arXiv:2102.11035v1 [cs.NI] 22 Feb 2021

Michael Welzl, Safiqul Islam, Michael Gundersen, Andreas Fischer: “Transport Services:
A Modern API for an Adaptive Internet Transport Layer”, accepted for publication, IEEE
Communications Magazine, April 2021.

Version accepted for publication in IEEE Communications Magazine.

©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

Transport Services:

A Modern API for

an Adaptive Internet Transport Layer

Michael Welzl, Safiqul Islam, Michael Gundersen, and Andreas Fischer

Abstract—Transport services (TAPS) is a working group of the
Internet’s standardization body, the Internet Engineering Task
Force (IETF). TAPS defines a new recommended API for the
Internet’s transport layer. This API gives access to a wide variety
of services from various protocols, and it is protocol-independent:
the transport layer becomes adaptive, and applications are no
longer statically bound to a particular protocol and/or network
interface. We give an overview of the TAPS API, and we
demonstrate its flexibility and ease of use with an example using
a Python-based open-source implementation.

INTRODUCTION

Previously, it was common to regard the Berkeley Software
Distribution (BSD) Socket interface (also known as “Berkeley
sockets”) as the standard API for the transport layer. Since
the 1980’s, it has been the best known way to access the two
commonly available transport protocols: TCP and UDP. Nowa-
days, however, more protocols and mechanisms are available,
offering a much richer set of services — Multipath TCP
(MPTCP) can intelligently utilize multiple network paths [1]];
QUIC can multiplex independent data streams to avoid head-
of-line blocking delay (among many other things) [2]; Low
Extra Delay Background Transport (LEDBAT) is a congestion
control mechanism that enables “background” communication
which gets out of the way of “foreground” traffic [3].

Today, these protocols and mechanisms are implemented
and used by industry giants: MPTCP is implemented in iOS,
and used by Apple in support of their applications “Siri”
and “Apple Music’ [4]; QUIC is implemented and used in
Google’s Chrome browser [2]]; a variant of LEDBAT is imple-
mented and used by Microsoft for Operating System updates,
telemetry, and error reporting [S]]. Such in-house development
of both the protocols and their use cases is very labour-
intensive (and hence costly), leaving an important question
unanswered: how can “smaller” users, such as small and
medium-sized enterprises (SMEs), access these new services
and benefit from them?

Enter TAPS: The Transport Services working group (TAPS
WG) of the Internet Engineering Task Force (IETF) intends to
eliminate the static compile-time binding between applications
and transport protocols, allowing each one of these elements
to evolve independently — and in doing so, it can put an

Michael Welzl and Safiqul Islam are with the Department of Informatics,
University of Oslo. E-mail: {michawe, safiquli} @ifi.uio.no.

Michael Gundersen is with Bekk. E-mail: michael.gundersen@bekk.no

Andreas Fischer is with the Fakultit Angewandte Informatik, Technische
Hochschule Deggendorf. E-mail: andreas.fischer @th-deg.de.

IMPTCP is now also supported by Network Framework, which we will
discuss later.

Traditional transport Transport layer

layer usage usage with TAPS
/ \ e)\
Application Application o~
| Dynamic, a :
Protocol implementation; ——————— 2\ bitmore
1

choosing + configuring a
protocol; testing for
availability, falling back;
interface choice; QoS; ... / Protocol implementation;

choosing + configuring a

[Static, —-======
Statie, - -== (@) protocol; testing for
| simple | (S h
_____ availability, falling back;
Transport Layer interface choice; QoS; ...
(. J \ /

Fig. 1. TAPS relocates the code to implement a protocol and/or choose
and configure protocols, test for availability, etc., into the transport
layer.

end to the situation of growing unfairness between “big” and
“small” developers. The basic idea, as shown in Fig.[I] is to
move functionality out of the applications, into a common
transport layer implementation (which resides in an Operating
System or a library), and to enable access to these functions
via a new APIL This has the potential to empower “smaller
players” with a much richer set of services than ever before,
but without the need to invest a huge amount of manpower
into the development of a custom-made protocol.

By offering a modern API that follows an event-driven
programming model, TAPS is also an effort to define a new
standardized interface to the transport layer for programmers
that is easy to use. Compared to BSD sockets, which represent
an old fashioned, heavily C-influenced low-level programming
style, this should lower the entry barrier for network program-
mers seeking more services than common higher-level APIs
such as an HTTP-based REST interface can offer.

We will now give an overview of the new Transport Services
concept and how it affects the way network code is written;
then, we will discuss available implementations of TAPS-
conforming transport systems. Finally, we will use a Python
example from the open-source implementation “NEATPy” to
show the flexibility and ease of use of this new APIL

TRANSPORT SERVICES (TAPS) OVERVIEW

As Fig.[T)illustrates, providing a flexible transport layer with
interchangeable protocols and a run-time choice of network
interfaces and protocol configurations requires a somewhat
sophisticated machinery that dynamically and intelligently
utilizes the available infrastructure. This machinery needs to
take care of:

e Protocol racing: Peer and path support for protocols
needs to be actively tested. Intelligent caching strategies

should be used to limit such probing to save time and
reduce server overhead.

o API-protocol mapping: finding the matching functionality
to support API calls can be a simple matter of calling
function X when request Y is made, but it can also entail
a more complicated use of underlying protocols.

o System policy management: an application may express
a wish to use a certain network interface — yet, for
example, smart phones commonly give the user system-
wide control over the choice of the WiFi and cellular
network interfaces. System controls are normally ex-
pected to overrule per-application preferences. Interface
choice is only one example of a system policy that may
need to interact with an application preference; clearly,
a richer API that offers applications a wealth of network
mechanisms to choose and configure must meaningfully
interact with the underlying system’s policy manager.

This article focuses on the API. Thus, we refer to related
work for further details on “under the hood” functionality. Ref-
erence [6] gives an overview of the internals of the “NEATPy”
implementation that we will discuss later, and general TAPS
implementation guidance can be found in [7].

Motivation

We must first understand why there is a need for an API
change at all. For example, using the Stream Control Trans-
mission Protocol (SCTP), it is possible to transparently map
TCP connections between the same end hosts onto streams
of a single association (SCTP’s term for a connection) [S§].
This allows applications to benefit from a new protocol feature
without changing the API (multi-streaming, which is available
in SCTP and QUIC, reduces the signaling overhead and allows
multiple data streams to jointly be controlled by a single
congestion control instance). There are, however, limits to the
gains that can be obtained in such a way — some protocol
mechanisms must be exposed in an APL

Head-of-line blocking example: Consider an online multi-
player game that needs to reliably transfer position updates.
The game may not care about the order of these updates,
but they are latency-critical. Now, let us assume that this
application uses TCP, and that every application data chunk
fits inside exactly one TCP segment (this may be an unre-
alistic simplification for position updates in a game, which
are typically very small, but the same arguments hold if a
TCP segment contains multiple application data chunks). This
situation is shown in Fig.[2} here, four application data chunks
are transmitted as TCP segments 1-4, and segment 2 arrives
late (e.g., it was lost and retransmitted). Since TCP delivers
data to the application as a consecutive byte stream, chunks
3 and 4 cannot be handed over; they have to wait in the TCP
receiver buffer until segment 2 arrives.

Clearly, our game application could better be supported by
a transport protocol that can hand over messages out of order
— but, most importantly, the protocol would need to be told
about the size of messages, the requirement of reliable delivery,
and the possibility to accept messages out-of-order. A drop-
in TCP replacement below the BSD socket API could never

Give to
Keep in buffer application
) A

App. chunk #: [chunk2 |mb [chunk3 |[chunka][chunk1 |
TCP Segment #: 2 4 3 1
TCP receiver buffer

Fig. 2. Application data chunks arriving at the TCP receiver in the
wrong order. TCP segment 2, carrying chunk 2, arrives late, delaying
the application’s reception of chunks 3 and 4.

hand over chunks 3 and 4: this would not be in line with the
interface’s expected behavior, and the application might fail.
However, falling back to TCP (in case a different protocol
is not available) would work: if an API allows out-of-order
delivery, yet TCP is used below, then ordering will be ensured
at the cost of efficiency. Ordered delivery is never incorrect,
it may just be slower — and, in line with the Internet’s “best
effort” service model, efficiency is not guaranteed.

This example has shown us that a better transport layer must
offer some services beyond the well-known two: reliable byte
stream (TCP) and unreliable datagram (UDP). These services
must be reflected in all APIs in order to be usable: if, say, the
socket API is extended to support this functionality, yet an
application uses a communication library on top which only
offers a consecutive byte stream, then, again, there is no way to
benefit from unordered reliable message delivery. This means
that upgrading the transport layer is not “merely” an API
change — it is a new way of thinking about communication.

API Overview

Using BSD sockets requires working in a C-oriented low-
level programming style of the 1980’s (a socket has to be
actively polled for incoming traffic, error codes are returned
as integer values, etc.). This has contributed to a shift towards
using other communication libraries or middle-ware systems
that are built on top of BSD sockets. The services that such
upper layers can expose are, however, inevitably limited by the
underlying services (TCP and UDP). Hence, when changing
the transport layer one should take the opportunity for a much-
needed modernization of the interface.

Accordingly, the design of TAPS follows a more modern
paradigm of network communication. It is fully asynchronous,
event-driven, and easy to use: rather than distinguishing be-
tween a “stream” and “datagram” communication model, in
TAPS, all data are transferred in the form of messages, and
all communication is connection oriented. A “connection” is
defined as ‘“shared state of two or more end systems that
persists across messages that are transmitted between these
end systems”; under the hood, a TAPS connection may be
realized by UDP datagrams or TCP connections.

Control flow: Communication begins with making decisions
about the remote end to communicate with, specified in any
way that is suitable (e.g., a DNS name, or “any”, when
listening), as well as transport properties and security parame-
ters. Then, a “preconnection” is created. All of this should
be done as early as possible, to give the transport system
the necessary information to efficiently race protocols. Most

Pre-Establishment Established Termination

Message P
Receive()| ;
. Send() i
InitiateWithSend() Close()

Initiate() prvent
Preconnection - Connection -
Rendezvous()

NewPreconnection()

Closed

Listen()

Connection

Listener Ready

Connection: Received

Fig. 3. Lifetime of a connection provided by a TAPS transport system
(redrawn from [9])).

transport properties to be used at this stage have a “preference”
qualifier, with possible values require, prefer, ignore, avoid or
prohibit. Require and prohibit should be used with care, as
they limit the system’s flexibility. Transport properties convey
service requests, such as the use of a protocol that supports
reliability, possibly configurable per message, and being able
to use “O-RTT” session establishment (i.e., sending the first
message without a preceding handshake).

Event handlers must be registered before connecting or
listening. Similarly, if they are used, framers must be added
to the preconnection at this time. Framers are functions that
an application can define to translate data into application-
layer messages; these functions will intercept all send() and
receive() calls on the connection. In this way, an application
can define its own message delineation (typically a protocol
header — e.g., the HTTP header, in case of an HTTP/TAPS
implementation) that will allow the transport system to handle
messages even when the underlying protocol is TCP.

Then, a connection is established by calling either the
“Initiate” or “InitiateWithSend” primitive associated with the
preconnection (or “Listen”, in case of a server). The semantics
of “Initiate” are slightly different from the traditional “con-
nect” and “accept”: calling “Initiate” is not guaranteed to
invoke a “ConnectionReceived” event (the TAPS equivalent
of “accept”) at the peer — for example, in case of UDP,
“ConnectionReceived” occurs when the first message arrives.

Data are always transferred as messages. Each message
may have associated properties to express requirements such
as a lifetime, reliability, ordering, etc. Connections also have
properties that can be changed while they are active — for
example, a capacity profile, which can influence the value of
the DiffServ CodePoint (DSCP) in the IP header.

On the sender side, it is possible to execute some level
of control over the send buffer because a “sent” event is
fired when a send action has completed (i.e., the message
has been passed to the underlying protocol stack), and these
“sent” events can be used to steer data transmission — for
example, allowing only one message to be buffered at a time
by issuing one “send” per “sent”. Applications that focus on
traffic that is not latency critical may simply ignore these
“sent” events. On the receiver side, it is necessary to avoid
being overwhelmed by too many quickly firing “received”
events. This is achieved via the “receive” call, which queues
the reception of a message; the system guarantees a one-to-one
mapping between “receive” calls and “received” events.

Closing a connection is also not guaranteed to invoke an
event at the peer: in case of TCP, it will, but in case of
UDP, it will not. Half-closed connections (as with TCP) are
not supported because not all protocols support them (e.g.,
SCTP does not), and supporting half-closed connections would
therefore prohibit the use of these protocols. Figure[3] gives a
high-level overview of the control flow (connection lifetime)
that we have just described.

Cloning: For new connections that are established to an
already connected peer, it is recommended to use the “Clone”
primitive with the ongoing connection. A successful “Clone”
call will yield a new connection that is “entangled” with
the existing one; changing a property on one of them will
affect the other. This continues similarly for all connections
of a group that is formed by calling “Clone” multiple times.
Using “Clone” allows the transport system to represent a new
connection as a new stream of an existing underlying transport
connection or association if the protocol supports this.

A TAPS transport system can fall back to TCP in case no
newer protocol is supported by the peer and the path. This
enables one-sided deployment of new protocols. “Clone” may
therefore yield a new TCP connection; to avoid surprises, the
system will then ensure that changing a connection property
affects all the connections in a group. Specifying a capacity
profile, or allowing unordered or unreliable message delivery
may not have an effect. None of these fall-backs endanger
correctness — using TCP instead of a desired better protocol
merely sacrifices performance.

IMPLEMENTATIONS

There are currently three known implementations of a
transport system conforming to the IETF TAPS specification:
PyTAPS [10], Network.Framework [11], and NEATPy [12].
Table[l] shows a comparison of the three implementations and
their respective protocol and feature support.

PyTAPS is a prototype implementation of a transport sys-
tem, using the specification of the abstract interface by the
IETF TAPS working group. PyTAPS supports TCP, UDP, and
the use of TLS over TCP. It is written in Python and uses asyn-
cio, a Python Standard Library for writing concurrent code.
It presents an asynchronous transport system with an event
loop that operates on tasks. Concurrent execution is based
on Python co-operative routines (coroutines). A coroutine is
an asynchronous block of code with the ability to “yield”,
that is, pause its execution and give control to the event loop
scheduler at any time during its execution, and maintain its
internal state. PyTAPS uses co-routines to define all API and
callback functions.

Network.framework is Apple’s reference implementation of
a TAPS system. This implementation is available in both
Objective-C and Swift, and it is used to transport application
data across Apple’s many platforms. However, Apple’s im-
plementation does not currently specify abstract requirements
needed for the transportation of data, which could be used for
the selection of a protocol that satisfies certain requirements.
Instead, the user can indicate preferences tied to a specific
protocol. For example, UDP is modeled as a class called

Support for... PyTAPS Network.Framework NEATPy
TCP/IP v v v
UDP/TP v v v
SCTP/IP X X 4
STCP/UDP/IP X X 4
TLS/TCP/TP v v v
DTLS/UDP/IP X v v
DTLS/SCTP/IP X X v
DTLS/STCP/UDP/IP X X v
MPTCP X v v
Protocol selection by selection properties v X v
Transport protocol racing v X v
Message framers v v v
Message context / Properties X v v
Cloning X X v
Rendezvous X v X
Connection properties X v v

TABLE I

THE THREE KNOWN TAPS IMPLEMENTATIONS: SUPPORTED PROTOCOL STACKS AND KEY TAPS FEATURES.

NWProtocolUDP, which has the option preferNoChecksum.
Naturally, being Apple’s common network interface in pro-
duction use, it offers many services beyond a common TAPS
API. Examples include the possibility for developers to get
highly detailed connection metrics and the ability to create
connections using WebSockets.

NEATPy presents a Python-based TAPS API, realized with
the help of language bindings, utilizing the protocol machinery
of its underlying core system “NEAT”. NEAT (A New, Evo-
lutive API and Transport-Layer Architecture for the Internet),
which is described in detail in [6], was the first open-source
implementation of a TAPS system, written in C. It was an
output of the European research project with the same name.
Development work on NEAT finished with the project’s end,
in 2018; in contrast, NEATPy’s development persisted until
mid-2020, bringing NEAT’s core functionality in line with an
up-to-date TAPS system. The NEAT API differs from the most
recent TAPS specification in several ways. For example, while
NEAT already allowed to specify selection and connection
properties, it did not offer message properties—instead, some
per-message functions were available as parameters of the
send() call. Instead of the five preference levels of TAPS,
NEAT only supported qualifying properties as “required” or
“desired”. Also, framers were not supported in NEAT—it was
entirely up to the application to parse messages from an
incoming block of data.

NEATPy can benefit from NEAT’s policy component in
the NEAT user module, which maps properties to policies.
These policies do not only enable protocol racing between the
candidate protocols but also provide a fallback mechanism in
case a selection of a protocol fails. NEATPy has more features
and supports more protocol stacks (including SCTP with and
without UDP encapsulation, and MPTCP; the latter requires
installing the reference MPTCP implementation from [13])

than PyTAPS, but this comes at the cost of more overhead
and slower overall execution. NEATPy can run on various
operating systems, and it will make use of different capabilities
depending on what the underlying operating system offers. Our
tests used NEATPy on Linux and FreeBSD.

For developers, the choice between the three different im-
plementations should be relatively easy: Network.Framework
is an obvious choice for Apple systems, where it is tied to the
programming languages Objective-C and Swift. Else, if the
intention is to use and possibly extend a lightweight system,
PyTAPS should be preferred to NEATPy. The latter seems
a good choice for the more experimentally minded, giving
access to a wealth of features via a somewhat heavyweight un-
derlying library. To date, SCTP is only supported by NEATPy,
and QUIC is not presently supported by any of the three TAPS
implementations, but it could be added.

TAPS IN ACTION

To show how a TAPS system operates, we present a code
example of NEATPy and discuss the performance achieved in
a local test using an emulated network environment.

Code: A Client-Server Example

Listing shows a TAPS server and client, implemented
using NEATPy. The server is written to be as simple as
possible, while we use the client to highlight a little bit more
of the typical TAPS functionality. This code is runnable and
complete except for some import statements at the top,
which are omitted for brevity.

The TAPS server listens to incoming connections and sim-
ply prints and returns any messages that it gets. A precon-
nection object is created, and two arguments are passed to
it: a local endpoint (this specifies a port number where the

O 00O\ AW =

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

(%)

W W W

EEN NS I VS I US IS IR VS I OS]
VW — OO0 WUnh W —O

N

B
w

44

o~
O

SERVER

def simple_receive_handler (connection, message, context, is_end, error):
data = message.data.decode ()
print (f"Got message with length {len(message.data)}: {data}")
connection.send(data.encode ("utf-8"), None)

def new_connection_received (connection: Connection):
connection.receive (simple_receive_handler)

if _ name_ == "_ _main_ ":
local_specifier = LocalEndpoint ()
local_specifier.with_port (5000)

tp = TransportProperties ()

preconnection = Preconnection(local_endpoint=local_specifier, transport_properties=tp)

new_listener = preconnection.listen()
new_listener.HANDLE_CONNECTION_RECEIVED = new_connection_received

preconnection.start ()

CLIENT

class FiveBytesFramer (Framer) :
def start(self, connection): pass
def stop(self, connection): pass

def new_sent_message(self, connection, message_data, message_context, sent_handler,

is_end_of_message) :

connection.message_framer.send(connection, ’'HEADER’.encode ("utf-8") + message_data,

message_context, sent_handler, is_end_of_message)

def handle_received_data(self, connection):
header, context, is_end = connection.message_framer.parse (connection, 6,
connection.message_framer.advance_receive_cursor (connection, 6)
connection.message_framer.deliver_and_advance_receive_cursor (connection,

def clone_error_handler (con:Connection) :
print ("Clone failed!")

def receive_handler (con:Connection, msg, context, end, error):
print (f"Got message with length {len(msg.data)}: {msg.data.decode()}")

def ready_handlerl (connection: Connection) :
connection.receive (receive_handler)
connection.send (("FIVE!") .encode ("utf-8"), None)
connection”? = connection.clone(clone_error_handler)
connection” .HANDLE_STATE_READY = ready_handler?

def ready_handler? (connection: Connection):
connection.receive (receive_handler)

connection.send(("HelloWorld") .encode ("utf-8"), None)
if _ name_ == "__main__ ":

ep = RemoteEndpoint ()

ep.with_address ("127.0.0.1")

ep.with_port (5000)

tp = TransportProperties ()
tp.require (SelectionProperties.RELIABILITY)
tp.prohibit (SelectionProperties.PRESERVE_MSG_BOUNDARIES)

preconnection = Preconnection (remote_endpoint=ep, transport_properties=tp)
preconnection.add_framer (FiveBytesFramer ())

connectionl = preconnection.initiate ()

connectionl.HANDLE_STATE_READY = ready_handler

preconnection.start ()

context,

oF

True)

Listing 1. A TAPS client and server example using a framer and two entangled connections in NEATPy, available from [12].

server will listen) and a transport properties object (this sets
a preference level for a couple of selection properties). Since
no properties are configured in the transport properties object,
this server will listen on all available protocols that support
reliability (enabling reliability is a default property choice, as
specified in [14]).

Then, we call listen() to accept any incoming connections
from remote endpoints. The server uses two event handlers.
The first event handler, “new_connection_received”, is regis-
tered with the member HANDLE_CONNECTION_RECEIVED
of the listener class whenever a new connection is established,
and the second event handler is registered inside the the
first event handler when queuing a receive event. The second
event handler receives the message, converts its bytes to text,
prints the text to the screen and sends the data back. Having
configured the preconnection, registered the event handlers,
and called “listen”, we call the preconnection’s start() method
in order to start the transport system.

The client also creates a preconnection object, to which
it passes a remote endpoint object (specifying the re-
mote address and port) and transport properties. In this
case, not only do we ask for reliable data transfer, but
we prohibit the preservation of message boundaries, which
practically enforces TCP—indeed, without this requirement,
NEATPy communicated via SCTP in our test, and adding
“tp.ignore(SelectionProperties. PRESERVE_ORDER)” would
give us the behavior that we discussed earlier (Fig.[2).

Prohibiting message boundary preservation may be a strange
request to make, but it allows us to test if a message framer
works correctly even when the underlying transport protocol
treats all data as a byte tream. To see this, we add an object
of our FiveBytesFramer class to the preconnection. This
framer adds a textual header containing the word HEADER to
all messages (in the method new_sent_message), which
are supposed to contain only five bytes of data. Upon receiving
(handle_received_data), this header is removed, and
the five bytes are handed over to the data reception handler.
The framer inherits from the abstract Framer class, which
requires defining the “start” and “stop” methods; these allow to
implement initialization and finalization activities, before/after
any data are written or read. We leave them empty as we do
not need such functionality in our example.

Back in the main function, we register the first event
handler with HANDLE_STATE_READY when a connection is
established, and we call the start () function to start the
transport system. This invokes ready_handlerl as soon as
the connection is ready to accept data. There, one receive event
is queued, a message containing the data FIVE! is sent, and
a new connection is created via clone. Since we use TCP,
this just produces another TCP connection, but with SCTP
(in FreeBSD only, as support for this type of connection-
stream mapping has not been implemented for Linux in the
NEAT core), the new connection (connection2) would be
a new stream of the already existing SCTP association to the
server. The new connection’s handler for the ready event also
queues a single receive event and transmits a message, this
time containing more than five bytes of data: HelloWorld.
Both connections use the same receive handler, which only

2
15 ZRvVARVARVARVARVAR VAR VAR v AR v v v v
B X XXX IR IR RN

(7))
% 1 ® 72w NEATPy
L = PyTAPS
0 5 10 15 20 25

Time (s)

Fig. 4. Flow completion time of a long (15 MB) and short (1 MB) flow
with NEATPy and PyTAPS: the transfer time of a short flow with
NEATPy, joining after 10 seconds, is significantly reduced because
it benefits from the SCTP association’s large congestion window.

prints out the received data together with its length.

Running this code produces the following output on the
server side:
Got message with length 11:
Got message with length 16:
HEADERHelloWorld

This output contains the header because the server does not
implement a framer and simply prints out the raw message in
full. On the client side, the output looks as follows:
Got message with length 5: FIVE!
Got message with length 5: Hello

As we can see, the framer has removed the header upon
reception, and the second message was correctly truncated to
a length of five bytes.

HEADERFIVE!

Performance

To demonstrate the benefit of protocol independent, portable
code, we ran two simple experiments between a client and
a server on a single physical host, using two instances of
“VirtualBox” with FreeBSD OSes for a sender and a receiver,
respectively. The two VirtualBox instances were logically
interconnected on our Mac OS host system, and we set
a maximum rate of 5Mbit/s and introduced a propagation
delay of 30 ms using dummynet/ipfw. We opted for FreeBSD
because the second experiment uses multistreaming, which for
NEATPYy is only available with FreeBSD.

The first experiment is a simple “hello world” style test,
where we merely transferred a single 12-byte message with
PyTAPS and NEATPy, and found PyTAPS to be faster: the
transfer took 0.202 seconds with NEATPy and 0.173 seconds
with PyTAPS (this is the average duration of 10 tests, with
a standard deviation of 4 percent). This is not surprising: Py-
TAPS is an altogether much more lightweight implementation,
and the reduced overhead plays out positively here.

The next experiment aims to show the benefit of a mech-
anism in a protocol that is available in NEATPy but not in
PyTAPS: SCTP’s multi-streaming. We used two connections,
a long file transfer that is joined by a short file transfer after
ten seconds, exploiting ‘clone’ in case of NEATPy.

Figure[d] shows the result: multi-streaming yields a signifi-
cant improvement in the short flow’s completion time (FCT)
because, being just a new stream of an ongoing SCTP associ-
ation, it can immediately take advantage of the association’s

already-grown congestion window. The FCT of the short
flow with NEATPy is reduced by 54 percent in comparison
with the short flow with PyTAPS, where the two TAPS
connections become two TCP connections, without support
for multistreaming. We repeated this test ten times with one
long flow (15 MB) starting at t=0s, and one short flow (1 MB)
starting at t=10s, and show the average FCT. The standard
deviation was between 0,49 percent and 1.53 percent.

PyTAPS and NEATPy expose a very similar API (not 100
percent equal because they each have their own language-
specific ways to implement the abstract interface specified
in [14]). Thus, the code used in these two tests was essentially
the same, with only minor syntactical changes. This means
that (almost) the same program ran faster on the lighter-
weight implementation when we did not utilize the protocol
feature “multi-streaming”, and it ran faster on the heavier
implementation when we did use that feature. This is the
flexibility that TAPS aims to attain: code can be portable, yet
it can benefit from underlying protocol features that go beyond
plain TCP and UDP.

CONCLUSION

This article presented and discussed TAPS as a modern
and flexible transport layer replacement for the legacy BSD
Socket API. At the time of writing, the Transport Services
Working Group is close to finishing its three core documents:
the architectural overview [9], API [14] and implementation
guidance [7]. We discussed three implementations of this
novel API and demonstrated its flexibility with code samples
employing NEATpy. This flexibility allows experimenters to
easily switch between implementations with only minor mod-
ifications to the code, while being able to exploit features of
novel transport protocols that go well beyond TCP’s reliable
byte stream on one hand, and UDP’s unreliable datagram
transmission on the other.

TAPS implementations greatly facilitate the comparison of
different transport protocols. Support for new protocols such as
QUIC, or novel configurable extensions to existing protocols
could be added to the modular open-source code of NEAT—
and with it, NEATPy—relatively easily. This should make it
an attractive tool for the research community.

ACKNOWLEDGMENTS

This work has been supported by the Research Council
of Norway under its “Toppforsk” programme through the
“OCARINA” project (grant agreement no. 250684).

REFERENCES

[1] C. Raiciu et al., “How hard can it be? designing and implementing a
deployable multipath TCP,” in 9th USENIX NSDI 2012. San Jose, CA:
USENIX Association, Apr. 2012, pp. 399-412.

[2] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in SIGCOMM ’17. New York, NY, USA: ACM,
2017, p. 183-196.

[3] D. Ros and M. Welzl, “Less-than-best-effort service: A survey of end-to-
end approaches,” IEEE Comm. Surveys Tutorials,, vol. 15, no. 2, 2013.

[4] J. Mehta and E. Kinnear, “Boost performance and security with modern
networking,” in Proc. WWDC 2020, date accessed: 2020-12-21. Apple,
Inc., 2020. [Online]. Available: https://developer.apple.com/videos/play/
wwdc2020/10111/

[5]

[6]
[7]
[8]
[9]
(10]
(11]
[12]

[13]

[14]

P. Balasubramanian, “LEDBAT++: low priority TCP congestion
control in windows,” in Proc. IETF-100, date accessed:
2020-12-21. Internet Engineering Task Force, 2017.
[Online]. Available: https://www.ietf.org/proceedings/100/slides/

slides- 100-iccrg-ledbat-low- priority-tcp-congestion-control-in-windows-01

N. Khademi et al., “NEAT: a platform- and protocol-independent internet
transport api,” IEEE Communications Magazine, vol. 55, no. 6, 2017.
A. Brunstrom et al., “Implementing Interfaces to Transport Services,”
IETF, Internet-Draft draft-ietf-taps-impl-08, 2020, work in progress.

F. Weinrank and M. Tiixen, “Transparent flow mapping for neat,” in
IFIP Networking and Workshops, 2017, pp. 1-6.

T. Pauly et al., “An Architecture for Transport Services,” IETF, Internet-
Draft draft-ietf-taps-arch-09, Nov. 2020, work in progress.
Python-Asyncio-TAPS (PyTAPS), date accessed: 2020-09-21. [Online].
Available: https://github.com/fg-inet/python-asyncio-taps
Network.Framework, date accessed: 2020-09-21. [Online]. Available:
https://developer.apple.com/documentation/network

NEATPy, date accessed: 2020-09-18. [Online]. Available: https:
//github.com/theagilepadawan/NEATPy
MultiPath TCP - Linux Kernel implementation, date accessed:

2020-09-22. [Online]. Available: https://multipath-tcp.org/pmwiki.php
B. Trammell ef al., “An Abstract Application Layer Interface to Trans-
port Services,” IETF, Internet-Draft draft-ietf-taps-interface-10, Nov.
2020, work in progress.

MICHAEL WELZL (michawe@ifi.uio.no) is a full
professor at the University of Oslo, Norway, since
2009. He received a Ph.D. and habilitation from the
University of Darmstadt / Germany in 2002 and
2007, respectively. His main research focus is the
transport layer; he is active in the IRTF, where he
chaired the Internet Congestion Control Research
Group (ICCRG) for 11 years, and the IETF, where
he led the initiative to form the TAPS Working
Group.

SAFIQUL ISLAM (safiquli@ifi.uio.no) received a
Ph.D. in Computer Science from the University of
Oslo, Norway. Currently, he is a Postdoctoral Fellow
at the Department of Informatics, University of Oslo.
His research interests include performance analysis,
evaluation, and optimization of transport layer proto-
cols. He is active in the IETF and IRTF where he has
contributed to several IETF/IRTF Working Groups.

MICHAEL GUNDERSEN
(michael.gundersen @bekk.no) received an
M.Sc. in Computer Science from the University of
Oslo, Norway. He works as a developer at Bekk,
a consultancy in Oslo specializing in technology,
design and management. Among his main interests
are API design and IoT.

ANDREAS FISCHER (andreas.fischer@th-deg.de) is
a Professor at Deggendorf Institute of Technology.
He received a PhD in 2017 at University of Passau.
After a post-doc position in Karlstad, Sweden he
was appointed as professor for Computer Science at
DIT. He is interested in the development of intelli-
gent and autonomous networks and has conducted
extensive research on network resilience, network
virtualization and software-defined networks. He has
been active in the Future Internet community for a
long time.

https://developer.apple.com/videos/play/wwdc2020/10111/
https://developer.apple.com/videos/play/wwdc2020/10111/
https://www.ietf.org/proceedings/100/slides/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows-01
https://www.ietf.org/proceedings/100/slides/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows-01
https://github.com/fg-inet/python-asyncio-taps
https://developer.apple.com/documentation/network
https://github.com/theagilepadawan/NEATPy
https://github.com/theagilepadawan/NEATPy
https://multipath-tcp.org/pmwiki.php

	References
	Biographies
	Michael Welzl
	Safiqul Islam
	Michael Gundersen
	Andreas Fischer

