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Abstract

Alaska’s largest city, Anchorage, depends on Eklutna Glacier meltwater for drinking water and
hydropower generation; however, the 29 km2 glacier is rapidly retreating. We used a tempera-
ture-index model forced with local weather station data to reconstruct the glacier’s mass balance
for the period 1985–2019 and quantify the impacts of glacier change on discharge. Model calibra-
tion involved a novel combination of in situ, geodetic mass-balance measurements and observed
snowlines from satellite imagery. A resulting ensemble of 250 best-fitting model parameters was
used to model mass balance and discharge. Eklutna Glacier experienced a significant negative
trend (−0.31mw.e. decade−1) in annual mean surface mass balance (mean: −0.62 ± 0.06 m w.e.).
The day of the year when 95% of annual melt occurs was five days later in 2011–19 than in
1985–93, demonstrating a prolongation of melt season (May–September). Modeled mean specific
discharge increased at 0.14m decade−1, indicating peak water, the year when annual discharge
reaches a maximum due to glacier retreat, has not been reached. Four of the five highest discharge
years occurred since 2000. Increases in discharge quantity and melt season length require water
resource managers consider future decreased discharge as the glacier continues to shrink.

1. Introduction

The mountain cryosphere provides clean drinking water and hydropower resources to an esti-
mated 1.6 billion people living downstream of mountainous areas (Immerzeel and others,
2020). The thinning and retreating of glaciers worldwide can have an immediate socio-
economic implication in addition to the longer-term glacier contribution to sea level rise
(Hock and others, 2019). This is true even in Alaska, where the largest city, Anchorage, is crit-
ically dependent upon the meltwater of Eklutna Glacier in the western Chugach Mountains for
both drinking water (∼80% of the city’s supply) and hydropower generation (10–15% of the
city’s supply; Moran and Galloway, 2006). The regional area-average glacier mass balance for
all the western Chugach Mountains from 1962 to 2006 was −0.64 ± 0.07 m w.e. a−1 (Berthier
and others, 2010), and the geodetic mass balance of Eklutna Glacier calculated for the time
periods 1957–2010 and 2010–15 was −0.52 ± 0.46 and −0.74 ± 0.10 m w.e. a−1, respectively
(Sass and others, 2017a). These results indicate an acceleration in mass loss. Reconstructing
the annual variations of Eklutna Glacier’s historic mass balance and resulting glacier discharge
can help anticipate and mitigate future impacts on water resources.

Here, we calibrate a temperature index model with observations from 2011–15 and then
reconstruct multi-decadal mass-balance variations of Eklutna Glacier to quantify the impacts
of glacier change on discharge patterns. A novel approach combining in situ mass-balance
measurements and observed snowlines from satellite imagery in conjunction with a geodetic
mass balance is applied to calibrate the model parameters and identify an ensemble of the 250
best-performing model parameter combinations. This ensemble is then used to reconstruct the
glacier’s mass balance and discharge over the 35 mass-balance (hydrological) years 1985–2019
(e.g. hydrological year 1985 spans from 1 October 1984 to 30 September 1985).

2. Study site

Ranging in elevation from 600 to 1700m a.s.l., Eklutna Glacier (61.21°N, 148.98°W) is a
∼29 km2 glacier located in the Western Chugach Mountains of south-central Alaska (Fig. 1).
The glacier’s tongue is fed by two branches: a larger main (east) branch (∼16 km2) and a west
branch (∼13 km2). Ground-penetrating radar performed in 2010 indicated a mean ice thickness
of 139m with a maximum thickness of 430m in the upper basin of the main branch (Sass,
2011). The glacier is in a transitional maritime climate. An automated weather station (AWS)
in coastal Girdwood (76m a.s.l.), 25 km south of the glacier, shows a mean annual precipitation
of 1907mm from 1984 to 2014 (NOAA Cooperative Station #500243, www.wrcc.dri.edu).
Measurements from an AWS operated close to the equilibrium line altitude (ELA) on the glacier
from 2009 to 2015 indicate a mean melt season (May–September) air temperature of 2.2°C.
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Eklutna Glacier has been subject to numerous research pro-
jects (Brabets, 1993; Larquier, 2011; Sass, 2011; Sass and others,
2017a). A field study conducted by the United States Geological
Survey (USGS) for the mass-balance years 1984/85 to 1987/88
found that the annual glacier-wide mass-balance rate varied
from −0.34 to 0.42 m w.e. a−1 (mean: −0.1 m w.e. a−1) and the
accumulation-area ratio (AAR) ranged from 0.58 to 0.75 (mean:
0.63) (Brabets, 1993). For the hydrological years 1986–88, annual
specific discharge (i.e. discharge per unit area of watershed area)
at a gauging station (USGS 15277800 WF Eklutna) 3 km down-
stream from the glacier terminus ranged from 1.39 to 1.47 m
(mean: 1.43 m). Alaska Pacific University has monitored both
the glacier’s mass balance and discharge since 2008 (Larquier,
2011; Sass, 2011). Sass and others (2017b) found winter mass bal-
ance varied from 1.4 to 2.5 m w.e. a−1 (mean: 1.7 m w.e. a−1) and
summer mass balance from −1.4 to −2.1 m w.e. a−1 (mean: −1.7
m w.e. a−1) over 2008–15.

3. Data sources and use

To model Eklutna Glacier’s mass balance and discharge, a digital
elevation model (DEM) of the glacier and DEM-derived slope,
aspect and topographic shading, as well as climate datasets,
were required. The model was forced with daily mean air

temperature and precipitation observations from AWS. For cali-
bration and validation, we used in situ surface mass-balance
observations (point balances), a geodetic mass balance and snow-
line observations digitized from optical satellite imagery (Sass and
others, 2017a).

3.1 DEM, terrain layers and glacier boundaries

A LIDAR mission flown September 2010 with an Optech Gemini
Airborne scanning system created a point-cloud with a nominal
post spacing of 1.9 m and a vertical accuracy of 0.3 m (Sass and
others, 2017a). The USGS processed the point-cloud resulting
in a 2.5 m gridded DEM (Sass and others, 2017a). The DEM
was used to derive surface slope, aspect, a hillshade layer, daily
means of potential direct solar radiation and to delineate a water-
shed boundary (ArcGIS, vers. 10.6, ESRI, 2019). The hillshade
layer was used to support the digitization of the 2010 glacier
boundary. All layers were resampled (cubic convolution method)
to a 25 m resolution for use as model input for computational effi-
ciency while allowing spatial variations in mass balance to be cap-
tured. Glacier boundaries were manually digitized from Landsat
satellite imagery for years 1985, 1993, 1999, 2006 and 2013
(Table S1). Specific years were chosen to establish a ∼7-year inter-
val over the simulation period allowing us to account for the

Fig. 1. Map of Eklutna Glacier, its watershed and observation
sites. The glacier area (year 2019) is shown in light grey,
while the earlier 1985 extent consistent with legend is
blue. Black dots represent stakes with the number of mea-
surements over 2011–2015 calibration period. Elevation
(2010) contours on glacier surface are at 100 m intervals.
Black border depicts the model domain watershed. Tick
marks represent easting/northing (UTM 6N, WGS84). Upper
left inset map shows the location relative to Anchorage,
Girdwood, Wolverine Glacier, Eklutna Glacier, and the sur-
rounding Eklutna watershed boundary.
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retreat of the glacier in the simulations. Between 1985 and 2013,
the glacier lost ∼7% of its initial area.

3.2 Climate and weather data

Our model relies on two sources for temperature and precipitation:
data from an AWS operated on the Eklutna glacier only during melt
seasons (May–September) over 2011–19 and data from the nearest
long-term year-round weather stations during 1984–2019. Transfer
functions allowed the extension of the on-glacier temperature series
to the entire period 1984–2019 for year-round model forcing.

The Eklutna Glacier AWS near the ELA (∼1390 m a.s.l.)
recorded hourly air temperature at 2 m above surface (Campbell
Scientific, model CS215 temperature sensor) and liquid precipita-
tion (Campbell Scientific, model TE525 tipping bucket precipita-
tion sensor). We refer to these data as the ‘Eklutna data’.

The nearest long-term and year-round meteorological obser-
vations are from Girdwood, Alaska ∼25 km south of Eklutna
Glacier. We use the data from two stations as neither have a com-
plete record of precipitation and air temperature data over the
simulation period. An AWS located at the base of Alyeska Ski
Resort in Girdwood recorded daily mean air temperature (76 m
a.s.l., NOAA Cooperative Station #500243, www.wrcc.dri.edu)
for the period October 1984–2016. A National Resource
Conservation Service (NRCS) SNOTEL site also in Girdwood
on Mt. Alyeska (470 m a.s.l., SNOTEL #1103, www.wcc.nrcs.
usda.gov) has daily mean air temperature from 2010 to 2019.
This SNOTEL site also has daily precipitation for the period
October 1984–2019. We refer to the air temperature and precipi-
tation data from the two sources as the ‘Girdwood data’.

To extend the Eklutna data temperature series (2012–19) to
the entire period 1984–2019, we compared the Eklutna data to
the Girdwood data to build transfer functions based on the com-
mon melt seasons of each of the Girdwood stations. An air tem-
perature sensor failure for Eklutna data prevented the inclusion of
the 2011 data observations. Since neither the NOAA nor the
SNOTEL site data cover the entire period 1984–2019, we first
regressed the Eklutna data against the NOAA Cooperative
Station data (n = 479 days) and applied this transfer function to
the NOAA Cooperative Station data 1984–2015 (Fig. 2a). Next,
we regressed the Eklutna temperature data against the SNOTEL
data (Fig. 2b) and applied this transfer function to the SNOTEL
data for the melt seasons 2016–19. The SNOTEL daily precipita-
tion data were used as model input without any adjustments and
assumed to refer to the location (elevation) of the Eklutna AWS.
Instead, biases were accounted for through a constant precipita-
tion correction factor that was derived by model calibration
(Section 2.1).

3.5 In situ point mass balances

Alaska Pacific University has maintained a glacier mass-balance
monitoring program on both branches of Eklutna Glacier since
2008. Index sites and locations have evolved over the course of
the program, with four to seven sites per year generally located
near the glacier centerline and spanning the accumulation and
ablation zones of each branch (Fig. 1). Point mass balances were
derived at each site from measured ablation stake height, snow
depth and snow pit densities (Sass and others, 2017a, 2017b).
The sites were visited at least twice each year. In spring, snow
depth was measured and snow density derived from snow pit mea-
surements to calculate winter balances. Stakes were also installed in
spring and measured again in fall to observe the summer balance.
Seasonal mass balances thus refer to the floating (summer balance)
and combined time system (winter balance, Cogley and others,
2011). For model calibration, we used observations from
2011–15, resulting in a total of 50 summer (n = 25) and winter
point balances (n = 25). The point mass-balance data for the
period 2011–2015 are given in Sass and others (2017a, 2017b).

3.6 River discharge

River discharge was monitored on the West Fork Eklutna River
∼3 km downstream from the glacier terminus. The corresponding
subwatershed is 46% glacierized. A non-vented submersible pres-
sure transducer (Onset Hobo, U20) mounted to a boulder in the
river recorded the stage (water level) at hourly intervals and was
verified to gage datum by standard wire-weight gage on the bridge
(Rantz and others, 1982). Water pressures were adjusted to reflect
atmospheric pressure variations (Onset Hobo, U20L) measured
concurrently at the gage site. Discharge was measured by mid-
section velocity measurements using a mechanical current
meter (Price AA) and sounding weight (34 kg) or wading per
USGS standards (Rantz and others, 1982). We constructed a
stage–discharge relationship from 23 observations over the years
2015–19 (Fig. 3); the relationship between stage and discharge
is well established for discharge <25 m3 s−1. An hourly discharge
time series for the melt seasons were aggregated as daily averages
to compare with model output. Historic discharge data from the
USGS for 1985–1988 were also used for validation (Brabets,
1993; Site #15277800, https://waterdata.usgs.gov/nwis).

3.7 Snowline position

Transient snowlines were digitized from satellite imagery over the
June to September period between 1985 and 2015 (Table S1).
Cloud-free satellite scenes with clearly visible snowlines were

Fig. 2. Daily mean air temperatures (°C) during the melt
season (May–September) at the Eklutna AWS, TAWS, ver-
sus synthetic Eklutna temperatures, TSynthetic, derived
from (a) the NOAA Cooperative Station (76 m a.s.l,
2012–2015) and (b) the SNOTEL site (470 m a.s.l., 2016–
2019) in Girdwood. The synthetic data refer to tempera-
tures after application of the transfer functions derived
from regressing the measured Eklutna AWS temperatures
with the NOAA and SNOTEL temperatures for the over-
lapping years. Transfer functions for each dataset are
provided. The dashed line depicts the 1:1 line.
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selected from Landsat 4–8 (30–60 m spatial resolution) and SPOT
(5 m) as available from the USGS Earth Explorer website (earth-
explorer.usgs.gov). Within a GIS (ArcGIS Ver. 10.6, ESRI, 2019),
snowlines were manually digitized for each satellite melt season
period scene (n = 61 snowlines; Table S1; June: 23 scenes, July:
26 scenes, August: 12 scenes). For model calibration, we created
a centerline profile along the main (east) branch (Fig. 1). We
then determined the centerline distance from the high point of
the centerline at the glacier head to the intersection of each snow-
line with the centerline. This distance is used to compare modeled
results with observations (henceforth referred to as snowline pos-
ition). This centerline method avoids potential border effects
along glacier margins from shadows, avalanche input and wind
deposition. Because of difficulty discriminating snow from firn
surfaces, we delineated snowlines only below the firn line
(Kienholz and others, 2017). Field observations and late season
satellite imagery allowed identification of the approximate loca-
tion of the firn line. We assume a ±60 m horizontal digitizing
accuracy, reflecting the coarsest satellite resolution.

4. Methods

4.1 Mass-balance and discharge model

We used the open access Distributed Enhanced Temperature
Index Model (DETIM, Hock, 1999; http://regine.github.io/melt-
model) to recreate a 35-year (1985–2019) record of surface
mass balance and discharge from Eklutna Glacier. At each gridcell
of the 25 m resolution DEM and at a daily time step, DETIM
simulates snow accumulation, melt through a temperature index
method and resulting discharge via a linear reservoir approach
(Baker and others, 1982). Accumulation is computed from pre-
cipitation using a threshold temperature to discriminate between
rain and snow. Precipitation is distributed across the glacier using
a linear precipitation gradient relative to the site and elevation of
the on-glacier Eklutna weather station. Melt, M (mm d−1), is cal-
culated from daily average air temperature, T (°C), as

M = ( fm + rice/snow R) T : T . 0
0 : T ≤ 0

{
(1)

where fm is a melt factor (mm d−1°C−1), rice/snow (mm m2W−1

d−1°C−1) represents a radiation factor for snow/firn and ice

surfaces, and R is the potential clear-sky direct solar radiation
(Wm−2).

We compute mean daily discharge from the entire watershed
defined by the gauging station (i.e. including the glacier and non-
glacierized areas; Fig. 1) using a linear reservoir approach (Baker
and others, 1982). The method assumes that, at any time, t, the
reservoir volume, V(t), is proportional to the reservoir discharge,
Q(t)

V(t) = kQ(t), (2)

where k is a reservoir-specific storage constant with the unit of
time. Solving Eqn (2) for Q and accounting for volume changes
through input to the reservoir from melt and rainwater (I ), hourly
discharge from the reservoir is given by:

Q(t2) = Q(t1)e
−1/k + I(t2)− I(t2)e

−1/k. (3)

Following Hock and Noetzli (1997), we use three linear reser-
voirs defined by surface type (firn, snow, ice) to account for the
markedly different hydraulic properties and associated water tran-
sit velocities of these zones. The firn reservoir reflects the glacier
area above a user-defined firn line which is kept constant. The
snow reservoir includes any area (on or outside the glacier)
with snow present at the surface but excluding the glacier firn
area; the ice reservoir includes the bare ice and snow-free non-
glacierized area. Ice and snow-free areas outside the glacier are
treated as one single reservoir since flow velocities from ice sur-
faces and the generally rocky and vegetation-free non-glacierized
terrain are assumed to be of similar magnitude, and we aimed to
keep the number of model parameters to a minimum. On the gla-
cier, the firn reservoir has the greatest k-value, in the order of
hundreds of hours, while values for snow typically are tens of
hours, and ice <30 h (Hock and others, 2005). K-values are
obtained by calibration (Section 4.2).

For each time step, melt and rain over all catchment grid cells
defining the firn, snow and ice reservoirs are summed up, and
Eqn (3) is applied separately for each reservoir. Finally, each reser-
voir’s total discharge is summed to obtain the total discharge at
the location of the gauging station.

4.2 Model calibration

The mass-balance model was calibrated by optimizing six model
parameters over the period 2011–15 including the temperature
lapse rate (ϒ), melt factor ( fm), radiation factors for ice (rice)
and snow (rsnow), precipitation correction factor ( pcor) and a pre-
cipitation gradient ( pgrad). A grid search for the best-performing
mass-balance parameter combinations was applied by running
the model with all parameter combinations inside a prescribed
parameter space of defined increments established by preliminary
testing. This resulted in a total of 257 040 model runs (Fig. 4).
Each model run covered the period 1 October 2010 to 30
September 2015 (i.e. the five mass-balance years 2011–15). This
period is closely aligned with the period of the geodetic mass bal-
ance reported by Sass and others (2017a, 2017b) (16 September
2010–24 August 2015).

To select the best-performing parameter combinations, we first
selected all parameter sets that calculated a geodetic mass balance
rate that matched (within uncertainties) the 2010–2015 geodetic
mass balance (−0.74 ± 0.10 m w.e. a−1) found by Sass and others
(2017a, 2017b). This reduced the number of potential parameter
combinations to 25 062 from our original total of 257 040. Next,
we performed a multi-criteria calibration by comparing the results
of each remaining DETIM parameter set with both summer and

Fig. 3. Stage-discharge rating curve constructed using 23 measurements (diamonds)
at the watershed’s gauging station (Fig. 1) of the West Fork Eklutna River for 2015–19.
Dashed lines indicate ±1 sd.
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winter point balance measurements and snowline positions. For
each stake location, the point balance was extracted from the con-
tinuous model runs for the exact same period the measurement
refers to, thus allowing direct comparability of the 50 point bal-
ances. We calibrated the model to the combined dataset of sum-
mer and winter point balances to capture the effects that melt
parameters have on winter balance, for example, due to winter
melt events, and precipitation parameters on summer balance,
for example, due to summer snowfall events.

A total of 20 snowline positions obtained from satellite
imagery were available during the calibration period (Table S1).
For both variables, we quantified the agreement between modeled
and observed values by calculating standard z-scores as:

Zi = RMSEi − RMSE
sd

, (4)

where RMSEi is the root mean square error from the ith parameter
set, RMSE is the mean RMSE averaged across all remaining 25 062
parameter sets, and sd is the std dev of RMSE. Hence, the unitless
z-score represents each parameter set’s departure from the mean
performance in std dev. for each variable, i.e. the point balance
at index sites (in mw.e.) and distance along the glacier centerline
(in m) for the snowline positions. A z-score of zero indicates an
‘average’ error; a negative z-score indicates a parameter set with
less error than average, and vice versa.The z-scores of better per-
forming parameter sets (i.e., negative z-scores) were then normal-
ized to range between zero and one, both to allow equal weighting
between variables of different units and so that larger positive
values represented better fitting parameter sets than those closer
to zero.

We found that a total of 7051 parameter sets (∼28% of those
reproducing the observed geodetic balance by Sass and others
(2017a, 2017b)) performed better than average for both variables.
The mean z-score (±1 sd) for these 7051 parameters sets of stakes
and snowline location were 0.47 ± 0.25 and 0.23 ± 0.16, respect-
ively. For each variable, the normalized z-score maximum value
of one indicates the best possible agreement between modeled
and observed. Since the observations have errors and the model
is overparameterized, it is not possible to determine a single
best model run. Different parameter combinations can perform
equally well in reproducing the observations. For example, over-
estimation of melt due to an overestimated degree-day factor
can be compensated by an underestimated precipitation

correction factor. Therefore, following previous studies (Trüssel
and others, 2015; Kienholz and others, 2017), we use an ensemble
of the best-performing parameter sets for further analysis and
present results in terms of ensemble mean and std dev. We
chose the best 250 parameter sets, thus considerably more than
the ensemble of 15 and 40 best parameter sets used by Trüssel
and others (2015) and Kienholz and others (2017), respectively.

The 250 parameter sets were chosen so that the same min-
imum z-score threshold was exceeded for both variables.
Figure 5 demonstrates how some parameter sets perform well
for point balances (high z-score) and poorly for snowlines (low
z-score), and vice versa. Thus, we only retain parameter sets
that yield high z-scores for both point balances and snowlines.
A threshold of 0.5 yielded 250 parameter sets (Fig. 5).

Figure 4 depicts the frequency of the top 250 best-performing
parameter sets for the tested parameter space of each parameter.
The temperature lapse rate among the best parameter sets ranged
from −0.6 to −0.2°C (100 m)−1 with a mean of −0.3°C (100 m)−1

and a mode of −0.2°C (100 m)−1. All melt factors ranged from
3.75 to 6.00 mm d−1°C−1 with the most frequent values being
5.75 and 6.00 mm d−1°C−1. The radiation factor for ice was dis-
tributed across three values between 0.0242 and 0.414 m2W−1

Fig. 4. Parameter values of the 250 best-performing par-
ameter combinations superimposed on the search par-
ameter space. ϒ is the temperature lapse rate, fm is
the melt factor, rsnow and rice are the radiation factors
of ice and snow (Eqn (1)), pgrad is the precipitation gradi-
ent, and pcor is the precipitation correction factor.
Numbers on the left and right sides indicate the range
of the parameter space and black dots mark the param-
eter values tested. Grey lines connect the parameter
combinations of each of the 250 best-performing param-
eter sets. The values above each point reflect the num-
ber of successful combinations through a tested
parameter (only shown if >0).

Fig. 5. Normalized z-scores for ablation stakes versus normalized z-scores of snow-
line positions for 7051 parameter sets. Values >0.5 for both variables (marked in
red) corresponded to the 250 best-performing parameter sets. Grey lines mark the
threshold of 0.5.
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mm d−1°C−1 while the radiation factor for snow was most fre-
quent in the range of 0.005 and 0.0098 m2W−1 mm d−1°C−1.
The precipitation gradient of 15% (100 m)−1 and a precipitation
correction factor of 0 and 5% dominated among the best param-
eter sets.

In a final step, we calibrated the three storage constants k (Eqn
(2)) using the 250 best-performing sets of mass-balance para-
meters. The coefficient does not affect the annual amounts of dis-
charged water but modifies the seasonality of discharge by
increased (higher k-values) or decreased (lower k-values) flow
speed of water through the firn, snow and ice reservoirs. The
k-values were determined by varying them within established
ranges (Hock and others, 2005). Tested values for kfirn, ksnow
and kice ranged from 240 to 400 h (using 20 h intervals), 30–
200 h (10 h intervals) and 5–25 h (1 h interval), respectively.
The k-values were calibrated over 1 September 2010 to 30
August 2015 (3402 daily discharge values). A Nash–Sutcliffe
model efficiency coefficient (R2, Nash and Sutcliffe, 1970) was

calculated between modeled and observed daily discharge to
assess model performance. R2 values are typically used to assess
the efficiency of hydrological model results (Krause and others,
2005). Values can be negative, thus differing from the coefficient
of determination r2. These best-performing k-values (kfirn = 300 h,
ksnow = 70 h and kice = 15 h) were then used for all model runs.

4.3 Model validation

We cross-validated the 250 best-performing model parameter sets
using (i) snowline positions, and (ii) discharge observations over
periods excluded from calibration. Modeled snowline locations
were compared to observations on 41 melt season days between
1985 and 2010 (Figs 6, 7). There is a tendency for the model to
over-predict snow cover extent early in the season and to under-
predict at the end of the season. This discrepancy may at least par-
tially be caused by the darkening of the snow surface over the melt
season, for example, through particulate and biota accumulation

Fig. 6. Modeled and observed snowline locations for 41 days during the melt seasons 1985–2010 for the best-performing parameter combination (ϒ =−0.2 °C (100
m)−1, Mf = 5.5 mm°C−1 d−1, rice = 0.0414 m

2 W−1 mm d−1(°C)−1, rsnow = 0.0098 m
2 W−1 mm d−1 (°C)−1, pcor = 15% and pgrad = 25% (100 m)−1). Modeled snow-covered gla-

cier area is shown in grey, observed snowlines are depicted by blue lines, and centerline is white line. Lower right plot depicts the 41 observed (x-axis) versus
modeled ( y-axis) snowline positions as measured along the centerline profile (in units of 1 000 m) including the 1:1 line (grey).

6 Jason Geck and others

Downloaded from https://www.cambridge.org/core. 09 May 2021 at 06:23:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


which is not accounted for in the model (Skiles and others, 2018).
Additionally, daily mean modeled discharge was compared to
observed discharge over the periods 1985–88 (Brabets, 1993) and
2016–19 (Fig. 7). Nash-Sutcliffe efficiency values R2 for the hydro-
logical years ranged from 0.66 to 0.85 (mean of best-performing
250 parameter sets) with a value of 0.77 averaged over all 8 years.

5. Results

5.1 Mass balance

Using the 250 best-performing mass-balance parameter sets and
forcing the model with the synthetic meteorological time series
derived from the observations from the Girdwood stations, we
hindcast surface mass balance for the mass-balance years from
1985 to 2019 (Fig. 8). A fixed date system was applied for comput-
ing winter and summer balances with 12 May marking the end of
winter and 17 September the end of summer. These dates were
determined from the average annual maxima and minima of
modeled cumulative mass balances (daily resolution) derived
from preliminary model runs.

The mean annual surface mass balance averaged over the
250 parameter sets was −0.62 ± 0.06 mw.e. (±1 sd). The maximum
annual balance (0.83mw.e.) occurred in 1988 and the minimum
(−2.3 mw.e.) in 2004 (Fig. 8). Throughout the time series, results
suggest the annual surface mass balances were mostly negative.
From 1985 to 2019, there is a statistically significant negative
trend in annual mass balance (−0.31 mw.e. decade−1, p = 0.02;
Fig. 9), due mostly to a significant negative trend in summer
balance (−0.26 mw.e. decade−1, p < 0.01). No trend in winter
balance was found (−0.05mw.e. decade−1, p = 0.45).

Modeled glacier melt increased steadily over the near-decadal
periods from 1985 to 2019 (Fig. 10). Changes in mean annual
cumulative melt (hydrological year) over four consecutive 8–
9-year periods (1985–93, 1994–2001, 2002–10 and 2011–19)
demonstrated a 17% increase from the earliest to the latest period.
In addition, the day of the year when 5 and 95% of melt have
occurred is 7 days earlier in spring and 5 days later in fall in
the latest period than in the earliest period, demonstrating a pro-
longation of the melt season. Like the near-decadal trends in
annual melt, we found considerable changes over time in transient
and annual AAR, computed as the ratio of snow-covered and total

Fig. 7. Daily mean discharge during the melt seasons
(May–September) for 1985–88 and 2016–19 calculated
from the 250 best-performing parameter sets. The grey
shading represents the range of modeled discharges
with the black line representing observed discharge.
Nash–Sutcliffe efficiency values (R2) and the ratio of
the modeled and observed discharge expressed in per-
cent are provided. The blue bars reflect unaltered daily
precipitation (SNOTEL #1103, www.wcc.nrcs.usda.gov).
Ticks mark the first day of each month.
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glacier area (Fig. 11). Annual AARs (defined by the annual AAR
minima for the year) decreased from ∼65% during the earliest
period (1985–93) to ∼45% during the latest period (2011–19).
Transient AARs indicate that the glacier’s winter snow cover
extent is depleted faster in each consecutive period.

5.2 Discharge

The modeled daily mean discharge over the melt season (May–
September) increased by 17% between the 1985–1993 and the
2011–2019 interval (Figs 12, 13). The mean specific discharge
averaged over the melt season period from 1985 to 2019 was
2.1 ± 0.11 m (±1 sd) with the greatest modeled specific discharge
most recently (2.7 ± 0.14 m in 2019) and the lowest in 1985 (1.5 ±
0.07 m). Four of the five highest discharge years for the model
period occurred after 2000 (2004, 2005, 2016 and 2019).
Despite strong day-to-day variability due to differences in amount
and timing of daily precipitation and melt, we find a significant
trend of increasing modeled specific discharge within the melt
season (0.14 m per decade, p < 0.01). Modeled melt season
mean discharge represented 88 ± 3% of annual discharge over
the 1985–2019 time period. The strongest increase in discharge
occurred in the main melt season and fall. Summer precipitation
showed no trend ( p = 0.83) while temperature had an increasing
trend (0.23°C per decade, p < 0.01; Fig. 12). This reinforces the
notion that increasing melt dominated the discharge trend.

The entire time series was used to calculate standard hydro-
logical metrics following Fleming and Clarke (2005), including
annual median daily discharge, total annual discharge, annual
maximum daily discharge and the centroid of annual hydrograph
(half the year’s total flow volume). Both the median daily dis-
charge evaluated over the melt season and total annual discharge
have positive significant correlations (median discharge = 0.319 ×
year – 57.9; p = 0.02: total annual flow = 11.8 × year – 112.77;
p < 0.01). The annual maximum daily discharge and the centroid
of the annual hydrograph both showed a positive trend, though
not significantly correlated (max daily discharge = 0.109 × year –
191.4; p = 0.44; centroid day of year (DOY) = 0.046 × year +
114.92; p = 0.54).

6. Discussion

6.1 Model calibration

Results from model calibration indicate the value of using multi-
criteria validation that includes the use of a geodetic mass-balance
constraint, point balances and snowline positions. Even after a geo-
detic constraint, the point balances alone were not well-constrained,
as the comparison between modeled and predicted point balances
found 95% of individual parameter set model runs had an r2 > 0.90

Fig. 8. Modeled winter, summer and annual surface mass balance (m w.e.) for the
mass-balance years 1985–2019. Results refer to mean values from the 250 best-
performing parameter sets. Vertical black lines show ±1 sd (only winter and summer
balances).

Fig. 9. Modeled winter (blue), summer (red) and annual (black) mass balance (m
w.e.) for the mass-balance years 1985–2019. Dots show the mean of the 250 best-
performing parameter sets (±1 sd) and lines show the linear trends.

Fig. 10. Modeled cumulative glacier melt between 25 April and 30 September aver-
aged over four consecutive periods from 1985 to 2019. Cumulative melt for each
year is relative to the start of the mass-balance year, i.e. 1 October of the previous
calendar year. Lines give ensemble means and shading indicates ±1 sd for the 250
best-performing parameter sets. Black dots indicate when 5 and 95% of annual
cumulative melt is reached. Ticks mark the first day of each month.

Fig. 11. Modeled transient accumulation-area ratio, AAR (%) averaged over four con-
secutive periods between 1985 and 2019. Lines show the ensemble mean of the 250
best-performing parameter sets and shading indicates ±1 sd for the 250 best-
performing parameter sets. Black dots depict the date and value of the annual
AAR at the time of its minimum. Ticks mark the first day of each month.
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(n = 25 062). This suggests that selecting the best model parameters
based solely on point balances is not sufficient. Point balances have
frequently been used for melt model calibration (Hock, 1999;
Schuler and others, 2005), while the use of snowlines is becoming
more common (Evans and others, 2008; Ziemen and others, 2016;
Kienholz and others, 2017; Barandun and others, 2018). Using
only snowline observations would result in selecting different
model parameter sets; however, this is expected to lead to decreased
agreement between modeled and measured point mass balances as
evident from Figure 5. Barandun and others (2018) found the inclu-
sion of snowlines within mass-balance modeling significantly nar-
rowed uncertainty. Calculating a normalized z-score for each
variable (point balances and snowlines) allowed equal weighting
between the two variables of different units. Setting the threshold
value of 0.5 allowed selecting an ensemble of 250 parameters where
agreement was good for both point balances and snowlines
(Fig. 4). The inclusion of both variables in addition to the geodetic
balance proved necessary to provide a more robust calibration.

Model parameter values vary widely within the set of 250 best-
performing parameters; however, the range in the modeled vari-
ables of the ensemble is relatively narrow for most variables
(Figs 9–12). This provides confidence that the modeled trends
are robust. Obviously, individual model parameter values com-
bine to yield similar responses.

6.2 Mass balance

Eklutna Glacier mass-balance results were compared to the USGS
benchmark glaciers Wolverine and Gulkana, which have been stud-
ied since the 1960s (O’Neel and others, 2019). Wolverine Glacier
(15.6 km2) is located within a maritime climate (Bieniek and
others, 2012) on the Kenai Mountains, ∼90 km south of Eklutna
Glacier. Gulkana Glacier (16 km2) is in a continental climate in
the eastern Alaska Range, ∼290 km northeast of Eklutna. The
ensemble mean of the modeled annual mass balance for Eklutna
Glacier is strongly correlated with the observed mass balance of
Wolverine Glacier from 1985 to 2019 (r2 = 0.73, p < 0.01, n = 35
years) and moderately correlated to the observed mass balance of
Gulkana Glacier (r2 = 0.33; p < 0.01, n = 35 years; Figs 14, 15).
Some of the scatter can be attributed to the different methodologies
in determining the balances including different time systems.
Nevertheless, the significant correlations indicate spatially coherent
climatic drivers of annual mass change. The lower correlation with
Gulkana is expected given its distant location and different climatic
setting. Eklutna and Wolverine glaciers are 90 km apart and each
are >35 km from the Gulf of Alaska. Eklutna Glacier’s annual
mass balances are on average slightly higher than Wolverine.
This is possibly due to Eklutna’s northerly versus Wolverine’s
southerly orientation, and the generally cooler, somewhat transi-
tional climate of Eklutna compared to the more maritime climate
of Wolverine Glacier. While both are near the ocean, Eklutna is
on the lee side of the Chugach Mountains and Wolverine on the
coastal side of the Kenai Mountains.

Disagreements between modeled Eklutna andWolverine Glacier
mass-balance results in 1990 and 2009 coincide with Redoubt vol-
canic eruptions. RedoubtVolcano (∼220 kmaway) erupted through-
out the winter of 1989/1990 and spring of 2009 and deposited
substantial amounts of volcanic ash on glacier surfaces across parts
of Alaska (Waythomas and Nye, 2002; Schaefer and Wallace,
2012). The largest deposit occurred in 1992 from Spurr Volcano
with an estimated 500–1 000 gm−2 deposition on Eklutna Glacier
and no deposition on Wolverine Glacier (McGimsey and others,
2001). Such ash deposits may influence surface albedo across mul-
tiple years. DETIM as implemented here did not consider these
altered surface conditions.

Fig. 12. Mean specific discharge (a), mean air temperature (b), and total precipitation
(c) during the melt season (May–September) from 1985 to 2019. Specific discharge
refers to the mean of the 250 best-performing parameter sets (±1 sd). Air temperature
and precipitation data reflect the data used to force the model (Section 1.5), i.e. air
temperature depicts the record for the AWS site on the Eklutna Glacier extended to
the entire period based on transfer functions with nearby weather stations, and pre-
cipitation refers to the nearby weather station record prior to applying the calibrated
precipitation correction factor (Section 3.2). Lines show the linear trends. Vertical
dotted lines mark the four averaging periods used in Figures 10, 11, 13.

Fig. 13. Modeled daily mean discharge (m3 s−1) for the 250 best-performing param-
eter sets during the melt seasons (May–September) of the period 1985–2019. Four
intervals are depicted: 1985–93, 1994–2001, 2002–10, 2011–19. Mean melt season pre-
cipitation for each interval is given in the legend. Shading indicates ±1 sd for the 250
best-performing parameter sets. Peaks in late fall reflect large precipitation driven
flood events on 21 September 1995 and 3 October 2003. Ticks mark the first day
of each month.
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6.3 Discharge

The modeled increase in annual discharge over the simulation
period is consistent with the negative trend in summer mass bal-
ances coincident with increasing temperatures (Fig. 12). Since
summer precipitation shows no significant trend, we attribute
the increase in melt season discharge to the increasingly negative
glacier mass balances, and thus to the additional water released
from the glacier. Changes in seasonal snow storage or precipita-
tion over the non-glacierized catchment area may also affect the
discharge trend; however, model results do not support an
increase in snow accumulation outside the glacier that could
have increased melt season discharge.

Results also show a lengthening of melt season (Figs 10, 13). A
positive feedback may be occurring where more melt causes larger
bare ice areas, exposing lower albedo ice and leading to more melt.
More exposed glacier ice surface also leads to a faster throughflow
of water (Hock and others, 2005). Hence, one can expect increases
in flood peaks, especially when coincident with heavy precipita-
tion events.

Our model results are consistent with the observations and
also with other glacier discharge studies in Alaska (O’Neel and
others, 2014; Beamer and others, 2016). Beamer and others
(2016) found glacier volume loss within the Gulf of Alaska water-
shed contributed 760 km3 a−1 (8%) to mean annual discharge
over the period 1980–2014. O’Neel and others (2014) found
Wolverine Glacier’s mass loss over the 1966–2011 period caused
a 23% increase in discharge. Annual glacier discharge typically
first increases as mass balances become more negative but then
tends to decrease as the glacier becomes smaller (Huss and
Hock, 2018).

The positive trend in annual discharge indicates that peak
water, i.e. the year when annual discharge reaches a maximum
due to glacier retreat, has not been reached within the Eklutna
watershed. This is consistent with the model and observational

studies elsewhere in Alaska (see Hock and others (2019) for sum-
mary). Valentin and others (2018) project that in Eastern Alaska’s
Copper River watershed (60 800 km2), glacier discharge may
peak in 2070 using the moderate emission scenario RCP 4.5.
Global-scale projections indicate that peak water in Alaska will
be reached later in the 21st century than elsewhere in the world
(Huss and Hock, 2018).

The anticipated peak water has implications for Eklutna water-
shed water resources. The negative mass balance currently gener-
ates water for power generation and fresh water supply above
precipitation inputs; however, this surplus will decrease as glacier
volume further diminishes. The earlier spring melt will provide
additional water in the near term, but will not be sustainable
after peak flow, as melt depletes the glacier ice reservoir. A recent
study of headwater glaciers of the Columbia River found that
meltwater contribution there has already reached peak flow
(Moore and others, 2020). A future study could apply the
model developed here to forecast when peak flow is reached in
the Eklutna watershed under various climate change scenarios.

7. Conclusion

We calibrated the mass-balance and discharge model DETIM
using a combination of geodetic and point mass-balance observa-
tions as well as snowline data. Results indicate that a multi-criteria
optimization including diverse types of observations is necessary
to constrain model parameters. The calibrated model allowed us
to reconstruct the mass balance and glacier discharge history of
Eklutna Glacier over the 35-year period 1985–2019.

Despite a wide range of model parameter values within the set
of 250 best-performing model parameters, the range of the
ensemble’s modeled mass balance and discharge was relatively
small compared to the modeled changes over time. Significant
positive trends in modeled discharge are consistent with positive
trends in air temperature, modeled melt season water production

Fig. 14. Modeled annual mass balance (mw.e.)
for Eklutna and observed balances for
Wolverine and Gulkana glaciers (O’Neel and
others, 2019) over the period 1985–2019.
Balances for Eklutna 2008–15 based on the gla-
ciological method are also shown (Sass and
others, 2017a) correlating well with the modeled
annual balances (r2 = 0.89, p < 0.01, bias =−0.05
mw.e.).

Fig. 15. Modeled annual mass balance (m w.e.) for
Eklutna Glacier versus reported balances from (a)
Wolverine Glacier and (b) Gulkana Glacier (O’Neel and
others, 2019) over mass-balance years 1985–2019. The
grey dashed line depicts the 1:1 line.
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and prolongation of the melt season, as well as modeled negative
trends in summer mass balance and AAR. The lack of significant
trends in winter balance and summer precipitation suggests that
the increased discharge from the highly glacierized catchment is
driven by the loss of glacier mass. The modeled increase in
melt season discharge throughout the simulation period indicates
that peak water has not been reached. The negative trend in
annual mass balance and the associated increase in discharge
show that warming summers ‘mined’ the glacier’s stored water.
This will have implications for water managers who seek to maxi-
mize water resources for hydropower needs as glaciers retreat and
thin under a warmer climate (Hock and Jansson, 2005).
Continued monitoring of both Eklutna Glacier mass balance
and discharge as model input and validation will better inform
predictive models of future glacier mass and discharge as well
as peak water timing.

While we found fairly good agreement between observed and
predicted discharge, improvements could include the effect of
variable albedos to capture the volcanic tephra deposited on
Eklutna Glacier during several eruptions during the simulation
period (McGimsey and others, 2001; Schaefer and Wallace,
2012). Such efforts will require documenting the extent and
amounts of the tephra and their impact on melt.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.41.
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