independently, Petrowsky [Pet38] proved that

|p− n| ≤ 3k2 − 3k
2 + 1

and that there exists some curves reaching this bound for any degree 2k. He
then conjectured, in a similar fashion as Ragsdale, that

p ≤ 3k2 − 3k
2 + 1, n ≤ 3k2 − 3k

2 + 1.

Since we know the complete isotopy classifications up to degree 7, we can see that
both Ragsdale’s and Petrowsky’s conjectures are true in degree 2k for k ≤ 3. Viro
constructed (again by patchworking) some non-singular real algebraic curves of
degree 8 in P2 satisfying n = 3k2−3k

2 +1 [Vir80], therefore contradicting Ragsdale’s
conjecture but still satisfying Petrowsky’s conjecture. Using a combinatorial
version of Viro’s patchworking, which consists in constructing a piecewise-linear
set isotopic to the real part of a real algebraic curve, Itenberg [Ite93] found
examples of curves of degree 2k, k ≥ 5 satisfying

p = 3k2 − 3k
2 + 1 +

⌊
(k − 3)2 + 4

8

⌋
, or n = 3k2 − 3k

2 +
⌊

(k − 3)2 + 4
8

⌋
.

Note that Viro’s combinatorial patchworking is one of the first motivations for
the development of tropical geometry, as we will see later. On Figure 1.3, we

4



Topology of real algebraic varieties

Figure 1.3: Itenberg’s counter-example for even ovals in degree 10

see Itenberg’s counter-example of Ragsdale conjecture for even ovals in degree
10, constructed thanks to the Combinatorial Patchworking Tool of El-Hilany,
Rau and Renaudineau (this could also be constructed with the Sage package
Viro.sage from De Wolff, O’Neill and Owusu Kwaakwah). In particular, both
Ragsdale’s and Petrowsky’s conjectures are false. Haas and Itenberg gave other
counter-examples afterwards with more even and odd ovals in [Haa95], [Ite01].

However, several questions are still open around Ragsdale and Petrowsky
conjectures. For instance, given a non-singular real algebraic curve C of degree 2k
in P2, with p even ovals and n odd ovals, the combination of the Harnack-Klein
inequality with Petrowsky’s inequality gives the bounds

p ≤ 7k2 − 9k + 6
4 , n ≤ 7k2 − 9k + 4

4 .

One open question is to know whether the Harnack-Klein-Petrowsky bound is
sharp. The best result in this direction has been obtained by Brugallé [Bru+06],
who showed that the bound is asymptotically sharp.

We also do not know if there exists a maximal curve not satisfying Petrowsky’s
conjecture. Note that the examples of Viro [Vir80] were maximal curves, jus-
tifying why we consider only Petrowsky’s conjecture and not Ragsdale’s. This
second question motivated Haas in his thesis [Haa97] to study the properties
of combinatorial patchworking. As a concluding result, Haas proved that a
maximal curve C of degree 2k obtained via combinatorial patchworking satisfies

p ≤ R(k) + 1, and n ≤ R(k) + 4,

for p and n the number of even and odd ovals of C(R) and for R(k) = 3k2−3k
2

[Haa97, Theorem 12.4.0.12]. Moreover, there exists for each k ≥ 1 a maximal
curve of degree 2k obtained via combinatorial patchworking satisfying p =
R(k) + 1, and those curves have the isotopy type of the curves constructed
by Harnack [Har76] (see Figure 1.1 for the degree 2k = 4). However, to the
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Figure 1.4: Counter-example from 1.2.1 in degree 14

knowledge of the author, no example with n ≥ R(k) + 1 has been found via
combinatorial patchworking.

In Paper III, we construct new counter-examples to Ragsdale conjecture in a
similar fashion as Itenberg. Those counter-examples satisfy the following result.

Theorem 1.2.1 (Theorem III.1.7). There exist non-singular dividing (M −
2
⌊
k−3

2
⌋
) real algebraic curves of degree 2k in P2, with k ≥ 5, such that their real

parts have R(k) + 1 + k2−5k+s(k)
6 even ovals, with 0 ≤ s(k) ≤ 10 determined by

the value of k modulo 6. The number of even ovals depending on k modulo 6 are
listed in Table III.3.

For instance, Figure 1.4 represents the isotopy type of the counter-example
of Theorem 1.2.1 in degree 14, with R(7) + 5 = 68 even ovals, constructed again
via the Combinatorial Patchworking Tool.

1.3 Hyperbolic varieties

Among real algebraic varieties, a particularly interesting class is given by hy-
perbolic varieties. A real algebraic variety X ⊂ PnR is hyperbolic with respect
to a real linear subspace E ⊂ PnR of dimension n − dim(X) − 1 if X ∩ E = ∅
and for every real linear subspace H ⊂ PnR of dimension n− dim(X) containing
E, the intersection X(R) ∩ H(R) is contained in the set of real points X(R)
(extension of the definition from [SV18] to any real closed field). We say that
X ⊂ PnR is hyperbolic if there exists a real linear subspace E ⊂ PnR such that X
is hyperbolic with respect to E. The set

HX := {E ⊂ PnR | X is hyperbolic with respect to E}

is called the hyperbolicity locus of X. We say that a real algebraic hyper-
surface X ⊂ PnR is stable [GW96], or more generally a real algebraic variety

6
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X ⊂ PnR is positively hyperbolic [RVY21, Proposition 2.11], if the hyperbolicity
locus of X contains the whole set parametrised by the positive Grassmannian
G+(codim(Pn, X), n+1). Hyperbolic varieties are a higher dimensional analogue
of hyperbolic polynomials in R[x], which are real polynomials with set of roots
contained in R [Går51]. In particular, we can obtain a (homogenisation of a)
hyperbolic polynomial in R[x0, x1] from defining polynomials of a hyperbolic
complete intersection and defining polynomials of a real linear space intersecting
that complete intersection in only real points.

Hyperbolic varieties are interesting for many areas of mathematics and
interdisciplinary fields such as partial differential equations [Går51], topology
of real algebraic varieties [Rok78] and convex optimisation [Gül97], [Ren04].
Positively hyperbolic varieties have a strong connection with the theory of
matroids [Cho+04],[Brä07], valuated matroids [Brä10] and positroids [RVY21].
As we will see later, Speyer used the tropicalisation of stable curves in P2 in
order to solve Horn’s problem [Spe05]. Similarly, Brändén used tropicalisation
to show the link between stable hypersurfaces and valuated matroids [Brä10].
Finally, Rincón, Vinzant and Yu used again tropicalisation to relate positively
hyperbolic varieties and positroids [RVY21].

Recall that the real part of a non-singular algebraic curve in P2
R is a disjoint

union of ovals with possibly a pseudo-line. For X a non-singular hypersurface
in Pn+1

R , with n ≥ 2, we say that a connected component X0 of X(R) is an
ovaloid if X0 is homeomorphic to the n-sphere Sn (and so disconnects Pn(R)
since n ≥ 2), and we say that X0 is a pseudo-hyperplane if X0 is homeomorphic
to the topological real projective space RPn. We extend these definitions to
n = 1 by saying that an oval is an ovaloid and a pseudo-line is a pseudo-
hyperplane. Note that for n ≥ 2, ovaloids and pseudo-hyperplanes are not
the only possible homeomorphism types for a connected component X0 of
X(R). Helton and Vinnikov [HV07, Theorem 5.2] showed that a non-singular
hypersurface X ⊂ Pn+1

R of degree d is hyperbolic if and only if the set of real
points X(R) consists of

⌊
d
2
⌋
nested ovaloids, plus a pseudo-hyperplane if d is odd.

More precisely, we have a chain of inclusions of the (n+1)-dimensional open discs
bounded by each ovaloid of X(R). If d ≥ 2, the hyperbolicity locus of X is the
(n+ 1)-dimensional open disc bounded by an ovaloid of X(R) which is included
in all other discs bounded by ovaloids of X(R). Note that if d = 1 (and n > 0),
the hyperbolicity locus of X is the entire set Pn+1(R)\X(R). In particular,
the hyperbolicity locus of a non-singular hyperbolic hypersurface in Pn+1

R is
connected. Moreover, Helton and Vinnikov proved that in the hypersurface case,
the hyperbolicity locus is convex [HV07, Property 5.3(3)]. In higher codimension,
the hyperbolicity locus is not connected in general, see [KS20b, §5].

A determinantal representation of a homogeneous polynomial P ∈ R[x0, . . . xn]
of degree d is an expression

M := M(x) := M0x0 + . . .+Mnxn,

where theMi’s are (d×d)-matrices with coefficients in R, such that det(M) = cF

for some c ∈ R
×. The representation is Hermitian if the matrices Mi are

7
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Hermitian. If P has coefficients over a real closed field R, we say that the
representation M is definite if the matrix M(E) is positive definite for some
point E ∈ PnR. If a real algebraic hypersurface X ⊂ PnR admits a definite
Hermitian representation M , then X is hyperbolic with respect to every real
point E ⊂ PnR such that M(E) is positive definite. The Lax conjecture asks
conversely if every hyperbolic curve in P2

R admits a real symmetric definite
determinantal representation. The conjecture was proved by Lewis, Parrilo and
Ramana [LPR05]. However, the generalised Lax conjecture for any hyperbolic
hypersurface in PnR does not hold [Brä11].

In a more general setting, if a real algebraic variety X ⊂ PnR admits a definite
Hermitian representationM satisfying some additional conditions [SV18, Section
2], then X is hyperbolic with respect to every real linear space E ⊂ PnR such
that the M(E) is positive definite. The converse statement is true for hyperbolic
curves [SV18, Theorem 7.2]

An alternate way to define hyperbolic varieties is through real-fibered mor-
phisms. A morphism f : X → Y between two real algebraic varieties X and
Y is said to be real-fibered if f−1(Y (R)) = X(R) 6= ∅. Then a real algebraic
variety X ⊂ PNR of dimension n is hyperbolic with respect to a real linear space
E ⊂ PNR if and only if there exists a real-fibered morphism f : X → PnR given
as a composition πE ◦ i, with i an embedding of X in PNR for some N > n and
πE : PNR → PnR the projection with center E [KS20a]. In that case, we call
f = πE ◦ i a hyperbolic morphism. From results of Ahlfors [Ahl50, Theorem 10],
Gabard [Gab06, Theorem 7.1], Kummer and Shamovich [KS20a, Theorem 2.8],
we obtain that a non-singular real algebraic curve C admits a hyperbolic mor-
phism f : C → P1

R if and only if C is dividing, meaning that the set C(C)\C(R)
is disconnected. Using this, Kummer and Shaw [KS20b, Examples 5.1 and 5.2]
found examples of hyperbolic curves with disconnected hyperbolicity locus.

For X a non-singular real algebraic variety of dimension n ≥ 2, the existence
of a real-fibered morphism f : X → PnR constrains the topology of the real part
X(R), as f must restrict to a covering map f̃ : X(R)→ Pn(R) [KS20a, Theorem
2.19]. In particular, Kummer and Shamovich [KS20a, Corollary 2.20] proved
that the real part X(R) consists of s ovaloids and r pseudo-hyperplanes, for
r + 2s = deg(f).

In Paper I, we characterise the real-fibered and hyperbolic morphisms to P2
R

of real del Pezzo surfaces, which are real surfaces with ample anti-canonical class,
and minimal conic bundles over P1

R, which are surfaces given as union of plane
conic fibres coming from P1

R and with Picard rank 2. This work is motivated by the
fact that the real Picard group of those surfaces are completely classified [Com14],
[Rus02], hence we can do a systematic study of real-fibredness and hyperbolicity
of the morphisms. The classification of divisors on del Pezzo surfaces inducing a
real-fibered morphism, possibly hyperbolic, is given in Table I.1. We obtain this
classification thanks to one of the main results of Paper I, allowing to check the
hyperbolicity of a real algebraic variety of dimension greater than or equal to 2
in terms of the hyperbolicity of a hyperplane section.

Theorem 1.3.1 (Theorem I.1.5). Let X ⊂ PnR be a smooth variety of dimension
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k ≥ 2. Let H ⊂ PnR be a hyperplane such that C = X ∩ H is a smooth
(k− 1)-variety. Assume that each connected component of X(R) contains exactly
one connected component of C(R). Moreover, let E ⊂ H be a linear space of
dimension n− k − 1 with X ∩ E = ∅. Then the following are equivalent:

1. X is hyperbolic with respect to E.

2. X satisfies X(R) ' sSk t rRPk such that deg(X) = 2s + r. The class
of each connected component that is homeomorphic to a real projective
space is non-trivial in Hk(Pn(R);Z2) and C ⊂ H = Pn−1

R is hyperbolic
with respect to E.

We extract from Table I.1 the following other main results of Paper I, first
concerning the finite real-fibered morphisms.

Theorem 1.3.2 (Theorem I.1.2). Let X be a del Pezzo surface such that each
connected component of X(R) is homeomorphic to either the sphere or the real
projective plane. There is a finite real-fibered morphism X → P2 if and only if
we have one of the following:

1. X has real Picard rank 1;

2. X is a conic bundle of real Picard rank 2;

3. X is the blow-up of one of the above surfaces at one or two real points.

Only one of the del Pezzo surfaces in Table I.1 admits a real-fibered morphism
which is not hyperbolic. We obtain in this way an analogue of Theorem 1.3.2 for
hyperbolic morphisms.

Theorem 1.3.3 (Theorem I.1.6). Let X be a del Pezzo surface such that each
connected component of X(R) is homeomorphic to either the sphere or the real
projective plane. There is an embedding X ↪→ Pn such that the image is a
hyperbolic variety if and only if we have one of the following:

1. X has real Picard rank 1;

2. X is a conic bundle of real Picard rank 2;

3. X is the blow-up of one of the above surfaces at one real point.

Motivated by the conic bundle case of 1.3.3, we go further by studying
hyperbolic minimal conic bundles, and obtain a construction of many possible
topological types for hyperbolic surfaces.

Proposition 1.3.4 (Proposition I.7.12). Let s ≥ 3 and r ≥ 0. There exists a
smooth irreducible hyperbolic surface X ⊂ PnR such that X(R) is homeomorphic
to the disjoint union of s spheres and r real projective planes.

9
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1.4 Tropical geometry

Tropical geometry is a way to study algebraic varieties over a field equipped with
a non-archimedean valuation, such as the field of locally convergent generalised
Puiseux series K, by looking at properties of the polyhedral complexes obtained as
image via the valuation (or tropicalisation) of those algebraic varieties. Tropical
geometry has applications in many areas such as topology of real algebraic
varieties [Vir01], matroid theory [Stu02], convex optimisation [DS03], enumerative
geometry [Mik05] and Hodge theory [Ite+19].

We call tropical numbers the semi-field with ground set T := R ∪ {−∞},
tropical addition ⊕ := max and tropical multiplication ⊗ := +. From now on,
we will drop the ⊗ notation whenever the context is clear. A tropical polynomial
P ∈ T[x1, . . . , xn] of the form

P (x1, . . . , xn) =
⊕
a∈A

cax
a1
1 . . . xan

n .

for A a finite subset of (Z≥0)n and all coefficients ca ∈ T.
From the notions of tropical polynomials, we obtain an analogue of algebraic

varieties, defined over the semi-field T instead of a field k. For P ∈ T[x1, . . . xn]
a tropical polynomial, the polyhedral complex VP is defined as

VP := {x ∈ (T×)n : ∃a 6= b ∈ A,P (x) = cax
a = cbx

b}.

A tropical hypersurface X in (T×)n ' Rn is a polyhedral complex of the form
VP , equipped with the weight function on facets

w : Facets(VP )→ N>0

σ 7→ max
i∈{1,...,n}

(gcd(|ai − bi|)),

for a 6= b ∈ A so that P (x) = cax
a = cbx

b for all points x in the face σ. We can
extend the definition of tropical hypersurface in other ambient spaces, such as
the affine tropical space Tn or a projective tropical toric variety TPΣ [Pay09],
[MR09, §3.2] of dimension n, by taking the closure of VP inside those spaces.
More generally, a tropical variety in Tn is a rational weighted polyhedral complex
in Tn satisfying a balancing condition around all codimension 1 faces.

From an algebraic variety X in Kn, we can associate a tropical variety X via
tropicalisation. Let val be a non-archimedean valuation on K defined as

val : K× → R

α =
∑
r∈R

αrt
r 7→ min

R
{r : αr 6= 0}

for R ⊂ R a well-ordered set and val(0) = +∞. Then the tropicalisation Trop(V )
of a subset V ⊂ Kn is the image of V via the map

Trop0 : Kn → Tn

β 7→ (− val(β1), . . . ,− val(βn)),
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equipped with the weight function w on facets if the image is a tropical variety.
The following theorem from Kapranov is sometimes considered as the funda-

mental theorem of tropical geometry.

Theorem 1.4.1 ([Kap00]). Let X be an algebraic hypersurface with defining
polynomial P =

∑
αax

a ∈ K[x1, . . . , xn]. Let X be the tropical hypersurface
defined by the tropical polynomial P =

⊕
(− val(αa))xa ∈ T[x1, . . . , xn]. Then

Trop(X ) = X.

Theorem 1.4.1 can be extended to complete intersections X1 ∩ . . . ∩Xn, with
each Xi an algebraic hypersurface, if and only if the intersection X1 ∩ . . . ∩Xn

of the tropicalisations Xi := Trop(Xi) is transverse. In the non-transverse case,
we obtain

Trop(X1 ∩ . . . ∩ Xn) ( X1 ∩ . . . ∩Xn.

This fact justifies the development of stable intersection, or tropical intersection,
of tropical varieties, see for instance [RST05],[BD12]. In Paper II, we study
the intersections of the form Trop(X1 ∩ X2), for X1 and X2 non-singular real
algebraic curves in (K×R )2, in terms of the tropicalisations Xi and some real
structure on Xi induced by Xi.

1.5 Real tropical geometry

In order to obtain information about the real part of real algebraic varieties
over KR from their tropicalisations, we need to add some additional structure
either on the tropical semi-field or directly on the tropical varieties. Several
strategies are used in the literature. For instance, Viro introduced the tropical
real hyperfield T R [Vir10], where the ground set is R, the multiplication is the
usual multiplication over R and the addition is a multi-valued operation, equal
to the maximum of the summands if their absolute value are distinct. This
hyperfield has been used in particular in [JSY18] to define the real tropicalisation
of semi-algebraic sets. A similar strategy consists in looking at the signed tropical
numbers T±, see for instance [AGS20], given by taking two symmetric copies of
T glued along their copy of the element −∞. The addition and multiplication on
T± are defined only on elements of the same copy. In order to obtain operations
defined on the whole set, either we can extend T± to the symmetrised semi-ring
introduced in [Aki+90] and used in [LV19] to define signed tropical convexity, or
we can extend T± to a hyperfield, that we can obtain from T R via a logarithmic
map, see [Vir10] for this strategy in the complex case.

In this thesis, we will work directly with tropical varieties and recover their
realisations, that is the real algebraic varieties over KR that tropicalise to the
considered tropical varieties, hence we will choose to add a real structure directly
on the tropical varieties instead of using a real analogue of the tropical numbers.

11
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1.5.1 Real phase structure on a non-singular tropical variety

We restrict to the case of a non-singular tropical hypersurface X, meaning that
X is locally around each vertex the image by a translation and a map in GL(n,Z)
of a tropical hyperplane. The following is defined in [Ren17], [RS21].

For Affn(Zn+1
2 ) the set of n-dimensional Z2-affine subspaces of Zn+1

2 , a real
phase structure E on a non-singular tropical hypersurface X ⊂ Rn+1 is a map

E : Facets(X)→ Affn(Zn+1
2 )

such that E satisfies the following properties. For each facet σ of X, the Z2-affine
space E(σ) is parallel to the Z2-vector space generated by the primitive integer
directions modulo 2 in σ. Moreover, for each codimension 1 face τ of X, with
adjacent facets σ1, . . . , σk, an element ε ∈ Zn+1

2 appearing in a set E(σi) must
appear in a single distinct set E(σj).

The real part RXE of a non-singular tropical hypersurfaceX ⊂ Rn+1 equipped
with the real phase structure E is given as

RXE :=
⋃

σ∈Facets(X)

 ⋃
ε∈E(σ)

σε

 ⊂ ⋃
ε∈Zn+1

2

Rn+1
ε ,

for ε = (ε1, . . . , εn+1) ∈ Zn+1
2 and σε the symmetric copy of σ lying in the

symmetric copy Rn+1
ε of Rn+1.

If X is a non-singular tropical hypersurface in a non-singular projective
tropical toric variety TPΣ, where the fan Σ is dual to the Newton polygon ∆
of X, the definition of real phase structure E on X extends naturally, and the
real part RXE lies in a topological space homeomorphic to RPΣ, for RPΣ the
real part of the toric variety PΣ constructed in [GKZ14, Theorem 11.5.4]. The
couple (X, E) will be called a non-singular real tropical hypersurface. We obtain
the following reformulation of Viro’s combinatorial patchworking theorem.

Theorem 1.5.1 ([Vir01]). Let (X, E) be a non-singular real tropical hypersurface
in TPΣ. There exists a non-singular real algebraic hypersurface X := (Xt)t ⊂ PKR

Σ
with Trop(X ) = X such that we have a homeomorphism of pairs

(PΣ(R),Xt(R)) ' (RPΣ,RXE)

for t > 0 small enough.

Moreover, the real phase structure E determines the distribution of signs
of the defining polynomial P of X , up to multiplying P by −1, see [RS21,
Remark 3.8]. In particular, we can easily construct an example of non-singular
real algebraic hypersurface X satisfying Theorem 1.5.1 for a non-singular real
tropical hypersurface (X, E), by letting X be defined by a Viro polynomial [Vir01,
§4.1], that is a polynomial in KR[x1, . . . , xn] with coefficients of the form ±t−r.
Sturmfels [Stu94] generalised Theorem 1.5.1 to the case when (X, E) is a non-
singular real tropical transverse complete intersection, and we can determine in
the same manner as above the distributions of signs of the defining polynomials
of the hypersurfaces involved in the intersection.
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(a) Amoeba around a non-twisted edge.

η
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η

(b) Amoeba around a twisted edge.

Figure 1.5: Local views of real amoeba near a bounded edge.

1.5.2 Topology of the real part of a tropical curve

In Paper II and Paper III, we investigate the case of non-singular real tropical
curves (C, E) inside a non-singular projective tropical toric surface TPΣ. In
this case, by Theorem 1.5.1, the real part RCE must be homeomorphic to a
non-empty disjoint union of circles S1. By [RS21, Theorem 7.2], the real phase
structure E on C contains all the information necessary to compute the number
of connected components of RCE . More precisely, the real phase structure E
determines a set of twisted edges on the tropical curve C, which we will use
to give criterions to obtain a prescribed number of connected components, as
follows. Let e be a bounded edge of C with vertices v1 and v2, let ei be the edge
adjacent to vi on one side of the affine line containing e, and let e′i be the edge
adjacent to vi on the other side of the affine line containing e, so that e1 and
e2 are on the same side (and similarly for e′1 and e′2). A bounded edge e of C
is said to be twisted if the intersections E(e) ∩ E(ei) ∩ E(e′j) are non-empty, for
i 6= j ∈ {1, 2}.

The notion of twisted edges relates real phase structures with real amoebas
[Bru+15, Section 3.2], which are the sets At := Logt(Ct(R)) for t ∈ R > 0 small
enough when the family of non-singular real algebraic curves C := (Ct)t satisfies
Theorem 1.5.1 for the non-singular real tropical curve (C, E). Indeed, locally
around each twisted edge e of C, the sets At (for t > 0 small enough) consist
of two branches intersecting in one point (Figure 1.5b). In particular, the set
of twisted edges T on C determines the real part RCE up to symmetry with
respect to a 1-dimensional stratum of the real part RPΣ of TPΣ [Bru+15, §3.2].

In his thesis, Haas gave a necessary and sufficient condition for non-singular
real algebraic curves obtained via Viro’s combinatorial patchworking to be
maximal [Haa97, Theorem 7.3.0.10]. In the following theorems, a primitive
cycle of C is a cycle of C (seen as a graph) bounding a connected component
of the complement TPΣ\C, and an exposed edge of C is an edge belonging to

13
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the boundary of a connected component D of TPΣ\C meeting a 1-dimensional
stratum of TPΣ. Haas’ result can be reformulated in terms of twisted edges on a
non-singular real tropical curve as follows.

Theorem 1.5.2 ([Haa97]). Let (C, E) be a non-singular real tropical curve in a
non-singular projective tropical toric surface TPΣ, and let T be the set of twisted
edges on C. Let g be the number of primitive cycles on C. The real part RCE
has exactly g + 1 connected components if and only if

• every cycle in C has an even number of edges belonging to T ;

• every edge of T is exposed.

In Paper III, we obtain two new criteria for constructing a real part RCE
with prescribed number of connected components, in terms of twisted edges on
the non-singular tropical curve C.

Theorem 1.5.3 (Theorem III.4.16). Let (C, E) be a non-singular real tropical
curve in a non-singular projective tropical toric surface TPΣ, and let T be the
set of twisted edges on C induced by E. Let g be the number of primitive cycles
on C. The real part RCE has exactly g connected components if and only if the
graph dual to T contains a complete subgraph Kn on 1 ≤ n ≤ 4 vertices such
that:

1. the non-exposed edges in T are those dual to the edges of Kn;

2. every primitive cycle γ in C dual to a vertex of Kn has an odd number of
edges in T ;

3. every primitive cycle γ in C not dual to a vertex of Kn has an even number
of edges in T .

In Corollary III.4.21, we use Theorem 1.5.3 in order to give a sufficient
condition to construct a real part RCE with g− r connected components, for any
r ≤ g. Moreover, the curves Ct are non-dividing for all t ∈ R>0 small enough,
with C := (Ct)t a non-singular algebraic curve over KR satisfying Theorem 1.5.1
for the non-singular real tropical curve (C, E). Indeed, Haas showed (in terms
of combinatorial patchworking) that a non-singular real tropical curve (C, E) is
dividing, that is the curves Ct from Theorem 1.5.1 are dividing for all t ∈ R>0
small enough, if and only if each cycle on C (seen as a graph) has an even
number of twisted edges [Haa97, Section 5.4]. This motivates the following new
criterion for dividing (M − 2)-curves.

Theorem 1.5.4 (Theorem III.4.22). Let (C, E) be a non-singular dividing real
tropical curve in a non-singular projective tropical toric surface TPΣ, and let
T be the set of twisted edges on C. Let g be the number of primitive cycles on
C. The real part RCE has exactly g − 1 connected components if and only if for
T ′ ⊂ T the subset of non-exposed twisted edges, the graph dual to T ′ is either a
complete bipartite planar graph or a complete tripartite planar graph.
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In Corollary III.4.25, we use Theorem 1.5.4 in order to give a sufficient
condition to construct a real part RCE with g − 2s connected components such
that (C, E) is dividing, for any s ≤

⌊
g
2
⌋
.

1.5.3 Relative topology of the real part of a tropical curve

In Section 1.5.2, we provided information on the intrinsic topology of the real
part of a non-singular real tropical curve in terms of twisted edges. The next
natural problem is to determine how the data of twisted edges gives information
on the relative topology of the real part of a non-singular real tropical curve.

Let (C, E) be a non-singular real tropical curve in a non-singular projective
tropical toric surface TPΣ, with set of twisted edges T . We extend naturally the
definitions of ovals, even ovals and odd ovals of a non-singular real algebraic
curve C in a non-singular projective toric surface PΣ to the real part RCE ⊂ RPΣ
of the non-singular real tropical curve (C, E), see Definition III.1.5, Section III.5.2
and Section III.6. In Proposition III.5.10, we show that if the Newton polygon of
C has all edges of even lattice length and if all the edges in T are non-exposed,
then the real part RCE consists only of ovals, no matter which non-singular
projective tropical toric surface TPΣ we started with.

In the case of a non-singular real tropical curve (C, E) of even degree in
TP2, with set of twisted edges T satisfying Theorem 1.5.2, Haas gave a count
of the number of even and odd ovals of RCE in terms of T and the parity of
the integer points inside the Newton polygon of C [Haa97, Corollary 11.4.2.2].
We show in Theorem III.1.6 a similar result for (C, E) a non-singular dividing
real tropical curve in a non-singular projective tropical toric surface TPΣ, so
that the associated set of twisted edges T is dual to a disjoint union of complete
bipartite graphs of the form K2,2l. In particular, we can count the number of
even and odd ovals of the counter-examples to Ragsdale’s conjecture constructed
by Itenberg [Ite93] and the new counter-examples we construct in Theorem 1.2.1
using Theorem III.1.6. Moreover, Theorem III.1.6 provides a similar framework
as Haas used to prove his upper bound on the number of even and odd ovals of a
maximal tropical curve in TP2 [Haa97, Theorem 12.4.0.12]. As a future direction
of research, it would then be interesting to prove upper bounds on the number
of even and odd ovals of a dividing tropical curve satisfying the assumptions
of Theorem III.1.6, or more generally the assumptions of Proposition III.6.11,
depending on the ambient non-singular projective tropical toric surface TPΣ.

1.5.4 Intersection of real tropical curves

In Paper II, we study non-singular hyperbolic curves in P2
KR

in terms of their
tropicalisations and their associated real phase structures. We can use the
criteria from Section 1.5.2 and Section 1.5.3 in order to obtain a characterisation
of the real phase structure induced by a non-singular hyperbolic curve in P2

R,
based on Orevkov’s characterisation [Ore02, Proposition 1.1], as we prove in
Proposition II.1.2. However, we do not obtain any information on the hyper-
bolicity locus this way. Since hyperbolic curves are defined in terms of their

15



1. Introduction

Figure 1.6: Non-transverse intersection in an edge.

intersection with members of a pencil of real lines, we then want to study the
intersections of non-singular real tropical curves, and what are the possible
realisations in (K×)2 of those real tropical intersections. A realisation of a
non-singular real tropical curve (C, E) in R2 is a non-singular real algebraic
curve in (K×R )2 satisfying Theorem 1.5.1 for (C, E). Then a realisation of an
intersection component E of two non-singular real tropical curves (C, E) and
(C ′, E ′) is a set {p1, . . . , pm} ⊂ (K×)2 of intersection points of realisations C, C′
of (C, E) and (C ′, E ′) that tropicalise in E. For our purpose, we only need to
consider the intersections types arising when intersecting a non-singular real
tropical curve with a pencil of real tropical lines. If we choose generically the
base point of the pencil, this reduces to three possible intersection types.

Let (C, E) and (C ′, E ′) be two non-singular real tropical curves in R2. The
first intersection type we consider is the case of transverse intersection points,
which are isolated intersection points of C and C ′ in the interior of both an edge
of C and an edge of C ′ (considering the edges as closed in Euclidean topology).
Depending on the direction modulo 2 of those edges and the real phase structures
E and E ′, we can say that (C, E) and (C, E ′) intersect in either 0, 1 or 2 real
tropical points of the form (p, ε), for ε ∈ Z2

2. We show in Proposition II.4.6 that
for any realisation of (C, E) and (C ′, E ′), each of these real tropical intersection
points is realised by a single real intersection point in C ∩ C′ of intersection
multiplicity 1, and the number of pairs of complex conjugated points in C ∩ C′
with tropicalisation p is determined by the direction of the edges.

The second intersection type correspond to the case when an edge of C ′
contains a bounded edge of C in its interior, see Figure 1.6. In that case, we
obtain the following result.

Theorem 1.5.5 (Theorem II.1.3). Let (C, E) and (C ′, E ′) be two non-singular
real tropical curves in R2 such that there exists a closed bounded edge e of C
contained in the interior of a closed edge e′ of C ′ (see Figure 1.6).

1. If E(e) 6= E ′(e′), or is E(e) = E ′(e′) and e is twisted, then all realisations
of (C, E) and (C ′, E ′) intersect in two distinct real intersection points of
multiplicity 1 with tropicalisation in e.

2. If E(e) = E ′(e′) and e is non-twisted, then a realisation of (C, E) can
intersect a realisation of (C ′, E ′) in either two distinct real points of multi-
plicity 1 with tropicalisation in e, two distinct complex conjugated points
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Figure 1.7: Relatively non-twisted non-transverse intersection component.

of multiplicity 1 with tropicalisation in e, or a multiplicity 2 real point
with tropicalisation in e. Moreover, there exist infinitely many realisations
satisfying the first two cases, and there exist exactly two pairs of realisations
satisfying the third case.

The last type of intersection considered corresponds to the case when an
edge e of C and an edge e′ of C ′ intersect in a segment E strictly contained in
both edges, see Figure 1.7. In order to treat this case, we introduce relatively
twisted intersection components. Let E be a segment as above, with vertices
v1 and v2. Let ei be the edge of C ∪ C ′ adjacent to vi on one side of the affine
line containing E, and let e′i be the edge of C ∪ C ′ adjacent to vi on the other
side of the affine line containing E, so that e1 and e2 are on the same side
(and similarly for e′1 and e′2). Up to renumbering the vertices, the edges e1 and
e′1 belong to C, and the edges e2 and e′2 belong to C ′. Let E and E ′ be real
phase structures on C and C ′ so that E(e) = E ′(e′). The segment E is said
to be relatively twisted with respect to (C, E) and (C ′, E ′) if the intersections
E(e) ∩ E(e1) ∩ E ′(e′2) and E(e) ∩ E(e′1) ∩ E ′(e2) are non-empty. Otherwise, the
segment E is said to be relatively non-twisted, and the real phase structures
satisfy the condition pictured in Figure 1.7. We obtain the following result,
where the roles of relatively twisted and non-twisted are switched compared to
Theorem 1.5.5.

Theorem 1.5.6 (Theorem II.1.4). Let (C, E) and (C ′, E ′) be two non-singular real
tropical curves in R2 such that there exists a non-transverse connected component
E ⊂ C ∩ C ′ which is a segment, non-reduced to a point, strictly contained in
both a closed edge e of C and a closed edge e′ of C ′ (see Figure 1.7).

1. If E(e) 6= E ′(e′), or if E(e) = E ′(e′) and E is relatively non-twisted, then
all realisations of (C, E) and (C ′, E ′) intersect in two distinct real points of
multiplicity 1 with tropicalisation in E.

2. If E(e) = E ′(e′) and E is relatively twisted, then a realisation (C, E)
can intersect a realisation of (C ′, E ′) in either two distinct real points
of multiplicity 1 with tropicalisation in E, two distinct complex conjugated
points of multiplicity 1 with tropicalisation in E, or a multiplicity 2 real
point with tropicalisation in E. Moreover, there exist infinitely many
realisations satisfying the first two cases, and there exist exactly two pairs
of realisations satisfying the third case.
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1.5.5 Hyperbolic tropical curves

Speyer characterised the tropicalisation of stable curves in P2
K in order to solve

Horn’s problem [Spe05]. His result can be reformulated as follows. A non-
singular real algebraic curve C ⊂ P2

K is stable if and only if the tropicalisation
C := Trop(C) is a honeycomb, that is every edge of C has direction (1, 0), (0, 1)
or (1, 1), and the vector (0, 0) ∈ Z2

2 does not appear in the real phase structure
E on C such that C is a realisation of (C, E).

In Paper II, we generalise Speyer’s result to the case of non-singular hyperbolic
curves in P2

K, first using a topological criterion and then an intersection-theoretic
criterion. We say that a non-singular real tropical curve (C, E) of degree d in
TP2 is hyperbolic if the pair (RP2,RCE) is homeomorphic (via Theorem 1.5.1) to
a pair (P2(R), Ct(R)), for C := (Ct)t ⊂ P2

KR
a non-singular curve of degree d such

that Ct is hyperbolic for t > 0 small enough. Thanks to a result from Orevkov
[Ore07, Proposition 1.1] and Haas criterion for dividing real tropical curves, we
obtain the following proposition.

Proposition 1.5.7 (Proposition II.1.2). Let (C, E) be a non-singular real tropical
curve of degree d in TP2, with set of twisted edges T . Then (C, E) is hyperbolic
if and only if every (graph-theoretic) cycle on C has an even number of edges in
T and the real part RCE has

⌈
d
2
⌉
connected components.

In particular, we can use Theorem 1.5.4 and Corollary III.4.25 to construct
many examples of non-singular hyperbolic tropical curves. However, we do not
recover information on the hyperbolicity locus via these results.

Thanks to the results of Section 1.5.4, we can characterise intersection-
theoretically the hyperbolicity of non-singular real tropical curves in TP2. We
say that a non-singular real tropical curve (C, E) of degree d in TP2 is hyperbolic
with respect to a real tropical point (p, ε) if p /∈ C and for every realisation C
of (C, E) in P2

KR
, every real line L ⊂ P2

KR
going through a realisation of (p, ε)

intersect C in d distinct points in P2(KR).
We can parametrise a pencil of tropical lines through a point v ∈ TP2 via

Figure 1.8a, so that each point lying on a 1-dimensional face τη is the vertex of
a tropical line through v. Then the hyperbolicity of a non-singular real tropical
curve with respect to a real tropical point (v, ε) is expressed in terms of this
parametrisation as follows.

Theorem 1.5.8 (Theorem II.1.5). Let (C, E) be a non-singular real tropical curve
of degree d in TP2, let v′ be a point of TP2\C and let ε ∈ R2. Then (C, E) is
hyperbolic with respect to the real tropical point (v′, ε) if and only if for Σv the
subdivision of TP2 with respect to a point v generic with respect to C in the same
connected component of TP2\C as v′, we have:

1. Every vertex of C lying in the interior of a face ση of Σv is incident to an
edge of primitive integer direction η.

2. Every edge e of C intersecting a face τζ of Σv and such that |det(−→e |ζ)| = 2,
for −→e the primitive integer direction of e, satisfies ε ∈ Ee.
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Figure 1.8

3. For every bounded edge e of C of primitive integer direction η intersecting
the face ση of Σv, the edge e is twisted if e ⊂ ση, and otherwise the segment
e ∩ ση is relatively non-twisted with respect to the unique real tropical line
(L, E ′) through (v, ε) with (e ∩ ση) ⊂ e′ ⊂ L and Ee = E ′e′ .

If C is a honeycomb in TP2, then Item 1 and Item 2 of Theorem 1.5.8 are
automatically satisfied. Thus, we can go further in the honeycomb case, see
Corollary II.1.6 and Figure 1.9. The idea is that given an integer point p (such
as the purple point in Figure 1.9) in the Newton polygon of a non-singular real
honeycomb (C, E), the dual connected component p∨ ⊂ TP2\C has a symmetric
copy contained in the hyperbolicity locus of RCE if and only if the edges on the
left, below and diagonally above p are dual to twisted edges of C (see the blue
edges in Figure 1.9).

1.6 Summary of Papers

Paper I gives a classification of real-fibered and hyperbolic morphisms from
smooth real del Pezzo surfaces to the projective plane P2

R, using the
hyperplane section criterion for hyperbolicity given in Theorem 1.3.1. Some
common properties of the del Pezzo surfaces admitting such a real-fibered
morphism are listed in Theorem 1.3.2. Similarly, some common properties
of the del Pezzo surfaces admitting a hyperbolic morphism are listed in
Theorem 1.3.3. For instance, the real del Pezzo surfaces that can be defined
as minimal conic bundles admit a hyperbolic morphism. This motivates
the last section, which begins to characterise hyperbolic morphisms of
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Figure 1.9: Dual Subdivision of a hyperbolic honeycomb.

minimal conic bundles (Corollary I.7.3, Proposition I.7.6). Using those
minimal conic bundles, we construct almost all possible homeomorphism
types of smooth hyperbolic surfaces (Proposition 1.3.4).

Paper II is a study of hyperbolic curves near the non-singular tropical limit.
Non-singular hyperbolic real tropical curves in TP2 are characterised via
a combinatorial analogue of a topological criterion for non-singular hy-
perbolic curves in P2 (Proposition II.1.2). The tropical and real tropical
analogues of the hyperbolicity locus of a non-singular hyperbolic curve in
P2 are introduced, given as subsets of TP2 and RP2 respectively (Defini-
tion II.5.10), and we relate these to the notions of signed tropical convexity
(Remark II.5.13) and tropical spectrahedra (Remark II.5.17). Using those
analogues to make the correspondence between the topological and the
intersection-theoretic characterisation of hyperbolicity in the tropical set-
ting, we show the necessary and sufficient conditions for a non-singular
real tropical curve of degree d in TP2 to be hyperbolic with respect to a
fixed real tropical point (Theorem II.1.5). We go further in the case of
honeycombs, using Z2-vector spaces and Z2-affine spaces structures on
subsets of configurations of twists (Theorem II.5.29).

Paper III is a continuation of Itenberg’s work [Ite95] and Haas’ thesis [Haa97] on
the understanding of combinatorial patchworking of real algebraic curves,
using the recent developments from [RS21] on the topology of non-singular
real tropical hypersurfaces. We introduce the notion of twisted cycle, which
allows to describe the connected components of the real part of a non-
singular tropical curve directly from the real phase structure. We give a
characterisation of the set of twisted edges on a non-singular (M − 1) real
tropical curve (Theorem 1.5.3) and on a non-singular dividing (M − 2) real
tropical curve (Theorem 1.5.4), extending Haas’ result [Haa97, Theorem
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7.3.0.10] for maximal curves. We then obtain a sufficient condition on a non-
singular real tropical curve in an arbitrary non-singular projective tropical
toric surface so that its real part consists only of ovals (Proposition III.5.10).
From the real tropical curves satisfying the latter condition, we count
the number of even and odd ovals in their real part in terms of the
dual subdivision (Theorem III.1.6), in a similar manner as the count for
maximal tropical curves in TP2 given by Itenberg [Ite95] and Haas [Haa97].
Using Theorem III.1.6, we give a construction of new counter-examples to
Ragsdale’s conjecture (Theorem 1.2.1) in a similar fashion as Itenberg’s
construction [Ite01].
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Appendix A

Real structure above trivalent
graphs

A.1 Definitions

Definition A.1.1. A planar graph C is said to be trivalent if every vertex v of
C is either 3-valent or 1-valent. An edge e of C is said to be bounded if its two
incident vertices v, v′ are 3-valent. The subset of bounded edges of C is denoted
Edge0(C).

Remark A.1.2. We can put a Z2-vector space structure on Edge0(C) by identi-
fying it with Z|Edge0(C)|

2 .
Remark A.1.3. A non-singular tropical curve C in a non-singular projective
tropical toric surface TPΣ is a trivalent graph.

Given a trivalent graph C, we construct a topological surface S as follows:

1. To each vertex v ∈ Vertex(C), we associate a topological surface Sv, which
is an oriented pair of pants if v is 3-valent and an oriented closed disk if v
is 1-valent. We choose a one-to-one correspondence between the boundary
components of Sv and edges e of C such that v is incident to e.

2. To each edge e ∈ Edge(C), we associate an oriented cylinder Se. We choose
a one-to-one correspondence between the boundary components of Se and
the vertices v of C incident to e.

3. To each pair (v, e) ∈ Vertex(C)× Edge(C) such that v is incident to e, we
associate an orientation reversing homeomorphism between the boundary
component of Sv associated to e and the boundary component of Se
associated to v.

The surface S is then obtained by gluing all the surfaces Se and Sv according to
the homeomorphisms associated to the pairs (v, e).

For C a trivalent graph and S a surface constructed from C, we get that if
dimH1(C;Z2) = g, then dimH1(S;Z2) = 2g. Moreover, the homology group
H1(S;Z2) is given as the direct sum

H1(S;Z2) = H1,0(S;Z2)⊕H0,1(S;Z2)

withH1,0(S;Z2) generated by the non-contractible loops γe ⊂ Se, andH0,1(S;Z2)
is generated by the loops γα lifted from the cycles α on C. Both the groups
H1,0(S;Z2) and H0,1(S;Z2) have then dimension g. Furthermore, by [RBB17,
Lemma 2.3], the intersection form on H1(S;Z2) vanishes on H1,0(S;Z2).
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A. Real structure above trivalent graphs

Definition A.1.4 ([RBB17]). A real trivalent graph is a pair (C, τ) where C is a
trivalent graph and τ is a continuous involution (called real structure), such that
the restriction of τ on any (open) edge of C is either the identity or has no fixed
points.

Remark A.1.5. Any trivalent graph C has a canonical real structure given by
τ = id. In the following, whenever we do not precise which real structure we put
on a trivalent graph C, we will mean the identity real structure.

Definition A.1.6. Let S be a surface constructed from a real trivalent graph
C. A real structure above C is a continuous orientation-reversing involution
τC : S → S such that for each edge e of C, the restriction (τC)|Se

is (up to
isotopy and composition with a power of the Dehn twist DT) either the complex
conjugation conj or the "half" Dehn twist DT ◦ conj.

Definition A.1.7. Let C be a real trivalent graph, and let T ⊂ Edge0(C) be a
subset of bounded edges of C. The real structure τC above C induces T if, for
any bounded edge e ∈ Edge0(C), the restriction of τC to Se satisfies:

(τC)|Se
' DT ◦ conj⇔ e ∈ T.

The subset T will then be called a set of twisted edges on C.

Remark A.1.8. With the definition above, a set of twisted edges T ∈ Edge0(C)
does not need to satisfy some admissibility condition. If we assume that C is
piecewise-linear and T ∈ Adm(C) is twist-admissible, then we recover the notion
of set of twisted edges induced from a real phase structure on a tropical curve.

A.2 Computation of number of connected components

We want to generalise the computation of number of real components to real
structures above trivalent graphs.

Theorem A.2.1. Let C be a real trivalent graph, let S be a surface constructed
from C and let τC : S → S be a real structure above C. Let T ∈ Edge0(C) be
the set of twisted edges induced by τC . We have a homomorphism

∂T : H0,1(S;Z2)→ H1,0(S,Z2)

sending each cycle γα ∈ H0,1(SC ;Z2) (lifted from the cycle α ∈ H1(C;Z2)) to
the cycle ∑

e∈α∩T
γe.

In particular, the number of connected components of SτC := Fix(τC) is equal to
1 + dim ker ∂T .

Proof. The connected components of SτC are homeomorphic to S1, therefore the
number of connected components of SτC is given by dimH1(SτC ;Z2). By [BR91,
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Lemma C.3 , Proposition C.4], for σ# := (τC,# + id) : C•(S;Z2) → C•(S;Z2)
we have an exact sequence of chain complexes

0→ C•(SτC ;Z2)⊕ σ#C•(S;Z2)→ C•(S;Z2)→ σ#C•(S;Z2)→ 0;

which induces the long exact sequence in homology

· · · → H2(S/τC , SτC ;Z2) ∂2→ H1(SτC ;Z2)⊕H1(S/τC , SτC ;Z2)
(inc∗,inc′∗)→ H1(S;Z2) σ∗−→ H1(S/τC , SτC ;Z2)→ · · · .

Therefore, we get by exactness that

dimH1(SτC ;Z2) ≤ dim im ∂2 + dim kerσ∗ − dim im inc′∗. (A.1)

The connecting homomorphism ∂2 sends the fundamental class

[S/τC ] ∈ H2(S/τC , SτC ;Z2)

to the fundamental class of its boundary

[SτC ] ∈ H1(SτC ;Z2).

Since H2(S/τC , SτC ;Z2) is of dimension 1, we get that im ∂2 ⊂ H1(SτC ;Z2),
so we actually have equality in Equation (A.1), and dim im ∂2 = 1. By the
decomposition H1(S;Z2) = H1,0(S;Z2)⊕H0,1(S;Z2), we get that

ker(σ∗) = ker
(
(σ∗)|H1,0(S;Z2)

)
⊕ ker

(
(σ∗)|H0,1(S;Z2)

)
.

Let us first consider ker
(
(σ∗)|H0,1(S;Z2)

)
. The real structure τ ′C above C induced

by the empty set of twists on C satisfy τ ′C,∗ = id by [RBB17, Corollary 3.4]. For
E(τC − τ ′C) the set of edges e of C such that

(τC)|Se
6' (τ ′C)|Se

,

we get that for any cycle γα ∈ H0,1(S;Z2),

σ∗(γα) = (τC,∗ + id)(γα)

=
∑

e∈E(τC−τ ′C)∩α

γe

=
∑

e∈α∩T
γe ∈ H1,0(S;Z2).

We then denote ∂T := (σ∗)|H0,1(S;Z2), which is the required homomorphism.
Therefore, we can decompose ker(σ∗) into

ker(σ∗) = ker
(
(σ∗)|H1,0(S;Z2)

)
⊕ ker ∂T .
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Now, as said in the proof of [RBB17, Theorem 3.2], any two involutions
τC,1∗, τC,2∗ have the same restriction on H1,0(S;Z2). In particular, we get
that

ker
(
(σ∗)|H1,0(S;Z2)

)
= ker

(
(τC,∗ + id)|H1,0(S;Z2)

)
= H1,0(S;Z2);

thus we get the decomposition

ker(σ∗) = H1,0(S;Z2)⊕ ker ∂T .

The homomorphism inc′∗ induced by inclusion of chain complexes sends each
cycle [γi] ∈ H1(S/τC , SτC ;Z2) to the corresponding cycle [γi] ∈ H1(S;Z2). Since
H1(S/τC , SτC ;Z2) has dimension g, then im inc′∗ has dimension g. Therefore,
we get that

dimH1(SτC ;Z2) = dim im ∂2 − dim im inc′∗ + dim ker(σ∗)
= 1− g + dimH1,0(S;Z2) + dim ker ∂T
= 1− g + g + dim ker ∂T
= 1 + dim ker ∂T .

�

The result above allows us to relate the count of connected components of
RCE , for (C, E) a non-singular real tropical curve, to the count for real structures
above trivalent graphs, in the following way:

Theorem A.2.2. Let (C, E) be a non-singular real tropical curve with admissible
set of twisted edges T ∈ Adm(C), let S be a surface constructed from C and
let τC be a real structure above C inducing T . Then the number of connected
components of the real part RCE is equal to the number of connected components
of SτC .

Proof. Let {γ1, . . . , γg} be a basis of H0,1(S;Z2) induced by a basis {α1, . . . , αg}
of H1(C;Z2) = H1(C;F0). The intersection form 〈 , 〉 on H1(S;Z2) is non-
degenerate, therefore we can compute the dimension of ker ∂T (in the sense of
Theorem A.2.1) by computing the dimension of the kernel of the matrix

A := (〈∂T (γi), γj〉)i,j=1,...,g .

Now, we have a non-degenerate pairing

〈 , 〉trop : H0(C;F1)×H1(C;F0)→ Z2

induced from the pairing on integral homology groups for non-singular tropical
curves in [Sha11] (a similar non-degenerate pairing defined between tropical
homology and cohomology groups is also defined in [Bru+15] (Section 7.8) and
[MZ14] (Section 3.2)). This allows us to compute the dimension of ker ∂T (in
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Computation of number of connected components

the sense of Theorem III.4.5) by computing the dimension of the kernel of the
matrix

B := (〈∂T (αi), αj〉trop)i,j=1,...,g .

Now, for all i = 1, . . . , g, we have

〈∂T (γi), γi〉 = |αi ∩ T | mod 2
= 〈∂T (αi), αi〉trop;

and for all i 6= j ∈ {1, . . . , g}, we have

〈∂T (γi), γj〉 = |αi ∩ αj ∩ T | mod 2
= 〈∂T (αi), αj〉trop.

Therefore the matrices A and B are equal, and the result follows. �
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