UNIVERSITY OF OSLO

Department of Informatics

Investigating
Community, Reliability
and Usability of

CFEngine, Chef and
Puppet

Sudhir Pandey

Network and System Administration

Oslo and Akershus University College

May 22, 2012

Investigating Community, Reliability and
Usability of CFEngine, Chef and Puppet

Sudhir Pandey

Network and System Administration
Oslo and Akershus University College

May 22, 2012

Abstract

An investigative study on community, reliability and usability of CFEngine,
Chef and Puppet is represented in this paper. This research study attempts to
quantify software qualities like community, reliability and usability of these
products and analyses the result to figure out if any product stands out in any
of these qualities. Comprehending software characteristics like community ,
usability and reliability is complex operation often making it challenging to
make a quantifiable measurement on them. Research is made in this paper to
explore and make these qualities measurable and quantifiable through the ap-
plication of different statistical and mathematical model. Product popularity
trend, resources available for product, community structure as well as it’s field
support is studied utilizing different sources like Google, Hackers news and
users mailing list. Reliability growth in latest three version of these product
is examined by application of Weibull distribution on data obtained from in-
dividual bug repository. Finally the usability test is conducted to cover both
subjective and objective aspect of user experience on these product to measure
each product’s usability and study the difference in usability offered by each.
This research hopes to pave the way for future research into this area and help
people to comprehend community ,reliability and usability of these products.

Acknowledgments

Foremost, I would like to express my sincere appreciation towards my super-
visor Ismail Hassan for his support , motivation and encouragement. He has
been very supportive and constant source of encouragement through out the
project and course. I couldn’t have imagined a better advisor and mentor for
my masters thesis.

My gratitude to Professor Mark Burgess for his guidance, inspiration and con-
versation providing much valued inputs on everything regarding the project.
His continuous guidance helped me during the time of research and writing
of this thesis and I am very proud to be his advisee.

Thanks to Hrek Haugerud and Kyrre M. Begnum for their guidance and their
excellent efforts to overcome the challenges faced through out the course. I
have learned much from them and the program as a whole.

My sincere thank also goes to Mr Amir Magbool Ahmed, my fellow classmate
Vangelis Tasoulas and my seniors Mr Issac linley, Mr Bishwa Shrestha for tak-
ing their time to carry out the usability test which is part of this research. It
has certainly been an wonderful learning experience for me.

I am also very grateful to be in a good company of fellow classmates. They
have been an excellent companions throughout the course. I would to like
thank them for their good will and collaboration.

Last but not least ,my friends and family have always been there for me. Thank
you for your support.

Contents

(1__Introduction|

[l.1 Configuration ManagementTool|
(2 Motivationl« v v o e e e e e
(I.3__Problem Statements|.

2 Background and literature|
2.1 Open source Assessment Methodologies|.
2.1 Leuven university site and paper|.
222 Comparison by Jarle Bjorgeengen|
2.2.3 University of Netherlands|
ftwar TVIEW| . . o v vt

|g.3.1 Cbbngine|

R33 Chefl

|g.4 Communim
|§.5 ReliaBilitﬂ

251 Models for Reliability]
252 Theory|
R.6 Usabilityl o
.61 UsabilityasQuality]
.62 User Experience Measurement|
.63 ObjectiveMethod].
2.6.4 Subjective Method]
PP 1
BI Community]ot v it
B.I1 Popularityanalysis|.
B.12 Community and Supportanalysis|

[%.2 Reliabilitz]
[3.3 Usa51|it)_7|

B.3.1 Sample size and Test Conduction].

4 Data Collection and Results|
.1 Market share and Resource availability]
411 Usagetrends

N U1 = W

CONTENTS

4.3.1 Data gat 1eringj
43.2 Data Filtering| .

4.4 Usability test|.

4.1.2 Website Popularity|.
4.1.3 Social discussionl
42 Mailinglist| o oo
43 BugRepository|

4.4.1 Completion rate and Task times|

442 Taskdifficultylevel

4.4.3 Usability Problems|

444 SUSscoresl
b1 Communitytrends
b.11 Popularity and Resources available|
5.2 Community Structure].
.21 Analysis frommailing trends|
.22 Analysis of seekersgroup|
b.2.3 Analysis of seekers providers group|
.2.5 Analysis of Data miner script output{.
.3 Reliability| o 0000
b.31 Distribution Fitting]
.32 Reliability growth|
P4 Userexperience|
B.41 Task time and Percejved Easiness|.
p.4.2 Overall productusability|
lb__Conclusion and Future workl
\A__HTML Parser and Crawler
A.1 For Puppet’sMailing List|

A2 For Chef’s Mailing List|

B D iner an keni

100

106
106
110

117

122

Chapter 1

Introduction

Machines needed to be configured in one way or another in order to make
them useful for doing tasks. By configured it basically means installation of
of services and application and many more and this is only the most basic
operation needed to be performed in a single machine. For example to get
a machine connected to the network it needs to be assigned an IP, i.e. it’s
network card needs to be configured. In another scenario, if a computer is in a
network and it needs to play a certain role for example DHCP server, a dhcp
service needs to be running on it and for that a set of files is required by this
service should be configured.

If it is a single machine and the task doesn’t need to be done repeatedly
then it is feasible to carry out such things manually but it is not ideal at least
in the real world as task described above it needs to be done over and over
again. It may be due to machine failure or addition of identical machines in
the network. More organization have machines with different operating sys-
tem and various applications on network thus resulting a heterogeneous envi-
ronment to manage. One has to spend a huge amount of time doing different
adjustment and configuration to make these different system cooperate and
achieve an operational network of machines playing their part. If it is the first
time of set up these things are usually done manually. But what if it is to be
done again and again when new machine gets added to this network and it
breaks the whole set up because of different reason i.e. human errors, hard-
ware failure etc. Hence, not only setting up such environment is difficult and
time consuming but managing them can be a daunting task if it is carried out
manually. More over it is a known fact that IT environment of organization
is dynamic in nature and it is impossible to manage it without some kind of
automation.

With manual way of managing configuration files of machines we have
two problems, the documentation end up in the heads of people and it is not
scalable. Also if a same task to is be done multiple times , it is highly prone to
human error. Even with most careful approach while following the explana-
tory notes, it is always easy to miss the details thus resulting a miss configured
system. So to avoid such problems scripting was used to automate the task of
doing configuration. But the scripting had problem that it was not scalable

1.1. CONFIGURATION MANAGEMENT TOOL

when the network grew as it needs to be modified every now and then to do
new things and was difficult to track as they tend to be scattered all over the
place. The scripts thus introduced the new challenge of itself , that was to
manage the scripts which were meant to manage the different configuration
tiles. Hence configuration management tools like CFEngine , Puppet and Chef
came into existence to get the job done and make life easier.

1.1 Configuration Management Tool

A configuration management (CM) tool is a robot that does work for you,
keeping track of the files, packages, services, and other pieces of machines in
your environment and keeping them up-to-date for you [1]. These tool works
by reading a blueprint document that states how our system should look like
and how individual host in network should be configured. What goes inside
blue print document is dependency analysis and this is further applied by con-
tiguration tool on runtime known as runtime configuration.

Dependency analysis means the task of knowing what things are neces-
sary to get something done. In context of infrastructure architecture it means
putting together the layers of services and make a piece of software component
working in the whole context. For example, a typical web application might
require a running database service and the web service available on a network
etc. The runtime configuration relates to the process of taking all the infor-
mation gathered from the dependency analysis and implementing them in the
system. It involves populating correct configuration files , installing softwares
, starting process etc. And more importantly all of this should be working even
after the system reboot.

By gathering all the information about host configuration in a central repos-
itory, it is trivial task to get the exact copy of such host. Just firing up the con-
tiguration management tool leads it go through the blue print document and
apply minimal changes required for the new hardware and finally get the job
done. Same process applies for the disaster recovery as well. For example in
case of hardware failure, bringing on the new piece of hardware and letting
a configuration management tool do the rest will put the machine back into
business without much work from us. In case of software failure next run of
configuration management tool is enough to get everything back to the desired
state. With the help of these tool greater flexibility is achieved as everything
does not need to be carried out from scratch once it is done. These tools are de-
signed to automate much things as possible and reduces the amount of work
needed to be done by the human.

Configuration management tool also facilitates documentation. Since we
have configuration of each and every thing in a single repository a lot of the
work is already done. We can get a list of machines ,tell what jobs they do, and
exactly how each of them are configured just by inspecting the configuration
files in repository. New hires can have a complete view of our network in it’s
current state without tracking down every machine owner to find out what
exists. Similarly, it is also possible for system administrators to tell the auditors

1.2. MOTIVATION

about the current stage of their network at any time instead of scratching the
head and telling them about installed packages and configurations. It helps
to show what is exactly there within the system, completely eliminating the
guess work to find out retired machines.

1.2 Motivation

Configuration management is essential part of system administration. Au-
tomation of system administration is a must to handle the deluge; else swarms
of system administrators would be needed to handle all these systems [2].
There is a rising demand for configuration management software from large
corporation to small business. An infrastructure based in configuration man-
agement tool helps to layout a solid foundation which enables companies to
achieve faster machine deployment, faster disaster recovery and increased
flexibility. Hence it is essential for these organization to have configuration
management tool to keep their IT infrastructure up and running 24/7 and
achieve agility.

But for implementing the configuration management tool one must first
overcome the initial problem of choosing the right tool. Since adoption of con-
tiguration management tool is an investment of time and money into future, it
is desired that our investment to be fruitful and well paid. We want to be sure
that we picked up the right tool that meets the current need and obviously
be usable and useful in future no matter what the circumstances are. People
want to pick up right technology that can cope up with the changes likely to be
made in their IT infrastructure in future. It will be a pity if we have to make a
switch on to another tool down the road after two years of usage , additionally
at that time it will be virtually impossible and a painful task of switching on
to another configuration management tool as everything in the infrastructure
will be based on it.

Large variety of configuration management tool are available to this date at
various maturity level with different characteristics targeted for different user
groups. But it is easier to name the ”big three” in terms of their development
stage and install base. Namely they are “CFEngine , Chef and Puppet”. All
of them are mature product and is capable of completely handling an IT en-
vironment. Making a choice between one of these is often difficult for a new
user and involves a lot of time and effort in trying to evaluate these products
following different criteria. A number of things are considered by a common
users before being committed to the product and they wonder around in in-
ternet to find their answers. Thus the motivation of this thesis is to examine
various frontiers like Community, Reliability and Usability of these products
providing much information on these topics to users and helping them see the
difference if there is any.

1.3. PROBLEM STATEMENTS

1.3 Problem Statements

Number of articles and papers have been published comparing these products
that can help the user to adopt a configuration management system [3] [4].
There are also papers that guides the users to make a choice from the products
available [5] on basis of various features they provide and the technology they
are build upon. Apart from the underlying technology and features about the
product, users are always keen on knowing the product’s popularity, how big
is it’'s community , can they get their job done using the product , how will
they get support in case of trouble. In addition to these queries users often
have questions about community support, complains about the products and
it’s impact oni.e. on scalability , usability or reliability etc. So there are various
question that comes on a mind of users when it comes to product selection.
They try to find the answer to these kind of question going through forum,
discussion sites , benchmarking and testing the products on their own and
derive conclusion. But every investigation on these products are adhoc process
that ends up in the company documents, kept as private assets which are not
accepted as reliable source of information. Thus the target of this thesis is
to investigate the community, reliability and usability of CFEngine, Chef and
Puppet which can answers majority of the questions, as well as help users to
have a insight into those aspects of these products that has never been exposed
and analyzed before.

Chapter 2

Background and literature

Today the field of configuration management and automation of infrastruc-
ture is a hot topic. It tends to create a heated discussion between the users
that have been exposed to the various tools and loyal to it. Also we can see
a growing number of new solution to address the problem in the field. For
decades this has been the field where the system administrator has been im-
plementing their ad hoc solution to fulfill their need. By inspection of reviews
on the web and papers published we can find out that there exist top three
open source solution that are widely used and popular. These solution are
able to meet the various requirement of infrastructure management as claimed
by their sources and users, also there are active company behind the develop-
ment of these products. Hence we can focus our attention on these products to
do the job of infrastructure management. When it comes to the task of picking
one from these products ,it becomes tricker and often daunting task for system
administrators. It is time consuming process to study their pros and cons and
determine which one best meet the need. Often by a quick search on web pro-
vides the result that are the outcome of individual evaluation technique and
criteria which are some what ad-hoc in nature. Also these results seems to be
heavily influenced by individual requirement and experience. So one cannot
make decisions based in these results, as the broad view in analyzing these
products is not taken into account.

It becomes even more increasingly frustrating when you see contradicting
pieces of information from various source about the same product. Previous
work done on analyzing these products like comparison of the performance
and resource usage [4] or analysis of usability [3] are either too focused in
nature or not following a scientific mechanism that accounts all the aspects
of the product. Since these products are open source, various things can and
need to be in consideration on making a successful evaluation and analysis of
these products.

2.1 Open source Assessment Methodologies

The process to keep a list of criteria on which a open source can to be evaluated
dates back to 2003 which was started by David Wheeler[6]. Since then a num-

2.1. OPEN SOURCE ASSESSMENT METHODOLOGIES

ber of work has been done on this area that resulted various methodologies
for analyzing the open source software. David revised the list in 2011 which
can be found in [7]. At present there exist a lot of methodologies discussed
in wikipedia[8]. The wiki also shows comparison chart between the various
methods. Later ones were developed for addressing the limitation of the older
ones. Among the different methods, the methods like QSOS[9] and OpenBRR
[10] seemed to be consider broad range of software aspects organized in hier-
archical manner. But these also have limitation and not perfect thus the criteria
are constantly revised and updated. At the time of writing the thesis OpenBRR
was being revised to get new list of criteria for analyzing the software which
is a strong evidence a single given methodology cannot be applied in all the
circumstances and methodology must be generic thoroughly revised to meet
the need of dynamic IT industry. Therefore a research was conducted as part
of The European commission funded project named Qualoss [11] for making
a detailed and rigorous assessment methodology comparison between previ-
ously discussed [9] [10] and find out their limitation that is shown clearly in
paper [12]. The paper [12] aimed to drop the bad points from the previous
methods while combining the good points. However the paper contradicts
with our way of viewing the criteria list.

Observing the QSOS , it seems to apply criteria of evaluation in 3 levels.
Using a precise wording in it’s top level , it discusses a list of characteristics in
second level which are straight forward and in third level are a set of metrics
some what repetitive. But the problem with this model is it is rigid and doesn’t
permit addition of more metrics in it’s top level. OpenBRR method organizes
criteria in 2 levels , first level being generic and broad while the second level
is clear in what it want as answer, but quite difficult to measure unless it is
broken up into further metrics that can be measurable. It is because of this
fact many open source software are being evaluated on OSOS methodology
[6]. “But can a method be universal” [12] and each and every open source
software analyzed by using same number of metric under any kind of circum-
stances. The article [12] came up with 3 level criteria list on top of which has a
list from QSOS but it seriously lack the openness of methodology that user is
free to apply. A 3 level criteria list is enough to come of with metrics that can be
used for analysis of software product but the top level must be broad as possi-
ble to incorporate may sub criteria inside it as felt by the user. A custom model
can be constructed we can use the top level criteria from OpenBRR combined
other level of methods discussed in [7] that OpenBRR lacks. Second level cri-
teria from both OpenBRR and QSOS can be used to come up with a definite
model and further split up each criteria in second level to a measurable metric
and precisely describable for all of the tools into account. We strongly believe
after assessment of the tools using this model will be present clear picture and
supply information regarding almost all the thing that user like to know about
these products. Of-course all of the criteria as shown in fig2.3|are generic and
can be applied to any open source software in general. It is easy to get started
with analysis on more generic term and then focusing finally in the specific
particular field where the product is focused.

For a in depth analysis of product it is even important to have a a good

8

2.2. LITERATURE OVERVIEW

understanding of field where the software is used for. A clear understanding
of the problem the software is trying to solve is needed. Are there enough
functionality in the software that makes a product capable of doing what it
takes? Is the architecture of software strong enough to cope up with the future
challenge in that particular field etc. All these kind of question are field specific
and they need to be addressed for making a strong analysis. Fig[2.2|shows the
application specific criteria for analysis

2.2 Literature overview

2.21 Leuven university site and paper

An effective framework for evaluation of configuration management tool was
presented by a the research group from Leuven university for the large scale
system administration conference held in 2010. The framework was then ap-
plied on 11 different the configuration management for analyzing these sys-
tem. The frame work takes 4 main criteria into concern, starting from input
specification which is concerned about the configuration language, secondly
deployment style discussing how the configuration rules get enforced in the
end system. Third criteria is management that focuses on the functionality and
scalability etc of the product. The third being support which discusses about
the documentation etc for these system. The criteria discussed in the paper
is specifically related to configuration management field. The paper is much
helpful in capturing the over all picture of what each of the discussed configu-
ration management solution offers and what one should be looking into con-
sideration in order to choose a configuration management product that suits
his/her need. It provides almost all the needed information one need to know
in order to make a better comparison between the configuration tool and fi-
nally make a evaluation of those products that matches the user requirement.
The level of details focusing configuration tool in this paper is very granu-
lar and elaborative. Different ” well thought” aspects of configuration tool is
discussed as background and based on those aspect the competitive study is
carried out between these tools. Thus it is clearly able to all show those precise
things that is needed to make a good configuration tool and tries to explore if
those things are the available in tools present in the market. The top 4 charac-
teristics, is further divided in to sub categories to give a clear understanding
of scope and area which is explained briefly. The table 2.1 tries to summarize
the result for CFEngine , Chef and puppet from their paper [5]

1. Specification properties

 Specification paradigm which deals with the type configuration lan-
guage and the User Interface the product provides. This language
is used to specify the user intention as configuration specification.
The User interface helps the user to work with the tool implement
the intention into language.

2.2. LITERATURE OVERVIEW

.z | Matirity

Stability
History known problem

{p
Developers /

Activity on bugs
release Activity ‘\[=il

functional activity

.z @ Packaging
Software distribution

Popularity/Market share
Refrebces

Community strength

)
>
o
o
-]
=
o
3

Books

.z | Leadership

leadaer

Core team

management style

1
i

)
>
a2
-
<

J

-

Service

training
support

consulting

iy
L
il

-

Os vendors
Professnalism N
.z = Documentation
; Documnetation / Recentness
.z | Quality assuracnce \ ()
Issues after each realse = Development
— .z | Modularity
-
Int bilit
P —— ustomizability
flexiblity
Professional Service)
Cl'echnological DispenioH i =
.z | Usability .z | Strategy

Figure 2.1: Generic Criteria For Product Analysis

10

2.2. LITERATURE OVERVIEW

(_E Performance)
Deployment
e ™
.= | Execution
[State Verification]
[State Implementation]
N J
e N
.= | Resource Utilization
[State Verification]
[State Implementation]
N J
- J
(_ = Architecture)
[client server implemenation]
Enstalled Components]
)
Security mechanism]
N
e
Language (type, structure)]
N
e
Role Assignment]
N
e
Decision taking mechanismj
N
e
Protocols for communication]
N
- J

.z Functionality

.= | Installation management

(Service managment j

(Application Configuration j

[Virtualization Management j

)
File management]
N
>
Fault tolerant]
N\
>
Agility]
N
)

Reporting and monitoring J

N [

Repository control /versioning

staging (replication)

| |
|

\\
p

self documentation]

)
IT compliance]

.z Scalability

Enteroperability and heteroginity]

[Nodes supported]

Cost analysis

Enstallation and Upgradesj

&

Figure 2.2: Application Criteria For Product Analysis

11

2.2. LITERATURE OVERVIEW

® Abstraction Mechanism is used to provide the details of the abstrac-
tion level that configuration tool can provide to implement the user
desired state. The paper discusses about 6 abstraction level the tool
can provide to deal with the complexity of the infrastructure.

* Modularization mechanism explains the different ways the configura-
tion tool provides it’s user to make the code reusable. One of the
main aspect of using the configuration tool is to avoid repetitive
task, those task can be written as configuration steps using the con-
figuration tool’s respective language and this code now can be use
when ever such task is to be carried out in future.

* Modeling of relation tries to views the infrastructure as a system with
various components holding different relation ship with each other.
It tries to explore configuration tool ability to support these kind of
relationship, so when ever some thing is changed the tool can auto-
matically adjust configuration for other. Thus it reduces error and
down time in the system and facilitates automation. It categorizes
those relation in terms of granularity on basis of instance relation
and arity on basis of one to one , one to many and many to many. It
is a very typical subject to be studied in the configuration tool which
enables the user to determine the tools capability in advance.

2. Deployment properties

* Scalability discusses the ability of configuration tool to adapt to the
changes with the growth of infrastructure. The tool must be able
to provide configuration specification for those large and complex
environment.

* Workflow deals with the planning and executing of configuration
changes. Keeping this into consideration the authors tries to iden-
tify the tools ability to enforce such work flow mechanism that facil-
itates a smooth transfer of the system state with out any disruption.
Smooth transition can be achieved by coordinating the distributive
changes and by preserving the state while making change.

* Deployment architecture describes the architecture used by configu-
ration tool to deploying the input specification. The written down
configuration specification has to be implemented on each machines
, hence configuration tool deploys agent on individual machines
that are controlled centrally or act independently. It also discuss
how these agents obtain their configuration specification i.e. via
push or pull.

e Platform support tend to take the heterogeneity of infrastructure into
account and compare the tool on basis of the number if platforms
they support. Large number of platform support is always desirable
as it plays vital role scalability and interoperability.

3. Management Properties

12

2.2. LITERATURE OVERVIEW

* Usability in this paper takes three main things into consideration ,
Firstly the easiness of the language that enable the user to quickly
switch into these tool. Secondly support for testing the specifica-
tion which lets user understand to see and understand the impact
of specification prior to the implementation in production environ-
ment. And lastly the monitoring the capability of the tool in itself
and possibility of integration with other monitoring tools which en-
ables the user to get information about the current state of the sys-
tem.

* Versioning support helps the user to document and track of their con-
figuration specification. The researchers have tried to identify this
feature in all the 11 tools.

* Specification Documentation is used to point out the ability of the tool
to generate the necessary documentation about the infrastructure
from the configuration specification itself.

e Integration with environment is used to point out the ability of the
configuration tool to consume information from other parts of the
infrastructure in it’s configuration specification. This enables the
users to avoid duplication of information because they need not
have to write the information explicitly for the configuration tool.
Once such case is consuming the users and roles from the LDAP
server.

¢ Conflict management discusses about the possibility of having the
conflicting definition on the configuration specification and the abil-
ity the configuration tool to deal those conflicts. Different kinds of
conflicts like application specific conflicts e.g. cause by binding two
application in same port or Modality conflicts e.g. caused by start-
ing and stopping a service in a same machine needed to be detected
and acted upon.

¢ Workow enforcement can be regarded as the feature built into these
tool that models the workflow while rolling out the configuration
specification. Typically a configuration specification passes through
various phases i.e. Q&A testing etc and also junior system admin-
istrator writing the configuration specification which are to be re-
viewed by senior administrator the code before being rolled out in
production.

* Access control is one of the desired feature in configuration tool that
allows only the relevant person to write and change the configu-
ration specification. The tool should have authentication and au-
thorization of system administrator in place before making changes
and prevent and allow access on configuration specification the based
on their credentials.

4. Support

* Awvailable documentation is used to get a clear picture of the docu-
mentation for the tool on various level. The documentation should

13

2.2. LITERATURE OVERVIEW

be brief and offer less barrier to get the novice user started while
provide the extensive and elaborative material describing all the as-
pects of tool for the experienced user.

o Commercial support helps to quantify the tool can be trusted and be
adopted for use.

¢ Community is important aspect of any configuration tool through
which a lot of information can be retrieved to tackle problems and
for getting suggestion on tools usage. It needs to be active and
lively.

* Maturity for pointing out the stability of the configuration tool.

As seen in the table the survey presents a very detailed background theory
along with the competitive information different aspects of the configuration
tool. The division of the whole task of analysis into 4 categorical views with
unambiguous criteria presents a a clear and easy to flow mechanism. The re-
searchers has also introduced interesting aspect like abstraction mechanism
and levels , work flow methods and conflict management traits that seemed
to be innovative and different from other available methods of analysis. The
exploration of abstraction mechanism can leverage one to understand the true
potential of the configuration tool. However there are some aspects where the
researchers could have done more. For example they have presented a well de-
fined method on which one can study the deployment characteristics but the
knowledge about the translating agent and their method of communication is
not only sufficient. It is essential to know how the decision taking mechanism
is coupled with the implementation of configuration specification, I believe it
presents a much clear picture. The agent can be thin doing only implementa-
tion or Thick doing all the compilation and implementation of the configura-
tion specification. Hence if the agent does all the heavy lifting it can distribu-
tive and scalable as less work is done in server. Knowing only if the agent is
push or pull based is only a small part of information what the agent pulls or
the server is capable to push can present more information. Also if we take a
look at the usability analysis , the researches have ranked the tools difficulty
on their own experience and understandability which is a bit unscientific way
which might not represent the actual experience of the users. The researchers
also have taken scalability into account and have clearly stated they analyzed
this metric on real life use case on a single server handling number of clients.
But this metric need to be analyzed with carefully performed lab experiment
providing same kind of environment i.e. providing same hard ware capability
to all the tools.

The survey clearly lacks to explain the methodology that the researchers
applied to obtain the result. For example the researchers have given their re-
sult of on the community size on purely based on their estimation and their
experience. It have been very useful to get some numbers and trends i.e.
growth/ decay in the community size. Various methods can be implemented
to make a significant research on community size from monitoring the mail-
ing list to monitoring the activities in repository and the user contribution on

14

2.2. LITERATURE OVERVIEW

\ \ CFEngine \ Chef \ Puppet
Specification Properties
Specification paradigm Language Declarative Imperative Declarative
User interface CLI GUI + CLI CLI +GUI
Grouping mechanism | Classes Roles Classes
Abstraction Mechanism Configuration modules | Bundles Cook Books modules
one-to-one

,one-to-many
and,many-to-

many-to-many

one -to-many be-

Relation Modeling between in- .
many between tween instances
. stances
parameters in-
stances
Deployment Properties
Scalability nodes supported more than10K 1000-10K unknown
Work flow Distributed changes supported supported un supported
. . strongl dis- | central server | central server
Deployment Architecture Translation agent tribu’:gec}il needed v needed v
Distribution mechanism | pull pull pull
*BSD, AIX, HP- .
U)? ’ Linu,x Mac *BSD, Linux, Mac | *BSD, AIX,
Platforms ’ L OS X, Solaris and | Linux, Mac OSX,
OS X, Solaris and 5 .
. Windows Solaris
Windows
Specification Management Properties
Usability Tool as a whole medium hard medium
multiple environ multiple environ-
Specification testing dry run P ment with dry
ment
run
. . ts i t-
build in and . . reports A me
o . . easy integration | rics with in each
Monitoring Integration with . . .
with Nagios node and integra-
other tools . . .
tion with Nagois
Versioning support svn or git svn or git svn or git
comments on
structured
comments on | code can gen-
P . comment for .
Specification documentation) code if structured | erate reference
generation of .
. Rdoc can be used | documentation
documentation .
(limited).
. . . run time discov- | run time discov- | crun time discov-
Integration with environment
ery ery ery.
Conflict management modality conflict | modality conflict | unknown.
Workow enforcement no no no.
roles based inside
Access control file path based file path based configuration
specification.
Support
extensive refer- | extensive refer- | extensive refer-
ence documen- | ence documen- | ence documen-

Available documentation

tation on web

1§ite

tation on web
site

tation on web
site.

Commercial support yes yes yes.
Community large and active | large and active | large and active.
maturity since 1993 since 2006 since 2009.

Table 2 1: Summarize result of result conducted inl51

2.2. LITERATURE OVERVIEW

actually using these products. A nice comparison of community size between
puppet and chef is presented in this paper [13]]. Also the researchers kept ma-
turity into concern but fail to mention the significance of maturity i.e. why
was the maturity taken into account at the first place. Knowing how old is the
product does not mean any thing to the users but Using maturity for analysis
of reliability of the product will be a more interesting topic. We can collect
various information from the bug tracker of these tool. A mature product will
obviously provide large number of information about it’s usage. Hence from
it’s history a reliability study can be carried to reach the final point of stability.
More over the paper only provides a brief discussion on specific characteristics
focusing some criteria of the products buts lacks other essential criteria of eval-
uation like total cost of ownership, flexibility and customizability etc. Over all
the paper is nice to get a brief understanding of the field and get a grips of
what is going to be analyzed but a a significant researched can be conducted
in each mentioned criteria to produce a well explained analysis.

There is already an existing comparison [2] that demonstrate the difference
in the language structure of 3 different products highlighting their pro and
cons in brief. But it only provides the top level view which helps the commu-
nity realize their difference in terms of their architecture, language used and
the working mechanism. This is helpful to understand these product putting
them side by side and see the difference but it lacks the level of detail one
wants on these kind of comparison. Neither does it provide a extensive inves-
tigation on the languages of these product nor does it discusses the architecture
in details. While understanding these products it is essential to know the com-
munication that happens between various components of the software, how
different bits and pieces of policy files are linked together and configuration
tiles are generated ,Where are the policy files compiled, what does it take to
make a simple policy files, what are the different things needed and where
do a user need to put those files. Though it’s product specific information it
will be much helpful data in analyzing the usability and deployment charac-
teristics of the product. One must need to play around with each individual
software to have a clear understanding of the product and get the grammar
in grasp in order to document the difference in architecture and language in
detail that can be useful for the community.

2.2.2 Comparison by Jarle Bjorgeengen

A different but an organized model of comparison focusing in specific proper-
ties was made by Jarle Bjorgeengen in making a comparison between puppet
,CFEngine and Redhat satellite in this paper [14]. This study shows how com-
parative study between product can be done be able to show the result that
is easy to understand and perceive. He has done a awesome job by doing a
listing out various aspects that are relevant to configuration management tool
and marking them as present and not present in the products like CFEngine,
Puppet and Redhat satellite. How ever the comparison fails to show the big
picture. By big picture i mean to say a number of things are missing in this
comparison, Questions like how well the product is adopted by the users , how

16

2.2. LITERATURE OVERVIEW

good is the support and documentation of these products are still unanswered.
For the adopting these product for organizational use case commercial sup-
port is absolutely needed and it is good to know on what level, also the other
things that can be taken in to account is the leadership of these products which
clearly influences the road map of the products and innovation. The ability to
contribute in road map and add feature in these products to fulfill some re-
quirement will be a nice addition. It is also helpful to know the frequency of
response to a bug and the patches released for these products. The discussion
about software reliability seems to be clearly missing in the paper. By doing
a historical analyzing of the bugs one can predict the the software reliability
by carrying out some probability analysis. This paper is only the comparison
between three products focusing in specific properties that is common to all
the products and thus shows difference between them.

In 2010 jar le published another paper in which he has implemented a sci-
entific approach for making the resource consumption comparison between
the two products Puppet and Chef. He certainly has succeed in displaying
the better product in terms of resource consumption making a set of repetitive
experiment and finally applying a mathematical model like mean calculation
followed by t-test analysis in the sample data collected from the experiment. It
is able to show the factual data based on the experiment. The paper is success-
fully for what it aims to provide but it doesn’t describe the tools involved in
collection of data from the system. The task like how the resource consump-
tion data was collected is not mentioned at all. The paper shows only the
resource utilization by these product on standalone machine, but since these
tools are mostly used under client server architecture, it is essential to know
about the resource consumption results from both the client side and the server
side. More over the due to different architecture of the the products , resource
utilization study done under a stand lone machine might not portray the over
all resource utilization case. Resource utilization comparison by implement-
ing them to do certain task that resembles IT automation in an organization is
clearly shown but the possible limitation is it cannot cover all the scenarios that
is exercised by configuration management in organization that possibly con-
sumes a lot of resources which can over turn the result. Therefore the possibil-
ity of measuring the performance of these system by bench marking the client
server model is wide open to explore. Even though these product supported
individual machine configuration where each machine in network has it’s con-
tiguration files and they manage themselves ,they were most likely to be used
for centralized management of configuration figuration where a central server
have the all policy files and individual agent in the client machines responsi-
ble for implementing the configuration generated from the policy files. The
compilation of the policy file can take on either client side as in CFEngine and
Chef or in Server side as Puppet. So using this Scalability study can be carried
out get knowledge of the nodes (clients) that each server can handle. The test
involved benchmarking the server daemons of the respective product.

However there were multiple sources [?] [2] , [15] etc. that hinted CFEngine
was the most scalable one when it comes to supporting large number of client
from a single server. While it seems tempting to test the claims of scalabil-

17

2.3. SOFTWARE OVERVIEW

ity it equally poses a limited scope of the research and it’s usefulness to the
community as it kind of known fact and no brainer task as the server side of
CFEngine is light weight and used only for serving policy files to the server.
But we would like to include these criteria and facts as a part of research and
carry out some analysis using it on all the product.

2.2.3 University of Netherlands

Similar study was carried out in university of netherlands by Niek Timmers,
Sebastian Carlier which was focused on usability analysis between the CFEngine
and Puppet. They have defined the usability in terms if adoptability of the
software as the further classification sections like simplicity, reliability scala-
bility etc clearly signifies it. A survey asking questions about the utilization of
these software’s was send to various system administrator. With hands on ex-
perience , result obtained from previous work done and a theoretical analysis
of the product architecture they have tried to come up with the answer. The
project have done a decent job in aggregating high level factors and coming
up with facts available from various sources. The illustration of background
theories involved in these chapter and utilizing it to make a sensible argument
for the evaluation under different factors like reliability scalability etc is a nice
approach. How ever the are significant shortcomings in the work done , we
don’t think the result obtained from the survey can be relied upon as it is based
on the opinion and information from individual. And the information sup-
plied can biased and the statistics can be deliberately changed to give a wrong
impression of the product. Similarly the paper has touched the several high
level factors that can be used to classify the products but haven’t done enough
scientific analysis using some model under each section to make comparison.
The comparison is adhoc and the reasoning to one product better under some
characteristics and vice versa is not sufficient enough. For example the reliabil-
ity of the system doesn’t only depend on the human errors introduced in the
configuration policy files , rather the reliability can to be the measure of error
prediction coupled with the historical evaluation of failure rates i.e. bugs and
analyzing the critical components. Similarly of some mathematical model like
Weibull distribution as in [16] on the metrics collected can be used to make a
scientific reliability measurement.

2.3 Software overview

Although the products like CFEngine, Puppet and Chef are all seen as con-
figuration management solution , they differ in their approach. They all have
unique architecture and decision making process that in-turn applies configu-
ration polices system wide. They all are capable of managing and configuring
all the aspects of the system and quite successful in their field compared to
other products. They all have taking a different route to address the problem
of system administration and automation.

18

2.3. SOFTWARE OVERVIEW

2.3.1 CFEngine

CfEngine is a the outcome of research conducted by prof Mark Burgess, mainly
exploring the topic of configuration management. Mark Burgess is the Earth’s
tirst Professor of System Administrator [17] and winner of SAGE Award 2010
[17]. CFEngine is now available as both free project (core) which have the core
ability to configuration management and a commercial product with addi-
tional features added to the core to meet various organizational need. CFEngine
was the first generic tool of its type for providing context based implementa-
tion of intended state, and has been around since 1993. Since it’s birth CFEngine
has transformed gradually into a mature tool rolling out two major versions
CFEngine 2 and CFEngine 3. CFEngine 2 was first solution of its kinds and
widely accepted and implemented solution through out the industry. Version
3 was rolled out in 2001 as complete rewrite to address the experienced de-
sign demerit of CFEngine2. CFEngine 3 is based on the promise theory which
was also developed by mark burgess. CFEngine uses a declarative language to
write rules for achieving the intended state. The rules are termed as promises
and according to the promises being kept determines the final state of the
system. With CFEngine3 users were able to build modular reusable libraries
of common configuration tasks directly in the configuration language, and a
cleaner separation of data types in the language giving less room for misun-
derstandings. With the introduction of CFEngine 3 the company was formed
to offer the enterprise version of the CFEngine to address the reporting needs
of organization and to help organization achieve various IT compliance stan-
dards like ITIL etc. The commercial version also comes with a set of pre build
configuration policies that are often used for carrying common tasks.

Design

CFEngine is strongly distributed when it comes to deployment. Every node
can run on it’s own and have their configuration files for achieving the target
state. However it is possible to maintain centralized configuration repository
and make each and every machine to take configuration files from the central
server to achieve their target state. It is made possible by the used of dae-
mon called cfserverd. When CFEngine is installed each machine has a set of
daemon running in them that carries of various task like implementing the
configuration , communicating with the central server and making sure the
the compliance is checked at equal interval of time. The dameons can talk to
each other when needed which Mark Burgess terms as orchestration. Due to
these daemon a single machine is self sufficient making it’s architecture dis-
tributive. Also each host utilizes one of these daemon to communicate with
each other in the CFEngine world.

¢ cf-promise: It is a binary that is to be utilized to validate a policy files
manually before making an actual execution. It is helpful in debugging
errors in policy file and making sure that the rules(promises) in policy
file does what it is suppose to do.

19

2.3. SOFTWARE OVERVIEW

e cf-agent: It is the program responsible for executing the codes in the
policy files and implementing in them in the system such that the system
achieves it’s target state. This daemon is ran periodically in some interval
(usually 5 min) so keep the system compliant.

¢ cf-server: This daemon is utilized by CFEngine to share share configura-
tion files and also to receive request from remote machine to execute it’s
local copy of configuration policy files.

¢ cf-exec: It has a similar functionality of crond in the system and is uti-
lized for carrying out scheduling task. The most obvious used case if
this daemon is it is utilized to run cf-agent at every 5 minutes so that the
policy files get executed.

¢ cf-runagent: This daemon is utilized to make request to the remote ma-
chine’s cf-server for running it’s cf-agent. Utilizing this it is possible to
create a push scenario but it all work get completed under voluntary
cooperation between host. A host cannot make a remote host run it’s cf-
agent , it can just request it to do so and then the remote host receiving
the request can carry out the requested activity as per it’s will.

¢ cf-report: It is the binary that is responsible for keep in the output sum-
maries of each run of cf-agent that will used for producing the reports.

¢ cf-know: CFEngine uses this binary for keep track of ‘'who did for what
and when as mentioned” in the policy files. The language gives you
the possibility of mentioning all the possible details about the change
and cf-know constitutes the knowledge based documentation from these
sources that will be useful for future changes to come.

Hence each individual host equipped with these daemons now is capable
of sharing and reeving configuration files , which makes it possible for using
CFEngine to be used in client server model. But here the central server only
shares / transfers it’s file to the client and all the execution of policy files and
implementation takes place in the client. Here the server acts like file server.
File transfer takes as the result of request from the client. Hence it is the pull
model under which the CFEngine works. Clients maintain their local cache
of the configuration files and if any new changes is detected they make a re-
quest to the sever to get the new ones. Client them selves are responsible for
decision making by executing the policy files. This kind of model suitable for
scalability as processing power get distributed across the clients and increases
the reliability as it doesn’t create a single point of failure when central server
dies.

Vocabulary

CFEngine is provides a declarative language to express the intended state of
the system based on the context. Language of version 3 is flexible enough to

20

2.3. SOFTWARE OVERVIEW

declare the expression of intent and the way of implementing it. With the intro-
duction of bundles2.3.1]and bodied2.3.T|it has provision of creating on reusable
module for carrying out common repetitive task. So a configuration code can
be written for one task breaking the whole task into down into modules and
now set of modules from previous task can be used for carrying out new con-
figuration task. It can be a bit overwhelming when one needs to to define the
structure of implementation logic in a reasonable way for facilitating reusabil-
ity from the very first, but the basic building blocks and examples of structured
CFEngine code that can be reused, is widely available in open source repos-
itory like Github. It is also provided a a part of enterprise package thus by
saving time and effort of users.

¢ Promise Every thing is CFEngine 3 can be expressed as promise. They
are the basic and only form of expression in CFEngine. Simply laid out
a promise is configuration rule. CFEngine language has various promise
type that enables users to perform different task. For example if user
wants to work with file he can used file type promise, if it is firing a shell
command he can use command type promise. A promise have promiser
(the abstract object making the promise) , promise e (the abstract object
to whom the promise is made) and set of association called the body of
promise. Combining all the above with promise type once can under-
stand the intent of the promise i.e. what a promise is suppose to do. Lets
have a look at sample policy file which created a file named text.txt and
updates it’s touch time.

21

2.3. SOFTWARE OVERVIEW

1 files: # this is the promise type (e.g. files,

2 # processes, commands, etc.)

3

4 "/tmp/test.txt" # this is the promiser, the part of

5 # the system that will be affected by
6 # the promise.

7

8 create => "true", # This is the promise BODY.

9 touch => "true; #The promise body details and

10 #constrains the nature of the

11 #the promise. It consists of

12 #attributes which have values.

* Bundle and body A Bundle is a group of promises. A promise is capable
of doing a single elementary task i.e., switching the service on or off ,
editing a file etc. Configuring a single application to work can take one
or more of these kind elementary task for e.g. To make a web service
to be available in a system. The package apache needs to be installed,
it should be started and if ssl need to be enabled then it’s configuration
file need to be edited. Hence Bundle allows a grouping of the promises
that are used for completing a the whole task. If designed strategically
elementary task that are repetitive can be converted into promise and
placed in the same bundle such that the same bundle can be used over
and over to carrying out task that involved the elementary jobs repre-
sented by the promise. As seen above the body of promise contains a
set of association. The right side of promise can contain a value or a
function that does the most minute job as possible like inserting in a
file, copying from a server etc. This job can be abstracted in a func-
tion and those function can be utilized many task while carrying out
those task. CFEngine Community Open Promise-Body Library(COPBL)
CFEngine Standard library contains a collection of those functions that
can be reused many time while writing a policy file. It is an interface
layer that brings industry-wide standardization of CFEngine configura-
tion scripting and hides awkward technical details [18]. An example of
body declaration inside the standard library file is presented below used
for copying files from a remote machine is presented below.

body copy_from remote_cp(from,server)

{

servers => { "$(server)" I};
source => "$(from)";
compare => "mtime";

}

This body can now be utilized in promise when ever we need to copy
files from a remote server. The only thing we need to do now is to include
the file containing the declaration of this body file, in this cased we need

22

2.3. SOFTWARE OVERVIEW

to include the standard library file. An example of making use of the
above body is shown below

body common control

{

bundlesequence => { "my_file_copy" };
inputs => { "cfengine_stdlib.cf" };

3

bundle agent my_file_copy
{
files:
"/home/user/tmp/test_dir/file"
copy_from => copy_from remote_cp("/var/cfengine/testdir/file","serverhost"),

}

¢ Classes CFEngine uses classes to determine the context of implication of
policy rules simply answers When and where are promises made, hence
class is basically a context in CFEngine. A policy file contains declara-
tion of many promises. Each promises is declared under certain context
making is applicable under that context only. When a agent executes a
policy files it matches the classes in it ,with the environment variables
like OS name, ip address of the system termed as hard classes. If a con-
text match occurs then only it applies that promise in the machine. A
general class like ‘debian’ represents a set of machines having Debian as
OS. But a Specific class like "10.0_.0.4" denotes only one machine. Thus
the implication of rule in host solely depends upon classes, simply said
if host falls under the declared class the rule is applied other wise not.
Hence care must be given while choosing the class other wise it might
trigger unwanted state implementation in other host of the system. Each
run of cf-agent t discovers and classifies properties of the environment
or context in which it runs. The properties discovered is termed as hard
classes. It is also possible to us combine these classes by using different
logical operation and define a class out of it. These class are termed as
soft classes. Soft classes also can be formed by utilization of special func-
tion which are well documented in CFEngine reference guide. Here are
some examples of hard classes found on a platform by agent run.

any Saturday Hrll Min26 Min25_30 Q2 Hr11_Q2 Day2
August Yr2008 linux atlas 64_bit linux_2_6_22_18_0_2_default x86_64

linux_x86_64 linux_x86_64_2_6_22_18_0_2_default

linux_x86_64_2_6_22_18_0_2_default__1_SMP_2008_06_09_13_53_20__0200
compiled_on_linux_gnu net_iface_lo

And here is an example that shows the utilization of special function for
declaring a soft class and utilizing it in promises declaration.

23

2.3. SOFTWARE OVERVIEW

body common control

{
bundlesequence => { "example" };
}
bundle agent example
{
vars:

"binary" string => "/bin/ls";
classes:

"isexecutable" expression => isexecutable("$(binary)");;

commands:

isexecutable::

"$ (binary)";

}

¢ Policy: They are the name given to the files that contain CFEngine promises
and bundles and body. Hence in CFEngine language the policy files are
the one that contain configuration rules are usually of extension.cf.

Working mechanism

The working mechanism of CFEngine deployed as client server architecture is
described here. Every thing except client server communicating mechanism
hold true if CFEngine is deployed in a single host. As described above each
host installed with CFEngine comes with a set of daemons , if a machine is
to be made server then configuration files under /var/cfengine/masterfiles
will be fetched by other CFEngine clients. Hence a set of files can be checkout
out for any repository source to the /var/cfengine/masterfiles directory. The
server achieve it’s target state by copying it’s file into /var/cfengine/inputs
directory and then executing these files by cf-agent daemon. While executing
cf-agent it checks for difference in the files under Inputs directory and master
directory, if there is any difference the most recent version of files are copied
in the inputs directory and then executed.

For client to get the policies file , they need to boot strap with server utiliz-
ing servers ip. Boot strap process triggers the cf-agent to execute the embed-
ded failsafe policy which will make a request to the cf-serverd of the server
machine to serve the policy files under it’s master directory. The communica-
tion is facilitated by the key exchange between server and client and the trust
is established, this trust will now be utilized when ever the client agent needs
to connect to the server. Now the server’s policy files are now kept under
/var/cfengine/inputs directory and finally get executed. On every run of cf-
agent it check the difference of files and contents between it’s local copy and
the remote copy in server. Incase of difference most recent version is down-
loaded and again kept in /var/cfengine/inputs then executed to make the

24

2.3. SOFTWARE OVERVIEW

system achieve it’s target state. If it cannot get the files from the server then
local copy is utilized to achieve compliance. This makes it quite robust and
fault tolerance as the problem in network doesn’t cause the deviation of client
from desired state. Of course if there will be some deviation if the change was
in server and it was not transferred to client due to some network error but
that will be fixed automatically when the network error is fixed and client is
able to communicate with the server. This makes CFEngine a very adaptive
and flexible product.

2.3.2 Puppet

Puppet was introduced in 2003 by reductive labs. It was basically written
by Luke kanies to achieve productivity and simplicity on the field of infras-
tructure automation. It aims to make the system administrator life easier by
hiding the implementation detail of configuration with a introduction of it’s
declarative language that focuses in getting things done through it’s operating
system abstraction layer (OSAL) [?]. The tool was written out as an alterna-
tive to CFEngine 2 and have tried to focus it’s usability targeting what user
wants to do with this tool rather than focusing on how user should use this
tool keeping operating system details in mind. The basic philosophy behind
the tool is a abstraction layer is required step in providing the best automation
tool,instead of coming up with a new way of handling each OSs messy details.
Puppet facilitates code reusability and modularization through the use of class
inheritance and it’s abstraction layer. When a configuration rule is written in
puppets language some of common generic task can be divided into class and
other class doing specific job can inherit those generic classes and If a rule will
be written for making configuration in one operating system and ideally that
rule can be used in any other environment to do same configuration as all how
to implement that configuration details is handled by the abstraction layer. It
has similar concept like java VM or .net framework which makes it’s possible
to run their code in any environment as long as the frame work is installed.
Though it offers simplicity there might be some cases where the abstraction
of some implementation is may not be defined in abstraction layer, This kind
of situation can limit the product usability however you can get around it by
writing your own implementation logic termed as driver in the ruby code as
puppet itself is written in ruby.

Design

Puppet is built with a focus on client/server configuration within an infras-
tructure. All the configuration rules written in puppets Declarative language
reside in the server termed as Puppet Master. Here the puppet master is cen-
tral point , which does most of the task like analyzing the configuration files
and supplying client specific configuration only to the client by puling the nec-
essary things from it’s manifests and compiling them in catalogues. Thus cat-
alogs are just data in xml format, not an executable code. All the clients must
be connected and trusted by the Puppet master in order to get the catalogs it

25

2.3. SOFTWARE OVERVIEW

need. The clients makes request to the server to get it’s catalog i.e. set of data
that shows the end intended state of it’s resources , so configuration imple-
mentation mechanism is pull based. The puppet agent in client is responsible
for only implementing the things specified in the catalogue once it is obtained
from server in case of deviation from server. Once done, the client can send a
report back to the server indicating if anything needed to change. The puppet
master can also notify it’s client when the configuration files are changed so
that it will trigger request from the client to get the catalog.

This design has some advantage as everything is controlled centrally i.e.
central point of management and client only gets the data file that tells what
it’s resource state should look like. In case of any client is compromised the
whole infract structure is not vulnerable. Also it possible to collect the re-
ports about all the clients centrally as all the client report back to the server.
How ever the demerit of this design is when the puppet master is down the
client cannot monitor itself to stay in a configured state which might lead the
client to undesirable state. This creates a single point of failure commonly seen
client/server architectures. Also can present limitation on number of clients
that can be managed by central server because when number of client grows
the resource utilization of server increases linearly.

Vocabulary

Puppet provides a declarative language whose main purpose is to get the in-
tended state implemented in the system with out caring the implementation
details. Hence it offers simplicity and productivity in writing the configuration
tiles without tangling much the details of platform in which the rule is imple-
mented. This is all made possible with a component called resource provider
in puppet eco-system. Resource provider can be viewed as backend driver
that implement support for a specific implementation of a given resource type
by taking high level parameter while making a resource declaration in the con-
figuration language. But what actually is resource.

* Resource : In puppet’s language resource is objects specified that helps
to manage a single the a component of the infrastructure. Each Resource
typically have a type, a name and a set of attributes that needed to be
implemented. Resource can be thought to be the way of expressing the
most elementary form of our intent. Our intent can be writing to a file ,
executing a command or making a schedule in cron tab etc. The example
below shows the our intent of setting a permission on file. so the re-
source type here is file and it's name is ” /etc/passwd” and it’s attributes
is the associative name value pair parameters follows it’s name that is
applicable to the type file. There are different kinds of resource type that
lets us do wide variety of task like exec for executing commands, cron
for scheduling.

file { "/etc/passwd":
owner => root,

26

2.3. SOFTWARE OVERVIEW

group => root,
mode => 644

The Resource provider must have some kind of knowledge “logic” that helps
it to implement the rules i.e. in different kind of low level context. Ideally
speaking the resource provider is like a translator that translates the high level
puppet DSL language to platform specific implementation details and get it
implemented. It should also be kept in mind that not all resource types have or
need providers, but any resource type concerned about portability will likely
need them. Hence one need to create the resource provider in ruby language
for resource that doesn’t have any resource provider or is unsatisfied with the
provider way of implementing things. It is often useful and easy to use if
the resource provider is found for the resource but when one needs to make
resource provider then it is painful and time consuming task. The path taken
by reductive lab is that whenever one needs a new resource type he/she will
create it and share it so that the community can make use of resource provider.
Also for the resource provider to work it needs to know the type of resource
and the node’s facts.

* Class:Class is a collection of resources. It is one of the way that puppet
achieves encapsulation. Class are just a name given to related set of re-
sources. Basic purpose of class is to hide out implementation detail and
use only the name of the class when in comes to usage. Class can be
inheritable so that the most generic tasks can also be grouped in single
class and inherited in another class for code re-usability. Shown below
is a basic declaration of class including two resources for installation of
apache and make it running.

class apache {
package { apache: install => latest }
service { apache: running => true, requires => package[apache] }

3

¢ Node: Node in puppet resembles a machine and is a special kind of class.
Node is another abstraction mechanism mechanism that enables puppet
to show the intended state on particular machines in uncluttered way.
An example of node declaration is shown below where class apache is
applied to host named test. This way the intended state of each node is
clearly stated masking away underlying classes that takes care of the dif-
ferent levels of implementation. The implemented classes can be nested
many level separating the granularity of the task they perform

node test {
include apache

}

27

2.3. SOFTWARE OVERVIEW

* Modules: A Puppet module is a collection of resources, classes, files,
definitions and templates. The difference between modules and classes
is that class can be global i.e can contains class definition for doing var-
ious task for configuring various application, while module must only
contain definition doing a particular job i.e. configuring one application.
For example When we need to set up a system with apache service then
we need to carry out multiple task like installing apache package, write
some thing in a apache configuration file and finally ensure the service
is on. Modules can generally be thought of as a configuration contain-
ing each of our three core requirements, installation, configuration and
monitoring. Big the task is huge module often can be broken down into
class and sub class but all these classes are coordinated to get a single
big task completed. Puppet looks in the init.pp file under manifest direc-
tory in each and every modules directory under /etc/puppet/modules.
Module provides a way of code re-distribution.

¢ Facts: In puppet the context is provided by a separate component called
fracter. Fracter are installed in the clients and they supply the environ-
ment specific things like OS,version,hw-arch, interface ip-adresses, mac-
addresses and so on called facts’. It is also possible to declared user de-
fined facts in the client. These facts are utilized by the server to pick out
configuration rules related to the hosts. In the example shown below we
are using the fact name operating system to determine the location for
placing the file. Of course it goes beyond the principle of puppet when
you use factes for making decision based on the platform but there are
some cases where we need to make switching that doesn’t depend in the
platform details

file {
name => $operatingsystem 7 {
debian => "/etc/php5/apache2/php.ini",
default => "/etc/php.ini",
}
owner => root,
group => root,
mode => 644,
source => "puppet://php/php.ini"
}

* Manifest: They are the name given to the file containing the configu-
ration rules. So each and every file with puppet’s declarative code for
configuring the infrastructure are puppet manifest and are of extension

‘PP

Working Mechanism

The configuration rules manifest2.3.2 contains the a set of resourced2.3.2|and
classes that specifies what need ed to be configured where. All the manifest

28

2.3. SOFTWARE OVERVIEW

Heports

Figure 2.3: Puppet infrastructure design

reside in the puppet master. The client with puppet agent is responsible for
implementing the states as supplied from the puppet master. Hence in puppet
master there is one daemon running listening to request of puppet client , the
puppet client sends request with it’s node2.3.2l name a list of facts The
facts in client are collected by fracter which is independent ruby library that
collects host specific details like IP address, Operating system name etc.

With the help of the node name and facts supplied from the client , puppet
master now classifies the client and decide which portions of the configura-
tion rues is applicable to the client. While doing the compilation and generat-
ing the catalog for client puppet master goes through different manifest. The
tirst manifest it looks into is site.pp under /etc/puppet/manifest to get then
it goes through nodes.pp under same directory to get host specific configura-
tion. Now it goes through each and every modules init.pp to get all the classes
and under modules defined. After fetching every things from manifest file to
server is now able to compile them into a set of things that need to be done
in xml file called catalog and send to the client. Now the client receiving the
catalog run a query to find out it’s status and if there is any deviation of it’s
state from the catalog it corrects it’s stage to that specific things mentioned in
the catalog. The report about the specific task i.e. the change made is then
supplied in to the server.

23.3 Chef

Chef was introduced in 2009 [2] by Ops code and regarded as young com-
pared to the other two products. Though young it cannot be counted out as it
has been gaining grounds and has established itself to be a top player in short
span of time. Chef was designed keeping ”infrastructure as code ” in mind
such that it exposes obvious flexibility and simplicity to the user for managing
their infrastructure. Chef motto is similar to that of perl language i.e. "There’s
more than one way to do it”. There for Chef provides a Domain Specific lan-
guage(DSL) along with the ruby code can be written which empowers the user

29

2.3. SOFTWARE OVERVIEW

to do much things without cornering themselves. This also have facilitated the
Chef users to achieve flexibility as they can always achieve things in one way
or another which in turn can assist interoperability. No longer is infrastruc-
ture is thought separate concept and a new language need to be learned for
managing them. This has driven chef successfully in the DevOPs area where a
developer can write code for there application and at the same time take care
of infrastructure.

Another simplicity Chef introduces is in order of implementation of rules
as specified in configuration file. Chef has a deterministic behavior when it
comes to applying a configuration rule specifying a component in infrastruc-
ture. This enables the user to visualize what gets executed and applied first
and ultimately help them to debug for errors and apply their existing knowl-
edge about programming in the infrastructure code. Chef allows a list of re-
sources to be declared in their recipes and execute in the same order as they
appear. Chef also uses techniques referred by various terminology to enables
user to make a modular implementation of the configuration rules.

Design

One of the core principle of Chef is “thick client and thin server” but the ar-
chitecture is essentially client server. Chef does much of it’s task like compile
and execution in client. Chef server is central machine where all our config-
uration resides on. Chef Server is responsible for transferring all the files as
asked by the client and it also stores the state of each node i.e. client machines.
This model like CFEngine is scalable because the processing task is distributed
throughout the infrastructure. Client accesses these data stored in the server
with the help of Rest APIL. Chef server is not just the file transferring server
but has lots of other services. These services are need to make communication
with the client devices , letting users interact with server, to store data about
the configuration as well as states of it's nodes and search service that allows to
query for data stored by chef related to infrastructure. Below are the services
that are running in Chef server to make the whole architecture come alive.

e API Service It is this service that each client machine interact with to
manage the node configuration. Machines with chef-client binary are
machines , this binary make communication with Chef server i.e. chef-
server process with the help of REST API calls. User also utilizing this
service while interacting with Chef-server through the used commands
like Knife or Open Source Chef Server Management Console.

* Open Source Chef Server Management Console: It is the web Ul ex-
posed by the Chef server reachable from port 4040. It provides the user
the opportunity to carry out all their infrastructure management utiliz-
ing the web. This service is user password based authentication and
interacts with the Chef Server making REST API calls. Hence essentially
it’'s API Service client that displays configuration data in web page and
lets user to add/modify those data with the help of Web GUL

30

2.3. SOFTWARE OVERVIEW

* AMQP Server: Chef utilizes this component to keep the index of data
stored in it’s backend because chef provides a powerful full text search
about information of infrastructure and applications. Chef uses Rab-
bitMQ as an AMQP server. RabbitMQ provides a queuing service which
stores requests for updates to the search index. This allows the API
server to handle load spikes while maintaining an even load on Solr. Ev-
ery time data is stored in the database, server sends a message and the
data payload to the queue, and the indexer picks it up.

* Search Indexer:The search indexer of Chef is chef-solr-indexer listens to
AMQP for messages about what to index, and then passes the results
to chef-solr. chef-solr is a wrapper around a Apache Solr. This enables
Chef users to make a full-text search to query information about the in-
frastructure and applications Searches are built by the Chef Server, and
allow users to query arbitrary data about your infrastructure.

¢ Data Store: Chef Server uses Couchdb as it’s backend to store all the data
about Infrastructure. The data are in json format and it holds information
on Nodes, Roles and Data Bags.

Hence the setting up a chef server is a complex task and many things need
to be installed and ensured that each of them are running. While it is com-
plex it provides a powerful features like querying the data , using the web UI
to manage infrastructure and through exposing it’s data through REST API
any application can consume it which ensures interoperability in the complex
environment. As described above the Clients only have chef-client installed
in them and interacts with server via REST authenticates via Signed Header
Authentication, down load, compiles and executes configuration rules called
Cookbooks in Chef world.

Vocabulary

Chef configuration is written in pure ruby which is called as chef domain spec-
ify language. So ideally every thing about ruby code can be implemented in
the chef configuration file. Thus chef language is imperative by nature. The
goal of chef was to keep the language very simple by focusing on idempo-
tent resource declaration and at the same time offering the flexibility of 3GL
language [15]. Managing the infrastructure using ruby will be inspiring for a
rubists but it there is still a bit of learning curve for new people. Chef creators
also believes that there is always a learning curve for newbies but the main dif-
ference is when some one hit limitation, they can always find innovative ways
to solve their problem. Chef allows users to write resources in ruby. Resource
can be any thing like file a package etc that need to be configured. These re-
sources can be listed in an order called recipe and chef executes these resource
in the following their written order. Hence chef have a implicit ordering mech-
anism in which it implements things. So if like in conventional programming
the essential things are declared first then followed by the things depending
on it. So with this approach chef manages to achieve convergence in a single

31

2.3. SOFTWARE OVERVIEW

run. Chef uses couple of interesting terminology that are used to reference a
configuration rule or an component of infrastructure. This also be viewed as
the naming convention is done in Chef way.

* Resource: Resource is an component in the infrastructure and it can be
any thing like file to be written, package to be monitored ,or services that
needs to be either switched on or off. A Resource must have a type and
a name and a set of actions that specifies the target state of the resource.
Basically Resource are Ruby objects with the code behind them to con-
figure your system. Behind each resource are one or more providers that
tell Chef how to execute the actions you require against a certain type of
system. It has similar concept to the puppet that provides a cross plat-
form abstraction of a system’s configuration, the only flexibility is that
you can inject ruby code like if else etc while making resource decla-
ration. An example of resource declaration is shown below which has
pretty clear syntax to understand what the intention is.

package apache2 do
case node[platform]
when centos,redhat,fedora,suse
package_name httpd
when debian,ubuntu
package_name apache?2
end
action :install
end

* Recipe: A Recipe is the collection of Resources in an ordered list. Recipes
are written in normal Ruby extended by the Chef resource domain-specific
language. It can be termed as resource runlist. The Resources are written
in systematic order in a recipe and hence they get executed (applied to
node) in the similar order as they appear. This shows the deterministic
order of the Chef which is implicit order mechanism defined on Chef.
So foe example configuring a virtual host in apache server. The list will
indicate first a package to be present then apache configuration files to
be written and finally turning on the service. This helps in code readabil-
ity and understandability. An example recipe of task described above is
shown below.

package apache2 do

action :install

end

web_app "my_site" do
server_name node[’hostname’]
server_aliases [node[’fqdn’], "my-site.example.com"]
docroot "/srv/www/my_site"

32

2.3. SOFTWARE OVERVIEW

end

service apache2 do
action [:start, :enablel
end

* Attributes: Attributes are simply data values that describes the prop-
erties of Node. Attributes used for providing different values to differ-
ent machines depending on location, purpose or other metadata. We
can set Attributes in cookbooks, nodes, roles and environment. This can
be thought of as an abstraction mechanism that separates the data from
the implementation. In essence Attributes are a special key-value store
called a Mash within the Ruby DSL context. A Mash is just a Hash where
the key can be either a Ruby symbol (:key) or a string (“key”). The keys
are attribute names and those can have some default set but they are
always modifiable. All Nodes(host) also have attribute like IP address,
hostname, loaded kernel modules, version obtained from ohai but these
attributes are extendable by definition of json file to include user-defined
attribute as well. On each individual run of chef client it collect attributes
values from cookbooks, node, roles and environment and built a com-
plete set. An example of attribute used in apache cook book file located
under cookbooks/apache2/attributes/default.rb is given below.

default ["apache"] ["dir"]
default["apache"] ["listen_ports"]

"/etc/apache2"
[||80ll,ll443l|]

* Cook Book: Cook book collection of attributes, recipes, custom resources,
and definitions to configure a certain application or service. Cookbook
forms the fundamental forms of distribution in chef encapsulating each
and every thing. Hence a cook book written can be shared to other chef
users who can make use of it by changing the necessary thing specific
to their environment. Cook book contains various components , each of
them can be a file or directory. Cook book can be create by i and also can
be downloaded if there is existing one for our use case issuing a knife
command. Following the directories and files under a single cook book
directory.

— attributes/for storing the values to be used on node basis

— definitions/ to create and storing the reusable collection of one or
more resources

— files/ build in resources definitions
— libraries/ To store the helpers and extend chef through ruby code

- metadata.rb recipes, including dependencies, version constraints,
supported platforms and more.

— providers/ To create and store custom resource provide
- README.rdoc

33

2.3.

SOFTWARE OVERVIEW

— recipes/ Resources to be manage, in the order they should be man-
aged.

— resources/ Custom resource declaration

- templates/ for creating configuration files that are dynamically cre-
ated by replacing variables with our values.

* Node: Nodes are the client machines managed by Chef. Nodes consti-

tutes two things runlist and sttributes. Runlist contains a list of recipes
and roles. Normally only a node represents a single machine where these
recipes and roles are applied. Node a dynamic property which get build
and destroyed. when a client process is started, Ohai detects the infor-
mation of the host like fully qualified name host name etc.chef client now
compare these data with the last known state data of the node from chef-
server. Now all the ohai attributes get update to the recent values and
extra attributes added via json also get updated. Lastly all the attribute
in cook books also get accumulated. Thus the process if node building
takes place. With the help of these attributes , runlist and Roles which is
expanded into attributes and runlist at run time ,chef is able to apply the
recipes on the node that brings it to the desired state.

Role: Roles provides means of grouping the nodes with similar func-
tionality. Role are used to express the parts of the configuration that are
shared by a group of Nodes. Roles contains set of attributes and run list.
One or more roles can be applied to a node signifying to implement the
recipes in those roles. Hence If a attribute and runlist is applicable to
more than one machines in infrastructure , we can create a role and as-
sign that role to those machine that needs those run list to be executed.
Roles can be created by utilizing REST API, ruby DSL , Knife or through
web Ul or directly creating json in chef repository. A simple way of role
creation using ruby declaration is shown below

name "webserver"
description "Simple Web App"
run_list(

"recipe[apache2]"

)

Ohai: Ohai collects information about the platform on which it is run-
ning. It can be used standalone, but it’s primary purpose is to pro-
vide node data to Chef. Information like hostname, FQDN, networking,
memory, CPU, platform, and kernel data is obtained by ohai. When ohai
is used with chef the information it collected is reported back via ”auto-
matic” node attributes to update the node object on the chef-server. Data
collected by it can be compared to puppet facts and CFEngine classes.

34

2.4. COMMUNITY

Working Mechanism

Chef -servers stores all it’s configuration files like cookbooks, receipe, attributes
files. Normally these files are checkout from version control system to the the
directory /etc/chef. The process of convergence starts from clients. The chef
client process in the nodes runs every 30 minutes. Hence when it wakes up
it will gather the properties of platform using ohai. The ohai then transfers
the OS specific information as node attributes to the chef-client process. Chef
client now fetches the previous information about the host from Chef server,
any additionally json attributes if declared is added together with the gener-
ated ohai attribute. Now node building phase is completed hence at this point
chef client is able to tell the properties of node.

Now chef client performs the synchronization of all the cookbooks and re-
lated files from the chef server. For synchronization with server it needs to
be trusted by the server hence the process of registration and authentication
takes place with the help of key exchange. Chef-validator is a special purpose
client used exclusively for registering new clients. The private key generated
after successful registration is kept in /etc/chef/client.pem. This key will be
utilized for future authentication. After synchronization gets completed the
client will have all the things it needs to execute in order to get the machine
to desired state. Thus client process now assemble the specific collection of
resources following a definitive pattern of first loading the libraries followed
by loading attributes and then after definitions and finally recipes. Now the
execution process takes place by applying on node attributes values on deci-
sion making statements in the cook books and recipe. Ideally with one execu-
tion cycle the chef should get the machine in desired state thus convergence
is achieved. After converging, Chef saves the state of the node to persist it’s
node data and make it available for search by reporting it back to Chef Server.

24 Community

Community and documentation support of product is very much important
factor for the success of the open source project. All open source projects are
made alive by the user contributing to the development and users implement-
ing them and providing support. Community support can be divided into
two half i.e. one for the development of the product while other to supporting
the deployment and usage of the product. With out taking these factor into ac-
count the analysis wouldn’t be complete and usable. Often open source project
treats it’s user as a partial developer. Normally these users implements the
product in real environments and reports the bugs exposed and bugs encoun-
tered. Some bugs are hard to find in the testing environment of the company,
those are hidden bugs and these bugs can show up while the product is imple-
mented in the different environments. Hence open source projects carries out
majority of testing by realizing a beta product to the community and organize
it’s development on feedback and bug reports obtained. The users not only re-
ports the bugs but can supply fixes for bugs they encountered hence involving

35

2.4. COMMUNITY

Project Leader

Core Members
Active Developers
Peripheral Developers
Bug Fixers
Bug Reporters

Readers

Passive Users

Figure 2.4: The onion model (Ye and kishinda 2003 [19].

partly in the development activities. Also these users using the product creates
a helpful social environment through different communication channels like
IRC or mailing list to discuss their problems and helping each other to solve
problems. The community grows in size as the products get used by the new
users and old users provides helpful tips to the query of new comers. New
users often stumble up in the help and support forums to get their problem
solved. If and when they feel like the suggestion they obtained were helpful
they tend to keep up with the on-line community of the product. Normally the
community model of most of the project can be represented by “onion model”
described in open source literature[19] where members fall in different layers.

This model clearly shows that there are large number of passive users i.e.
observers that use the product only get less involved in the development. As
the user gets more experienced with the product and the person’s knowledge
about the product grows they tend to shift more into inner layer of onion
model. Also the power of open source project is the people can transition be-
tween these layers freely as per their interest and necessity. The onion model
however largely represents the developer community. If we focus only on the
passive users area only, then we can find the similar kind of layered behav-
ior between the users using the product. While some users being the power
user raises a lot of technical queries about the product and creates a discus-
sion around it , other users are only the normal users hoping to get some
answers for the problem they encountered hence a small discussion can be
created around it. So as the users become more experience with the products
and starts to use it largely then the normal users will transition into power
users. We believe that the online support of these products also rely in these
very power users for answering the queries of the other users. The study con-
ducted by Karim R. Lakhani and Eric von Hippel on Apache user group also
shows the similar trend [20]. So it is desirable to figure out if there is some sim-

36

2.5. RELIABILITY

ilarity between the user groups with in these configuration tools , have close
view of power users and normal users and analyze their activity.

2.5 Reliability

Reliability measures how often a a software works as expected and produces
outcome. Hence reliability can be a hard thing to measure as it depends on
how a software is used, under which environment and on what the work load.
However when reliability id defined as

probability of failure free operation of a computer program in a specified environ-
ment for a specified period of time

This definition [21] portray reliability as a measurable metric. Various re-
liability growth models have been used since late 1930’s [22] to measure and
predict Mean Time To Failure (MTTF), future product reliability, testing pe-
riod, and planning for product release time.

2,51 Models for Reliability

The models used in software reliability growth model are concerned with mea-
suring the time between the failures and fault count in a known time span.
Mean Time Between Failures model expects a set of data that represents the
time ranges of successful operation. A distribution model is applied in ob-
tained data set so that a pattern of time ranges due failures and they get fixed
can be observed. Finally parameters for the applied probability distribution is
obtained through simulation and testing. As the numbers of failures decreases,
the reliability is increased. Jelinski-Moranda[23] and Littlewood models [24]
are two such examples of this kind of reliability modeling.

In fault count model, a number of faults in a specified time period is used
as data set. A probability distribution function can be applied on the the failure
rate which is defined as number of failures in a given time. As the fault count
decreases ,when the bugs are found and fixed finally increasing the reliability.
The fault count show as certain pattern for which a parameter values can be
calculated for applied theorotical distribution model. Goel-Okumoto [25] and
Musa Okumoto are examples of this model.

Additionally there are two model for gathering the data about failures
namely white box and black box models. White box model is used when every
thing about the software is known i.e. it’s process flow, it's components and
structure are known. Thus software reliability is focused on measuring the
failure rates of components and relation between them. Black box model as-
sumes the whole software as a single entity ignoring it’s various components
and interdependencies. The black box model needs the failure data collected
over time. Therefore in this case the black box model is more suitable to ana-
lyze the reliability.

Generally failure rate can be represented by bathtub model [26] [27], this
model is capable of representing the failure rate for anything for it’s life time
i.e. all three phases consecutively , decreasing , constant and increasing. When

37

2.5. RELIABILITY

a product is new some of it’s aspect will fail but the product will adjust itself
to the environment and finally when the product is old, the failure rate is high
again. The Weibull distribution function is capable of representing all these
three phases of bath tub model and also been shown by number of studies
that the Weibull distribution function can model the reliability pattern of most
of the products [28] [16].

2.5.2 Theory

A failure of software is the inability to produce desired results, this is caused
due to error in software, thus an error is a phenomena used to describe when
the output deviates from the expected out put. An Error in software is intro-
duced due to existence of faulty component or logic with in a software. Thus
this faulty part or defect is termed as bug. Failure behavior of software can be
analyzed by utilizing the both PDF (probability density function) and CDF cu-
mulative Distribution function [16]. PDF f(t) shows the concentration of data
samples in the measurement scale so that the area under the curve is unity
while CDF tF(t) shows probability of random variable T, i.e. a probability that
the value of T will be less that or equal to the specified value ¢.

F(t) = P(T < t) = /:Of(x)dx = f(t) = E(t) 2.1)

Thus f(t) is the rate of change of F(t). Hence if T is regarded as a failure
time then , F(t) can be regarded as the probability that system will fail at time
tie. unreliability at time t. Consequently Reliability R(#) can be defined as a
probability that system will not fail by time t, i.e

R(E) = P(T >) = /toof(x)dx — R(E) = 1— F(t) 2.2)

Additionally a large number of empirical studies on software projects fol-
lows a cyclic pattern described by Rayleigh distribution function represented
by a special kind of Weibull distribution function with shape parameter g = 2.
A Weibull PDF represented by

ity = B ey 23)

with different shape parameter B and scale parameter « = 1 is shown in the
tigure The scale parameter « is responsible for squeezing or stretching
the distribution. The distribution function takes different shape on different
values of B, when B < 1 it represents and exponential distribution , the distri-
bution becomes bell shaped at f > 1 and represents Rayleigh distribution at
B = 2 and as f increases , steeper the curve will be.

As seen Weibull PDF with B = 2 and greater can represent the bug life
cycle of the product as when the development of software is considered fin-
ished, it enters in testing phase where a large number of bugs might be found

38

2.6. USABILITY

1 _

| I | | I | I |
~A N~ D
(o8

™™ ™™ ™
S

Figure 2.5: Weibull PDF for several shape values when a =1

and fixed. But still there may be more bugs which are difficult to be detected
in the lab testing environment and hence these are caught by different users
in their production environment due the wide range of use case. Therefore
the bug numbers increases slowly when product development is finished and
reaches some maximum, then bugs numbers decreases exponentially as test
and usage continues and they get fixed. Finally it stabilizes at one point of
time but still, there may be certain bugs that might show up which will de-
crease the reliability. Hence every software follows this patter of bug life cycle
, the only difference is how long the bug continues to show up down the time
line.

2.6 Usability

2.6.1 Usability as Quality

Quality is a broad term which has many different views of what it means for
different people. But often quality is generally treated as a property of a prod-
uct. ISO 9126 takes this approach and categorizes the attributes of software
quality as: functionality, efficiency, usability, reliability, maintainability and
portability [29]. ISO 9126 stands as guide for software product evaluation that
resembles most of the aspects from the assessment methodologies described
in section ISO 8402 lays out quality in it most clear and concise form ,
it states “Quality: the totality of characteristics of an entity that bear on it’s
ability to satisfy stated and implied needs.”. It assumes a set of requirement
of user fulfilled by the product, however if there are different requirement of
the users then the they may require different characteristics for a product to
have desired quality, so that assessment of quality becomes dependent on the
perception of the user. And this is exactly what is perceived as the quality in
real use case.

Mostly user perceived quality is regarded as judgmental and inaccurate
hence not included in the software quality assessment process. A set of qual-

39

2.6. USABILITY

itative methods and a good software engineering practice followed while de-
velopment of the product helps to achieve all the attributes that helps to make
software qualitative but cannot ensure the it’s quality in the hands of the users.
Thus there are more than one reason why the user perceived quality is needed
to be accounted. In our case , the functionality, usability and efficiency at-
tributes required by a system administrator in a data-center may be very dif-
ferent from those required by an system administrator of a university infras-
tructure. Hence ”Quality of use” [29] is one of the mechanism that allows
to measure effectiveness , efficiency and satisfaction of users with specified
tasks in specified environment. "Quality of use” refers to the extent to which a
product satisfies stated and implied needs when used under stated conditions.
Any relevant aspect of software like functionality, maintainability , reliability
etc may contribute to quality of use. Hence the measures of “quality of use”
can be used as criteria to determine whether or not the product is successful
in achieving usability. Thus Quality of use i.e quality of user experience thus
provides a means of measuring the usability of a product which up until now
seemed to be a difficult and almost impossible metric to be measured for a
software.

2.6.2 User Experience Measurement

If we agree that a software considered is capable to do the designated task
then it’s usability now is extremely depended on users experience , there is
no single universal method to measure this user experience. If asked the to
users of product on how they solve their problem utilizing the software , it
can be largely subjective and biased. Thus to measure usability in a scientific
way a series of metrics can be collected to do the same task that can give help
us measure the quality of user experience, finally allowing us to characterize
some thing has good or bad usability.

User experience can give us the usability as a measured unit including both
subjective and objective aspect. The objective part should take care of all the
factual metrics like task time, stress , efficiency etc. associated while user is
performing the task , while subjective part accounts the user feeling towards
execution of task using the software. But objective data and subjective data
collected from user can point in the same direction i.e. have positive corre-
lation which is a good indication of successful usability measurement, while
negative correlation reveals disaster either partly due to user not interested or
distracted on subjective data collection phase.

An example of negative correlation is a user spending large amount of time
to carry out a task using a certain product , rating as a favorite one for him. In
this case the user’s expression contradicts with the deeds and does not give
a meaningful result. Hence if a test is carried out with a set of users to mea-
sure user experience , both objective and subjective need to be collected and
analyzed separately which will give meaningful insights into problems , pro-
ductive time, stress level etc using the product. Further calculation like corre-
lation of the data sets to can be done to measure the effectiveness of test. All
these things combined together will give a good measure if user experience.

40

2.6. USABILITY

Combining objective and subjective method helps us to compare and analyze
following things

¢ Two or more similar products used by same set of user to carry out same
task under similar environment

¢ Two or more users using the same products performing same task under
similar environment

* Two or more task performed by same set of users using same products
under similar environment

2.6.3 Objective Method

The objective method help to report factual information about the task per-
formed by capturing various data associated with task. It helps to measure the
effectiveness , productivity and efficiency of product for user. Various type of
metrics are collected by the usability testers depending on the type and inter-
action mechanism offered by software under test. For example majority of the
usability test is carried out for GUI application , hence testers gathers the key
stokes , numbers of clicks , number of back presses etc. But thw common met-
rics used in all types of usability test are completion rate, task time, problems
encountered and errors made etc, these metrics can be used in any kind of us-
ability testing regards less of product type. Following are the metrics that can
be collected in order to carry out objective method of usability measurement.

¢ Completion Rates: Completion rate are fundamental metrics collected
that provides a simple metric for success. These metric is collected in
binary form i.e. completed (1) and incomplete (0). If a task is in com-
plete , no more measurement needed to be done, apart from collecting
the reasons for task incompletion. Task completion is widely used in us-
ability testing as it is easy to understand for readers and report. Prior to
a test a a set of criteria needed to be defined in order to consider a task
as complete. In task completion focus is given on the output obtained by
user which is later compared with success criteria , rather than the path
taken by user to complete the task. If the result does not meet the criteria
, no matter how close was the user near to task completion it will not be
considered for any further evaluation. The average task completion rate
is 78% [30]. Hence 78% task completion can be used as reference point to
analyze the results. Any thing above 78% can be regarded as above aver-
age and a nice task completion rate. Since this completion rate measured
was the result from the commercially available software’s on thousands
of users, it has raised the average completion rate scale. Another cause
to have such a high rate of task completion is due to the mentality of
users in test , they know that they are being observed and show a high
tendency towards task completion.

¢ Task time: Keeping track of the task time helps to measure the efficiency
and productivity. As completion rate , task time are also core metric to

41

2.6. USABILITY

be measured for usability study and widely used in majority of usabil-
ity test. Normally the task times are measured in seconds and minutes
by keeping track of start time and completion time. Task time can be
measured in three ways [30]

— Average task time: Only considered for users that has completed
the task.

— Mean Time to Failure: The average time users took on task before
giving up or completed the task

— Average Time on Task: The total time users are spending on task.

Task times are also helpful for diagnosing the usability problem. If a user
is taking long time to finish the time it can often be due to the problem
faced by user or errors associated with the product. When average task
time, is considered this studyshows that for a small sample size 25 or
less , the geometric mean will be more accurate measure than arithmetic
mean or median. Also since task time data set are positively skewed as
some users take more time to complete the task, the arithmetic mean will
can be dragged to higher values and this also is the main reason for task
data distribution not being a normal distribution. By separation of time
the user spend in doing the task from the total task time, we can thus ob-
tain the productive time. Unproductive period of the task are the times
when users spend their time searching for the help and understanding
the structure of software , or overcoming the problem faced. Hence Pro-
ductive period can be calculated by removal of these unproductive pe-
riod from the task time. These productive time can be crucial for product
comparison for performing same task.

¢ Usability problems: Keeping track of problems faced by the users helps
to calculate the probability of users likely to face the problem, More over
it can help us find unknown problems associated with the products. If
the record is maintained such that it can classify which user faced which
problem , it helps to measure the problem discovery rate and most im-
portantly predict a better sample the sample size that can give us reliable
result [30]. For example

We need to test on average 5.32 users to discover 85% of usability problem given
the occurrence of problem is 30%.

The theory behind this claim is used of binomial probability distribu-
tion as stated in [?] and derived in [31]. The author of [31] has achieve
the result by performing the calculation shown in. The binomial prob-
ability function is applied in detection of usability problem such that n
represents the total number of users, r equals number of problems and p
equals the probability of occurrence.

n!

mpr(l -p)" (2.4)

42

http://www.measuringusability.com/average-times.php

2.6. USABILITY

For no problem to occur at all,i.e. obtaining p(0) we can replace r with 0.

A1 p)" = p(0) = (1-p)’ @5)

Therefore we get the probability of finding at least one problem by sub-
tracting the probability of finding zero problem from one.

p(=1)=1-(1-p)" (2.6)

Additionally the author [?] also has shown that 5 users is enough to show
the majority of problems through the used of binomials.

¢ Conversion: Conversion is a special kind of completion rate. This is also
a binary measures i.e. (0= not converted, 1=converted). By conversion
, we can think of user carrying out a series of task to get the ultimate
goal. For example in our case if a users can download a product and
implement it to do automate or configure a part of infrastructure then
we can say the user have converted. Thus it covers all the phases of
usage of product and will give important information about on users
being actually able to solve their need with the product..

2.6.4 Subjective Method

Subject method helps to capture the user perception on the product by asking
a user to answer a set of questionnaire. If a user is happy about a product after
using it , he/she is sure to give positive comments for the products on the other
hand if the product is frustrating to use , with user facing too many problem
in every turn while using it, it will definitely raise the negative feeling for the
product. Subjective measure helps to capture those feelings and present result
in measurable form. Thus it can also be said that it measures users satisfac-
tion level. A satisfaction is composed of comfort and acceptability of use [29].
Comfort refers to the overall emotional response to use the system (whether
the user feels good, warm and pleased, or tensed and uncomfortable). Accept-
ability of use refers to the overall attitude towards the system which covers
whether users feels the system was able to solve their need, if they feel in con-
trol of the system while using it etc. This satisfaction can be measured in two
levels while conducting the test which are discussed below.

¢ Task level satisfaction: It helps to measure the difficulty level of the
task. Popular method of evaluation of task level satisfaction are ASQ(After
Scenario Questionnaire), NASA TLX(NASA'’s task load index is a mea-
sure of mental effort), SMEQ(Subjective Mental Effort Questionnaire
),UME(Usability Magnitude Estimation) and SEQ(Single ease question)[?].
Getting users to answer a questionnaire immediately after performing
the task is simple and reliable way of achieving task-performance satis-
faction level. Thus task level satisfaction can also be termed as perfor-
mance satisfaction.

43

2.6. USABILITY

* Testlevel satisfaction: It measures the user perception towards the prod-
uct. Since it is asked at the end of test and the questionnaire is focused
on getting the general information like how was the product, do i think
i can learn it quickly etc , it helps to capture the overall attitude of users
about the product. Thus it is also regarded as measure of perception
satisfaction. System usability scale (SUS) is one of widely used method
to compare the usability of product. There are other measuring scale
as well as home grown proprietary method for carrying out this task,
but the SUS provides high level subjective view as questions are quite
general. More information about the SUS and it’s structure is provided
below. The task level satisfaction definitely has impact in the out come
of it’s result but it’s outcome is not solely driven by task level satisfaction
and slight difference exist between two, how ever there is also a strong
co-relation (r > 0.6) between these post task ratings and post test rat-
ings.

Single Ease Question [SEQ]

As discussed in[2.6.4} asking user about the task they just carried out at the end
of task provides useful information. But a care must be given such that post
task queries should not be long and complex. It can effect the users answer-
ing mentality if it unnecessarily long and difficult to answer. At same time
post task question should also be capable of capturing the user perception to-
wards task such that a task performance can be measured. Therefore a good
questionnaire should be

1. Short

2. Easy to respond to
3. Easy to administer
4. Easy to score

SEQ demonstrates all the above traits [32]]. It contains only one question
”Overall, this task was ?” and the response is the scale that ranges from 1 (very
difficult) to 7(Very Easy). The strong point of SEQ is that it is observed that user
builds their expectation into their response. So when the task steps is added or
removed , users are seen to adjust their expectation on scale accordingly. Also
the out come of SEQ seems to have high correlation with the outcome of the
post test questionnaire i.e. SUS [32].

System Usability Scale [SUS]

System Usability Scale is a ten item questionnaire that provides a high level
subjective assessments of the usability study. It was developed by John Brooke
[33] in 1986 as a tool to be used in usability engineering of electronic office
systems. SUS is technology independent and since it was developed has been

44

2.6. USABILITY

tested on wide range of platforms ranging from hardware software , websites,
cell phone etc. Thus it has now become an industry standard. Each question in
SUS has a 5 response options. This 5 options acts as a range scale , giving user
the flexibility to respond accordingly. The 10 question are as follows and the
answer options is a range scale from 1(Strongly Disagree) to 5(strongly Agree)
for these question.

1. I'think that I would like to use this system frequently.
2. Ifound the system unnecessarily complex.
3. Ithought the system was easy to use.

4. 1 think that I would need the support of a technical person to be able to
use this system.

5. Ifound the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very
quickly.

8. Ifound the system very cumbersome to use.
9. Ifelt very confident using the system.
10. Ineeded to learn a lot of things before I could get going with this system.

SUS question are highly general and capable of giving a measure of per-
ceived satisfaction. But a research [34] has also shown that SUS is capable to
give a measure of usability and learnability revealing two dimensional aspect
of SUS and these two factors actually do correlate [35]. Particularly the ques-
tions at 4 and 10 point to the learnability direction, therefore the SUS score
for these questions can be compared among product to compare the perceived
learn ability by users. The SUS scored then needed to be calculated for the
response collected in order to make a sensible interpretation hence following
process need to be carried out for calculation of SUS scores.

¢ For odd question numbers, subtract one from user response
¢ For even question numbers, subtract user response form 5

® The values are now in 0-4 scale range , where 4 being the positive re-
sponse

¢ Lastly the total response of individual user is calculated by adding the
responses and multiplying the result with 2.5. This converts the range of
possible values from 0-100 instead of 0-40.

45

2.6. USABILITY

150%

Percentile Rank

] i 20 50 [o] L) L] i3

F'J‘."' D L1=] C .'IJB A
SUS Score

Figure 2.6: SUS score percentile association and corresponding letter grades

A SUS score range from 0-100 is not percentage. The best way to interpret a
SUS score is to convert the individual score into percentile rank. The figure[30]
below shows the percentile ranks associated with SUS scores and the grade
letter.

Now with the help of figure it becomes easier to interpret the score
obtained from the SUS score. The average SUS score from over 500 studies is
68 [30] i.e. 46% which gets a letter grade C. Therefore product with grade C
are considered average , anything above is considered as above average. For
example if a SUS score 74 have percentile rank of 70% , there fore this product
have a good perceived usability than 70% of the products tested by the SUS. A
SUS score of 85 or more helps a product to get a letter A , these are the kinds
of products that are likely recommended by people [30].

46

Chapter 3

Approach

3.1 Community

Software aspect like community always have a vague definition but is increas-
ingly important for support and success. Though it is an important criteria
that needs to be analyzed, often the previous studies conducted has failed to
grasp it into account and give a reasonable overview of the community activ-
ity of the three products. Often there are comparison on these tools that states
about community [36], [37] but does a very little research on it. Measuring
people in IRC is not only the way to measure the community strength nei-
ther the numbers of download of the software packages from the repository of
popular os platforms like Debian ,Ubuntu etc. Rather it can be a part of mea-
suring the over all strength. Community of software is also deeply associated
with popularity of the products, but all the products seems to claim itself as
a popular and dominant player in market. Again if a product is popular and
have large community, it must have large number if resources available and
discussion around. No prior research had attempted to identify or project the
resources available and make comparison based on it. Mechanisms like get-
ting the metrics from meta forge, help sites like stack over flows, the mailing
list and determining how soon a question get answered. Articles as well as
documentation provided can be used to measure the community strength.
The community of the product can also be divided into two main groups,
i.e. the developers group while other are the users of the software. Often the
discussion of the developers group are focused in the product development
and bug fixes , while the users group are focused in the implementation of the
product addressing different problems. Together these group help the product
to grow , become stable and better over time. We will be concentrating on the
analyzing the users only group activity and try to figure out the puzzles related
with community size and behavior of the members with in. Inspired by work
done in [38] [13], a reasonable view of the community size will established.
Similarly popularity of each product will be studied carrying out some activ-
ities discussed in [39], [13]. By understanding the community behavior from
the data gathered, a mathematical model will be utilized to find out if there is
any difference in community despite of their sizes between these products. We

47

3.1. COMMUNITY

will also have a look at the discussed issues and have a relative projection of
what problems a regular user are facing while utilizing these products. Hav-
ing a close look at the community and popularity helps to understand the field
support we might get for the product.

To state it in brief the community study in this paper is focused in the

¢ establishing the popularity of individual products
¢ the resources and materials available for each products

¢ analyze the community and it’s behavior taking a mailing list as primary
source of information for these projects

* having a brief look at the topics and problems the community are talking
about

This study is hoped to be helpful for possible new comer to understand
the community and have a view of topics and problems discussed in these
products. It is also helpful to the respective project to view it’s community
behavior and make improvements on it. Also by focusing on the problem
areas that people are regularly facing ,the product qualities can be improved
and made more user friendlier. The paper investigates the community starting
with analyzing the popularity ,gradually moving towards analyzing the on-
line support for these products and finally establish a relation of the social
support behavior of these products with a mathematical model if suitable.

3.1.1 Popularity analysis
Top view

The primary source of investigation of popularity will be google and different
social discussion like Hacker news. We care for these source because peo-
ple look for these sites to get the answers for any queries apart from posting
their queries on mailing list. Additionally people also share their experience
with these product and have a discussion around which is very useful to a
new comer to get a good understanding of merits and demerits of product.
Google being the most popular search engine, it keeps the records of keyword
searched. We can get an idea of popularity by analyzing the trend of frequency
of search terms related to these products in Google. But it should also be
kept in consideration that the result returned by google isn’t picture perfect,
there might be noise in data as these key words could be associated with other
searches and not at all related to configuration tools. So necessary filtering
mechanism needs to be applied, so that it can be assured that majority of re-
sult returned by the google is related to configuration tool and the keywords
actually belongs to some topic related to configuration management. The var-
ious tools from google like google insights , google correlate will be utilized to
get a over view of trend analysis. It is also interesting to have a overview of
web talking about these product so by looking in the numbers of other web-
sites referring the main web site of these products , and social discussion and

48

3.1. COMMUNITY

development forums an estimation of community ecosystem of these products
can be made.

Focusing on the area of interest

Now a days a lot of social news websites that enables news aggregation are
available. People come here often to talk about the the things they see else
where. While the mailing list tends to be useful for finding the answers prob-
lem related to the particular problem, these kind of social news provides the
platform where user talk about their experience with the product and any
other thing related to that product. For example if there is article posted for the
product , individual can discuss around the usefulness and validity of article
as well as it also addresses that article. Also blog writers usually submit the
articles they posted on their blog to sites like Hacker news to get a much wider
range of audience. Thus it is more sensible to analyze the social news site to
make most out from the discussion happening in the web for these products.
Having a view at discussion activity level on these forums can give an rough
idea of peoples using these products and the resources that could be found for
the product. If the data in these forums is analyzed one can possibly find the
advantages and limitation of products. But for now the focus is on calculating
the activity level of the community regarding these products. For this purpose
popular social news named Hacker news was analyzed.

Estimation of population

As part of analysis of data from social news sites like hacker news, a set of
samples will be collected at random. Each samples will collected a from set
of result will be analyzed to give us a count of numbers of false positives ob-
served i.e. the data that doesn’t belong to system administration and IT as a
whole. This presents us with total number of results found with total number
of data analyzed. So a sample proportion can be calculated and utilizing this
sample proportion and estimation of total population proportion can be made.
Finally a a value will be estimated from the calculation and make hypotheti-
cal test for testing if estimated value represented the population proportion. If
it is satisfied we will be using that proportion of population as the result we
obtained. For this method to be utilized the sample should contain more than
10 correct results and more than 10 incorrect results and the samples must be
drawn at random. Also the population size must be 10 times the sample size.
We will be fulfilling all the criteria when we gather and analyze the data. All
these task will help us understand popularity and resource availability of these
products.

3.1.2 Community and Support analysis

A social environment involving a product is created when people using the
product help each other. Apart from solving each other problems they might
discuss set of features they wanted a product to have. Either way mailing lists

49

3.1. COMMUNITY

are the primary place where all of these kind of discussion happen. Mailing list
of the open source project are kept alive by the user for the user. Thus by ana-
lyzing it several things can be understood about the software. In order to have
a clear understanding of support that can be obtained from the community , a
close analysis of mailing list will be done. The things like how many users are
subscribed and their activity can clearly be perceived by glance but a in depth
look into the interaction happening in the mailing can help us understand the
community structure , the quality of field support provided by the community
, problems that are frequently faced by users, topics the community are talking
about etc. So the focus will be to have in depth look at the discussion happen-
ing in the mailing list to understand the community structure of each product
and the support they provide. Since the study is also concerned with analyz-
ing the community support ,the mailing list makes itself as ideal source that is
primarily used for discussing and placing problems for using the product.

As pointed out by the results from past studies and research conducted
for understanding the community , a community of users can be divided into
different groups depending in their activity level. In a community of users,
different users have different activity level. Some users tend to be passive
describe by users subscribed to the mailing list and only posting problems
while others are active i.e. subscribed in the mailing list and keep a close eye
on the discussion happening and frequently replying to the queries and taking
part in discussion. Inspired by the work [20] we will try to categorize the
users into three groups and study their behavior. The task of grouping the
users have several advantages , it helps to understand what portion question
is asked by what kind of users, what portion of question are being answered
and is there a difference in answering behavior for the question posted from
different groups. Additionally answers to the question like which groups of
users are mostly giving answers and how big is the group can be obtained as
well. A part from that it also provides a clear view of total subscribes divided
into groups on basis of activity they perform.

Community structure

The approach to classify the users is purely based on the type of activity they
perform in the mailing list. Basically there will be those types of users in mail-
ing list one , that places the questions only i.e. opens a thread. Another type
of users are both involved in placing the question and answering the question
, while other type of users are involved in answering the question and taking
part in discussions only. So users can be categorized as follows

¢ Seekers: These are the novice and passive users. They are involved only
in posting question in the mailing list and look up for mailing list for
their question to get answered. These users are the future prominent
member of community i.e. as they grow experience they can take part in
answering others queries.

¢ Seekers and Providers: These are the users that places the question and
equally replies to other users questions. These are the kind of users that

50

3.1. COMMUNITY

make the community support alive. These users are experienced and are
always sharing their knowledge with others users. They are also equally
benefiting the product by posting queries that helps the product to grow.
A part of these group that has a heavy traffic can be termed as power
users.

¢ Providers: These are the kind of users that provides solutions only to the
queries posted in the mailing list. These users are can both be passive or
active because person can be subscribe to mailing list and is occasionally
answering the problem that he/she has faced utilizing the product while
their can be other users that are frequently answering the queries i.e. the
product creators etc.

Supportive Activity

By dividing the users into above discussed groups a number of things can be
understood about the community of these product. A set of metric was fo-
cused for which a data was to be gathered for all the groups. However we will
be focusing in analyzing the activity of seekers only and seekers and providers.
These metrics were chosen to get a meaningful result out from the mailing list
data. The set of metric for which the data was to be gathered is listed as follows
and all of them are to be collected as percentage to represent the proportion of
total data.

¢ Subscribers: It represents the proportion of users falling in the group
while at the same time time giving a visualization how big group making
it easier to analyze the activities performed by this group.

* Questions posted: It represents the portion of query posted by the group.
It helps us figure out how much of the total queries in mailing list arrives
from this group.

* Answers supplied: It represents the portion of answers supplied by the
group. It helps to know the importance of groups’s role in providing the
answer to community.

¢ Unanswered question: It represents the portion of queries asked by the
group that goes unanswered. It helps to understand the community be-
havior for answering the queries from this group and how much could
you expect from the mailing list if one falls in this category.

* Answers in 1st day: It represents the portion of question posted by user
from this group that get answered in the 1st day. It measure the respon-
siveness of the community , additionally helps to see the responsiveness
compared to different group.

Benefit of representation of metrics as percentage of total data are it is pos-
sible to take the whole data in mailing list into account at the same time it will
enable us to take uniform metric measurement for all products despite of the

51

3.2. RELIABILITY

amount of data in their mailing list. For example if there are large number
of users for puppet , the numbers of threads will be high as well, so it makes
no sense with measuring the numbers and comparing with other product like
chef or CFEngine. Additionally all of these products were introduced in dif-
ferent years hence some might contain a long history while short for others.
So just looking the numbers can miss lead the analysis that will be done on the
statistics collected.

Topic and problems discussed

Finally the subjects of each threads will be analyzed to get an understanding of
topics discussed and the problems frequently face by the users. Since a partic-
ular problem ideally is represented by single thread , if different threads with
describing with same problem exist in the mailing list then we can understand
that the problem is frequently faced by the users. Thus analyzing the threads
can give a good idea of the topics that are frequently discussed and problems
raised. For performing this task , the subject of each thread will be analyzed
by implementing n-gram counting program to extract text from these subjects.
Thus combination of words with high frequencies can be regarded as topics/
problems frequently faced by the problem. The differentiation of weather the
word combination refers a topic discussed or is associated with problem is
done through analysis of words and it’s combination with other word.

3.2 Reliability

It is always desirable to know how often a products fails but difficult to mea-
sure. In case of configuration management failure becomes key concerns as
system administrators rely on these to to carry out automation and consistency
with in the system. This means if failure happen in configuration tool then it
is more likely to break the whole system , ultimately leading to down time.
And this directly contradicts the work the configuration tool is suppose to do.
They are responsible to bring the system back into functional and operational
state in case of failure happens, and having a too many failure in configura-
tion tool is not a option. They must be resilient as far as they could and should
posses least number failure rate. Thus this paper is concerned about how of-
ten the products fails and study the failure pattern, and what is it’s impact on
reliability.

There exists several model to carry out reliability analysis [27], in this case
fault count model coupled with black box model which focuses in getting the
numbers of faults seen in software for a certain period of time will be uti-
lized. Thus the study ignores software structure. The data about failures can
be gathered in two ways, either gather the failures through automated test as
shown in [40] to get much faults as possible or the failures previous experi-
enced by customers. Thus reliable source to get the list of faults i.e. bugs for a
software product previously experience by user is it’s bug tracker. Hence the
failure data about all the three softwares will be collected from their online bug

52

3.3. USABILITY

repository. After the collection of data , a filtering mechanism will be applied
in the data so that all the possible noise are reduced. A possible source of noise
in bug tracker is that these products keep the bugs related to each and every
thing i.e. documentation , other projects etc in the same bug tracker. Hence
the data related to the other projects and products needed to be identified and
discarded.

All of these products have different maturity level and lot of (minor and
major) version have been launched for them. Therefore a favorable start date
needs to be chosen for each so that comparison of the reliability growth of
last three major version of each software can be done. Finally the filtered and
separated data for each version needs to be organized into bug frequencies
for a certain time frame, which will be weekly. So a weekly bug frequencies
for each version of product will be gathered which can show the bug pattern
for software over time. These bug frequencies will be plotted against the time
and further analysis is done through curve fitting and obtaining the reliability
growth.

Weibull curve will be fitted for each plot using Maximum likely hood es-
timation method (MLE) and it’s corresponding parameters i.e. shape f and
scale a will be calculated. Simplifying the equation the Reliability is given
by [41]

R(t) = e~ /0" (3.1)

Thus utilizing parameters obtained from the curve fitting process the reliabil-
ity at at time T for each version of product can be calculated. This reliability
thus obtained also can be plotted against the time which in this case is weekly
, therefore reliability plot of different versions for the time range can be ob-
tained. The reliability of each version is compared with another version of the
same product so that an reliability growth can be observed for a each product.

3.3 Usability

People have longed to know which if the configuration tool offers better us-
ability. This has always been an disputed matter as each claiming to be easier
to use and learn. Puppet claims about it's DSL being simple and easy to un-
derstand. With it’s top level language hiding the underlying details of config-
uration tasks, it hopes that users feel more comfortable and productive. Chef
on the other hand claims it offers the best user experience as it offers every-
thing to be done by ruby code. It hopes by executing the configuration on the
code flow basis separation of different underlying aspects into aspects of it’s
frame work will help users to write more flexible and extensible configura-
tion codes. CFEngine also have it’s own ideology about the usability enabling
users control each and every aspect of system but requires it’s users to have
deep understanding of system. CFEngine puts simplicity and consistency by
offering it’s declarative language that operates on promise model. The chal-
lenge for the study is to find out which of the product is easier to work with.
By easier , we hope to find out which one offers less obstacles , which product

53

3.3. USABILITY

is learnable, whose documentation is helpful to get over problems in case it
happens and gives user a sense of control etc.

The background study was quite helpful to figure out the processes of mea-
suring the usability in qualitative and much more structured way. Since the
mostly used metrics that needed to be measured to make a good usability are
known, the part of the challenge was ,executing the process of collection of
these different metrics. Additionally we need to decide what will be the sam-
ple size of data collected , i.e. are we targeting for the huge data collection by
conducting the test on hundreds of user or the a data is collected only from
the small set of users. The decision of sample size has a huge implication of
mathematical models and distribution applied latter on in the analysis of these
data. For example, if a average time taken to do a particular task is to be calcu-
lated for a set of users for a product, then if it’s small sample set , a geometric
mean will give much accurate average value compared to median.

Apart from the decision of sample size we need to decide how the usability
test is going to be conducted on a set of users , i.e. through a controlled lab set
up or through distribution of test so that user can conduct on their free time
and supply back the results. The next challenge was to over come was how the
data will be collected from users and what will be the methods and process in
place to collect these data. These were the problems associate with conduction
of test to get metrics from users i.e. problem related to test implementation
and data collection.

Another major challenge was deciding the task that users were going to
perform. The selection of task was very crucial since it needed to be repre-
sent the task that system administrator commonly use the products for and it
also need to be the most basic form of task so that it doesn’t consume much
time(days) of user while performing task. These two aspects of the required
attribute of task were very contradicting as system administrators usually per-
forms one huge complex task involving a series of task as per the requirement
of their environment spending days in each task. Hence it was decided to
conduct the task that represent some sub tasks commonly conducted by sys-
tem administrators. Thus all these subtasks combined together can represent
a bigger task that justifies the use of configuration tool.

3.3.1 Sample size and Test Conduction

A reliable and qualitative results can be obtained even from small sample
size. The test conduction required each candidate to be provided with two
machines where they can play around with the products and carry out their
task. So driven by this use case scenario, for conduction of usability test and
achieve a reliable result from small sample, we can conduct test on 5-10 users.
The users will be real world system administrators or personnel with a lot of
experience with utilizing different system administration tools. On top of that
they also have necessary problem solving skills in case if any problem arises
when implementing task using a particular product. Thus the sample size of
our usability test is around 5-10 and with real world system administrators as
usability testers, we can gather a good amount of information with acceptable

54

3.3. USABILITY

reliability and accuracy. The data obtained from this sample size can help us
analyses the usability on both subjective and objective aspect. As mentioned
in background study metrics obtained from this sample gives the some idea
and degree of measure of usability but the results should not be overstated
too.

For conducting the test, the powerful machine will be deployed to serve
the Virtual machines to the users. The host machine need to host a set of vir-
tual machines that we can distribute among users. Proxmox that helps us to
create a pool of virtual machines and manage them. It also supports assigning
the machines to the users , hence Proxmox was ideal for our use case where
we needed to provide a users only the machine they are concerned with. The
Virtual machines created in Proxmox will be assigned public ip address so
that they are easily accessible from outside , and two machines allocated for
each user. The users will be given credentials for Proxmox login , where they
could manage their two machines i.e. start stop restore etc. They could se-
curely log into those machines utilizing the public address associated with
them. This will offer flexibility to users, machines are reachable and manage
able any time. Lastly users will be send an email describing the instruction
about the usage of those machines , together with the task list and links to
electronic forms from which they can report back their result.

3.3.2 Tasks and Metric Collection

The tasks selected were to represent a each sub task conducted by the system
administrator and when every tasks were completed , it give a meaningful
result out of it , i.e. some application or service configured using these tool.
Since web servers were most common these days and every organization have
them, it is common for system administrator to install web servers on machine,
ensure it is running and make some company specific configuration so that it
is capable to fulfill the company requirement. The most commonly used web
server was Apache , hence each user will be assigned the task of installing
the Apache making sure it is serving some web site under particular domain
name. Over all outcome of the tasks will be a web server capable of serving
a multiple web sites. Below are the 3 tasks that will be asked to the users to
automated using the three products. Together with the task a list of resources
is supplied that can help user complete the task number 1 and 2, but it is up to
user to use these resources.

1. Install a server and client of each product, such that client is able to re-
ceive configuration from server. (A hello world example will do)

2. Install a software package Apache and make sure it is running in any
machine.(In server or in client)

3. Configure a virtual host in Apache, so that it now can serve a web appli-
cation with domain name nextapp.iu.hio.no.

55

3.3. USABILITY

The tasks chosen addresses different activities exercised in system admin-
istration. Task one is aimed at representing the infrastructure set up of configu-
ration management tool. The second task represents the package management
and service management. Lastly the third one represents the configuration of
installed service to suit the need and thus demonstrate the automation. To-
gether this task combined, it serves a high level goal of having a highly avail-
able web server in the organization capable of serving multiple web applica-
tion.

Additionally the task needed to be performed in order , for achieving the
high level , however the users can perform the task in random order just to
get each task completed, but the goal cannot be achieved. The listed task also
shows the higher level of difficulty as the task number increases. The first task
can be easily carried out by user by reading the quick start materials for each
product. The second task needs a little bit of searching but can be carried out
citing examples. For the last problem the resources are not made available ,
hence it needs some more effort from user to solve the problem. Additionally
since the problem is more specific, it also forces the user to learn about the
product in some what detail. Hence if a user can get the problem 3 to be solved
for the product then, the novice users had immediately reached to the medium
level for that product. Thus it can help us figure out the learning curve needed
for product.

Task time and SEQ and Problems rates

The users are send link of electronic form that were made using google docs.
These forums have spread sheet as backends. The forums have different fields
like start time, complete time etc that user need to fill into , upon submission
the data gets inserted in the backend spread sheet. It is a very handy way of
data collection from users. Some of the forms fields are required while others
are not , so in order for the user to submit the form they need to fill in the
values of required fields and others could be left empty . Following are the
fields in form that help us to collect task specific information from the user.

¢ Start time , Complete time for the calculation of task time for the user

¢ Stopped time for separation of effective time used in task, to calculate un
productive period while performing task

¢ Problems for gatherings issues faced by user and to make relative pro-
jection on bugs that user might face later on analysis.

¢ Errors give the idea of confusing steps involved in carrying out the task

¢ Single Ease question to get a subjective measure of task and finally cal-
culate task easiness

Apart from these fields it allows users to enter their name , choose the
product and choose the task they performed. This form was to be submitted
after every task completion. So a single user will fill this form for 9 times. Thus

56

3.3. USABILITY

gathered data will be processed into the metrics suitable for analysis. For ex-
ample , the start time will be subtracted from completion time to get a total
amount of time in minutes required to carry out the task. Also if a task has
completion time , it is regarded as complete other wise , it is regarded as in-
complete. Thus task completion rate can be measured for these products and
compared. The scale value obtained for single ease question can be averaged
together for users for same task for same product. Thus it can then be com-
pared with similarly obtained data on task easiness for other products.

Problems finding

Similarly the if there are no completion time for users , then what we will have
is a list of problems encountered by the users. By this way of data collection
, we can now keep track of which user faced which problem thus enables us
to calculate problem discovery rate. The problem discovery rate is a negative
attribute for product, the higher it is the problematic the product is and it de-
creases it’s overall usability. We already know that [2.6.3|around 85% of prob-
lems if the problems tend to affect 31% or more of the users and be found out
by carrying usability test in only 5 users. Hence with such a small set we can
know the obvious problems associated with products in performing the task,
might also catch the rare ones. It also implies that since the sample considered
is small , the problems encountered by the users are also encountered by wider
set of users in real world because the problems are frequently occurring.

Conversion

When we get information about the each tasked performed by the users, the
data can be filtered on users completing the task. A conversion is binary mea-
sure and is taken into account when users is able to perform all the 3 task.
This also means user is able to achieve high level goal associated with the task.
Hence by looking at the task completion for the products , we can separate out
the users that completed all the task using the product, thus finally calculate
the average conversion rate for the product. In our case if the product with
high conversion rate will be extremely easy to learn and understand as well as
use.

SUS scores

A link to a form containing 10 question with each question having a rating
scale as answer will be send to the users. The users will be instructed to fill in
the form and send their replies after completion of all three task for a product.
Therefore users will be filling and submitting these form for three times each
for a product. The forms are made using google docs , thus SUS scores send
by the users will be automatically collected in backed spread sheet associated
with the electronic form. The SUS scores thus collected will be process further
for analysis. For example the SUS score of individual user for a product will be
calculated by following the steps mentioned in background study about SUS

57

3.3. USABILITY

on These SUS scores calculated from users for product will be averaged
to get a SUS score for product obtained by this test and finally compared with
SUS score of another product obtained in similar manner. One thing to notice
is that if the users are experienced with any of the product previously the SUS
scores can high towards that product hence record will also be kept for each
user about the previous experience with these products.

It is also possible to compare the SUS scores from individual users for dif-
ferent product and study the co relation with their task performance. There
need to exist a positive correlation between the SUS scores and Task perfor-
mance. For example the users can have lot of problems executing the task and
still give high SUS scores to those products , this will result a be negative cor-
relation between the task metrics and SUS scores. Therefore by carrying out a
co-relation between these data sets we can make sure about the validity and
reliability of SUS score obtained.

58

Chapter 4

Data Collection and Results

4.1 Market share and Resource availability

4.1.1 Usage trends

The figurgd.1| shows the result obtained from the google insights. The result
shows the search trend for the key words CFEngine, chef and puppet. As seen
in the result it shows that CFEngine being the oldest product used to be pop-
ular but slowly decreasing the popularity as time passes by while the puppet
and Chef are gaining the popularity. At the End of 2011 all of the configuration
management tools seems to have same popularity level with some minor fluc-
tuations. Google keeps account of how many times the key words appeared
and in what context as well. Given that chef and puppet are common dictio-
nary data , a search on these key word might be coupled with lots of noise.
So a filtering mechanism was applied on basis of context that these key words
were used in search term. Here we used operating system as context, so that
we can be sure that these key words were actually used to do configuration
management task on some operating system. The full depth of the context
search filter applied to get the trends of the keywords is

All Categories ->Computers & Electronics->Software->Operating Systems

The fig [f.T|not only shows the time series of graphs involving the frequen-
cies of the of keyword appeared in the search terms but also gives the overview

Cfengine Puppet Chef

T T T | P i 1 i i | P
2005 2006 2007 2008 2009 2010

Figure 4.1: Trends for key word CFEngine, Chef and Puppet from google in-
sights

59

201

100

B0

&0

an

20,

4.1. MARKET SHARE AND RESOURCE AVAILABILITY

Number of back links from google

B CFEngine
B Chef
Puppet

180 260 340 420 500

Figure 4.2: Websites referring the products website from wholinks2me.com

area of from where those search were made generated. Here CFEngine seems
to be a global player where majority of the searches made from four differ-
ent country namely United states, Germany , France, United kingdom while
puppet and chef seems to be popular with in the united states.

4.1.2 Web site Popularity

Having a view of usage trends we now focus on exploring the available re-
sources for these products. We would like to know how many websites or
blogs are out there that talking about these products. These websites and blogs
will definitely have discussion on these products and people taking part on
discussion these blogs can be referring to the important material that might be
useful and contained in the web site of the product itself. Hence regards less
of whether it is a marketing forum or a social discussion forum we are inter-
ested in achieving the numbers if web sites that are referring to the product
web site. In this way we can have a relative guess the of material that we can
get from web for these products. Figure 4.2/ shows the numbers of back links
provide from google and it gives an indication of a large amount resources are
out there as compared to that of chef and CFEngine. But we cannot solely rely
on this statistics to predict the resource availability or popularity as , it might
be a marketing campaign that might has influenced these number.

The number of incoming links is an important part of Googles famous
PageRank algorithm. It categorizes the link on various factor measuring it’s
usefulness and give rank to link of the website. Hence rather that having a

60

4.2. MAILING LIST

look on only the number of web sites pointing to product main page , we have
also have look at page rank and figure out the quality of those link backs.
It was quite interesting to know that though CFEngine have less numbers of
websites referring to them it has page rank of 7 out of 10 while , puppet and
chef both have the page rank of 6 out of 10. So it can be referred that even
though CFEngine has less number of websites talking about it , the link backs
from these web site it quite useful. Hence it can also be conclude that puppet
have a lot of buzz created around in the web and we can expect to find a large
share of web talking about the puppet compared to Chef and CFEngine, but
when it comes to the helpful links that points to some thing interesting every
product have similarity with CFEngine leading with a small margin.

4.1.3 Social discussion

Hackers news contains discussion on wide rage of topics, the data from this
site was collected to get the discussion activity surrounding our interested
products. Hacker news provides an API through which one can query it’s
database mentioning a set of search filter. A research was made for consuming
the data from this site, and found a number of previously made solution by the
community targeted to obtain a summarized and specific report out from the
data exposed by api call. Hacker news Apps list a number of application that
consumes data from hacker news api and gives users the flexibility to carry
out research on those data by providing different functionality like viewing
the trends, making correlation between trends for the supplied key words etc.
Trend viewing tool was used to inspect the popularity of these tools. The ap-
plication collects the keywords to be plotted as comma separated values and
gives a time series graph. Internally the app will match the key words with
words in different blog articles and discussion. Hence finally create a weighted
mean of the frequencies of the words count found for each key word within
a particular time range. Figure [4.3|gives the Correlation between the frequen-
cies of key words CFEngine, chef and puppet cited in different different blogs
and articles. It shows the puppet and chef to be popular and more actively
discussed as well as there are more blogs and articles talking about the puppet
and chef. But at the same time it also shows the artifacts being introduced in
data as the graph shows a substantial traction in chef before chef was release
i.e. in 2009.

4.2 Mailing list

The data collection process for analyzing the mailing list was diverse and
driven by the of availability of mailing list data for public by these respec-
tive products. CFEngine provided it’s mailing list archive data as mbox files
that could be downloaded, Puppet was using google groups as it’s mailing list
hence it data was only available for viewing through web, finally chef also has
exposed their mailing list archives as read only source. Hence for both Pup-
pet and Chef the only way to get data was through crawling their mailing list.

61

http://www.hnsearch.com/apps

4.2. MAILING LIST

w Chef
puppet
« cfengine

2011

Figure 4.3: Articles and discussions from hacker news

Since only the users mailing list was to be analyzed , following are the mailing
list that were taken into account

CFEngine help-cfengine@cfengine.com
Chef chef@lists.opscode.com
Puppet puppet-users@googlegroups.com

CFEngine mailing list archive data was available for download for as mbox
tiles. The mbox files were downloaded and the data was processed by the tool
called mailingListStats , originally created as a part of set of tools that are used
for analyzing open source project. This tool took the mbox files and parsed
it to create a relational database containing the messages and people and the
relation between them. A separation of threads , answers for the threads ,
senders , only question posters were carried out by making a SQI query against
that database.

Puppet using google groups as mailing list did not provide any of it’s
archive data to be downloaded. Hence a crawler need to be written in or-
der to obtain data from the puppet’s mailing list. Since new user interface of
google group utilized a a lot of javascript to render messages , it was not pos-
sible for crawler to get the message and it’s details from google groups, But
it turned out that puppet has it’s mailing list data searchable through various
free mailing list aggregation service. These services like mark mail and mail-
archive also made puppet mailing list data available. Since they were simple
html files , it was easier to parse them and grab the contents needed to from
page and save it to database as web site was crawled. A through study about
the placement of organization of messages and navigation mechanism avail-
able in these services for exploring the mailing list was done. It was discovered
that mail-archive did not have a smooth navigation system that let the crawler
script to gather all the mailing list data systematically. Hence mark mail was
chosen, this site has two version of user interface , one targeting the human
user, while another was friendlier for the crawler scripts to traverse the link

62

http://www.flossmetrics.org/sections/tools/MailingListStats
http://markmail.org/
http://www.mail-archive.com
http://www.mail-archive.com

4.2. MAILING LIST

and gather mailing list data. Finally a crawler was made utilizing perl lan-
guage that was specifically designed to traverse the markmail links and gather
data into mysql data base. Fields like date send , subject , message body , origi-
nal thread name, sender, and it’s url was stored. Utilizing these various Mysql
queries were made in order to get desired out put like number of senders ,
separation of threads(questions) only from rest of the data etc.

Chef hosted it’s mailing list archive utilizing the software called monharc,
and it turned out that the mailing list archives data was only browse able from
web by outside users. Thus a crawler needed to be developed in order to
capture data from the web. But the challenge here was different compared
to puppet. The data available for chef was not crawler friendly , i.e. they
were designed to be difficult to traverse and harvest data. Hence with a little
modification of previous crawler script , we could not gather data from chef.
For data gathering a thorough understanding of navigation in chef mailing
list archives was necessary. Once we reach the message page , we need to
have a good understanding of html layout of the page to pick out only the
things needed. Hence a completely new script was written utilizing perl to
harvest data from chef mailing list. While the script seemed to successfully
harvest data for some years, in others it failed due to invalid html and injection
of script to render mailing address of the subscribers. Hence along the way
various tweaks were made in the scripts to cope up the differences in the page
and finally data till 2012 march 3 was obtained and save in the database. The
fields extracted from mailing list and save in the data base was same as puppet
and used the same set of queries to get our result.

Fig[4.4shows the message activity collected for all of these products. Itis a
time series graph and shows the message flow per month since the year of the
mailing list was established. The graph for CFEngine shows strong increase
in mailing list activities at year 2010 while recently the activities has slowed
down. For Chef , the mailing list activities are ever increasing. For puppet, it
is observed that it has high initial value i.e.(messages per month) in graph , it
is because Mark mail started to gather it's mailing list activities starting from
that particular date. Puppet shows large numbers of mails being exchanged
and steady increase followed by a slight deep in numbers in recent years.

With an idea of message flow in each of the mailing list we inspected the
mailing list for seekers ,providers and both , The tablg4.1] summarizes the in-
formation obtained from each mailing list. The data for each mailing was col-
lected from it’s establishment to 2012 march. An interesting thing observed is
that the numbers of individual falling in each group doesn’t seemed that much
different for all the products.

With a overview of mailing list data divided into different categories of
concern, individual groups were focused and the data was further analyzed
to study the activities performed by each group and understand importance
of the group in over all mailing list. Data about metrics discussed in approach
were collected for each group , except the metric “"numbers of answers” was
not collected for seekers group because, this group are solely categorized to
identify the question posters and thread starters , thus they are not involved
in any kind of answering activities. Table shows the data collected for

63

Number of mail each moth

600

Mailing list activity of help cfengine

4.2. MAILING LIST

Chef mailing activity

600
LI |
450 AR
5 f tH1h ' 450
/ Y
| | | 1 2
. ! g
[1 \N4i g
300 'Il 1 :(' V| : V| Aiall 5 300
r, 1N ;J"\. BN =
150 'lf: / 8 AVEIR | 150
T NS W '.||'x / ’
Sl
Vod ¥ /\
0 0 =
np@\%ﬂpﬁe’gp@\’iy@“fiy@%\?\p%%ﬁnp@\’ip@\?\p\Q\’ip'&\?\p\"\%np'\"\?p\n’\% ’LQQ%\:SQ%\:QQ%}lgg\\2“)\0\:&\0\:%\6’\‘1\0\\?p\\\:p\\\ip\'\:l\\\\?\p\"y\\
puppet maling list activity
1000
750 _/\/\/\,\/\/\/\/\
S 500
2
250
0
QQ%\QQQ%\% Qq,\'\ Qg\% g\Q .\Q\Q ”,\g\% .\g\'\ any \\\%Q\\\\z Al
Figure 4.4: Mailing List activity for all there product
CFEngine Chef Puppet
Seekers 33% (n=269) 19% (n=110) 26% (n=834)
Both 54% (n=442) 61% (n=358) 50% (n=1570)
Providers 13% (n=112) 20% (n=112) 24% (n=739)
Total subscribers 100% (n=823) 100% (n=580) 100% (n=3143)
Threads (n=3767) (n=2056) (n=7023)
Resposes (n=12559) (n=4745) (n=25678)
Total messages (n=16326) (n=6801) (n=32707)

Table 4.1: Mailing list divided into different categories

64

4.2. MAILING LIST

CFEngine Chef Puppet
Question posted 16% (n=601) 9% (n=185) 15% (n=1023)
Only one question poster 69% (n=186) 66% (n=73) 86% (n=719)
Unanswered threads 48% (n=292) 49% (n=90) 30% (n=304)
Questions replied on same day 39% (n=233) 38% (n=71) 45% (n=467)
Represents question poster 37% 23% 34%

Table 4.2: Statics about seekers group

CFEngine Chef Puppet

Question posted 84% (n=3165) 91% (n=1871) 87% (n=6180)
Answer supplied 96% (n=12143) 94% (n=4493) 89% (n=22959)
Only two question poster %35 (n=186) 13% (n=358) 19% (n=301)
Unanswered threads 22% (n=292) 30% (n=578) 16% (n=1046)
Questions replied on same day ~ 57% (n=233) 52% (n=966) 61% (n=3808)
Represents question poster 63% 76% 66%
Represents answer provider 79% 76% 67%

Table 4.3: Statics about seekers-providers group

seekers group for all the tools. And table[d.3]shows the data collected for users
that played the role of both seekers and providers. Here also one thing can
be noticed immediately, All the products showing not much difference in the
data collected for most of the categories.

Since data collected for both seekers and seekers providers, showed major-
ity of queries and answers are made from this group , it was not necessary to
collect data for providers , with simple arithmetic once can know the statistics
for providers group for the different metric we have chosen. With an arsenal of
data from mailing list for all of these products , we wanted to study the topics
and problems discussed with in each products. The threads subject summa-
rizes the message purpose of the thread and discussion happening inside it,
a word count mechanism used in data mining was implemented only for an-
alyzing the these subjects. The topics that are discussed in multiple thread
should show up as one having high frequency. Since counting only one sin-
gle word provides no meaningful results ,the word groups with in subject was
counted. A per module to write a script that returns the count of bi grams ,
trigrams and quad grams with in the supplied text. For the analysis topics and
problems discussed in mailing list , a query was run against MySQL data base
to return only the subjects of the threads and the data miner script was run
against the list of text generated. Top 10 frequently discussed topics found out
by combination of two words, three word and four words ,in the mailing list
of these products are shown in table. Of course a lot of interpretation can be
made out from this result but it is to be analyzed to get a overview of topics
and understand the problems frequently faced by user.

65

4.3. BUG REPOSITORY

For generation of lists of topics frequently discussed , a set of commonly
occurring words like re, release, released , available etc were excluded. The
words representing the package release activities were also excluded. Also
repetitive observation of result list generated by script was done to get a sen-
sible meaning out of the words with in list. The combination of words that
did not give any sense e.g. chef chef , puppet users ,cfengine cfengine were
removed from the bi-gram list. The trigram list is to be use to make sense out
of the bigrams and Quad-grams are to get a complete meaning out of bi-grams
if any of the quad-grams contains combination from bi-grams. The table
shows filtered results from the miner script organized as bigrams , trigrams
and quad-grams. Notice an interesting pattern is can be observed with in a
table. The bigrams gives the view of topics frequently discussed while tri-
grams helps to create a mind set if the topics are from reoccurring problems
and finally quad grams helps to see the topics found in bigrams are indeed
problems. This gradual addition of words from bigram to quad-gram helps to
comprehend result and perceive the problems more easily.

4.3 Bug Repository

4.3.1 Data gathering

According to the model of choice failure and fault counts for a certain period
of time was needed. Bug tracker was the perfect place to look into to obtain
such kind of data. Bug tracker of these products stored the data about var-
ious bugs that appeared during testing as well as in production as bugs are
reported by customers too, on top of that these bug reports also have version
associated with it which will ease the task of separation of bugs according
to version number. Hence focus was made in harvesting data from the bug
tracker of these projects. Next step after identifying the source was identifying
the attribute of a bug report that are important. A weekly bug frequencies for
at least 3 versions was to be established, so at least three field were need.

¢ the date at which the bug was reported
¢ the version of product the bug is associated with
* unique bug identifier

The bug reports in bug tracker of all the three products provided various in-
formation. Additionally bug tracker of chef and puppet also maintained bug
reports about other projects and components e.g. puppet enterprise, chef cook
books etc. These bug reports has nothing to do with the main product so only
the bugs related to project puppet as mentioned in Puppet bug tracker , and
chef as mentioned in chef bug tracker was considered. The bug tracker of these
product were deployed into service on various time hence shows various lev-
els of maturity and the amounts of bugs posted in them. Therefor just for data

66

4.3. BUG REPOSITORY

CFEngine Chef Puppet
. cfengine hel run list uppet dashboard
Bi-grams insirt linesp knife bootstrap ’ Ingtom facts
policy server data bag external nodes
segmentation fault remote file best practices
server returned ec instance ssh authorized
returned error client run 0S X
edit line application cookbook package provider
duplicate selection ruby block undefined method
package installation attribute value custom function
quickstart guide cookbook files retrieve catalog
package method Iwrp chef external node
package management undefined method authorized key
file select rhel packages best practice
reference manual centos rhel ruby dsl
copying files server error puppet master
syntax error error chef custom type
config file cookbooks chef puppet labs
cfengine stdlib package provider puppet agent
var cfengine nodes chef file type
Tri-grams files cfengine help with chef chef users how to
file cfengine help run list chef users could not

server returned error
classes cfengine help
cf cfengine help
cfengine cfengine help
selection of value
duplicate selection of
how to run
error cfengine help

on windows chef
for chef chef
centos rhel packages

application cookbook chef

how do i
attribute value in
itest an
test an attribute

could not find

could not retrieve
users problem with
users problems with
not retrieve catalog
users using puppet
ssh authorized key
not working puppet

duplicate selection of value
getting started with cfengine
with cf cfengine help
forget the domain name
package installation of rpms
did you forget the
you forget the domain
the domain name or
started with cfengine webinar
domain name or ip

Quad-grams

attribute value in an
doitest an
an attribute value in
test an attribute value
i test an attribute
how do i test

modifying kernel parameters chef

value in an chef

undefined method ’ for

method ’ for nil

could not retrieve catalog
could not request certificate
retrieve catalog from remote
catalog from remote server
not retrieve catalog from
retrieve current state of
to retrieve current state
failed to retrieve current
current state of resource
is it possible to

Table 4.4: Collection of frequently repeating word combination in mailing list

67

4.3. BUG REPOSITORY

gathering process , all data about the bugs reports were collected from respec-
tive bug tracker. This collected data was filtered before analysis is done , which
is the second phase. The bug tracker of CFEngine and Puppet allowed it’s bug
reports to be downloaded into csv files while chef’s bug tracker allowed it’s
data to be downloaded as excel files. The data in all these files were imported
in to mysql data base for getting the overview and then deciding on which fil-
tering mechanism to be applied in each in order to obtain similar result format
for all the products. The table shows the source and the time of the bug
tracker has been into operation for each product.

CFEngine http://blog.cfengine.com/bugtracker 2010
Chef http:/ /tickets.opscode.com /browse/CHEF 2009
Puppet http:/ / projects.puppetlabs.com/issues 2008

4.3.2 Data Filtering

Each mysq]l table created by importing the data from csv and excel file con-
tained different fields and large number of data than required. Hence data was
inspected for each product by making SQI query to check the versions avail-
able, the date since operation etc. After carrying out inspection following data
was to be filtered out for at least three version ,and the date range taken into
consideration was influenced by the version taken into consideration.

For example for Puppet we could see a number of minor version but most
importantly 4 major version i.e., 0.25, 2.6, 2.7, Telly. Since Telly was relatively
new and it did not contain much bug reports associated with it three version
were taken into consideration i.e. 0.25,2.6 and 2.7. Now the date range needed
to accommodate bugs reports from all the version taken into consideration.
For this case the oldest version into consideration is 0.25 ,whose initial bug re-
port dates back to 2008 january. Hence the date range taken into consideration
is 2008-01-01 till date.

Similar operation was carried out for CFEngine and Chef. Since CFEngine
version 3.3 was just released it was not good candidate to measure fault count.
Hence 3.0, 3.1 and 3.2 was choose for CFEngine and 1st bug report for the old
version i.e. 3.0 into consideration dates back to 2010 january.

For chef there were number of minor releases for each version , but the
major version were 0.6.x,0.7.x ,0.8.x 0.9.x and 0.10.x. The latest version 0.10.
has number of minor releases i.e. 0.10.0, 0.10.2,0.10.4,0.10.6,0.10.8 and 0.10.10.
Hence 0.10 shows it is a good candidate for analysis as it has been around for
a while and has sufficient numbers of bugs affecting it. There for the version
taken into consideration for chef was 0.8.x , 0.9.x and 0.10.x. The starting date
taken into consideration for chef because of version 0.8 was 2009 june. The
table summarizes the date range and version considered

68

4.4. USABILITY TEST

Product Versions considered Start date
CFEngine 3.0.x,3.1.x,3.2.x 2010-01-01
Chef 0.8.x,0.9.x, 0.10.x 2009-06-01
Puppet 0.25.x, 2.6.x, 2.7.x 2008-01-01

4.3.3 Results

The Figures and [4.7|shows the weekly bug frequencies for all the three
products separating the bug frequencies for each version out from the total bug
frequencies. The outer line in the weekly plot shows the total bug frequencies.
As seen in the figure there is a overlap in the bug reports between different
versions which spikes up the over all frequencies. Also the over all bug fre-
quencies patter doesn’t seems to follow the pattern that can be represented
by Weibull distribution function but the bug frequencies related to individual
version seems to follow the pattern that can be represented by Weibull distri-
bution function. Hence in analysis section , curve fitting can be carried out for
each version to calculate the parameter for distribution and ultimately calcu-
late reliability. It is also observed from figure £.7] that there are small releases
of bugs reported for some version of puppet early on from development phase
and there is significant over lap of old version with new version that shows ei-
ther the development of these versions are carried out in parallel or the entry
in bug tracker are wrong. While for Chef and CFEngine in figures [4.5 and
respectively, bugs report arrival pattern seems to be more natural with least
overlap on bugs reported for old and new versions and bug reports for new
versions arriving only after the old version. Additionally when bug reports
for new version starts to arrive, the bug reports for old version seems to die,
It might be because of old version being phased out by users as new versions
are launched.

4.4 Usability test

A usability test was conducted as planned in the approach section. The pri-
mary objective of this task was to collect the data about usability metrics that
enabled us to make a quantifiable measurement regarding usability and give
us a better view of the problems associated with it on these different prod-
ucts. The test executed as planned but there were few glitches that prevent
test from smoothly moving forward. Since users were taking test at different
time at their comfortable schedule, my of the users happen to get the same
problem from the test environment i.e. restoring their respective machines
when they are done conducting test with one products. Thus there was min-
imum email exchange between candidates during the test phase in order to
guide them to properly use the test environment which seemed to take away
some enthusiasm in candidate about the test. Apart from that users did not
have any trouble understanding the test question and the process of submit-
ting their response. The section below shows the results obtained for various

69

4.4. USABILITY TEST

30 B bugs
| REN
R
228 Wv32r
[KR
15
7.5
0

Figure 4.5: weekly bugs frequency for CFEngine

40 B bugsfreque..
| RUER
| v0.9x

30 W V0.10x

Bugs Frequecncy

Weeks

Figure 4.6: weekly bugs frequency for Chef

70

4.4. USABILITY TEST

40 B bugsfreque..
W V025
W26
30 W27

Bugs freguency
(%)
[]

10

Figure 4.7: weekly bugs frequency for Puppet

usability metrics collected from test.

4.4.1 Completion rate and Task times

Task completion status along with task time for 5 candidates conducting 3 task
on each product is shown in table The entries in table with task time are
completed and the ones without are incomplete task. The table shows a ma-
jority of users being able to carry out at least two task for CFEngine , while for
Chef and Puppet equal portion of users being able to complete the tasks. But
this collected task statistics is to be processed further by application of point
estimation and calculation of confidence interval in order to get a meaningful
interpretation out of it.

4.4.2 Task difficulty level

Task difficulty level was meant to be tracked by single was ease question. The
table [4.6)shows the single ease question score for each task for CFEngine, Chef
and puppet. The results shows that some most of the users have high level of
task satisfaction for two task i.e task 1 and task 2 using CFEngine. For Chef
there is mixed level of satisfaction regarding all the task. In case of Puppet
majority of users is satisfied with their performance in task2.

71

4.4. USABILITY TEST

Candidate No. Tasks CFEngine Chef Puppet
1 24min (15min) 22min 32min
1 2 5min 9min 20min
3 30min(15min) 41min -
1 15min 27min -
2 2 11min 4 min -
3 28min 7min -
1 15min((5min) - -
3 2 9min(5 min) - 10min
3 50min(30 min) - 15min(5min)
1 45min 90min -
4 2 90mins - -
3 - - -
1 45min 60min 10min
5 2 - - 35min
3 - - 20min

Table 4.5: Task times(unproductive time) for performing tasks

Tasks CFEngine Chef Puppet
5 1 4
6 5 1
1 6 1 1
3 3 3
6 1 6
7 6 6
7 7 1
2 5 - 6
5 2 1
1 1 6
4 2 1
3 7 -
3 3 - 6
1 1 4

Table 4.6: Task scores supplied by users

72

4.4. USABILITY TEST

Problems User1l User2 User3 Userd User5
CFEngine Task1

Bootstrap problem X X - - -
dependency issues X - X - -
CFEngine Task2

Problem writing poilices - - - X X
Problem understanding process flow - - - X -
CFEngine Task3

Lack of good examples and documentation - X X - -

Chef Task1

problem with ruby X - - - -
problem with keys - X - - -
cannot follow documentation - - X - X
Time consuming - - - - X
Chef Task2

confusing terminology and architecture X - X - X

Puppet Taskl

Certificate Error due to DNS X X X X X
Puppet Task 2

Problem understanding architecture X - - - -

Table 4.7: Problems faced by users

4.4.3 Usability Problems

The problems faced by users while carrying out the task is termed as usability
problem. These problems can be common problems that are faced by common
users of product or it can be an unique problem only face by a specific users,
what ever is the case if a problem is found it helps to understand the task met-
rics that users supplied after performing the task. Tables 4.7/ shows the prob-
lems reported by users while performing tasks utilizing different products at a
time. It cannot be related with whole scope of problem associated with prod-
uct, it is only the problem reported by users while using particular product.
This problems can be treated as obvious problem because if it is experienced
in such a small sample, then it is likely to be experienced by a large set of users
in large population. Most importantly the problem for Puppet seemed to be
experience by almost all the users hence it must be the most frequent problem
that users have to face while using puppet.

4.4.4 SUS scores

Post test questionnaire responses were collected as user’s perceived satisfac-
tion of the product itself. The collected responses were a series of scores rang-
ing from 1-5 for 10 question asked to each participants about the product.

73

4.4. USABILITY TEST

Users CFEngine Chef Puppet
user 1 72.5 15 37.5
user 2 50 70

user 3 65 30 62.5
user 4 47.5 2.5 95
user 5 57.5 35 15

Table 4.8: Calculated SUS scores from users for CFEngine , Chef and Puppet

These raw scores need to be converted into SUS scores(as single number) for
the product by the users in order to proceed with subjective usability analy-
sis of the product. The process to convert these raw data into SUS scored is
described in the background section Following that process each scores
were converted into a range of 0-4 and the sum of scores was multiplied for
each product obtained from a particular user was then multiplied by 2.5 to get
corresponding SUS score. The table shows the SUS scores obtained from the
5 users for CEFngine, Chef and Puppet. The results shows that CFEngine has
SUS score in rage of 50-70 while for Chef and Puppet the scores highly vary
from users to users.

74

Chapter 5

Analysis

51 Community trends

It might me tempting to believe from figure [4.1| that chef an puppet are the
technologies that are currently most popular and widely used but the data
google insight result doesn’t provide the full picture. Though it shows the -ve
trend for CFEngine , +ve trend for Puppet and Chef it might be coupled with
noise. Considering the fact that both puppet and chef are english dictionary
word and the key word like chef and puppet could have been used for searches
that has nothing to do with configuration management but have a huge effect
in trend analysis. So keeping that in mind, even though operating system as
filter was applied to signify the context of search the data seemed to be coupled
with noise. There is significant level of activity for chef in year 2007/2008
while the project mailing list contains data only from 2009. The chef project
actually started in year 2009. In year 2009 the searched frequencies seems to
pick up a little. Also if the same can be observed for puppet, the time series
shows the search terms for puppet started from early 2006 while the project
actually started from 2005. If CFEngine is now taken into concern then it shows
a high rate of searches in year 2005 / 2006 which is possibly for CFEngine 2,
but CFEngine 2 popularity slowly died while CFEngine 3 was introduced in
year 2009 there seems no clear possible way to get CFEngine 3 specific data.
Hence it’s trend is coupled with CFEngine2 which can be considered as a kind
of noise. Also another important aspect observed from the google insight, is
the area interested in these products. While CFEngine seems to be the global
player where people around the Europe and USA being interested , it might be
reflected by the used of CFEngine 2 which was the most popular configuration
management solution at the time it released. But with puppet and chef as well
as CFEngine3 being introduced lately and more younger they did not have
enough data to represent the areas that were interested in them. Hence the
area of interest gives the tentative regional use case of these products But none
the less the time series give a overview of what is the current status of
these tool and how frequently are they being searched in the web. It seems
like all of them have similar search trend which can be implied that all of these
tool are equally used by the people. It might be some time when one of these

75

5.1. COMMUNITY TRENDS

tool leads the path or might remain same sharing the equal portion from the
market between them.

5.1.1 Popularity and Resources available

It was the same case we faced with google insights however the the quantity
of data returned from hacker news is much less and focused. Since it returns
analyzing a set of articles submitted and the discussion under them , it’s much
more easier to filter the randomness in the data and try to filter out the results.
With a small amount of filtering done by applying the key words like “kitchen
food” etc the total data returned for chef seemed to reduce. Hence and sta-
tistical method like sampling[42] and testing [43] was utilized to predict what
portion of the total data returned contained the exact result.

Small samples containing 10 results were taken repetitively from the total
data returned from the search query. Then output obtained in each samples
were analyzed to point out calculated the number of desired results. In total
10 samples were taken at random that included 100 results from the total result
set. The number of desired results obtained in each samples are

95,74,5,7,2,6,8,6

Thus the mean numbers of interested results were 5.9. Hence from the
sample collected , it showed that only 59% of the total result obtained for chef
represent the data related to configuration management and system adminis-
tration and useful to us. A confidence interval was calculated in order to find
the interval that could represent the portion of total result set to contain the
results we are interested in. A 99% confidence interval was chosen which re-
sulted in the interval of (0.59-0.12, 0.59+0.12). There fore we now know from
the samples collected that 47% -72% percent of the data result hope to contain
the result about Chef related to configuration management.

After the result obtained, a confirmation was needed that confirms the re-
sults showed by the sample actually represents the total proportion of the pop-
ulation i.e.(the whole result) set. For this one sampled z-test was conducted.
For z-test , a significance level of 0.05 was chosen. Since the interval of the
proportion was known ,a hypothesis was made that 60% of the whole result
set represented interested data, rest were noise.

Thus the values for hypothetical proportion of population(P) is 0.60 and
sample proportion was (p) is 0.59. The z-test was conducted by utilizing R
software. The p value obtained was 0.419 which is greater that the significance
value. Hence the null hypothesis cannot be rejected i.e. our assumption that
60% of the whole data returned for the search query on key word “chef” con-
tains the data about Chef product.

Therefore the total results obtained for chef was 1532 of which only 60% i.e.
919 of them were useful. This can be interpreted as the tentative total number
of discussion, articles and blog post we can find for chef is 919. Similarly the
result set for puppet keyword was analyzed to reflect the true number of post
talking about puppet in IT or system administration. The random samples
resulted following number of right results.

6,10,7,8,7,4,5,5,2,8

76

5.1. COMMUNITY TRENDS

Therefore from the samples it shows 62% of data available is related to pup-
pet and other are related to other things. 99% confidence interval for showed
that data portion about Puppet product is in range 50% to 74%. Hence a con-
firmation test was made taking a hypothetical value 70%, after z-test , the p
value was found to be 0.04 which is less than the significant value. Hence our
assumption was not correct. Now a new assumption with 69% was made. For
this hypothetical value the z test resulted, a p value of 0.06 which is slightly
greater than significance value. Thus with 99% confidence, it can be stated that
69% of the whole result set contains the data about Puppet product.

Thus the total result returned for puppet key word by hacker news was
1202. Out of these results only 69% of 1202 i.e. 829 contains the discussion ,
articles and blog post about puppet as configuration management product.

For CFEngine only 83 results were obtained hence the methods applied for
the Puppet and Chef cannot be applied to it , because total population size
won’t be greater than 10 times the samples size. Since the total population
size was very small, every result were analyzed. After having a inspection
of data all the data returned from the result set seemed to contain data about
CFEngine as configuration management product. Hence all 81 records were
useful. Thus the total resources as obtained from hackers news is listed in the
following table.

CFEngine 81
Chef 919
Puppet 829

From the result obtained, it was apparent that as raw results includes ran-
domness , so a statical method was applied to estimate the total proportion of
the whole data that represents the useful information. 99% confidence interval
was used to find the required interval and it was followed by one sampled
z-test to test the hypothetical value of proportion taken from the previously
calculated interval range. This method might not be perfect and accurately
identify the true proportion of the real data in the whole result set , but it gives
the possible view of interval that represents the proportion of desired data hid-
den in the result set. This method can be improved and made more accurate
by taking large number of sample with different sizes repetitively and finally
conduct the same kind of test on the data obtained from these samples. With
the high numbers of samples it is more likely to accurately predict the true
portion of data in the result set.

From the hacker news data analysis , our hypothesis about the result set
obtained for chef and puppet will be influenced by a lot of noise and that with
CFEngine will be much less was proved. It absolutely makes sense because
CFEngine being a non dictionary word not used in any other field and profes-
sion will always give the result that we are looking for. While puppet and chef
both being a dictionary word and linked with other profession (entertainment,
cooking) etc tend to give a lot of result of which only some portion of data are
useful to us but still the results point out that Puppet and Chef are popular
and large numbers of resources are likely available for them.

77

5.2. COMMUNITY STRUCTURE

5.2 Community Structure

5.2.1 Analysis from mailing trends

Data on mailing list was categorized into various areas of interest and we
found a of similarity between these products on community structure. Though
different amounts of mailing traffic and trends exits in each of the of the prod-
ucts , the structure is the same. Since puppet has large number of subscribers
,currently it has double the mailing traffic compared to other products, be chef
seems to be gaining a lot of popularity with ever increasing mails since it’s
launch. For CFEngine , the mailing list traffic is a bit turbulent , with large
numbers of mails arriving on the year 2010, it may be due to the launch of
CFEngine 3 earlier in the year 2009. Hence it can be though as CFEngine is
slowly making it’s way back into this field with CFEngine3.

From the numbers of subscribers in the mailing list Puppet proves to be the
popular product. Chef also proves to be the hot product with a bright future
with as we can find a lot of resources talking about it provided that it is is just
two years old, and +ve trend observed in it's mailing list also adds to it. For
CFEngine it’s mailing list shows to be the oldest of all , and the mailing traffic
shows that it has small community that is involved in discussion and problem
solving. When looked at the type of user heavily involved in questioning and
answering all product showed the same groups of user were significant. All
product showed seekers only and seekers/provides group to be very vital to
it’'s community and their portion with in over all subscriber were similar in all
of these tools. More than half of the subscribers fell into these category for all
product.

5.2.2 Analysis of seekers group

CFEngine shows it has a large share of seekers only group that comes to the
mailing list only to get answers, this remains some what similar to the puppet
and chef. This can explain why a CFEngine has a lot of users but small mailing
activity foot prints. Also the providers only group is same for Puppet and Chef
while that of CFEngine is small. But important result figured out from this
analysis was all of the product seems to have large share of users involved in
querying and posting answers.

Moving deeper in to analysis of behavior and importance of each group,
we can see that same share of question are posted by the seekers only group
for puppet and CFEngine despite their size. They represent 1/3 of the question
poster and post almost 1/4 of the total questions. This can be understood that
large share of people use it’s mailing list for help. It is also seen that a lot of
queries from these group get unanswered for all products. Chef seemed to be
leading into this category while CFEngine is very close. This might be due to
the users in this group post already discussed problems or a lot of messages in
from this group is spam. But if it is a normal user ,the numbers in this section
should be low as possible, then only it encourages the community to flourish.

Puppet seemed to be more responsive when it comes to answering the

78

5.2. COMMUNITY STRUCTURE

queries from seekers group but only by small margin. Combined with the
queries dropped and the responsiveness , it can explain why puppet is the
popular product among the three for novice users. But in summary all of the
product tending to have similar behavior in number of categories and differed
only by small margins.

5.2.3 Analysis of seekers providers group

All the product showed that a lot of it’s mailing list users belong to this cat-
egory, and majority of question and answers in mailing list are provided by
this group. But even with this similarity as a whole , small differences can be
observed when each of the individual categories focused. This group provide
large number of question compared to other two groups but only with small
margin. Similarly , for CFEngine this group provides most answers as com-
pared to it’s counter parts. The portion of questions that went unanswered
from the user in this group was less for puppet and high for chef, but in all it
was less compared to that of seekers group. Also the portion of queries from
the user in this group that get answered in first day is large for puppet and low
for Chef but the differences being very small. More than half of the question
get replied on the first day. Combining the response rate and queries dropped
we can see that community is more supportive and helpful. Hence when one
becomes a experience user of the products , one can often look at the commu-
nity to get problem solved / discussed for all of the products.

But there was one phenomena seemed similar in these products. Even
though from top, this group seemed to be responsible for providing answers
to the queries, there was only a small set of users responding to lot of the
threads, i.e. answering queries, And lot of other users were involved in an-
swering small portion of the queries. Thus with in this group also lie a subset
of users that can be termed as power users and knows a lot about the prod-
uct. This gave us a new insight in to community structure and support they
provide for these product which is further discussed in[5.2.4}

5.2.4 Load distribution

A simple plot of the numbers of responses and responders indicated that dis-
tribution of response to responders is seemed to follow a power law [44].
Roughly it is estimated that for all the product community member’s response
pattern can follows a power law ,called 80 -20 [45] rule, which laid out in sim-
ple terms says 80 percent of the total answers are given by 20 percent of the
users. This might lead to the conclusion that size of the community is one
thing but there are only some core and power users that keep the community
supportive and alive and this is same for all the product. To get a better un-
derstanding of the phenomena and reach to a conclusion , the data set with
responses and number of responders associated with them was to be quanti-
tied by a mathematical model. Additionally a mathematical model will help us
to understand the load distribution in the community it self. Finally with the

79

5.2. COMMUNITY STRUCTURE

response to responders distribution we can also have a good understanding of
knowledge distribution and support offered by community.

To quantify it mathematically power law was taken as theorotical model,
our assumption of it followed 80-20 rule as known as Pareto Principle [45] can
be examined by plotting a Lorenz curve [46]. For the distribution to follow
Pareto Principle the Pareto index a should be approximately 1.161. This in-
dex can be calculated with the help of Lorenz curve and Gini coefficient with

equation
1

20 — 1
The Lorenz curve is used in economics to find the wealth distribution and
inequality on wealth concentration within individuals in society. It also suits
for this case as well for finding out the concentration of responses with each
individuals and ultimately study the dependence of the community support
on these individuals. The Lorenz curve shows the inequality in terms of Gini
coefficient. In Lorenz plot the perfect equality is shown by the diagonal line
(0,0) to (1,1) in figure In this case perfect equality shows that every com-
munity member is equally involved in discussion and answering. Well it is not
possible in real world, however if majority of community member is active the
our lorenz curve plot must be near to this equality line, i.e. the area between
curve and the line which is gini coefficient should be small. Hence higher Gini
coefficient value signifies larger is the inequality and majority of community
is less involved. The perfect inequality is given by y = 0 when x < 100% and
y = 100% when x = 100% , simply said all the rest of community member
is passive and only one is active in answering. This will result in perfect “L”
shaped curve. The more curve looks like "L” the worse is the participation of
community members and greater is inequality. For this case, high inequality
shows that dispersion of knowledge is very little and only few people is able
to answer the majority of queries. This inequality also signifies that commu-
nity support offered by this products is dependent on few individual. Thus an
attempt was made to categorize which of these product has hight inequality
and by how much.
From the calculated gini coefficient, even if the Pareto index a is not 1.161,
we can find the ratio of concentration i.e inequality, It can be calculated with
the following relation 5.2l where H is gini coefficient.

(5.1)

1+H 1-H
L) (550 52

A:B=(

The lorenz curve plot, along with the gini index for the three products is
shown in the figures and[5.3] After the gini coefficient was obtained, it
was apparent that 80-20 rule doesn’t hold true for these products , the Pareto
index a calculated was more than 1.161 which showed that there was even
more in equality i.e. 90-10 or 95-5. Hence equation 5.2 was use to find the in-
equality. Table[5.2.4)summarizes the joint ratio (degree of imbalance) observed
in three products with the obtained gini index.

80

5.2. COMMUNITY STRUCTURE

Lorenz Curve

2
o T a
5 r
v @ | A
] (=] r
w rel. mean.de=1.708 A
5 giniindex= 0.958 1
[=1
oW [{s] -~
E o L(1/2)= 0.00z p
S A
g <
= L]
w
2
= [at]
g S
E
3 |
(&) o L

S 1 | | |

0.0 0.2 04 0.6 0.8 1.0
cumulative share of people form lower to higher respononses
Figure 5.1: Lorenz curve plot for CFEngine
Lorenz Curve

2
o —
=
@
w
w0 W@ |
@ o
w rel. mean.de=1.726
5 giniindex= 0.95
[=1
@ g - Li12)= 0.002
i
(=
g <
= L]
w
2
= [at]
m T
E (=]
E
3
o L]

o I I

0.0 0.2 04 0.6 0.8 1.0

cumulative share of people form lower to higher respononses

Figure 5.2: Lorenz curve plot for Puppet

81

5.2. COMMUNITY STRUCTURE

Lorenz Curve

1.0

0.8

rel.mean.de=1.542
giniindex= 0802 Y

0.6
|

Litiz)= 0.011

0.4

0.2

cumulative share of responses send

1 [I I
0.0 0.2 0.4 0.6 0.8 1.0

0.0

cumulative share of people form lower to higher respononses

Figure 5.3: Lorenz curve plot for Chef

Product Versions Gini Index Joint ratio
CFEngine 0.958 98:2
Chef 0.90 95:5
Puppet 0.96 98:2

This gives a clear description that all the products have high amount of in
equality i.e. very imbalanced when it comes community member participating
in discussion and responding to queries. Despite the size of community and
popularity shown by the Puppet ,it’s joint ratio is same as the joint ratio of
CFEngine , i.e. 98% of response is from 2% of people, it shows that community
size doesn’t have any effect on the support you get from mailing list. And one
always have to depend in these very 2% user to get support. This also shows
that these two percent of users are have much knowledge about the product
and are actively sharing it. Chef on the other hand being a new product, shows
some what different behavior. Though the joint ratio for it is also severely
imbalanced, it’s some what better than CFEngine and Puppet. It might be
because it is a new product and more users are novice to it so every body is
taking their time to response and take part in discussion. Down the time it
might as well take the path of CFEngine and Puppet as old users acquire more
knowledge and experience with product , so they have all the knowledge and
only they are answering the queries and discussing while other intermediate
and novice users just becomes a passive users.

82

5.2. COMMUNITY STRUCTURE

5.2.5 Analysis of Data miner script output

The table 4.4{shows the top 20 frequently occurring bi-grams , top 10 trigrams
and , top 10 quad-grams. When the list of bi- grams is inspected , mix of list
and topics that are discussed in the mailing list can be observed. Tri grams
gives a clue what topic is about and the looking at the quad gram the problem
associated with the product can be pointed out.

CFEngine

From bi-gram inspection of CFEngine mailing list it can be said that people are
mostly posting issues related to package management and editing files. It also
shows that the users are having trouble finding the quick start guide as well as
there seems to be discussion around CFEngine reference manual and standard
library. Possibly these discussion can be made due to user not finding the
information that he/she is looking for in reference manual or improving the
Reference manual to make it more understandable. Also CFEngine standard
library contains a set of reusable body that can be utilized in CFEngine policy
files , it appearance in the list can be summed up as people wanted to add
more things on it or not being able to use the functionality within it. Hence
looking at just the bi-gram list an overview of the possible problem we might
encounter can be observed, it is also helpful to have a idea what topics are
being brought up frequently.

When tri-grams are observed, it shows that people are having problems
with implementation of classes in policy files also making files related policy
task. CFEngine also showed problem with selection of value.

With the Quad-gram inspection, the problems that people are facing be-
comes quite clear. It can be assured that users are definitely having trouble
with package management and they are searching for the easier way of learn-
ing the CFEngine, which adds to it’s reputation of being a hard language to
learn. Also we see users are experiencing problems of domains with CFEngine,
but this was error associated with CFEngine 2 which was no longer relevant.

Chef

The bi-gram list of chef shows chef specific words like data bags , run list , knife
boot strap etc as frequently stated words in the mailing list. This signifies that a
lot of problems and discussion are taking place on these topics. EC2 showing
up in the link shows chef users are using it with cloud services. Also users
of chef are looking for ready made cook book files. Since cook books are the
blueprint of configuration used in Chef, we can understand people are looking
for different cook book files and usually turning up to the mailing list to find
cook book files that fulfills their need. This also shows the cookbooks in hosted
chef are difficult to use in users context or doesn’t cover the whole requirement
of users. Another interesting topic that showed up was attribute value , these
attribute value are dynamically calculated by ohai plugins and also definable
by user through json. It shows users are having problem with implementation

83

5.2. COMMUNITY STRUCTURE

of attribute value.

With a closer inspection of to 10 tri-grams list it was found that there seems
lot of talking going on about the implementation of chef on Windows and Red-
hat packages. It might be due to chef has recently released windows package
and users are having trouble implementing it, appearance of Centos Redhat
package signifies either the user cannot find the required package or there is
some flaw with in that package of the chef. Another interesting thing observed
is that user are having trouble testing the value of attribute.

From the Quad gram analysis, it absolutely clear that users were definitely
having trouble in testing the attribute value. It can be assured by the lack
of dry mode available in chef to test the configuration rules and also since it
is possible to declare attributes at several place like cookbooks, nodes, roles
,environment and since attributes are just the key value pair, the values may
be over written. Thus there is an strong used case of testing an attribute value
but it seems people are finding themselves in trouble trying to test it.

Puppet

The bigram list of puppet showed that discussion are happening in the top-
ics like custom facts, osx, secured authorization, best practices etc. From the
topics it seems likes users are struggling to implement custom type, external
node and more importantly retrieving catalog. Having a look at the list it can
be roughly estimated that users are looking for the way to define custom facts
because the available facts didn’t cover their whole use case. There are prob-
lems related with authorization either due to human error or because of pup-
pet itself. Puppet master authorizes the client based in the ssh key exchange
between client and master, but it is observed that people are having trouble
implementing it. There also seems to be some frequent discussion related to
best practices. People always looks for best practices , to make things modu-
larize and reusable when things grow. The topic “best practice/s” shown in
the list can be understood as it depends on our implementation to make things
organized and reusable with Puppet. Lastly a glimpse of puppet master failing
to give catalog(configuration specifications) to it’s client is seen but this can be
further confirmed with tri-gram and quad gram analysis.

With tri-gram analysis we can see that there main topics /problems are
dominant in puppet mailing list. The problem related with ssh authorization ,
problems in retrieving catalogue and users searching for the best practices of
doing things.

From quad-gram lists it becomes absolutely clear that puppet has many
cases where it failed to deliver the catalogue to the clients. Catalogue is the set
of configuration list computed by puppet master for a particular client. A cat-
alogue cannot be delivered when a server is too busy to respond to the client
or when there is problems in authorization between client and server. It is also
seen that the problem of authorization occurs due to failure to receive certifi-
cates to the from the server. Another major problems face by puppet users , is
the inability to the retrieve the current state of the system and resource. This
retrieval of current state is to be done in order to find if there is any deviation

84

5.3. RELIABILITY

on the system and resource than the one mentioned in catalogues. Therefore
the quad grams lists shows that puppet suffers from two main draw backs
, that can potentially make it unreliable ,one is it fails to retrieve fails from
server, while another is if even configuration files successfully are retrieved,
it might fail during implementation due to error associated with retrieval of
current state of resource.

5.3 Reliability

5.3.1 Distribution Fitting

The figures and [4.7] all shows that weekly bug frequencies related to
each version follows a pattern that can be represented by Weibull distribu-
tion function. Utilizing R’s maximum likelihood estimation(MLE) technique
the parameters for Weibull distribution was estimated. Since R requires time
domain data, relative frequency of bug reports needs to be converted to occur-
rence times of failure. Therefore bug report is mapped to it’s corresponding
weekly period. For example 2 bug reports in week 5 and 4 bug reports in
week 6 is now converted to 5,5,6,6,6,6. Thus the input provided to the R for
estimation of parameter is cumulative which consists of list of bugs with each
bug converted as week number. A histogram of bugs frequency is plotted for
each version with x axis representing the weekly time and y axis representing
the number of bugs reported in that week. Using the MASS package available
in R, Weibull PDF was fitted in the bug frequencies histogram plot [47]. The
output of the curve fitting method will yield scale a« and f shape parameters
which will be used to calculate the reliability of product weekly. Measure the
goodness of fit can be carried out using relative measures. The equation used
to measure the goodness of fit is given by equation[5.3] The index expresses a
coefficient of variation of root mean square deviation normalized to it's mean
measure of the mean of observed values.

5= \/(2?:1(%‘ — yi*)z) (53)

n
i=1Yi

The computed scale and shape for each version of the three products along
with the accuracy level is shown in the table As discussed in the back-
ground theory , the effect of scale parameter is to squeeze or stretch the PDF
plot. Greater the value, greater is the stretching, which produces the flatter
curve and this implies less rate of failure. The variation level is the match be-
tween the fitted curve data and the actual data i.e. bugs density. Less the value
of variation between the observed and fitted value, the accurate the match is.

85

5.3. RELIABILITY

Product Versions scale shape RMSD
CFEngine v3.0 43.257 4.278 86.36
CFEngine v3.1 73313 5333 63.27
CFEngine v3.2 103.373 11.120 69

Chef v0.8 45302 3.677 48
Chef v0.9.x 79.669 4.48 56.91
Chef v0.10.x 124.157 7.088 50.80

Puppet v0.25.x 60.89 3.49 44 .56
Puppet v2.6.x 118.670 5.095 65.295
Puppet v2.7.x 15597 4987 43.272

The figures|5.4],5.5/and [5.6|shows the Weibull distribution curve fitted with
the bug frequency for each versions of the three products. The parameters
listed in the table was used for corresponding versions to get the plots.
From the figure, it’s visually clear that puppet has the better fit, much accurate
compared to others, this also is supported by the RMSD value in the table
The increase and span of failures are correspondent to shape and scale
parameters respectively. The estimates are favored towards scale to cover large
time span. Thus this pushes down the peak of the fitted graph resulting a low
accuracy level specially if there is high amount of failures in small interval of
time.

This explains the accuracy obtained for CFEngine for most of it’s version
and it is also observable in figur For each point(week) in horizontal axis,
difference between observed frequencies and expected frequencies from Weibull
parameters is high which increases the over all sum of the residuals. Therefore
the calculated ratio of sum of these differences with mean of observed fre-
quencies, will result a high coefficient of variation of theoretical frequencies
about mean of observed frequencies. The amount of error of the distribution
titting is also clearly observable in the graphs. These kind of errors could have
been made more transparent by obtaining the residual matrix i.e. that con-
tains difference between the observed frequencies and expected frequencies
and plotting them against time. If residual matrix was plotted then , it would
also have offered a visual clue for the reason of such a large variation in some
plots.

Another method will be to calculate accuracy on basis of pattern rather
than magnitude, is to calculate the correlation between the observed frequen-
cies and frequencies obtained. Correlation can explain which versions of bug
reported follows the pattern shown by the fitted curve more closely. Therefore,
if there is positive correlation then the obtained frequency distribution follows
the theoretical model generated from the parameters using MLE. Nearer the
correlation coefficient to 1, strong is the correlation between bugs frequencies
observed and fitted ones.

In this case the important aspect is the pattern of bug report as peak of esti-
mates are factor of time span rather than magnitude of failure rates. Therefore
as long as estimates are increasing or decreasing with respect to observed fail-

86

5.3. RELIABILITY

ure rate , the model is able to describe the failure behavior. It’s reasonably clear
that all the fitted frequencies demonstrates the +ve correlation and majority of
magnitude variation in between observed and fitted ones are same for all the
product. For demonstration the correlation between fitted and observed bug
frequencies was calculated and it was find to be 0.71 which is a good indica-
tion of estimated PDF is good representation of failure behavior. So the data
obtained were considered for calculation of reliability for each versions with
in the product.

From the figures it’s clear that bugs in all the version of these product fol-
lows the Weibull distribution showing increase in bug numbers being reported
on early weeks and stabilizes slowly later on. A similar trend in bug pattern
for CFEngine and Chef from fig i.e. minimal overlap on span of time for
bugs reported for consecutive versions. In puppet there is a significant portion
of time span overlapped between two versions. Hence since the bug in each
version is spread over some span of time and there is no sudden spike in the
bug numbers reported in each week , we have a better fit of model for puppet
version compared to CFEngine and Chef.

5.3.2 Reliability growth

Since there are two aspects to look into the plots i.e. numbers of failures which
is frequencies of bugs(shape) and the span of failures (scale), i.e. the time span
where the bugs reports about the particular version continue to show up. Esti-
mation favors the scale to favor long span of time because it is natural for bugs
to show up for some period , but if it shows up for a long period of time the
it is surely unreliable product. The Weibull’s parameters value calculated for
each version was used to calculate the reliability of each version of the product
utilizing function Figure [5.4d]5.5d| and [5.6d| shows the reliability graphs
for each products with various versions. Since the time range considered for
each product is different, comparison of reliability of versions was carried out
within the product only. As expected the new versions offers more reliability
in all the products. In case of reliability CFEngine shows to be a better product
that offers more reliability on each new version shown in while Puppet
seems to have a small amount of reliability increased between it’s last two ver-
sions i.e. 2.7 and 2.6 as seen in fig[5.6d|and quantified in table The table
5.3.2lshows number of weeks up to which each version shows at least 90% reli-
ability and reliability growth that was calculated by taking this 90% reliability
as standard value between the versions. The reliability growth between the
version is calculated by subtracting the last week with 90% reliability for old
version from the last week with 90% reliability for current version and whole
difference is then divided by the total range taken into account. For instance
the growth for CFEngine v3.2 was calculated by [(31-20) /115] *100%, where 31
is the number of weeks for which the current version of product offered 90%
reliability, similarly 20 is also the numbers of weeks for which the old version
of product offered 90% reliability and 115 being total weeks taken in account
for bug tracker of CFEngine. The total weeks for Chef and Puppet were 150
weeks and 200 weeks respectively.

87

bugs density

bugs density

005 0.10 015 0.20

0.00

005 010 0415 020

0.00

5.3. RELIABILITY

0
D. -
()
S
2 S|
w
5
HEN |
o S
3
0
o T
[J—
(=
o __,--'//
_ 8 | - §
T | T T T 1 o | T T T T T 1
20 40 60 80 100 120 0 20 40 60 80 100 120
weeks weeks
(a) version 3.0.x (b) version 3.1.x
e I
@ _
(=]
= @ |
= o
s
=
g 3
N
()
_— o |
T T T T T 1 e | | T | T T 1
20 40 60 80 100 120 0 20 40 60 80 100 120
weeks weeks
(c) version 3.2.x (d) Reliability growth

Figure 5.4: Weibull curve fitting for CFEngine versions and |(c)|and it’s
reliability growth [(d)]

88

bugs density

bugs density

0.02 0.03 0.04 0.05

0.00 0.01

0.020 0.030

0.010

0.000

5.3. RELIABILITY

(3]
D. —f
()
=
“ o
c o
S o
w
o
3
a —
D_ —
(=]
[=]
D. -
T T 1 < T T T 1
50 100 150 0 50 100 150
weeks weeks
(a) version 0.8.x (b) version 0.9.x
e]
- — V0.Bx
] - - V0.9.x
o _| - V0.10.4
(=]
> ©
= (=]
K]
g i
e8]
r I+
B \\
/ s] \\
T o | ~
| | | o I T T T T r T T T T r T T T T |
50 100 150 0 50 100 150
weeks weeks
(c) version 0.10.x (d) Reliability growth

Figure 5.5: Weibull curve fitting for Chef versions and|(c)land it’s relia-
bility growth [(d))

89

bugs density

bugs density

0.010 0.020 0.030

0.000

0.000 0.005 0.010 0.015 0.020

5.3. RELIABILITY

[Ty]
D_ —
p —
t
o 4
o
=2 8 |
2 o
@
° o
& S
3 (=]
0
= | 1
S .
/'/
. 8 |
T T 1 < T T T T 1
50 100 150 0 50 100 150 200
weeks weeks
(a) version 0.25.x (b) version 2.6.x
e]
- — V0.25.%
] - - V26x
o _| - V2Tx
(=]
> ©
= (=]
K]
g N
I
o N\
(=] \'-
1 \\
<
| I | | o | T T T T | T T T T | T T T T ' T T T T |
50 100 150 200 0 50 100 150 200
weeks weeks
(c) version 2.7.x (d) Reliability growth

Figure 5.6: Weibull curve fitting for Puppet versions and |(c) and it’s
reliability growth [(d)]

90

5.4. USER EXPERIENCE

Last week with
Product Versions at least 90% reli- growth %
ability
CFEngine v3.0 25 -
CFEngine v3.1 48 20%
CFEngine v3.2 84 31 %
Chef v0.8 24 -
Chef v0.9.x 48 16 %
Chef v0.10.x 90 28 %

Puppet v0.25.x 32 -
Puppet v2.6.x 76 22%
Puppet v2.7 x 99 11 %

This less increase in reliability between two version of puppet can be well
explained by observing the figld.7] as the bugs for these two version continue
to arrive for a long span of time , and the time span for those two version
are also almost overlapped. While for Chef and CFEngine large portion of
bug reports are posted in short interval of time and as time goes on and when
new version comes out the chances get even slimmer. Both CFEngine and Chef
demonstrate identical and strong reliability increase in it’s consecutive version
but , the last version i.e. 3.3.x of CFEngine shows more growth in reliability
compared to the lasy version of Chef i.e. 0.10.x which is shown in table
It’s also well represented by the figures and as the bugs for the chef’s
last version are spread over a large span of time in time range and the bug
frequency in each week is not that high as well, so it has also a better fit index
50.80 compared to 69.80 of CFEngine. For CFEngine ,the bugs frequency are
very high each week and spread over a small interval of time which resulted a
small scale parameter value and thus resulted high reliability.

5.4 User experience

The raw data obtained after the test is to be processed further i.e. transforma-
tion to get a suitable data in order for it to be analyzed. Various mathematical
model comes handy in analyzing these set of data , but since test sample is
small caution need to be taken on application as the application of wrong the-
oretical model will give wrong projection of actual use case associated with
these products.

Completion rate with usability problems

The task data obtained from result section is broken down into appropriate
formati.e. if there was task times for 3 users then 3 out of 5 completed the test.
Normally with small sample sizes it would be wrong to say that a product is
100% usable when all users completes the task and 0% usable when all users

91

5.4. USER EXPERIENCE

fail the test. This kind of result is often obtained in test with small sample
sizes and reporting 100% and 0% doesn’t portray true picture, instead it is
helpful to be analyzed as how likely the true population parameter shows the
value as extreme as this. Hence a point estimation method is required in order
to make a estimate of the unknown population parameter value. Therefore
Laplace method [48] is used as best point estimation which is suitable for small
samples.

When ever 5 users out of 5 successfully completes the task, normally it is
termed as 100% instead Laplace Law of Succession adds one to the numerator
and two to the denominator ((x+1)/(n+2)) thus 6/7 is obtained which is 85%
completion rate. This is far less than 100% but near to it. The interesting as-
pect of this method is that results come more closer to hundred percent when
sample size increases. The height of bars in chart shown in figure 5.7 shows
the point estimated by using Laplace method on the individual task data.

Though the point estimation method provides the value that will give an
estimation of population parameter, the chances that the estimated value is
same as the unknown population’s true completion rate is extremely unlikely.
Hence confidence interval also need to be computed so that it will give a rea-
sonable boundary for a true population completion rate. For example if 1 out
of 5 users completes the task , then the 95% confidence interval is 2%-64 %.
Though the interval is large which is again due to sample size the important
information that is obtained is that it is highly unlikely the task has a comple-
tion rate of 70%. There fore confidence interval is highly informative and is
extremely necessary incase of small sample size leading to the extreme results
like 0% and 100% as completion rate for the tasks conducted.

For computing confidence interval , adjusted Wald interval is utilized as it
provides the best coverage for specified interval when sample size is less than
150. In other words if 95% confidence interval is desired then it will yield an
interval that will contain observed proportion on average about 95 % of times
[49]. To obtain an interval using this method, small adjustment is to be made
in the result. For example for obtaining 95% confidence interval on 3 out of 5

i.e. 3/5 users completing the test successfully , add half of the squared z-value

2
to numerator and squared z value to the denominator such that % re-

sulting approximately 5/9. Now the confidence interval is calculated using
wald’s interval on these computed values. The bar chart|5.7] shows the confi-
dence interval obtained in this way on every bars. These confidence interval
gives important information and idea about where the true completion rate for
these tasks associated with the products might fall. Large set of usability stud-
ies found that average task completion is 78% which can be used as reference
point to compare the results.

From the figure 5.7|shows CFEngine have the highest completion rates for
all the three task but only completion rate for task 1 using CFEngine is above
average. Due to three users having moderate knowledge about CFEngine, the
completion rate results might have favored CFEngine. Since there is significant
amount of overlap in confidence interval in completion rate on same task using
these products, a conclusive result cannot be drawn rather a relative projection

92

5.4. USER EXPERIENCE

o
= —
A B CFEngi
B Chef
o 0 Puppet
5]
z
g o
= @
B
o
g o
g °
o _|
o~
G]
task1 task? task3

Figure 5.7: Completion rate for CFEngine, Chef and Puppet

93

5.4. USER EXPERIENCE

can be made looking at the upper and lower limits of interval. Therefore, the
upper limit of 95% confidence interval for all the task shows that all these
products having a value greater or equal to the average task completion. This
means that if examined in true population, there is possibility that all of the
products can achieve average completion rate. Additionally the low value of
lower limit of confidence interval shows that puppet really has less number of
completion rate for task 1, while chef has less completion rate for task 2 and
both chef and puppet have similar completion rate for task 3.

Considering lower limit of 95% confidence interval along with the best es-
timate for CFEngine, shows CFEngine having satisfactory completion rate for
task 1 i.e. installation of CFEngine has completion rate that can go as low as
60% which is close to average completion rate and task completion can go up
to 100%. Chef also have good completion rate regarding task one but if lower
confidence interval is observed this task can have really low completion rate
as low as 22% which doesn’t seem satisfactory. Among the three puppet has
worst completion rate for taskl which can be well explained by the table
Since majority of the test user struggled setting up Puppet server to connect
with client due to certification issue triggered by DNS they were unable to
complete the task. Puppet’s upper limit of 95% CI shows 77% indicating it is
highly improbable to get it's completion rate above the average rate. If puppet
is to get this rate up in the levels of CFEngine and Chef it needs to work in the
certificates issues faced by majority of users while setting up puppet.

For task 2 users had problem regarding understanding the documentation
in Chef and CFEngine. The high task completion rate for CFEngine is largely
due to majority of users previously having knowledge about CFEngine. But
a new user getting the task completed with CFEngine signifies this task that
could be conducted by looking into examples with CFEngine. Only users hav-
ing problems understanding the architecture couldn’t complete the problem.
Thus is also well explained by bar chart with it’s confidence interval between
97-35, hence it is possible to get a good task completion rate of 97% for this task
using CFEngine, at the same time it can also get worst for inexperienced users.
For puppet due to lot of users facing certificate issues in 1st task seems to have
impact. 2 out of 5 users gave up on this task using Puppet. For chef despite the
users being able to make chef working, too many terminologies involved in it
seems to prevent the users from getting the task completed and finally gave up
on the task. User stated problems like time consuming and confusing process
seems to play the part for chef to obtain the lowest completion rate compared
to others. For this task it is Chef for whom the completion rate is extremely
unlikely to surpass average completion rate.

The same story being continued with puppet and chef, users giving up the
task 3 due to problem in understanding the technology and lack of helpful
documentation to complete task. Is also shows users giving up task 3 using
CFEngine due to the same problem as with chef and puppet. Still the com-
pletion rate is higher and there is possibility for the completion rate to exceed
average completion rate for CFEngine while for puppet and chef they have
same completion rate and confidence interval. This task required users to be
a moderate users with deep knowledge about task, and no helping material

94

5.4. USER EXPERIENCE

found in internet so it was expected to have low completion rate for all the
products.

This shows that all the products definitely need some learning in order to
go forward with the technology, while CFEngine having less components less
things to configure , majority of users quickly get the task done but differ-
ent users faced different problem with CFEngine, while for chef due to large
number of components and many configuration some users failed the task and
Finally for puppet the most of the users face the same problem and failed to
over come the problem, finally end up giving up consecutive task.

5.4.1 Task time and Perceived Easiness

To get an overview of task easiness, users were asked to answer single ease
question after every task. The scale points obtained from 5 users is shown in
the results section These data can to be transformed into percentage scale
and calculate a mean out of them for each particular task to get a measure
of users perceived easiness and satisfaction regarding the task. For example
if a user gives a score of 5, the person had build all his exception and expe-
rience abut the task in this score. Thus obtained score need to be averaged
from all the users to get a single value describing the task easiness. Though
this single value is easy to explain , it might not always reflect the true value
, hence Confidence interval can be calculated in order to make a reasonable
range that describes the task easiness and statically contains the true value for
task easiness for product. Since small sample was used i.e. Less than 30, For
this case estimation of confidence interval to contain real value for a unknown
population will be calculated utilizing the T-distribution. The table shows the
mean task easiness and confidence interval computed for each task for three
products.

Had the sample size been larger we could have standardized the raw scores
into z score and corresponding percentiles could have been calculated. That
would have made the result much easier to understand but since the sample
size was far less than 30 we could not utilize normal statistical method to get
a conclusive results about the perceived easiness

Tasks CFEngine Chef Puppet
Task1 5.2(3.58,6.81) 2.2(-0.02,4.42) 3(0.36,5.63)
Task2 5(1.95,8.04) 3.4(-0.17,6.97) 4(0.59,7.40)
Task3 2.4(0.73,4.06) 2.4(-0.83,56.63) 2.6(-0.25,5.45)

Unfortunately the calculated of mean and confidence interval also isn’t
that much helpful in interpreting the scores collected by from the participants.
The basic problem with mean was scores had a high variance, and the mean
could not summarize the scores. Additionally since the confidence interval
sizes were also very large ranging from lower limit of the score to even in -ve
territory to upper limit, it is difficult to interpret the results. The large size
of confidence interval is due to small sample size and high variance of scores
given by the users. Had the sample size been larger, even though the scores

95

5.4. USER EXPERIENCE

Task1
ry
Lrlg w
R N - - .
E o
O
1 2 3 4 5
usars
Task2
- % III::: III
= [] III__W IIIE::I___ [S —
1 2 3 4 5
l CFErlgil'l Chal [l Pugpel
Task3
mé ;
"3 1 —]
1 2 3 4 5

Figure 5.8: Scores for easiness level for each products

have high variance, frequency of each scores could have been examined to see
the easiness level of each task.

So to present data in perceivable way , figure [5.8 shows bar chart that al-
lows to see the comparison of task easiness between these products. The figure
is even easier to comprehend when the statistics about task time is considered
and try to understand the why was the score given by the user. More impor-
tantly it could lead to interpretation of what scores level represents and which
scores levels are used in relation to the task time. The table[5.4.1lshows the cor-
relation between task time and scores given by each user for the the task they
performed. It also shows the geometric average of the task times required by
each users for performing the task using CFEngine, Chef and Puppet.

Tasks Eﬁgjﬁg‘g&;ﬂ; CFEngine Chef Puppet
Taskl -0.373 17.66 37.39 32.76
Task2 -0.178 14.84 16.28 22.83
Task3 -0.72 37.45 16.94 16.73

The correlation between the scores and the task times shows mixed results
for the tasks. While users seemed to have strong opinion about the task3 and

96

5.4. USER EXPERIENCE

taskl, their perceived satisfaction seemed to vary in task2. It is obvious to
have a negative correlation between the task time and task score as if the task
is completed quickly it is easier and hence will obtain a high score. But in task
2, even with an low amount of average task time the task scores is not able to
show users perceived satisfaction in correlation. As seen in figure almost
every users have assigned a scores, some users get the task completed in small
amount of time leading to high amount of perceived satisfaction , while others
are spending a large chunk of time to get the task completed. But the users
taking large amount of time doesn’t seem to be turned off by product as they
are getting the task implemented, hence they also assigned a satisfactory score
to the problem which seems to deter the correlation between task time and
task score. In conclusion users point of view about the task was, it is do able
with a satisfactory level of satisfaction in all products.

For task1 it shows an moderate negative correlation , which points out that
users scores reflects their experience. Since this was just installation , users
expect this task to be done by simply following the documentation. But when
users take a lot of time and encounter problems while doing simple installa-
tion , it had impact on users perceived satisfaction. As seen in the figure
, for task 1 every users have reported their scores and CFEngine seems to do
well in obtaining high scores. This is supported by the average task time re-
sult as well. The task time needed for CFEngine is almost half the time need
for Chef and Puppet. So with this time about 17 mins , users seems to assign a
level 5-6 scores in easiness scale. Therefore it can be understood that if a user is
able to make a server and client connected in about 15 minutes then it results
in high level of satisfaction. While for Chef the scores is around 3-5 and the
task time around 38 minutes. Therefore in this case, the scores 3-5 represent a
satisfactory level. And for Puppet the score is around 1 and only two users be-
ing able to complete the task, though the task time was just 32mins. Therefore
for this task even though the task is do able in under a satisfactory level, lot of
users fails in task propelling puppet is into unsatisfactory level.

Task3 shows a strong correlation between task time and task scores. Thus
the scores for it reflect true picture about user experience compared to prior
two tasks. The average task time for CFEngine is 38 mins and it’s task scores
is at level 3 and below. Hence user has perceived this task with high difficulty
level compared to prior task performed by CFEngine. Also some users failing
to report the scores in figure 5.8| signify that they gave up the task or did not
tried it at all. This is also the strong indication of low satisfaction. Even with
the users with CFEngine experience rating the task in level 3 and requiring a
lot of time to complete the task is another symptom of low level of perceived
satisfaction. For Chef, the average task time is low and a lot of users failing to
complete the task coupled with task score ranging 1-7 signify that chef offers
a high satisfaction if users knows the product and can get the task completed.
But Majority of users giving low scores signifies that is hard to get the task
completed with chef reducing satisfaction level. Similar is the case with pup-
pet, with majority of users failing to get the task implemented and some users
giving high scores coupled with small average task time hints the same thing.
Puppet offers high amount of task satisfaction if users gets the task done or

97

5.4. USER EXPERIENCE

know it.

5.4.2 Over all product usability

The calculation of raw scores into SUS scores had yielded a single number rep-
resenting a composite measure of overall usability as perceived by the users.
The individual scores for the product by the users is shown on table 4.8/ which
needs to be averaged together in order to get a average SUS score for the prod-
uct. Since sample was small and the SUS scores are obtained have a very high
variability i.e. from low to high , if a mean is calculated then it will get skewed
towards higher value. Hence as pointed out by background study, for small
sample sets geometric mean gives a most reasonable middle point for a set of
data. Should the sample size grow larger and data obtained is more uniform
the obtained mean,median and a geometric mean will be similar. Therefore it
is much suitable for getting single SUS score for a product from a set of SUS
scores obtained from users. Thus calculated averaged SUS scores for product
is shown in below

Products SUS scores
CFEngine 57.77
Chef 19.41
Puppet 42.74

Now utilizing the figure [2.6| corresponding percentile and grades for the
product usability could be obtained. CFEngine have percentile score of about
23 which has a grade score of D. Thus CFEngine only has a perceived usability
that is higher than 23% of the products. Though the SUS score 57 is near to av-
erage usability score 68 having 51 percentile, itis far less in it’s percentile ranks
on it’s usability. The grade D is explainable for CFEngine, as when it comes to
do a complex task it might involved a large amount of resource consumption
i.e. (time and mental effort) to get the task done which too is demonstrated by
task 3. Both Puppet and Chef obtains a grade F in terms of their perceived us-
ability with Chef having the least SUS scores. The low score obtained for Chef
is might be because of the various technologies and terminologies used in chef,
and chef having multiple components to be configured to get working. Major-
ity of users were not able to complete all the task using chef which is also a
add to this low usability score. Puppet’s score is close to a CFEngine but users
still fill less satisfied with it , it might be because of users facing problem early
on task 1 and majority of them not being able to solve the issue despite their
best effort, after they get around the problems the tasks became are easier.

If conversion rate is calculated ,it is observed that 3 out of 5 users have
carried out all task using CFEngine and 2 out of 5 users have completed all
task using Chef , and 1 out of 5 users have completed all task using Puppet.
Even with high amount of conversion rate of Chef compared to Puppet, it has
low SUS score , signifies that it is much more complex system to work with
compared to CFEngine and Puppet. Additionally even though the users in
test have some experience with CFEngine it did not seem to do to well i.e. it is

98

5.4. USER EXPERIENCE

not meeting the average usability hints that it is also difficult system to work
with. For puppet it’s usability is unstable , people that can make it works are
happier but others will have a frustrating time working with product. In our
test case , majority users seem to have a frustrating time with puppet which
ended up in giving up task with puppet.

99

Chapter 6

Conclusion and Future work

The investigation of unexplored aspects of configuration management systems
like CFEngine, Chef and Puppet was quite interesting and informatory. The
aim of this thesis was to find out if any one of the three tools stands out when
it comes to measure complex characteristics like community, usability e.t.c.
Up until now the prospective users of CM tool have to rely on word-of-mouth
and buzz to create an image of what they think is a better product on these
aspects i.e community , usability e.t.c. But this study hopes to shed light in
those aspects and ultimately answer their curiosity. The focus was given on
collection of whatever data found on web regarding these product and to get
as much information undergoing in-depth analysis, finally to obtain a measur-
able quantity that can sum up findings with the use of theoretical models.

Community has often been linked as measureless quantity and impossible to
apprehend. People associate community in terms of numbers of users in-
volved with product’s development, usage, discussions and reviews. There
are different field of study like support ,development , popularity , usage, col-
laboration etc. that falls into community which makes it difficult to apprehend.
Explaining community as a single entity is almost impossible. Thus different
aspects within the community needs to be explored separately. In this paper
almost every aspect of the community except development is explored to get
a conclusive result. Popularity was investigated by usage of google trends
which showed that currently all of the three (CFEngine, Chef and Puppet) are
equally popular despite these products having different maturity level how-
ever Chef shows high rate of popularity growth in short interval of time.

The firm understanding of amount of resources (discussion and articles)
that can be found for a product is both helpful for learning as well as problem
discovery and problem solving. Hence the popular information social discus-
sion platform named “haker news” was analyzed to get overview of resources
that might be available to users. The results showed Puppet has large the num-
bers of articles and people talking about the product, followed by Chef and
CFEngine. One thing to notice was despite Chef being much younger, there
were large number of discussions happening around it close to that of Puppet,

100

while the results also showed that any search result obtained when looking for
”CFEngine” word doesn’t contain any inappropriate articles or discussions.

The categorization of community members was carried out by inspection
of mailing list messages. Mailing list captures the interaction of community
members that makes it an ideal source to investigate the community struc-
ture and understand the support provided by it’s members. It was found that
nearly every product have a similar proportion of individuals categorized as
seekers, providers and both. This signified that they all have similar com-
munity structure despite the difference in community size. The activities like
question posting , answering to question etc. of individuals under these group
were also similar. Another interesting finding was for all the products, the
members in mailing list were not equally participative in answering queries.
Therefore, support activity provided by the community exhibited exponen-
tial behavior where large number of individuals were answering small pro-
portion of questions and small proportion of individuals responding to large
number of threads which was quantified by Lorenz curve of inequality. Thus
calculated inequality metric called gini index was not significantly different
for these product. This demonstrates that support obtained from community
doesn’t depend on community size, at least not in mailing list, but community
size has strong influence on resources available for the product.

Failure to execute an assigned task decreases reliability of configuration tool.
Bugs are the primary source of failure and bug reports provide better percep-
tion of failure distribution that helps to figure out the reliability of a software.
In this thesis, data from bug repositories for CFEngine , Chef and Puppet was
collected and Weibull distribution was fitted on observed weekly bug frequen-
cies. It was observed that even though the goodness of fit was not satisfactory,
the model was able to explain the arrival pattern of bug reports. There was
significant overlap between the bug reports of two different versions for pup-
pet , while CFEngine and Chef showed least overlap between these versions.
The later versions for all the observed products showed increase in reliability.
Latest version of CFEngine showed high amount of reliability gain followed
by Chef and then Puppet. Over all the amount of reliability increase between
subsequent versions on all these product did not show much difference.

User experience with software defines the usability. Hence in this study us-
ability was investigated by capturing objective and subjective aspect of the
user experience with software. An usability test was conducted with small
sample of users. Statistics about task time , completion rate and users opinion
about task and product as a whole was gathered. Due to small sample size the
result could not give a conclusive answer on product offering best usability,
however the experiment was successful in identifying the common problems
associated with each product and over all user’s perception about these prod-
ucts. Users faced same problem with puppet, but with Chef and CFEngine
different users faced different problems. It was also discovered that not a sin-
gle product was able to provide consistent and stable user experience across

101

all the users through out all the task. There was large variation of users opin-
ion on each task level but on product level there was no significant difference
in users opinion. Each product has some learning curve and posses difficulty
in one form or another. In summary all of the observed product had perceived
satisfaction below average. When it comes to usability none of them is excep-
tionally good compared to each other.

Because of the time invested in collection and analysis of information on wide
range of aspects, some of the sources and work that could provide interesting
insights into each aspect could not be covered. Therefore a possible future re-
search would be to determine the resources available and understand the sup-
port as well as product popularity , commonly known question answer plat-
form like ”“stack overflow” and popular public repository site like "GitHub”
could be investigated. Another prospective future work would be to consider
developer mailing list also as a bug source and conduct the combined study of
feature growth with reliability growth.

The usability test could be conducted with large number of participants, most
importantly more than 30 to investigate further in the frontiers of usability.
Conducting the test with larger sample increases the precision of estimates
resulting narrow confidence interval from which conclusive results can be ex-
tracted related to task completion rate and task satisfaction, which possibly
can help to identify the product that offers best usability.

This kind of research can lead towards well established methods for investi-
gating community, reliability and usability of a software, layout the platforms
for making comparison of these attributes within different softwares and also
to be used across different software disciplines.

102

Bibliography

[1] Cory Lueninghoener. Getting started with configuration management.
USENIX, 2011.

[2] Aleksey Tsalolikhin. Configuration management summit. Technical re-
port, Vertical Sysadmin, 2010.

[3] Sebastian Carlier Niek Timmers. Automating configuration cfengine vs
puppet. 2010.

[4] Jarle Bjorgeengen. Puppet andcfengine compared: time and resource con-
sumption. 2010.

[5] W .Joosen T . Delaet and B . Vanbrabant. A survey of system conguration
tools. 2010.

[6] Roberto Galoppini. How to evaluate open source software / free software
(oss/fs) programs. Technical report, 2010.

[7] David A. Wheeler. How to evaluate open source software / free software
(oss/fs) programs. Technical report, 2011.

[8] Open source software assessment methodologies.

[9] Method for qualification and selection of open source software (qsos) ver-
sion 1.6. Technical report, Atos Origin, 2006.

[10] Business readiness rating for open source. Technical report, brr.org, 2005.
[11] Qualoss,. Technical report, 2008.

[12] Simon Alexandre Jean-Christophe Deprez. = Comparing assessment
methodologies for free/opensource software: Openbrr and gsosl.

[13] Stephen O’Grady. Community metrics: Comparing chef and puppet.
Technical report, RedMonk, 2012.

[14] Jarle Bjorgeengen. Feature comparison puppet, redhat satellite server and
cfengine. 2009.

[15] Akita. Chatting with adam jacob. Technical report, Codeminer 42, 2010.

[16] Azad Azadmanesh Cobra Rahmani, Harvey Siy. An experimental analy-
sis of open source software reliability*.

103

BIBLIOGRAPHY

[17] Alesky. Getting started with cfengine. 2011.
[18] CFEngine Refrence Manual.

[19] J. Crowston, K. & Howison. The social structure of free and open source
software development,. , 2005.

[20] Eric von Hippel Karim R. Lakhani. How open source software works:
free user-to-user assistance. Technical report, MIT Sloan School of Man-
agement,, 2002.

[21] J.D. Musa and K. Okumoto. A logarithmic poisson execution time model
for software reliability measurement. In .

[22] Azad Azadmanesh Cobra Rahmani, Harvey Siy. An experimental anal-
ysis of open source software reliability. Technical report, University of
Nebraska-Omaha, 2009.

[23] Software reliability research. Stattitical Computer Performance Evaluation,
Academic Press, Inc., New York, 1972.

[24] B.Littlewood and J.L. Verrall. A bayesian reliability model with a stochas-
tically monotone failure rate. IEEE Transactions on Reliability, 1974.

[25] A.L. Goel and K. Okumoto. A time-dependent error-detection rate model
for software reliability and other performance measure. IEEE Transactions
on Reliability, 1979.

[26] Dennis J. Wilkins. The bathtub curve and product failure behavior.
[27] Jiantao Pan. Software reliability.

[28] Joseph DAVIS Ying ZHOU. Open source software reliability model: an
empirical approach.

[29] Nigel Bevan. Measuring usability as quality of use. Technical report, NPL
Usability Services, National Physical Laboratory, 1995.

[30] JEFF SAURO. Measuring usability. Technical report, Measuring Usability
LLC, 2004.

[31] JEFF SAURO. Deriving a problem discovery sample size. Technical re-
port, RedMonk, 2012.

[32] Joseph S. Dumas Jeff Sauro. Comparison of three one-question, post-task
usability questionnaires. Technical report, Oracle Corporation,, .

[33] John Brooke. Sus - a quick and dirty usability scale. Technical report,
Redhatch Consulting Ltd., 1986.

[34] J.R. Lewis and J. Sauro. The factor structure of the system usability scale.
In.

104

BIBLIOGRAPHY

[35] Kortum Philip T. Bangor, Aaron and James T. Miller. An empirical evalu-
ation of the system usability scale. nternational Journal of Human-Computer
Interaction, 2008.

[36] Bryan Berry. Puppet vs. chef, fight! 2011.
[37] Klint finley. Puppet vs. chef: Which is more popular. 2011.

[38] Andrs. Analysis on free software communities (i): a quantitative study
on grass, gvsig and qgis. 2011.

[39] Robert A. Muenchen. The popularity of data analysis software. 2011.

[40] Mario Garzia Ben Errez Pankaj Jalote, Brendan Murphy. Measuring reli-
ability of software products.

[41] Practical Reliability Analysis. Prentice Hall, 2004.
[42] Sampling distributions.
[43] Hypothesis test for a proportion.

[44] M. E.]J. Newman. Power laws, pareto distributions and zipfs law. Tech-
nical report, Department of Physics and Center for the Study of Complex
Systems, University of Michigan, Ann Arbor, MI 48109. U.S.A., 2006.

[45] Avinash Narula. What is 80/20 rule?

[46] M. O. Lorenz. Methods of measuring the concentration of wealth. Publi-
cations of the American Statistical Association, .

[47] Vito Ricci. Fitting distributions with r. 2005.

[48] James R. Lewis Jeff Sauro. When 100estimates of completion rates. Journal
of usability study, 2006.

[49] James R. Lewis Jeff Sauro. Estimating completion rates from small
samples using binomial confidence intervals: Comparisons and recom-
mendations. In PROCEEDINGS of the HUMAN FACTORS AND ER-
GONOMICS SOCIETY 49th ANNUAL MEETING2005.

105

Appendix A
HTML Parser and Crawler

A.1 For Puppet’s Mailing List
#!/usr/bin/perl

Needed packages
use Getopt::Std;
use Date: :Parse;
use Scrappy;

use DBI;

use strict "vars";

Global variables
my $VERBOSE = 0;
my $DEBUG = O;

DataBase Connection

my $db="puppetMLS";

my $host="localhost";

my $user="username";

my $password="password"; # the root password

handle flags and arguments

Example : ¢ = "-c¢", c: = "-c argument"

my $opt_string = ’vdh’;

getopts("$opt_string",\my %opt) or usage()and exit 1;

Print help message in -h is invoked
if ($opt{’h’}){

usage() ;
exit O;

Handle other user input

106

A.1. FOR PUPPET’S MAILING LIST

$VERBOSE = 1 if $opt{’v’};
$DEBUG = 1 if $opt{’d’};
verbose("Verbose is enabled\n");
debug("Debug is enabled\n");

Main script content

#

my $file=$opt{’f:’};
my $base_url="http://markmail.org";
my $url="http://markmail.org/browse/com.googlegroups.puppet-users";
my Q@visitedUrls;

Open Connection to databse

my $scrapper = Scrappy->new;

if ($scrapper->get ($url)->page_loaded)q{
my $yearmth = $scrapper->select(’table table tr a’)->data;
my $values = $scrapper->select(’table table tr td:nth-child(2)’)->data;

HHHHEEEH R R
Saving the message activity in file
S S T
open (OUT , ">puppetdata.csv") or die "Cannot open the file for writing";
my $i=0;
foreach my $value (@{$values}){
my $date = format_date($yearmth->[$i]->{text});

print OUT $date.",".$value->{text} ."\n";
print $scrapper->dumper ($date) ;
$it++;
}
close (0OUT) ;

HUHSHH AR

Load the previously traversed links

HUHHH A

my $dbh = DBI->connect ("DBI:mysql:database=$db:host=$host",$user,$password)
my $sth = $dbh->prepare("select url from messages");

$sth->execute();

while (my @row = $sth->fetchrow_array()){

push(@visitedUrls,@row) ;

$dbh->disconnect or warn "Disconnection error: $DBI::errstr\n";

P
Get the links and start visiting

107

or

A.1. FOR PUPPET’S MAILING LIST

E s s S T e e T e e
debug("Visting the links in first page");
my $ymScrapper=Scrappy->new;
my $linkCount=0;
foreach my $link(@{$yearmth}){
last if ($1inkCount>0);
my $suburl= $link->{href};
visitArchiveYearMonth($suburl) ;
$1linkCount++;
}

b
#

HEHHAHHHH
sub visitArchiveYearMonth{
my $ymScrapper = Scrappy->new();
my Omatched = grep(/"$_[0]$/,0visitedUrls);
my $matchedno = @matched;
print $matchedno."\n";
if ($matchedno == 0){

push(@visitedUrls,$_[0]);

if ($ymScrapper->get ($_[0])->page_loaded){

debug("Loaded Year Month :". $_[0]);

my $threads=$ymScrapper->select(’#browse table tr a’)->data;

my $count=1;
foreach my $thread(@{$threads})q{
collectThreadMessages ($thread->{href},$thread->{text});

my Ourlparts =split(’/’,$_[01);
my $size=Qurlparts;
if ($size < 7){
my $pages=$ymScrapper->select (’#browse h4 a’)->data;
foreach my $page(@{$pages}){
print $page->{text}."\n";
visitArchiveYearMonth($page->{href});

sub collectThreadMessages{
my $threadCrawler = Scrappy->new();

108

A.1. FOR PUPPET’S MAILING LIST

my Cmatched = grep(/"$_[0]$/,CvisitedUrls);
my $matchedno = @matched;

if ($matchedno == 0){
if ($threadCrawler->get ($_[0])->page_loaded){
debug("Loaded thread :".$_[0]);
my $count=0;
my $messages=$threadCrawler->select(’#thread table tr a’)->data;
foreach my $message (@{$messages}){
last if($count > 1);
CollectMessageDetails ($message->{href},$_[1]1);
$count++;
}
}
}
}

sub CollectMessageDetails{
my $messageScrapper = Scrappy->new();
my $dbh = DBI->connect ("DBI:mysql:database=$db:host=%$host",$user,$password) or di
$dbh->trace(2);
my Omatched = grep(/"$_[0]$/,0visitedUrls);
my $matchedno = @matched;
print $matchedno."\n";

if ($matchedno == 0){
push(@visitedUrls,$_[0]);
my $sth = $dbh->prepare ("INSERT INTO messages(subject,sender,send_date,message,thr
if ($messageScrapper->get ($_[0])->page_loaded){
debug("Loaded message: ".$_[0]."\n");
my $subject = $messageScrapper->select(’#headers tr’)->focus(0)->select(’td:ntl
my $from = $messageScrapper->select (’#headers tr’)->focus(l)->select(’td:nth-ct
my $date = $messageScrapper->select(’#headers tr’)->focus(2)->select(’td:nth-ct
my $lines = $messageScrapper->select(’#body div.pws > p’)->data;
my $message="";
my $formatted_date = format_date_for_mysql($date);
foreach my $line(@{$lines}){
$message.=$line->{text};
}
$sth->execute($subject,$from, $formatted_date, $message,$_[1]1, $_[0]1);

}

$dbh->disconnect or warn "Disconnection error: $DBI::errstr\n";

109

A.2. FOR CHEF'S MAILING LIST

sub format_date{
my %mon2num = qw(
jan 1 feb 2 mar 3 apr 4 may 5 jun 6
jul 7 aug 8 sep 9 oct 10 nov 11 dec 12
);
my Q@datesupplied = split(’ ’,$_[0]);
my $month = $mon2num{lc substr($datesupplied[1],0,3)3};

return $datesupplied[0].’/’.$month;
}

sub format_date_for_mysql{
my @date=strptime($_[0]);
my $year=$date[5]+1900;
my $month=$date[4]+1;
my $day=$date[3];
my $hh=$date[2];
my $mm=$date[1];
my $ss=$date[0];
return "$year-$month-$day $hh:$mm:$ss";

sub usage{
prints the correct use of this script
print "Usage:\n";
print "-h Usage \n";
print "-v Verbose\n";
print "-d Debug\n";

print "./script [-d][-v][-h]\n";

sub verbose{
print "VERBOSE:".$_[0]."\n" if $VERBOSE;

}
sub debug{

print "DEBUG:".$_[0]."\n" if $DEBUG;
}

A.2 For Chef’s Mailing List
#!/usr/bin/perl

Needed packages
use Getopt::Std;

110

A.2. FOR CHEF'S MAILING LIST

use Date: :Parse;
use Try::Tiny;

use Scrappy;

use DBI;

use POSIX;

use strict "vars";

Global variables
my $VERBOSE = 0;
my $DEBUG = 0;

DataBase Connection

my $db="chefMLS";

my $host="username";

my $user="password";

my $password="letmein"; # the root password

handle flags and arguments

Example : ¢ = "-c", c: = "-c argument"

my $opt_string = ’vdh’;

getopts("$opt_string",\my %opt) or usage()and exit 1;

Print help message in -h is invoked
if ($opt{’h’ 1) {

usage() ;

exit 0;

Handle other user input
$VERBOSE = 1 if $opt{’v’};
$DEBUG = 1 if $opt{’d’};
verbose("Verbose is enabled\n");
debug("Debug is enabled\n");

Main script content
#
my $file=$opt{’f:’};
my $base_url="http://markmail.org";
my $url="http://lists.opscode.com/sympa/arc/chef";
my OvisitedUrls;
my Q@yearMths;
my %YMmessages;
Open Connection to databse

my $scrapper = Scrappy->new;

111

A.2. FOR CHEF'S MAILING LIST

if ($scrapper->get ($url)->page_loaded){
my $yearmth = $scrapper->select(’#ArcCalendar a’)->data;
my $values = $scrapper->select(’table table tr td:nth-child(2)’)->data;

H#HHRHBHHAHHAH B H B H AR AR R RF R

Saving the message activity in file

HHHH R R HHRHRHBHBHBHBHBHBHAHRH RS

open (OUT , ">chefMLS.csv") or die "Cannot open the file for writing";

my $i=0;

foreach my $link (@{$yearmth}){

my @linkparts = split(’/’,$link->{href});
my Omessages = split(’ ’,$link->{titlel});
my $date = $linkparts[6];
my $value= $messages[0];
push(@yearMths, $date) ;
$YMmessages{$dater=$value;

print OUT $date.",".$value."\n";
print $scrapper->dumper (@messages) ;
$it++;
}
close (0OUT) ;

HUSSHH AR

Load the previously traversed links

HUHHH AR

my $dbh = DBI->connect ("DBI:mysql:database=$db:host=8host",$user,$password) or
my $sth = $dbh->prepare("select url from messages");

$sth->execute();

while (my @row = $sth->fetchrow_array()){

push(@visitedUrls,@row) ;

$dbh->disconnect or warn "Disconnection error: $DBI::errstr\n";

HEHSHHH AR
Get the links and start visiting
HUHSHHH AR
debug("Visting the links in first page");
my $linkCount=0;
foreach my $link(@{$yearmth}){
last if ($1inkCount>1);
my $suburl= $link->{href};
visitArchiveYearMonth($suburl) ;
$1linkCount++;

}

112

A.2. FOR CHEF'S MAILING LIST

HHHAHHAH
sub visitArchiveYearMonth{
my $ymScrapper = Scrappy->new();
my Cmatched = grep(/~$_[0]$/,CvisitedUrls);
my $matchedno = @matched;
print $matchedno."\n";
if ($matchedno == 0){
push(@visitedUrls,$_[0]);
my @linkparts = split(’/’,$_[0]);
my $pages = ceil($YMmessages{$linkparts[6]}/30);
print $scrapper->dumper ($pages);

for(my $i=1; $i<=$pages ;$i++){
last if($i>2);
my $pageurl=$_[0]. thrd’.$i.’ .html’;
print $pageurl;
if ($ymScrapper->get ($pageurl)->page_loaded) {
debug("Loaded Year Month: ". $pageurl."\n");
my $threads=$ymScrapper->select(’#Paint > div.ContentBlock > ul a’)->de
my $count=1;
foreach my $thread(@{$threads}){
last if ($count>2);
collectThreadMessages ($thread->{href},$thread->{text}) ;
print $scrapper->dumper($thread->{text});
$count++;

}

sub collectThreadMessages{
my $threadCrawler = Scrappy->new();
my Cmatched = grep(/~$_[0]$/,CvisitedUrls);
my $matchedno = @matched;

if ($matchedno == 0){
if ($threadCrawler->get ($_[0])->page_loaded){
debug("Loaded thread :".$_[0]);
load all the sub messages with in the thread
my $messages=$threadCrawler->select(’#Paint > div.ContentBlock > ul a’)->data;
CollectMessageDetails($_[0],$_[11);
my $count=0;
foreach my $message(@{$messages}){

113

A.2. FOR CHEF'S MAILING LIST

last if($count > 1);
CollectMessageDetails($message->{href},$_[1]);
$count++;

}
}
}
}

sub CollectMessageDetails{
my $messageScrapper = Scrappy->new();
my $dbh = DBI->connect ("DBI:mysql:database=$db:host=%host",$user,$password) or di
$dbh->trace(2);
my @matched = grep(/"$_[0]$/,QvisitedUrls);
my $matchedno = @matched;
print $matchedno."\n";

if ($matchedno == 0){
push(@visitedUrls,$_[0]);
my $sth = $dbh->prepare("INSERT INTO messages(subject,sender,send_date,message,thr
if ($messageScrapper->get ($_[0])->page_loaded){
debug("Loaded message: ".$_[0]."\n");
collect message details
my $body = $messageScrapper->content->decoded_content(’charset’);

$body =" s/(mailtol[:][\n]\s*<script.*>(.*x[\nl*)+<\/script>[\"1>)/\">/i;
while($body =~ m/(<["<>]*<script.*>(.*[\n]l*)+<\/script>["<>1*>)/){
+<script(.*[\nl*)+<\/script>[\"]1>)/1){
print "matched ".$1."\n";
$body =" s/(<["<>]*<script.*>(.*[\n]*)+<\/script>["<>]1%>)//i;
}
print $scrapper->dumper ($body)."\n";
while($body =" m/(<a([">]+)>(.+?)<\/a>)/i){
$body ="s/(<a([*>]1+)>(.+?)<\/a>)//i;
}

my $parser = Scrappy::Scraper::Parser->new;
$parser->html ($body) ;
$parser->select (*#Paint > div.ContentBlock > div.block li:nth-child(1)’);

my $from=$messageScrapper->select (’#Paint > div.ContentBlock > div.block li:ntl
print $scrapper->dumper($parser->data)."\n";

$from =" s/.*%<(.*x?7)>/$1/1;

if ($from ==""){

$from=$messageScrapper->select (’#Paint > div.ContentBlock > div.block li:nth-ck
$from =~ s/(.*[\nl)+.*\(" (.*?)"\s+\W+\s+" (\W+)" ; \s+\W+\s+" (. *"

}

114

A.2. FOR CHEF'S MAILING LIST

my $subject=$messageScrapper->select(’#Paint > div.ContentBlock > div.block li:r
if ($subject !” m/Subject:\s+(.*7)/i){

$subject=$parser->select (’#Paint > div.ContentBlock > div.block li:nth-child(4)’)->de
3
$subject =" s/Subject:\s+(.*7)/$1/1i;

my $date = $parser->select (’#Paint > div.ContentBlock > div.block li:nth-child (4
if($date !” m/Date:\s+(.*7)/1i){

$date=$parser->select (’#Paint > div.ContentBlock > div.block li:nth-child(5)’)->data->
}

$date =~ s/Date:\s+(.*?)/$1/1i;
my $formatted_date = format_date_for_mysql($date);
print $subject." ".$formatted_date."\n";

my $msgbody = "";
$msgbody=$parser->select (’#Paint > div.ContentBlock’)->data->[0]->{html};
print $scrapper->dumper ($msgbody)."\n";
$msgbody =~ s/<hr["<>]*\/>(.*?)<script.*/$1/i;
$parser->html ("<div id=\"dummy\">".$msgbody."</div>");
my $msgtxt=$parser->select ("#dummy")->data->[0]->{text};

$sth->execute($subject,$from, $formatted_date, $msgtxt,$_[1], $_[01);

}

$dbh->disconnect or warn "Disconnection error: $DBI::errstr\n";

sub format_date{
my Jmon2num = qw(
jan 1 feb 2 mar 3 apr 4 may 5 jun 6
jul 7 aug 8 sep 9 oct 10 nov 11 dec 12
)3
my @datesupplied = split(’ ’,$_[01);
my $month = $mon2num{lc substr($datesupplied[1],0,3)};

return $datesupplied[0].’/’.$month;
}

sub format_date_for_mysql{
my @date=strptime($_[0]);
my $year=$date[5]+1900;
my $month=$date[4]+1;
my $day=$datel[3];

115

A.2. FOR CHEF'S MAILING LIST

my $hh=$date[2];
my $mm=$date[1];
my $ss=$date[0];
return "$year-$month-$day $hh:$mm:$ss";

sub usageq{
prints the correct use of this script
print "Usage:\n";
print "-h Usage \n";
print "-v Verbose\n";
print "-d Debug\n";

print "./script [-d][-v][-h]\n";

sub verboseq{
print "VERBOSE:".$_[0]."\n" if $VERBOSE;

}
sub debug{

print "DEBUG:".$_[0]."\n" if $DEBUG;
}

116

Appendix B

Data Miner and tokeniser

This script is originally written by Eric Lease Morgan . Minor tweaks like
database connection , filter addition and selection of payload to be inspection
were made make it work in our context

n-grams.pl - list top 10 bi-grams from a text ordered by tscore, and
list top 10 tri-grams and 4-grams ordered by number of occurances

Eric Lease Morgan <eric_morgan@infomotions.com>
June 18, 2009 - first implementation

June 19, 2009 - tweaked

August 22, 2009 - added tri-grams and 4-grams

require

use 1lib ’../1lib’;

use Lingua::EN::Bigram;

use Lingua::StopWords qw(getStopWords);
use DBI;

use Data: :Dumper;

use strict;

initialize
my $stopwords = &getStopWords(’en’);

definition of variables

my $db="chefMLS";

my $host="localhost";

my $user="root";

my $password="letmein"; # the root password

sanity check
my $file = $ARGV[O 1;
if (! $file) {

117

print "Usage: $0 <file>\n";

exit;
)
slurp
my $dbh = DBI->connect ("DBI:mysql:database=$db:host=$host",

$user,

$password)

or die "Can’t connect to database: $DBI::errstr\n";
my $text = " ",

my $sth = $dbh->prepare("select thread from threads");
$sth->execute();
while (my ($thread) = $sth->fetchrow_array()){
push(@urls,@row
$text = $text." ".$thread;
print $text;
print Dumper ($thread)."\n";

disconnect from database

$dbh->disconnect or warn "Disconnection error: $DBI::errstr\n";
open F, $file or die "Can’t open input: $!\n";

my $text = do { local $/; <F> };

close F;

build n-grams
my $ngrams = Lingua::EN::Bigram->new;
$ngrams->text($text);

get bi-gram counts
my $bigram_count = $ngrams->bigram_count;
my $tscore = $ngrams->tscore;

display top ten bi-grams, sans stop words and punctuation

my $index = 0;

print "Bi-grams (T-Score, count, bi-gram)\n";

foreach my $bigram (sort { $$tscore{ $b } <=> $$tscore{ $a } } keys %$tscore) {

get the tokens of the bigram
my ($first_token, $second_token) = split / /, $bigram;

skip stopwords and punctuation

next if ($$stopwords{ $first_token });
next if ($first_token =~ /[,.7!:;O\-1/);

118

next if ($$stopwords{ $second_token });
next if ($second_token =~ /[,.?':;O\-1/);

for chef

next if($first_token =" m/chef/i);

next if($second_token =~ m/re/i);

next if($second_token =~ m/released/i);

for puppet

next if ($first_token =~ m/rc/i);

next if ($first_token =~ m/release/i);
next if($first_token =" m/users/i);

next if($first_token =~ m/available/i);
next if($second_token =~ m/users/i);
next if($second_token =~ m/announce/i);
next if($second_token =~ m/available/i);
next if($second_token =" m/source/i);

increment

$index++;

last if ($index > 20);

output
print "$$tscore{ $bigram F\t"
"$$bigram_count{ $bigram }\t"

print "$bigram\t\n";

}

print "\n";

get tri-gram counts
my $trigram_count = $ngrams->trigram_count;

process the first top 10 tri-grams

$index = 0;

print "Tri-grams (count, tri-gram)\n";

foreach my $trigram (sort { $$trigram_count{ $b } <=> $$trigram_count{ $a } } keys %

get the tokens of the bigram
my ($first_token, $second_token, $third_token) = split / /, $trigram;

skip punctuation

next if ($first_token =~ /[,.?':;O\-1/);
next if ($second_token =~ /[,.7':;O\-1/);
next if ($third_token =~ /[,.?!':;O\-1/);
for chef

next if($first_token =" m/chef/i);

119

next if ($second_token =" m/re/i);
next if($third_token =~ m/re/i);

for puppet

next if($first_token =" m/release/i);
next if($first_token =~ m/rc/i);

next if($second_token =~ m/users/i);
next if($second_token =~ m/announce/i);

next if($second_token =~ m/puppet/i);
next if ($third_token ="~ m/team/i);

skip stopwords; results are often more interesting if these are commented out
#next if ($$stopwords{ $first_token });
#next if ($$stopwords{ $second_token });
#next if ($$stopwords{ $third_token });

increment
$index++;
last if ($index > 10);

echo

print $$trigram_count{ $trigram }, "\t$trigram\n";
print "$trigram\n";

}

print "\n";

get quad-gram counts
my $quadgram_count = $ngrams->quadgram_count;

process the first top 10 tri-grams

$index = 0;

print "Quad-grams (count, quad-gram)\n";

foreach my $quadgram (sort { $$quadgram_count{ $b } <=> $$quadgram_count{ $a } } keys

get the tokens of the bigram
my ($first_token, $second_token, $third_token, $fourth_token) = split / /, $quac

skip punctuation

next if ($first_tokemn =" /[,.7!':;0O\-1/);
next if ($second_token =" /[,.?':;0O\-1/);
next if ($third_token =" /[,.7!':;0O\-1/);
next if ($fourth_token =~ /[,.7':;0O\-1/);

for puppet
next if($first_token =~ m/rc/i);
next if($first_token =" m/users/i);

120

next if ($first_token =" m/team/i);

next if($second_token =~ m/users/i);
next if($second_token =~ m/announce/i);
next if($second_token =~ m/puppet/i);
next if($second_token =~ m/announce/i);
next if($third_token =~ m/team/i);

next if($fourth_token =~ m/users/i);

skip stopwords; results are often more interesting if these are commented out
#next if ($$stopwords{ $first_token });
#next if ($$stopwords{ $second_token });
#next if ($$stopwords{ $third_token });
#next if ($$stopwords{ $fourth_token });

increment
$index++;
last if ($index > 10);

echo

print $$quadgram_count{ $quadgram }, "\t$quadgram\n";
print "$quadgram\n";

}

print "\n";

done
exit;

121

Appendix C

Glossary

app: Application

SUS: System Usability Scale

SEQ: Single Ease Question

API: Application Program Interface

CSV: Comma separated value

SQL: Structured Query Language

mbox: Mail Box file

MySql: Database engine(service)

JSON: JavaScript Object Notation

PDF: Probability Density Function

CI: Confidence Interval

SSL: Secure Socket Layer

COPBL: CFEngine Community Open Promise-Body Library
OS: Operating System

OSAL: Operating System Abstraction Layer
DSL: Domain Specific Language

DHCP: Domain Host Control Protocol

122

	Introduction
	Configuration Management Tool
	Motivation
	Problem Statements

	Background and literature
	Open source Assessment Methodologies
	Literature overview
	Leuven university site and paper
	Comparison by Jarle Bjorgeengen
	University of Netherlands

	Software overview
	CFEngine
	Puppet
	Chef

	Community
	Reliability
	Models for Reliability
	Theory

	Usability
	Usability as Quality
	User Experience Measurement
	Objective Method
	Subjective Method

	Approach
	Community
	Popularity analysis
	Community and Support analysis

	Reliability
	Usability
	Sample size and Test Conduction
	Tasks and Metric Collection

	Data Collection and Results
	Market share and Resource availability
	Usage trends
	Web site Popularity
	Social discussion

	Mailing list
	Bug Repository
	Data gathering
	Data Filtering
	Results

	Usability test
	Completion rate and Task times
	Task difficulty level
	Usability Problems
	SUS scores

	Analysis
	Community trends
	 Popularity and Resources available

	Community Structure
	Analysis from mailing trends
	Analysis of seekers group
	Analysis of seekers providers group
	Load distribution
	Analysis of Data miner script output

	Reliability
	Distribution Fitting
	Reliability growth

	User experience
	Task time and Perceived Easiness
	Over all product usability

	Conclusion and Future work
	HTML Parser and Crawler
	For Puppet's Mailing List
	For Chef's Mailing List

	Data Miner and tokeniser
	Glossary

