The Membership Problem for Regular
Expressions with Unordered Concatenation and
Numerical Constraints

Dag Hovland

Department of Informatics, University of Oslo, Norway
hovland@ifi.uio.no

Abstract. We study the membership problem for regular expressions
extended with operators for unordered concatenation and numerical con-
straints. The unordered concatenation of a set of regular expressions de-
notes all sequences consisting of exactly one word denoted by each of
the expressions. Numerical constraints are an extension of regular ex-
pressions used in many applications, e.g. text search (e.g., UNIX grep),
document formats (e.g. XML Schema). Regular expressions with un-
ordered concatenation and numerical constraints denote the same lan-
guages as the classical regular expressions, but, in certain important
cases, exponentially more succinct. We show that the membership prob-
lem for regular expressions with unordered concatenation (without nu-
merical constraints) is already NP-hard. We show a polynomial-time
algorithm for the membership problem for regular expressions with nu-
merical constraints and unordered concatenation, when restricted to a
subclass called strongly 1-unambiguous.

Keywords: Regular expressions, automata, numerical constraints, unordered
concatenation, interleaving, XML, SGML.

1 Introduction

In the ISO standard for the Standard Generalized Markup Language (SGML) [1I,
the precursor of XML, the operator “&” is used for what in this paper is called
unordered concatenation, that is, the languages are concatenated, but in any
order. For example, &(ya, basta) denotes {yabasta,bastaya}. In SGML “&” is
infix, but because it is not associative, we find it more convenient to write it
prefix. Briigggemann-Klein [4/6] investigates unambiguity of regular expressions
extended with such an unordered concatenation operator.

Unordered concatenation is superficially similar to interleaving, an extension
to regular expressions studied by e.g. Mayer & Stockmeyer in [21]. Interleaving is
used to model process-theoretic parallel composition. There is no obvious way to
translate the algorithms and the complexity results for interleaving to unordered
concatenation.

2 D. Hovland

Numerical constraints allow expressing that a subexpression must be matched
a number of times specified by a lower and an upper limit. For example, (a+b)%-3
denotes the words of length 2 or 3 comnsisting only of a’s and b’s. Numerical
constraints are also used in XML Schema, and in addition in applications for
text search, e.g. GNU grep. The extension has been studied by, among others,
Gelade et al.[9], Kilpeldinen & Tuhkanen [I8], Hovland [I5], and Ghelli et al.
[12).

This paper has a theoretical and a more practical motivation. The theoretical
motivation is curiosity about the properties of unordered concatenation, espe-
cially when used in combination with numerical constraints. Unordered concate-
nation is intuitive and seems useful for searches and definitions in natural lan-
guage text. Membership is shown to be tractable for the strongly 1-unambiguous
regular expressions with unordered concatenation and numerical constraints. It
is interesting to note that for the regular expressions with numerical constraints,
the largest known subset where membership can be decided in time linear in
the size of the word and polynomial in the size of the expression, is the strongly
1l-unambiguous subset.

In this paper we will study the regular expressions with unordered concate-
nation and numerical constraints, and the membership problem for these ex-
pressions. In the next section we give a definition of these expressions and their
languages, and in Sect. [3] we show that the membership problem is NP-complete
already without numerical constraints. The algorithm for membership is based
on construction of finite automata with counters, where positions in the term
trees of the regular expressions play a central role. Section [4]is therefore devoted
to a description of term trees and positions in these trees, while in Sect. 5] we de-
fine the finite automata with counters. In Sect. [6] we define strong 1-unambiguity,
and state the main theorem. The last section presents some related work and a
conclusion.

2 Regular Expressions with Unordered Concatenation
and Numerical Constraints

Fix an alphabet X of letters. Assume a, b, and ¢ are members of X. [,11,1o, ... are
used as variables for members of X. Let N = {1,2,...}, N; = {2,3,4,...}U{oc},
and No = {0,1,2,...}.

Definition 1. Given an alphabet X', Ryx is the set of regular expressions with
unordered concatenation and numerical constraints over X, defined by the fol-
lowing grammar:

Ry =Ry +Rs|Rs Ry| Ry &Ry, ..., Rs) | e

We only allow r™* forn < u. Numerical constraints have the highest precedence,
followed by concatenation, choice, and unordered concatenation, which has the
least precedence. Parentheses are used, when necessary, to group sub-expressions.

Unordered Concatenation and Numerical Constraints 3

We use r,r1,72, ... as variables for reqular expressions. The sign for concatena-
tion, -, will often be omitted. A regular expression denoting the empty language
is not included, as this is irrelevant to the results in this paper. We use r™ as
shorthand for r™+°, rO" as shorthand for r*™ + ¢, vt as shorthand for r*+>°,
r* as shorthand for v%, and r™ for r™ ™. We denote the set of letters from X
occurring in r by sym(r).

The reason the unordered concatenation operator is not binary infix, is that,
as we will see below, it is not associative. The star-free regular expressions with
unordered concatenation are the subset of Ry with no numerical constraints,
that is, no subexpressions of the form r™*.

We lift concatenation of words to sets of words, such that if Ly, Ly C X*,
then Ly - Ly = {wy - wa |wy € Ly Awy € La}. Moreover, € denotes the empty
word of zero length, such that for all w € X*, ¢-w = w - e = w. Further, we
allow non-negative integers as exponents meaning repeated concatenation, such
that for an L C X* we have L™ = L™ 1. L for n > 0 and L° = {e}. We
define that n < oo for all numbers n. The semantics of unordered concatenation
is defined in terms of permutations. By Perm({1,...,n}) we mean the set of
permutations of {1,...,n}. If o € Perm({1,...,n}), we assume o = 01,...,0,.
For convenience, we recall in Definition [2| the language denoted by a regular
expression, and extend it to unordered concatenation and numerical constraints.

Definition 2 (Language). The language ||r|| denoted by a regular expression
r € Ry, is defined in the following inductive way:

[r1 4 rafl = fraff U 72|

[- rofl = llrall - 72

H&(rh ce 7Tn)|| = UgGPerm({l,...,n})”ro'l || T ||ro'nH
Il = UrcicalIrl®

fora e X U{e},|a|l = {a}

Some examples of regular expressions and their languages are: ||&(ab,c)| =
{abc, cab}, ||&(a,b,c)|| = {abc, bac, ach, bea, cab, cha}, and ||(a + b)1-2|| = {a,b,
aa, ab, ba, bb}. Note that unordered concatenation is not associative, for example:

I&(&(a, b), ¢)|| = {abe, bac, cab, cba} # {abe, ach, bea, cba} = ||&(a, & (b, ¢))]|.

3 Complexity of Membership under Unordered
Concatenation

The membership-problem is to decide, given a regular expression with unordered
concatenation r € Ry, and a word w € X*, whether w € ||r||. This is also called
matching. For regular expressions with numerical constraints (without unordered
concatenation), the membership problem is known to be in P [I7]. NP-hardness
of membership for regular expressions with interleaving was shown by Ogden
et al. [23]. The proof cannot easily be modified to fit the case for unordered
concatenation.

4 D. Hovland

It is not hard to show that the membership problem for regular expressions
with numerical constraints and unordered concatenation is in NP. The certificate
for an instance of the problem, consists in making all the necessary choices in the
regular expression, such that one can see that the word is in the language. The
size of the certificate is polynomial in the lengths of the word and the regular
expression. An explicit construction is given in [16], p.53].

To show that membership is NP-hard, we use a reduction from satisfiabil-
ity of propositional formulas, first shown NP-hard by Cook [7]. By a result of
Tseitin [25] we can assume the formulas are in conjunctive normal form. In the
remainder of this section we will not use the numerical constraints. The usage
of the exponents in the expressions and words in this section is only a short-
hand for repeated concatenation. The alphabet consists of the names of the
Boolean variables. Given a formula with ¢ clauses and v variables, we construct
a regular expression r which is a unordered concatenation of ¢ + v expressions.
The first ¢ expressions in the unordered concatenation each represent a clause.
In these clause-expressions, disjunction is represented by choice (+), a positive
literal is represented by itself, and a negated literal is represented by concate-
nating the respective letter with itself ¢ + 1 times. The last v expressions in
the unordered concatenation, one for each variable z, are of the following form
((x + e)cmcg) + (27! + €)¢. The word w that we will check for membership, is
21 F¢ . 2, F¢, assuming the variables are z1, ..., Zy.

Ezample 3. For the purpose of an example, let the formula be (z1 V —as V —z3V
xg)N(x3V-x5Vae)A(z3V-xe). Thenv = 6, ¢ = 3and X = {x1, x2, 3, 24, T5, T6 }-
The regular expression becomes &((z1 + =3 + 23 + z4), (v3 + 25 + x6), (23 +
Tg),T1,72,73,74,75,76), where each r; is ((z; + €)32?) + (2} + €)®. The word to
check membership in the language of this regular expression becomes 12 - - - x4'2.

It remains to show that the problem instance of the membership problem is
only polynomially larger than the propositional formula, and that the word is in
the language of the regular expression if and only if the propositional formula is
satisfiable. For reasons of space, these proofs must be left out, but they can be
found in [I6] p.54-57]. The intuition is that in the choices in the last v parts of
the regular expressions, the left choice can be used if the corresponding variable
can be true, and the right choice if it can be false, and that in the sub-expressions
representing the clauses, the chosen subexpression must be true in the formula.

Note that it is enough for NP-hardness with one single top-level unordered
concatenation.

4 Term Trees, Positions, and Subscripting

In this section we will define notation necessary for the later sections. Given a
regular expression r, we follow [2] and define the term tree of r as the tree where
the root is labeled with the main operator (choice, concatenation, or star) and
the subtrees are the term trees of the subexpression(s). If a € X' U {e} the term
tree is a single root-node with a as label.

Unordered Concatenation and Numerical Constraints 5

We use (ni,...,nk), a possibly empty sequence of natural numbers, to denote
a position in a term tree. We let p, g, including subscripted variants, be variables
for such possibly empty sequences of natural numbers. The position of the root

is (). If r =ry-rq or r =71 + 79, and ny € {1,2}, the position (ng,...,ng) in
r is the position (ns,...,nk) in the subtree of child n, that is, in the term tree
of ry,. If r = r1*, the position (1,nq,...,ng) in 7 is the position (nq,...,n;) in

the term tree of r1. Let pos(r) be the set of positions in 7.

p® q will be used for the concatenation of positions p and q. We will also use
this notation for concatenating a position with each element in a list of positions,
and for concatenating a position with each element of a set of lists of positions.

Whenever concatenating with a position of length one, we will often omit
the sign ® and abbreviate, such that for example pl = p ® (1), 25 = (2) © S,
ir = (i) ©r, etc.

For a position p in r we will denote the subexpression rooted at this position
by r[p]. Note that r[()] = r. We also set r[e] = e. Furthermore, given p1,...,py
in pos(r) U{e}, put r[py - - - - - pn] =r[p1] - 7r[pn]. Lastly, we lift r[] to sets of
string, such that if S C pos(r)”, then r[S] = {r[w] | w € S}.

The concept of marked expressions will be important in this paper. It was
first used in a similar context by Briiggemann-Klein & Wood [5]. For any regular
expression r, let u(r) be the marked expression, where every instance of any
symbol from X is substituted by its position in the expression. Note that, e.g.,
p(b) = pu(a) = (), which shows that marking is not injective. Furthermore ||u(r -
ol = trl-2)l T4)l = 0202 o)] =
1| ()]

Example 4. Consider ¥ = {a,b} and r = (&(a?,b))3%. Then p(r) = (&((1,1,1)2,
(1,2))34. The term trees of r and pu(r) are shown in Fig.

o \b
Ty T

a

Fig. 1. Term trees for (&(a?,b))*>* and u((&(a?,b))**)

5 Finite Automata with Counters

In this section we describe the finite automata with counters (FAC). FACs are,
of course, based on classical finite automata, but extended with a finite set of
counters. A configuration of the FAC includes a mapping, called counter state,

6 D. Hovland

from the counters to the non-negative integers. For subexpressions with numer-
ical constraints we use the counters to keep track of the number of times the
subexpression has been matched, and use this to control that the numerical con-
straints are not violated. For regular expressions with unordered concatenation
we use the counters to keep track of which parts of a unordered concatenation
have been matched. We keep a counter for every argument in every unordered
concatenation. All counters are initially 0. A part of an unordered concatenation
can only be used for matching if the corresponding counter is 0, the counter
will then be increased to 1. The matching process is only allowed to leave the
unordered concatenation when all parts, except those that can match ¢, have
been matched. The counters are then reset to 0.

Let C be the set of positions of subexpressions we need to keep track of. We
model counter states as mappings v : C — Ny. Let p be the counter state in
which all counters are 0. We define an update instruction 1 as a partial mapping
from C to {inc,res,one} (inc for increment, res for reset, one for setting to 1).
Update instructions ¢ define mappings f,, between counter states in the following
way: If ¢(p) = inc, then fy,(v)(p) = v(p) + 1, if ¥(p) = res then fy(v)(p) =0, if
(p) = one then f,,(7)(p) = 1, and otherwise £,(7)(p) = 7(p).

Definition 5 (Satisfaction of Update Instructions). We define a satisfac-
tion relation between update instructions and counter states. Given v : C — Ny,
¥ : C — {inc, res,one}, min: C — Ny, and max: C — Ny, v =M@) 4s defined by
the following inductive rules:

max

Y min %

Vi Y1U{p—inct ey R A y(p) < max(p)
T Emin hrU{pores) &y Ep Yn A y(p) > min(p)
vy EMX) U{prrone} & 4 EMX g A y(p) > min(p)

The intuition of Definition [5|is that a counter can only be increased if the value
is smaller than the maximum, while a value can only be reset if it’s value is
at least as large as the minimum. Given mappings max and min, two update
instructions are called overlapping, if there is a counter state that satisfies both
of the update instructions. Overlap can be detected in linear time: For every
p € C such that p is mapped to inc by one of the update instructions, and p is
mapped to either res or one by the other update instruction, it must hold that

min(p) < max(p).

5.1 Finite Automata with Counters

Definition 6 (Finite Automata with Counters). A finite automaton with
counters (FAC) is a tuple (X,Q,C, A, ®, min,max, ¢/, F). The members of the
tuple are described below:

— X is a finite, non-empty set (the alphabet).
— @ and C are finite sets of states and counters, respectively.
— ¢! € Q is the initial state.

Unordered Concatenation and Numerical Constraints 7

— A:Q—{q"} = X maps each non-initial state to the letter which is matched
when entering the state.

— @ maps each state to a set of pairs of a state and an update instruction.
D:Q — p(Q x (C — {inc,res,one})).

— min : C = Ny and max : C — Ny are the counter-conditions.

— F C Q@ x (C— {res}) describes the final configurations (See Definition[7).

Running or executing an FAC is defined in terms of transitions between config-
urations. The configurations of an FAC are pairs, where the first element is a
member of (), and the second element is a counter state.

Definition 7 (Configuration of an FAC). A configuration of an FAC is a
pair (q,7), where g € Q is the current state and v : C — Ny is the counter state.
A configuration (q,7) is final, if there is (q,%) € F such that v ET2).

min
Intuitively, the first member of each of the pairs mapped to by @, is the state
that can be entered, and the second member describes the changes to the current
configuration of the automaton in this step. Thus, & and A together describe

the possible transitions of the automaton. This is formalized as the transition
function 4.

Definition 8 (Transition Function of an FAC). For an FAC (X,Q,C, A,
&, q', F), the transition function & is defined for any configuration (q,7y) and

letter I by 6((q,7),1) = {(p, fp (7)) | Alp) =1, (p,¥) € 2(q),7 Fmm ¥}

Definition 9 (Deterministic FAC). An FAC (X,Q,C, A, ®,q!, F) is deter-
ministic if and only if [6((¢,7),1)] <1 for allg e Q,1 € X and v:C — Ny.

Deciding whether an FAC is deterministic can be done in polynomial time as
follows: For each state p, for each two different (p1,1), (p2,12) both in @(p),
verify that either A(p1) # A(p2) or that ¢; and 1y are not overlapping.

5.2 'Word recognition

An FAC either accepts or rejects a given input. A deterministic FAC recognizes
a word by treating letters in the word one by one. It starts in the initial con-
figuration (q',7y). An FAC in configuration (g,7), with letter | € X next in
the word, will reject the word if 6((gq,7v),l) is empty. Otherwise it enters the
unique configuration (¢’,7’) € 0((q,7),!). If the whole word has been read, a
deterministic FAC accepts the word if and only if it is in a final configuration.
The subset of X* consisting of words being accepted by an FAC A is denoted
|A]l. A deterministic FAC accepts or rejects a word in time linear in the length
of the word.

Example 10. Let X = {a,b}, Q = {¢',a(1,1,1),6(1,2)}, and C = {(1), (1,1),
(1,1,1),(1,2)}. Figureillustrates a deterministic FAC (X, Q, C, A, &, min, max,
q', F) which recognizes ||(&(a?,b))3*||. Note that the names of the non-initial
states are decorated with the values of A. Every state is depicted as a rectangle

8 D. Hovland

with the name of the state, and with F described by the reset instructions. Every
member of @ is shown as an arrow, annotated with the corresponding update
instruction. C, min, and max are shown in the top of the figure. The sequence of
configurations of this FAC while recognizing aabbaabaa is :

(¢", Y0)

(a(1,1,1), {(1) — 1,(1,1) = 1,(1,1,1) — 1,(1,2) > 0})
(a(1,1,1), {(1) — 1,(1,1) — 1,{1,1,1) = 2,(1,2) > 0})
(b(1,2), {(1) = 1,(1,1) e 1,(1,1,1) = 0, (1,2) = 1})
(b(1,2), {(1) =2, (1,1) > 0,(1,1,1) = 0, (1,2) s 1})
(a(1,1,1), {(1) = 2,(1,1) = 1,(1,1,1) = 1,(1,2) > 1})
(a(1,1,1), {(1) — 2,(1,1) — 1,(1,1,1) > 2,(1,2) > 1})
(b(1,2), {(1)—3,(1,1) —0,(1,1,1) = 0,(1,2) > 1})
(a(1,1,1), {(1) — 3,(1,1) — 1,{1,1,1) = 1,(1,2) > 1})
(a{1,1,1), {(1) — 3,(1,1) — 1,(1,1,1) — 2,(1,2) — 1})

The last configuration is final, since min((1)) < 3, min((1,1)) <1, and
min({1,1,1)) < 2.

C: (1)(1,1) (1,2)(1,1,1)

{<1>_> inc, m.ax: 4 1 1 2
<1’1>_) one, min: 3 1 1 2
(1,2)— res,

(1,1,1)— one}

a(l,1,1) /) {(1,1,1)— inc}

1)

12)—restN {(1)— inc,
(1,1)— res,
(1,2)— one}

Fig. 2. Tllustration of FAC recognizing ||(&(a?, b)) ||

Unordered Concatenation and Numerical Constraints 9

For each letter matched by the FAC, it must test satisfiability of the update
instructions corresponding to transitions to the states with a matching letter.
Since the sum of these update instructions is smaller than the whole FAC, and
testing satisfiability of update instructions is linear, we get the following:

Lemma 11 (Linear-time recognition). For any deterministic FAC A = (X,
Q,C, A, &, min, max, ¢/, F), if o(A) is the size of A, then for any word w € X*,
the FAC A accepts or rejects w in time O(Jw|o(A)).

6 Unambiguity

In this section we will define the right unambiguity we need for constructing
deterministic automata. Strongly 1-unambiguous regular expressions were first
defined by Koch & Scherzinger [20], but the definitions used here also bear on
Gelade et al. [9]. A deterministic FAC can be constructed in polynomial time
from such expressions. We recall the definition of 1-unambiguity such that the
difference with strong 1-unambiguity becomes clear.

Definition 12 (1-unambiguity[35]). A regular expression r is 1-unambigu-
ous if for all upv,uqw € ||p(r)|, where u,v,w € (pos(r))* and p,q € pos(r),
r[p] = r[q] implies p = q.

Strong 1-unambiguity is needed to prevent unambiguities related to the numeri-
cal constraints. For example, (a3+4)? is 1-unambiguous, but there is an ambiguity
related to which of the two numerical constraints should be increased when see-
ing the fourth a in a word. To formalize this ambiguity we will use subscripted
expressions, and the languages of these. Subscripting is inspired by the bracket-
ing used by Koch & Scherzinger [20] and Gelade et al. [9]. The intuition is that
for a regular expression 7, the subscripted regular expression ss(r), is such that
all subexpressions of the form rt* or &(r1,...,r,) are subscripted with their
position in the term tree. For example, ss((&(a?,b))3 %) = (&(a%’l),b)u))%"‘.

To define the language of a subscripted expression we will use some more
notation: For a position p = (j1,...,jn), and a positive integer i, pi denotes the
position (j1,...,Jn,). For a regular expression r, let I, = UpEpos(r){TP7‘l’P}' For
aset L, e/ denotes {e}NL and L™ denotes L—{e}. The language of a subscripted
expression r is a set of strings over sym(r) U I,.. For the not subscripted parts we
use the same rules as in Definition [2| while [[r5-*|| = (Ui, ({1p1} - [7)7) - {4p1},
and ||&(r1, ..., m0)pll =

>
ellrailly {Tpcn} |Iro, ||>

'{ipl"'%"}
renll U {10, } - 7o I

The ambiguity observed in (a®*)? corresponds to the fact that there are
u,v,w such that both w-a- T 1y-a-vand u-a-dq 1Ty T -a-ware
words in ||ss((a®4)?)].

10 D. Hovland

Definition 13 (Strong 1-unambiguity[9420]). A regular expression r is strongly
1-unambiguous if it is 1-unambiguous, and for all uaav,ufbw € ||ss(r)||, where
a,b € sym(r), a,f € I'* and u,v,w € (X UIL,)*, a =0 implies o« = (.

Examples of expressions that are not strongly l-unambiguous are (al~2)!-2

(a*a)?3 and (&(a'+2,b))12, while (a + b)!* is strongly 1-unambiguous.

We can now formulate the main result of this paper. The construction of an
FAC from a regular expression is based on first, last, and follow sets. There is
not space for it in this paper, but it can be seen in [I6] p.86-107].

9

Theorem 14. For any regular expression r, we can in polynomial time con-
struct an FAC recognizing exactly ||r||. For any word w, and any strongly 1-
unambiguous regular expression r, we can in polynomial time decide whether
w € ||r|.

7 Related Work

The present paper is based on Chapter 3 of Hovland [16]. Proofs, definitions,
and examples left out of the present paper for reasons of space can be found
in [16]

Sperberg-McQueen [24] has studied regular expressions with numerical con-
straints and a translation to finite automata with counters, though no proofs
are given. Gelade et al. [I0/1I] and Gelade et al. [9] also wrote about this, in-
cluding full proofs. The latter was published simultaneously with the paper [I5].
The present paper is based on [I5], but also incorporates ideas from [9], most
notably the bracketing, which was inspiration for the subscripted expressions.
Section 6 from [9], including the proofs for Sect. 6 in the Appendix of [9] has
inspired some of the content concerning subscripting, strong 1-unambiguity, and
proving correctness of the construction of FACs.

Kilpeldinen & Tuhkanen [I7/I8[T9], Gelade [§], Gelade et al. [TO/IT], and
Gelade et al. [9] also investigated properties of the regular expressions with nu-
merical constraints, and give algorithms for membership. Stockmeyer & Meyer [22]
study the regular expressions with squaring, a subclass of the regular expres-
sions with numerical constraints. Colazzo, Ghelli & Sartiani, describe in [I3] an
algorithm for linear-time membership in a subclass of regular expressions called
collision-free. The collision-free regular expressions have at most one occurrence
of each symbol from X, and the counters (and the Kleene star) can only be
applied directly to letters or disjunctions of letters. The latter class is strictly
included in the class of strongly 1-unambiguous regular expressions.

Extensions of finite automata similar to Finite Automata with Counters have
been studied by many authors. The earliest is the treatment of multicounter
automata by Greibach [I4]. In the multicounter-automata counters can only
increase or decrease by 1, and the transition function cannot read the values of
the counters. An instruction corresponding to res or one does therefore not exist.
Sperberg-McQueen [24] describe the Counter-extended Finite-state Automata
(CFA) and Gelade et al. [9] describe the CNFA. Both of the latter automata

Unordered Concatenation and Numerical Constraints 11

classes use separate expressions for the update instructions (called actions by
Sperberg-McQueen) and for specifying the conditions/guards. In the FACs in the
present paper these guards (or conditions) are implicit, and calculated directly
from the update instructions. The language for guards is also quite expressive,
and this leads to higher expressive power in the CNFAs and CFAs compared
to FACs. Gelade et al. [I0/TT] describe NFA(#)s which have a counter for each
state. The FACs described in the present paper are a variant of those described
by the author in [I5], modified to fit the combination of numerical constraints
and unordered concatenation. In the case of unordered concatenation, only the
values 0 and 1 are used. The update instruction one is new.

Briiggemann-Klein [4J6] gives an algorithm for deciding 1-unambiguity of reg-
ular expressions with unordered concatenation. Unordered concatenation is also
mentioned in [BI3]. Strong l-unambiguity has also been mentioned by Briigge-
mann-Klein & Wood [53] and Sperberg-McQueen [24], and Gelade et al. [9]. The
first in-depth study of strong l-unambiguity was by Koch & Scherzinger [20].

8 Conclusion

We have studied the membership problem for regular expressions extended with
numerical constraints and with unordered concatenation, an operator similar to
“&” in SGML. The membership problem was shown to be NP-complete already
without the numerical constraints. We defined Finite Automata with Counters
(FAC). There is a polynomial-time translation from the regular expressions with
numerical constraints and unordered concatenation to FACs. Further we defined
strongly 1-unambiguous reqular expressions, a subset of the regular expressions
with numerical constraints and unordered concatenation in constraint normal
form, and for which the FAC resulting from the translation is deterministic.
The deterministic FAC can recognize the language of the given regular expres-
sion in time linear in the size of word to be tested. Testing whether an FAC is
deterministic can be done in polynomial time.

References

1. ISO 8879. Information processing — text and office systems — standard general-
ized markup language (SGML) (October 1986)

2. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge
University Press (2003), http://www.cs.vu.nl/~terese

3. Briiggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197-213 (1993)

4. Briigggemann-Klein, A.: Unambiguity of extended regular expressions in SGML
document grammars. In: Lengauer, T. (ed.) ESA. Lecture Notes in Computer
Science, vol. 726, pp. 73-84. Springer (1993)

5. Briiggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 140(2), 229-253 (1998)

6. Briiggemann-Klein, A.: Compiler-construction tools and techniques for SGML
parsers: Difficulties and solutions (May 1994), http://zml.coverpages.org/
brugg-standardEP-ps.gz

http://www.cs.vu.nl/~terese
http://xml.coverpages.org/brugg-standardEP-ps.gz
http://xml.coverpages.org/brugg-standardEP-ps.gz

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Hovland

Cook, S.A.: The complexity of theorem-proving procedures. In: STOC. pp. 151-
158. ACM (1971)

Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. In: Ochmanski, E., Tyszkiewicz, J. (eds.) MFCS. Lecture Notes in Com-
puter Science, vol. 5162, pp. 363-374. Springer (2008)

Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak
versus strong determinism. In: Krélovic, R., Niwinski, D. (eds.) MFCS. Lecture
Notes in Computer Science, vol. 5734, pp. 369-381. Springer (2009), http://1rb.
cs.uni-dortmund.de/~martens/data/mfcs09-appendix.pdf

Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML: Nu-
merical constraints and interleaving. In: Schwentick, T., Suciu, D. (eds.) Proceed-
ings of ICDT. Lecture Notes in Computer Science, vol. 4353, pp. 269-283. Springer
(2007)

Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML: Nu-
merical constraints and interleaving. SIAM J. Comput. 38(5), 2021-2043 (2009)
Ghelli, G., Colazzo, D., Sartiani, C.: Linear time membership for a class of XML
types with interleaving and counting. In: PLAN-X (2008)

Ghelli, G., Colazzo, D., Sartiani, C.: Linear time membership in a class of regular
expressions with interleaving and counting. In: Shanahan, J.G., Amer-Yahia, S.,
Manolescu, 1., Zhang, Y., Evans, D.A., Kolcz, A., Choi, K.S., Chowdhury, A. (eds.)
CIKM. pp. 389-398. ACM (2008)

Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theor. Comput. Sci. 7, 311-324 (1978)

Hovland, D.: Regular expressions with numerical constraints and automata with
counters. In: Leucker, M., Morgan, C. (eds.) ICTAC. Lecture Notes in Computer
Science, vol. 5684, pp. 231-245. Springer (2009)

Hovland, D.: Feasible Algorithms for Semantics — Employing Automata and In-
ference Systems. Ph.D. thesis, Universitetet i Bergen (2010), http://hdl.handle.
net/1956/4325

Kilpeldinen, P., Tuhkanen, R.: Regular expressions with numerical occurrence in-
dicators - preliminary results. In: Kilpeldinen, P., Pédivinen, N. (eds.) SPLST. pp.
163-173. University of Kuopio, Department of Computer Science (2003)
Kilpeldinen, P., Tuhkanen, R.: Towards efficient implementation of XML schema
content models. In: Munson, E.V., Vion-Dury, J.Y. (eds.) ACM Symposium on
Document Engineering. pp. 239-241. ACM (2004)

Kilpelédinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with nu-
meric occurrence indicators. Information and Computation 205(6), 890-916 (2007)
Koch, C., Scherzinger, S.: Attribute grammars for scalable query processing on
XML streams. VLDB J. 16(3), 317-342 (2007)

Mayer, A.J., Stockmeyer, L.J.: Word problems-this time with interleaving. Inf.
Comput. 115(2), 293-311 (1994)

Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proceedings of FOCS. pp. 125-129.
IEEE (1972)

Ogden, W.F., Riddle, W.E., Rounds, W.C.: Complexity of expressions allowing
concurrency. In: POPL. pp. 185-194 (1978)

Sperberg-McQueen, C.M.: Notes on finite state automata with counters (2004),
http://wwuw.w3.org/TR/xml/

Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, part 2 pp. 115-225 (1968)

http://lrb.cs.uni-dortmund.de/~martens/data/mfcs09-appendix.pdf
http://lrb.cs.uni-dortmund.de/~martens/data/mfcs09-appendix.pdf
http://hdl.handle.net/1956/4325
http://hdl.handle.net/1956/4325
http://www.w3.org/TR/xml/

Unordered Concatenation and Numerical Constraints 13

(© Springer-Verlag Berlin Heidelberg 2012.
Appeared in: Adrian-Horia Dediu, Carlos Martin-Vide (Eds): Language and Au-
tomata Theory and Applications, 6th International Conference, LATA 2012,
A Coruna, Spain, March 5-9, 2012. The original publication is available at
WWW.springerlink.com.

www.springerlink.com

	The Membership Problem for Regular Expressions with Unordered Concatenation and Numerical Constraints

