
UNIVERSITY OF OSLO
Department of Informatics

An Approach to
Compositional
Reasoning
about Concurrent
Objects and Futures 1

Research Report 415

Crystal Chang Din

Johan Dovland

Olaf Owe

ISBN 82-7368-378-8
ISSN 0806-3036

Feb 2012

Contents
1 Introduction 2

2 Syntax for the ABS Language 4

3 Observable Behavior 6

4 Analysis of ABS Programs 10
4.1 Semantic Definition by a Syntactic Encoding 10
4.2 Weakest Liberal Preconditions . 11
4.3 Dynamic Logic . 13
4.4 Object Composition . 15

5 Reader Writer Example 16
5.0.1 Implementation . 17
5.0.2 Specification and Verification . 18

6 Related and Future Work 19

7 Conclusion 20

A Syntax of the ABS functional sublanguage 22

B Auxiliary Functions 22

C Reader Writer Example in ABS 23
C.1 Complete implementation . 23
C.2 Definition of irev . 24
C.3 Definition of Writers . 24
C.4 Definition of Writing . 24
C.5 Proof outline . 24

C.5.1 openR . 24
C.5.2 openW . 25
C.5.3 closeR . 25
C.5.4 closeW . 25
C.5.5 read . 25
C.5.6 write . 25

C.6 Proof details . 25
C.6.1 openR . 25
C.6.2 openW . 26
C.6.3 closeR . 26
C.6.4 closeW . 27
C.6.5 read . 27
C.6.6 write . 29

1

An Approach to Compositional Reasoning
about Concurrent Objects and Futures :

Crystal Chang Din, Johan Dovland, Olaf Owe
Dept. of Informatics, University of Oslo,

P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mails: {crystald,johand,olaf}@ifi.uio.no

Abstract

Distributed and concurrent object-oriented systems are difficult to analyze due
to the complexity of their concurrency, communication, and synchronization mech-
anisms. Rather than performing analysis at the code level of mainstream object-
oriented languages such as Java and C++, we consider an imperative, object-
oriented language with a simpler concurrency model. This language, based on con-
current objects communicating by asynchronous method calls and futures, avoids
some difficulties of mainstream object-oriented programming languages related to
compositionality and aliasing. In particular, reasoning about futures is handled
by means of histories. Compositional verification systems facilitate system anal-
ysis, allowing components to be analyzed independently of their environment. In
this paper, a compositional proof system in dynamic logic for partial correctness
is established based on communication histories and class invariants. The sound-
ness and relative completeness of this proof system follow by construction using
a transformational approach from a sequential language with a non-deterministic
assignment operator.

1 Introduction
Distributed systems play an essential role in society today. For example, distributed
systems form the basis for critical infrastructure in different domains such as finance,
medicine, aeronautics, telephony, and Internet services. The quality of such distributed
systems is often crucial. However, quality assurance is non-trivial since the systems
depend on unpredictable factors including different processing speeds of independent
components and network transmission speeds. It is highly challenging to test such
distributed systems after deployment under different relevant conditions.
Object orientation is the leading framework for concurrent and distributed systems,
recommended by the RM-ODP [20]. Many distributed systems are programmed in
object-oriented, imperative languages such as Java and C++. Programs written in
these languages are in general difficult to analyze due to composition and alias problems,
emerging from the complexity of their concurrency, communication, and synchronization
mechanisms. Therefore, one may benefit from analyzing a model of the program at a
suitable level, using an idealized object-oriented language which is easier to analyze.
This motivates frameworks combining precise modeling and analysis, with suitable tool

:This work was done in the context of the EU project FP7-231620 HATS: Highly Adaptable and
Trustworthy Software using Formal Models (http://www.hats-project.eu) and supported by the
Short Term Scientific Mission, COST Action IC0701.

2

support. In particular, compositional verification systems are needed, which allow the
different components to be analyzed independently from their surrounding components.
In this paper, we consider ABS , a high-level imperative object-oriented modeling lan-
guage, based on the concurrency and synchronization communication model of Creol [23]
with futures, but the language ignores other aspects of Creol such as inheritance. ABS
supports concurrent objects with an asynchronous communication model that is suit-
able for loosely coupled objects in a distributed setting. The language avoids some
of the aforementioned difficulties of analyzing distributed systems at the level of, e.g.,
Java and C++. In particular, the concurrent object model of ABS is inherently com-
positional [12]: In ABS , there is no direct access to the internal state variables of other
objects and object communication is by means of asynchronous method calls and futures
only.
A concurrent object has its own execution thread. Asynchronous method calls do not
transfer control between the caller and the callee. In this way, undesirable waiting is
avoided in the distributed setting, because execution in one object need not depend on
the responsiveness of other objects. Asynchronous method calls resemble the spawning of
new threads in the multi-thread concurrency model. A consequence of the asynchronous
communication model is that an object can have several processes to execute, stemming
from different method activations. Internally in an ABS object, there is at most one
process executing at a time, and intra-object synchronization is programmed explicitly
by processor release points. Concurrency problems inside the object are controlled since
each region from a release point to another release point is performed as a critical region.
Together, these mechanisms provide high-level constructs for process control, and in
particular allow an object to change dynamically between active and reactive behavior
by means of cooperative scheduling. The operational semantics of ABS has been worked
out in [18]. Recently, this notion of cooperative scheduling and asynchronous method
calls has been integrated in Java by means of concurrent object groups [26]. A Java
code generator for ABS model is available. Thus programmers can model and analyze
distributed systems in the ABS language and transform them into Java programs.
The execution of a distributed system can be represented by its communication history or
trace; i.e., the sequence of observable communication events between system components
[7, 19]. At any point in time the communication history abstractly captures the system
state [9, 10]. In fact communication traces are used in semantics for full abstraction
results (e.g., [1, 21]). A system may be specified by the finite initial segments of its
communication histories. Let the local history of an object reflect the communication
between the object and its surroundings. A history invariant is a predicate over the
communication history, which holds for all finite sequences in the prefix-closure of the
set of possible histories, expressing safety properties [3].
In this paper, we develop a partial correctness proof system for the ABS language
(ignoring object groups, interfaces, data types). A class is specified by a class invariant
over the class attributes and the local communication history. Thus the class invariant
directly relates the internal implementation of the class to its observable behavior. The
proof system is derived from a standard sequential language by means of a syntactic
encoding, extending a transformational technique originally proposed by Olderog and
Apt [24] to use non-deterministic assignments to the local history to reflect the activity
of other processes at processor release points. This way, the reasoning inside a class is
comparable to reasoning about a simple sequential while-language extended with non-
deterministic assignment, and amounts to proving that the class invariant is maintained
from one release point to another. By hiding the internal state, an external specification
of an object may be obtained as an invariant over the local history. In order to derive a
global specification of a system composed of several objects, one may compose the history
invariants of the different objects. Modularity is achieved since history invariants can be

3

established independently for each object and composed at need. Compared to previous
work [14], we here consider a reasoning system for futures in dynamic logic: A future
is a placeholder for the result value of the method call. An ABS reasoning system in
dynamic logic is established in this paper.
Paper overview. Section 2 introduces and explains the ABS language syntax, Section 3
formalizes the observable behavior in the distributed systems, and Section 4 defines
the proof system for ABS programs and considers object composition. A reader/writer
example is presented in Section 5. Section 6 discusses related and future work, and
Section 7 concludes the paper.

2 Syntax for the ABS Language

P ::� Dd� F� In� Cl� rss ? program
In ::� interface I rextends I�s ?tS�u interface declaration
Cl ::� class CprT cps�q rimplements I�s trT ws� rss ? M�u class definition
M ::� S B method definition
S ::� T mprT xs�q method signature
B ::� trvar rT x r� ess�; s? rs; s? return eu method blocks
T ::� I | D | Void | Fid types(interface or data type)
v ::� x | w | fr local variables or attributes
e ::� null | this | caller | destiny | v | cp | t pure expressions
s ::� v :� e | fr :� e!mpe�q | await e | suspend statements

| skip | abort | if e then s relse ss? fi | s; s
| v :� new Cpe�q | v :� e.mpe�q | rawaits v :� fr?

Figure 1: The BNF syntax of the ABS language with the imperative sublanguage s,
with I interface name, C class name, D data type name, cp formal class parameter, m
method name, w class attribute, fr future variable, x method parameter or local variable.
We use r s as meta parenthesis and let ? denote optional parts, � repeated parts, � parts
repeated at least once. Thus e� denotes a (possibly empty) expression list. Expressions
e are side-effect free. Object groups are omitted. The functional sublanguage for terms
t can be found in Appendix. A.

The syntax of the ABS language (slightly simplified) with futures can be found in Fig. 1.
An interface I may extend a number of superinterfaces, and defines a set of method
signatures S�. We say that I provides a method m if a signature for m can be found
in S� or among the signatures defined by a superinterface. A class C takes a list of
formal class parameters cp, defines class attributes w, methodsM�, and may implement
a number of interfaces. Remark that there is no class inheritance in the language, and
the optional code block s of a class denotes object initialization, we will refer to this code
block by the name init. There is read-only access to the formal class parameters cp. For
each method m provided by an implemented interface I, an implementation of m must
be found inM�. We then say that instances of C support I. Object references are typed
by interfaces, and only the methods provided by some supported interface are available
for external invocation on an object. The class may in addition implement auxiliary
methods, used for internal purposes. Among the auxiliary methods we distinguish the
special method run which is used to define the local activity of objects. If defined, this
method is assumed to be invoked on newly created objects after initialization. In this
paper, we focus on the internal verification of classes where interfaces play no role, and

4

where programs are assumed to be type correct. Therefore types and interfaces are not
considered in our reasoning system(but appear in the ABS examples). We assume that
all future variables are initialized before use, and that this is ensured by static checking.
Each concurrent object o encapsulates its own processor, and a method invocation on o
leads to a new process on o. At most one process is executing in o at a time. Processor
release points influence the internal control flow in an object. An await statement
causes a release point, which suspends the executing process, releasing the processor and
allowing an enabled and suspended process to be selected for execution. The continuation
of a process suspended by await e is enabled when the guard e evaluates to true. The
suspend statement is considered equivalent to await true. Note that an alternative
semantic definition of await true as skip is given in [15], and also used in several other
ABS papers.
A future, fr, is a placeholder for the result of a method call: a future is generated with a
unique identity upon invoking the method call. Upon termination of the called method,
the return value is placed in the future. We then say that the future is resolved. The
caller, or any other object that obtains the future identity, can fetch the result value when
the future is resolved. A method definition has the form mpxqtvar y; s; return eu,
ignoring type information, where x is the list of parameters, y an optional list of method-
local variables, s is a sequence of statements and the value of the expression e is placed
in the future of the call upon method termination. The predefined formal parameter
caller gives access to the calling object, and the variable destiny is the future identity
generated by caller. To simplify the presentation without loss of generality, we assume
that all methods return a value; methods declared with return type Void are assumed to
end with a return void statement, where void is the only value of type Void . Compound
return types can be defined by means of data types.
Object communication in ABS is asynchronous, as there is no explicit transfer of ex-
ecution control between the caller and the callee. There are different statements for
calling the method m in x with input values e, allowing the caller to wait for the reply
in various manners:

• fr :� x!mpeq: Here the calling process generates a fresh future identity and con-
tinues without waiting for the future to become resolved.

• await v :� fr?: The continuation of the process is here suspended until the future
is resolved and it is selected for execution. The return value contained in fr is
then assigned to v. Other processes of the caller may thereby execute during the
suspension.

• v :� fr?: The process is blocked until the future is resolved, and then assigns the
value, contained in fr, to v. (In the original ABS language, the syntax of this
statement is written v :� fr.get).

• v :� x.mpeq: If x is different from this, the statement can be interpreted as fr :�
x!mpeq; v :� fr? for a fresh future variable fr. The method is invoked without
releasing the processor of the calling object; the calling process blocks the processor
while waiting for the future to become resolved. For the caller, the statement
thereby appears to be synchronous which may potentially lead to deadlock, and
should be used with care; however, the call statement are typically used on local
objects generated and controlled by this object, as illustrated in the examples. If
x evaluates to this, the statement corresponds to standard synchronous invocation
where m is loaded directly for execution and the calling process continues after
termination of m.

The language additionally contains statements for assignment, object creation, skip,
abort, and conditionals. Concurrent object groups are not considered; however, our

5

reasoning system allows reasoning about subsystems formed by (sub)sets of concurrent
objects. The execution of a system is assumed to be initialized by a root object main.
Object main is allowed to generate objects, but cannot otherwise participate in the
execution. Especially, main provides no methods and invokes no methods on generated
objects.

3 Observable Behavior
The observable behavior of an object or a subsystem is described by communication
histories over observable events [7, 19]. Each event is observable to only one object,
namely the one generating it. We consider separate events for invoking and reacting
upon a call, for generating and fetching the result of a future, as well as for initiation and
fulfillment of object creation. The connection between the different events is formalized
through the notion of wellformedness.

Notation. Sequences are constructed by the empty sequence ε and the right append
function _ �_ : SeqrT s � T Ñ SeqrT s (where “_” indicates an argument position).
For communication histories, this choice of constructors gives rise to generate inductive
function definitions where one characterizes the new state in terms of the old state and
the last event, in the style of [10]. Let a, b : SeqrT s, x, y, z : T , and s : SetrT s. For a set
s, the projection of a sequence a with respect to s, denoted a{s, is the subsequence of
a consisting of all events belonging to s. Projection _{_ : SeqrT s � SetrT s Ñ SeqrT s is
defined inductively by ε{s � ε and pa � xq{s � if x P s then pa{sq � x else a{s fi.
The “ends with” and “begins with” predicates _ew_ : SeqrT s � T Ñ Bool and _bw_ :
SeqrT s � T Ñ Bool are defined inductively by ε ew x � false, pa � yq ew x � x � y,
ε bw x � false, pε �yq bw x � x � y, and pa �z �yq bw x � pa �zq bw x. Furthermore,
let a ¤ b denote that a is a prefix of b, a $% b denote the concatenation of a and b,
agreepaq denote that all elements (if any) are equal, # a denote the length of a, and
rx1, x2, . . . , xis denote the sequence of x1, x2, . . . , xi for i ¡ 0. The second argument of
the “ends with” and “begins with” predicates can be lifted to sets of events. Let Data
be the supertype of all kinds of data, including Fid . Communication events are defined
next.

Definition 1 (Communication events) Let caller, callee, receiver : Obj, future :
Fid, method : Mtd, class : Cls, args : ListrDatas, and result : Data. The set Ev of all
communication events is defined by Ev � IEv Y IREv Y CEv Y CREv Y NEv Y NREv,
including

• the set IEv of invocation events xcaller Ñ callee, future,method, argsy

• the set IREv of invocation reaction events xcaller � callee, future,method, argsy

• the set CEv of completion events xÐ callee, future,method, resulty

• the set CREv of completion reaction events xreceiver �, future, resulty

• the set NEv of object creation events xcaller Ñ callee, class, argsy

• the set NREv of object creation reaction events xcaller � callee, class, argsy

The arrow notation is used to improve readability, and to identify the object generating
the event. Invocation events are generated by the caller, invocation reaction events by
the callee, completion events by the callee, completion reaction events by the receiver,
object creation events by the caller, and object creation reaction events by the callee.

6

o'o

u

<o o', u, m, e >

< o', u, m, e>

<o , u, e>

o''

<o o', u, m, e >

<o'' , u, e>

<o'' , u, e>

Figure 2: A method call cycle: object o calls a method m on object o1 with future u.
The arrows indicate message passing, and the bullets indicate events. The events on
the left-hand side are visible to o, those in the middle are visible to o1, and the ones on
the right-hand side are visible to o2. Remark that there is an arbitrary delay between
message receiving and reaction.

Events may be decomposed by the functions _.caller,_.callee,_.receiver : Ev Ñ Obj,
_.future : Ev Ñ Fid, _.method : Ev Ñ Mtd, _.class : Ev Ñ Cls, _.args : Ev Ñ
ListrDatas, and _.result : Ev Ñ Data. For example, xo Ñ o1, u,m, ey.caller returns o.
The decomposition functions are lifted to sequences in the standard way, for instance,
_.result : SeqrEvs Ñ SeqrDatas, ignoring elements for which the decomposition is not
defined. As in [15], we assume a total function parent : Obj Ñ Obj where parentpoq
denotes the creator of o, such that parentpmainq � main and parentpoq � null ô o � null.
Equality is the only executable operation on object identities. Given the parent function,
we may define an ancestor function anc : Obj Ñ SetrObjs by ancpmainq � tmainu and
ancpoq � parentpoq Y ancpparentpoqq (where o � main). We say that parent chains are
cycle free if o R ancpoq for all generated objects o, i.e., for o � main.
A method call is in our model reflected by four communication events, as illustrated
in Fig. 2 where object o calls a method m on object o1. An invocation message is
sent from o to o1 when the method is called, which is reflected by the invocation event
xo Ñ o1, u,m, ey where e is the list of actual parameters. The event xo � o1, u,m, ey
reflects that o1 starts execution of the method, and the event xÐ o1, u,m, ey reflects that
the future is resolved upon method termination. The event xo �, u, ey captures that
object o fetches the result value from the resolved future. The creation of an object o1
by an object o is reflected by the events xoÑ o1, C, ey and xo� o1, C, ey, where o1 is an
instance of class C and e are the actual values for the class parameters. The first event
reflects that o initiates the creation, and the latter that o1 is created. Next we define
communication histories as a sequence of events. When restricted to a set of objects,
the communication history contains only events that are generated by the considered
objects.

Definition 2 (Communication histories) The communication history of a (sub)system
(a set O of objects) up to a given time is a finite sequence of type SeqrEvOs. The set of
all communication events in O is defined by EvO � IEvO Y IREvO YCEvO YCREvO Y

7

NEvO YNREvO, including

IEvO � te : IEv | e.caller P Ou IREvO � te : IREv | e.callee P Ou
CEvO � te : CEv | e.callee P Ou CREvO � te : CREv | e.receiver P Ou
NEvO � te : NEv | e.caller P Ou NREvO � te : NREv | e.callee P Ou

Definition 3 (Local communication histories) The local communication history of
an object o is a finite sequence of type SeqrEvtous. For a given history h, the local history
of o is the subsequence of h visible to the object o, defined by h{Evtou and abbreviated
h{o.

In this manner, the local communication history reflects the local activity of each object.
For a method call ofm on object o1 made by o, the events xoÑ o1, u,m, ey and xo�, u, ey
are local to o. Correspondingly, the events xo� o1, u,m, ey and xÐ o1, u,m, ey are local
to o1. For object creation, the event xoÑ o1, C, ey is local to o whereas xo � o1, C, ey is
local to o1. Let ho denote that h is a local history of object o, i.e., ho : SeqrEvtous. It
follows by the definitions above that Evtou X Evto1u � H for o � o1, i.e., the two local
histories ho and ho1 have no common events.
We define functions over the history to extract information, such as fid : SeqrEvs Ñ
SetrFids extracting all identities of future occurring in a history, as follows:

fidpεq � tnullu fidph � γq � fidphq Y fidpγq
fidpxoÑ o1, u,m, eyq � tuu Y fidpeq fidpxo1 � o, u,m, eyq � tuu Y fidpeq
fidpxÐ o, u,m, eyq � tuu Y fidpeq fidpxo�, u, eyq � tuu Y fidpeq
fidpxoÑ o1, C, eyq � fidpeq fidpxo1 � o, C, eyq � fidpeq

where γ : Ev, and fidpeq returns the set of future identities occurring in the expression
list e. Similarly the function oidphq returns all object identities occurring in a history.
The definition can be found in Appendix. B.
The function newob : SeqrEvs Ñ SetrObj� Cls� ListrDatass returns the set of created
objects (each given by its object identity, associated class and class parameters) in a
history:

newobpεq � H
newobph � xoÑ o1, C, eyq � newobphq Y to1 : Cpequ
newobph � othersq � newobphq

(where others matches all other events). The function newid : SetrObj� Cls� ListrDatass Ñ
SetrObjs extracts object identities from the output of function newob. For a local history
ho, all objects created by o are returned by newobphoq.
In the asynchronous setting, objects may send messages at any time. Type checking
ensures that only visible methods are invoked for objects of given interfaces. Assuming
type correctness, we define the following wellformedness predicate over communication
histories, ensuring freshness of identities of created objects, non-nullness of communi-
cating objects, and ordering of communication events according to Fig. 2:

Definition 4 (Wellformed histories) Let u: Fid, h : SeqrEvOs, the wellformedness
predicate wf : SeqrEvOs � SetrObjs Ñ Bool is defined by:

wfpε,Oq � true
wfph � xoÑ o1, u,m, ey, Oq � wfph,Oq ^ o � null^ o1 � null^ u R fidphq
wfph � xo1 � o, u,m, ey, Oq � wfph,Oq ^ o1 � null^ o � null ^ h{u � rxo1 Ñ o, u,m, eys{O
wfph � xÐ o, u,m, ey, Oq � wfph,Oq ^ h{u ew x_ � o, u,m,_y
wfph � xo�, u, ey, Oq � wfph,Oq ^ u P fidph{oq ^ agreeppph{uq.resultq � eq
wfph � xoÑ o1, C, ey, Oq � wfph,Oq ^ o � null^ parentpo1q � o^ o1 R oidphq
wfph � xo1 � o, C, ey, Oq � wfph,Oq ^ o1 � null^ parentpoq � o1 ^ o R oidph{pOzto1uqq Y oidpeq

h{o � ε^ po1 P Oq ñ h{o1 ew xo1 Ñ o, C, ey

8

The wellformedness of appending an invocation event to the history captures the fresh-
ness of the generated future identity, i.e., u R fidphq. For invocation reaction events, the
corresponding invocation message must be visible in the past history if the caller is in
O, i.e., h{u � rxo1 Ñ o, u,m, eys{O, where the projection h{u denotes the subhistory of
all events with future u. For a completion event, the corresponding invocation reaction
event must have appeared in the past history. And each method only returns the result
to the appointed future once. For a completion reaction event, the future identity must
be known from the past history, i.e., u P fidph{oq. Moreover, all completion events and
completion reaction events connected with the same future, must have the same return
result, i.e., agreeppph{uq.resultq � eq. Remark that for object creation, the parent object
and the created object synchronize, i.e., if o1 is the parent of o and the history of O ends
with the creation reaction event xo1 � o, C, ey, then the last event generated by o1 is
xo1 Ñ o, C, ey. We have chosen to include information of the called method in completion
events, in order to make history specification more easily readable. And in order to make
the definition of wellformedness constructive, we have chosen to include information of
the caller in invocation and invocation reaction events. We then avoid quantifiers to
formalize the presence of required prior events ev by formulating conditions of the form
po1 P O ñ ev P hq.

Invariant Reasoning. The communication history abstractly captures the system
state at any point in time [9,10]. Therefore partial correctness properties of a system may
be specified by finite initial segments of its communication histories. A history invariant
is a predicate over the communication history, which holds for all finite sequences in the
(prefix-closed) set of possible histories, expressing safety properties [3]. In a distributed
and concurrent system, it is desirable to reason about one component at a time. Ac-
cording to this, we develop a compositional reasoning system so that programmers can
reason about one class at a time and compose history invariants at need.
In interactive and non-terminating systems, it is difficult to specify and reason com-
positionally about object behavior in terms of pre- and postconditions of the defined
methods. Also, the highly non-deterministic behavior of ABS objects due to internal
suspension points complicates reasoning in terms of pre- and postconditions. Instead,
pre- and postconditions to method definitions are in our setting used to establish a
so-called class invariant.
The class invariant must hold after initialization in all the instances of the class, be main-
tained by all methods, and hold at all processor release points. The class invariant serves
as a contract between the different processes of the object: A method implements its
part of the contract by ensuring that the invariant holds upon termination and when the
method is suspended, assuming that the invariant holds initially and after suspensions.
To facilitate compositional and component-based reasoning about programs, the class
invariant is used to establish a relationship between the internal state and the observable
behavior of class instances. The internal state reflects the values of class attributes,
whereas the observable behavior is expressed as a set of potential communication histo-
ries. By hiding the internal state, class invariants form a suitable basis for compositional
reasoning about object systems.
A user-provided invariant ICpw, hthisq for a class C is a predicate over the attributes w
and the local history hthis, as well as the formal class parameters cp and this, which are
constant (read-only) variables.

9

xxmpxq tvar y; su yy � m1px, caller, destinyq tvar y, return;H :� H � xcaller � this, destiny,m, xy;
xx s yy;H :� H � xÐ this, destiny,m, returny;assume wfpHqu

xxsuspend yy � assert ICpw,Hq ^ wfpHq; w, h1 :� some;H :� H $% h1;
assume ICpw,Hq ^ wfpHq

xxawait b yy � xxsuspend yy;assume b
xx fr :� o!mpeq yy � fr1 :� some;H :� H � xthis Ñ o, fr1,m, ey; fr :� fr1;assume wfpHq
xx v :� fr? yy � v1 :� some;H :� H � xthis �, fr, v1y; v :� v1;assume wfpHq
xxawait v :� fr? yy � xxsuspend; v :� fr? yy
xxawait v :� o.mpeq yy � xx fr1 :� o!mpeq;await v :� fr1? yy
xx v :� o.mpeq yy � xx fr1 :� o!mpeq yy;if o � this then v1 :� m1pe, this, fr1q

else v1 :� some fi;H :� H � xthis �, fr1, v1y; v :� v1;assume wfpHq
xx v :� new Cpeq yy � v1 :� some; H :� H � xthis Ñ v1, C, ey; v :� v1;assume wfpHq
xxif b then s1 else s2 fi yy � if b then xx s1 yy else xx s2 yy fi
xx s1; s2 yy � xx s1 yy; xx s2 yy
xxskip yy � skip
xxabort yy � abort
xx v :� e yy � v :� e
xxreturn e yy � return :� e

Figure 3: The ABS semantic encoding. Here, C is the class enclosing the encoded state-
ments, IC is the class invariant, and fr1, h1, v1 denote fresh variables. The assumptions
reflect that the history of an execution is wellformed, that suspension maintains the local
invariant, and that a waiting condition holds when control returns.

4 Analysis of ABS Programs
The semantics of ABS statements is expressed as an encoding into a sequential sublan-
guage without shared variables, but with a non-deterministic assignment operator [16].
Non-deterministic history extensions capture arbitrary activity of other processes in the
object during suspension. The semantics describes a single object of a given class placed
in an arbitrary environment. The encoding is defined in Section 4.1, and weakest liberal
preconditions are derived in Section 4.2. In Section 4.3 we consider dynamic logic rules
derived from the weakest liberal preconditions. The semantics of a dynamically created
system with several concurrent objects is given by the composition rule in Section 4.4.
Method communication is captured by four events on the communication history, as
illustrated in Fig. 2. For a local call (i.e.,o � o1), all four events are visible on the local
history of o. Similarly, object creation is captured by a message from the parent object
to the generated object, and captured by two events.

4.1 Semantic Definition by a Syntactic Encoding
We consider a simple sequential language, SEQ , where statements have the syntax

s ::� skip | abort | v :� e | s; s | if b then s else s fi | v :� mpeq

This language has a well-established semantics and proof system. In particular, soundness and
relative completeness are discussed in [4, 5, 25]. Let the language SEQ additionally include a
statement for non-deterministic assignment, assigning to y some (type correct) values:

y :� some

In addition we include assert statements in order to state required conditions. The statement

assert b

10

means that one is obliged to verify the condition b for the current state, and has otherwise
no effect. Similarly, assume statements are used to encode known facts. Semantically the
statement

assume b

is understood as if b then skip else abort fi. To summarize, we have the following
syntax for SEQ statements:

s ::� skip | abort | v :� e | s; s | if b then s else s fi | v :� mpeq
| y :� some | assert b | assume b

Method definitions are of the formm1px, caller, destinyq body, where body is of the form tvar y; su.
Thus a body contains declaration of method-local variables followed by a sequence of statements.
For simplicity we use the same body notation as in ABS . However, in ABS the body must end
with a final return statement, whereas SEQ uses a return variable. Since caller and destiny
are not part of the ABS language, they appear as explicit parameters in the encoding.
At the class level, the list of class attributes is augmented with this : Obj and H : SeqrEvtthisus,
representing self reference and the local communication history, respectively. The semantics
of a method is defined from the local perspective of processes. An ABS process with release
points and asynchronous method calls is interpreted as a non-deterministic SEQ process without
shared variables and release points, by the mapping xx yy, as defined in Fig. 3. Expressions and
types are mapped by the identity function. A SEQ process executes on a state wYH extended
with local variables and auxiliary variables introduced by the encoding. As in ABS , there is
read-only access to the formal class parameters. We let wfpHq abbreviate wfpH, tthisuq.
When an instance of mpxq starts execution, the history H is extended by an invocation reaction
event: H :� H � xcaller � this, destiny,m, xy. Process termination is reflected by appending a
completion event: H :� H � xÐ this, destiny,m, returny, where return is the return value of
m. When invoking some method o!mpeq, the history is extended with an invocation event:
H :� H �xthis Ñ o, fr,m, ey, and fetching the result value e is encoded by H :� H �xthis �, fr, ey.
The local effect of executing a release statement is that w and H may be updated due to the
execution of other processes. In the encoding, these updates are captured by non-deterministic
assignments to w and H, as reflected by the encoding of the suspend statement. Here, the
assume and assert statements reflect that the class invariant formalizes a contract between
the different processes in the object. The class invariant must be established before releasing
processor control, and may be assumed when the process continues. For partial correctness
reasoning, we may assume that processes are not suspended infinitely long. Consequently, non-
deterministic assignment captures the possible interleaving of processes in an abstract manner.
In the encoding of object creation, non-deterministic assignment is used to construct object
identifiers, and the history is extended with the creation event. The final wellformedness as-
sumption ensures the parent relationships and uniqueness of the generated identifiers. The
history extension ensures that the values of the class parameters are visible on the communi-
cation history.

Lemma 1 The local history of an object is wellformed for any legal execution

Proof. Preservation of wellformedness is trivial for statements that do not extend the local
history H, and we need to ensure wellformedness after extensions of H. Wellformedness is
maintained by processor release points. Extending the history with invocation or invocation
reaction events maintains wellformedness of the local history. It follows straightforwardly that
wfpHq is preserved by the encoding of statement v :� o.mpeq. For the remaining extensions,
i.e., completion and completion reaction events, wellformedness is guaranteed by the assume
statements following the different extensions.

4.2 Weakest Liberal Preconditions
We may define weakest liberal preconditions for the different ABS statements, reflecting that we
consider partial correctness. The definitions are based on the encoding from ABS to SEQ . The
verification conditions of a class C with invariant ICpw,Hq are summarized in Fig. 4. Condition
(1) applies to the initialization block init of C, ensuring that the invariant is established upon

11

p1q H � xparentpthisq� this, C, cpy ñ wlppinitC , ICpw,Hqq
p2q wfpHq ^Hbw xparentpthisq� this, C, cpy ^ ICpw,Hq ñ wlppmpxq bodym, ICpw,Hqq
p3q wfpHq ^Hbw xparentpthisq� this, C, cpy ^ P pw,Hq ñ wlppmpxq bodym, Qpw,Hqq

Figure 4: Verification conditions for ABS methods. Condition (1) ensures that the class
invariant is established by the class initialization block init. Condition (2) ensures that
each method mpxq body maintains the class invariant. Condition (3) is used to verify
additional properties for a method mpxq body, verifying the pre/post specification P {Q
for the implementation. Notice that this � null follows from each premise.

wlppmpxq tvar y; su, Qq � wlpSEQpm
1px, caller, destinyq tvar y, return;

H :� H � xcaller � this, destiny,m, xy; s;H :� H � xÐ this, destiny,m, returnyu,wfpHq ñ Qq
for y R FVrQs

wlppsuspend, Qq � ICpw,Hq ^ wfpHq ^ @w, h1 . pICpw,Hq ^ wfpHq ñ QqHH$%h1

wlppawait b,Qq � ICpw,Hq ^ wfpHq ^ @w, h1 . pICpw,Hq ^ wfpHq ^ bñ QqHH$%h1

wlppfr :� o!mpeq, Qq � @fr1 . pwfpHq ñ Qqfr,Hfr1,H�xthisÑo,fr1,m,ey

wlppv :� fr?, Qq � @v1 . pwfpHq ñ Qqv,Hv1,H�xthis�,fr,v1y
wlppawait v :� fr?, Qq � wlppsuspend; v :� fr?, Qq
wlppawait v :� o.mpeq, Qq � wlppfr1 :� o!mpeq;await v :� fr1?, Qq
wlppv :� o.mpeq, Qq � @fr2 .if o � this then pwlpSEQpv

1 :� m1pe, this, fr1q, Q1qqfr
1,H

fr2,H�xthisÑo,fr2,m,ey

else p@v1 . Q1qfr
1,H

fr2,H�xthisÑo,fr2,m,ey

where Q1 � pwfpHq ñ Qqv,Hv1,H�xthis�,fr1,v1y

wlpSEQpv
1 :� m1peq, Qq � pwlpSEQpm

1pxq body, Qy,v1

y1,returnqq
x,y1

e,y

where y are the local variables of the caller (including caller), and y1 are fresh logical variables
wlpSEQpm

1pxq body, Qq � wlppbody, Qq
wlppv :� new Cpeq, Qq � @v1 . pwfpHq ñ Qqv,Hv1,H�xthisÑv1,C,ey

wlppvar y,Qq � @y .Q
wlppif b then s1 else s2 fi, Qq � if b then wlpps1, Qq else wlpps2, Qq
wlpps1; s2, Qq � wlpps1,wlpps2, Qqq
wlppskip, Qq � Q
wlppabort, Qq � true
wlppv :� e,Qq � Qv

e

wlppreturn e,Qq � Qreturn
e

Figure 5: Weakest liberal preconditions for ABS statements. We let fr1, fr2, h1, and v1,
denote fresh variables, and let wlpSEQ denote weakest liberal precondition for SEQ .

termination. We may reason about possible processor release points in init by the weakest
liberal preconditions given below. Condition (2) applies to each method mpxq body defined in
C; ensuring that each method maintains the class invariant. Condition (3) is used in order to
prove additional knowledge for local synchronous calls, where P is the precondition and Q is
the postcondition (given by a user specification).
The weakest liberal precondition for non-deterministic assignment is given by:

wlppy :� some , Qq � @y .Q

where the universal quantifier reflects that the chosen value of y is not known in the prestate.
The weakest liberal preconditions for assert and assume statements are given by:

wlppassert b,Qq � b^Q and wlppassume b,Qq � bñ Q

12

In addition, let Rx
e , where x and e are of the same length, denote R where every free occurrence

of each xi P x is replaced by ei. Weakest liberal preconditions for the different ABS statements
are summarized in Fig. 5. These are straightforwardly derived from the encoding in Fig. 3,
where the quantifiers reflect the non-deterministic assignments in the encoding.
The execution control is explicitly transferred by local synchronous calls, which allows the called
method to be executed from a state where the invariant does not hold. The weakest liberal
precondition of the local synchronous call statement is defined in terms of the weakest liberal
precondition of the called method.

4.3 Dynamic Logic
The principle of dynamic logic is the formulation of statements about program behavior by
integrating programs and formulae within a single language. The formula ψ ñ xsyφ expresses
that a program s, starting in a state where ψ is true, will terminate in a state in which φ
holds. The formula ψ ñ rssφ does not demand termination and describes that if s is executed
in a state where ψ holds and the execution terminates, then φ holds in the final state. We are
only concerned with partial correctness reasoning, where termination is not required, thus the
diamond modality x�y will not be used in our context.
The state of a program evolves by the execution of assignments. Accordingly, substitution in
the formulae is required. In this paper, we develop a forward reasoning system where the effect
of substitutions in the precondition is delayed. This is achieved by the update mechanism [6].
An update tv :� tu on an expression e, i.e. tv :� tu e, can be evaluated as evt . A dynamic
formula rv :� e; ssφ where assignment is the first statement can be rewritten to tv :� τpequrssφ,
in which τ is a function evaluating the (side-effect free) terminal expression e and s is the rest
of the program. Since an update can only be applied to terms and formulae that do not contain
programs, the effect of update on the formula rssφ is accumulated and delayed until s has
been completely and symbolically executed. The parallel update tv1 :� τpe1q||...||vn :� τpenqu
represents the accumulated updates, which will be applied simultaneously on the formula/term.
Upon conflict when vi � vj but τpeiq � τpejq where i j, the later update tvj :� τpejqu wins.
A sequent ψ1, ..., ψn $ φ1, ..., φn represents a set of assumption formulae ψ1, ..., ψn and a set of
formulae φ1, ..., φn to be proved. We say a sequent is valid if at least one formula φi follows
from the assumptions. Thus, a sequent can be interpreted as ψ1 ^ ... ^ ψn ñ φ1 _ ... _ φn.
Sequent calculus rules :

ruleName
Γ1 $ ∆1 ... Γn $ ∆n

Γ $ ∆

always have zero, one, or more sequents as premises on the top and one sequent as conclusion
at the bottom. For simplicity, we use capital Greek letters to denote (possibly empty) sets of
formulae. Semantically, a rule states the validity of all n premises implies the validity of the
conclusion. Operationally, rules are typically applied bottom-up, reducing the provability of
the conclusion to that of the premises. In Fig. 6 we present a selection of the sequent rules.

andRight
Γ $ φ,∆ Γ $ ψ,∆

Γ $ φ^ ψ,∆
transitivity

Γ $ ψ,∆ Γ $ ψ ñ φ,∆

Γ $ φ,∆

impRight
Γ, φ $ ψ,∆

Γ $ φñ ψ,∆
allRight

Γ $ φvc ,∆

Γ $ @v . φ,∆
(with a fresh constant c which is not used in Γ)

Figure 6: Selected sequent rules.

Since dynamic logic formulae and weakest liberal preconditions are closely related, namely
ψ ñ rssφ is the same as ψ ñ wlpps, φq, we derive dynamic logic formulae for each ABS

13

p1q ΓC $ pH � xparentpthisq� this, C, eyq ñ rinitCsICpw,Hq
p2q ΓC $ pwfpHq ^ ICpw,Hqq ñ rH :� H � xcaller � this, destiny,m, xy; bodym;

H :� H � xÐ this, destiny,m, returnyspwfpHq ñ ICpw,Hqq
p3q ΓC $ pwfpHq ^ P pw,Hqq ñ rH :� H � xcaller � this, destiny,m, xy; bodym;

H :� H � xÐ this, destiny,m, returnyspwfpHq ñ Qpw,Hqq

Figure 7: ABS verification conditions for a class C in dynamic logic, derived from
Fig. 4. Conditions of form (1) and (2) verify the class invariant IC and conditions
of form (3) verify user defined pre/post specification pairs P/Q. Here ΓC denotes the
set of method specifications in C (including invariance IC), and which are proved by
verification conditions (2) and (3).

awaitCond

$ ICpw,Hq ^ wfpHq
$ @w, h1 . tH :� H $% h1u pICpw,Hq ^ wfpHq ^ τpeq ñ rssφq

$ rawait e; ssφ

async
$ @fr1 . tH :� H � xthis Ñ o, fr1,m, ey|| fr :� fr1u pwfpHq ñ rssφq

$ rfr � o!mpeq; ssφ

get
$ @v1 . tH :� H � xthis �, fr, v1y|| v :� v1u pwfpHq ñ rssφq

$ rv :� fr?; ssφ

new
$ @v1 . tH :� H � xthis Ñ v1, C, ey|| v :� v1u pwfpHq ñ rssφq

$ rv � new Cpeq; ssφ

syncIntra

Γ
�

impxq sat pPi, Qiq $ pDfr1, h1, w1, v1 .H ew xthis �, fr1, vy^
RH,w,v

h1,w1,v1
�

ippPiq
x,caller,destiny,w,H
e,this,fr1,w1,h2

ñ pQiq
caller,destiny,return,H
this,fr1,v,poppHq qq ñ rssφ

Γ $ Rñ rv :� mpeq; ssφ

Figure 8: Dynamic logic rules for basic ABS communication statements. fr1, h1, v1
are fresh variables. The last rule assumes neither P , R, nor e, refer to return, and
h2 � h1 � xthis Ñ this, fr1,m, ew,v

w1,v1y.

statement from Section 4.2. In Fig. 7 we present the sequents for verifying methods and the
initialization of classes, where ΓC denotes the set of method specifications and invariance of the
class C. These three sequents are derived from the ones in Fig. 4, respectively.
The first statement s1 in the formula rs1; ssφ determines which sequent rule to apply, typically
reducing the formula to rssφ and the reduction continues repeatedly until the remaining state-
ments s are reduced. In Fig. 8, we present the sequent rules for the await condition (awaitCond),
asynchronous message call (async), get statement for synchronously fetching the result from the
future (get), object creation (new) and synchronous intra-call (syncIntra). The rule for await
statement gives two premises, one dealing with the pre-state and one dealing with the post-
state, both reflecting that the invariant must hold. The sequent rule async says that the validity
of the reduced formula rssφ should be proved under the condition of the updated history, the
generated future and the assumption of history wellformedness. The rules get and new fol-
low the same pattern as async. For synchronous intra-calls we allow local proofs of the called
method to be reused: In the sequent rule syncIntra, the assumption uses a selection of pre- and
post condition pairs of the called method (typically those already verified). At the right-hand
side of the sequent, we need to prove the reduced formula rssφ under the assumption of the

14

update tv :� tu e � evt
abort rabort; ssφ � true
skip rskip; ssφ � rssφ

return rreturn e; sφ � treturn :� τpequ φ

assign rv :� e; ssφ � tv :� τpequ rssφ

declInit rT v � e; ssφ � rv1 :� e; svv1sφ

decINoInit rT v; ssφ � rv1 :� defaultT ; svv1sφ

ifElse rif b then s1 else s2 fi; ssφ � if b then rs1; ssφ else rs2; ssφ fi

suspend rsuspend; ssφ � rawait true; ssφ
awaitFuture rawait v :� fr?; ssφ � rsuspend; v :� fr?; ssφ

awaitCall rawait v :� o.mpeq; ssφ � rfr1 :� o!mpeq; await v :� fr1?; ssφ

syncCall rv :� o.mpeq; ssφ � if o � this then rv :� mpeq; ssφ

else rfr1 :� o!mpeq; v :� fr1?; ssφ fi

Figure 9: Equivalent substitutions for other ABS statements. Here τ is a function
evaluating an expression e, primes denote fresh variables, φ is the postcondition, s is the
remaining program yet to be executed, svv1 is s with all (free) occurrences of v replaced
by v1, and defaultT is the default value defined for type T .

starting condition R (can be none) and the chosen method contract(s) with the substitution of
actual method parameters.
The rules for the rest of the ABS statements can be defined as substitution rules. For instance,
rsuspend; ssφ can be rewritten to rawait true; ssφ, and we can then apply the sequent rule
awaitCond. The substitution rules are introduced in Fig. 9 with the following syntax

ruleName φ � φ1

which expresses the formula φ can be rewritten to φ1.

4.4 Object Composition
By organizing the state space in terms of only locally accessible variables, including a local
history variable recording communication messages local to the object, we obtain a composi-
tional reasoning system, where it suffices to compare the local histories of the composed objects.
For this purpose, we adapt a composition method introduced by Soundarajan [27, 28]. When
composing objects, the local histories of the composed objects are merged to a common history
containing all the events of the composed objects. Local histories must agree with a common
wellformed history when composed. Thus for a set O of objects with wellformed history H, we
require that the projection of H on each object, e.g. o, is the same as the local history ho of
object o:

H{tou � ho

The observable behavior of an object o : Cpeq can be captured by a prefix-closed history invari-
ant, Io:Cpeqphoq. If only a subset of the methods should be visible, the history invariant should
be restricted to the desired external alphabet.
As discussed above, reasoning inside a class is based on the class invariant, which must be
satisfied at release points and after method termination and need not be prefix-closed. For
instance, ‘the history has equally many calls to o1 and o2’ can be a possible class invariant, but
not a history invariant.
Therefore the history invariant is in general weaker than the class invariant, i.e.,

ICpw,Hq ñ Ithis:CpcpqpHq

15

By hiding the internal state variables of an object o of class C, an external, prefix-closed history
invariant Io:Cpeqphoq defining its observable behavior on its local history ho may be obtained
from the class invariant of C:

Io:Cpeqphoq � Dh1, w . ho ¤ h1 ^ pICpw, h
1qqthis,cp

o,e

The substitution replaces the free occurrence of this with o and instantiates the formal class
parameters with the actual ones, and the existential quantifier on the attributes hides the local
state variables, whereas the existential quantifier on h1 ensures that the history invariant is
prefix-closed. Note that if the class invariant already is prefix-closed, the history invariant
reduces to Dw . pICpw, hoqq

this,cp
o,e . Also observe that a prefix-closed property P phoq is the same

as the property @h ¤ ho . P phq.
Alternatively, a history invariant can be verified by showing that it is maintained by each
statement s affecting the local history, i.e., one must prove

pIthis:CpcpqpHq ^ P q $ rsspQñ Ithis:CpcpqpHqq

where P and Q are the pre- and postconditions of s used in the proof outline of the class.
We next consider a composition rule for a (sub)system O of objects o : Cpeq together with
dynamically generated objects. The invariant IOpHq of such a subsystem is given by

IOpHq � wfpH,newidpO Y newobpHqqq
©

po:CpeqqPOYnewobpHq

Io:CpeqpH{touq

where H is the history of the subsystem. The wellformedness property serves as a connection
between the local histories, which are by definition over disjoint alphabets.
The quantification ranges over all objects in O as well as all generated objects in the composi-
tion, which is a finite number at any execution point. Note that the system invariant is obtained
directly from the external history invariants of the composed objects, without any restrictions
on the local reasoning. This ensures compositional reasoning. Notice also that we consider dy-
namic systems where the number and identities of the composed objects are non-deterministic.
When considering a closed subsystem, one may add the assumption

poidpHqztnulluq � newidpO Y newobpHqq

Reasoning about a global system can be done as above assuming the existence of an initial
object main of some class Main, such that all objects are created by main or generated objects.
Thus main is an ancestor of all objects. The global invariant of a total system of dynami-
cally created objects may be constructed from the history invariants of the composed objects,
requiring wellformedness of global history. According to the rule above, the global invariant
Itmain:MainupHq of a global system with history H is

wfpH,newidpnewobpHqq Y tmainuq^
poidpHqztnull,mainuq � newidpnewobpHqq

�
po:CpeqqPnewobpHq

Io:CpeqpH{touq

assuming true as the class invariant for main. Since main is the initial root object, the creation
of main is not reflected on the global history H, i.e., main R newidpnewobpHqq.

5 Reader Writer Example
In this section we study a fair implementation of the reader/writer problem in ABS . We define
safety invariants and illustrate the reasoning system by verification of these invariants.

16

interface DB{
String read(Int key);
Unit write(Int key, String element);}

interface RWinterface{
Unit openR();
Unit closeR();
Unit openW();
Unit closeW();
String read(Int key);
Unit write(Int key, String element);}

class RWController implements RWinterface{
DB db; Set<Caller> readers := EmptySet;
Caller writer := None; Int pr := 0;

{db := new DataBase();}

Unit openR(){
await writer = None;
readers := insertElement(readers, caller);}

Unit closeR(){
readers := remove(readers, caller); }

Unit openW(){
await writer = None; writer := caller;
readers := insertElement(readers, caller);}

Unit closeW(){
await writer = caller; writer := None;
readers := remove(readers, caller);}

String read(Int key){
Fut<String> fr; String data;
await contains(readers, caller);
pr := pr + 1; fr := db!read(key); await data := fr?; pr := pr �1;
return data;}

Unit write(Int key, String value){
await caller = writer && pr = 0 && (readers = EmptySet ||
(contains(readers, writer) && size(readers) = 1));
db.write(key, value);}

}

Figure 10: Implementation of the fair reader/writer controller. See Appendix. C.1 for
full implementation including data type definitions and implementation of the DataBase
class.

5.0.1 Implementation

We assume given a shared database db, which provides two basic operations read and write.
In order to synchronize reading and writing activity on the database, we consider the class
RWController as implemented in Fig. 10, where caller is an implicit method parameter. All
client activity on the database is assumed to go through a single RWController object. The
RWController provides read and write operations to clients and in addition four methods used
to synchronize reading and writing activity: openR (OpenRead), closeR (CloseRead), openW
(OpenWrite) and closeW (CloseWrite). A reading session happens between invocations of openR
and closeR and writing between invocations of openW and closeW. Several clients may read the

17

database at the same time, but writing requires exclusive access. A client with write access may
also perform read operations during a writing session. Clients starting a session are responsible
for closing the session.
Internally in the class, the attribute readers contains a set of clients currently with read access
and writer contains the client with write access. Additionally, the attribute pr counts the
number of pending calls to method db.read. (A corresponding counter for writing is not needed
since db.write is called synchronously.) In order to ensure fair competition between readers and
writers, invocations of openR and openW compete on equal terms for a guard writer � null. The
set of readers is extended by execution of openR or openW, and the guards in both methods
ensure that there is no writer. If there is no writer, a client gains write access by execution
of openW. A client may thereby become the writer even if readers is non-empty. The guard
in openR will then be false, which means that new invocations openR will be delayed, and the
write operations initiated by the writer will be delayed until the current reading activities are
completed. The client with write access will eventually be allowed to perform write operations
since all active readers (other than itself) are assumed to end their sessions at some point. Thus
even though readers may be non-empty while writer contains a client, the controller ensures that
reading and writing activity cannot happen simultaneously on the database. The complete
implementation of the example can be found in Appendix. C.1. For simplicity we have omitted
return void statements.

5.0.2 Specification and Verification

For the RWController class in Fig. 10, we may define a class invariant expressing a relation
between the internal state of class instances and observable communication. The internal
state is given by the values of the class attributes. Functions are defined to extract relevant
information from the local communication history. We define Readers : SeqrEvs Ñ SetrObjs:

Readerspεq � H
Readersph � xÐ this, fr1, openR,_yq � Readersphq Y tirevph, fr1q.calleru
Readersph � xÐ this, fr1, openW,_yq � Readersphq Y tirevph, fr1q.calleru
Readersph � xÐ this, fr1, closeR,_yq � Readersphqztirevph, fr1q.calleru
Readersph � xÐ this, fr1, closeW,_yq � Readersphqztirevph, fr1q.calleru
Readersph � othersq � Readersphq

where others matches all events not matching any of the above cases. The function irevph, fr1q
extracts the invocation reaction event, containing the future fr1, from the history h. Definition
of irev can be found in Appendix. C.2. The caller is added to the set of readers upon termination
of openR or openW, and the caller is removed from the set upon termination of closeR or closeW.
We furthermore assume a function Writers, defined over completions of openW and closeW in
a corresponding manner, see Appendix. C.3. Next we define Reading : SeqrEvs Ñ Nat by:

Readingphq � #ph{xthis Ñ db,_, read,_yq �#ph{xthis �,Futuresph, db, readq,_yq

where Futuresph, db, readq � ToSetpph{xthis Ñ db,_, read,_yq.futureq. Thus the function
Readingphq computes the difference between the number of initiated calls to db.read and the
corresponding reaction events. The function Writing(h) follows the same pattern over calls to
db.write, the definition can be found in Appendix. C.4.
The class invariant I is defined over the class attributes and the local history by:

I � I1 ^ I2 ^ I3 ^ I4

where
I1 � ReaderspHq � readers
I2 � WriterspHq � twriteru
I3 � ReadingpHq � pr
I4 � OKpHq

where twriteru � H if writer � null. The invariants I1, I2, and I3, illustrate how the values of
class attributes may be expressed in terms of observable communication, e.g. ReaderspHq has

18

$ pwfpHq ^ ICq ñ tH :� H �HbeginupIC ^ wfpHqq
$ pwfpHq ^ ICq ñ @w, h1 . tH :� H �Hbegin $% h1upIC ^ wfpHq ^ pwriter = Noneq ñ
treaders := insertElement(readers, caller)||H :� H �HendupwfpHq ñ ICqq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; await writer = None;
readers := insertElement(readers, caller);H :� H �HendspwfpHq ñ ICq

Figure 11: Verification details for the body of method openR with respect to the invari-
ant I1 : ReaderspHq � readers. Hbegin : xcaller � this, destiny, openR, xy, Hend : xÐ
this, destiny, openR, returny. Remark that the ordering between readers is not concerned. The
verification condition follows from insertElement(x,s)= sY{x}.

the same value as readers. The predicate OK : SeqrEvs Ñ Bool is defined inductively over the
history by:

OKpεq � true
OKph � xÐ this, fr1, openR,_yq � OKphq ^#Writersphq � 0 (1)
OKph � xÐ this, fr1, openW,_yq � OKphq ^#Writersphq � 0 (2)
OKph � xthis Ñ db, fr1,write,_yq � OKphq ^ Readingphq � 0^#Writersphq � 1 (3)
OKph � xthis Ñ db, fr1, read,_yq � OKphq ^Writingphq � 0 (4)
OKph � othersq � OKphq

Here, conditions (1) and (2) reflect the fairness condition: invocations of openR and openW
compete on equal terms for the guard writer � null, which equals WriterspHq � H by I2.
If writer is different from null, conditions (1) and (2) additionally ensure that no clients can
be included in the readers set or be assigned to writer. Condition (3) captures the guard in
write: when invoking db.write, there cannot be any pending calls to db.read. Correspondingly,
Condition (4) expresses that when invoking db.read, there is no incomplete writing operation.
The invariant I implies that no reading and writing activity happens simultaneously:

ReadingpHq � 0_WritingpHq � 0

Notice that I is (by construction) prefix-closed, thus this property holds at all times, and
expresses the desired mutual exclusion of reading and writing at all times (not only at release
points).
As a verification example, the successful verification of method openR with respect to the
invariant I1 : ReaderspHq � readers is shown by the proof outline presented in Fig. 11. The
body of openR is analyzed following the pre/post specification outlined in Fig. 7. The complete
verification of this case study can be found in Appendix. C.5.
The invariant OKpHq is prefix-closed and may be used as a composable history invariant.
Remark that the property Writing (H) = 0 can be verified as a part of the class invariant since
db.write is only called synchronously. This property is however not contributing to the history
invariant for RWController objects since it is not prefix-closed.

6 Related and Future Work
Related work.Reasoning about distributed and object-oriented systems is challenging, due to
the combination of concurrency, compositionality and object orientation. Moreover, the gap in
reasoning complexity between sequential and distributed, object-oriented systems makes tool-
based verification difficult in practice. A recent survey of these challenges can be found in [2].
The present approach follows the line of work based on communication histories to model object
communication events in a distributed setting [7, 8, 19]. Objects are concurrent and interact
solely by method calls and futures, and remote access to object fields are forbidden. Object
generation is reflected in the history by means of creation events. This enables compositional
reasoning of concurrent systems with dynamic generation of objects and aliasing.

19

The ABS language provides a natural model for object-oriented distributed systems, with the
advantage of explicit programming control of blocking and non-blocking calls. Other object-
oriented features such as inheritance is not considered here; however, our approach may be
combined with behavioral subtyping, as well as lazy behavioral subtyping which has been worked
out for the same language setting [17]. History invariants can be naturally included in interface
definitions, specifying the external behavior of the provided methods. Adding interfaces to our
formalism would affect the composition rule in that events not observed through the interface
must be hidden.
Olderog and Apt consider transformation of program statements preserving semantical equiv-
alence [24]. This approach is extended in [13] to a general methodology for transformation of
language constructions resulting in sound and relative complete proof systems. The approach
resembles our encoding, but is non-compositional in contrast to our work. In particular, extend-
ing the approach of [13] to multi-threaded systems will in general require interference freedom
tests.
The four-event semantics applied in the current paper is based on [15] which leads to disjoint
alphabets for different objects. The reasoning involves specifications given in terms of (internal)
class invariants and (external) history invariants for single objects and (sub)systems of concur-
rent objects. A class invariant gives rise to a history invariant describing the external behavior
of an object of the class, and as composition rule, similar to previous approaches [27,28], gives
global history invariants for a system or subsystem. Dylla and Ahrendt [2] present a compo-
sitional verification system in dynamic logic for Creol but without futures. The denotational
Creol semantics features the similar four communication events, there called ‘invoc’, ‘begin’,
‘end’, and ‘comp’. However, the reasoning system [2] is based on the two-event semantics of [16],
which requires more complex rules than the present one. In the current work, we revise the
four-event semantics [15] to deal with futures [18], allowing several readings of the same future,
possibly by different objects.
A reasoning system for futures has been presented in [12], using a combination of global and local
invariants. Futures are treated as visible objects rather than reflected by events in histories.
In contrast to our work, global reasoning is obtained by means of global invariants, and not by
compositional rules. Thus the environment of a class must be known at verification time.
Future work. We believe that our verification system is suitable for implementation within
the KeY framework. Having support for (semi-)automatic verification, such an implementation
will be valuable when developing larger case studies for the ABS programs. Additionally, it is
natural to investigate how our reasoning system would benefit by extending it with rely/guar-
antee style reasoning. We may for instance use callee interfaces as an assumption in order to
express properties of the values returned by method calls. More sophisticated techniques may
also be used, e.g., [11,22] adapts rely/guarantee style reasoning to history invariants. The rely
part may be expressed as properties over input events, whereas the guaranteed behavior is asso-
ciated with output events. Such techniques however, requires more complex object composition
rules, and are not considered here since the focus is on class invariants.

7 Conclusion
In this paper we present a compositional reasoning system for distributed objects based on the
concurrency and communication model of the ABS language with futures. Compositional rea-
soning is facilitated by expressing object properties in terms of observable interaction between
the object and its environment, recorded on communication histories. Method invocation, writ-
ing/reading of futures, and object creation, are reflected by two kinds of events each, in such a
way that different objects have different alphabets. This is essential for obtaining a simple rea-
soning system. Specifications in terms of history invariants may then be derived independently
for each object and composed in order to derive properties for object systems. At the class
level, invariants define relations between the class attributes and the observable communication
of class instances. By construction, the wlp system for class analysis is sound and complete
relative to the given semantics, and the presented dynamic logic system is derived from wlp.
This system is easy to apply in the sense that class reasoning is similar to standard sequential
reasoning, but with the addition of effects on the local history for statements involving method

20

calls. The presented reasoning system is illustrated by the reader-writer example.

Acknowledgements. The authors would like to thank Wolfgang Ahrendt and Richard Bubel
for fruitful discussions on the subject.

References
[1] E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen. Behavioral interface description of

an object-oriented language with futures and promises. Journal of Logic and Algebraic
Programming, 78(7):491–518, 2009.

[2] W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous objects.
Science of Computer Programming, 2010.

[3] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, Oct. 1985.

[4] K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on Pro-
gramming Languages and Systems, 3(4):431–483, Oct. 1981.

[5] K. R. Apt. Ten years of Hoare’s logic: A survey — Part II: Nondeterminism. Theoretical
Computer Science, 28(1–2):83–109, Jan. 1984.

[6] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach. LNCS 4334. Springer, 2007.

[7] M. Broy and K. Stølen. Specification and Development of Interactive Systems. Monographs
in Computer Science. Springer, 2001.

[8] O.-J. Dahl. Can program proving be made practical? In M. Amirchahy and D. Néel,
editors, Les Fondements de la Programmation, pages 57–114. Institut de Recherche
d’Informatique et d’Automatique, Toulouse, France, Dec. 1977.

[9] O.-J. Dahl. Object-oriented specifications. In Research directions in object-oriented pro-
gramming, pages 561–576. MIT Press, Cambridge, MA, USA, 1987.

[10] O.-J. Dahl. Verifiable Programming. Intl. Series in Computer Science. Prentice Hall, 1992.

[11] O.-J. Dahl and O. Owe. Formal methods and the RM-ODP. Research Report 261, De-
partment of Informatics, University of Oslo, Norway, May 1998.

[12] F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. de Nicola, editor, Proc. 16th European Symposium on Programming (ESOP’07), volume
4421 of LNCS, pages 316–330. Springer, Mar. 2007.

[13] F. S. de Boer and C. Pierik. How to Cook a Complete Hoare Logic for Your Pet OO
Language. In Formal Methods for Components and Objects (FMCO’03), volume 3188 of
LNCS, pages 111–133. Springer, 2004.

[14] C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of distributed
systems: Component reasoning for concurrent objects. Research Report 401, Department
of Informatics, University of Oslo, Norway, Oct. 2010.

[15] C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of distributed
systems: Component reasoning for concurrent objects. Journal of Logic and Algebraic
Programming, in press, 2012. issn = "1567-8326", doi = "10.1016/j.jlap.2012.01.003".

[16] J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects with asyn-
chronous method calls. In Proceedings of the IEEE International Conference on Software
Science, Technology & Engineering(SwSTE’05), pages 141–150. IEEE Computer Society
Press, Feb. 2005.

[17] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. Journal
of Logic and Algebraic Programming, 79(7):578–607, 2010.

[18] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core language
for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and M. M. Bon-
sangue, editors, Proc. 9th International Symposium on Formal Methods for Components
and Objects (FMCO 2010), volume 6957 of LNCS, pages 142–164. Springer, 2011.

21

[19] C. A. R. Hoare. Communicating Sequential Processes. Intl. Series in C.S., Prentice Hall,
1985.

[20] International Telecommunication Union. Open Distributed Processing - Reference Model
parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.

[21] A. S. A. Jeffrey and J. Rathke. Java Jr.: Fully abstract trace semantics for a core Java
language. In Proc. European Symposium on Programming, LNCS 3444, pages 423–438.
Springer, 2005.

[22] E. B. Johnsen and O. Owe. Object-oriented specification and open distributed systems. In
O. Owe, S. Krogdahl, and T. Lyche, editors, From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, volume 2635 of LNCS, pages 137–164. Springer,
2004.

[23] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed con-
current objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

[24] E.-R. Olderog and K. R. Apt. Fairness in parallel programs: The transformational ap-
proach. ACM Transactions on Programming Languages, 10(3):420–455, July 1988.

[25] C. Pierik and F. S. d. Boer. A Syntax-Directed Hoare Logic for Object-Oriented Program-
ming Concepts. Formal Methods for Open Object-Based Distributed Systems (FMOODS)
VI. Volume 2884 of LNCS, pages 64–78. Springer, 2003.

[26] J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to concurrent
components. In T. D’Hondt, editor, European Conference on Object-Oriented Programming
(ECOOP 2010), volume 6183 of LNCS, pages 275–299. Springer, June 2010.

[27] N. Soundararajan. Axiomatic semantics of communicating sequential processes. ACM
Transactions on Programming Languages and Systems, 6(4):647–662, Oct. 1984.

[28] N. Soundararajan. A proof technique for parallel programs. Theoretical Computer Science,
31(1-2):13–29, May 1984.

A Syntax of the ABS functional sublanguage
BNF syntax for the ABS functional sublanguage with terms t, data type definitions Dd , and
function definitions F is given below:

Dd ::� data D � rCopT�qs� data type declaration
F ::� def T fnprT xs�q �� rhs function declaration
t ::� Cope�q | fnpres�q constructor and function application

| pe, eq pair constructor
p ::� v | Copp�q | pp, pq pattern
rhs ::� e pure expressions

| case etb�u case expression
b ::� p ñ rhs branch

Data types are implicitly defined by declaring constructor functions Co. The right hand side
of the definition of a function fn may be a nested case expression. Patterns include constructor
terms and pairs over constructor terms. The functional if-then-else construct and infix operator
are not included in the syntax above. We use � and � for the usual numbers, and and or for
booleans, and � for equality.

B Auxiliary Functions
Functions may extract information from the history. In particular, we define oid : SeqrEvs Ñ
SetrObjs extracting all object identities occurring in a history, as follows:

oidpεq � tnullu oidph $ γq � oidphq Y oidpγq
oidpxoÑ o1, u,m, eyq � to, o1u Y oidpeq oidpxo1 � o, u,m, eyq � to1, ou Y oidpeq
oidpxÐ o, u,m, eyq � tou Y oidpeq oidpxo�, u, eyq � tou Y oidpeq
oidpxoÑ o1, C, eyq � to, o1u Y oidpeq oidpxo1 � o, C, eyq � to1, ou Y oidpeq

22

where γ : Ev, and oidpeq returns the set of object identifiers occurring in the expression list e.

C Reader Writer Example in ABS

C.1 Complete implementation

module RW;

data Caller = Readers | Writers | None;

interface RWinterface{
Unit openR();
Unit closeR();
Unit openW();
Unit closeW();
String read(Int key);
Unit write(Int key, String element);

}

interface DB{
String read(Int key);
Unit write(Int key, String element);

}

class DataBase implements DB{
Map<Int, String> map := EmptyMap;

String read(Int key){
return lookup(map, key);

}

Unit write(Int key, String element){
map := put(map, key, element);

}
}

class RWController implements RWinterface{
DB db; Set<Caller> readers := EmptySet;
Caller writer := None; Int pr := 0;

{db := new DataBase();}

Unit openR(){
await writer = None;
readers := insertElement(readers, caller);

}

Unit closeR(){
readers := remove(readers, caller);

}

Unit openW(){
await writer = None; writer := caller;
readers := insertElement(readers, caller);

}

Unit closeW(){
await writer = caller; writer := None;
readers := remove(readers, caller);

23

}

String read(Int key){
Fut<String> fr; String data;
await contains(readers, caller);
pr := pr + 1; fr := db!read(key); await data := fr?; pr := pr �1;
return data;

}

Unit write(Int key, String value){
await caller = writer && pr = 0 && (readers = EmptySet ||
(contains(readers, writer) && size(readers) = 1));
db.write(key, value);

}
}

C.2 Definition of irev
irev : SeqrEvs � FidÑ IREv

irevpε, fr1q �K
irevph � event, fr1q � if fr1 P event then event else irevph, fr1q fi

C.3 Definition of Writers
Writers : SeqrEvs Ñ SetrObjs

Writerspεq � H
Writersph � xÐ this, fr1, openW,_yq � Writersphq Y tirevph, fr1q.calleru
Writersph � xÐ this, fr1, closeW,_yq � Writersphqztirevph, fr1q.calleru
Writersph � othersq � Writersphq

C.4 Definition of Writing
Writing : SeqrEvs Ñ Nat

Writingphq � #ph{xthis Ñ db,_,write,_yq �#ph{xthis �,Futuresph, db,writeq,_yq
Futuresph, db,writeq � ToSetpph{xthis Ñ db,_,write,_yq.futureq

C.5 Proof outline
In the proof outlines we present the first and the final derived sequents for each method of the
RWController class. The corresponding proof details can be found in Appendix. C.6.

For simplicity, the invocation reaction event and the completion event are abbreviated to Hbegin

andHend respectively. Hbegin : xcaller � this, destiny,m, xy andHend : xÐ this, destiny,m, returny.

C.5.1 openR

$ pwfpHq ^ ICq ñ tH :� H �HbeginupIC ^ wfpHqq
$ pwfpHq ^ ICq ñ @w, h1 . tH :� H �Hbegin $% h1upIC ^ wfpHq ^ pwriter = Noneq ñ
treaders := insertElement(readers, caller)||H :� H �HendupwfpHq ñ ICqq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; await writer = None;
readers := insertElement(readers, caller);H :� H �HendspwfpHq ñ ICq

24

C.5.2 openW

$ pwfpHq ^ ICq ñ tH :� H �HbeginupIC ^ wfpHqq
$ pwfpHq ^ ICq ñ @w, h1 . tH :� H �Hbegin $% h1upIC ^ wfpHq ^ pwriter = Noneq ñ
twriter := caller || readers := insertElement(readers, caller)||H :� H �HendupwfpHq ñ ICqq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; await writer = None; writer := caller;
readers := insertElement(readers, caller);H :� H �HendspwfpHq ñ ICq

C.5.3 closeR
$ pwfpHq ^ ICq ñ tH :� H �Hbegin �Hend|| readers := remove(readers, caller)upwfpHq ñ ICq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; readers := remove(readers, caller);H :� H �HendspwfpHq ñ ICq

C.5.4 closeW
$ pwfpHq ^ ICq ñ tH :� H �HbeginupIC ^ wfpHqq
$ pwfpHq ^ ICq ñ @w, h1 . tH :� H �Hbegin $% h1upIC ^ wfpHq ^ pwriter = callerq ñ
twriter := None || readers := remove(readers, caller)||H :� H �HendupwfpHq ñ ICqq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; await writer = caller; writer := None;
readers := remove(readers, caller);H :� H �HendspwfpHq ñ ICq

C.5.5 read
$ pwfpHq ^ ICq ñ tH :� H �Hbegin||fr :� null||data :� εupIC ^ wfpHqq
$ pwfpHq ^ ICq ñ @w, h1 . tH :� H �Hbegin $% h1||fr :� null||data :� εu
pIC ^ wfpHq ^ contains(readers, caller)ñ
@fr1 . tpr :� pr � 1||H :� H � xthis Ñ db, fr1, read, keyy||fr :� fr1upIC ^ wfpHqqq

$ pwfpHq ^ ICq ñ @w, h1 . tH :� H �Hbegin $% h1||fr :� null||data :� εu
pIC ^ wfpHq ^ contains(readers, caller)ñ
@w1, h2, fr1 . tpr :� pr � 1||H :� H � xthis Ñ db, fr1, read, keyy $% h2||fr :� fr1upIC ^ wfpHqq ñ
@v1 . tH :� H � xthis �, fr, v1y �Hend||data:� v1||pr := pr -1||return :�dataupwfpHq ñ ICqq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; Fut<String> fr; String data; await contains(readers, caller);
pr := pr + 1; fr := db!read(key); await data := fr?; pr := pr -1; return data;H :� H �HendspwfpHq ñ ICq

C.5.6 write

B : caller = writer && pr = 0 &&
(readers = EmptySet || (contains(readers, writer) && size(readers) = 1))

$ pwfpHq ^ ICq ñ tH :� H �HbeginupIC ^ wfpHqq
$ pwfpHq ^ ICq ñ @w, h1, fr1, v1 . tH :� H �Hbegin $% h1upIC ^ wfpHq ^ Bñ
tH :� H � xthis Ñ db, fr1,write,(key,value)y � xthis �, fr1, v1y �HendupwfpHq ñ ICqq

$ pwfpHq ^ ICq ñ rH :� H �Hbegin; await B ; db.write(key, value);H :� H �HendspwfpHq ñ ICq

C.6 Proof details
We write tcalleru as the abbreviation of tirevph, destinyq.calleru. For each method, we show the
detail proofs for each final derived sequent. If there are more than one sequent to be proved
for one method, we distinguish the cases by listing them.

C.6.1 openR

IC � I1 : ReaderspHq � readers
Hbegin : xcaller � this, destiny, openR, xy
Hend : xÐ this, destiny, openR, returny

(1)
pwfpHq ^ ReaderspHq � readersq ñ
tH :� H �HbeginupReaderspHq � readers^ wfpHqq

25

pwfpHq ^ ReaderspHq � readersq ñ
pReaderspH �Hbeginq � readers ^ wfpH �Hbeginqq

pwfpHq ^ ReaderspHq � readersq ñ
pReaderspHq � readers ^ wfpH �Hbeginqq

(2)
pwfpHq ^ ReaderspHq � readersq ñ
@w, h1 . tH :� H �Hbegin $% h1upReaderspHq � readers^ wfpHq ^ pwriter = Noneq ñ
treaders := insertElement(readers, caller)||H :� H�HendupwfpHq ñ ReaderspHq � readersqq

pwfpHq ^ ReaderspHq � readersq ñ
@w, h1 . pReaderspH � Hbegin $% h1q � readers ^ wfpH � Hbegin $% h1q ^ pwriter = Noneq ñ
pwfpH�Hbegin $% h1�Hendq ñ ReaderspH�Hbegin $% h1�Hendq � insertElement(readers, caller))q

pwfpHq ^ ReaderspHq � readersq ñ
@w, h1 . pReaderspH � Hbegin $% h1q � readers ^ wfpH � Hbegin $% h1q ^ pwriter = Noneq ñ
pwfpH�Hbegin $% h1�Hendq ñ ReaderspH�Hbegin $% h1qYtcalleru � insertElement(readers, caller))q

C.6.2 openW

IC � I1 ^ I2 : ReaderspHq � readers^WriterspHq � twriteru
Hbegin : xcaller � this, destiny, openW, xy
Hend : xÐ this, destiny, openW, returny

(1)
pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
tH :� H �HbeginupReaderspHq � readers^WriterspHq � twriteru ^ wfpHqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
pReaderspH �Hbeginq � readers^WriterspH �Hbeginq � twriteru ^ wfpH �Hbeginqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
pReaderspHq � readers^WriterspHq � twriteru ^ wfpH �Hbeginqq

(2)
pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
@w, h1 . tH :� H �Hbegin $% h1upReaderspHq � readers^
WriterspHq � twriteru ^ wfpHq ^ pwriter = Noneq ñ
twriter := caller || readers := insertElement(readers, caller)||H :� H �Hendu
pwfpHq ñ pReaderspHq � readers^WriterspHq � twriteruqqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
@w, h1 . pReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru ^ wfpH �Hbegin $% h1q ^ pwriter = Noneq ñ
pwfpH �Hbegin $% h1 �Hendq ñ
pReaderspH �Hbegin $% h1 �Hendq � insertElement(readers, caller)^
WriterspH �Hbegin $% h1 �Hendq � tcalleruqqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
@w, h1 . pReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru ^ wfpH �Hbegin $% h1q ^ pwriter = Noneq ñ
pwfpH �Hbegin $% h1 �Hendq ñ
pReaderspH �Hbegin $% h1q Y tcalleru � insertElement(readers, caller)^
WriterspH �Hbegin $% h1q Y tcalleru � tcalleruqqq

C.6.3 closeR

IC � I1 : ReaderspHq � readers
Hbegin : xcaller � this, destiny, closeR, xy
Hend : xÐ this, destiny, closeR, returny

pwfpHq ^ ReaderspHq � readersq ñ
tH :� H �Hbegin �Hend|| readers := remove(readers, caller)upwfpHq ñ ReaderspHq � readersq

pwfpHq ^ ReaderspHq � readersq ñ
pwfpH �Hbegin �Hendq ñ ReaderspH �Hbegin �Hendq � remove(readers, caller)q

26

pwfpHq ^ ReaderspHq � readersq ñ
pwfpH �Hbegin �Hendq ñ ReaderspHqztcalleru � remove(readers, caller)q

C.6.4 closeW

IC � I1 ^ I2 : ReaderspHq � readers^WriterspHq � twriteru
Hbegin : xcaller � this, destiny, closeW, xy
Hend : xÐ this, destiny, closeW, returny

(1)
pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
tH :� H �HbeginupReaderspHq � readers^WriterspHq � twriteru ^ wfpHqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
pReaderspH �Hbeginq � readers^WriterspH �Hbeginq � twriteru ^ wfpH �Hbeginqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
pReaderspHq � readers^WriterspHq � twriteru ^ wfpH �Hbeginqq

(2)
pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
@w, h1 . tH :� H �Hbegin $% h1upReaderspHq � readers^
WriterspHq � twriteru ^ wfpHq ^ pwriter = callerq ñ
twriter := None || readers := remove(readers, caller)||H :� H �Hendu
pwfpHq ñ pReaderspHq � readers^WriterspHq � twriteruqqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
@w, h1 . pReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru ^ wfpH �Hbegin $% h1q ^ pwriter = callerq ñ
pwfpH �Hbegin $% h1 �Hendq ñ
pReaderspH �Hbegin $% h1 �Hendq � remove(readers, caller)^
WriterspH �Hbegin $% h1 �Hendq � tNoneuqqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteruq ñ
@w, h1 . pReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru ^ wfpH �Hbegin $% h1q ^ pwriter = callerq ñ
pwfpH �Hbegin $% h1 �Hendq ñ
pReaderspH �Hbegin $% h1qztcalleru � remove(readers, caller)^
WriterspH �Hbegin $% h1qztcalleru � tNoneuqqq

C.6.5 read

IC � I1^I2^I3^I4 : ReaderspHq � readers^WriterspHq � twriteru^ReadingpHq � pr^OKpHq
The property WritingpHq � 0 can be verified as a part of the class invariant since db.write is
only called synchronously. We need to include it in order to complete the second branch of the
proof tree.
Hbegin : xcaller � this, destiny, read, xy
Hend : xÐ this, destiny, read, returny

(1)
pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
tH :� H �Hbegin||fr :� null||data :� εupReaderspHq � readers^WriterspHq � twriteru ^
ReadingpHq � pr^OKpHq ^ wfpHqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
pReaderspH �Hbeginq � readers^WriterspH �Hbeginq � twriteru ^
ReadingpH �Hbeginq � pr^OKpH �Hbeginq ^ wfpH �Hbeginqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
pReaderspHq � readers^WriterspHq � twriteru^ReadingpHq � pr^OKpHq^wfpH �Hbeginqq

(2)
pwfpHq ^WritingpHq � 0^ ReaderspHq � readers^WriterspHq � twriteru ^
ReadingpHq � pr^OKpHqq ñ
@w, h1 . tH :� H �Hbegin $% h1||fr :� null||data :� εu

27

pWritingpHq � 0^ ReaderspHq � readers^WriterspHq � twriteru ^
ReadingpHq � pr^OKpHq ^ wfpHq ^ contains(readers, caller)ñ
@fr1 . tpr :� pr � 1||H :� H � xthis Ñ db, fr1, read, keyy||fr :� fr1u
pWritingpHq � 0^ ReaderspHq � readers^WriterspHq � twriteru ^
ReadingpHq � pr^OKpHq ^ wfpHqqq

pwfpHq ^WritingpHq � 0^ ReaderspHq � readers^WriterspHq � twriteru ^
ReadingpHq � pr^OKpHqq ñ
@w, h1 . pWritingpH �Hbegin $% h1q � 0^ ReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru^ReadingpH �Hbegin $% h1q � pr^OKpH �Hbegin $% h1q^
wfpH �Hbegin $% h1q ^ contains(readers, caller)ñ
@fr1 . pWritingpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyyq � 0^
ReaderspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyyq � readers^
WriterspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyyq � twriteru ^
ReadingpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyyq � pr� 1^
OKpH�Hbegin $% h1�xthis Ñ db, fr1, read, keyyq^wfpH�Hbegin $% h1�xthis Ñ db, fr1, read, keyyqqq

pwfpHq ^WritingpHq � 0^ ReaderspHq � readers^WriterspHq � twriteru ^
ReadingpHq � pr^OKpHqq ñ
@w, h1 . pWritingpH �Hbegin $% h1q � 0^ ReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru^ReadingpH �Hbegin $% h1q � pr^OKpH �Hbegin $% h1q^
wfpH �Hbegin $% h1q ^ contains(readers, caller)ñ
@fr1 . pWritingpH �Hbegin $% h1q � 0^
ReaderspH �Hbegin $% h1q � readers^
WriterspH �Hbegin $% h1q � twriteru ^
ReadingpH �Hbegin $% h1q � 1 � pr� 1^
OKpH �Hbegin $% h1q ^WritingpH �Hbegin $% h1q � 0^
wfpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyyqqq

(3)
pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
@w, h1 . tH :� H �Hbegin $% h1||fr :� null||data :� εupReaderspHq � readers^
WriterspHq � twriteru ^ ReadingpHq � pr^OKpHq ^ wfpHq ^ contains(readers, caller)ñ
@w1, h2, fr1 . tpr :� pr � 1||H :� H � xthis Ñ db, fr1, read, keyy $% h2||fr :� fr1u
pReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHq ^ wfpHqq ñ
@v1 . tH :� H � xthis �, fr, v1y �Hend||data:� v1||pr := pr -1||return :�datau
pwfpHq ñ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
@w, h1 . pReaderspH �Hbegin $% h1q � readers^WriterspH �Hbegin $% h1q � twriteru ^
ReadingpH �Hbegin $% h1q � pr^OKpH �Hbegin $% h1q ^
wfpH �Hbegin $% h1q ^ contains(readers, caller)ñ
pReaderspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � readers^
WriterspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � twriteru ^
ReadingpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � pr� 1^
OKpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q ^
wfpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2qq ñ
pwfpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2 � xthis �, fr, v1y �Hendq ñ
ReaderspH�Hbegin $% h1�xthis Ñ db, fr1, read, keyy $% h2�xthis �, fr, v1y�Hendq � readers^
WriterspH�Hbegin $% h1�xthis Ñ db, fr1, read, keyy $% h2�xthis �, fr, v1y�Hendq � twriteru^
ReadingpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2 � xthis �, fr, v1y �Hendq �
pr� 1� 1^
OKpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2 � xthis �, fr, v1y �Hendqqq

pwfpHq ^ ReaderspHq � readers^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
@w, h1 . pReaderspH �Hbegin $% h1q � readers^WriterspH �Hbegin $% h1q � twriteru ^
ReadingpH �Hbegin $% h1q � pr^OKpH �Hbegin $% h1q ^
wfpH �Hbegin $% h1q ^ contains(readers, caller)ñ
pReaderspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � readers^
WriterspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � twriteru ^
ReadingpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � pr� 1^
OKpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q ^

28

wfpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2qq ñ
pwfpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2 � xthis �, fr, v1y �Hendq ñ
ReaderspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � readers^
WriterspH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � twriteru ^
ReadingpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2q � 1 � pr^
OKpH �Hbegin $% h1 � xthis Ñ db, fr1, read, keyy $% h2qqq

C.6.6 write

IC � I2 ^ I3 ^ I4 : WriterspHq � twriteru ^ ReadingpHq � pr^OKpHq
Hbegin : xcaller � this, destiny,write, xy
Hend : xÐ this, destiny,write, returny
B : caller = writer && pr = 0 &&
(readers = EmptySet || (contains(readers, writer) && size(readers) = 1))

(1)
pwfpHq ^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
tH :� H �HbeginupWriterspHq � twriteru ^ ReadingpHq � pr^OKpHq ^ wfpHqq

pwfpHq ^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
pWriterspH �Hbeginq � twriteru ^ ReadingpH �Hbeginq � pr^
OKpH �Hbeginq ^ wfpH �Hbeginqq

pwfpHq ^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
pWriterspHq � twriteru ^ ReadingpHq � pr^OKpHq ^ wfpH �Hbeginqq

(2)
pwfpHq ^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
@w, h1, fr1, v1 . tH :� H �Hbegin $% h1u
pWriterspHq � twriteru ^ ReadingpHq � pr^OKpHq ^ wfpHq ^ Bñ
tH :� H � xthis Ñ db, fr1,write,(key,value)y � xthis �, fr1, v1y �Hendu
pwfpHq ñWriterspHq � twriteru ^ ReadingpHq � pr^OKpHqqq

pwfpHq ^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
@w, h1, fr1, v1 . pWriterspH �Hbegin $% h1q � twriteru ^ ReadingpH �Hbegin $% h1q � pr^
OKpH �Hbegin $% h1q ^ wfpH �Hbegin $% h1q ^ Bñ
pwfpH �Hbegin $% h1 � xthis Ñ db, fr1,write,(key,value)y � xthis �, fr1, v1y �Hendq ñ
WriterspH�Hbegin $% h1�xthis Ñ db, fr1,write,(key,value)y�xthis �, fr1, v1y�Hendq � twriteru^
ReadingpH �Hbegin $% h1 � xthis Ñ db, fr1,write,(key,value)y � xthis �, fr1, v1y �Hendq � pr^
OKpH �Hbegin $% h1 � xthis Ñ db, fr1,write,(key,value)y � xthis �, fr1, v1y �Hendqqq

pwfpHq ^WriterspHq � twriteru ^ ReadingpHq � pr^OKpHqq ñ
@w, h1, fr1, v1 . pWriterspH �Hbegin $% h1q � twriteru ^ ReadingpH �Hbegin $% h1q � pr^
OKpH �Hbegin $% h1q ^ wfpH �Hbegin $% h1q ^ Bñ
pwfpH �Hbegin $% h1 � xthis Ñ db, fr1,write,(key,value)y � xthis �, fr1, v1y �Hendq ñ
WriterspH �Hbegin $% h1q � twriteru ^ ReadingpH �Hbegin $% h1q � pr^
OKpH �Hbegin $% h1q ^ ReadingpH �Hbegin $% h1q � 0^
#WriterspH �Hbegin $% h1q � 1qq

29

