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1  |  INTRODUC TION

Global warming is affecting species distributions, population dy-
namics, and trophic interactions across Earth (Parmesan, 2006; Post 
et al., 2009; Scheffers et al., 2016; Trucchi et al., 2014). However, 
predicting the long-term demographic consequences of global 

warming at the species level, among groups of species and tro-
phic webs remains challenging (Abrantes, 2000; Hasselmann et al., 
2003). Understanding biological responses to past periods of global 
warming, such as the rapid and extreme warming period during the 
Pleistocene–Holocene transition 7–12 thousand years ago (kya) 
can potentially provide new insights into the trajectory of future 
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Abstract
Global warming is affecting the population dynamics and trophic interactions across 
a wide range of ecosystems and habitats. Translating these real-time effects into their 
long-term consequences remains a challenge. The rapid and extreme warming period 
that occurred after the Last Glacial Maximum (LGM) during the Pleistocene–Holocene 
transition (7–12 thousand years ago) provides an opportunity to gain insights into the 
long-term responses of natural populations to periods with global warming. The ef-
fects of this post-LGM warming period have been assessed in many terrestrial taxa, 
whereas insights into the impacts of rapid global warming on marine taxa remain lim-
ited, especially for megafauna. In order to understand how large-scale climate fluctua-
tions during the post-LGM affected baleen whales and their prey, we conducted an 
extensive, large-scale analysis of the long-term effects of the post-LGM warming on 
abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish 
and invertebrates) species across the Southern and the North Atlantic Ocean; two 
ocean basins that differ in key oceanographic features. The analysis was based upon 
7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation 
in 100 individuals. The estimated temporal changes in genetic diversity during the 
last 30,000 years indicated that most baleen whale populations underwent post-LGM 
expansions in both ocean basins. The increase in baleen whale abundance during the 
Holocene was associated with simultaneous changes in their prey and climate. Highly 
correlated, synchronized and exponential increases in abundance in both baleen 
whales and their prey in the Southern Ocean were indicative of a dramatic increase 
in ocean productivity. In contrast, the demographic fluctuations observed in baleen 
whales and their prey in the North Atlantic Ocean were subtle, varying across taxa 
and time. Perhaps most important was the observation that the ocean-wide expan-
sions and decreases in abundance that were initiated by the post-LGM global warm-
ing, continued for millennia after global temperatures stabilized, reflecting persistent, 
long-lasting impacts of global warming on marine fauna.
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cetaceans, climate change, demographic inference, genetics, glaciation, marine ecosystem, 
North Atlantic Ocean, polar ecosystems, Southern Ocean
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biological change (Tornqvist & Hijma, 2012). Increases in global tem-
peratures by an average of 15°C during the Pleistocene–Holocene 
transition led to large-scale physical and environmental changes, 
which in turn led to extensive species redistributions and changes 
in abundance in a wide range of terrestrial taxa (Brüniche-Olsen 
et al., 2021; Hewitt, 2000; Lorenzen et al., 2011; Lyons et al., 2010). 
Although the effects of the Pleistocene–Holocene transition on ter-
restrial ecosystems have been well documented, the responses of 
marine megafauna, such as baleen whales, to these changes remain 
poorly understood.

With a few exceptions, baleen whales are globally distributed 
megafauna that feed on invertebrates and fish. Most baleen whale 
populations undertake extensive, seasonal migrations between 
low-latitude winter breeding grounds and high-latitude summer 
feeding areas (Lockyer & Brown, 1981). The trophic position and 
ocean-wide range of baleen whales suggests that they are subject 
to environmental and ecological changes across entire ocean basins. 
Consequently, it is reasonable to hypothesize that the ocean-wide 
ecological changes caused by past periods of global warming are 
mirrored in the long-term demographic history of baleen whales.

Analyses of intra-specific genetic variation can be utilized to gain 
insights into the responses of species to past climate oscillations and 
how past climate oscillations structured contemporary ecosystems 
(for an overview see Colella et al., 2020). Herein, DNA sequences from 
more than 7000 specimens were employed to infer the demographic 
histories during the last 30 ky in eight baleen whale species and seven 
prey species (i.e., fish, krill, and copepods); a period when Earth and its 
oceans underwent substantial global warming. In order to disentangle 
the intertwined effects of baleen whale feeding ecology and oceanic 
context, this study assessed the long-term demographic responses 
in both baleen whales and their prey across two ocean basins with 
contrasting oceanographic characteristics (Seibold et al., 2018); the 
Southern Ocean and the North Atlantic Ocean.

The Southern and the North Atlantic Oceans differ in large-
scale oceanographic features (Figure 1). The Southern Ocean is a 
large ocean basin dominated by the wide and persistent Antarctic 
Circumpolar Current (Figure 1a; Tynan, 1998) and a comparatively 
stable pelagic food web that is largely centered around a single 
species, the Antarctic krill (Euphausia superba; Hopkins, 1985). In 
contrast, the much smaller North Atlantic Ocean is influenced by 
multiple, interacting, warm and cold ocean currents as well as conti-
nental run-off and cyclic climate oscillations (Figure 1b; O'Hare et al., 
2005; Rossby, 1996). The pelagic food web in the North Atlantic 
Ocean is more complex and dynamic in terms of baleen whale 
prey compared to the Southern Ocean (Kortsch et al., 2019). In the 
Southern Ocean, most baleen whale species feed primarily on krill, 
whereas the same baleen whale species have a more diverse diet 
in the North Atlantic Ocean (Bluhm & Gradinger, 2008; Kawamura, 
1980; Víkingsson et al., 2014). The two oceans also differ in key 
physical features, such as the extent of seasonal sea ice, as well as 
the velocity of sea ice reduction during the global warming after the 
Last Glacial Maximum (LGM), 19–26  kya (Figure 1c–f; Clark et al., 
2009; Spindler, 1990).

To the best of our knowledge, no previous study has assessed the 
correlation in the long-term demographic responses to climate change 
across multiple predators and their prey on such large spatial scales.

2  |  MATERIAL S AND METHODS

2.1  |  Taxon selection

This study focused on eight baleen whale species as well as seven 
fish and invertebrate species, representing baleen whale prey 
(Figure 2; Table 1). Four of the selected baleen whale species have 
global distributions: the common minke whale (Balaenoptera acu-
torostrata), the blue whale (B. musculus), the fin whale (B. physalus), 
and the humpback whale (Megaptera novaeangliae). By contrast, the 
distribution of the North Atlantic right whale (Eubalaena glacialis) is 
limited to the North Atlantic Ocean and the southern right whale  
(E. australis) to the Southern Hemisphere (Figure 2a–e). The bowhead 
whale (Balaena mysticetus) is mostly a High Arctic resident (Figure 2f) 
and the Antarctic minke whale (B. bonaerensis) is mainly confined to 
the Southern Ocean (Figure 2f).

The fish and invertebrate species (Figure 2; Table 1) included 
two krill species, the Antarctic (E. superba) and the Northern krill 
(Meganyctiphanes norvegica), three copepods (Centropages typi-
cus, Calanus helgolandicus, and Pleuromamma abdominalis), and two 
schooling fish species, the North Atlantic herring (Clupea harengus) 
and the capelin (Mallotus villosus). These species are known baleen 
whale prey or occupy a similar ecological niche as known baleen 
whale prey species thus were used as proxies for baleen whale prey 
(Table 1). Antarctic krill is found in the Southern Ocean, whereas the 
Northern krill, the copepods Ce. typicus and Ca. helgolandicus, as well 
as the fishes, are all Northern Hemisphere species. The copepod, 
P. abdominalis, has a wider distribution, including the Northern and 
Southern Hemisphere (Figure 2g–l).

2.2  |  Sample collection

The specimens were collected in the North and South Atlantic 
Oceans, the southwestern Indian Ocean, and the Southern Ocean. 
The latter three areas are collectively referred to as the Southern 
Ocean (Table 1).

Skin samples from free-ranging baleen whales were collected 
using remote biopsy sampling techniques (Palsbøll et al., 1991). 
Additionally, some samples were obtained during necropsies from 
beached carcasses, fisheries bycatches as well as local subsistence 
or commercial whaling operations prior to the moratorium on com-
mercial whaling in 1986. Tissue samples were preserved in 5 m NaCl 
with 20% dimethyl sulfoxide (Amos & Hoelzel, 1991) and stored at 
−20 or −80°C. Total-cell DNA was extracted from tissue samples 
using either standard phenol and chloroform extraction processes 
(Sambrook et al., 1989) or DNeasy™ columns (Qiagen, Inc.) following 
the manufacturer's instructions.
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Multi-locus microsatellite genotypes (data not included) were 
employed to identify and remove duplicate samples collected from 
the same individual and to identify closely related individuals sam-
pled in a non-independent manner (e.g., mother and calf). Closely 
related individuals sampled at random, that is, during different sight-
ings, were retained in the data set (Waples & Anderson, 2017).

2.3  |  Mitochondrial DNA sequence data

Mitochondrial DNA (mtDNA) sequence data were obtained from 
different regions of the mitochondrial genome (Table 1). These 
included; the control region (CR), cytochrome c oxidase subu-
nit I (COI), NADH dehydrogenase subunit I (NDI), cytochrome b 

F I G U R E  1  Major ocean currents 
and summer sea ice conditions before 
and after the Pleistocene-Holocene 
transition. (a, b) Simplified depictions of 
the major surface ocean currents in the 
Southern and North Atlantic oceans. 
Blue and red lines indicate cool and warm 
currents, respectively. (c, d) Approximate 
contemporary summer ice coverage. 
(e, f) Inferred summer sea and land ice 
coverage during the LGM 

(a) (b)

(c) (d)

(e) (f)
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F I G U R E  2  Species ranges, sampling location and estimated genetic parameters for baleen whales and their prey in the Southern and 
North Atlantic oceans. Color shaded areas represent approximated contemporary species ranges. Accentuated areas denote sampling 
locations. Θ (proxy for abundance) and M (gene flow) denote estimates in each species. N: northern, S: southern, NE: northeastern, W: 
western and SE: southeastern populations. Arrows represent the direction of M (MNS: from the North Atlantic Ocean into the Southern 
Ocean, MSN: from Southern into the North Atlantic Ocean) 
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TA B L E  1  Species, sampling region, sample size, and genetic marker

Species Common name
Sampling 
region n Marker

Sequence length/
number of SNPsa Source

Mitochondrial data

North Atlantic Ocean

Baleen whales

Balaenoptera acutorostrata Common minke whale NA 931 CR 322 This study

Balaenoptera musculus Blue whale NA 325 CR 404 This study

Balaenoptera physalus Fin whale WNA 280 CR 391 This study, Archer et al. 
(2013)

Megaptera novaeangliae Humpback whale WI 1086 CR 396 This study

Eubalaena glacialis North Atlantic right 
whale

WNA 269 CR 381 Malik et al. (1999)

Balaena mysticetus Bowhead whale WNA 395 CR 454 This study

Prey species

Meganyctiphanes norvegica Northern krill NA 834d DI 155 Papetti et al. (2005),  
Zane et al. (2000)

Calanus helgolandicus Copepodc ENA 218 16S 408 Yebra et al. (2011)

Centropages typicus Copepodb NA 79 COI 560 Castellani et al. (2012)

Pleuromamma abdominalis Copepodc NA 130 COI 441 Hirai et al. (2015)

Clupea harengus Atlantic herringb ENA 98 COI 1551 Teacher et al. (2012)

Mallotus villosus Capelinb WNA 41 CYTB 572 Colbeck et al. (2011)

Southern Ocean

Baleen whales

Balaenoptera acutorostrata Common minke whale WSA, SO 23 CR 322 Pastene et al. (2007)

Balaenoptera musculus Blue whale SO 230 CR 404 LeDuc et al. (2008), 
Sremba et al. (2012)

Balaenoptera physalus Fin whale SO 61 CR 391 This study, Archer et al. 
(2013)

Megaptera novaeangliae Humpback whale SA 500 CR 396 Jackson et al. (2014)

Eubalaena australis Southern right whale SA 481 CR 381 This study, Valenzuela 
et al. (2009)

Balaenoptera bonaerensis Antarctic minke whale WSA, SO 180 CR 337 Pastene et al. (2007)

Prey species

Euphausia superba Antarctic krillb SO 640 COI 593 Goodall-Copestake et al. 
(2010), Deagle et al. 
(2015)

Pleuromamma abdominalis Copepodc SA, WIO 231 COI 441 Hirai et al. (2015)

Nuclear data

B. acutorostrata Common minke whale NA 27 SNPs 14,304 (×10)
24,988 (×2)

This study

E. australis Southern right whale SA 45 SNPs 31,482 (×10)
68,575 (×2)

This study

B. physalus Fin whale NA 28 SNPs 29,544 (×10)
56,325 (×2)

This study

Note: Abbreviations: n, number of samples. Sampling region: NA, North Atlantic; ENA, eastern NA; WNA, western NA; WI, West Indies; SA, South 
Atlantic; WSA, western SA; SO, Southern Ocean; WIO, western Indian Ocean. Marker: 16S, mitochondrial 16S; COI, mitochondrial cytochrome c 
oxidase, subunit I; CR, mitochondrial control region; CYTB, mitochondrial cytochrome b; ND1: mitochondrial NADH dehydrogenase, subunit I.
aSequence length in number of base pairs or number of estimated SNPs (i.e., number of inferred polymorphic sites from the site frequency spectrum) 
for each species with minimum coverage at ×10 and ×2.
bReported as whale prey species.
cOccupies a similar ecological niche as known baleen whale prey.
dIncludes 654 sequences from the northeastern NA (NE-NA), 146 from the southeastern NA (SE-NA) and 34 from the western NA (W-NA).
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(CYTB), and 16S ribosomal DNA (16S rDNA). mtDNA sequence 
data were either generated during this study or obtained from 
previously published studies (Table 1). The vast majority of pub-
lished baleen whale mtDNA sequences cover the 5′-end of mito-
chondrial CR. Therefore, using these sequences facilitates access 
to large data sets, which comprise the most variable part of the 
mitochondrial genome. Accordingly, new baleen whale mtDNA 
sequences generated for this study targeted the same region in 
the manner described below. The Northern krill data set was gen-
erated using a single-strand conformation polymorphism (SSCP) 
protocol to detect different DNA sequences (i.e., haplotypes). 
Only different electromorhps were sequenced implying that 
some sequence variation may have gone undetected.

2.3.1  |  Laboratory analyses

The first ~400  bp of the 5′ end of the mitochondrial CR were 
amplified using the DNA oligo-nucleotides MT4F (Árnason & 
Gullberg, 1993) and BP16071R (Drouot et al., 2004). The ini-
tial polymerase chain reaction (PCR; Mullis & Faloona, 1987) 
amplifications were performed in a 20 μl reaction volume with 
0.2  μm of each dNTP, 67  mm Tris-HCl (pH 8.8), 2  mm MgCl2, 
17 mm NH3SO4, 10 mm β-mercaptoethanol, 0.1 μm of each oligo-
nucleotide, 0.4 U of Taq DNA polymerase (Fermentas, Inc.) and 
~10–20  ng of extracted DNA. The thermo-cycling conditions 
were: 2′ (min) at 94°C, followed by 25 cycles each with 15′′ (s) 
at 94°C, 30′′ at 54°C, and 120′′ at 72°C. Unincorporated prim-
ers were degraded and excess nucleotides were removed using 
shrimp alkaline phosphatase and exonuclease I as described by 
Werle et al. (1994). Cycle sequencing was conducted according 
to the manufacturer's instructions (using 1/16th of the recom-
mended amount of Big Dye™ v3.1  Terminator Ready Reaction 
Mix; Life Technologies, Inc.) with the oligo-nucleotides MT4F 
or BP16071R. Excess nucleotides and oligo-nucleotides were 
removed by ethanol precipitation and the cycle-sequencing 
products were re-suspended in 10  μl deionized formamide 
(Calbiochem, Inc.). The order of cycle-sequencing products was 
resolved by capillary electrophoresis on Applied Biosystems ABI 
Prism™ 3730 (Life Technologies, Inc.). The resulting chroma-
tograms were visually inspected using CHROMAS™ (ver. 2.13; 
Technelysium Pty Ltd.) and SEQUENCHER® (ver. 5.1; Gene 
Codes Corporation).

2.3.2  |  Data processing and sequence alignment

Mitochondrial DNA sequences were aligned using the CLUSTALW 
algorithm (Thompson et al., 1994) as implemented in MEGA (ver. 6.0, 
Tamura et al., 2013) with default parameter settings. All DNA se-
quences of a particular locus and species were trimmed to the same 
length (Table 1).

2.3.3  |  Diversity estimation

Descriptive genetic diversity indices were estimated as implemented 
in DNASP v.6.12.03 (Rozas et al., 2017) for each species and ocean 
basin. The indices were; the number of segregating sites (S), num-
ber of haplotypes (h), haplotype (H) and nucleotide (π) diversity (Nei, 
1987), as well as Tajima's D (Tajima, 1989) and Fu's F statistic (Fu, 
1997). Nucleotide sites subject to insertions or deletions and missing 
data were excluded from the analyses.

2.3.4  |  Estimation of changes in genetic 
diversity and migration rates from single-locus 
DNA sequences

Temporal changes in regional genetic diversity (Θ) and immigra-
tion rates (M) were employed as proxies for inferences of changes 
in abundance and connectivity, respectively. The genetic diver-
sity in a population is determined by the composite parameter Θ,  
the product of the mutation rate, and the effective population 
size (Watterson, 1975), which in turn, is a function of the census 
population size or abundance. M denotes the probability (scaled 
with the mutation rate) per generation that an individual is an im-
migrant. The temporal changes in Θ and M were estimated using 
the approach implemented in MIGRATE-N (ver. 3.6.6, Beerli & 
Felsenstein, 1999, 2001). MIGRATE-N enables the joint estima-
tion of Θ and M in a matrix of populations from genetic data. Other 
software, such as BEAST (Drummond & Rambaut, 2007) ignores 
effects of migration which thus may be misinterpreted as changes 
in Θ (Heller et al., 2013). The most probable nucleotide muta-
tion model and associated parameter values were selected using 
JMODELTEST (ver. 2, Darriba et al., 2012). The prior ranges of Θ 
and M were chosen from the results of preliminary MIGRATE-N 
estimations at reduced sample sizes and Markov chain Monte 
Carlo (MCMC) lengths using the observed FST estimates, as start-
ing values following the recommendations made by Beerli (2016). 
The specific analyses parameter values are tabulated in Table S1. 
The maximum sample size was set to 250 DNA sequences. For 
data sets with more than 250 DNA sequences. For larger data 
sets, 250 DNA sequences were selected at random (without re-
placement). Random sub-sampling was also employed to reduce 
sample sizes to the smallest number in order to avoid biases due to 
uneven sample sizes (see the Supplementary Material “Notes on 
the effects of sample sizes” and Figure S1). Final estimates were 
obtained from three independent estimations, all initiated with 
different random seeds. Each estimation comprised 100  MCMC 
replicates, each, in turn, consisting of a single MCMC chain of 
16  million steps, with the first eight million steps discarded as 
burn-in and sampling at every 200th step. A static heating scheme 
was employed with four chains at temperatures of 1.0, 1.5, 3.0, 
and 1,000,000, respectively. Convergence was assessed with 
the R-CRAN package coda (ver. 0.19-1, Plummer et al., 2006). 
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Consistency among the three separate MCMC estimates, along 
with smooth and unimodal distribution, within the prior range 
across all three estimations, was also viewed as indications of 
convergence. A minimum effective sample size of 10,000 was re-
quired for all parameter estimates. The final point estimates and 
the standard deviation of Θ and M were obtained by combining the 
three independent estimates (the three estimates are available in 
GitHub [see “Data Availability Statement”]). In order to account 
for differences in the number of MCMC data points employed to 
infer Θ and M in each time interval, weighted averages of the three 
medians and the standard deviations of Θ and M were estimated 
per time interval. The pooled medians of Θ and M were estimated 
as follows: mp =

∑k

i=1
nimi∕

∑k

i=1
ni, where, ni denotes the number of 

MCMC data points employed to estimate i. The term mi denotes 
the estimated median parameter value of estimate i , and i denotes 
the estimated parameter values of Θ or M. The term k denotes the 
total number of estimated parameter values (in this case, three 
independent MCMC estimates). The pooled standard deviation 
(SDp) was estimated as SDp =

�

∑k

i=1

�

ni − 1
�

SDi

2∕(
�

∑k

i=1
ni

�

− k), where SDi 
denotes the estimated standard deviation of estimate i . The 95% 
confidence interval [CI] of the final estimates was approximated to 
mp±1.96SDp∕

√

ni (i.e., assuming a normal distribution of m).
Possible effects of intra-oceanic, population genetic structure 

were assessed by comparing the outcome of estimates based on 
pooled and spatially distinct samples. Population samples were ana-
lyzed separately when there was a discernible effect of spatial pop-
ulation genetic structure on the final estimate (e.g., Northern krill). 
Following Sasaki et al. (2005), the two nominal right whale species 
were treated as different oceanic populations of a single species, 
due to their low degree of genetic divergence among oceanic pop-
ulations of southern and North Atlantic right whales (Rosenbaum 
et al., 2000), which were similar to inter-oceanic divergences esti-
mated among con-specific populations in other baleen whale species 
(e.g., Jackson et al., 2014).

Converting the time estimates obtained with MIGRATE-N into 
calendar years necessitated estimates of generational mutation 
rates. A range of previously reported mutation rates (in the target 
or closely related species) was explored; the findings are described  
in the Supplementary Material “Notes on mutation rates,”  
Tables S2 and S3, and Figures S2 and S3. For the mitochondrial ge-
nome, the same generational mutation rate was assumed for all spe-
cies. However, the final annual mutation rate differs among species 
because the generation times are species specific. In the case of 
the CR, a generational mutation rate at 1.125  ×  10−6 per site was 
employed. This rate was within the range of previously reported es-
timates ranging from 2  ×  10−7 to 2  ×  10−5 per site per generation 
(Supplementary Material “Notes on mutation rates,” Figure S2). In 
the case of DNA sequences obtained from other mitochondrial genes 
(i.e., other than the CR), a generational mutation rate at 3.4 × 10−7 
per site was employed. This value was within the range previously re-
ported for the coding regions in the mitochondrial genome or the en-
tire mitochondrial genome, 2 × 10−8–2 × 10−4 per site (Supplementary 
Material “Notes on mutation rates,” Figure S2).

The consistency among estimates obtained from DNA se-
quences collected from different regions of the mitochondrial ge-
nome was assessed by comparing the estimate of temporal changes 
in Θ inferred from different mitochondrial genes in the same species 
(Tables S1 and S4; Figure S3). Conspecific temporal changes in Θ, 
estimated from mtDNA sequences, were also compared to similar 
estimates obtained from genome-wide, nuclear data produced by 
next generation sequencing in three selected baleen whale species 
(North Atlantic common minke whale, North Atlantic fin whale and 
southern right whale), as described below (see Section 2.4 below 
and Table S4; Figure S3).

2.4  |  Nuclear DNA data

2.4.1  |  Laboratory methods

Genome-wide single nucleotide polymorphisms (SNPs) were gen-
erated from sequencing double digested restriction-associated 
(ddRAD, Peterson et al., 2012) and quadruple barcode ddRAD 
(quaddRAD) libraries (Franchini et al., 2017). Common minke whale 
and southern right whale libraries were generated from ddRAD li-
braries following Peterson et al. (2012). Fin whale libraries were gen-
erated from using the quaddRAD protocol as outlined by Franchini 
et al. (2017), which enables the removal of PCR clones. All libraries 
were prepared from genomic DNA digested with HindIII and MspI 
and insert sizes between 300 and 400 bp. Libraries were sequenced 
on an Illumina HiSeq™ 2500 (ver. 4) as paired-end sequencing at 100 
(ddRAD) or 125 (quaddRAD) cycles, with 10% PhiX spike-in.

2.4.2  |  Data processing

In the case of the quaddRAD library, PCR clones were removed 
using the clone_filter script implemented in the software suite 
STACKS (ver. 1.47, Catchen et al., 2013). Low quality reads were re-
moved from the raw FASTQ files with process_radtags (STACKS, ver. 
1.47) using default settings. The output from process_radtags was 
concatenated in paired- and single-end files for each species. The 
remaining reads were aligned to a reference genome with BOWTIE2 
(ver. 2.2.8, Langmead & Salzberg, 2012) as an “end-to-end” align-
ment, employing the setting very_sensitive (i.e., D 20, R 3, N 0, L 20, 
and i S,1,0.50). The maximum fragment size for concordant paired-
end alignments was set at 600 and discordant alignments discarded. 
Reads from the common minke whale and fin whale were aligned 
against the common minke whale genome (Yim et al., 2014) and 
against the bowhead whale genome (Keane et al., 2015) in case of 
the southern right whale.

The folded site frequency spectrum (SFS, Fisher, 1930; Nielsen 
et al., 2012) was estimated using ANGSD (ver. 0.917, Korneliussen 
et al., 2014) from samples with a minimum of three million aligned 
reads. SNP genotype likelihoods from the mapped reads were esti-
mated using the GATK model (McKenna et al., 2010) as implemented 
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in ANGSD (ver. 0.917, Korneliussen et al., 2014). SNPs with a gen-
otype quality below 20 and a mapping quality below 10 were 
discarded. Only SNPs genotyped in a minimum of 80% of the indi-
viduals were included in the estimation. For each species, two SFSs 
were estimated, using a minimum read coverage at 10 and 2, respec-
tively. The two data sets differed in terms of the total number of 
SNPs (Table 1 and Supplementary Material “Notes on genome wide 
SNP genotype analyses”).

2.4.3  |  Estimation of changes in genetic diversity 
from genome-wide SNP genotypes

STAIRWAY PLOT (ver. 2.0 beta, Liu & Fu, 2015) was employed to 
infer temporal changes in Θ from the folded SFS estimated from 
the genome-wide SNP data. An annual mutation rate at 1.07 × 10−9 
per site (Yim et al., 2014) was employed to convert the estimates 
into years in all three baleen whale species. Generation times of 
21.2  years for the common minke whale, 32.5  years for the fin 
whale, and 27.6 years for the southern right whale. These were the 
average of the estimates reported by Taylor et al. (2007) and Pacifici 
et al. (2013). Similar to the mitochondrial data, the temporal changes 
in genetic diversity (Θ) were employed as proxies in drawing infer-
ences on changes in abundance.

The estimates of the demographic changes obtained from mito-
chondrial and nuclear data presented in this study were restricted 
to the period between 1 and 30 kya in order (i) to include the end of 
the LGM and the global warming during the Pleistocene–Holocene 
transition, and (ii) to exclude possible effects of more recent anthro-
pogenic impacts, notably commercial whaling. The complete out-
put of the demographic estimates is available on GitHub (see “Data 
Availability Statement”).

Due to the uncertainties surrounding determining mutation rates, 
we focused our interpretations on Θ rather than on the effective pop-
ulation size (Ne). The latter is related to Θ and the mutation rate as 
follows: Ne =

Θ

4�
, where � denotes the generational mutation rate.

2.5  |  Temperature data

Surface air temperature (SAT) estimates for the Southern Hemisphere 
were inferred from deuterium measurements collected from the 
Antarctic EPICA Dome C Ice Core and obtained from Jouzel et al. (2007). 
For the Northern Hemisphere, continental atmospheric temperatures 
between 40 and 80°N (calibrated with oxygen isotope records from 
57 sediment cores) were obtained from Bintanja et al. (2005).

2.6  |  Maps of ocean circulation, sea ice 
reconstructions and species ranges

Maps were generated with ARCGIS® (ver. 10.3; ESRI® Inc.). Ocean 
current data were obtained from the NOAA National Weather 

Service (2016). Contemporary and LGM permafrost and ground 
ice data were obtained from Brown et al. (2002) and Lindgren et al. 
(2016), respectively. Average sea ice extent during March for the 
Antarctic and September for the Arctic (in 2016) was obtained from 
the National Snow and Ice Data Center (Fetterer et al., 2017) and 
used as proxies for contemporary minimum annual sea ice extent in 
the south and north. Contemporary ice sheet and glacial projections 
were obtained from Natural Earth (2017). Antarctic summer sea ice 
coverage, ice sheet cover, and glacial extent during the LGM were 
obtained from Gersonde et al. (2005) and CLIMAP (1981). The data 
for the Arctic summer sea ice coverage, ice sheet, and glacial ex-
tent from the LGM were obtained from GLAMAP 2000 (Ehlers et al., 
2011; Pflaumann et al., 2003).

The species ranges for baleen whales, Antarctic krill, and her-
ring were obtained from the IUCN Red List (IUCN, 2012). Bowhead 
whale range was modified based on Baird and Bickham (2020). The 
species ranges for capelin and Northern krill were generated based 
on data from AQUAMAPS (Kaschner et al., 2016). Species ranges 
for copepods were generated based on Bonnet et al. (2005) and 
COPEPEDIA (ICES et al., 2017).

2.7  |  Correlations among baleen whales, 
prey, and climate

Pearson's correlation coefficients were estimated using R (ver. 
3.2.5, R-Development-Core-Team, 2016). Estimates of Θ and 
SAT were fitted to 1000-year intervals by linear interpolation in 
R (ver. 3.2.5, R-Development-Core-Team, 2016). Time intervals 
with missing data were excluded from the analyses. Consistency, 
and possible dependency, were evaluated by assessing correla-
tions among different time interval ranges (i.e., at 1000, 2000, and 
5000 years, respectively).

3  |  RESULTS

In total, 4761  mtDNA sequences from eight baleen whale species 
and 2271 mtDNA sequences from seven prey species (fish and in-
vertebrates) were analyzed to infer temporal changes in Θ and  
M. In addition, between 14,304 and 62,579  genome-wide SNPs 
were analyzed in a total of 100 individuals from three baleen whale 
species in order to assess if the temporal changes in Θ estimated 
from the mtDNA sequences likely reflected the genome-wide ge-
netic diversity (Table 1).

The mean genetic diversity was higher among the Southern 
Ocean baleen whales (h: .96, 95% CI: .91–.992; �: .0188, 95% 
CI:  .0130–.0246, Figure 3) compared to baleen whales in the 
North Atlantic Ocean (h: .86, 95% CI: .70–.92; �: .0100, 95% CI: 
.0052– .0168, Figure 3). The estimates of common genetic diversity 
indices are tabulated in the Supplementary Material, Table S5.

The estimated temporal changes in Θ suggested that most 
baleen whale populations, irrespective of ocean basin, expanded 
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when the global temperatures rose after the LGM, particularly 
during the Holocene (Figure 4). In the Southern Ocean, large, ex-
ponential, and synchronous increases were observed in Θ among 
all baleen whale species, except for the common minke whale 
(Figure 4a). Although the common minke whale underwent an 
initial decrease in Θ after the LGM, it subsequently underwent 
exponential increase beginning ~4 kya. The temporal trend of the 
increases in Θ was strongly and positively correlated among ba-
leen whales (r = .84–.99, p < .0005, Figure 5a). Although similar, 
post-LGM increases in Θ were also observed among the North 
Atlantic baleen whale species (Figure 4d), the specific timing and 
duration of the increase varied considerably. The blue, hump-
back, and the North Atlantic right whale all underwent an initial 

post-LGM increase followed by a subsequent decline 6–10  kya. 
In contrast, the exponential increases in Θ observed in the fin, 
common minke, and bowhead whale were delayed until 6–8 kya 
(Figure 4d).

Temporal changes in Θ in key prey species, such as krill, co-
pepods, capelin, and herring were estimated as well in order to 
assess if the post-LGM changes in Θ observed among the baleen 
whales were correlated with prey availability (Figure 2g–l, Table 1). 
In the Southern Ocean, large exponential and synchronous in-
creases in Θ were estimated in Antarctic krill and P. abdominalis, 
starting around 15–23 kya (Figure 4b). These increases were con-
gruent with the increases observed among the baleen whales in 
the Southern Ocean. As was the case for the baleen whales, the 

F I G U R E  3  Haplotype and nucleotide diversity (π) from baleen whales of the Southern and North Atlantic oceans. Numbers represent 
mean estimates based upon mitochondrial control region DNA sequences. Sample sizes are listed in parentheses with the common species 
names 
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temporal changes in Θ varied considerably among the prey species 
in the North Atlantic Ocean. An increase in Θ immediately after 
the LGM was observed in all invertebrates (i.e., Northern krill, and 
three copepods, Ca. helgolandicus, Ce. typicus, and P. abdominalis), 
whereas the estimated increases in Θ in fishes (capelin and herring) 

were observed 6–8 kya (Figure 4e). In the Southern Ocean, signif-
icant and strong correlations (r =  .88–1.00, p <  .0005) were ob-
served between the krill foraging baleen whales (i.e., the Antarctic 
minke, southern right, humpback, blue and fin whale) and the two 
prey species (i.e., Antarctic krill and P. abdominalis, Figure 5a). 

F I G U R E  4  Temporal changes of Θ (a proxy for abundance inferred from the level of genetic diversity) during the Pleistocene and 
Holocene (1–30 kya). Temporal changes of in baleen whales and their prey in the Southern Ocean (a, b) and the North Atlantic Ocean (c, d). 
Note the different scales of the values on the vertical axis (Θ). Historical surface air temperature relative to present temperature (SATrtp) in 
degrees Celsius (°C) in the Southern Ocean (c) and North Atlantic Ocean (f). Time estimates (in units of thousands of years ago, kya) along 
the horizontal axis. NE-NA: northeastern North Atlantic (NA), SE-NA: southeastern NA. W-NA: western NA 

(a) (d)

(b)

(c)

(e)

(f)
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F I G U R E  5  Pairwise Pearson’s correlations between Θ and temperature over time among baleen whales and their prey. (a) Southern 
Ocean and (b) North Atlantic Ocean. Blue: positive correlation, red: negative correlation. The interval between observations at 1000 years 

(a) (b)

F I G U R E  6  The relative change in abundance (ΔΘ) in baleen whales and their prey during the Pleistocene and Holocene. Circles represent 
the median point estimates of Θ for each species of baleen whales (a) and prey (b). Dotted lines denote the geometric mean of Θ (estimated 
from all point estimates). A “×” (e.g., 7.5×) denotes the relative change in Θ (ΔΘ) at one thousand years ago (kya) relative to 21 kya 
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The common minke whale was the only species in the Southern 
Ocean (r = −.33–.30, Figure 5a) in which no statistically significant 
correlation was observed with Θ in other baleen whale or prey 
species. Among the North Atlantic baleen whales, strong, positive 
correlations in the temporal changes of Θ were observed among 
the fin, the common minke, and the bowhead whale (r = .69–.92, 
p < .0005, Figure 5b), whereas the correlation was significant, but 
slightly weaker, between the humpback and right whale (r =  .64, 
p < .005). Among the North Atlantic prey species, krill and cope-
pod species showed the strongest positive correlations (r =  .85–
1.00, p < .005). The strongest positive correlations between North 
Atlantic baleen whale and prey species (r = .46–.99, p < .05) were 
observed for the common minke, fin, and bowhead whale. Varying 
the time intervals between observations from every 1000 years 
to every 2000 and 5000 years had little or no effect on the esti-
mated correlations (Figure S5).

The estimated average net changes in Θ (denoted ΔΘ) after 
the LGM (~21  kya) and late Holocene (~1  kya) were employed 
as a means to assess the intensity of the global warming on the 
abundance of baleen whale and prey species in the Southern and 
North Atlantic Ocean. Estimates of ΔΘ were higher for baleen 
whales in the Southern Ocean relative to the North Atlantic 
Ocean (Mann-Whitney test, U = 3, n1 = 5, n2 = 5, p <  .05) with 
averages at 9.0 (range: 1.3–34) and 1.2 (range: 0.3–3.6), respec-
tively (Figure 6a). A similar, albeit less pronounced, difference in 
average ΔΘ was observed among the prey species between the 
two oceans, which was estimated at 7.4 (range: 3.5–15.7) in the 
Southern Ocean and 4.1 (range: 1.5–20.4) in the North Atlantic 
Ocean (Figure 6b).

The temporal changes in Θ inferred from the genome-wide 
SNP data in three selected baleen whale species were consis-
tent with and gave support to those inferred from the mtDNA 
sequence variation (Figure 7), that is, baleen whale population 
expansions during the Pleistocene–Holocene transition (see 
Supplementary Material “Notes on genome-wide SNP genotype 
analyses”). Increasing the read depth of the genome from ×2 to 
×10 reduced the number of SNPs by ~50% (Table 1), which in 
turn muted the degree of the estimated expansions, likely an ef-
fect of removing rare variants. The estimated temporal changes 
in Θ were consistent with the changes estimated from mtDNA 
sequences in the common minke and the southern right whale at 
both read depths. While in the fin whale, the median estimate of 
the temporal changes in Θ did not indicate an exponential expan-
sion at a read depth at ×10, the 95% confidence bands at both 
read depths were nearly identical (Figure 7; Figure S4).

The estimates of M (i.e., inter-ocean basin connectivity) were 
subject to substantial uncertainty (Figure S6). Overall, the inter-
oceanic intra-specific connectivity in baleen whales increased 
during two periods: (i) after the population expansions observed 
in the Southern Hemisphere during the Pleistocene–Holocene 
(Figure 4) and (ii) during the LGM, when the range for most baleen 
whales was contracted toward the Equator due to an increase in 

polar sea ice extent in both hemispheres (Figure 1c–f), thus placing 
conspecific oceanic populations in closer proximity.

4  |  DISCUSSION

4.1  |  Impacts of past global warming

The Pleistocene–Holocene transition after the LGM represented a 
period when global temperatures rose rapidly, which, in turn, led to 
drastic reductions in polar sea ice extent and substantial sea level 
rises (Abrantes, 2000; Clark et al., 2009). The net result of these 
oceanographic changes was an overall expansion of suitable ma-
rine habitat and concurrent, large-scale changes in ocean circula-
tion that resulted in increased primary productivity (Tsandev et al., 
2008). These changes were not instantaneous but rather they were 
set in motion, creating a long-term re-configuration of the marine 
environment that affected marine and terrestrial flora and fauna 
throughout the Holocene. The present study revealed ocean-wide 
increases in baleen whale abundance (here represented by Θ) in both 
the Southern Ocean and North Atlantic during this period of global 
warming. The expansions in baleen whale abundances were corre-
lated with temperature changes and concomitant increases in the 
abundances of their prey. The rate of increase in abundance peaked 
during the early Holocene and appears to be a general, and previ-
ously unrecognized, feature of both ocean basins.

Subsequent changes in the rate of increase or decrease of ba-
leen whale abundance were observed mostly in the North Atlantic 
Ocean. These differences were consistent with the large-scale dis-
similarities in oceanographic features between the North Atlantic 
Ocean and the Southern Ocean (Moline et al., 2008). The Southern 
Ocean is dominated by a single, major and persistent current; the 
Antarctic Circumpolar Current (Tynan, 1998). In contrast, the North 
Atlantic Ocean is influenced by several smaller, less stable, inter-
acting cold and warm water currents as well as periodic climate os-
cillations (O'Hare et al., 2005; Rossby, 1996). The Southern Ocean 
pelagic food web is also based mostly on Antarctic krill (Hopkins, 
1985), whereas the North Atlantic Ocean pelagic food web basis 
comprises a diverse zooplankton community subject to fluctua-
tions in abundances, in part due to the abovementioned periodic 
climate oscillations (Pershing et al., 2005). The large and exponen-
tial increase in Antarctic krill, the prey base for baleen whales in the 
Southern Ocean, would explain the larger baleen whale populations 
in the Southern Ocean and the largely identical and synchronous 
increase in abundance among baleen whales during the post-LGM 
global warming. In contrast, the prey base and environmental con-
ditions in the North Atlantic Ocean varied considerably over time 
and space (see below), which is reflected in the absence of a similar 
synchronous change in baleen whale abundance in this ocean basin.

The temporal trend in the rate of increase or decrease ob-
served among North Atlantic baleen whales and their prey species 
appeared to change substantially 6–10  kya; either transitioning 
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from an increase to a decrease in abundance or from a stable to an 
exponentially increasing abundance. The so-called “8.2 kya event” 
(Alley et al., 1997) took place during this epoch. The 8.2 kya event 
was caused by a massive discharge of glacial melt water that was 
released into the western North Atlantic Ocean from proglacial 
lakes, which led to a precipitous drop in global ocean tempera-
tures (Alley et al., 1997; Barber et al., 1999). Sediment core di-
atom records suggest that the 8.2 kya event resulted in a major 
shift in phytoplankton composition consistent with a reduction in 
primary productivity, in particular in the western North Atlantic 
Ocean (Caissie et al., 2010; Harland et al., 2016). The decline in 
primary productivity could have led to a reduction of prey and de-
teriorating environmental conditions, possibly leading to declines 
in some baleen whale populations. However, apart from the cope-
pod P. abdominalis, the few North Atlantic prey species included in 
this study did not appear to have declined in abundance after the 
8.2 kya event.

Samples from the herring originated mostly from the Baltic 
Sea. Due to potential founder effects, the demographic history of 
Baltic Sea populations might differ from those of the North Atlantic. 
Additional sampling across space and additional species at lower 
trophic levels may yield further insights. The level of inter-specific 
competition among the baleen whales or competition with other 

marine mammals may also have been affected by the concomitant 
environmental changes due to the 8.2 kya event in turn leading to 
changes in abundance.

The temporal differences in the rate of change in abundance 
observed between most Southern Ocean baleen whale and the 
common minke whale most likely stem from ecological differences. 
Common minke whales are distributed at comparatively lower lati-
tudes and feed on myctophid fishes (Kato & Fujise, 2000). In con-
trast, the other Southern Ocean baleen whale species in this study, 
occupy higher latitudes, closer to the sea ice where they feed pri-
marily on krill (Kawamura, 1980).

The strong correlation observed in the changes in abundance 
between baleen whale species and their prey, for example, between 
the krill-eating baleen whales and Antarctic krill, suggest that baleen 
whales responded in synchrony to ocean-wide ecological changes, 
such as prey availability (Ims & Andreassen, 2000; Korpimӓki et al., 
2005; Seyboth et al., 2016), geological conditions (Hansen et al., 
2013), or a combination of the two. Similar post-LGM increases have 
been observed in krill-eating Antarctic penguin species (Frugone 
et al., 2018; Trucchi et al., 2014; Younger, Clucas, 2015; Younger, 
Emmerson, 2015), suggesting that the apparent, large increase in 
primary productivity was sufficient to drive expansions in abun-
dances across all krill predators.

F I G U R E  7  Temporal changes in Θ estimated from mtDNA control region sequences and genome-wide SNP genotypes of two levels of 
minimum read depth. Estimated demographic history employing mtDNA control region and genome-wide SNP genotypes (at a minimum 
coverage at ×2 and ×10, respectively) in North Atlantic common minke whale (a), North Atlantic fin whale (b) and southern right whale (c). 
Time in thousands of years ago (kya) is along the horizontal axis, the estimates of Θ are along the vertical axis. Red and blue shading denotes 
the Holocene and Pleistocene, respectively. The darkest blue indicates the LGM 
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Numerous studies, either at local or regional scales, have pro-
posed that retreating polar sea ice extent and upwelling led to an 
increase in the abundance of key zooplankton species, such as krill, 
copepods, and other meso-zooplankton species (Loeb et al., 1997; 
Moore, 2016; Stenseth et al., 2002). However, to the best of our 
knowledge, this study is the first to conduct a global assessment at 
such an extensive temporal scale. The results documented a global-
scale expansion in baleen whale prey availability, which began at the 
end of the Pleistocene and continued throughout the Holocene.

The question whether ecosystems are primarily bottom-up or 
top-down controlled is a fundamental, debated topic in ecology, 
particularly in marine ecosystems. Our results supported bottom-up 
control of the pelagic ecosystems during the last 30 ky. The post-
LGM increases in abundance at the lower trophic levels (e.g., krill 
and copepods) appeared to precede the increases in abundance at 
the higher trophic levels (e.g., fishes and baleen whales), although 
the precision of the exact temporal placement within and among 
species makes it difficult to draw affirmative conclusions. This initial 
increase in prey abundance was observed in both ocean basins, sug-
gesting a bottom-up (White, 1978) enrichment of the oceans during 
the initial warming phase during the Pleistocene–Holocene transi-
tion (Figure 8). This is consistent with previous paleo-oceanographic 
modeling (Radi & de Vernal, 2008; Tsandev et al., 2008) and a shift 
in phytoplankton composition from perennial pelagic to seasonal  
sea-ice-associated species during the Pleistocene–Holocene transi-
tion. The latter species are indicative of high levels of primary pro-
ductivity (Caissie et al., 2010; Harland et al., 2016).

4.2  |  Critical evaluation of methods

We assessed the impact of employing different mitochondrial genes 
and compared the results from mitochondrial genes with genome-
wide SNPs in a subset of species. The results from the different 
genes (Figure S3), or between the nuclear and mitochondrial ge-
nome (Figure 7), were congruent in terms of the long-term demo-
graphic trends. This outcome suggests that the inferences drawn 
from single-locus mitochondrial genes were robust, which is unsur-
prising given the long time and large spatial scale of the estimations.

A relevant, but unavoidable caveat to this study, as well as simi-
lar assessments based on genetic inference methods, is the inherent 
uncertainty of the applied mutation rates, which is consequential in 
terms of inferring the timing of changes in Θ and M. Although the 
choice of mutation rates has implications for placing the detected 
changes at a specific annual time, the demographic trends are un-
affected to the choice of mutation rate. In this study, the chosen 
generational mutation rates were within the range of published gen-
erational mutation rate estimates in vertebrate and invertebrate spe-
cies, such as baleen whales, fish, and crustaceans (Supplementary 
Material “Notes on mutation rates,” Tables S2 and S3). However, the 
possibility that the annual estimates are biased cannot be excluded 
in this or any similar genetic assessments. Nevertheless, the over-
all consistency observed in this study among the annual estimates 

based upon different mitochondrial regions with those estimates ob-
tained from genome-wide SNPs (employing different mutation rates) 
was reassuring.

Many and different processes affect demographic change, such 
as fluctuations in habitat and resource availability (e.g., Foote et al., 
2013), prey preference (e.g., Fleming et al., 2016; Víkingsson et al., 
2014), as well as inter- and intra-specific competition (e.g., Moore, 
2016; Moore et al., 2019). Disentangling the relative contributions 
of all the processes that may contribute to the observed temporal 
and spatial trends in demographic changes is non-trivial, and will 
require substantial efforts. The strength of this study lies with the 
overall sampling design, which includes extensive horizontal (i.e., 
same trophic level) and vertical (i.e., prey and predators) ecolog-
ical sampling. The inclusion of multiple species can be viewed as 
"pseudo-replication": in effect each species, at a given trophic level, 
represents a single response to the underlying, global processes, 
such as global warming. The overall consistency in the observed de-
mographic trends across multiple taxa and trophic levels suggests 
that our analysis captured fundamental drivers of change.

4.3  |  Implication for future global warming

The rapid rise in global temperatures during the Pleistocene–
Holocene transition plateaued ~10  kya, yet most vertebrate and 
invertebrate taxa included in this study continued to increase in abun-
dance in both ocean basins (until ~1 kya, the most recent time point 
included in this analysis). In other words, the Pleistocene–Holocene 
transition appeared set into motion long-term oceanographic and 
ecological transitions that continued to change abundance and con-
nectivity among baleen whales and their prey during an additional 
~10 ky. This observation raises the possibility that the current global 
warming has already set processes in motion that will result in long-
term and wide-ranging rearrangements in marine ecosystems that 
will continue for millennia after temperatures stabilize. The stabi-
lization of global temperatures during the Holocene may also be a 
subsequent contributing factor, although exactly how constancy per 
se would facilitate change (here in abundance and migration rates) is 
not readily evident. Global warming impacts a wide variety of known 
and unknown processes; abiotic (e.g., the 8.2 kya event) and biotic, 
which in turn possibly interact as well. The analysis presented here 
provides a broad picture, but is insufficient to discern among the 
many more detailed plausible interactions and processes.

A number of recent studies have attempted to predict the effects 
of current global warming on marine mammals from contemporary, 
short-term field observations, and known aspects of each species' 
ecology (Laidre et al., 2008; Moore & Huntington, 2008; Tulloch 
et al., 2019). Some baleen whale populations, such as humpback, 
fin, and blue whales, appear to arrive earlier on the summer forag-
ing grounds (Ramp et al., 2015) and at increasingly higher latitudes, 
potentially increasing competition with obligate polar species, such 
as the bowhead whale (Moore, 2016; Moore et al., 2019). Similarly, 
changes in the distribution and migratory routes linked to sea ice 
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concentrations (Druckenmiller et al., 2018), plasticity in diet prefer-
ences associated with changes at lower tropic levels (Fortune et al., 
2020), and behavioral adaptations due to increasing killer whale 
predation (Matthews et al., 2020) have been observed in bowhead 
whales. Although the findings reported here suggested that most ba-
leen whale species may benefit from the global warming, the results 

also suggest that the effects of increasing temperatures on baleen 
whale abundance and migration are complex, with potential wide 
ranging and long-lasting impacts. In addition, the rate of current on-
going global warming is higher than the post-LGM warming and will 
likely reaching higher temperatures (Bova et al., 2021; Foster et al., 
2017). Regional oceanographic conditions, including temperature, 

F I G U R E  8  Bottom-up control model 
of the demographic responses of baleen 
whales during the Pleistocene-Holocene 
transition. Red and blue shading 
denotes the Holocene and Pleistocene, 
respectively. The darkest blue shading 
defines the LGM 
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annual sea ice dynamics, and prey base, appear to have been the 
main driver of the long-term responses seen in baleen whales during 
past epochs characterized by global warming. However, the rapid 
and extreme sea ice loss, predicted in the coming decades due to 
current global warming, including unprecedented ice-free summers 
(which did not apply to the Pleistocene–Holocene transition) leaves 
considerable uncertainty as to the future of all whales.
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