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ABSTR ACT 

The first part of the guidelines and recommendations for 

musculoskeletal ultrasound, produced under the auspices of the 

European Federation of Societies for Ultrasound in Medi- cine and 

Biology (EFSUMB), provides information about the use of 

musculoskeletal ultrasound for assessing extraarticular structures 

(muscles, tendons, entheses, ligaments, bones, bursae, fasciae, 

nerves, skin, subcutaneous tissues, and nails) and their pathologies. 

Clinical applications, practical points, limitations, and artifacts are 

described and discussed for every structure. After an extensive 

literature review, the recommendations have been developed 

according to the Oxford Centre for Evidence-based Medicine and 

GRADE crite- ria and the consensus level was established through a 

Delphi process. The document is intended to guide clinical users in 

their daily practice. 

ZUSAMMENFASSUNG  

Der erste Teil der Leitlinien und Empfehlungen für den mus- 

kuloskelettalen Ultraschall, die unter der Schirmherrschaft der 

European Federation of Societies for Ultrasound in Medi- cine and 

Biology (EFSUMB) erstellt wurden, enthält Informa- tionen über den 

Einsatz des muskuloskelettalen Ultraschalls zur Beurteilung von 

extraartikulären Strukturen (Muskeln, Sehnen, Gelenke, Bänder, 

Knochen, Schleimbeutel, Faszien, Nerven, Haut, subkutanes 

Gewebe und Nägel) und deren Pathologien. Für jede Struktur 

werden die klinische Anwen- dung, praktische Punkte, 

Einschränkungen und Artefakte be- schrieben und diskutiert. Nach 

einer ausführlichen Literatur- recherche wurden die Empfehlungen 

gemäß den Kriterien des Oxford Centre for Evidence-based 

Medicine und den GRADE-Kriterien entwickelt, und der 

Konsensgrad wurde durch die Delphi-Methode ermittelt. Das 

Dokument ist als Leitfaden für klinische Anwender in der täglichen 

Praxis ge- dacht. 

 
 

 

Introduction 

General considerations 

Musculoskeletal ultrasound (MSUS) has become a routine imaging 

modality in clinical practice. Its use has increased substantially not only in 

radiology but also in rheumatology, orthopedics, physical medicine and 

rehabilitation, sports medicine, podiatry, neurology, anesthetics, and 

many others. Several professional societies have contributed over time 

to the standardization, implementation, and training in MSUS. In 

Europe, significant work has been carried out by the European League 

Against Rheumatism (EULAR), Europe- an Society of Musculoskeletal 

Radiology (ESSR), and European Federation of Societies for 

Ultrasound in Medicine and Biology (EFSUMB) [1–10]. 

Taking into consideration the huge number of MSUS indica- tions 

and the multitude of users from a variety of medical special- 

ties, the need for a multidisciplinary consensual position among MSUS 

experts has become evident. For this reason, under the umbrella of 

EFSUMB, a Steering Committee consisting of 8 inter- national experts 

from 7 countries was created. The group identi- fied the main topics that 

needed to be analyzed and invited other MSUS experts 

(rheumatologists, radiologists, orthopedic sur- geons, physical and 

rehabilitation medicine doctors, pediatri- cians, dermatologists, 

anesthesiologists) in order to draw up valid recommendations. The 

authors group consists of 36 experts from 15 countries. 

Based on an extensive literature review on the previously selec- ted 

topics (▶ Fig. 1), the panel members produced a descriptive text on 

different aspects of clinical applications and a number of 

recommendations for each field. The level of evidence (LoE) was 

appraised using the Oxford Centre for Evidence-based Medicine 

(OCEMB) criteria [11]. The strength of the recommendation (SoR) 

was analyzed using the Grading of Recommendations 
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Assessment, Development and Evaluation (GRADE approach) [12], and 

the consensus level between the task force members was established 

through a Delphi process following the EFSUMB policy document 

development strategy for Clinical Practice Guidelines [13]. 

Initially, 84 recommendations/statements were proposed. After 

the first round of voting, 2 recommendations were discar- ded and 75 

were approved. After a second round of voting, an additional 7 

recommendations were proposed and approved. In total, we produced 

82 consensual recommendations. The results of the voting process are 

presented as follows: percent of partici- pants who 

agree/disagree/abstain and the percentage of agree- ment. 

Consensus was considered strong when the percentage who voted in 

favor of a statement/recommendation was > 95 % and broad when the 

percentage was between 75–95 % [13]. 

 

US techniques used in MSUS 

The US techniques used in MSUS are detailed in ▶ Supplementary Table 

1. 

 

Training 

There are many forms of MSUS training (mentorship, theoretical and 

practical courses, cadaver courses stressing sonoanatomy and procedural 

proficiency, E-learning, self-teaching, team-based learn- ing) that vary 

between different professional societies and across Europe [14–16]. In 

2008, EFSUMB published the minimum training requirements for the 

practice of MSUS, comprising 3 levels, with the need to acquire 

competency for each level [17]. Many MSUS courses endorsed by 

EFSUMB take place throughout Europe. 

EULAR has organized dozens of MSUS courses and published 

guidelines for conducting these courses (basic, intermediate, and 

advanced levels) [18]. The minimum training requirements for 

rheumatologists performing MSUS were also published, and a 3-

level competency assessment (COMPASS) was established [9] 

and implemented [19]. Recommendations for Teaching the Tea- chers 

courses have been developed [20]. Important efforts have been made 

to standardize the MSUS examination and reporting [3, 21]. 

ESSR produced technical guidelines for the ultrasound exami- nation 

of joints [22] and guidelines on clinical indications of MSUS [4, 6] 

and organized many courses accompanying their annual meetings 

[23]. 

Courses organized by national professional societies, including some 

with integrated competency assessment, deserve explicit 

acknowledgement, along with the general trend towards embed- ding 

MSUS into fellowship curricula of various specialties [24]. 

 

Terminology 

▶ Supplementary Table 2 provides the current US definitions of the 

main musculoskeletal structures and those of US pathologies [25–37]. 

 

Safety 

Diagnostic US has been widely used in clinical medicine for many years 

with no proven deleterious effects [38], with possible biolo- gical effects 

of non-thermal origin being reported in animals [39] but none in 

humans. Contrast agents used for US are adminis- tered safely in 

several settings with minimal risk to patients. They are not excreted 

through the kidneys and hence can be safely administered to patients 

with renal impairment without risking contrast induced nephropathy 

or nephrogenic systemic fibrosis [40]. Based on the scientific evidence 

of US-induced biological effects to date, there is no reason to withhold 

diagnostic scanning during pregnancy, provided it is medically 

indicated and is used prudently by fully trained operators [41, 42]. 

In the last decade new imaging methods have been intro- duced, 

such as elastography, plane wave imaging, and vector Doppler. The 

EFSUMB Committee for Medical Ultrasound Safety (ECMUS) drew the 

following conclusions regarding the safety of elastography [43]: when 

acoustic radiation force impulses are used, significant temperature 

rises may occur, especially if bone lies in the beam; and when using 

ARFI, the temperature has its maximum at the focus, whereas in B-

mode the maximum is close to the transducer. 

Therefore, according to the ALARA (As Low As Reasonably 

Achievable) principle, diagnostic ultrasound can be considered safe 

[38] when the thermal and mechanical index values are as small as 

possible, while keeping the quality of the scan as high as possible [44]. 

 
Overarching principles 

1. B-mode (grayscale), Doppler techniques, elastography and CEUS 

can be used for the musculoskeletal system examination. Broad 

consensus (27/3/6, 90 %) 

2. Appropriate knowledge and training are necessary for per- 

forming MSUS. Strong consensus (34/0/2, 100 %) 

3. The use of standardized US terminology is highly recommen- ded. 

Strong consensus (34/0/2, 100 %) 

 

▶ Fig. 1 The flowchart of the searching process used for every 

chapter of the musculoskeletal ultrasound recommendations. 
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4. Although no side effects of grayscale and Doppler US are known, 

ALARA principles should be taken into consideration. Broad 

consensus (27/6/3, 81 %) 

 
 

Extraarticular anatomical structures 

Muscles 

Background 

The US appearance of skeletal muscles is determined by their his- 

tological structure, which consists of an alternance of hypoecho- genic 

bundles of myofibrils and hyperechogenic intramuscular 

aponeuroses, septae, and fasciae. The blending of these funda- mental 

components inside each muscle belly results in an incon- sistent US 

appearance throughout the human body, as their rela- tive quantity, 

respective relationship, and orientation change greatly depending on 

the particular specialized tasks of each mus- cle. Moreover, the US image 

of the same muscle is influenced by factors like sex, age, and fitness 

status [45, 46]. Thus, muscle appearance may be inconsistent among 

normal subjects. Finally, skeletal muscles are intrinsically highly 

anisotropic structures [47]. 

 
Clinical application 

Intrinsic muscle injuries are most often caused by simultaneous 

contraction and elongation of the myofibrils and represent one of the 

more common indications for MSUS examinations. These injuries, 

which most commonly occur in muscles spanning two joints and in 

the proximity of the myotendinous junction [48, 49], are classified 

into four grades of severity [50]: Grade 0 when US is not able to detect 

any pathological finding in patients with local pain following an acute 

injury; Grade 1 lesions consist of minor destruction of the muscle fibers 

and may show subtle US alterations, such as intramuscular hypo- or 

hyperechoic areas or swollen aponeuroses; Grade 2 lesions are 

referred to as partial muscle tears and are caused by disruption of the 

muscle fibers and hematoma formation; Grade 3 lesions correspond 

to com- plete tears and are characterized by total discontinuity and retrac- 

tion of the muscle belly. In Grade 0 and 1, dynamic evaluation may show 

hypomobility of muscle fibers. In Grade 2 and 3 lesions, US shows 

interruption and retraction of the muscle fibers, along with an 

intramuscular gap filled with blood. Torn muscle fragments may float 

inside the intramuscular collection, giving rise to the “clapper in bell 

sign” on US [51]. The role of US in patients with suspected muscle injury 

is to establish the extent of the damage and to rule out differential 

diagnoses, such as deep venous throm- bosis [52]. Measurement of the 

cross-sectional area of muscle injuries has prognostic value, as it may 

predict time to recovery during rehabilitation [48]. Moreover, the 

time at which the hemorrhagic cavity is filled with hyperechoic 

connective tissue scar corresponding to the repair process can be 

considered safe for restarting low-level activity, in the absence of 

clinical symp- toms [50]. However, US tends to underestimate the 

extent of muscle damage, especially when compared to magnetic 

reso- nance imaging (MRI) [48]. 

US may show the direct consequences of an extrinsic injury and it 

may detect local complications of muscle contusions, such as cysts, 

myositis ossificans, and, more rarely, calcific myonecro- sis. Local 

swelling, focal irregularities/inhomogeneity of the mus- cle tissues, and 

partial or complete tears are the most common US findings in the 

context of contusion injuries. In the subacute/ chronic setting, 

muscle hernia may develop if the external blow damaged the muscle 

fascia [52]. 

US commonly represents the imaging modality of choice for the 

initial evaluation of muscle masses, to confirm the presence of a mass 

and to gather information about its nature (solid or cystic), size, 

margins, compressibility, and vascularity [53–55]. US may establish 

the anatomical location and relationship with adjacent structures, 

detects signs of infiltration, and assists in imaging-guided sampling for 

histological evaluations. However, patients with a soft-tissue mass 

frequently need further evalua- tion with MRI [56, 57]. 

Recently, US has demonstrated its potential to quantify and 

qualify skeletal muscles in both young and old populations [58–

61]. Several US parameters have proved reliable not only for the 

prediction of muscle strength and function, but also for the detection 

and monitoring of sarcopenia [62–69]. Muscle size, echogenicity, 

pennation angle, and vascularity appear most pro- mising for this 

purpose [70, 71]. It is plausible that in the next few years US will be 

increasingly used for the diagnosis and follow up of sarcopenia [72]. 

US may assist with the diagnosis and characterization of 

disease activity in inflammatory myopathies (82.9 % sensitivity for 

detecting histologically proven myositis) [73]. Inflammation and 

edema cause an increased echogenicity of muscles, which may also 

appear swollen. In chronic disease, the muscles appear atrophic with 

reduced volume and further increased echogenicity due to progressive 

infiltration of fatty tissue [74]. 

Practical points, limitations, and artifacts in muscle exami- nation 

are detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. In muscle injuries, US should be performed to confirm the lesion, 

define its anatomic location, and establish its extension (LoE 2, SoR 

strong). Broad consensus (31/2/3, 94 %) 

2. US should be used to confirm the presence of a muscle mass and 

provide information about its structure (LoE 1, SoR strong). 

Strong consensus (33/0/3, 100 %) 

3. US might play a role in diagnosis and the monitoring of disease 

activity in patients with suspected myositis (LoE 2, SoR strong). Broad 

consensus (26/7/3, 79 %). 

 

Tendons 

Background 

Tendinopathy refers to persistent tendon pain and dysfunction 

related to mechanical loading. While several models of tendon 

pathology exist, the continuum model proposed by Cook et al. [75, 76] 

is widely used to clinically describe and diagnose tendino- pathy. This 

model proposed three key stages of tendon patho- logy: reactive 

tendinopathy, tendon disrepair, and degenerative 



 

 

tendinopathy. The staging of tendon pathology may be beneficial for 

clinicians to target treatment according to the tendon struc- ture [77]. A 

clinical diagnosis of tendinopathy is primarily derived from the patient 

history and clinical tests. The latter have been shown to be sensitive for 

detecting tendinopathy, but they are not specific for identifying 

pathological changes when compared with imaging [78]. 

MSUS is the foremost imaging modality for tendon pathologies since 

it more sensitive than clinical examination and MRI for detecting 

pathological structural changes within tendons, but it does not always 

correlate with pain and dysfunction [79, 80]. Although reviews have 

demonstrated both an association and a dissociation between tendon 

structure, function, and pain, struc- tural changes identified on US can be 

considered a risk factor for the development of symptomatic 

tendinopathy [81, 82]. Using Doppler US, neovascularization due to 

autoimmune inflamma- tion, overuse, or trauma repair can be easily 

identified. Further- more, nearly all tendons are readily accessible. The 

presence of blood vessels and accompanying nerves has previously 

been implicated as a source of pain, with moderate associations report- 

ed between the Doppler signal and the presence and location of pain 

[82, 83]. However, an increased Doppler signal is present in 

asymptomatic tendons, suggesting that blood vessels and accom- 

panying nerves are not the primary source of pain. In addition, the 

reliability of detecting a Doppler signal is poor, as exercise has been 

shown to affect both intra- and peritendinous vascularity [84, 85]. 

In calcific tendinopathy, cartilaginous metaplasia sponta- 

neously occurs, together with calcium deposition inside the ten- don 

matrix [86, 87]. The pathogenesis is still unclear (may be related to 

reduced oxygen tension, which can promote sponta- neous 

metaplasia and cellular necrosis, in turn associated with calcium 

deposition [88]). Calcifications may occur in all tendons [89, 90] 

although the rotator cuff tendons are most frequently affected [91]. 

 
Clinical applications 

US is widely used to detect inflammation, traumatic lesions, and 

degenerative alterations in tendons. The US study of tendon rup- tures 

allows confirmation of partial or complete ruptures at many anatomical 

sites [92–97]. The degree of tendon inflammation in rheumatic disease, 

namely tenosynovitis, paratenonitis, or tendi- nitis, as well as the extent 

of tendon damage can be evaluated [98, 99]. Several US scores have 

been introduced and validated with good intra- and interobserver 

reliability [100–102]. 

The most common parameters used to characterize tendon 

pathology include tendon thickness, echogenicity, vascularity [103], 

and stiffness [104]. Abnormal tenocyte morphology and changes in 

proteoglycan content with a resultant increase in bound water are 

the primary changes in tendinosis. These changes have been 

described on US as increases in tendon dimen- sions and 

heterogeneous or diffuse changes in echogenicity [105, 106]. 

Furthermore, the shadowing generated by fibrillar disorganization 

and the lack of parallel-aligned fibers contribute to areas of 

hypoechogenicity within the tendon matrix [78]. 

US is the most accurate imaging modality to detect calcific 

deposits (sensitivity of 94 %, specificity of 99 %) [107]. Calcific ten- 

dinopathy usually shows hyperechoic foci within the tendon, with or 

without acoustic shadowing. However, the appearance changes 

depending on calcium content, which varies according to the stage of 

this condition. Occasionally, calcifications may also appear as 

hypo/anechoic fluid collections with no acoustic shadowing [108, 

109]. 

Practical points, limitations, and artifacts in tendon exami- nation 

are detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. In patients with suspected tendon pathology, US is recommended as the 

first imaging modality after clinical examination (LoE 1, SoR strong). 

Strong consensus (33/0/3, 100 %) 

2. Color/power Doppler US should be used to evaluate active 

inflammation in tendons and tendon sheaths (LoE 1, SoR 

strong). Broad consensus (30/3/3, 91 %) 

 

Enthesis 

Background 

Enthesis is the insertion of a tendon, ligament, or capsule into the bone. 

Entheses may be affected in inflammatory conditions grouped 

under the term spondyloarthritis (SpA), where enthesitis is considered a 

key feature. The enthesis may also be the subject of overuse as seen in 

sport injuries and in crystal diseases. How- ever, while the enthesis is 

the origin of the disease in SpA (with potential subsequent 

involvement of the tendon), the overuse condition is perceived to be 

a tendon disease with potential subsequent involvement of the 

enthesis. 

The term “enthesitis” (i. e., inflammation of the enthesis) should 

only be used in relation to SpA and the term “enthesopa- thy” for any 

pathological condition of the enthesis regardless of cause. US provides 

a more sensitive assessment of entheses than clinical evaluation, 

comparable with MRI (except for locations not accessible to ultrasound, 

such as pelvis entheses, cruciate liga- ments entheses, spinal, etc.) 

[110–119]. 

 
Clinical points 

Definition 

On grayscale US, pathological entheses are characterized by the loss of 

normal fibrillar echogenicity of the tendon insertion with or without an 

increase in tendon thickness, or intralesional focal changes at the tendon 

insertion, such as calcium deposits, fibrotic scars and bone or periosteal 

changes (erosions or new bone for- mation – enthesophytes). When 

using Doppler US, active inflam- mation is detected as abnormal 

vascularity in the area adjacent to the cortical insertion (< 2 mm). 

Additionally, involvement of the body of the tendon far from the 

enthesis, of adjacent bursae, and fat tissue may be observed. 

However, these processes can also be observed in the absence of 

enthesitis in other inflamma- tory and non-inflammatory diseases [28, 

120]. 
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Diagnosis 

US may be used for the early diagnosis of enthesitis and especially the 

presence of Doppler activity has been shown to be a sensitive marker 

[121–136]. Several enthesitis scoring systems exist for dis- tinguishing 

between SpA and other joint diseases but the only consensus-based 

scoring system is the OMERACT (Outcome Measures in 

Rheumatology) enthesitis scoring system [28, 120]. 

 
Monitoring 

At the moment only the consensus-based OMERACT scoring 

system appears suitable for monitoring purposes [28, 120]. Large 

international, multi-center studies assessing validity and sensiti- vity to 

change are still lacking, thus hindering the routine use of such 

instruments in both clinical practice and clinical trials. Only a few studies 

have evaluated sensitivity to change over time or responsiveness of US 

in SpA patients under anti-TNFα treatment, where Doppler activity has 

been shown to be the most sensitive to change [122, 124, 125, 130, 137–

153]. 

 
Differential diagnosis 

Whether and to what extent US can distinguish between enthesitis of 

different origins including local non-inflammatory conditions needs to 

be established [144–153]. 

Practical points, limitations, and artifacts in entheses exa- mination 

are detailed in ▶ Supplementary Table 3, 4. 

 
Statements 

1. Ultrasound might be more sensitive than clinical examination and 

MRI for detecting peripheral enthesitis accessible to US (LoE 4). 

Broad consensus (27/6/3, 82 %) 

2. Ultrasound findings should be interpreted in the context of clini- cal and 

laboratory data for etiological diagnosis of peripheral enthesitis (LoE 

4). Strong consensus second round (31/1/4, 97 %) 

 
Recommendation 

1. US should be used as the first-line imaging modality for per- ipheral 

enthesitis diagnosis (LoE 2, SoR strong). Strong con- sensus 

(33/0/3, 100 %) 

2. Increased vascularity of enthesis on Doppler US should be 

considered as the most diagnostic feature of enthesitis. (LoE 2, SoR 

strong). Broad consensus (28/2/6, 93 %) 

3. Ultrasound may be used to monitor peripheral enthesitis (LoE 2, 

SoR strong). Broad consensus (30/2/4, 94 %) 

 

Bursae 

Background 

Bursae, sac-like structures containing a small amount of synovial fluid, 

some communicating with the adjacent articular cavity, reduce the 

friction between soft tissues and bones [154–156]. Bursitis, 

inflammation of the bursa, appears in various pathologi- cal conditions: 

mechanical, degenerative, septic, inflammatory rheumatic diseases, 

tumors, etc. [157, 158]. The main US findings consist of an increased 

amount of synovial fluid (of variable echo- genicity) with or without 

synovial hypertrophy, internal septation,mural nodules or loose 

bodies, but generally no specific appearance can be linked to any 

particular etiology [154]. Distin- guishing from normal bursae is 

important, as in many situations a small amount of intrabursal fluid can be 

detected by US in healthy subjects [156, 159]. 

 
Clinical application 

In patients with shoulder pain, the presence of subacromial- 

subdeltoid (SASD) bursitis was associated with acromioclavicular joint 

arthritis (70.4 %), supraspinatus calcific tendinopathy (67.8 %), 

rotator cuff full-thickness (96.7 %) or partial (72.7 %) tear, trauma (95.6 

%), rheumatoid arthritis (RA) (94.7 %), or infec- tion (100 %), often 

independently from the underlying pathology [160]. US can accurately 

detect subacromial bursitis in patients with painful arc syndrome (100 % 

specificity, 87 % accuracy) [161]. The detection of SASD bursitis by US 

improves the specificity of clinical and serological criteria for the diagnosis 

of polymyalgia rheumatica (PMR) from 68 % to 89 % [162]. Bilateral 

SASD had a specificity of 89 % (95 %CI 66 % to 97 %) and a sensitivity of 

66 % (43 % to 87 %) for the diagnosis of PMR [163] and US was con- 

firmed to be a useful tool to improve the classification and 

management of patients with PMR [164]. Bursitis is more severe and of 

proliferative type in the shoulders of patients with elderly onset RA 

compared with the exudative type in PMR [165, 166]. The severity of 

tenosynovitis of the long head of the biceps and that of SASD bursitis are 

independent predictors of an inadequate response to glucocorticoid 

treatment in patients with PMR [167]. Subcoracoid bursae are rarely 

distended, generally in the pre- sence of subcoracoid impingement [168, 

169]. Bicipitoradial bur- sitis results more commonly from chronic 

mechanical friction and less commonly from inflammation, tumors, or 

infections [170]. 

Only case reports have been published about the bicipitoradial bursa 

[171, 172]. 

The most common etiology of olecranon bursitis is trauma and 

infection [173, 174]. Despite its superficiality, few reports about the US 

appearance of the olecranon bursae have been published [175, 176]. 

The olecranon bursa is very commonly involved in tophaceous gout 

[177, 178] and rarely in calcium pyrophosphate dihydrate crystal 

deposition disease [179]. 

Iliopsoas bursitis was identified by US in 2.2 % of patients with hip 

osteoarthritis (OA) [180] and in 5–6 % of patients with post- 

arthroplasty complications [181]. As compared to surgery, US had 

excellent results in evaluating the iliopsoas bursa wall thick- ness and 

internal texture but underestimated its size and the pre- sence of 

communication with the joint [182]. US identified bursi- tis in 20.2 % of 

patients with great trochanteric pain syndrome [183]. Agreement 

with MRI was good to excellent [184, 185]. When compared to 

surgical findings, US had a sensitivity of 0.61, specificity of 1.0, positive 

predictive value of 1.0, and negative predictive value of 1.0 for 

diagnosing trochanteric bursa patho- logy [186]. However, US was 

unable to distinguish between bursi- tis in inflammatory diseases and 

bursitis with a mechanical origin [185]. 

US was able to identify bursitis in 9.5 % of patients with knee pain 

and, compared to MRI, had a sensitivity of 88.67 % and a spe- cificity of 

100 % with a kappa index of 0.92 [187]. In medial knee 



 

 

pain, US could detect pes anserine bursitis in 20 % of patients, with the 

incidence increasing with patient age and grade of knee OA [188]. US 

was as specific, but less sensitive than knee arthrogra- phy and as 

accurate as MRI in detecting Baker cysts [189]. 

In the heel area, a significant increase in both retrocalcaneal bursa 

detection and its thickness were shown in SpA patients [190]. A 

positive likelihood ratio of 4.6 % was found when a cut- off of ˃2 mm 

for retrocalcaneal bursa thickness was used. Of note, the 

retrocalcaneal bursa could be seen by US in 27.6 % of healthy people 

[191] and in nearly 50 % of military recruits [156]. In addition, 

retrocalcaneal bursitis was frequently observed in RA (in 24 % of 

established and 38 % of early RA patients) [165]. 

In the foot, US was able to identify forefoot bursae distention 

(intermetatarsal and plantar) with a high prevalence in both OA (94 %) 

and RA (88 %) compared to healthy subjects (56 %) [191]. These bursae 

are often missed by clinical examination (US vs. clinical examination: 

92.6 % vs. 23.5 % in RA) and their presence is associated with self-

reported activity restrictions and foot im- pairment [192]. In patients 

with metatarsalgia, US detected inter- metatarsal bursae distention as 

the most common underlying pathology (in 20.5 % of cases, including 

in 21.5 % of clinically sus- pected Morton neuromas) [193]. 

Practical points, limitations, and artifacts in bursae examina- tion are 

detailed in ▶ Supplementary Table 3, 4. 

 
Statement 

1. US findings in bursitis are nonspecific and must be completed with 

clinical and laboratory data and fluid analysis (LoE 3b). Strong 

consensus (30/1/5, 96 %) 

 
Recommendation 

1. US should be used as the first-line imaging method for diagno- sing 

bursitis (LoE 2b, SoR strong). Strong consensus (31/1/4, 97 %). 

 

Ligaments and retinacula 

Background 

US and MRI are complementary tools for assessing intrinsic and 

extrinsic ligaments and for diagnosing ligament tears, pulleys, and 

retinacular lesions [194, 195] including lax, torn, thickened, or 

absorbed ligaments and non-union avulsion fractures [196, 197]. 

US has the potential to provide a novel approach to the rating and 

treating of ligament injuries [198]. 

Ligaments, pulleys, and retinacula are composed mostly of col- lagen 

and appear as less echogenic, fibrillar structures on US. Liga- ments are 

best visualized under strain, highlighting the impor- tance of dynamic 

examination. Point-of-care ankle US was shown to be as precise as MRI 

for detecting ligament and tendon injuries and may be used for 

immediate diagnosis and further preopera- tive imaging [199]. 

Clinical applications 

Lateral collateral ankle ligament complex 

Acute ankle sprains are the most common reason for visiting the doctor 

after sports-related incidents. 

Compared with operative findings, the sensitivity, specificity, and 

accuracy of US were 98.9 %, 96.2 %, and 84.2 %, respectively, for anterior 

talofibular ligament (ATFL) injury and 93.8 %, 90.9 %, and 83.3 %, 

respectively, for calcaneofibular ligament (CFL) injury, comparable to MRI 

results [200, 201]. A systematic review with meta-analysis showed 

that the pooled sensitivities were 0.99 (0.96, 1.00) with specificities of 

0.91 (0.82, 0.97) for diagnosing chronic ATFL injury and 0.94 (0.85, 

0.98) with specificities of 

0.91 (0.80, 0.97) for chronic CFL injury [202]. 

 
Medial collateral ankle ligament (deltoid) complex 

In the case of disruption, comparison between US and stress 

radiography revealed high sensitivity and specificity, proving that US is an 

accurate method for identifying the involved ligament components 

dynamically [203]. Although US may provide impor- tant information 

about the spring ligament complex and the ankle syndesmosis, available 

evidence for their US assessment is scarce [204]. Thickness 

measurement in a weightbearing position has been recommended 

to assess the dorsal Lisfranc ligament [205, 206]. 

 
Knee 

Anterolateral knee ligament injuries that occur with anterior 

cruciate ligament tears are often associated with bone avulsion at the 

enthesis and are better viewed with US [207–209]. 

Structural changes of the lateral and medial patellofemoral joint 

retinaculum were found to be associated with patellofemoral pain. High-

frequency US and MRI showed similarly high accuracy in diagnosing 

medial patellofemoral joint retinaculum lesions, with very good 

interobserver agreement for high-frequency US [210, 211]. 

Two meta-analyses demonstrated high diagnostic perfor- mance in 

anterior and posterior cruciate ligament injuries. However, future 

prospective studies comparing US and MRI are warranted [212, 213]. 

 
Acromio-clavicular joint (ACJ) 

The acromio-clavicular ligament, which is always damaged when the ACJ 

is injured, can be reliably examined by US. Both distortion and rupture can 

be recognized morphologically, while instabilities due to a height 

difference between the clavicle and acromion edge or due to 

hypermobility, should be assessed in a dynamic examination. Two 

studies demonstrated the diagnostic value of US in comparison to X-ray 

imaging [214, 215]. Direct visualization of the coraco-clavicular ligament 

is almost as reliable with US as with the “gold standard” MRI [216]. 

 
Shoulder 

The coraco-humeral and coraco-acromial ligaments, which stabi- lize the 

interval between the subscapularis and supraspinatus ten- 
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dons, are relevant for the diagnosis of subacromial impingement. In 

adhesive capsulitis, the ligaments are noticeably different mor- 

phologically [217] or using elastography [218] and may show 

Doppler signal. The glenohumeral ligaments are difficult to visua- lize. 

 
Elbow 

The radial ligament complex can be examined morphologically as well as 

by testing the stability. The same applies to the ulnar liga- ment complex 

[219–221]. 

Visualization of the Struthers ligament may be helpful in the median 

nerve entrapment syndrome [222]. Similarly, assessment of the 

Osborneʼs ligament and the arcuate ligament in the entrap- ment 

syndrome of the ulnar nerve may provide relevant informa- tion. 

 
Hand and wrist 

The scapho-lunar ligament can be examined with US both for 

morphology and stability under dynamic conditions [223], albeit with 

low sensitivity but high specificity [224]. The trapezio-meta- carpal 

ligament can be well visualized and examined for its stabi- lity [225]. In 

cases of instability of the ulnar collateral ligament of the thumb, its 

morphology can be examined and assessed in con- junction with a 

dynamic examination, especially if the ligament is dislocated over the 

aponeurosis of the adductor pollicis muscle [226]. 

The thickness of the flexor retinaculum of the carpal tunnel 

(transverse carpal ligament) and its position in relation to the median 

nerve can be readily assessed on US [227]. The triangular fibrocartilage 

complex is difficult to detect sonographically. Nevertheless, high-

resolution US allows for radial and ulnar colla- teral wrist ligament 

assessment [228] and US findings have been shown to correlate with 

ulnar-sided pain and instability [229]. 

US can be used to evaluate finger pulleys in trigger fingers and annular 

pulley ruptures. Accurate static and dynamic US evalua- tion are of 

comparable value to MRI in distinguishing partial, com- plete, and 

combined pulley ruptures from overuse injuries [230–232]. Flexor 

tendon thickness and annular pulley measure- ments have been proven 

to be feasible and valid in cadaver studies as well as in patients and healthy 

volunteers with good inter- and intraobserver reliabilities [233, 234]. 

Collateral ligament tears, palmar plate injuries, and thumb sesamoid 

fractures may be criti- cal in the diagnostic workup of closed finger joint 

trauma and US may help improve outcomes [235]. 

Practical points, limitations, and artifacts in ligament examination 

are detailed in Supplementary ▶ Supplementary Table 3, 4. 

 
Statement 

1. For the knee, US can be considered as an accurate and 

reproducible imaging technique for diagnosing medial/lateral 

ligament and retinaculum injuries (LoE 2). Broad consensus 

(23/7/6, 77 %) 

Recommendations 

1. US is useful to diagnose acute lateral ankle ligament injury (LoE 1, 

SoR strong). Strong consensus (31/1/4, 96 %) 

2. US is useful to predict the prognosis of acute ankle sprain (LoE 

1, SoR strong). Broad consensus (27/4/5, 87 %) 

3. In addition to the manual anterior drawer test and stress 

radiography, dynamic stress US might be useful for diagnosing 

chronic ankle instability (LoE 3, SoR weak). Broad consensus 

(27/3/6, 90 %) 

4. US might be used to evaluate the injuries of acromio-clavicular joint 

and ligament, as well as of the coraco-humeral and coraco-

acromial ligaments (LoE 3, SoR weak). Broad consen- sus (28/5/3, 

85 %) 

5. In the elbow, US may be used to evaluate the medial/lateral collateral 

and annular ligaments, particularly during dynamic examination (LoE 

3, SoR weak). Broad consensus (28/2/6, 93 %) 

6. In the hand and wrist, US may be used for the assessment of injuries 

in ligaments (scapholunate and thumb ulnar collateral) or the annular 

pulley, as well as trigger finger pathology (LoE 3, SoR weak). Broad 

consensus (29/3/4, 91 %) 

 

Bones 

Background and clinical application 

Enthesophytes 

Enthesophytes have been defined in the OMERACT ultrasound group 

[28] and are included as one of the core elementary lesions of US-

detected enthesitis [27]. High reliability has been found for 

enthesophytes compared to other elementary lesions in enthesitis [119]. 

Enthesitis is typical for psoriatic arthritis (PsA), and enthe- sophytes at 

typical sites were included among potential elemental US abnormalities 

able to distinguish PsA from controls [236]. However, a recent study 

on healthy volunteers found entheso- phytes to be the most 

common lesion at tendon insertions, detected in 87.5 % of 

participants and 23.1 % of the entheses [237]. 

 
Bone erosions 

In accessible areas, US was found to be highly accurate for the 

detection and semiquantitative assessment of bone erosions in 

patients with RA [238]. However, a recent review on the ability of US to 

detect erosions in patients with RA found a pooled sensiti- vity and 

specificity of US for the detection of early bone erosion of 

58.4 % and 93.9 %, respectively [239]. 

Erosions, however, are not specific for RA. A study including 

patients with several inflammatory joint diseases found the pre- sence 

of US-detected erosions not to be specific for RA, while larger 

erosions in selected joints, especially the 2nd and 3 rd MCP, 5th 

metatarso-phalangeal (MTP) joint, and distal ulna, were highly specific 

for and predictive of RA [240]. This was supported by a recent study 

exploring differences in radiographic and US detection of erosions 

between ACPA-positive and -negative patients. On both imaging 

methods, the most discriminating joint between the two groups was 

MTP5, especially in patients with bilateral erosion [241]. 
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Periostitis 

Periostitis is a nonspecific finding corresponding to a thickening and 

elevation of the periosteum from the underlying cortex. It can be seen 

in malignant tumors, infections and inflammation, eosinophilic 

granuloma, aneurismal bone cyst, osteoid osteoma, hemophilia, or 

trauma [242, 243]. Radiographs are the first imaging modality to 

study periostitis although MRI or CT is the imaging reference standard. 

 
Fractures 

Bone fractures are a very common occurrence. Plain radiography is the 

imaging method of choice. In acute fractures, US can be used as a 

complementary method when radiographic imaging is negative but 

clinical suspicion is high. In these cases, US shows interruption of the 

cortical line, frequently together with perio- steal thickening and 

hematoma [244, 245]. In stress fractures, plain radiography is often 

normal in the early stages. US may be highly effective in detecting the 

periosteal reaction and callus for- mation. MRI may also be used in cases 

where US is still negative [246]. After an acute fracture, US is superior to 

plain radiography for showing early organization of the bone callus. US 

and CEUS can be used to evaluate callus status in patients with bone 

non- union before and after treatment, also predicting clinical out- 

come [247, 248]. 

Practical points, limitations, and artifacts in bones examina- tion are 

detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. US should be used to detect peripheral enthesophytes and 

erosions (LoE 1, SoR strong). Broad consensus (30/4/2, 88 %) 

2. In accessible bone areas, when radiography is negative but clinical 

suspicion of acute fracture is high, US should be used (LoE 1, SoR 

strong). Strong consensus (32/2/2, 95 %) 

3. In regions with an acoustic window, US should be used for 

monitoring fracture healing (LoE 2, SoR strong). Broad 

consensus (22/7/7, 76 %) 

4. In regions with an acoustic window, US might be used to detect 

periostitis (LoE 4, SoR weak). Broad consensus (25/8/3, 76 %). 

 

Nerves 

Expanding evidence has supported the use of US as a valuable 

imaging modality to investigate the peripheral nervous system [249–

252]. In the short axis, normal peripheral nerves demon- strate a 

characteristic stippled (honeycomb-like) appearance (axons 

arranged in fascicles and multiple layers of connective tissue 

supporting and binding the fascicle bundles together) [253]. In long-

axis planes, nerves appear as elongated structures with alternating 

hypo- and hyperechoic bands. The development of ultrahigh frequency 

probes (up to 30 MHz) has provided new perspectives in the evaluation 

of sub-millimetric terminal nerve branches, visualized as single small 

hypoechoic dots within a hyperechoic frame lacking the expected 

classic “honeycomb” appearance [254–261]. 

Clinical application 

Compression neuropathies 

When investigating compression neuropathies, three main classes of 

nerves should be considered: 

▪ Class 1 includes large nerves (e. g., median, ulnar, peroneal, tibial, 

etc.), which are readily evaluated by probe frequencies of up to 13 

MHz. Diagnosis is based on pattern recognition analysis and on 

calculation of the nerve cross-sectional area (CSA) [262–267]. 

▪ Class 2 consists of small nerves (e. g., posterior and anterior 

interosseous, sural, suprascapular, etc.), which require probe 

frequencies of up to 24 MHz. In this case, pattern recognition 

together with side-to-side comparison of the major nerve 

diameter plays a significant role in diagnosing compressive 

neuropathies [268, 269]. 

▪ Class 3 includes both large nerves (e. g., the femoral and sciatic nerves 

in their intrapelvic course) and small nerves (e. g., the deep peroneal 

nerves) which are poorly visualized or unde- tectable with US due 

to their anatomical location. In this case, US diagnosis relies only on 

indirect signs of nerve damage, including signs of denervation of the 

skeletal muscles supplied by the affected nerve [270, 271]. 

 
US signs of compressive neuropathy consist of nerve flattening at the 

compression point and nerve swelling proximal or (less com- monly) 

distal to it [272, 273]. The transition between swollen and flattened 

segments is abrupt (“notch sign”). In the early phases of compression, 

nerve enlargement is detected due to intraneural edema and venous 

congestion. With time, the nerve echotexture may appear massively 

subverted due to loss of the fascicular pat- tern and diffuse nerve 

hypoechogenicity. If nerve compression persists, irreversible 

intraneural fibrosis may occur and nerves with fibrotic changes remain 

swollen after decompressive surgery [256, 274, 275]. 

 
Nerve injuries 

In penetrating injuries with complete nerve transection, stump 

neuromas develop in continuity with the edges of the nerve (round 

hypoechoic masses which may be displaced or retracted from the site 

of injury) [276, 277]. In partial nerve tears, a spindle neuroma may 

develop along the injured nerve tract and US can estimate the 

percentage of involved and preserved fascicles [278–280]. 

Stretching injuries most commonly affect nerves with a tortuous course 

and typically occur in relation to fixation points, such as where the nerve 

pierces fascial planes or crosses tight osteofibrous tunnels [281]. 

Contusion injuries most often occur where nerves run close to bony 

surfaces and are vulnerable to ex- ternal pressure. The nerve may show 

various degrees of swelling with or without preservation of the 

fascicular echotexture, de- pending on the severity of trauma [282, 

283]. 

 
Polyneuropathies 

US findings in patients with dysimmune neuropathies are similar among 

the various forms and mainly consist of segmental nerve/ fascicle 

swelling, which typically involves the nerve sections where 
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conduction blocks are identified by electrophysiology [284–288]. US 

may demonstrate focal changes in nerve/fascicle thickness in early 

phases, when electrophysiology is still negative, and reduced fascicular 

swelling during treatment, before neurophysiological improvement 

occurs [289–291]. 

In leprosy, US findings consist of markedly swollen nerves with loss of 

the fascicular echotexture, thickened epineurium, and intense 

intraneural hyperemia on Doppler imaging (“nerve inferno”) in 

acute neuritic phases [292]. In Charcot-Marie-Tooth (CMT), marked 

generalized fascicular enlargement, akin to an “onion bulb”, and 

Schwann cell hypertrophy due to attempted remyelination are 

typical findings of CMT-1A [293–296]. In hereditary neuropathy 

with liability to pressure palsies patients, US demonstrates multifocal 

nerve enlargements (tomaculae) fol- lowing minor trauma, which most 

commonly occur in areas where the nerves are prone to compression 

[297, 298]. 

 
Nerve tumors and tumor-like conditions 

The US diagnosis of peripheral nerve sheath tumors relies on the 

detection of a soft-tissue mass in continuity with a nerve. Alterna- tively, 

the “fat-split sign”, which consists of a rim of fat at the poles of an 

intramuscular mass, may suggest a lesion originating in the 

intermuscular space about the neurovascular bundle instead of 

the muscle itself [299, 300]. Although schwannoma and 

neurofibroma are often indistinguishable on US, schwanno- mas 

appear as eccentric ovoid masses arising from a single fascicle and 

displacing the unaffected fascicles to the periphery, whereas 

neurofibromas encase the fascicles of the parent nerve deve- loping 

in a fusiform shape. Moreover, neurofibromas may show a “target sign” 

with a hyperechoic (fibrous) core and a hypoechoic (myxomatous 

tissue) rim. Compared to schwannomas, they are usually avascular or 

less vascular on Doppler imaging [301–303]. Malignant peripheral 

nerve sheath tumors tend to be larger (> 5 cm) and more 

heterogeneous and often show indistinct margins, calcifications, 

areas of internal bleeding and necrosis [304–307]. However, a definite 

diagnosis usually requires histolo- gical sampling. 

Practical points, limitations, and artifacts in the examination of 

nerves are detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. The cross-sectional area (CSA) of 10 mm2 of the median nerve at the 

carpal tunnel inlet, together with wrist-to-forearm ratio of the 

median nerve CSA, should be used in the diagnosis of median 

nerve compression (LoE 2A, SoR strong). Broad consensus 

(24/6/6, 80 %) 

2. In the diagnosis of carpal tunnel syndrome, cross-sectional area 

measurements of the median nerve should be considered 

complementary to electrodiagnostic tests (LoE 2A, SoR strong). 

Broad consensus (30/2/4, 94 %) 

3. An ulnar nerve cross-sectional area within the epitrochlear groove 

of 10 mm2 should be assumed as the cut-off value for diagnosing 

ulnar nerve entrapment at the elbow region (LoE 2A, SoR strong). 

Strong consensus second round (30/1/5, 97 %) 

4. US should be used to identify, localize, and follow up full and partial 

thickness nerve injuries (LoE 1C, SoR strong). Broad consensus 

(29/2/5, 94 %) 

5. US might be used to detect nerve alterations in acquired and 

inherited polyneuropathies (LoE 3B, SoR weak). Broad consen- sus 

(24/6/6, 80 %) 

6. US might be used to recognize peripheral nerve sheath tumors, but 

histopathological examination is mandatory for differential diagnosis 

(LoE 3B, SoR weak). Strong consensus (32/1/3, 96 %) 

 

Skin and subcutaneous tissues 

Background 

US of the skin is nowadays considered part of a wider US applica- tion 

known as dermatologic US [308]. Musculoskeletal diseases and 

alterations may affect the skin to some extent or may be an incidental 

finding during exploration. 

Skin US is an imaging method complementary to clinical exa- 

mination and histopathology. Correct interpretation of skin US 

images requires corroboration of all available patient information and 

thorough knowledge of skin diseases and their management [309]. 

 
Clinical applications 

Normal skin 

Aging and ultraviolet- or sex-related changes have been effectively studied 

using high-frequency B-mode (thickness or echodensity) US and 

elastography [310–314]. Of note, using even higher fre- quencies (> 50 

MHz), US imaging correlates well with histological findings as far as hair 

follicles/tracts, glands, and erector pili muscles are concerned [315]. 

 
Scar 

While scar type/depth or echogenicity differences can be safely 

ascertained on US [316], unlike normal skin, scar tissues have not been 

shown to correlate with histology in terms of skin thickness [317, 318]. 

 
Hidradenitis suppurativa 

For more prompt diagnosis, staging, treatment planning, and 

monitoring, B-mode or Doppler US has recently been used to scan 

patients with hidradenitis suppurativa (HS) [318–326] including 

children [327, 328]. 

 
Infection 

Point-of-care US has high sensitivity and specificity (range 89 %- 96 % 

and 64 %-88 %, respectively) for diagnosing skin abscesses [329], 

distinguishing them from cellulitis [330], and following up treatment 

[331]. Furthermore, these values remained high for novice 

sonographers as well as experts [332–334]. 

 
Systemic sclerosis 

Compared to clinical evaluation, US examination proved more 

sensitive and reliable for quantifying systemic sclerosis (SSc) skin 

involvement in both patients and controls [335–339]. A better 



 

 

discrimination between clinical and subclinical skin involvement [335–

340], different forms of SSc, and disease stages [335–337] was 

achieved. An inverse relationship between skin echogenicity and 

thickness was identified in patients with SSc in the edematous phase of 

the disease [335, 336]. US findings were found to corre- late with clinical 

activity scores (Rodnan Skin Score), degree of pulmonary involvement, 

specific histologic and pathogenetic fea- tures [336, 341, 342] and are 

sensitive for detecting longitudinal skin thickness changes and 

vascularity [341]. 

Elastography can quantify skin stiffness by adding information about 

the disease stage and helping to distinguish subclinical SSc involvement 

from healthy skin [340, 343, 344]. Shear wave velo- city values were 

significantly higher in SSc patients than in controls at almost all 

modified Rodnan Skin Score sites and thus correlated with the degree of 

pulmonary involvement [339, 343]. 

 
Morphea 

US provided qualitative and quantitative anatomical data, such as 

thickness measurements, detection of structural abnormalities, and 

Doppler analysis of the lesional and perilesional vessels in both 

clinical and subclinical stages of the disease [345–349]. 

 
Psoriatic plaque 

In a psoriatic plaque, the epidermis and dermis appear thicker 

compared with the normal surrounding skin. A hypoechoic band in the 

upper dermis can be observed, representing inflammatory edema and 

vasodilatation within the papillary dermis. This sign was shown to be 

linked to the most active stages of the disease [350–354]. 

 
Lymphatic vessels 

Currently, several studies have assessed the applicability of US and 

elastography as early methods for the diagnosis, staging, and 

assessment of clinical and subclinical lymphedema [355, 356]. High-

resolution US was proven to distinguish lower limb lymphe- dema from 

other edematous conditions [357, 358] 

 
Melanoma 

In melanoma staging, US contributes to the primary staging and 

detection of metastases. The Breslow index (measurement from the 

granular epidermal layer to the deepest melanoma extension in 

millimeters) is the main predictor of lymphatic extension and prognosis 

worsening [359]. Most studies showed a high correla- tion between the 

Breslow Index and US measurements. In a retro- spective cohort study 

[360–362], correlation with manual mea- surements reached r = 0.88, 

permitting a single stage excision in most cases. 

Regarding US follow-up of melanoma patients, US was not 

superior to clinical follow-up in terms of survival in a prospective cohort 

study comparing these two follow-up modalities in stage IB IIA patients 

[363–365]. 

 
Nonmelanoma skin cancer (NMSC) 

Most common NMSCs are basal cell and squamous cell carcino- mas. 

The heterogeneity of studies and techniques does not per- 

mit a clear recommendation on the systematic use of US in NMSC 

management [364]. However, some retrospective cohort studies [366, 

367] and multiple case series indicate the possibility of using US to detect 

occult basal cell carcinoma foci, to discrimi- nate between high- and low-

risk forms. 

 
Other neoplastic and inflammatory skin lesions 

US features of other skin lesions such as mycosis fungoides, other skin 

lymphomas [368, 369], Kaposi sarcoma [370], and dermato- 

fibrosarcoma protuberans [371] have also been described. 

Other benign skin tumors, such as pilomatrixomas [372], cysts [373], 

lipomas [374], and neurofibromas [375], have also been 

characterized and they present distinct sonographic patterns that 

are potentially useful for noninvasive diagnosis. However, these 

observations were derived from cross-sectional studies and small case 

series. 

In other inflammatory skin diseases, such as panniculitis [376], 

pseudoxanthoma elasticum [377], atopic dermatitis [368], and 

sarcoidosis [378], US provides additional information that is useful for 

early diagnosis or follow-up. 

Practical points, limitations, and artifacts in skin and subcu- taneous 

tissue examination are detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. US is recommended for prompt diagnosis, staging, treatment 

planning, and monitoring in patients with hidradenitis suppu- rativa 

(LoE 2, SoR strong). Strong consensus (32/1/3/ 97 %) 

2. US is recommended as the first-line modality in the detection of skin 

abscesses (LoE 2, SoR strong). Strong consensus (33/1/2, 97 %) 

3. US is recommended for the qualitative and quantitative evalua- tion of 

skin layers, the differentiation between disease forms, and the 

staging and monitoring of skin abnormalities in sys- temic 

scleroderma patients (LoE1, GoR strong). Broad consen- sus (28/3/5, 

90 %) 

 

Fascia 

Background 

The fascia is a collagenous tissue continuum that surrounds and 

separates muscles, forms sheaths for nerves and vessels, and 

strengthens ligaments around joints [379]. The deep fascia has a 

complex structure formed by two or three layers of densely packed 

collagen fibers, interpolated by a layer of loose connective tissue [380]. 

Both morphological and dynamic properties (sliding, displace- ment) 

are important for the functional integrity of the fascia sys- tem [381]. 

Fascial layers have some sites of potential weakness which could give 

rise to hernias (sports hernia or incisional hernia) Herniation of skeletal 

muscles through fascial defects has also been described. The tibialis 

anterior, extensor digitorum longus, peroneus longus and brevis, the 

gastrocnemius are the most com- monly affected muscles [382]. 

Deep fascia can be affected, though rarely, by a severe infec- tion 

(necrotizing fasciitis) or inflammation (eosinophilic fasciitis). 
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The former is a fulminant infection, which can follow minor inju- ries, 

while the latter is a chronic progressive condition which usually 

affects the limbs symmetrically. 

Neoplastic lesions involving the fascia are generally uncom- mon, 

with benign lesions being far more frequent. 

 
Clinical application 

High-resolution US of fasciae can assess morphometric characte- ristics 

such as thickness and echogenicity [383] and allows visua- lization of 

fascia sliding or displacing [381]. 

The fascia generally appears as a linear hyperechoic structure with 

boundaries easily identifiable due to the adjacent hypoechoic muscles. It 

consists of a single or several discrete layers [380]. 

The plantar fascia is by far the most studied fascia with a well 

standardized scanning protocol (longitudinal scan at its most 

proximal part) [383] and an accepted cut-off point of 4 mm for its 

normal thickness [384]. There are no agreed-upon reference values for 

the normal thickness of other fasciae, though apo- neurotic fasciae 

seem to be generally thicker than epimysial ones [381]. 

In detecting sport hernias, with laparoscopy as the gold stan- dard, 

US has a high sensitivity (95 %) and specificity (100 %), as well as a 

positive and a negative predictive value close to 100 % [385]. In 

identifying incisional hernias, US was found to have an added value of 

29.4 % over clinical examination alone [386]. Dynamic US or MRI 

can be used to confirm muscle hernias. An additional advantage of US 

is that the patient can be examined in a standing position [387]. 

Necrotizing fasciitis shows on US as marked subcutaneous 

edema and thickening, with interconnected fluid collections 

resulting in a cobblestone appearance and small bright foci with dirty 

acoustic shadowing representing microbubbles of gas [388]. 

Regarding the amount of deep fascia fluid accumulation, a study showed 

that a cut-off value of 2 mm had the best accuracy (72.7 %) with a 

sensitivity of 75 % and a specificity of 70.2 %. Patients with this level 

of fluid accumulation were hospitalized longer and needed 

amputation more often [389]. 

Eosinophilic fasciitis appears on US as a thickened fascia of altered 

echogenicity with thickening, hyperechogenicity, and markedly 

reduced compressibility of the subcutaneous tissue [390]. Thickness 

reduction was observed with treatment [391]. 

Plantar fibromatosis frequently exhibits mixed echogenicity in large 

lesions [392, 393] and hypoechogenicity in small lesions [392], with 

acoustic enhancement, a comb sign (linear hypo- echoic areas 

located near isoechoic areas), and, possibly, internal vascularity. 

Increased stiffness of the nodular thickening on elas- tography was 

described in Dupuytren disease [394]. Hypoecho- genicity of the 

nodules does not predict the progression of this condition [395]. 

Nodular fasciitis may have various appearances: a hypoechoic mass 

with internal echogenic foci [396, 397], a peripheral hypere- choic nodule 

or an echoic rim [397, 398], oval or round in shape with irregular or 

lobular margins, fascial tail [397], and usually avas- cular [398]. In children, 

this condition is found most frequently in the head or neck [399]. 

Proliferative fasciitis is a rare lesion 

described as an ill-defined hyperechoic structure with a thickened 

hypoechoic reticular pattern [400]. 

The relative reliability of thickness and echogenicity measure- ment of 

the plantar fascia was proven to be high (interclass corre- lation 

coefficient, ICC = 0.88) [401]. Good reproducibility was also found (intra- 

and interrater reliability, ICC > 0.821, ICC> 0.849) [402], as well as good 

agreement between an experienced and a novel sonographer [403]. In 

another study the intra-tester reliabi- lity was shown to significantly 

surpass the inter-tester reliability in plantar fasciitis (0.89 vs. 0.61, 

respectively) [404]. Multiple mea- surements showed higher reliability 

compared to a single mea- surement (ICC > 0.90) [404]. 

The inter-rater reliability proved to be good also for the 

abdominal fasciae (ICC = 0.83) [405]. The intraobserver reliability of the 

echogenicity of Dupuytrenʼs nodules was excellent (ICC = 0.996; 

95 %CI, 0.993 to 0.998), while the interobserver reliability was fairly 

good but imprecise (ICC = 0.688; 95 %CI, 0.329 to 0.977) [388]. 

Practical points, limitations, and artifacts in fascia examina- tion are 

detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. Ultrasound may be used to assess muscular fasciaʼs morpho- 

metric characteristics like thickness and echogenicity, as well as 

fascia sliding and displacement (LoE 3, SoR weak). Broad consensus 

(29/5/2, 85 %) 

2. US should be used as point-of-care diagnostic imaging method in 

fascia infection (necrotizing fasciitis), proliferative diseases, and fascia 

defects (LoE 3, SoR strong). Broad consensus (29/4/3, 82 %) 

 

Nails 

Background 

The nail plates, nail matrix, and nail bed form the nail unit. The 

periungual area is composed of the periungual folds, i. e., the 

proximal fold (eponychium), lateral folds (perionychium), and distal 

fold (hyponychium). The bilaminar nail plate is visualized as two parallel 

hyperechoic bands, i. e., ventral plate and dorsal plate, separated by a 

hypoechoic virtual space, i. e., the interplate space. The nail plate 

thickness varies between 0.3 and 0.65 mm. The nail matrix appears as a 

1–5.3 mm long echogenic structure, located in the proximal aspect of the 

nail bed. The nail bed is seen as a 0.7–6 mm thick hypoechoic structure 

immediately deep to the nail plate and extending to the bone profile 

of the distal phalanx. Doppler mode shows a high level of low-

resistance, low- velocity blood flow in the nail, especially in the 

nail bed [406–409]. 

Performance of nail US has been standardized through a con- 

sensus-based methodology by an international expert working group 

[410]. 

 
Clinical application 

Psoriatic onychopathy (PsO) 

US assessment of nails in psoriasis has recently emerged based on the 

fact that the nail is conceptually an extension of the distal 



 

 

interphalangeal enthesis. It is aimed at detecting early signs of 

psoriatic involvement [411]. A systematic review [412] showed that 

the evidence for the role of US in the detection of PsO is low, mainly 

due to methodology limitations, based on case- control cross-

sectional studies with high variability in the US features measured. 

Despite these considerations, there is a marked tendency to show 

differences between patients with PsO and healthy controls mainly in 

nail bed and nail plate thickness, even before clinical PsO signs are 

evident [413]. However, no study was able to predict more severe 

disease or the development of PsA based solely on this parameter [414]. 

In both clinical and subclinical PsO patients there is a tendency 

towards increased Doppler signals [415]. The spatial relationship of 

these CD/PD signals with anatomical structures of the nails, such as 

the ventral plate [416] may warrant assessment in future studies. 

The EFSUMBʼS Position Statement on Dermatologic Ultrasound 

suggested US assessment of nails in patients with suspicion of clinical 

psoriasis to support the diagnosis of this condition [308]. 

 
Nail tumors 

Scientific evidence to date on US and subungual tumors is very scarce, 

mostly as isolated clinical cases describing the ultrasono- graphic 

features of tumors, such as subungual schwannoma [417], 

keratoacanthoma [418], and squamous cell carcinoma [419]. 

In the review of onychomatricoma imaging tests by Cinnoti et al. 

[420], dermoscopy is highlighted as a first diagnostic step. In six cases US 

techniques were performed. In four cases hypoecho- genic solid areas 

affecting the ungual matrix with hyperechogenic dots corresponding to 

the finger-like projections that deform the plate were found. Doppler US 

showed a non-specific hypovascular pattern. 

Nakamura et al. [421] measured the tumor-to-bone distance of 

invasive subungual melanoma. In tumor sizes below 4 mm, the 

probability of bone involvement was low and non-amputative sur- gery 

was possible. This study was performed on surgical speci- mens and 

the authors raised the possibility of using US techniques to measure this 

distance. 

The subungual glomus tumor is described as a subungual 

hypervascular mass, with bone erosion or bone remodeling. US is able to 

locate the tumor, is more cost-effective than MRI, and detects small 

tumors. US may be used as a complementary tech- nique to clinical 

diagnosis and for surgical planning [422–427]. 

In subungual exostosis a hyperechogenic subungual image with 

acoustic shadowing connected to the phalanx was described as a 

pathognomonic finding in two case series [428, 429]. 

 
Other nail conditions 

US can differentiate solid and cystic nail lesions and can be used as a 

valuable aid to optimize the clinical diagnosis of a number of nail disorders 

[430–435]. In onycholysis an anechoic gap between the nail plate and 

the nail bed is seen on US. In onychomadesis, the separation of the 

proximal edge of the nail plate from the nail matrix and bed is 

detected. 

Based on a retrospective case-control study [434], diagnostic criteria 

for retronychia have been described as follows: 1) hypo- echoic halo 

surrounding the origin of the nail plate; 2) distance between the origin 

of the nail plate and the base of the distal pha- lanx of 5.1 mm or less in big 

toes and thumbs and/or a difference of 0.5 mm of this distance or 

greater between the affected nail and the contralateral healthy nail; 

and 3) proximal nail fold thick- ness of 2.2 mm or greater for male 

patients or 1.9 mm or greater for female patients and/or a proximal nail 

fold 0.3 mm thicker or greater in comparison with the contralateral 

healthy nail. The presence of all criteria supports the diagnosis of 

unilateral retro- nychia and the presence of 2 or more criteria (one of 

them crite- rion 1) supports the diagnosis of bilateral cases. 

In onychomycosis, US shows an increased thickness of the nail bed, 

diffuse thickening and irregularity of the nail plates, fusion of the nail 

plates, and later acoustic shadowing in the nail bed. On US, in 

paronychia, diffuse thickening of the periungual fold is seen, with 

areas of increased echogenicity interposed with hypo- echoic areas and 

increased vascularity in Doppler mode. US abnormalities in SSc, 

lupus, and dermatomyositis can be found within the nail bed, mainly 

described as a decrease of both echo- genicity and blood flow, secondary 

to microvascular changes. US has shown a high diagnostic accuracy 

for traumatic nail bed lesions and distal phalanx fractures [435]. 

Practical points, limitations, and artifacts in nails examina- tion are 

detailed in ▶ Supplementary Table 3, 4. 

 
Recommendations 

1. US might be used to increase clinical diagnostic accuracy in 

structural, infectious, inflammatory, and vascular nail disorders (LoE 4, 

SoR weak). Broad consensus (25/4/7, 86 %) 

2. US assessment of nails in patients with clinical suspicion of 

psoriasis may support diagnosis (LoE 4, SoR weak). Broad 

consensus (28/2/6, 93 %) 

3. US assessment of subungual glomus tumors and exostoses may 

support the clinical diagnosis and help in surgical planning (LoE 4, SoR 

weak). Strong consensus (29/1/6, 96 %) 
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