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Abstract

The scheduler is the key component of the Linux kernel. What makes the
scheduler crucial is that scheduler serves as a mediator between system re-
sources such as CPU, and requests. It schedules and manages processes to
have access to resources based on different data structures and algorithms. It
is very important for a scheduler to make the best use of system resources.
From the beginning of Linux history, there have been a variety of different
schedulers. Some are still in use, while some have become out of date. CFS
and O(1) are two common schedulers which are still serving users. Since these
two schedulers have different designs and performances, it is necessary to dis-
cover the differences between them, because users could then choose different
schedulers based on their requirements.
This thesis compares CFS and O(1) with respect to the theoretical differences,
by literature survey, and performance differences by testings. Differences then
are presented in this thesis, and based on the results from testings, some rec-
ommendations are made to users.
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Chapter 1

Introduction

1.1 Motivation

Linux has been widely used not only in enterprise system but also in personal
environment worldwide. As a multiple processes system, it is critical for Linux
to distribute resources to different tasks in the system to process tasks at the
same time; therefore, a task scheduler is needed and becomes key component
of Linux. So the scheduler is designed to switch different processes in the sys-
tem to make the best use of resources.
There are two schedulers right now, the older O(1) scheduler in the versions of
Linux kernel prior to 2.6.23, and the new CFS (Completely Fair Scheduler) in
the versions of Linux kernel 2.6.23 and after that.
The O(1) scheduler was announced on January 4th 2002 after the previous
O(N) scheduler. The O(N) scheduler would go through the whole list of tasks
in the queue to determine the next task based on certain function, and it is not
well designed for multi-processors architecture, which means the O(N) sched-
uler is relatively inefficient, unstable, and week for real-time systems.[1] The
O(1) scheduler then was designed to solve the problem of O(N) scheduler. It
schedules tasks based on the priorities of different tasks. The priority of one
specific task is determined by the schedule function and is assigned dynami-
cally. The O(1) scheduler does not go through the whole list of all tasks in the
queue, however, it separates all the tasks into two different queues: one active
and one expired, and chooses the next task from the active queue. Besides,
the O(1) supports multi-processors architecture. Those changes improve the
performance of O(1) schedule. For example, O(1) is more efficient and scalable
with number of task or processor than O(N).
The O(1) scheduler thus is still widely used now, for example, in the Red Hat
Enterprise Linux 5.7. However, CFS takes the spot light later.
The CFS(Completely Fair Scheduler) , is quite different from O(1) scheduler.
CFS has modular scheduler core, each core is enhanced with scheduling classes,
which represent scheduling policies.
The main idea of CFS is to make every task have the "fair" processor time.
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1.2. PROBLEM STATEMENT

When there are tasks that are out of fair processor time, CFS will determine to
give them time to execute. This process is called to make a balance. To main-
tain this balance, CFS uses a concept called red-black tree structure which is
quite different from the run queue structure in O(1). This red-black tree is a
time-ordered and self-balanced binary tree. The operation time in the tree oc-
curs in O(log n) time, where n is the total number of nodes in the tree. The
advantage of red-black tree is that the operation of tree, for example to insert
or delete task from tree, is quick and efficient. CFS has been the default sched-
uler since the Linux kernel version 2.6.23.
As we know, O(1) scheduler and CFS are quite different from each other, and
both of them are widely used. So, for system administrators, here comes the
question: which has better performance? This project reviews the mechanisms
of two schedulers, compares performance of these two schedulers on a variety
of system workloads in order to make recommendations to system administra-
tors. All the tests are primarily aimed at the personal computers environment.

1.2 Problem statement

Compare two Linux schedulers: O(1) and CFS

* What are differences between of O(1) and CFS?

* Which scheduler gives better performance under different types system
workloads?

Red Hat Enterprise Linux 5.7 and Red Hat Enterprise Linux 6.2 are installed
in two different hard disks, and both of them are in one machine sharing the
same network, CPU and other devices. Different sets of tests will be executed
to benchmark both schedulers, and those tests are classified on different types
of processes. Basically, processes are classified based on their purposes and
behaviors. In this project, the following types of processes will be executed
toward both schedules.

* CPU-bound processes

* I/O-bound processes

* Mixed processes

* Interactive processes

More detailed definitions of these four types of processes will be covered in
the next background chapter 2.3.4.

2



1.3. THESIS OUTLINE

1.3 Thesis Outline

This thesis will be structured as follows:
Chapter 1 gives a general idea of whole project, and presents motivations,
problem statements and thesis structure.
Chapter 2 introduces readers to the background, previous literature and other
related topics.
Chapter 3 presents the methodology and testing plans of schedulers.
Chapter 4 shows the results from the tests.
Chapter 5 analyzes the results.
Chapter 6 Makes discussion and conclusion, and recommendation are sug-
gested for users.

3



Chapter 2

Background

2.1 Linux Kernel Overview

The kernel is the key component of operating system. The main responsi-
bility of scheduler is to manage the system resources. The management of
resources includes several contexts. First, the kernel provides an interface for
applications to have access to the hardware resources. When applications send
requests for hardware resources such as address space, the kernel receives re-
quests and uses system calls to communicate with those applications. Second,
the kernel allocates resources such as CPU and memory. Third, the kernel
software is generally organized into subsystems. Subsystems logically map
to resources the kernel is dealing with[2]. Those systems include processes,
memory management, file systems, device control and networking. The ker-
nel creates and destroys processes, and schedules those processes for execution
using its scheduler subsystem.
The following figure 2.1 [3] illustrates the Linux kernel and its subsystems.

In summary, the kernel’s jobs include managing resources, handling requests,
tracking processes and allocating resources. Allocating and servicing requests
are part of resource management. Kernels also perform internal management
that is not directly related to services. The kernel has to track what resources
it is using and often collects information about various aspects of the system.

2.2 Linux Scheduler History and Literature

As discussed in the previous section, the scheduler plays a key role within
kernel. The Linux kernel operating system is now used for many different ver-
sions, such as servers, desktops and embedded systems. The scheduler has
been developed and modified along with the kernel. The early Linux sched-
uler, 1.2 Linux scheduler, was very simple. It used a circular queue of runnable
tasks that operated with a round-robin scheduling policy. This scheduler was

4



2.2. LINUX SCHEDULER HISTORY AND LITERATURE

Figure 2.1: Linux Kernel [3]

very efficient in adding and removing processes in the queue (and included a
lock to protect the structure) [4].

The 2.4 Linux kernel version introduced the O(N) scheduler, which was much
better than the previous scheduler with its simple circular queue. The O(N)
scheduler used an algorithm with O(n) complexity to select a task to run. The
O(N) scheduler examined the whole list of runnable process in the system,
and the time for O(N) scheduler to schedule a process scaled linearly with the
number of processes. In case of large number runnable processes, the sched-
uler spent a great deal time of scheduling, resulting in less time assigned to
processes. Obviously, the O(N) had disadvantages handling many simultane-
ous tasks [5].

On January 4th 2002, the O(1) scheduler was announced as the replacement for
the O(N) scheduler. As the name indicates, the O(1) scheduler doesn’t need to
go through the whole list of process in the system. Instead, the O(1) scheduler
keeps two running queues. The first running queue is the list of processes that
are active and ready to be executed. The second is the list of processes that are
expired. When it must select a process to run, the O(1) scheduler only chooses
from the active queue. This makes O(1) much more efficient and scalable than
that of O(N).

The latest Linux scheduler is called the Completely Fair Scheduler (CFS). Re-
leased on October 9th 2007, CFS uses a completely different approach. As the
name indicates, the idea behind the CFS is to provide fairness with respect to
all processes, in other words, to ensure that all processes are assigned with a
fair share of processing time. Unlike previous scheduler, CFS doesn’t use run
queues. Instead, it maintains a time-ordered red-black tree to build a timeline

5



2.3. PROCESS MANAGEMENT

of future task execution [6].

As the scheduler is a key component of the kernel, there is a great deal of doc-
umentation of Linux kernel that includes the scheduler [7, 4].
Understanding the Linux Kernel, by Daniel P. Bovet, Marco Cesati, published in
October 2000, is one of the valuable books that deserves reading. In chapter
10, it covers processes scheduling, including scheduling policy and schedul-
ing algorithms. Besides, there are many articles, documentation with respect
to scheduler. For example, M. Tim Jones, who is an embedded firmware ar-
chitect and the author of many books, wrote a summary of Linux scheduler
history [4]. The research towards Linux scheduler differs from interactive pro-
cesses scheduling to scheduler tuning [7].

This paper, aims to give a theoretical and practical comparison about CFS and
O(1). The future research of Linux schedulers could focus on documenting a
comprehensive literature about Linux schedulers, from developing history, ar-
chitecture and performance tuning.

2.3 Process Management

2.3.1 what is a process?

The scheduler makes it possible for the system to run multiple processes, and
it decides the most deserving process to run out in the system. So, what is the
process?
A process is an instance of execution in the system, which has an address
space and communicates with other processes by system signals. A process
includes executable code, open handles to system objects, a security context,
and a unique process identifier. A program or an application could be divided
into different processes when running.
Each process has its own virtual address space, and doesn’t intercommunicate
with others except by kernel management mechanisms such as Inter-Process
Communication (IPC). Thus, if one process crashes, it will not affect other pro-
cesses [8].

In Linux, all the processes running in the system are managed by a dynami-
cally allocated task_struct structure, which is also called as a process descrip-
tor. In the task_struct, there is information such the PID, and other attributes
of the process[9, 10].

6



2.3. PROCESS MANAGEMENT

2.3.2 Program and Process

A program can be considered as a set of instructions and data that are put to-
gether, which is then executed for a specific purpose. A process can be thought
of an instantiated instance of a program, or a program in action. It is a dynamic
entity, constantly changing as the processor executes the machine code instruc-
tions. As well as the program’s instructions and data, the process also includes
the program counter and all of the CPUs register as well as the process stacks
containing temporary data such as routine parameters, return addresses and
saved variables. The current executing program, or process, includes all of the
current activity in the CPU [11].

2.3.3 Thread and Process

The main difference between a thread and a process is that a process is an in-
dependent executable unit. A process has its own ID, virtual address space,
and can communicate with other processes via the kernel. Usually, an appli-
cation consists of different processes, and starts with one main process. This
process, may call for more sub-processes when it gets a signal from kernel to
accomplish an application.
A thread, in contrast, is not an independent unit and can be thought as a
lightweight process. A process can have several threads, and those threads
share the same address space and memory in the system. This allows threads
to read from and write to the same data structures and variables, and also fa-
cilitates communication between threads[12]. Different processes need system
signals to talk to each other, while threads in the same process can communi-
cate with each other directly. Usually, a process starts with a thread, which is a
coding construct and executable. In the thread, there is information about the
stack and address space of the process. The following figure 2.2 [10] shows the
relationship between a process and a thread.

Figure 2.2: [10]
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2.3. PROCESS MANAGEMENT

2.3.4 Different types of processes

Generally speaking, process is classified according to its performance and be-
havior. In this project, processes are divided into the four types:

* CPU-bound Process
Those processes require a lot of CPU time. The total time to finish such
process mostly depends on the performance of central processor, which
means it takes less time to run a CPU-bound process in a higher speed
CPU than that in a slower speed CPU. A CPU-bound process doesn’t
require much I/O, and the CPU is the bottleneck. A typical example is a
task that performs mathematical calculations or crunches numbers.

* I/O-bound Process
These processes require a lot of I/O. The total time to finish such process
mostly depends on the speed of requesting data. The process spends
much time waiting for input/output operations, which means it takes
less time to run a I/O-bound process in a faster I/O system than that
in a slower I/O system. So, an I/O-bound process doesn’t require much
CPU, and I/O is the bottleneck. A typical example is a task that processes
data from disk.

* Interactive Porcess
These processes refer to the situation where users have interactions with
the system. Usually, users have to spend much time waiting for system
response, for example to the keyboard and mouse. Those processes re-
quire a small delay in order to meet users’ needs. For these processes,
the scheduler has to response quickly to the requests from users. For
interactive process, it is difficult to identify which particular component
of the system is the bottleneck because the bottleneck shifts quickly ac-
cording to the user’s instructions. Typical examples are text editors and
command shells.

* Mixed Process
These processes can be defined a mix of all above processes. Since it con-
sist of different types of processes, there is no clear bottleneck or charac-
teristic of this kind of process. The behavior depends on what are mixed,
and how much of them are mixed. In this thesis, the mixed process is a
mix of I/O-bound processes and CPU-bound process.

2.3.5 Process Priority and Preemption

In Linux, each process is given a priority assigned by kernel. The schedulers
chooses the next process and assign the processing time to this process based
on its priority. There are two types of priorities, dynamic priority and static
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priority. A process is initiated with a priority when the process is created, and
this priority is dynamically changed according to the scheduling algorithms.
The scheduler works through the list of process, and assigns a priority to each
process according to its internal algorithms, often based on process behaviors
and charateristics. For example, the scheduler might increase the priority of
a process when it has not been running for long time. A process with higher
priority is more likely to be selected to run.

Linux allows multiple processes to be running in the system, and from the
user’s point of view, those processes are running at the same time. However,
that is not the case in reality. Only one process can run at a specific time on
any given CPU. So, processes must typically be stopped and started several
times before they are completely finished. Each time it runs, the process is
scheduled to run only for a very short period of time[7]. Thus, processes in the
Linux system are preemptive. The Linux scheduler is responsible for choosing
processes to be suspended and to be started.

2.3.6 Context Switch

A context switch can also be thought as process switch. When kernel switches
from one process or thread to another, the information for the previous pro-
cess and the next process is stored in the kernel. The information is called
the context, which consists of the contents of the CPU registers and program
counter[13].

A context switch proceeds as follows:

• The scheduler stores the state information about the current running pro-
cess in the memory;

• The process is stopped, and the context of this processes stored, for ex-
ample the location of where it is interrupted;

• The scheduler goes to the next process to run, restoring its context and
resuming it;

The following figure 2.3 [13]demonstrate how context switches works:

When the processor switches from one process to another, it has to flush its
register by removing the previous context and restoring the new context. Do-
ing so costs a certain amount of time. Thus, scheduler is optimized to avoid
context switches as much as possible.

9



2.4. PROCESS SCHEDULING

Figure 2.3: Context Switch
[13]

2.4 Process Scheduling

2.4.1 Scheduling Policy

As discussed in the previous section, the CPU can only run one process at one
time, so processes have to share processor. The main job for a scheduler is to
choose the most appropriate process to run next. The scheduling policy is the
key part of a scheduler, since it tells it how and when to switch from one pro-
cess to another, and how to select the next process to run.
Generally, the scheduling policy is based on ranking the priority of a process.
The priority is given to process by scheduler based on its scheduling algo-
rithm, which will be described in the next section 2.4.2. The priority indicates
how likely a process is to be executed. A process with higher priority has more
chance to be executed. The priorities assigned to processes are dynamic. The
scheduler goes through the list of processes in the system and reassigns prior-
ities based on the status of those processes.
When the scheduler finds there is one process that has greater priority than
that of current running process, the current process will be interrupted and
the next process will be put into processor. In another word, Linux processes
are preemptive. However, the preempted process is not suspended by kernel
but still waits in the queue until it is executed for the next time.

Timeslice

By default, processes are allotted a quantum of processing time. This quantum
of time should be not too long or too short. If it is too long, other processes
have to wait too long to be processed. If it is too short, the system spends too
much time on switching processes. As Josh Aas said:
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The choice of quantum duration is always a compromise. The
rule of thumb adopted by Linux is: choose duration as long as pos-
sible, while keeping good system response time.

A process can divide its timeslice into several parts rather than run all of it at
one time. When its timeslice is exhausted, the process will be preempted until
assigned another. When all the processes used up their timeslice, the system
will do a recalculation of the timeslice. The following figure 2.4 [13] shows the
recalculation of the timeslice.

Figure 2.4: Recalculation of Timeslice
[13]

2.4.2 Scheduling Algorithm

The goal of a scheduling algorithm is to produce a "good" schedule, but the
definition of "good" will vary depending on the application[14]. There are two
key parts of a scheduling algorithm, the quantum of processing time and pro-
cess priorities.
As discussed in the previous section, each process is assigned a timeslice. Dur-
ing this period of time, the process occupies the CPU. The process will be pre-
empted when it has used up this time quantum, and the next process will
occupy the CPU. A process may have been assigned a quantum several times
before the process is completely finished. The value of this quantum is defined
in the INIT_TASK macro, and may differ among different hardware manufac-
turer.
There are two types of process priorities: static and dynamic. The static pri-
ority is assigned to the process when it is created. The static priority is also
called the real-time priority for real-time processes. Only real-time processes
with super user privileges can get a static priority the value of which ranges
from 0 to 99[15]. Those real-time processes have higher priority than the nor-
mal processes in the system, and the priorities of those processes are never
changed by the scheduler.
For real-time process, there are two kind of scheduling policies, SCHED_FF
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and SCHED_RR, which are based on different scheduling algorithms. SCHED_FIFO
and SCHED_RR are intended for special time-critical applications that need
precise control over the way in which runnable processes are selected for execution[15].
The SCHED_FIFO, as the name indicates, uses a first-in, first-out scheduling
algorithm without timeslices[16]. As long as a SCHED_FIFO process is in the
runnable queue, it will preempt any other non-real-time processes. Since the
SCHED_FIFO process has no timeslice, scheduler will never stop it before it
finishes. Basically, processes that are scheduled by SCHED_FIFO policy have
higher priority than normal processes. But what happens when there is an-
other process that is scheduled by SCHED_FIFO policy? Since the static prior-
ity ranges from 0 to 99, a SCHED_FIFO process will be preempted if there is a
process with higher priority and will resume execution as soon as all processes
of higher priority have completed or are blocked [15].
The SCHED_RR policy is the variation of SCHED_FIFO with timeslices. It
uses a real-time round-robin scheduling algorithm. When a SCHED_RR pro-
cess has exhausted its time quantum, it will be put in the end of run queue
and wait for the next time to be executed, when processes with higher priori-
ties have finished their quantum time. The length of the time quantum can be
retrieved by the sched_rr_get_interval system call[16].
For real-time scheduling policies, the Linux kernel implements so-called soft
real-time behavior. The real-time processes will be executed as long as they
are in the runnable queue. However, the kernel doesn’t guarantee that all pro-
cesses will be processed within time deadlines. On the other hand, there is
so-called hard real-time behavior, which guarantees to fulfill all the needs of
all applications within time deadlines[16].
For normal processes (non-real-time processes), there is scheduling policy called
SCHED_OTHER, which is used by default. Normal processes will be assigned
with a static priority of 0. However, the static priority can be adjusted within
the range from -20 to 19. The value of the static priority is also called the nice
value, and it can be changed by the nice() system call. The nice value controls
two things, the static priority and the timeslice. A greater nice value means a
lower priority and shorter timeslice. On the other hand, a smaller nice value
means a higher priority and longer timeslice. The reason why it is called nice
value is probably that if one process is nice to others, then it voluntarily takes
lower precidence in order to let other processes running in the system run first.
Running processes also have a dynamic priority. This is the sum of the base
time quantum (which is therefore also called the base priority of the process)
and of the number of ticks of CPU time left to the process before its quantum
expires in the current epoch[17].
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2.5 Current Linux Schedulers

2.5.1 O(1) Scheduler

Overview

Released in 2002, O(1) was designed to replace the previous O(N) scheduler.
As the name indicates, the O(N) scheduler uses the O(N) algorithm, of which
of the execution time is the function of number of process, which is N here. To
be precise, the algorithm’s time is the linearly function N. When N increases,
the time increases linearly. As discussed before, the O(N) scheduler may end
up with over head if the N continuously increase. The O(1) scheduler, runs in
the constant time, as the name indicates. So, no matter how many processes
running in the system, the scheduler can guarantee to finish in a fixed time.
This make O(1) scale well with the number of process, which is best know
feature of O(1).

Scheduling Policy

Generally speaking, the O(1) scheduler uses priority-based scheduling policy.
The scheduler chooses the most appropriate process to run based on process’s
priority.
The O(1) scheduler is the multiple queues scheduler. The key structure of O(1)
scheduler is the runqueue. There are two runqueues in the O(1) scheduler, the
active runqueue and the expired runqueue. The kernel can get access to these
two runqueues through pointers from the per-CPU pointer. These two run-
queues can be swapped by a simple pointer swap. This will be covered later
this section.
In the active runqueue, there are 140 priorities levels of processes. All the pro-
cesses that have the same priority are grouped in a specific priority level. For
each priority level, processes are processed in the FIFO, fist-in-first-out algo-
rithm, which means the process that comes first is processed first. Let’s take
priority 1 level as an example. All the processes with priority 1 will be added
to this priority level, and processed by kernel based on the FIFO. The follow-
ing figure 2.5 shows how scheduler schedules processes that are in the priority
1 level:
As discussed above, the O(1) scheduler choose processes based on their prior-

Figure 2.5: Priority 1 Level
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ities. Since there are 140 different priorities levels, and for each priority level,
there are processes with same priority, the scheduler starts to choose process
from the highest priority level, and goes down to the second highest priority
level until it go through all the levels in the system. The following figure 2.6
shows how scheduler schedules processes that in different priorities levels.
As discussed before, the O(1) scheduler doesn’t go through the whole active

Figure 2.6: Priorities Level

runqueue level to determine the next process to run, as the figure shows, the
scheduler always takes the first process from the highest priority level. There
are two parts for the O(1) scheduler to choose the next process to run. First,
the O(1) scheduler needs to find the highest priority level. Since the number
of priority level is fixed, which is 140, so this takes a fixed time, we can call it
t1. Second, the O(1) scheduler needs to find the first process in the level, this
also takes a fixed time, we can call it t2. So the total time for O(1) scheduler to
choose the process to run is

t = t1 + t2 (2.1)

Since t1 and t2 are constant, the total time t is the constant value.
For the 140 priority levels, the first 1 to 100 priority levels are reserved for the
real-time processes and the last 101 to 140 are used for user processes.
For a specific process, as discussed before, it will be assigned with priority.
When this process ran out of its timeslice, the priority will be lowed, and this
process will go to the end of the next lower priority level. On the other hand,
after a certain timeslice, those processes which are waiting in the queue get a
higher priority, and moved the next higher priority level.
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The following figure 2.7 show the how processes are transferred between pri-
ority levels.

Let’s suppose there are two processes in each priority level. At the time of

Figure 2.7: Priority

t, the process with the highest priority will start to run. As the shown in the
figure, both process E and F are in the highest priority level N, and E is in
the front of the level. Based on the FIFO algorithm, E will run first. A pro-
cess doesn’t need to use of its timeslice a time, however, the timeslice can be
divided into several small parts. After a part of timeslice, E is finished, and
moved the next lower priority level N-1. At the same time, the priorities of
other processes will increase, and those processes will be moved to the next
level. For example process A and B will be moved to the priority level 2. For
process F, since it has the highest priority, it will keep the same. As for process
E, since it has been processed for some time, the priority of E is lowed. And E
is moved to the level N−1. Then F will be processed and moved to N−1 level.

A process may be processed for several times before it runs out of timeslice.
When a process has run out of its timeslice, it will be moved to another ran
queue, called expired runqueue. The timeslice for this process will be recal-
culated, as well as the priority. After all the processes in the active runqueue
have ran out their timeslices, the active runqueue and expired runqueue will
be swapped. The following figure 2.8 shows that.

Data Structure

The runqueue is the basic and essential part of O(1) scheduler’s data structure.
It is defined in the /usr/src/linux-2.6.x/kernel/sched.c.

struct rt_prio_array {
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_RT_PRIO];
};
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Figure 2.8: Active and Expired Runqueue
[5]

This is the priority-queue data structure of the RT scheduling class:

spinlock_t lock

This is the lock that protects the runqueue. Only one task can modify a partic-
ular runqueue at any given time[8].

struct rq {
/* runqueue lock: */

spinlock_t lock;
/* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned long nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];

This is the main, per-CPU runqueue data structure. Locking rule: those places
that want to lock multiple runqueues (such as the load balancing or the thread
migration code), lock acquire operations must be ordered by ascending run-
queue. The unsigned long nr_running defines the number of runnable tasks on
the runqueue. The unsigned long cpu_load represents the load of CPU. The load
is recalculated whenever rebalance_tick() is called, and is the average of the old
load and the current (nr_running * SCHED_LOAD_SCALE).The latter macro
simply increases the resolution of the load average.

void schedule()
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This is the main function for scheduling, which choose process with highest
priority.

#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)

Convert user-nice values [ -20 ... 0 ... 19 ] to static priority [ MAX_RT_PRIO..MAX_PRIO-
1 ], and back.

#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))

’User priority’ is the nice value converted to something we can work with
better when scaling various scheduler parameters, it’s a [ 0 ... 39 ] range.

2.5.2 Completely Fair Scheduler

As a scheduler, the most important feature for CFS is, as its name indicates,
fairness to processes, which means when processes are scheduled by CFS, they
should be given fair share of processing time. Like O(1), processes in CFS are
given processing time, whenever a process’s processing time is not as fair as to
other processes, this process is switched, and another process is going to have
get processing time. Generally speaking, this is how CFS maintains fairness.

Red-black Tree

Unlike O(1) which uses priority arrays based algorithms, CFS uses time-based
queues. In O(1) each process is given a timeslice, the same with CFS, but the
processing time given to a process is called virtual runtime here. In O(1), the
higher priority of a process, the sooner it is going to be processed. In CFS, the
smaller the virtual runtime is, the sooner it is going to be processed. In order to
switch processes, the O(1) basically maintain two priority queues, one active,
and expired, however, CFS uses so called red-black tree to manage processes.
The next figure 2.9[5] shows the structure of red-black tree. Generally speak-
ing, a red-black tree is self-balancing binary search tree. First, a binary tree is a
kind of data structure. As the next figure shows, every node in the binary tree
can have no child node or have two, one left child node and one right child
node. A node with child node is called parent node, and a node without child
node is called leaf. There is one root node at the top of the tree.
Second, a binary search is a binary tree, which for each node n has following
features:

• The left sub-tree has nodes with keys smaller than the key of n;

17



2.5. CURRENT LINUX SCHEDULERS

Figure 2.9: Red-black Tree
[5]
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• The right sub-tree has nodes with keys greater than the key of n;

To search for a specific element in the tree, first, compare the element with the
root node. If the element is greater than the node key, then compare the ele-
ment with the right-child node. If the element is less than the node key, then
compare with the left-child node. So the most comparison it will take is the
depth of this tree, which is log n, where n is the total number of node.
A balancing tree is a binary tree, which has following features:

• The difference between two depths of the two sub trees of every node is
no greater than 1;

• The two subtrees are also balancing trees

So, based on the definition of the balancing tree, the depth of a tree with n
nodes can be:

Depth = m, where2m <= n < 2(m + 1) (2.2)

As long the n is given, the depth of balancing tree is defined.

A red-black tree is a binary search tree which has following features [18]:

• Every node is either red or black

• Every leaf is black

• If a node is red, then both its children are black

• Every simple path from a node to a descendant leaf contains the same
number of black nodes

The red-black tree has many useful properties. First, to search in the red-black
tree will take O(log n) time. Second, it’s self-balancing, which means that no
path in the tree will ever be more than twice as long as any other[4]. So, back to
the red-black tree figure 2.9, as the figure shows, every node represents a task
in the system, and the key value of the node represent the virtual runtime of
this specific task. As the definition of red-black tree means, the left-most node
has smallest key value, which means this task has smallest virtual runtime, so
this task is most needed to be processed. On the other hand, the right-most
node has greatest key value, which means this task in least needed to be ex-
ecuted. So, every time the CFS only needs to pick the left-most task to the
processor. As long as the left-most task is processed, it is deleted from the
tree. Since this task has already got some processing time, its virtual runtime
is increased. Now, if this task is not finished, it will be inserted back to the
red-black tree with the new virtual runtime. And the time for this operation,
as discussed before, is O(long n).
The virtual runtime can be considered as a weighted timeslice, which will be
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described in the following. The virtual runtime is defined as the below equa-
tion:

virtualruntime+ = (delta_exec)(NICE_0_LOAD)
se(load.weight) (2.3)

In this equation, delta_exec is the amount of execution time of task, NICE_0_LOAD
is the unity value of the weight [19].

This virtual runtime can be considered as the unfairness of a process, so the
left-most process has the most unfairness. Every time, when a process is fin-
ished in the CPU, all the other leaving processes become unfair because they
have waited for a period of time. So, their unfairness must be increased as well.
In O(1), when a process has waited, it is moved one step forward in the prior-
ity list or it is moved to a higher priority list. But in CFS, the position of the
process in the red-black tree doesn’t change, but the virtual runtime increases.
But, how CFS assigns the base virtual runtime to a process when it is created?
A newly created process will be assigned with a minimum current virtual run-
time. This minimum virtual runtime is maintained and used to avoid overflow
of the virtual runtime value so that virtual runtime and min_virtual runtime
can be reliably used to sort the red-black tree[20].

After the left-most node is deleted from the tree, the parent node of this node
becomes the new left-most node, or becomes the next task to be processed.
Every task on the left of the red-black tree is given the processing time, and
after that, tasks on on the right of the tree moves to the left. So, in this way,
scheduler schedules every runnable task in the system as fairly as possible[4].

In CFS, there is no exact timeslice like O(1), but task does receive CPU share.
A weight value is given to a task, and this weight is defined in the structure
called sched_entity, which will be described later. The CPU share then is de-
fined by following equation:

share = se {load.weight} / cfs_rq {load.weight}

Here, in this equation, se load.weight is the weight of the entity, structure cfs_rq
load.weight is the sum of all entities’ weights. The structure cfs_rq will also be
described later. The entity here is not only a task or process; it can also be a
group, a user (group scheduling will be discussed later). As long as the CPU
share is defined, the time slice is easy to define, as the following equation in-
dicates:

timeslice = share * period

The period, is the total timeslice that scheduler uses for all the tasks. The min-
imum of the period is 20ms. As the equation indicates, since the total number
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of the processes in the system is a variable, the total time slice is also a vari-
able, and the period is a variable. So the timeslice in CFS for a process is not
constant, but a changing variable. It is quite different from O(1), where the
timeslice is a constant[19].

Data Structure

Unlike O(1) scheduler, there is no struct prio_array in CFS, instead, the schedul-
ing entity and scheduling classes is used. They are difined by struct sched_entity
and stuct_class, and both of these two structures are contained in the task_struct.

struct task_struct {
# Defined in 2.6.23:/usr/include/linux/sched.h */
struct prio_array *array;
struct sched_entity se;
struct sched_class *sched_class;
...

}

The task_struct structure describes all the task information such as state, stack,
address, flags and priority. All the tasks in the system are stored in this struc-
ture; however, some of the tasks in the system are not runnable. Or in other
words, they have nothing to do with scheduler. So sched_entity structure is
needed to store the information of all runnable tasks. In this structure, there is
scheduler-related information, as the following table shows:

struct sched_entity {
# Defined in 2.6.23:/usr/include/linux/sched.h
long wait_runtime; # Amount of time the entity must run to become completely fair and balanced.
s64 fair_key;
struct load_weight load; # for load-balancing
struct rb_node run_node; # To be part of Red-black tree data structure
unsigned int on_rq;
....

}

One of the most important variables in this structure is the wait_runtime. This
variable contains the time that this task has used, and also is the index in the
red-black tree.
The next structure is sched_class, as shown in the table below.

struct sched_class {
# Defined in 2.6.23:/usr/include/linux/sched.h */
struct sched_class *next;
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
void (*yield_task) (struct rq *rq, struct task_struct *p);

void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);

struct task_struct * (*pick_next_task) (struct rq *rq);
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void (*put_prev_task) (struct rq *rq, struct task_struct *p);

unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio);

void (*set_curr_task) (struct rq *rq);
void (*task_tick) (struct rq *rq, struct task_struct *p);
void (*task_new) (struct rq *rq, struct task_struct *p);

};

This structure describes how a process is going to be scheduled, which ba-
sically consists of three parts, to add a task to the scheduler, to make a task
preempted, to pick up next task to run. Those actions are defined by differ-
ent functions, take enqueue_task as an example, when a task becomes runnable,
this function is called. A process is then added to the red-black tree with its
virtual runtime. The last function as shown above is task_new, which is used
for group scheduling[21], which will be covered in the next part.
The next figure2.10 shows how CFS makes decisions. CFS usually starts with
the top scheduler class, then tries to find available task to run. If there are avail-
able runnable tasks, the function pick_next_task is called, and task is scheduled.
If no available task, CFS will puck the next scheduler class to find other avail-
able tasks.

Figure 2.10: CFS Scheduler Decision

The next important data structure is the cfs_rq structure.
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struct cfs_rq {/* Defined in 2.6.23:kernel/sched.c */
struct load_weight load;
unsigned long nr_running;
s64 fair_clock; /* runqueue wide global clock */
u64 exec_clock;
s64 wait_runtime;
u64 sleeper_bonus;
unsigned long wait_runtime_overruns, wait_runtime_underruns;
struct rb_root tasks_timeline; /* Points to the root of the rb-tree*/
struct rb_node *rb_leftmost; /* Points to most eligible task to give the CPU */
struct rb_node *rb_load_balance_curr;

#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *curr; /* Currently running entity */
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
...
...

#endif
}

As the name indicates, this structure contains the information of red-black tree.
Holding information about the associated red-black tree. For example, the
rb_root structure defines the root information in the red-black tree.
The next data structure is called rb_node, which contains information of ev-
ery node in the red-black tree, for example the color of a node’s parents and
the child references. As described before, the structure sched_entity containes
rb_node structure information such as reference, load weight and other statistic
data multipl_processes_cfs.

structure rb_node{
unsigned long rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left
};

So far, key data structures are covered with a general description. The rela-
tionships among those structures can be shown in the next figure 2.11:

Scheduling Policy

In order to maintain the fairness for process, CFS uses appeasement policy.
When a process becomes runnable and is added to the runqueue, the current
time is recorded. When a process is waiting for the CPU, the wait_runtime of
this process is also increasing. How much is this wait_runtime increased de-
pends on two factors: the total number of current processes and the priorities
of those processes. When the processes is processed by CPU, the wait_runtime
of this process begins to decrease until the next process becomes the left-most
in the red-black tree. Then this current process is preempted by a function
called schedule() function. The preempted time is not a static value, but a
changing variable. As long as this process is not finished, it will be sent back
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Figure 2.11: CFS Data Structure Relationships

to the red-black tree by the function called put_prev_task, which is defined in
the scheduling class. After this process is preempted, the next process will be
picked up through a function called pick_next_task function. The function then
return the sched_entity references to the scheduler. At last, the process is pro-
cessed by CPU[21].

Priority in CFS

In O(1), priority is used to determine how appropriate a process is going to be
processed. However, though CFS still maintains the same 140 priority levels
that are found in O(1) scheduler, in CFS, as discussed in above section, priority
is not the key factor that affect a process’s states. In CFS, the higher priority
a process has, the longer processor can execute it. In other words, in CFS, a
process with a lower priority, the time this process is permitted to execute dis-
sipates more quickly[5].

Group Scheduling

The concept of CFS is to maintain fairness to all the individual processes in
the system. However, a system may have multiple users. Suppose there are
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multiple users in the system running processes, for example user A and user
B, user A runs only one process called p, and user B has 49 processes from p1
to p49. Then user A will get only 2% of CPU. CFS tries to make processes fair
to each other, but not users. So, in order to make users are fair to each other,
CFS has a feature called group scheduling, which means processes belonging
to a users are wrapped as a group, and those groups are share fair CPU. In
the example, the process p belonging to user A will get 50% CPU, and process
from p1 to p49 as a whole belonging to user B will get same 50% CPU.
This feature is especially useful when CFS is applied in the server environ-
ment. Consider a server with many different users, each user may have differ-
ent number of processes running in the system, instead of maintaining fairness
to process, it is much better to maintain fairness to users, so that users don’t
have to wait long time for responses. The group-scheduling feature, however,
is not by default set; users need to tune the parameter by themselves. Besides
group scheduling CFS also has other tunable features, for example modular
scheduler framework.
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Chapter 3

Methodology

As addressed in the problem statement part, this thesis is going to compare
O(1) scheduler and CFS. The comparison of O(1) and CFS will be in the terms
of :

• Configurability

• Performance

The configurability of both schedulers will cover the theoretical design with
respect to O(1) and CFS.
The comparison of performance will be under a serial of tests. Those tests, as
discussed in the chapter 1 will be classified regarding to their purpose and be-
havior. Different performance data will be collected later, and those data will
be analyzed in different ways.

3.1 Theoretical Design Comparison

The theoretical comparison toward O(1) and CFS will be in the term of follow-
ing aspects:

• data structure

• scheduling policy

Data Structure Comparison

The main data structure of O(1) scheduler is the runqueue which consists of
different priority lists. As described in the background section, processes are
grouped in two queues, active queue and expired queue. Both queues uses
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First-In-First-Out algorithm for each priority list in the queue. After a pro-
cess finishes its timeslice, it is moved to the expired queue. When all the pro-
cess in the active queue are finished, the active queue and expired queue are
swapped. Since the scheduler always picks the first process in the highest pri-
ority list, it takes O(1) time, which is a constant to schedule a process. The
following figure shows the data structure of O(1).

CFS uses quite data structure as compared with O(1). As described in the

Figure 3.1: O(1) Data Structure

above section, the main data structure in CFS is the red-black-tree, which con-
sists the virtual time of different processes. All the processes or tasks with their
unfairness which is the virtual time are in the red-black tree, and CFS always
picks the left-most task, sends it to the processor. It takes O(log n) to schedule
a process, where n is the total number of the process.

Figure 3.2: CFS Data Structure
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Scheduling Policy Comparison

In summary, the scheduling policy for O(1) consists of the following parts:

• 140 priority list, from 1 to 100 for real time processes, from 101 to 140 for
normal processes;

• SCHED FIFO and SCHED RR for real time processes, SCHED OTHER
and SCHED BATCH for normal processes;

• Each process is assigned with timeslice and a nice value, and the PRIO
equals the sum of MAX_RT_PRIO, NICE and 20;

• Processes in the the same priority list are round-robined;

• Interactive processes get extra bonus.

For CFS, the scheduling policy consists of the following parts:

• SCHED NORMAL for normal processes;

• SCHED BATCH for batch processes;

There are four groups in O(1), SCHED FIFO, SCHED RR, SCHED OTHER and
SCHED BATCH. The first two groups handle the real-time processes, the rest
two groups handle other remaining processes. CFS uses approximately the
same policies, for example SCHED FIFO, SCHED RR for the real time pro-
cesses. Besides that, CFS also has SCHED NORMAL and SCHED BATCH
groups which ensure fairness, and SCHED IDLE for idle group.
In general, the goal for O(1) is to achieve fairness and interactive performance,

and the goal for CFS is to achieve complete fairness but still having good in-
teractive performance.
The next part will then cover the performance comparison testing schema
to verify and evaluate the theoretical difference presented in the background
chapter.

3.2 Performance Comparison Design

3.2.1 Variables in the Test

The comparison of performance will be under a serial of experiments. The first
concept in the experiment is the variable. A variable is a factor or a condition
that exists in the whole experiment, and has effect on the result of experiment.
Generally speaking, there are three kinds of variables in the experiment: inde-
pendent variable. dependent variable and controlled variable.
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The independent variable is the factor that changes with experiment, and de-
pendent variable is the factor that responds to the change of independent vari-
able. The control variable, however, is that factor that is constant during the
whole experiment. To make the test as fair and accurate as possible, there must
be only one independent variable, so that people can observe the correspon-
dence between dependent variable and independent variable, and also people
can make sure the comparison of two different dependent variables is fairly
made[22].
In this project, obviously the schedulers themselves are the dependent vari-
ables, while processes are independent variables, and other factors like system
configurations, network, I/O, CPU are the controlled variables, and should be
the same for both schedulers.
All tests are performed using Intel(R) Core(TM)2 CPU with 8 GB of memory.
In order to make controlled variables the same for both schedulers, Redhat 6.2
with CFS and Redhat 5.7 with O(1) are installed in two separate disks, while
they share the same CPU, memory and other configurations. All tasks are put
in one core, so that only one run queue is used.

3.2.2 Performance Interpretation

As discussed in the above section, both schedulers will have performances ac-
cording to different processes, and since all the other controlled factors are the
same, so we can make the comparison of performance as fair as possible. But
what is the performance of a scheduler? What are key factors of a scheduler?

• Fairness: The fairness for processes here means all these processes which
are the same to each other should have the same execution time or take
the same amount of time to run when all of them are running at the same
time in the system. However, that is not the case in the real world obvi-
ously. In this thesis, the execution time of each process will be grouped
in a sample, and from the statistic point of view, the standard deviation
of the sample could be a term of how fair each process is to each other.

• Efficiency: One way of showing how busy CPU is will be to record CPU
usage. Most CPU monitoring tools reveal the CPU usage by the follow-
ing terms:

– real time, is wall clock time - time from start to finish of the call. This
is all elapsed time including time slices used by other processes and
time the process spends blocked (for example if it is waiting for I/O
to complete).

– user time, is the amount of CPU time spent in user-mode code (out-
side the kernel) within the process. This is only actual CPU time
used in executing the process. Other processes and time the process
spends blocked do not count towards this figure.
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– system time, is the amount of CPU time spent in the kernel within
the process. This means executing CPU time spent in system calls
within the kernel, as opposed to library code, which is still running
in user-space. Like ’user’, this is only CPU time used by the process.
See below for a brief description of kernel mode (also known as
’supervisor’ mode) and the system call mechanism.

• Stability:
For a specific job, the time that it takes to run should be approximately
the same when repeated, which makes the system predictable, and means
the stability of the scheduler.

• Predictability:
For the CPU-bound process here, the total execution time for N simul-
taneous processes is compared with N single sequential process. In idea
world, the total time of N simultaneous process should be exactly the
same with N single sequential execution time. In the real world, they
couldn’t be exactly the same. The difference between these two values is
compared between schedulers.

• Turnaround Time:
The total time to finish a process is very important for a user. Total exe-
cution time of N processes is compared between two schedulers.

• Context Switch:
That how many times a process is switched is compared between two
schedulers.

• CPU Usage:
Percentage of the CPU that a process gets, computed as (%U + %S) / %E.

3.2.3 CPU-bound Processes Testing

Based on the testing goals, the testing schema consists two parts, processes
with same priority and processes with different priorities. In both parts, a sin-
gle CPU-bound process used as benchmark is a pi calculation, which is done
by a Perl script.

In the first part, all the CPU-bound processes have the same priority, which is
set as default. In order to compare the above performances of two schedulers,
several sets of simultaneous processes run in the system. In different set, the
number of processes increases from 1, 100, 200, 400, 600, 800 and 1000. Each set
of processes are executed simultaneously and repeated for 10 times. Besides,
another group of tests are executed without simultaneous processes but with
sequential processes. The performance of two schedulers are tested by the fol-
lowing ways:

30



3.2. PERFORMANCE COMPARISON DESIGN

• In order to measure fairness and turnaround time, the values of elapsed
time of those simultaneous processes are recorded. For example, for
100 simultaneous processes, the average values of these100 elapsed time
of CFS and O(1) are recorded. This average value is considered as the
turnaround time. Both average values are compared to show differences
of CFS and O(1). Also, as discussed in the performance interpretations
section, the standard deviation of these 100 elapsed time of both sched-
ulers are compared to show the differences of them.

• In order to measure stability, the values of elapsed time of sequential
processes are recorded. For example, for 100 sequential processes, the
standard deviation of these 100 elapsed time of two schedulers are com-
pared to show differences.

• In order to measure predictability, elapsed time of N simultaneous pro-
cesses and N sequential processes are compared to show differences of
two schedulers.

• In order to measure CPU usage, efficiency, context switch, the average of
those values are compared between two schedulers.

The following graph 3.3 demonstrates the comparison method in general. In

Figure 3.3: CPU-bound Process Comparison

the second part, all the CPU-bound processes are divided into two groups with
different priorities. The first groups of processes have default priority, and the
second group of processes’ priority is modified by a nice value of 10(The back-
ground section shows how to modify the nice value of a process). Those two
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group of processes are called normal group and nice group. Obviously, since
the nice group is nice to normal group, the normal group has higher priority.
The testing method is the same with first part. For example, for the scenario
of 100 simultaneous processes, they are divided into two groups, 50 nice pro-
cesses and 50 normal processes. The elapsed time and other information are
collected respectively.
The Linux time utility is used to collect above information, as the following
command shows:

/usr/bin/time --format ’%e %U %S %P %c %w’ ./pi.pl

For single process, it lasts for about 4 second, which is long enough for a pro-
cess to be scheduled many times by scheduler. As discussed in the background
part, the timeslice for O(1) and CFS are in the millisecond level.

3.2.4 I/O-bound Processes Testing

I/O -bound process requires much I/O, but not CPU. A disk benchmark tool
bonnie++ is used to create I/O-bound process. A bonnie++ process can per-
form a number of simple tests of hard drive and file system. To measure the
scheduler performance, a number of I/O-bound processes run in the system.
The number increases from 1 to 20. The same with CPU-bound processes test-
ing, Linux time utility is used to collect scheduler related information, as the
following command shows:

/usr/bin/time --format ’%e %U %S %P %c %w’ bonnie++ -d /root -s 1024 -m test -r 512 -x 1 -f -u root

Besides time utility, another system monitor tool vmstat is used to collect sched-
uler related information for example idle of CPU. The following command
shows the result from vmstat.

procs -----------memory---------- ---swap-------io---- --system-- -----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 148 7290812 181728 311008 0 0 0 8 1035 158 0 0 100 0 0

The output displays a serial of system information, however, not all of them
are schedulers related. The last eight columns are of interest for the scheduler
testing.
The results from above two tools are compared between CFS and O(1) with a
number of I/O-bound processes.
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3.2.5 Mixed Processes of CPU-bound and I/O-bound

After measuring pure CPU-bound processes and pure I/O-bound processes,
the next interesting thing is to measure a mixed situation, where both kinds of
processes run in the system.
50 CPU-bound processes and 10 I/O-bound processes are mixed together, and
start at the same time in both schedulers. The elapsed time and other scheduler
related information of both kinds of processes are collected by the same tools
time and vmstat.
There are eight dimensions of comparisons in this part:

• comparisons of scheduler related results of CPU-bound processes be-
tween CFS and O(1);

• comparisons of scheduler related results of I/O-bound processes between
CFS and O(1);

• comparisons of scheduler related results between pure CPU-bound pro-
cesses and mixed CPU-bound process of CFS;

• comparisons of scheduler related results between pure CPU-bound pro-
cesses and mixed CPU-bound process of O(1);

• comparisons of scheduler related results between pure I/O-bound pro-
cesses and mixed I/O-bound process of CFS;

• comparisons of scheduler related results between pure I/O-bound pro-
cesses and mixed I/O-bound process of O(1);

• comparisons of difference of pure CPU-bound processes and mixed CPU-
bound between CFS and O(1);

• comparisons of difference of pure I/O-bound processes and mixed I/O-
bound between CFS and O(1);

3.2.6 Interactive Processes Testing

Before measuring how these two schedulers scheduling interactive processes,
choosing what’s kind of interactive process is first step. As discussed in the
background part, a process that its inout and output are interrelated, or a pro-
cess conducted by user through an interface can be seen as an interactive pro-
cess. Based on this definition, there are a variety of different kinds of interac-
tive processes. In this project, there are two kinds of simulations.
For editor simulation, a Perl script using Expect package is used to simulate
the situation that a number of users editing a file in the system. The script
reads data from file, processes them, and prints on the screen. This simulating
the situation where users open a file and edit it. A number of this processes
run in the system. The number increases from 100 to 1000. And time is utility
is used to record scheduler related results, which are then compared between
two schedulers.
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The second interactive process is running a web browser. The web browser in
this project is a Firefox process. The process is not started by user clicking the
button, but by a Perl script running a Firefox command, as shown below:

firefox -chrome www.google.com
firefox -chrome new www.vg.no

In total 20 Firefox process run in the system. At the same time, vmstat is run-
ning in the background to record scheduler related information. The results
from vmstat are then compared between two schedulers.
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Chapter 4

Result

This chapter covers the results from 4 types of testing sections, CPU-bound
processes testing, I/O-bound processes testing, Mixed Processes testing and
Interactive Processes testing. In each part of them, there are results either from
time utility or vmstat . Each testing section contains a number for testing sce-
narios, which means there are lots of result data. Only a brief view of results
which are typically related with scheduler, is shown in the below.
Before showing results, an explanation of output from time and vmstat is needed
here. As discussed in the approach chapter, the Linux time utility is used to get
scheduler related data. We get the time information of each individual process
with respect to :

• e: Elapsed real time, in seconds.

• U: Total CPU seconds used directly by the process.

• S: Total CPU seconds used by the system on behalf of the process.

• P: Percentage of the CPU that this job got, computed as (

• c: Number of times the process was context-switched involuntarily (be-
cause the time slice expired).

• w: Number of waits: times that the program was context-switched vol-
untarily, for instance while waiting for an I/O operation to complete.

Unlike time , which displays information of a single process, vmstat , however,
displays the information of the whole system. The following output from vm-
stat is presented in this chapter:

• us: Time spent running non-kernel code. (user time, including nice time)

• sy: Time spent running kernel code. (system time)

• id: Time spent idle. Prior to Linux 2.5.41, this includes IO-wait time.
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• wa: Time spent waiting for IO. Prior to Linux 2.5.41, shown as zero.

• in: The number of interrupts per second, including the clock.

• cs: The number of context switches per second.

4.1 CPU-bound Process

4.1.1 Single CPU-bound Process

Before starting running multiple processes in the system, an individual pro-
cess is repeated for 400 times. Then 400 occurrences of elapsed time, user time,
system time, CPU percentage, involuntary context switch and voluntary con-
text switch are presented here to give a bottom line of comparison.

Elapsed Time
The following figure 4.1 shows differences of elapsed time of a single
CPU-bound process toward O(1) and CFS.
As the graph shows, the elapsed time of CFS is slightly greater than that

Figure 4.1: Elapsed Time of Single CPU-bound Process

of O(1). To be more precise, the average of elapsed time of CFS is 4.6311,
1.72% greater than that of O(1), which is 4.5529. The difference between
this two groups of data is moderate and small. A statistical test should
indicate whether these differences could have been produced by chance.
In this chapter, t.test is used. The following table is the result from t.test
of above two group data.

Welch Two Sample t-test
data: cfs_elapsed_400_seq and o1_elapsed_400_seq
t = 6.8613, df = 755.846, p-value = 1.422e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
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0.05582581 0.10057419
sample estimates:
mean of x mean of y
4.631175 4.552975

The null hypothesis here is that the elapsed time is the same in both groups.
As the result shows, the p-value is 1.422e-11, less than 0.05. Then the null hy-
pothesis is rejected which means that the true difference between not equal to
0. The t.test indicates that from the statistical point of view, there is indeed
difference between CFS and O(1), and obviously, CFS costs more elapsed time
than O(1).
The other thing that can be seen from the figure is that the curve of O(1) has
more outliers, which indicates that there are more processes that are not well
scheduled. To be more precise, the standard deviation of O(1) is 0.1702, greater
than that of CFS which is 0.1408.

User Time
The following figure 4.2 shows differences of user time toward O(1) and
CFS.
The figure demonstrates that, the user time of CFS is greater than that of

Figure 4.2: User Time of Single CPU-bound Process

O(1). To be more precise, the average of user time of CFS is 4.6252, 1.68%
greater than that of O(1), which is 4.5484. Just like that of elapsed time,
there is slight difference between two schedulers. Also, the O(1) has more
outliers, which indicates that O(1) scheduler is not as stable as CFS. When
tests are repeated, both CFS and O(1) show similar user time as this figure
demonstrates.So, in the following section, the user time of both schedulers
are not presented anymore.
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System Time
The following figure 4.3 shows difference of system time toward O(1) and
CFS.
As the figure shows, the system time of CFS is a static value, which is 0.

Figure 4.3: System Time of Single CPU-bound Process

That means that the processes spend no CPU time in the kernel model.
However, for O(1) scheduler, there is a very small number of processes
that cost system time. To prove that this is not caused by chance, the test
are repeated, and the result is almost the same. So CPU-bound process
does cost system time when it is scheduled by O(1), and cost no system
time when it is scheduled by CFS.
As known to all, the user time is the time of process that is spent in user
model, which doesn’t interfere other processes. The system time is the
time of process that is spent in the kernel model, which should be avoided.
The same is for the scenarios when there is a number of a process running
in the system. The system time of CFS is always 0, while for O(1), the
outliers occur. So, in the following section, the system time of both sched-
ulers are not presented anymore.

Involuntary Context Switch
The following figure 4.4 shows the involuntary context switch. As de-
scribed in the background section, the involuntary context switch is the
number of times the process was context-switched involuntarily (because
the time slice expired).
As the figure shows, the curve of CFS and O(1) are overlapped with each

other. However, the curve of CFS has strong volatility, or it is bustier than
that of O(1). This means that the number of involuntarily switched in CFS
varies a lot, while this number in O(1) is generally the same. However,
there are three spikes in the curve of O(1), which means that O(1) sched-
uler sometimes scheduled a process more than it should be. To be more
precise, the average of CFS is 13.6, while the average of O(1) is 13.4825.
The standard deviation of CFS is 3.24, while the standard deviation of
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Figure 4.4: Involuntary Context Switch of Single CPU-bound Process

O(1) is 2.12. This means, that for a single CPU-bound process, the number
of the times it is switched by CFS and O(1) are almost the same, but the
curve of O(1) is relatively flat.

Voluntary Context Switch
The following figure 4.5 shows the the voluntary context switch. As de-
scribed in the background section, the voluntary context switch is the
number of times the process was context-switched voluntarily, for exam-
ple, waiting for I/O.
As the figure shows, the voluntary context-switch of CFS is a fixed value,

Figure 4.5: Voluntary Context Switch of Single CPU-bound Process

which is 13, while this number of O(1) has strong volatility, which varies
from 10 to 5. To be more precise the average of CFS is 13, and standard
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deviation is 0. The average of O(1) is 5.47, and the standard deviation is
1.11. This means, when a CPU-bound process is scheduled by CFS, it has
more stable and greater voluntary context switch, while O(1) has smaller
but more unstable voluntary context switch.

CPU Percentage
The following figure 4.6 shows the CPU percentage. As described in the
background section, this is the percentage of the CPU that processes got,
computed as (%U + %S) / %E. One term of the performance of scheduler

Figure 4.6: CPU Percentage of Single CPU-bound Process

is the efficiency, which means how busy it can make the CPU be. As the
figure shows, both schedulers keep the CPU as busy as to 99.0%. This
means, both schedulers has good performance to keep CPU busy.
The above figure tells the information about scheduler when there is sin-
gle CPU-bound process running in the system. The next section will de-
scribe the result when there are a number of CPU-bound processes run-
ning in the system.

4.1.2 Processes with Same Priority

The results from 1 single process offer a base line for the comparison. The next
part presents the results of multiple results. Results from multiple simultane-
ous processes with same priority are shown in this section. The next section
will cover results from multiple simultaneous processes with different priori-
ties. The number of simultaneous processes increases from 100 to 1000.

Elapsed Time
The following figure 4.7 shows the elapsed time of 100 simultaneous CPU-
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bound processes from one test.
The figure demonstrates that, the elapsed time of CFS is greater than that

Figure 4.7: Elapsed Time of 100 CPU-bound Processes

of O(1). To be more precise, the average of CFS is 466.66, 4.0% greater than
that of O(1), which is 448.65. The figure also shows that the curve of O((1)
has strong volatility than that of CFS. To be more precise, the standard
deviation of O(1) is 4.45, while this number of CFS is 1.90. This means,
this 100 simultaneous CPU-bound processes have more fair CPU share in
CFS than that in O(1).

Involuntary Context Switch
The following figure 4.8 is the comparison of involuntary context switch.
As the figure shows, there is huge difference between CFS and O(1) with

Figure 4.8: Involuntary Context Switch of 100 CPU-bound Processes

respect to involuntary context switch. The average involuntary context
switch of CFS is 1573.53, while this number of O(1) is 67.47. This means,
when there are 100 simultaneous CPU-bound processes in the system, ev-
ery process will be switched for 1573.53 times by CFS scheduler, and 67.47
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times by O(1) scheduler.
The standard deviation of this number is 31.87, while 18.36 with O(1). Al-
though the standard deviation of CFS is greater than that of O(1), consid-
ering the value of average, the data of O(1) have stronger volatility than
that of CFS. To measure this, the coefficient of variation is needed here. It
measures relative variation, whereas the standard deviation is a measure
of absolute variation, and is a way of comparing the variation between
different sets of data. The formula of coefficient of variation is:

coefficient of variation = standard deviation / mean(average)

So, in this case the coefficient of CFS is:

31.87/1573.53 = 2.02% (4.1)

The coefficient of O(1) is:

18.36/67.47 = 27.21% (4.2)

So, in spite of that the standard deviation of CFS, also known as the ab-
solute variation, is larger than that of O(1), the coefficient of variation of
CFS, also known as relative variation is much less than that of O(1). This
means that CFS is really scheduling processes more fairly than O(1).

Voluntary Context Switch
The following figure 4.9 shows the voluntary context switch of above test.
As the figure shows, the curve of voluntary context switch of both sched-

Figure 4.9: Involuntary Context Switch of 100 CPU-bound Processes

ulers keep flat, which means for those 100 simultaneous procession the
system, they have similar times of voluntary context switch respectively.
Compared with Figure 4.5 which shows the voluntary context switch of
one process, the voluntary context switch doesn’t change with the num-
ber of simultaneous process.
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As for other output from time utility, such as user time and system, the
number of processes doesn’t change the value of them. And for the CPU
percentage, it goes down to 1% in the case of 100 processes, and becomes
0 when number keeps increases. Since those output from both schedulers
are the same, they are not presented.
The above is the results from 100 simultaneous processes, which is the
fist group; the last group is the results from 1000 simultaneous processes.
Between them, tests of 200, 400, 600 and 800 simultaneous processes are
done, however, those results are not shown individually but as a sum-
mary at the end of this section.

Elapsed Time
The following figure 4.10 is the comparison of elapsed time of 1000 simul-
taneous CPU-bound processes.

As the figure shows, there are two main difference between the curve

Figure 4.10: Elapsed Time of 1000 CPU-bound Processes

of CFS and O(1). First, the elapsed time of CFS is significantly larger
than that of O(1). To be precise, the average of CFS is 4634.90, 156.5 sec-
onds higher than that of O(1), which is 4478.39. This means that for those
1000 simultaneous processes, they take more time to finish when they are
scheduled by CFS than by O(1). Second, the curve of O(1) is much more
fluctuant than that of CFS. On the other hand, O(1) has much stronger
volatility than that of CFS. This means that for those 1000 simultaneous
processes, they are more fairly scheduled by CFS than O(1).

Involuntary Context Switch
The following figure 4.11 is involuntary context switch of 1000 simultane-
ous processes.
As can be seen from the figure, there is huge difference between O(1) and
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Figure 4.11: Involuntary Context Switch of 1000 CPU-bound Processes

CFS. First, the involuntary context switch of CFS is much greater than
that of O(1). This is the same with 100 simultaneous processes scenario as
shown in the figure 4.9 . The average of involuntary context switch of CFS
is 1564.34, and 78.76 with O(1). The standard deviation of both scheduler
is 53.57 and 25.03. The coefficient of variations of both schedulers is:

CFS : 53.57/1564.34 = 3.42%O(1) : 25.23/78.76 = 32.03% (4.3)

So, it shows that CFS has much higher involuntary context switch than
that of O(1), but it schedules processes more fairly than that of O(1). As
for the voluntary context switch, it doesn’t increase with the number of
process. So this part of result is not shown here.
The above results are form two scenarios, 100 simultaneous processes and
1000 simultaneous processes. The next part lists all the summaries of re-
sults from all the scenarios, 100, 200, 400, 600, 800 and 1000.

Elapsed Time
The following figure 4.12 shows average elapsed time of 100, 200, 400, 600,
800 and 1000 simultaneous processes.
As the figure shows, quite obviously, CFS has greater elapsed time than

Figure 4.12: Average Elapsed Time of O(1) and CFS
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Figure 4.13: Difference of Elapsed Time

Figure 4.14: Difference of Elapsed Time per Process

O(1) in each scenario. The difference of elapsed time is also increasing
with the number of process as the above figure 4.13 show.

However, the difference of elapsed time per process is decreasing when the
number of process increases from 100 to 800 as can be seen in the figure 4.14.
This means that the CFS is trying to catch up with O(1) to reduce the difference
per process. But, this tendency stops at the point of 800, which means that CFS
again starts to fall behind of O(1).

Back to the figure 4.12 , it also shows that, both CFS and O(1) follow almost
linear distribution, as the following figure 4.15 shows. This means, both sched-

Figure 4.15: Average Elapsed Time of O(1) and CFS

uler scale well when the number of processes increases from 100 to 1000.
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The next figure 4.16 shows the standard deviation of elapsed time of CFS and
O(1).

As the figure shows that, the standard deviations of elapsed time of both

Figure 4.16: Standard Deviation of Elapsed Time of O(1) and CFS

schedulers increase. The differences are, first, the standard deviation of CFS
increases slightly with a linear distribution. However, the standard deviation
of O(1) elapsed time doesn’t follow exactly linear distribution. To be more pre-
cise, when the number of process increases from 100 to 600, it follows linear
distribution. But when the number of process increases from 800 to 1000, the
standard deviation of O(1) jumps sharply. This means that, at the point of 800,
the O(1) scheduler begins to suffer from such amount of processes, and can
not manage to be make processes fair to each other as well as before.

Involuntary Context Switch
The following figure shows the involuntary context switch.
As can be seen from the graph, the involuntary context switch of CFS is

much greater than that of O(1). What is the same for both schedulers is
that this involuntary context switch doesn’t change with the number of
process.

4.1.3 Processes with Different Priorities

In this scenario, all the simultaneous processes in the system are divided into
two groups. One group is called normal; the other group is called nice. All
the processes in the normal group have default priority, and all the processes
in the nice group have a nice value of 10, which means nice processes have a
lower priority compared with normal. The same number of nice and normal
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Figure 4.17: Average of Involuntary Context Switch of O(1) and CFS

processes will run in the same time in the system. The total number of simul-
taneous processes increases from 100 to 1000.

Elapsed Time
The following figure 4.18 shows elapsed time when there are100 nice pro-
cesses and 100 normal processes, in total 200 simultaneous processes in
the system.
The figure shows quite a lot differences between CFS and O(1).

Figure 4.18: 200 Processes of Nice and Normal Elapsed Time

• First, CFS nice and CFS normal are located at the top and at the bottom of
the graphic, which means the difference between CFS nice elapsed time
and CFS normal elapsed time is greater than that of O(1).

• Second, the CFS nice is greater than that of O(1), and CFS normal is less
than that of O(1), which means , with the same nice value of 10, nice
processes in CFS are much nicer to normal processes than that in O(1).
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• Third, compared with nice elapsed time, both CFS normal elapsed time
and O(1) elapsed time have stronger volatility, especially, the curve of
O(1) normal elapsed time is the most fluctuant one.

Compared with the scenario which also has 200 processes with same priority,
as the following figure 4.19 shows, the CFS nice elapsed time is larger than CFS

Figure 4.19: Elapsed Time of 200 CPU-bound Process with Same Priority

elapsed time with the same priority of processes. But for O(1), the nice elapsed
time is approximately the same with that of with same priority of processes.

The flowing 4.1 table shows the average and standard deviation of elapsed

Table 4.1: 200 Processes Elapsed Time

CFS O(1)
Value same nice normal same nice normal

average 928.433 946.06 520.729 898.04 907.93 672.516
stdv 2.88914 1.38591 4.82604 17.5827 2.66151 26.4716

time with respect to CFS and O(1) both in same priority scenario and different
priorities scenario.
The next figure 4.20 shows the involuntary context switch of 200 processes
with 2 different groups of priorities. As the figure shows, first, nice processes
have larger involuntary context switch, which means that a nice process is
switched more times than a normal process for both schedulers. Second, the
difference between nice and normal of CFS is large, however, the difference
between nice and normal of O(1) is quite small.
Compared with the same scenario which also has 200processes with same pri-
ority, as the following figure 4.21 shows, The nice involuntary context switch
of CFS with nice processes is larger than that of processes with same priority.
Besides, the involuntary context switch of normal process is smaller than that
of processes with same priority. While for O(1), involuntary context switch for
nice processes, normal processes and processes with same priority are approx-
imately the same.
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Figure 4.20: Involuntary Context Switch of 200 Nice and Normal CPU-bound
Process

Figure 4.21: Involuntary Context Switch of 200 CPU-bound Processes with
Same Priority
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The following table 4.2shows the average and standard deviation of involun-
tary context switch with respect to CFS and O(1) both in same priority scenario
and different priorities scenario.
The above results are form the scenarios of 200 processes. The next part will

Table 4.2: 200 Processes Involuntary Context Switch

CFS O(1)
Value same nice normal same nice normal

average 1559.23 1948.86 1184.18 62.55 107.66 61.33
stdv 19.47 25.29 2.64 12.26 12.49 9.55

list all the summaries of results from all the scenario of 100, 200, 400, 6000, 800
and 1000 simultaneous processes with different priorities.

Elapsed Time
The following figure 4.22 shows average elapsed time of 100, 200, 400, 600,
800 and 1000 simultaneous processes with different priorities.
As the figure shows, first, as the number of processes increase, CFS nice

Figure 4.22: Average of Elapsed Time of Nice and Normal Processes

elapsed time has largest value, then O(1) nice, O(1) normal and CFS nor-
mal. Second, the difference between nice and normal increases with the
number of processes. Third, the difference between nice and normal of
CFS is larger than that of O(1). The figure tells that, when the number of
process increases, for single process with the same nice value, it is getting
nicer to the normal process by giving more CPU share to normal pro-
cesses.
The next figure 4.23 shows the difference between average nice and nor-
mal elapsed time.
As the figure shows, when the number of process increases, the difference

of nice and normal also increases. Both CFS and O(1) have approximately
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Figure 4.23: Difference Between Average Nice Elapsed Time and Average Nor-
mal Elapsed Time

the same trend. However, CFS have larger difference between nice and
normal than that of O(1).
The next figure 4.24 shows the standard deviation of elapsed time of all
the scenarios.

As the figure shows, the standard deviation of elapsed time with CFS

Figure 4.24: Standard Deviation of Elapsed Time of Nice and Normal Processes

keeps approximately the same. But for O(1) normal, the value keeps in-
creasing with the increment of number of process. This means, when the
number of process increases, the normal process are scheduled more and
more unfairly, because they are getting more unfair share of processing
time.
The next figure 4.25 shows the difference of standard deviation of nice
elapsed time and normal time. As the figure shows, when the number of
process increases, the difference between nice and normal of CFS keeps
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Figure 4.25: Difference of Standard Deviation of Nice Elapsed Time and Nor-
mal Elapsed Time

almost the same. However, for O(1), the difference is increasing.
The next figure 4.26 shows the average of involuntary context switch of
100,200,400,600,800 and 100 simultaneous processes with different priori-
ties.
As the figure shows, the involuntary context switch for CFS and O(1)
keeps almost the same. This means, no matter how many processes in
the system, the number of times of switched by scheduler keeps the same.
Both schedulers scale well with the increment of process.
The next figure 4.27 shows the standard deviation of involuntary context
switch.
The graph demonstrates that CFS not only has greater value of average in-
voluntary context switch but also standard deviation of involuntary con-
text switch, no matter those processes have the same priority or different
priorities.

Figure 4.26: Average of Involuntary Context Switch of Nice and Normal Pro-
cesses
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Figure 4.27: Standard Deviation of Involuntary Context Switch of Nice and
Normal Processes

4.2 I/O-bound Process

4.2.1 Single I/O-bound Process

First, results from the scenario of single I/O-bound Process are presented in
this section. Outputs from time utility and vmstat are also shown in this sec-
tion.
The following figure 4.28 shows the elapsed time of 1 bonnie++ process of CFS
and O(1). There are two main differences from the figure toward CFS and O(1).

Figure 4.28: Elapsed Time of 1 Bonnie++ Process

First, the elapsed time of O(1) is significantly larger than that of CFS. Second,
the curve of O(1) has stronger volatility than that of CFS, which means O(1)
can’t promise same result from same process, which makes O(1) performance
difficult to predict. However, for CFS, the elapsed time keep almost the same,
which shows scheduler is much stable than O(1).
The next figure 4.29 shows the user time of both schedulers.
As the figure shows, the user time of bonnie++ process is significantly small

compared with CPU-bound process, as shown in the figure 4.2 . However, the
system time is just opposite. As the next figure 4.30 shows, the system time of
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Figure 4.29: User Time of 1 Bonnie++ Process

bonnie++ process is larger than that in the CPU-bound process, as shown in
the figure 4.3 .

This means, for pure I/O-bound process, much of the time is spent in the

Figure 4.30: System Time of 1 Bonnie++ Process

kernel model.
The next figure 4.31 shows the involuntary context switch of both schedulers.

As the figure shows, CFS has larger involuntary context switch, while the
curve tends to be flatter. This means, for the I/O-bound process, it is sched-
uled more times than that of O(1).
Compared with that involuntary context switch of CPU-bound process, as
shown in the figure 4.4 , the involuntary context switch of I/O-bound process
is much much higher. This means, for both schedulers, I/O-bound process is
more times switched than CPU-bound process. And again, CFS has more in-
voluntary context switch than O(1).
The next figure 4.32 shows the percentage of CPU of both schedulers.
bonnie++ process of CFS and O(1). Unlike CPU-bound process, which takes all
the CPU, the I/O-bound process doesn’t full CPU. For CFS, the process takes
about 48%, and for O(1), process takes about 20%.
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Figure 4.31: Elapsed Time of 1 Bonnie++ Process

Figure 4.32: Percentage of CPU of 1 Bonnie++ Process
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4.2.2 Multiple I/O-bound Processes

The above result is the base line for multiple processes. Results from 2, 4, 6,
8,10,15 and 20 processes are presented as follows.
The following figure 4.33 shows average elapsed time of bonnie++ process.
There are four curves in the graphic, the red curve is the average elapsed time

Figure 4.33: Average of Elapsed Time of Bonnie++ Process

of CFS, and the blue one is the elapsed time of O(1). Both curves go up with
the increment of number of process. There are also two black lines, they are
two exponential trend lines of CFS and O(1). As the figure shows, both CFS
and O(1) follow approximate exponential distribution based on the data trend.

The next figure 4.34 shows the standard deviation of elapsed time.
As can be seen from the figure, up to 10 I/O-bound processes, the standard de-

Figure 4.34: Standard Deviation of Elapsed Time of Bonnie++ Process

viations of both schedulers are quite close to each other. After that, CFS shows
a higher standard deviation than O(1), which means O(1) schedule I/O-bound
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process more fairly than CFS! The next figure 4.35 shows the average of invol-
untary context switch.

The figure demonstrates that CFS has a higher involuntary context switch,

Figure 4.35: Average of Involuntary Context Switch of Bonnie++ Process

which means the I/O-bound prices is scheduled more times in CFS than in
O(1). However, the voluntary context switch of both schedulers is a constant
of 0, no voluntary context switch for both of them. The next figure 4.36 shows
average of CPU percentage.
Compared with figure 4.35 , which shows the value of how much CPU a sin-

Figure 4.36: Average of CPU Percentage of Bonnie++ Process

gle I/O-bound process get, this figure shows that this value decreases when
the number of process increase. This is reasonable, since the more processes,
the less CPU percentage. However, this is quite different from CPU-bound
process, as shown in the figure 4.6 , in which, as can be seen that both sched-
ulers consume almost 100% CPU. As discussed in the background chapter,
I/O-bound process doesn’t consume much CPU. This is the same for both
scheduler. The difference is that, CFS consume more CPU than O(1) as the
above graph shows.
The next part shows results from vmstat , which displays information of the
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whole system. The next figure 4.37 shows the average of time spent idle.
There is significant difference between two schedulers as shown in the graph.

Figure 4.37: Average of Idle of Bonnie++ Process

The idle time of O(1) is quite smaller than CFS, which means there are idle
time in CFS. Further more, the idle time of O(1) goes down to almost zero
when there are 8 I/O-bound processes, while CFS still has some part of CPU
idle. Generally speaking, it is not good to keep CPU idle because people want
CPU works as hard as possible. However, even thoungH CFS has much higher
idle time, the difference of elapsed time between them are not as impressive
as idle time. The above data strongly back up the point that CFS has better
performance than O(1).
The next figure 4.38 shows the number of interrupts per second, including the
clock.
It is quite clear from the figure that, first, O(1) comes up with more interrupts

Figure 4.38: Average of Interrupts of Bonnie++ Process

than CFS; second, both schedulers scale well with I/O-bound process. The
number of interrupts of both schedulers keeps almost unchanged.

4.3 Mixed-I/O-CPU Processes

This part, both CPU-bound and I/O-bound processes are running at the same
time. Compared with only CPU-bound or I/O-bound process competing sys-
tem resources, the result will show us how schedulers schedule different types
of processes.
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4.3.1 CPU-bound Processes Results

The next figure 4.39 shows the elapsed time of only 50 CPU-bound processes
in the system, and elapsed time of 50 CPU-bound processes together with 10
I/O-bound processes in the system.
As we see from the figure, in O(1), the elapsed time of CPU-bound processes

Figure 4.39: Elapsed Time of CPU-bound Process and Mixed Process

vary a lot when they are competing with I/O-bound processes, which means
the CPU-bound processes are much affected by I/O-bound processes. How-
ever, for CFS, it still can keep those processes be fair to each other.
The next figure 4.40 shows the involuntary context switch of only 50 CPU-
bound processes in the system, and elapsed time of 50 CPU-bound processes
together with 10 I/O-bound processes in the system.
As can be seen from the figure, the involuntary context switch of CFS is much

Figure 4.40: Involuntary of CPU-bound Process and Mixed Process

greater than that of O(1) in both scenarios. And CFS_Mixed and O(1)_Mixed
show stronger volatility compared with CFS_Pure_CPU and O(1)_Pure_CPU.
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4.3.2 I/O-bound Processes Results

The next figure 4.41shows the elapsed time of only 10 I/O-bound processes in
the system, an elapsed time of of 50 CPU-bound processes together with 10
I/O-bound processes in the system. It is difficult to tell the difference from

Figure 4.41: Elapsed Time

the figure, since all the curves are so overlapped. But the average of them,
as the next table shows, that for both schedulers, the elapsed time goes down
from from the situation where there are only I/O-bound processes to the situa-
tion where there are both I/O-bound process and CPU-bound process. This is
weird, since there are 50 more CPU-bound process in the system, the elapsed
time should goes up.

Table 4.3: Elapsed Time

I/O-bound Process Mixed Process
CFS 658.6824 636.0812
O(1) 668.3195 584.2723

The next figure 4.42 shows the involuntary context switch of only 10 I/O-
bound processes in the system, and involuntary context switch of 50 CPU-
bound processes together with 10 I/O-bound processes in the system. As the
figure demonstrates, for CFS, the involuntary context switch of I/O-bound
process increases from the situation where there are only I/O-bound processes
to the situation where there are both I/O-bound process and CPU-bound pro-
cess.
However, for O(1), the involuntary context switch of I/O-bound process de-
creases from the situation where there are only I/O-bound processes to the
situation where there are both I/O-bound process and CPU-bound process.
This is weird, since there are 50 CPU-bound processes more in mixed situa-
tion, the number of involuntary context switch is expected to go up.
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Figure 4.42: Involuntary Context Switch

Table 4.4: Involuntary Context Switch

I/O-bound Process Mixed Process
CFS 1138,13 1365,82
O(1) 637,51 291,52

4.4 Interactive Process

4.4.1 Editing Process

The next figure 4.43 shows the elapsed time of editing processes.
It is shown that CFS has greater elapsed time than 0(1), to be precise, about

Figure 4.43: Average of Elapsed Time of Editing Processes

30% greater than O(1), as, shown in the below table. Compared with the sit-
uations of CPU-bound process and I/O-bound process, where difference of
elapsed time between CFS and O(1) is relatively small, it can be conclude that
O(1) does have "improvement" with respect to interactive editing process. The
reason, as described in the background part, O(1) has extra bonus for interac-
tive process. The next figure 4.4 shows the standard deviation of elapsed time.
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Table 4.5: Elapsed Time of 100 Editing Process

100 200 400 600 800 1000
CFS 2.8057 5.6834 11.4153 17.1491 22.8872 28.6121
O(1) 2.2012 4.3879 8.7769 13.1774 17.5836 21.9659

(CFS-O(1))/O(1) 27.46% 29.52% 30.06% 30.14% 30.16% 30.26%

It is shown from the figure that, CFS has lower standard deviation, which

Figure 4.44: Standard Deviation of Elapsed Time of Editing Processes

means those editing processes in CFS are more fairly scheduled. But unlike in
the CPU-bound Processes scenario, this difference is very slight.

The next figure 4.45 shows the involuntary of editing processes.
As the figure demonstrates, the difference between CFS and O(1) is quite

Figure 4.45: Involuntary Context Switch of Editing Processes

impressive: O(1) has much greater of involuntary context switch than CFS.
As discussed before, an involuntary context switch occurs when a process fin-
ishes its time slice or when the system identifies a higher-priority thread to
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run. Since all the editing processes have the same priority, and there is no
other user process running in the system, the only reason for context switch
here is that this process has ran out its timeslice. Based on this, it can be con-
cluded that O(1) has much smaller timeslice than CFS when it is coming to
interactive processes.
As shown in other processes, CFS always has greater involuntary context switch
than O(1). However, when it comes to editing process, it is opposite. The back-
ground part describes that O(1) has extra bonus for interactive process. The
interactive process has higher priority

The next figure 4.46 shows the voluntary of editing processes.
The graphs shows that the number of voluntary context switch increases with

Figure 4.46: Voluntary Context Switch of Editing Processes

the number of editing processes for both schedulers, and CFS has greater value
of that than O(1). As it is known that, a voluntary context switch occurs when
a process must wait for the availability of certain resources or an event arrives.
The editing processes waits for data from input from a file, then it doesn’t need
for CPU. A sleep() function is called in the system, which then preempted the
process.

4.4.2 Firefox

In this part, the results from vmstat will be presented as there are 20 firefox
processes running in the system.
The next figure 4.47 shows the context switch.

As the graph demonstrates, the curve of both schedulers just overlaps each
other, which means the number of context switch of both schedulers with re-
spect to Firefox process is approximately the same to each other. In order to
ensure that this result is not produced by chance but has statistical significance,
a t.test is needed here. The null hypothesis in this case is that the number of
context switch of both schedulers is the same. Results of this test is included
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Figure 4.47: Context Switch of 20 Firefox Processes

in the following table:

Welch Two Sample t-test

data: firefox.cfs.cs and firefox.o1.cs
\textcolor {cyan} t = -0.024, df = 83.899, p-value = 0.9809
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-669.7014 653.7479

sample estimates:
mean of x mean of y
2203.512 2211.488

Since the P value is greater than pre specified significance level of 0.05, the
null hypothesis is accepted, which means that CFS and O(1) has no difference
of context switch with respect to Firefox process. The next figure 4.48 shows
the interrupts.
The graph indicates that O(1) has more interrupts than CFS. Also can be seen

from the figure, the interrupt of O(1) starts to increase sharply at the beginning
of the test, when 1 Firefox is started, and begins to fall at the time stamp of 8,
when 2 Firefox process has started. So far, this is the same with CFS. After that,
the interrupt of O(1) keeps the same, while this number of CFS still goes up
and down.

The next figure 4.49 shows the user time.
Quite obviously that O(1) takes more user time than CFS. The O(1) scheduler

has special bonus for interactive process. It spends more time wait for user’s
input from keyboard, mouse or other input devices. However, CFS doesn’t
have that mechanism for interactive, so in this Firefox process, it has less user
time than O(1).
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Figure 4.48: Interrupts of 20 Firefox Processes

Figure 4.49: User Time of 20 Firefox Processes
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Chapter 5

Analysis

This chapter covers the analysis of the whole project, from the methodology
to testing results. The analysis part makes a summary of all the results and
presents what is behind the results.

5.1 Analysis

CPU-bound Process

As can be seen from figure 4.1 and figure 4.2, for single CPU-bound process
CFS consumes more CPU time, both elapsed time and user time. At the same
time, as shown in the figure 4.16 and 4.24, O(1) has much greater standard de-
viation of elapsed time. This applies in every scenario of CPU-bound process
testing, which definitely shows that CFS behaviors as it claims to be, com-
pletely fair to processes. The reason behind it is that, as presented in the back-
ground part, the red-black tree structure switches processes differently from
the priority queue structure in O(1). The results from this part verify the theo-
retical differences between these two schedulers.
But on the other hand, the improvement of the fairness accuracy causes the in-
crease of context switch in CFS. Compared with O(1), this increase is huge, as
shown in the figure 4.8, 4.11 and 4.17. As discussed in the background chap-
ter, switching processes costs time, so the context switch should be reduced
as much as possible. But, from the result of elapsed time, as shown in the
figure 4.12, there is a slight difference of elapsed time between CFS and O(1),
which surprisingly suggests that the number of context switch doesn’t affect
the elapsed time a lot, actual very little. The next figure 5.1 shows that.
In the figure, the blue line is the size of how much CFS context switch is big-

ger than that of O(1); the red line is the size of how much CFS elapsed time is
bigger than that of O(1), and the green line is the size of how much CFS fair-
ness is bigger than that of O(1). The fairness here can be get by the following
equation. Actually, there is no such a definition of fairness, but based on its
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Figure 5.1: Differences of Context Switch, Elapsed Time and Fairness of CPU-
bound Process

meaning, I defined it like this way:

Fairness = 1/StandardDeviationofElapsedT ime (5.1)

So, as the equation shows, the less of standard deviation, the greater the fair-
ness. This definition is simple but reasonable, and does shows the fairness of
scheduler.
As the figure shows, even though the average context switch of CFS is about
25 times bigger than that of O(1), fairness of CFS is about 5 times more than
that of O(1), the average elapsed time of CFS is only about 1.03 bigger than
that of O(1). This suggests that CFS has greatly improved its fairness without
even reducing too much performance of total elapsed time.

As described in the background chapter, the priority of a process plays dif-
ferent roles in CFS and in O(1). In O(1), the priority directly determines how
appropriate a process should be scheduled, as shown in the figure 2.7 and 2.8.
In general, in O(1), higher priority means more frequent of scheduling, and
in CFS, higher priority means longer processing time. This is the theoretical
difference, and the results, as figure 4.18 shows, indicate that lower priority
processes with nice values are much nicer to normal processes in CFS than in
O(1). To make it clear, the following table is filled with elapsed time of nice,
normal and same (which means elapsed time from processes with same prior-
ity) to show the differences between CFS and O(1).

The following column chart 5.2 visualizes the average elapsed time in the
above table.
As can be seen from the chart, there are two things same for both schedulers.

First, for CFS and O(1), nice value and same value are quite close to each other.
Second, normal value is quite far away from same and nice value. There are
also two differences between CFS and O(1). First, both same and nice values
of O(1) are lower than that of CFS respectively. Second, the normal value of
O(1) is higher than that of CFS.
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Table 5.1: Differences between CFS and O(1) withe Respect to CPU-bound
Processes

CFS O(1)
value same nice normal same nice normal

100 average 466.66 467.47 257.51 448.65 453.19 324.13
stdv 1.89 0.90 2.23 4.45 0.97 17.53

200 average 928.43 946.06 520.72 898.03 907.92 672.51
stdv 2.89 1.38 4.83 17.58 2.66 26.47

400 average 1855.39 1863.69 1027.99 1801.24 1816.66 1343.55
sdv 7.91 3.34 7.013 30.30 4.42 44.37

600 average 2781.09 2789.89 1538.83 2701.76 2716.78 2000.14
stdv 10.33 6.49 8.25 45.60 6.46 75.56

800 average 3708.04 3721.89 2053.52 3606.03 3622.34 2680.47
stdv 13.93 7.29 11.80 65.73 8.80 84.90

1000 average 4634.90 4650.92 2565.72 4478.38 4567.29 3368.56
stdv 19.15 9.36 14.33 145.80 10.93 123.64

Figure 5.2: average Elapsed Time of CPU-bound Process
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So, the results indicate that, when there are nice processes in the system, those
nice processes behavior as all the processes are the same, nothing different
from the scenario of same priority process, while those normal processes get
much benefits from schedulers. Besides, since the normal value of CFS is lower
than that of O(1), which indicates that those normal processes benefit more
from CFS than from O(1). So, it can be concluded from above data that, longer
processing time which is the mechanism of CFS, is better than more frequent
scheduling, which is the mechanism of O(1).
The following column chart visualizes the fairness (reciprocal of standard de-
viation) of elapsed time in the above table.
The chart demonstrates that, CFS nice has highest fairness, followed by O(1)

Figure 5.3: Fairness of CPU-bound Process

nice. The next two are CFS normal and CFS same. O(1) same and normal are
at the bottom of fairness. The results indicate that, nice processes are more
fairly scheduled. The reason is that, since nice processes have lower priority
and shorter processing time, which means they are scheduled more times, then
they have greater context switch. So the logic is:

greater_nice_value→ lower_priority → short_processing_time→ scheduled_more_times→
greater_context_switch→ more_fair

And the results just verify this! As the figure 5.4 shows, nice processes have
greater involuntary context switch with respect to CFS and O(1).

Table 5.2 displays involuntary context switch, and figure 5.4 visualizes the data
in the table.

As can be seen from the figure, there are two things same for both schedulers.
First, the involuntary context switch doesn’t change with the number for pro-
cess. Second, the order of size of involuntary context switch is nice, same and
normal. This applies in both schedulers. The reason is that, as described above,
nice processes have shorter processing time and higher involuntary context
switch.
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Table 5.2: Involuntary Context Switch of CFS and O(1)

CFS O(1)
Value same nice normal same nice normal

100 average 1573.53 1935.18 1170.04 67.47 105.78 58.52
stdv 31.87 39.53 20.98 18.36 10.58 8.34

200 average 1559.23 1948.86 1184.18 62.55 107.66 61.33
stdv 19.47 25.29 22.64 12.26 12.49 9.54

400 average 1565.28 1933.96 1168.13 58.21 109.40 64.42
stdv 50.38 30.40 15.05 8.25 10.02 10.58

600 average 1563.028 1938.123 1165.813 58.545 103.93 56.89667
stdv 45.61 81.14 11.57 17.36 6.43 4.31

800 average 1564.02 1928.42 1166.32 67.71 104.74 57.13
stdv 55.36 40.82 12.60 24.98 15.20 5.35

1000 average 1564.34 1930.40 1165.89 78.76 106.49 60.08
stdv 53.57 54.40 11.98 25.03 11.03 6.01

Figure 5.4: Involuntary Context Switch of CPU-bound Process
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5.1.1 I/O-bound Process

As figure 4.33 shows, CFS has greater elapsed time than that of O(1) when
the number of I/O-bound process increases to 15. And before this point, both
schedulers have quite similar values of average elapsed time. To be precise, the
following table is filled with elapsed time of I/O-bound process. As described

Table 5.3: Elapsed Time of I/O-bound Process

O(1) average 23.37 52.43 112.84 182.05 354.42 668.31 1114.09 1497.05
sdv 4.03 5.54 18.01 13.30 51.67 65.33 126.3 250.46

CFS average 9.69 43.12 115.27 168.63 351.92 658.68 1289.88 1696.04
sdv 0.08 7.92 10.84 11.07 57.33 67.80 224.32 231.93

in the background chapter, for I/O-bound processes, they don’t consume lots
of CPU, but spend much time on waiting for I/O requests. So they run very
frequently since they don’t need long timeslice from schedulers.
As shown in the table, when there is single I/O-bound process, the elapsed
time of O(1) is much greater than that of CFS, actually about twice as much
as that of CFS. This difference decreases when the number of I/O-bound pro-
cess increases until there are 10 I/O-bound processes. After that, elapsed time
of CFS becomes greater than that of O(1). As for the standard deviation of
elapsed time, as shown in the figure 4.34, CFS has higher standard deviation
than O(1). This is quite different from the scenario of CPU-bound process,
where CFS has much lower standard deviation of elapsed time, as shown in
the figure 4.16.
Also as the figure 4.37 shows, when there are more than 8 I/O-bound processes
in the system, O(1) has no CPU idle time, while in CFS, there is still about 25%
CPU idle time. One aspect of the performance of scheduler as discussed in the
section 3.2, is the efficiency, which means how efficient scheduler has made
CPU be. This indicates that CFS doesn’t push CPU to work at most when it
comes with I/O-bound process.
The results indicate that O(1) shows better performance handling many I/O-
bound processes, even though CFS succeeds in the situation of single I/O-
bound process.

5.1.2 Mixed Processes

CPU-bound Process
In this part, elapsed time of mixed processes is compared with pure I/O-
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bound processes and pure CPU-bound processes. As shown in the figure
4.39, the elapsed time of 50 CPU-bound processes varies a lot between
pure CPU-bound processes and mixed processes. First, the elapsed time
increases for both schedulers. This is obvious since there are more 10
I/O-bound processes. Second, in O(1) scheduler, CPU-bound processes
in the mixed situation is much affected by I/O-bound processes. As can
be seen that, O(1)_Mixed curve has much stronger volatility than that
O(1)_Pure curve, which means O(1) decreases its performance of fairness
in the mixed processes scenario. However, this doesn’t apply for CFS,
which still shows high performance of fairness to processes, no matter
whatever kind of they are. Meanwhile, for involuntary context switch,
there is also big difference between O(1)_Mixed and O(1)_Pure. As the
figure 4.40 shows. While for CFS, it is not as fluctuant as O(1), which
again shows that CFS higher performance of fairness.

I/O-bound Process
As shown in the figure 4.41, elapsed time of 10 I/O-bound processes both
in mixed scenario and in pure scenario are quite similar to each other. This
applies for both schedulers. As shown in the following table:
It is quite surprising that for both schedulers, the elapsed time in mixed

Table 5.4: Elapsed Time of 10 I/O-bound Processes

I/O-bound Process Mixed Process
CFS 658.6824 636.0812
O(1) 668.3195 584.2723

scenario is less than that in the pure I/O-bound scenario. For CFS, it
decreases from 658.68 to 636.08, and for O(1), it decreases from 68.32 to
584.27. In the mixed scenario, there are 60 processes in total, 10 I/O-bound
processes, and 50 CPU-bound processes, while in the pure I/O-bound
scenario; there are only 10 I/O-bound processes. As the table shows, the
elapsed time just decreases for both schedulers, though there are 50 CPU-
bound processes more.
This is really unexpected result before this project. Generally speaking,
more processes means more total elapsed time. Before trying to dig deep
to scheduler and system to find reasons for the results, a t.test is needed
to make sure that this result is not caused by chance.
The following table shows the t.test result of O(1).

Welch Two Sample t-test

data: o1_pure_io_elapsed_time and o1_mixed_io_elapsed_time
\textcolor[cyan]t = 7.1836, df = 173.418, p-value = 1.924e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
60.9546 107.1398

sample estimates:
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mean of x mean of y
668.3195 584.2723

As the p-value is much less than 0.05, so the null hypothesis, which is that
these two samples are the same, is rejected, which means from statistical
point of view, the results have significant meaning. The same test for CFS,
as shown below:

Welch Two Sample t-test

data: cfs_pure_io_elapsed_time and cfs_mixed_io_elapsed_time
t = 2.8436, df = 163.954, p-value = 0.005029
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
6.907453 38.294947

sample estimates:
mean of x mean of y
658.6824 636.0812

Again, the t.test verifies that the observed differences from tests were not pro-
duced by chance.
The reason, could be that, when the system is busier (mixed case), there is
actually less resource contention because bonnie processes’ I/O requests
get spread out in time more, and don’t happen at the same time. When
there are only 10 I/O-bound processes, they are all effectively waiting for
the same thing and "stepping on each other’s toes". However, reasons
behind this probably are not clear enough. But at least the results indi-
cate that the situation of 10 simultaneous bonnie processes must be very
inefficient.

Interactive Processes

Editing Porcesses
As shown in the figure 4.43, the elapsed time of editing process of CFS is
again greater than that of O(1), just like in all other scenarios. However,
what’s different this time is that the involuntary context switch of O(1) is
much greater than that of CFS just as the figure 4.44 shows. The following
table presents all the numbers in those two figures: As discussed in the

Table 5.5: Editing Processes Results of O(1) and CFS

CFS elapsed time 2.81 5.68 11.41 17.14 22.88 28.61
cs 77.75 156.5 306.66 459.16 611.48 772.3

O(1) elapsed time 2.20 4.38 8.77 13.17 17.58 21.96
cs 227.3 449.67 896.66 1345.01 1791.88 2239.52

background chapter, there is one theoretical difference between CFS and
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O(1) toward interactive process, which is that O(1) has extra bonus for in-
teractive process.
In O(1), when interactive processes run out of time slice, they don’t go to
a lower priority list but still in the active queue. In other words, they have
higher static priority. After all the interactive processes are finished, the
active queue then is swapped with expired queue. So, for those interac-
tive processes, they are kept switched from one to another in the active
queue until all of them are finished. This means, they should have less
elapsed time and greater involuntary context switch. On the other hand,
in CFS, all the processes are treated as fairly as possible, there is no such
mechanism to give convenience to interactive processes. And the results
just verify the theoretical differences between CFS and O(1).

Firefox Processes
The difference between CFS and O(1) is not as significant as in other tests.
As shown in the figure 4.47, there is no difference between CFS and O(1)
with respect to involuntary context switch. The value keeps going up and
down in the figure, because there is time interval of 4 seconds between
every two Firefox process. However, O(1) has greater value of user time
than CFS as shown in the figure 4.49. User time is the amount of CPU
time spent in user-mode code (outside the kernel) within the process, the
real time spent on executing the process. In this case, CFS shows slightly
better performance than O(1).
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Chapter 6

Discussion and Conclusion

This chapter covers the discussion and conclusion of this thesis. The discus-
sion part presents the evaluations of methodology and result, and also sug-
gests the future work. The conclusion part gives a brief conclusion of this
thesis.

6.1 Discussion

6.1.1 Evaluation of Project

Methodology
The purpose of this thesis is to compare two different schedulers. The
comparison consists two parts, the theoretical comparison and the per-
formance comparison. The first part describes the mechanism, and the
second part is to verify what covers in the first part, and also offers a first-
hand reference to people who are going to choose different schedulers.
To compare the performance, different testing plans are designed. The
testing plan in this thesis covers most typical kinds of processes, and all
the other situations can be considered as a combination of different pro-
cesses in this thesis. For each plan, benchmark tool, system utility are
used to saturate the system and record data.
In order to eliminate the experiment errors and make the data reliable, for
all the tests, they are repeated for 10 times, then average and standard de-
viation are presented.

Implementation Problems
O(1) and CFS are in different versions of Red Hat. In order to make con-
trolled variables same to both schedulers, they are installed in two sepa-
rate disks which share same processors and other physical settings.
The testing machine is using a dynamic IP address from a dhcp server
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which causes the problem of ssh connection to the machine. There are
two solutions for this problem. The first one is to set up a crontab job,
which runs a network restart command. So the machine will get same IP
every time. The second solution is to use a tool called ddclient which up-
dates dynamic DNS entries. One can get a free domain name from either
www.dyn.com or www.no-ip.com websites. Once ddclient is configured
with a static domain name, people could set up ssh connection to the ma-
chine through that domain name.
In the Interactive Processes scenario, one problem occurs when running
the editing script. Red Hat 5.7 doesn’t support Perl 5.10 and Expect. One
solution is to upgrade Perl 5.8 to Perl 5.10 by installing source package
from CPAN, and to make a symbolic link to the new Perl version. Besides,
it is also necessary to exclude Perl from yum to to prevent yum from mod-
ifying the new version of Perl.

Result
The results from CPU-bound Processes scenario verifies that the perfor-
mance difference between CFS and O(1) matches the theoretical difference
between this two schedulers. The results from I/O-bound Processes sce-
nario, however, doesn’t strongly support that CFS behaviors as it claims
to be, because both schedulers have quite similar average value of elapsed
time and fairness. Results from Mixed Processes scenario shows surpris-
ing results for both schedulers. The results from editing processes sce-
nario, then shows that CFS has greater elapsed time, but has quite similar
fairness with O(1) towards editing processes. This results also verify the
theoretical design of O(1), which has extra bonus for interactive processes.
For Firefox processes, the data do not show great differences between two
schedulers.

6.1.2 Recommendations

The result section shows scheduler performance varies a lot according to dif-
ferent workloads. Based on the results from this thesis, some recommenda-
tions could be made to system administrators and normal users.
For the workload of CPU-bound processes, CFS is a better choice for system
administrators, because CFS makes every process much more fair to each other
than O(1). On the other hand, from users’ point of view, they only want to fin-
ish their jobs as soon as possible, so O(1) is a better choice.
For the workload of I/O-bound processes, both schedulers show similar per-
formances. However, it is recommended to use mixed process, because in the
Mixed Processes scenario, those I/O-bound processes are processed more effi-
ciently.
For the workload of interactive processes, especially for editing processes, O(1)
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is a better choice for normal users, and CFS is a better choice for system ad-
ministrators.
In general, the results from this thesis could be a reference for scheduler users,
and people should choose different schedulers based on their own needs.

6.1.3 Future Work

This thesis compares two schedulers based on 4 testing scenarios. To make the
comparison more complete, it would be beneficial to add more testing plans.
For example, the future work could use more mixed scenarios, not only to mix
two types of processes, but three and four types of processes. And also in each
mixed scenario, the test could be divided into different priorities groups. Fur-
thermore, the testing plan could be operated in the server environment, for
example, to compare two schedulers in an e-mail server or a dns server.
As discussed in the background chapter, CFS has lots of features for example
group scheduling policy. It would be very interesting to test this feature in real
life. Then more users would be involved in the test, which would be a good
simulation of real case.
There are some surprising results in this project, for example, as described in
the section 5.1.2. The future work could be keeping digging into schedulers
and kernel to find proper reasons for that result.
The future work can also include finding tunable parameter for both sched-
ulers, which is also useful for people who are now using them. By modifying
some settings and testing them, people could find a way to make the best use
of these two schedulers.
Finally, there are some scheduler benchmark tools can be used in the future,
for example Latt and Klogger. Latt benchmarks latency and turnaround time
under various workloads and Klogger logs kernel events into a special log file,
which can be analyzed later.

6.2 Conclusion

The problem statement in the introduction chapter of consists two parts: what
is the difference of two schedulers and which has better performance under
different workloads. And this thesis project has answered the first question
at the beginning by presenting theoretical differences between two schedulers
with respect to structures, algorithms and policies of them. Also this project
has addressed performance differences between both schedulers by presenting
results from different testing scenarios.
For the second question, those two schedulers have their own designs and
features. There is no such an absolute answer about which is better or not.
Just as described in the recommendation section 6.1.2, they should be used in
different ways based on users’ purposes.
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