
UNIVERSITY OF OSLO
Department of Informatics

Passive Asset
Detection using
NetFlow

Master thesis

Mats Erik Klepsland

February 14, 2012

Abstract

Computer networks are growing, making it difficult to keep track of all the
hosts and services running on these hosts on the network. Using traditional
methods like port scanning to detect hosts and services is cumbersome,
host intrusive, slow and has to be performed continuously in order to be
sufficiently updated.

In this thesis, we look at implementing a passive asset detection system
using NetFlow. This will allow network administrators to detect hosts and
services on the network using network traffic data that they already have
collected. It also makes it possible to get a quick glimpse of the network
state at a specific time that could be months or even years back in time, the
only limitation being the amount of NetFlow data collected.

Unlike other passive asset detection systems, like PRADS, using NetFlow
makes us able to handle network traffic speeds up to several Gbit/s, or
even Tbit/s. This makes a passive asset detection system using NetFlow
data highly scalable and because it is capable of processing a lot of data it
also has a high detection rate.

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my
advisors, Bente Christine Aasgaard, Margrete Raaum and Professor Audun
Jøsang, for their invaluable feedback and guidance. Without your help, I
would never have been able to finish this work.

I would also like to thank all the people at PING, for providing a friendly
working environment, making the process of writing this thesis more
enjoyable.

Finally, I would like to thank my girlfriend Lena for her support and
encouragement during my work on this thesis.

Thank you all so very, very much.

Mats Erik Klepsland
University of Oslo

February, 2012

iii

iv

Contents

1 Introduction 1

1.1 Background and Motivation 1

1.2 Goals and Problem Description 2

1.3 Outline . 3

2 Background 5

2.1 NetFlow . 5

2.1.1 IP Flows . 6

2.1.2 Exporter . 8

2.1.3 Collector . 9

2.1.4 Export Formats . 9

2.1.5 Security Concerns . 12

2.1.6 Nfdump Tools . 14

2.2 Host Detection Techniques . 18

2.2.1 Ping Sweep . 18

2.2.2 TCP SYN Ping . 19

2.2.3 TCP ACK Ping . 20

2.2.4 ARP Ping . 20

2.3 Service Detection Techniques 21

2.3.1 TCP SYN Scan . 21

2.3.2 TCP Connect Scan . 22

v

2.3.3 UDP Scan . 23

2.3.4 TCP FIN Scan . 24

2.3.5 Determine Traffic Direction 25

2.4 Remote Operating System Detection 25

2.5 Nmap . 27

2.6 PRADS . 30

3 Design 33

3.1 Research Method . 33

3.2 Requirements . 33

3.2.1 Real-time . 34

3.2.2 Scalable . 34

3.2.3 Detection Rate . 34

3.2.4 False Positives . 34

3.3 System Design . 34

3.3.1 System Overview . 35

3.3.2 Processing . 35

3.3.3 Storing . 36

3.3.4 Presentation . 37

4 Implementation 39

4.1 Implementation Overview . 39

4.2 Flow-dump . 40

4.3 Flow-dump Rules . 44

4.3.1 Host Detection Based on ICMP 44

4.3.2 Service Detection Based on Ports 46

4.3.3 Service Detection Based on Pre defined Services . . . 49

4.3.4 Operating System Detection Based on Update Servers 51

vi

4.4 Flow-store . 53

4.5 Database . 55

4.6 Flow-map . 56

5 Evaluation 61

5.1 Goals . 61

5.2 Test Setup . 61

5.3 Results . 62

5.3.1 Run-time . 62

5.3.2 Host Detection Rate 65

5.3.3 Service Detection Rate 67

5.3.4 Operating System Detection Rate 69

5.3.5 Success Rate . 71

6 Discussion 73

6.1 Active or Passive Asset Detection 73

6.2 On-line or Off-line Asset Detection 75

6.3 Using NetFlow for Asset Detection 76

6.3.1 Advantages . 76

6.3.2 Disadvantages . 78

6.4 Legal Concerns . 79

7 Conclusion and Future Work 81

7.1 Conclusion . 81

7.2 Future Work . 82

7.2.1 IDS Correlation . 82

7.2.2 Detect Software Running on Hosts 82

7.2.3 Operating System Detection Based on Services 83

7.2.4 Rules Engine . 83

vii

7.2.5 NetFlow version 9 . 83

7.2.6 Evaluation . 83

Bibliography 84

Appendices 87

A Abbreviations 87

B Source Code 89

B.1 flow-dump . 89

B.2 flow-store . 96

B.3 flow-map . 99

B.4 config.pl . 102

B.5 ad-check-os.pl . 103

C Shell Scripts 105

C.1 create_db.sh . 105

C.2 runwholeday.sh . 106

C.3 winupdate.sh . 107

D NetFlow Version 9 Field Type Definitions 109

viii

List of Figures

2.1 NetFlow overview . 5

2.2 IP traffic versus NetFlow flows 8

2.3 Eavesdropping on NetFlow traffic 13

2.4 Injecting forged NetFlow traffic 13

2.5 Nfdump overview . 15

2.6 Ping Sweep . 18

2.7 TCP SYN Ping . 19

2.8 TCP ACK Ping . 20

2.9 ARP Ping . 21

2.10 TCP SYN Scan . 21

2.11 TCP Connect Scan . 22

2.12 UDP Scan . 23

2.13 TCP FIN Scan . 24

2.14 Establishing a TCP connection 25

2.15 Placing the host running PRADS in the network 30

3.1 Design overview . 35

3.2 Detecting assets using a set of rules 36

4.1 Implementation overview . 39

4.2 Overview of Flow-dump . 40

4.3 ICMP echo reply . 44

ix

4.4 Flow chart of host detection based on ICMP 46

4.5 TCP handshake . 46

4.6 Flow chart of service detection based on ports 48

4.7 Flow chart of service detection based on pre-defined services 50

4.8 Flow chart of operating system detection based on update
servers . 52

4.9 Overview of Flow-store . 53

4.10 E-R diagram of the database used by the system 56

5.1 Traffic flowing through one of the University’s gateways at
5 January 2012 . 62

5.2 Run-time of the Flow-dump component 64

5.3 Run-time of the Flow-store component 64

5.4 Host detection rate (short time span) 66

5.5 Host detection rate (day) . 66

5.6 Service detection rate (short time span) 68

5.7 Service detection rate (day) 68

5.8 Operating system detection rate (short time span) 70

5.9 Operating system detection rate (day) 70

6.1 Venn diagram of service detection 74

x

List of Tables

2.1 IP packet attributes used by NetFlow 7

2.2 Cisco switches and routers supporting NetFlow 8

2.3 NetFlow version 5 header format 10

2.4 NetFlow version 5 flow record format 11

2.5 NetFlow version 9 FlowSet Template 12

2.6 Nfdump custom output pre defined element tags 16

4.1 Nfdump data fields used by Flow-dump 40

4.2 Options in Flow-dump configuration file 41

4.3 Common ICMP types . 45

5.1 Run-time of script when processing five whole days of data 63

5.2 Top ten services detected . 67

5.3 Distribution of detected operating systems 69

5.4 Results from running ad-check-os.pl 71

5.5 Results after manually looking up hosts in Cerebrum 71

6.1 Compression ratio, time and speed of common compression
tools . 75

6.2 Statistics gathered by Nfdump tools for a five minute interval 77

xi

xii

List of Listings

2.1 Example output from Nfdump 16

2.2 Custom output in Nfdump 17

2.3 Partial Xprobe2 fingerprint . 27

2.4 Nmap list scan . 28

2.5 Nmap TCP SYN scan . 29

2.6 Nmap remote operating system detection 29

2.7 Example output from PRADS 31

4.1 Usage information for Flow-dump 42

4.2 Example output from the stdout output mode 43

4.3 Example output from the CSV output mode 43

4.4 Array of pre-defined services 49

4.5 Update servers used in this thesis 51

4.6 Usage information for Flow-store 54

4.7 Example output from Flow-map 57

4.8 Flow-map list view . 58

4.9 Flow-map statistics view . 58

4.10 Usage information for Flow-map 59

xiii

xiv

Chapter 1

Introduction

1.1 Background and Motivation

With the growth in personal computers, network connected cell phones,
and computer network equipment, it is getting more and more difficult
to keep track of all the network assets on the company network, which
potentially can lead to risk exposure and liability.

A network asset is a host on a network that is identified either by its MAC
address or by the IP address it is using to communicate with other hosts on
the network. A network asset can have several network services running,
like for instance a web service or a domain name service (DNS).

As a network grows and contains thousands of hosts, the task of port
scanning the entire network becomes a formidable task which can take
days, and even weeks to perform. In addition, the scanning results get
outdated fast, due to changes in the network services offered by the
hosts. Port filtering is also a barrier to port scanning, and leaves the
network administrators potentially blind to network services running on
the network.

Passive asset detection solutions often consist of a single host situated
centrally on the computer network, so that it sees all the network traffic that
passes through. Because of this it can easily be exposed to gigabit network
speeds. However, when the traffic amounts starts to exceed several gigabit
or even terabit network speeds, it does not scale.

NetFlow, a technology initially developed by Cisco, is able to overcome

1

this limitation. It is implemented in most Cisco switches and routers
which means that the NetFlow data is collected without having to add any
additional equipment to the network. There are also other vendors offering
NetFlow enabled equipment. However, because of the availability of Cisco
equipment, we have chosen to focus on Cisco NetFlow in this thesis.

Since we deal with real traffic data and systems in this thesis, we have
chosen to anonymize all the data presented. Therefore, all hosts presented
have randomly assigned IP addresses and hostnames.

1.2 Goals and Problem Description

The main goal of this thesis is to develop a passive asset detection system
that use data collected by NetFlow to detect assets on a computer network.
The system should be scalable enough so it can handle huge computer
networks, it must be capable of running in real-time, it must have a high
detection rate, and the rate of false positives must be low.

In addition to detecting the hosts on the network, it must also detect the
network services that each of the hosts are hosting, and the operating
system that the host uses.

The system itself should be able to run on a NetFlow collector running
Nfdump tools, an open source NetFlow collector. The whole system
consists of four components:

• the main component parsing the NetFlow data to collect assets,

• a component to remove duplicates and store the assets in a database,

• a database to store the assets in, and

• a component to display the collected assets to the user in an orderly
way.

These four components could be merged into one. However, the Unix
philosophy states that all programs should only do one thing and do it
well [1]. We choose to comply with these principles.

2

1.3 Outline

This thesis is divided into six chapters. Chapter 2 consists of background
material relevant to this thesis. Chapter 3 presents a detailed description
of the implementation we have done and the related challenges we have
encountered. The chapter is divided into subsections for each of the
components in our system. Chapter 4 presents an evaluation of our
implementation. It shows how the system performs over time. Chapter 5
contains discussion of concepts relevant to this thesis. It also contains legal
concerns and a discussion of advantages and disadvantages that we have
encountered while implementing our system. Chapter 6 concludes the
thesis and suggests future work. Source code of the system implemented
for the thesis and extended technical documentation is provided in the
Appendix.

3

4

Chapter 2

Background

In this chapter we provide the necessary background for the tools used
in this thesis. Section 2.1 gives an overview of what NetFlow is, what it
can be used for, and basic functionality. Section 2.2 through section 2.4
discuss different techniques for detecting network assets. The last part of
the chapter discusses two tools used for asset detection, Nmap in section
2.5 and PRADS in section 2.6.

2.1 NetFlow

NetFlow is a technology initially created by Cisco for use in switches and
routers running Cisco IOS, but it is now supported by a range of vendors
[2] [3]. NetFlow provides the network administrators with the tools to
understand how, why and where the traffic is flowing on their network.
Seeing these flows makes it easier to troubleshoot network problems and
gives the administrator an audit trail for each IP packet on the network.

Figure 2.1: NetFlow overview

5

NetFlow can be used to track application and network usage and is often
used by Internet service providers (ISP) to calculate how much network
resources each customer is using. It can be used to get a quick glimpse
of how changes made to the network infrastructure impact the network.
In addition to this, NetFlow can also be used to detect network anomalies
and security vulnerabilities. If an Internet worm is communicating on a
specific port or is communicating in a certain pattern, one can often with
high certainty detect the machines infected with the worm. This makes
NetFlow a powerful tool when protecting the local network.

NetFlow consists of two main components, an exporter and a collector. The
exporter can be a NetFlow enabled Cisco switch or router. This means that
we do not have to add additional equipment to start collecting NetFlow
data if the core network already consist of Cisco equipment. There are also
several other vendors making NetFlow exporters, so the exporter do not
necessarily have to be a Cisco switch or router. However, in this thesis we
have mainly focused on Cisco NetFlow when mentioning equipment and
technology regarding NetFlow, even though it would not have made much
difference looking at other solutions.

The collector is a centralized host on the network that receives NetFlow
data from all the exporters. Using a collector and thereby centralizing all
the NetFlow data collected, eases the administration and gives a complete
picture of all the traffic going through the network. It is possible to have
both several exporters collecting and exporting data, and several collectors
receiving data from the exporters on the network.

It is important to plan ahead when choosing where to place the collector
on the network. The reason for this is that 1 - 5 % of the total network
traffic flowing through the network is used to export NetFlow data to the
collector. Therefore, it is best to place the exporters as close to the collector
as possible to avoid utilizing too much bandwidth. This is also important
to minimizing packet loss between the exporters and the collector, since
this leads to gaps in the collected flow data.

2.1.1 IP Flows

Each packet that is forwarded within a NetFlow enabled switch or router is
examined for a set of IP packet attributes. These attributes are used as the
IP packet’s identity, or fingerprint of the packet, to determine if the packet

6

is unique or similar to other packets. This enables recognition of duplicate
packets. The IP packet attributes that are inspected by NetFlow can be seen
in table 2.1. The attributes in the table are IPv4 attributes. IPv6 is only
supported by NetFlow version 9.

Attribute Description
IP source address IP address of the sending host
IP destination address IP address of the receiving host
Source port Port used by the sending host
Destination port Port used by the receiving host
Layer 3 protocol type Protocol used (TCP/UDP/ICMP)
Class of service Priority value that can be used by QOS
Router or switch interface Interface used on the device

Table 2.1: IP packet attributes used by NetFlow

All packets with the same source and destination IP address, source and
destination ports, protocol interface, and class of service are grouped into
a flow. The number of packets and bytes are then added together to
display the total amount of traffic in that specific flow. Grouping IP
packets together into flows makes NetFlow highly scalable, since it greatly
reduces the amount of traffic data that needs to be stored. However, it
also leaves the network administrators with less information to work with.
All the flows are stored in the NetFlow cache on the exporter before being
transferred to the collector.

Additional information are also added to the flows, like flow timestamps.
These timestamps are useful for calculating the number of packets and
bytes per second. Next hop IP addresses and subnet mask for the source
and destination addresses are added. The subnet masks are added to
calculate prefixes. TCP flags are also added. It is important to remember
that because all the network traffic is grouped together, so are the TCP
flags, which means that it is not possible to see the TCP flags for individual
packets.

All flows are unidirectional, meaning that a flow only consists of packets
flowing in one direction. Because of this a TCP connection between Bob
and Alice would create two flows, one flow flowing from Bob to Alice, and
another flow flowing from Alice to Bob. As illustrated in figure 2.2 network
traffic can consist of several IP packets being sent back and forth between
two hosts, but NetFlow groups all the IP packets together, creating one flow
per direction. The same would apply for a UDP connection.

7

Figure 2.2: IP traffic versus NetFlow flows

2.1.2 Exporter

The exporter can be a Cisco device running Cisco IOS with NetFlow
enabled. This is typically a Cisco switch or router. Most new Cisco devices
are capable of capturing NetFlow data. See table 2.2 for an overview of
Cisco devices supporting NetFlow. The exporter examines all IP packets
being forwarded through the device and store the NetFlow data in the
NetFlow cache.

Device Supported
Cisco 800, 1700, 2600 Yes
Cisco 1800, 2800, 3800 Yes
Cisco 4500 Yes
Cisco 6500 Yes
Cisco 7200, 7300, 7500 Yes
Cisco 7600 Yes
Cisco 10000, 12000, CRS-1 Yes
Cisco 2900, 3500, 3660, 3750 No

Table 2.2: Cisco switches and routers supporting NetFlow

It is possible to examine the NetFlow data directly on the exporter, using
the Cisco device’s command line interface (CLI). This is useful for getting
an immediate view of what is happening in the network. It is also very
useful for troubleshooting. However, using a collector is vital for getting a
better overview, and facilitate in-depth analysis.

To be able to use a centralized collector the flows must be exported from the
device collecting the flows. The device determines which flows to export to
the NetFlow collector by looking at the state of the flows. If a flow has been
inactive for 15 seconds, it is exported. A flow is also exported if the flow
duration exceeds the active timer. The default active timer is 30 minutes,

8

meaning that a flow is split up and exported if it is active longer than this.
Large file transfers will typically exceed the active timer. It may be broken
into multiple flows by the exporter and combined again by the collector. A
flow is also exported at termination (e.g. FIN or RST flag). When exporting
flows approximately 30 to 50 flows are bundled together and transported
using UDP to the NetFlow collector. Because UDP is used for this purpose,
loosing a packet would leave a gap in the collected NetFlow data.

2.1.3 Collector

The NetFlow collector receives flows from one or more NetFlow exporters.
It processes the flows by parsing and storing them. The collector
provides the network administrators with a centralized overview of all
the flows on the network. This increases network visibility and facilitates
troubleshooting.

There exists a range of different NetFlow collectors. These include Cisco,
open source solutions and third party products that collect and present
NetFlow data. It is important to choose a solution that is suitable for
the network that is being monitored. Some systems even offer a two-tier
architecture, where collectors are placed in key points in the network as
probes and data is forwarded to a main reporting server. Other systems
consists of only a single server for collecting and reporting.

The operating system used by the various collectors varies. Everything
from Linux and BSD to Windows is used. Price is also an important factor.
The different solutions vary greatly in price, while some of the solutions
are free, the expensive solutions cost more than USD 25,000.

2.1.4 Export Formats

NetFlow can use different export formats when exporting packets from
the exporter to the collector. These are commonly called the export
version. The export versions include version 5, 7 and 9. Version 5 is the
most common format used, while version 9 is the latest format and has
advantages when it comes to traffic analysis, security, support for IPv6 and
multicast.

9

Bytes Content Description
0 - 1 version NetFlow export format version number
2 - 3 count Number of flows exported in this packet (1-30)
4 - 7 SysUptime Current time in milliseconds since router booted
8 - 11 unix_secs Current seconds since 0000 UTC 1970
12 - 15 unix_nsecs Residual nanoseconds since 0000 UTC 1970
16 - 19 flow_sequence Sequence counter of total flows seen
20 - 21 engine_type Type of flow switching engine
21 - 23 engine_id Slot number of the flow switching engine

Table 2.3: NetFlow version 5 header format

The NetFlow flows consists of a flow header format and a flow record
format [4]. The version 5 header format consists of a version number,
number of flows exported, system uptime of the exporter, the current time
in UNIX time (both seconds and nanoseconds), and information about the
flow engine. See table 2.3 for the entire version 5 header format.

The version 5 and 7 header formats are quite similar to each other. The only
difference is that the version 7 header format does not include information
about the flow switching engine and it has three unused bytes (reserved).

While the flow header format contains information about the entire bundle
of flows, the flow record format contains the individual flows. The
version 5 flow record format contains information like source IP address,
destination IP address, transport protocol used (e.g. TCP or UDP), source
port number, destination port number, and TCP flags. See table 2.4 for the
entire version 5 flow record format.

The version 5 and 7 flow record formats are almost identical to each other.
One of the few differences is that the version 7 format includes a source
router field. The version 7 record format is only used on Cisco Catalyst
switches, but it has very limited support and few switches actually support
this export format. It is therefore safer to use the version 5 export format
instead.

The NetFlow version 9 export format differentiates from version 5 and 7 by
being template based [2]. By using templates it allows future enhancements
to NetFlow services, without requiring changes to the flow record format.
This makes it simple to add new features to NetFlow more quickly without
breaking current implementations.

10

Bytes Content Description
0 - 3 srcaddr Source IP address
4 - 7 dstaddr Destination IP address
8 - 11 nexthop Next hop router’s IP address
12 - 13 input Ingress interface SNMP ifIndex
14 - 15 output Egress interface SNMP ifIndex
16 - 19 dPkts Packets in the flow
20 - 23 dOctects Octets (bytes) in the flow
24 - 27 first SysUptime at the start of the flow (ms)
28 - 31 last SysUptime at the time of the last packet of the

flow was received (ms)
32 - 33 srcport Layer 4 source port number or equivalent
34 - 35 dstport Layer 4 destination port number or equivalent
36 pad1 Unused (zero) byte
37 tcp_flags Cumulative OR of TCP flags
38 prot Layer 4 protocol (for example, 6=TCP, 17=UDP)
39 tos IP type-of-service byte
40 - 41 src_as Autonomous system number of the source,

either origin or peer
42 - 43 dst_as Autonomous system number of the destina-

tion, either origin or peer
44 - 45 src_mask Source address prefix mask bits
46 - 47 dst_mask Destination address prefix mask bits
48 pad2 Pad 2

Table 2.4: NetFlow version 5 flow record format

The version 9 export format consists of a flow header format followed by at
least one or more template or data FlowSets. A template FlowSet provides
a description of the fields that will occur in future data FlowSets. A FlowSet
template must be sent before the FlowSet data for the collector to be able to
understand which data fields the FlowSet data consists of. The FlowSet
data could either be sent within the same export packet as the FlowSet
template, or it could be sent later on. The collector must always cache any
received templates, and examine the template cache to figure out which
template a data set belongs to.

The version 9 NetFlow packet header is based on the version 5 NetFlow
packet header, thus being almost identical to its predecessor. However,
fields like sampling interval and aggregation scheme has been left out.
These are instead sent in another data record, called the option template.
The option template is used to supply meta data about the NetFlow
process, like information about IP flows.

11

To export NetFlow data using the version 9 export format FlowSet
templates are used. FlowSet templates consists of a FlowSet ID, length,
template ID, field count, field type, and field length. The FlowSet ID is
used to separate a template from a data record by setting the FlowSet ID to
zero. The length refers to the total length of the FlowSet. The template ID is
a unique ID given to each FlowSet template. The field count is the number
of fields in this template. The field type and field length refers to one of
the fields in the FlowSet template. See table 2.5 for all the fields used in the
FlowSet template.

Field Name Value
FlowSet ID The FlowSet ID is used to distinguish template

records from data records. A template record
has a FlowSet ID of zero.

Length Length refers to the total length of this FlowSet.
Template ID Template ID is a unique value given to each

template FlowSet to match the type of NetFlow
data it will be exporting.

Field Count This field gives the number of fields in this
template record.

Field Type The NetFlow data field to be exported.
Field Length The length of the field defined above.

Table 2.5: NetFlow version 9 FlowSet Template

The possible data fields that can be exported using NetFlow version 9
are almost unlimited. New data fields can easily be added. This makes
NetFlow version 9 more versatile than version 5. See appendix D for a list
of data fields implemented for NetFlow version 9.

2.1.5 Security Concerns

It is important to not only survey the benefits of a technology, but also the
drawbacks, when deploying it on your network. NetFlow was designed
with the expectation that the exporter and collector would reside within a
single private network [3]. However, this is often not the case. In many
cases NetFlow data is sent over the Internet.

NetFlow does not deploy any form of cryptography when sending data
between the exporter and the collector. Because of this, all the NetFlow
data is sent in clear text, opening up for several attack vectors.

12

Figure 2.3: Eavesdropping on NetFlow traffic

An attacker may eavesdrop on the traffic, if she can access the NetFlow
export network. This can give the attacker information about the active
flows in the network, traffic patterns and communication endpoints. This
information could be used to plan further attacks and to spy on user
behaviour. The effectiveness of this attack depends on the kinds of data
that is being reported. If a flow record contains both source and destination
IP addresses it might reveal sensitive information about the user activity.
However, if it only contains the source and destination IP network it
would be less revealing about user activity, but it could reveal sensitive
or classified information about business relationships or communication
partners.

NetFlow does not deploy any form of integrity checking. Because of this,
it is possible to forge exported flow records. This could be used to prevent
the detection of an attack, by altering the flow records on the path between
the exporter and the collector, or it could be done by injecting forged flow
records that pretend to be coming from the exporter. By doing this flow
records for traffic that has not actually occurred on the network could be
added to the collector.

Figure 2.4: Injecting forged NetFlow traffic

If NetFlow version 9 is used then both templates, option templates, and
FlowSet data could be forged and injected using this method.

13

It is also possible to launch a Denial of Service (DOS) attack against the
collector, rendering it unable to capture NetFlow export packets. However,
this is not a security threat that is specific to NetFlow.

2.1.6 Nfdump Tools

Nfdump tools is an open source NetFlow collector distributed under the
BSD license [5]. It is designed to be able to analyze NetFlow data from
the past as well as to continuously track interesting traffic patterns in real-
time. The amount of historic NetFlow data it can store is only limited by
disk space. Because of this, months or even years worth of flows can easily
be stored. Nfdump support NetFlow version 5, 7 and 9 and consists of the
following tools:

nfcapd NetFlow capture daemon. Reads the NetFlow data sent from the
exporters and stores the data into files. Automatically rotates files
every 5 minutes (default).

nfdump NetFlow dump. Reads NetFlow data from the files stored by
nfcapd and displays it to the user. Filters can be used to limit the
data.

nfprofile NetFlow profiler. Reads NetFlow data from the files stored by
nfcapd and stores it in files based on specified filter sets.

nfreplay NetFlow replay. Reads the NetFlow data from the files stored by
nfcapd and sends it over the network to another host. Filters can be
applied to only send matching flows.

nfclean.pl Cleans up old data. Sample script to cleanup old data.

ft2nfdump Read and convert flow-tools data. Convert data from flow-
tools format to nfdump format to be processed by nfdump. Flow-
tools is a collection of programs used to collect, send and process
NetFlow data [6].

14

Nfdump is able to read and store NetFlow data from several exporters at
the same time. However, one nfcapd process is needed for each NetFlow
stream. All the data stored by nfcapd is organized in a time based fashion.
The output file is by default rotated and renamed every five minutes
with the time stamp nfcapd.YYYYMMddhhmm. The file nfcapd.201111201605
contains data from November 20th 2011 16:05. The total amount of nfcapd
files per day are 288, one for each five minutes interval. All the data is
stored to disk, before being analyzed. This separates the process of storing
from the process of analyzing the data.

Figure 2.5: Nfdump overview

Nfdump tools deploy a filtering scheme with syntax similar to TCPdump.
Because of this, it is simple for someone that already knows the filter
syntax for TCPdump to use Nfdump. The tools are optimized for speed
for efficient filtering. Processed flows can either be printed in text to the
standard output stream (STDOUT) or written to a file. Example output
from Nfdump can be seen in listing 2.1.

15

Listing 2.1: Example output from Nfdump

$ nfdump −r nfcapd .201111201605 ’ s r c ip 1 4 3 . 2 2 0 . 5 . 2 0 1 and dst port 53 ’

Date flow s t a r t Duration Prot Src IP Addr : Port Dst IP Addr : Port Packets Bytes Flows
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 5 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 4 7 3 4 9 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 5 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 3 9 4 6 6 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 5 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 3 7 8 2 8 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 5 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 5 9 1 2 8 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 5 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 5 8 2 7 5 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 5 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 4 4 8 7 3 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 4 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 5 2 6 2 5 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 8 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 5 8 9 2 6 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
[. .]
2011−06−18 2 0 : 5 6 : 5 8 . 5 1 8 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 3 6 5 7 4 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1
2011−06−18 2 0 : 5 6 : 5 8 . 4 5 4 0 .000 UDP 1 4 3 . 2 2 0 . 5 . 2 0 1 : 3 9 2 3 3 −> 1 4 3 . 2 2 0 . 1 . 3 0 : 5 3 1 58 1

Summary : t o t a l flows : 264 , t o t a l bytes : 15520 , t o t a l packets : 265 , avg bps : 343 ,
avg pps : 0 , avg bpp : 58
Time window : 2011−06−18 2 0 : 2 7 : 5 3 − 2011−06−18 2 1 : 0 4 : 5 5
Tota l flows processed : 213402 , Blocks skipped : 0 , Bytes read : 11097068
Sys : 0 .035 s flows/second : 5928986 .2 Wall : 0 . 033 s flows/second : 6278745 .4

The example shows the use of Nfdump filters. In this case flows with the
source IP address 143.220.5.201 and destination port 53 is filtered out and
printed to the screen. This is the default output format used by Nfdump. It
is also possible to use the output format long to get additional information
about the flows such as TCP flags and Type of Service (TOS). If this is not
enough output it is possible to use the output format extended. It provides
even more information like packets per second, bits per second and bytes
per packet.

Tag Description Tag Description
%ts Start time - first seen %in Input interface number
%te End time - last seen %out Output interface number
%td Duration %pkt Packets
%pr Protocol %byt Bytes
%sa Source address %fl Flows
%da Destination address %flg TCP flags
%sap Source address:port %tos Type of service
%dap Destination address:port %bps Bits per second
%sp Source port %pps Packets per second
%dp Destination port %bpp Bytes per second
%sas Source AS %das Destination AS

Table 2.6: Nfdump custom output pre defined element tags

16

Nfdump also supports the use of a custom output format allowing to
specify what the output should look like. This is done using pre-defined
element tags. See table 2.6 for a list of pre-defined element tags allowed by
Nfdump.

By using the custom output format we can limit the output to only the
fields we need. This makes it simple to use the output from Nfdump in
other applications.

Listing 2.2: Custom output in Nfdump

$ nfdump −r nfcapd .201111201605 −o fmt:% sa%sp%da%dp ’ s r c ip 1 4 3 . 2 2 0 . 5 . 2 0 1 and dst port 53 ’

Src IP AddrSrc Pt Dst IP AddrDst Pt
1 4 3 . 2 2 0 . 5 . 2 0 1 47349 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 39466 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 37828 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 59128 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 58275 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 44873 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 52625 1 4 3 . 2 2 0 . 1 . 3 0 53
[. .]
1 4 3 . 2 2 0 . 5 . 2 0 1 58926 1 4 3 . 2 2 0 . 1 . 3 0 53
1 4 3 . 2 2 0 . 5 . 2 0 1 36574 1 4 3 . 2 2 0 . 1 . 3 0 53

Summary : t o t a l flows : 264 , t o t a l bytes : 15520 , t o t a l packets : 265 , avg bps : 343 ,
avg pps : 0 , avg bpp : 58
Time window : 2011−06−18 2 0 : 2 7 : 5 3 − 2011−06−18 2 1 : 0 4 : 5 5
Tota l flows processed : 213402 , Blocks skipped : 0 , Bytes read : 11097068
Sys : 0 .035 s flows/second : 5928986 .2 Wall : 0 . 033 s flows/second : 6278745 .4

Listing 2.2 shows the usage of the custom output format. It is specified
using -o fmt: and then the elements we want to display. In this case
the elements source IP address, source port, destination IP address and
destination port are selected.

In addition to being able to specify output mode and filter flows, Nfdump
is capable of printing flow statistics. It does this by aggregating flows
based on the fields we want statistics for. This makes it possible to print
the amount of traffic generated by each host on the network, or even the
amount of traffic generated on each port. This makes it easy to see which
hosts that generate the most traffic on the network, or to recognize the most
common services on the network.

17

2.2 Host Detection Techniques

In the following sections we are going to explore several methods that are
used for detecting hosts on a network. These methods are used by common
tools like Nmap (mentioned in section 2.5), Nessus, PRADS (mentioned in
section 2.6), OpenVAS as well as many others.

2.2.1 Ping Sweep

A ping sweep is a kind of network probe, where the intruder or network
auditor sends a set of ICMP (Internet Control Message Protocol) echo
packets to a range of IP addresses [7]. The goal of this is to see which hosts
that respond to the probes sent. By doing this it is simple to determine the
hosts that are alive and the hosts that are not. This could be compared to
knocking on people’s doors to look for indication of the presence of life.

Figure 2.6: Ping Sweep

This is done by sending ICMP echo request (ICMP type 8, code 0) to a
set of hosts [8]. The hosts that sends an ICMP echo reply back (ICMP
type 0, code 0) are available on the network. Unfortunately, there are a
lot of network administrators that do not comply with the ICMP RFC (RFC
792) by turning off ICMP echo packets on their networks, to make their
machines less visible. This is a basic method to thwart host detection, but
it makes it cumbersome to use Ping sweeps for host detection.

18

2.2.2 TCP SYN Ping

TCP SYN Ping is done by sending an empty TCP packet with the SYN flag
set to a host to check if it is alive [9]. The destination port could be any port,
but it is recommended to use port 80, since this is one of the most common
ports used on the Internet and it is therefore more likely that this port is not
blocked. This method picks up hosts not detected by ping sweep (section
2.2.1), where ICMP is either turned off or blocked.

Figure 2.7: TCP SYN Ping

By setting the SYN flag we indicate that we want to establish a connection
to the remote host. The remote host then responds with a RST (reset)
packet if the destination port is closed. This happens in most cases.
Otherwise, if the port is open the host responds with continuing the three
way handshake by sending a SYN/ACK packet back. If this is the case
one would send a RST packet to the host closing the connection rather
than completing the TCP handshake by sending an ACK packet back. The
reason to do this is to tell the remote host that the TCP connection should
be terminated, to avoid it believing that the packet has been dropped and
continue resending the packet.

As long as we get a response back from the host, it does not really matter
what kind of answer, since our main objective is to check if the host is alive
or not.

19

2.2.3 TCP ACK Ping

This technique is similar to the SYN ping (section 2.2.2). However, in this
case a TCP ACK flag is set instead of a SYN flag. This makes it look
like we are trying to acknowledge data over an already established TCP
connection, even though such a connection does not exist. Because of the
lack of an existing session, remote hosts will always respond with a RST
packet, hence revealing their mere existence.

Figure 2.8: TCP ACK Ping

The reason for using this technique in combination with TCP SYN ping is to
increase the possibility to bypass firewalls. Many network administrators
configure their filtering routers or firewalls to block incoming SYN packets
destined for anything but public services. By using the ACK probe, this
kind of filtering can be circumvented. However, some firewalls keep track
of the state of all connections and blocks all packets that are not part of
established TCP connections. This method is therefore not sufficient to
circumvent rules in stateful firewalls.

2.2.4 ARP Ping

Address Resolution Protocol (ARP) is used to glue together the IP and
Ethernet networking layers [10]. It is used to locate the Ethernet address
associated with a desired IP address. When a host has a packet destined
to another IP address it will broadcast an ARP request asking who has that
IP address. The host with the requested IP address will then respond by
sending a reply back telling the requesting host its Ethernet address. See
figure 2.9 for an example of an ARP conversation.

20

Figure 2.9: ARP Ping

The ARP protocol is fast and because of this, ARP replies usually comes
within a couple of milliseconds [9]. Using IP scans like in the techniques
mentioned above it could take as long as two seconds to scan each host.
This is not a problem when only scanning a few hosts, but it becomes a
huge problem when scanning large subnets such as a 16-bit subnet (class
B) or even as big as a 8-bit subnet (class A). This makes ARP scanning a
valuable scanning method when scanning large computer networks.

It is also possible to detect hosts by passively listen for ARP packets on the
network since they are broadcasted to all hosts on the network. We do not
detect hosts as quickly as when scanning when doing this, but it is a lot less
intrusive. However, ARP packets does not pass through a router unless the
router is set up with proxy ARP, hence this is useful on local networks only.

2.3 Service Detection Techniques

In the following sections we will present a set of techniques for detecting
services running on hosts on the network.

2.3.1 TCP SYN Scan

TCP SYN scan is often called stealth scan, the reason being that it is not
easy to detect since it never completes TCP connections [9]. TCP SYN scan
is popular since it is quick, unobtrusive and stealthy. It can scan thousands
of ports per second on a fast network.

Figure 2.10: TCP SYN Scan

21

TCP SYN scan works similar to TCP SYN ping (mentioned in section 2.2.2)
by sending a TCP packet with the SYN flag set. However, since we want
to check if a port is open rather than if the host is alive, the port number
selected have to be the port we want to check. If the port is open the remote
host sends a SYN/ACK packet back, otherwise a RST packet is sent back.
On receiving a SYN/ACK, the scanning host sends a RST packet to the
remote host instead of completing the TCP handshake. If the scanner does
not send a RST packet the remote host would assume the packet it sent was
dropped and then just keep re-sending its SYN/ACK.

2.3.2 TCP Connect Scan

TCP connect scan is a scanning method that does not send raw packets, and
therefore does not need as high system privileges as the previous scanning
methods [9]. Raw packets bypass layers in the TCP/IP stack, and therefore
needs high privileges to be sent [11]. TCP connect scan asks the operating
system to establish a connection with the target host and port by issuing
the connect system call. This system call is also used by web browsers and
most other network-enabled applications when establishing a connection.

Instead of only opening TCP connections half way through, like the
previous methods mentioned, this method completes the connections.
Since it completes the connections it will take longer to perform this scan
then the TCP SYN scan, and Unix systems will log the connection to syslog
as suspicious when a connection is made and no data is sent. Because of
this TCP connect scan is not considered a stealthy scanning method.

Figure 2.11: TCP Connect Scan

As shown in figure 2.11, this scan starts by initiating a TCP connection with
the remote host. After a connection is established, the remote host sends
the service banner of the service running on the specified port. Instead of
sending data traffic, the connection is then closed down by sending an RST

22

packet to the host. In the figure the port is open. In cases were the port is
closed, the remote host would not respond with a SYN/ACK packet and
the TCP connection would not be established.

By grabbing the banner string of the service one can see not only what
service is running, but also frequently the service version. This is useful
when looking for hosts running vulnerable software versions.

2.3.3 UDP Scan

The scanning methods previously mentioned in section 2.3 are only capable
of detecting TCP services [9]. Even though the most popular services on
the Internet run over TCP, it is important to be able to also detect UDP
services. Some UDP services are widely deployed, like DNS, SNMP, NFS
and DHCP. Many security auditors ignore scanning UDP ports since UDP
scanning is generally slower and more difficult to perform than TCP, and
most commonly used tools do not provide efficient UDP scanning.

UDP scan works by sending an empty UDP header to each port on a remote
host. A port is considered open if any UDP response is sent back from the
target port. However, this is highly unlikely, since the listening application
usually discards the probe as invalid, because it does not match the traffic it
expects to get. If no response is returned the port is either open or filtered.
If an ICMP port unreachable packet is returned the port is closed.

Figure 2.12: UDP Scan

23

Speed is a concern when performing a UDP scan. The reason being that
open and filtered ports rarely send any response, leaving the scanner to
time out. Another reason is that many operating systems limit the amount
of ICMP port unreachable messages that can be sent as response. In
GNU/Linux this is often limited to as little as one per second by default.
Because of this it can take lots of time to scan a single host using this
method.

2.3.4 TCP FIN Scan

TCP FIN scan uses a loophole in the TCP RFC (RFC 793) to detect whether
a port is open or closed [9]. What the RFC states is that if the destination
port is closed and the packet does not contain a RST packet, then a RST
packet should be returned. Hence if a host is compliant with the TCP RFC,
any packet that does not have the SYN, RST or ACK bits set will result in
a returned RST packet if the port is closed and no response if the port is
open.

Figure 2.13: TCP FIN Scan

The advantage of using this method is that it can easily bypass filtering
firewalls that block TCP packets with the SYN flag set. Unfortunately, not
all systems follow the TCP RFC, in addition it can not differentiate between
open and filtered ports, rendering this method ineffective in some cases.

24

2.3.5 Determine Traffic Direction

When trying to detect assets based on looking at network traffic, it is
important to determine the direction of the traffic, which host is the server
and which host is the client. Unlike port scanning where we are actively
trying to find open ports on a remote host, passively looking for ports
is difficult, because it can be difficult to figure out the roles of the hosts
involved.

One way of detecting the traffic direction is by looking at the TCP
handshake that occur every time a TCP connection is established [12].

Figure 2.14: Establishing a TCP connection

When a client wants to connect, it sends a SYN packet to the server. The
server then responds with sending a SYN/ACK packet back. Because of
this, it is simple to see who is acting as a server in a connection, exemplified
by Alice acting as the server in figure 2.14, since she is sending a SYN/ACK
packet to Bob. The method described in this section is used by PRADS
(section 2.6) when passively detecting network assets.

2.4 Remote Operating System Detection

Remote operating system detection is the process of determining the
identity of a remote host’s operating system [13]. This is done by sending
packets to a remote host and analyzing the response. The response
is compared to a database that contains fingerprints for the different
operating systems.

Remote operating system detection was originally done by using a
technique called banner grabbing. This was done by looking at the service
banner displayed when trying to connect to a service like ftp or similar
services.

Newer forms of remote operating system detection is based on a finger-

25

printing approach. What it does is that it looks for operating system spe-
cific traits in the answer it receives from packets sent to remote hosts.

Xprobe2 is a tool that uses fingerprinting to determine the operating system
of remote hosts. It needs at least one closed UDP port to work and it relies
primarily on the use of the ICMP protocol.

It consists of several modules, or tests that are run against the target
machine. The first two modules are reachability tests, that try to determine
whether the target machine is alive or not. This is done by sending an ICMP
echo request to the target. If the host is alive, it sends an ICMP echo reply
back. The other test is a distance test, where a TCP packet with the SYN
flag is sent to the target. The goal here is to get either a TCP packet with
the SYN/ACK flag enabled meaning that the port is open, or a TCP packet
with the RST flag enabled meaning that the port is closed. If no response is
received another TCP packet is sent to a different port, with the same goal.

The rest of the modules are fingerprinting tests, that try to determine the
operating system running on the target. These consist of five modules in
total:

• Module A sends an ICMP echo request to the target.

• Module B sends an ICMP timestamp request message to the target.

• Module C sends an ICMP address mask request message to the target.

• Module D sends an ICMP information request message to the target.

• Module E sends an UDP packet acting as a DNS request to the target,
trying to get an ICMP port unreachable message back.

After all the responses has been received from the modules, the scores
are calculated and compared to a fingerprint database. This database
contains fingerprints of known operating systems. Xprobe2 then returns
an estimate of which operating system that is the most probable match for
the target host. Listing 2.3 shows a partial Xprobe2 fingerprint for Microsoft
Windows NT 4 server with service pack 4.

26

Listing 2.3: Partial Xprobe2 fingerprint

f i n g e r p r i n t {
OS_ID = " Microsof t Windows NT 4 Server S e r v i c e Pack 4"
Entry i n s e r t e d to the database by : Of i r Arkin (of ir@sys−s e c u r i t y . com)
Entry contr ibuted by : Of i r Arkin (of ir@sys−s e c u r i t y . com)
#Date : 30 Ju ly 2002
Modified : 11 Ju ly 2003

#Module A
icmp_echo_reply = y

icmp_echo_code = 0
icmp_echo_ip_id = ! 0
icmp_echo_tos_bi ts = ! 0
icmp_echo_df_bit = 1
icmp_echo_reply_t t l = <128

[. .]

#Module F [TCP SYN | ACK Module]
IP header of the TCP SYN ACK
tcp_syn_ack_tos = 0
tcp_syn_ack_df = 1
tcp_syn_ack_ip_id = ! 0
t c p _ s y n _ a c k _ t t l = <128

}

The fingerprint database is distributed with the source code and consists
of fingerprints for operating systems ranging from old and new versions of
Microsoft Windows to Sun Solaris and NetBSD [14]. The current version is
able to uniquely identify 226 different operating systems.

2.5 Nmap

Nmap ("Network Mapper") is an open source tool for exploring networks
and security auditing. It was designed to scan large networks, but it
also works against single hosts. Even though its main usage is for
security audits, many network administrators use it for keeping track of
the assets available on their network. It is useful for routine tasks like
network inventory management, managing service upgrade schedules,
and monitoring host and service uptime.

Nmap is a port scanner and can be used to establish which hosts are
available on the network, which services that are available on these hosts,
and which operating system the different hosts run. Nmap uses several of

27

the methods described in the previous sections, and has several additional
features. Mentioning all the methods used by Nmap, are out of the scope
of this thesis. When a network administrator or auditor wants to get an
overview of the network equipment and machines that are on the network,
it is useful to do what Nmap calls a "list scan". What Nmap does when a
list scan is performed, is that it simply lists all the targets in the specified IP
range. See figure 2.4 for an example of a Nmap list scan.

Listing 2.4: Nmap list scan

root@rosa :/home/matsekl\# nmap −sL 143.220 .114 .20 −30

S t a r t i n g Nmap 5 . 2 1 (ht tp ://nmap . org) a t 2012−01−02 11 :24 CET
Nmap scan repor t f o r 1 4 3 . 2 2 0 . 1 1 4 . 2 0
Nmap scan repor t f o r 1 4 3 . 2 2 0 . 1 1 4 . 2 1
Nmap scan repor t f o r leda . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 2)
Nmap scan repor t f o r a s t r o . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 3)
Nmap scan repor t f o r duiker . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 4)
Nmap scan repor t f o r paradox . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 5)
Nmap scan repor t f o r bane . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 6)
Nmap scan repor t f o r a lchemis t . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 7)
Nmap scan repor t f o r t r i n i t y . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 8)
Nmap scan repor t f o r pippin . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 2 9)
Nmap scan repor t f o r b r i c k . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 3 0)

Nmap done : 11 IP addresses (0 hosts up) scanned in 0 . 0 1 seconds

The list scan is useful when a simple overview of all the machines on
the network is needed. However, Nmap is able to do more than this.
It is also capable of providing information on which network services
each host is running. Several methods for scanning hosts for services are
implemented in Nmap, as different scanning methods have their strengths
and weaknesses. Nmap tries to bypass the weaknesses by letting the user
combine several scanning methods.

Listing 2.5 shows an example of a TCP SYN scan performed with Nmap.
In this example Nmap scans through the thousand most popular ports and
prints the results. In this case Nmap reports that four services are running
on the host. This corresponds to the services actually running on the host.

28

Listing 2.5: Nmap TCP SYN scan

root@rosa :/home/matsekl\# nmap −sS 1 4 3 . 2 2 0 . 1 1 4 . 3 0

S t a r t i n g Nmap 5 . 2 1 (ht tp ://nmap . org) a t 2012−01−02 11 :48 CET
Nmap scan repor t f o r b r i c k . uio . no (1 4 3 . 2 2 0 . 1 1 4 . 3 0)
Host i s up (0 . 0 0 0 0 9 7 s l a t e n c y) .
Not shown : 996 c losed ports
PORT STATE SERVICE
22/ tcp open ssh
25/ tcp open smtp
111/ tcp open rpcbind
5000/ tcp open upnp
MAC Address : 7 0 : 7 5 :BC : B7 : 7 1 : 1 4 (Unknown)

Nmap done : 1 IP address (1 host up) scanned in 0 . 0 7 seconds

In addition to doing host discovery and service detection, Nmap is also able
to guess the operating system running on the hosts. This is done by using a
similar method to the fingerprinting method described in the section about
remote OS detection (section 2.4). See Listing 2.6 for an example of remote
operating system detection using Nmap.

Listing 2.6: Nmap remote operating system detection

root@rosa :/home/matsekl\# nmap −O waldo . uio . no

S t a r t i n g Nmap 5 . 2 1 (ht tp ://nmap . org) a t 2012−01−02 12 :15 CET
Nmap scan repor t f o r waldo (1 4 3 . 2 2 0 . 1 1 4 . 1 9 6)
Host i s up (0 . 0 0 0 2 6 s l a t e n c y) .
rDNS record f o r 1 4 3 . 2 2 0 . 1 1 4 . 1 9 6 : waldo . uio . no
Not shown : 984 c losed ports
PORT STATE SERVICE
22/ tcp open ssh
80/ tcp open http
Device type : genera l purpose
Running : Linux 2 . 6 . X
OS d e t a i l s : Linux 2 . 6 . 1 3 − 2 . 6 . 2 8
Network Distance : 4 hops

Nmap done : 1 IP address (1 host up) scanned in 1 . 6 0 seconds

The examples shown here are just a few of the many available options
for Nmap. Nmap can provide further information on targets, including
reverse DNS names, traceroute and version scanning. Version scanning
makes network administrators and auditors able to detect services that are
old and vulnerable. Nmap does version scanning by grabbing the banners
provided by each service. However, it is possible to fool Nmap by changing
the services so they either do not provide the service version or provide

29

a fake version. Nmap include a service database of 2.200 well-known
services, making it easier to understand the results provided by Nmap.

Nmap has several possible output types. It can print the output directly to
the terminal, or it can print the output in XML to a file. The latter output
type is important because it can easily be converted to HTML, and parsed
by other programs or imported into databases.

2.6 PRADS

PRADS (Passive Real-time Asset Detection System) is a program that
passively listens to network traffic, and uses the information gathered to
map the network [15]. It is able to tell which services the hosts are running
and which hosts that are available on the network.

PRADS use both TCP, UDP and ICMP traffic to detect hosts, meaning that
as long as a host is communicating it is detected. To be able to do this
PRADS must be situated so that it listens in on all the traffic on the network.
This could either be done by connecting the host running PRADS to a span
port on the switch and mirroring all the traffic to it, or by using a network
tap to copy all the traffic running through it (see figure 2.15). PRADS is also
able to detect hosts based on ARP packets (see section 2.2.4).

Figure 2.15: Placing the host running PRADS in the network

PRADS can be used to detect services running on the hosts. To do this, it
first has to determine which of the hosts communicating that is acting as
the server. It does this by using the method described in determine traffic
direction (section 2.3.5). After it has decided which host is the server, it

30

grabs the service banner from the traffic. This way PRADS is able to detect
which service it is, even if a service is running on an nontraditional port.
PRADS is mostly limited to detecting TCP services. However, a few UDP
services has also been included, like DNS. UDP services are only detected
based on the ports they are running on.

PRADS is able to detect operating systems based on a method similar to
the one described in the section about remote operating system detection
(section 2.4).

PRADS has two supported output types, it can either print the results
to a file or it can use a FIFO1 device to send the results to another
application. When the former output type is selected, it saves the output
to /var/log/prads-asset.log by default. Listing 2.7 shows an example of what
output generated by PRADS looks like.

Listing 2.7: Example output from PRADS

1 4 3 . 2 2 0 . 1 1 4 . 4 2 , 0 , 4 4 3 , 6 , CLIENT , [s s l : TLS 1 . 0 C l i e n t Hello] ,0 ,1313415545
1 4 3 . 2 2 0 . 1 1 4 . 4 2 , 0 , 7 4 4 , 6 ,ACK, [2 4 5 6 5 : 6 4 : 1 : 0 :N,N, T :AT: Linux : 2 . 4 (newer) / 2 . 6 : uptime : 2 9 5 hrs] ,0 ,1313415472
1 4 3 . 2 2 0 . 1 1 4 . 1 9 6 , 0 , 1 1 1 , 6 ,ACK, [9 1 : 6 0 : 1 : 0 :N,N, T :AT: Linux : 2 . 4 (newer) / 2 . 6 : uptime :8698 hrs] ,4 ,1313415601
1 4 3 . 2 2 0 . 1 1 4 . 2 2 , 0 , 2 2 , 6 , CLIENT , [ssh : OpenSSH 5 . 8 p1 (Protoco l 2 . 0)] , 0 , 1 3 1 3 4 1 5 7 3 5
7 4 . 1 2 5 . 4 3 . 1 9 , 0 , 4 4 3 , 6 ,ACK, [9 4 8 : 4 8 : 1 : 0 :N,N, T :AT: Linux : 2 . 4 (newer) / 2 . 6 : uptime :3452 hrs] ,16 ,1313418521
1 4 3 . 2 2 0 . 1 1 4 . 4 2 , 0 , 5 1 4 , 1 7 , CLIENT , [unknown : @syslog] ,0 ,1313418601
1 4 3 . 2 2 0 . 1 1 4 . 2 0 0 , 0 , 2 0 4 9 , 6 ,SERVER , [unknown : @nfs] ,4 ,1313418654
7 6 . 7 3 . 7 6 . 2 , 0 , 8 0 , 6 , SERVER , [ht tp : Apache] ,12 ,1313418752
1 4 3 . 2 2 0 . 1 1 4 . 2 0 0 , 0 , 2 0 4 9 , 6 ,ACK, [5 0 1 : 6 0 : 1 : 0 :N,N, T :ZAT: Linux : 2 . 6 : uptime : 9 3 2 hrs] ,4 ,1313418871

The output from PRADS can be incomprehensible at first since it provides
a lot of information, making it unreadable for most people. However, it
provides lots of useful information. From the example in listing 2.7 we can
easily determine that the host with the IP address 143.220.114.42 is running
a flavour of Linux that has a kernel version of 2.4 or newer. It also has a
uptime of 295 hours (12 days) and has a syslog client installed. We can
also see that the host with the IP address 143.220.114.200 is running a NFS
server, running Linux 2.6, and has a uptime of 932 hours (38 days).

Another feature of PRADS, shown in the example, is that it shows the
version of the services running on the hosts. In addition to displaying the
version of network services running on servers, it also display versions
of the software used by clients when connecting to the servers. Because
of this, PRADS can detect if a client with a vulnerable web browser, has

1First in, first out

31

connected to a website serving malware. This feature in PRADS could be
useful when used together with an intrusion detection system (IDS).

In addition to listening to traffic in real-time, PRADS also has the option to
read files with already captured network traffic in pcap format. This is the
same format used by TCPdump when dumping network traffic. PRADS
can therefore also be used to map a network based on historic data as long
as a dump of the network traffic for that period exist.

PRADS is a useful tool when network administrators want to find out
what is running on their network. What makes PRADS especially useful
is that all the asset information is captured passively. This means that
unlike Nmap, where the network administrators would have to scan each
host separately, PRADS captures all the information by just listening to
the network traffic. This makes PRADS much less intrusive than active
network fingerprinting tools like Nmap, which is a good thing because
it does not stress the scanned systems and it does not set off alarms in
intrusion detection systems.

32

Chapter 3

Design

In this chapter we describe the research method chosen for this thesis.
We also present the requirements for our passive asset detection system.
Finally we give an overview of the system design and the design
considerations made before implementing the system.

3.1 Research Method

The research method we choose for this thesis is to design and implement
a passive asset detection system that uses data collected by NetFlow to
detect assets on a computer network. The reason why we choose to do
this is because there is a need for a solution that is able to collect assets on
computer networks with high network throughput, and as far as we know
this has not been done before.

3.2 Requirements

In the following sections we describe the requirements that the system
implemented in this thesis should fulfill.

33

3.2.1 Real-time

The system should be able to run and detect new assets at all times. This
prevents the collected data from being outdated by constantly renewing
it. At the same time it gives the network administrators an overview of
the new assets that have been collected by the system. Because of this
requirement the processing time of the system must be as low as possible.

3.2.2 Scalable

The system must be scalable enough to not only handle todays network
throughput, but also handle the network throughput that is expected in
a few years time. It must also be able to handle new functionality that
is added in the future. The system should be able to handle large scale
networks, with at least Gbit/s of network traffic.

3.2.3 Detection Rate

The detection rate of the system must be high. Since the system sees all the
traffic flowing through the network, it should be able to detect most of the
assets in a short amount of time.

3.2.4 False Positives

The system should have as few false positives as possible. The assets it
detects should exist on the network.

3.3 System Design

In the following sections we give an overview of the bits and pieces that the
system should consist of, the design considerations that have been made,
and what the system actually has to do.

34

3.3.1 System Overview

The tasks that the system implemented for this thesis have to perform can
be abstracted into three parts. Figure 3.1 shows how the different parts
interact with each other.

Figure 3.1: Design overview

The system has to process all the NetFlow data that is captured by the
NetFlow exporter and exported to the NetFlow collector. Based on this
data the system must detect all involved assets on the network based on
specific rules. The system must store information about each detected asset
in a database. Finally, the stored asset information must be read from the
database and presented to the user in an appropriate format.

3.3.2 Processing

Processing data in our system could be done in three steps:

1. Read the NetFlow data collected.

2. Process the data and detect assets based on rules implemented.

3. Write the assets to a file or pass them on to another process.

The first thing that has to be done when processing the data, is to read
the NetFlow data. It varies greatly from collector to collector how this
can be done. In our system we have chosen to use Nfdump tools (section
2.1.6) as the collector software. Because of this we could either read the
binary files generated by Nfdump tools’ capture daemon (nfcapd), or
we could wrap our system around Nfdump tools. Because the system

35

we are implementing are meant as a proof-of-concept and because of time
constraints, we have chosen to do the latter.

After the data has been read, it has to be processed. In this thesis we have
chosen to do a rule based approach where assets are detected when they
trigger rules that has been implemented.

Figure 3.2: Detecting assets using a set of rules

As seen in figure 3.2 all the NetFlow data are processed by passing it
through a set of rules. It is expected that the amount of NetFlow data
that is being processed is much higher than the amount of assets that are
detected. The reason for this is that one single host can send and receive
lots of network traffic, but not all the flows contains information useful for
detecting assets.

When an asset is detected it must be written to a file or passed on to an
other application for further processing. This could be done by writing it
to a comma-separated values (CSV) file.

To fulfill the requirement defined earlier in this chapter that the system
must be able to run in real-time, processing the data must be quicker
than the time interval between each time nfcapd rotates the NetFlow data
file. It does this by default each five minutes. Therefore, run-time of the
processing component must be lower than five minutes.

3.3.3 Storing

Storing the collected asset information can be done in three steps:

1. Read the asset information collected when processing the data.

2. Check for duplicates.

3. Write the asset information to the database.

36

Firstly, we have to read the asset information collected when processing
the NetFlow data. This is done by reading the CSV-file generated in the
previous part.

Then each of the asset information in the CSV-file must be checked for
duplicates. By duplicates we mean asset information that are exactly the
same. It is worthless for us to store the same information twice. Besides,
database operations are expensive and we do not want to store more asset
information than necessary in the database. Therefore, duplicates should
be removed.

The last step involves storing the asset information in the database. The
most important thing to remember here is to minimize the amount of
database operations that has to be done for each asset. We have to
remember that for each extra database operation we have to do, it ends up
slowing down the system, since we are probably going to store information
about thousands of assets in each run.

3.3.4 Presentation

Presenting the asset information stored in the database to the user can be
done in two steps:

1. Retrieve the asset information from the database.

2. Present the asset information to the user.

The first thing that has to be done is to retrieve the asset information from
the database. This is done by connecting to the database and retrieving the
asset information that the user wants to view.

The user should be able to search for assets based on host name, IP
address and subnet. It should also be possible to see statistics on the asset
information stored in the database.

The amount of information that is presented should not overwhelm the
user with information, but it should provide enough information for the
user to understand what the assets are. For instance the system should
present a description of services that are detected for an asset, not just
present port numbers.

37

38

Chapter 4

Implementation

In this chapter, we take a closer look at implementing a passive asset
detection system based on NetFlow data. We look at how the components
are implemented and how they work together, how the rules to process
asset data are implemented and how the database is structured.

4.1 Implementation Overview

The system is divided into four components, each responsible for perform-
ing a specific task. Figure 4.1 shows an abstract overview of the implemen-
tation and how the components interact with each other.

Figure 4.1: Implementation overview

39

4.2 Flow-dump

Flow-dump is the core component in the system. It reads NetFlow data
from the nfcapd files generated by the NetFlow capture daemon (nfcapd)
and processes the NetFlow data based on a set of pre defined rules. The
asset data collected is then sent to the output module that outputs the data
based on the output mode selected.

Figure 4.2: Overview of Flow-dump

Nfdump has several ways to output data to the screen. One of these is
to output the data as comma-separated values, which is easy to process by
other applications. It was possible to increase the processing speed of Flow-
dump considerably when only the data fields needed for asset detection
was read from the nfcapd files. These data fields are presented in table 4.1.

Data field Description
%ts Start time - first seen
%sa Source IP address
%da Destination IP address
%sp Source port number
%dp Destination port number
%pr Protocol (TCP/UDP/ICMP)
%flg TCP flags
%ipkt Input packets
%ibyt Input bytes

Table 4.1: Nfdump data fields used by Flow-dump

Flow-dump can either be run in real-time mode or it can be used to read
a selected nfcapd file. If it is run in real-time mode, it waits for the
next nfcapd file to be written, and then reads and processes it. When it
completes processing the file, it waits for the next file and so on. Flow-

40

dump can also be used to read selected nfcapd files. Thus, enabling us to
read and process historic NetFlow data. Because of this, Flow-dump can
be used to get a complete view of a network even after a security breach
has occurred, if the NetFlow data for this period is stored securely. This
gives the flexibility to process historic network traffic as long as the data is
available, which could be months or even years back in time.

We created a shell script to be able to process a whole day worth of
flows (see Appendix C.2). Flow-dump itself only utilizes one CPU core
at a time regardless of how many cores are available. This script utilizes
several cores simultaneously by starting several Flow-dump processes (11
processes in our case). By running several Flow-dump processes, the total
time to process one day of flows is reduced considerably.

When collecting asset data we are only interested in what is happening
on our own network. To avoid processing and storing unnecessary
data, it is possible to specify which subnets to monitor in Flow-dump’s
configuration file. The format used is subnet/netmask (e.g. 143.220.0.0/16
or 143.220.12.0/24). It is important to remember that each subnet that is
specified will add substantial processing time to the component, because
the component will have to look for occurrences of the subnets in all the
flows processed. Therefore, it is more efficient to define one large subnet
rather than several smaller subnets. See table 4.2 for a complete list of
options available in the configuration file.

Option Type Description
debug Variable Turn debugging on or off (1/0)
filepath Variable The path to the nfcapd files
flowsources Array The NetFlow streams to read
networks Array Define the subnets to monitor
outputmode Variable Select output mode (CSV/FIFO/stdout)
host_blacklist Array List of blacklisted hosts
port_blacklist Array List of blacklisted services
services Array List of pre-defined services
updateservers Array List of update servers

Table 4.2: Options in Flow-dump configuration file

In contrast to Nfdump where one nfcapd process is needed for each Net-
Flow stream, Flow-dump processes can handle several NetFlow streams at
once. NetFlow streams can easily be defined in the configuration file. This

41

enables Flow-dump to read streams stored by all nfcapd processes in one
go, and we no longer have to start several processes to cover all NetFlow
streams.

When someone is actively scanning the network with tools like nmap,
Flow-dump receives data about hosts and services that does not exist. This
creates data that is worthless to the user and that contributes to polluting
the collected data. However, this can easily be fixed by adding a blacklist.
Flow-dump blacklist feature allows blacklisting known network scanners
by adding them to the blacklist in the configuration file. This means that
if a host on our network is contacted by a blacklisted host, these flows will
not get stored. A consequence of this is that we would not see attacks from
these hosts, so there are both advantages and disadvantages of doing this.

Several of the options in the configuration file can be overwritten at run
time by command line options. One example of this is the output mode
option. It can easily be overwritten by specifying the command line option
–output at run time. We can also select which nfcapd file to read from with
–read and which file to save the output in with –write. The complete usage
information for Flow-dump can be seen in listing 4.1.

Listing 4.1: Usage information for Flow-dump

Usage : ./ flow−dump [OPTION] . . .
Pass ive Asset Detect ion using NetFlow .

−r , −−read < f i l e > : nfcapd f i l e to read
−o , −−output <type > : overwrite output mode (csv/ f i f o /stdout)
−w, −−write < f i l e > : wri te to f i l e
−h , −−help : display t h i s help and e x i t

Write option only works f o r CSV and FIFO output modes .

When Flow-dump triggers on any of the pre defined rules, it outputs
the asset data collected using the selected output mode. The output
modes supported by Flow-dump are stdout (standard output stream),
CSV (comma-separated values) and FIFO (named pipes). The reason why
several output modes was implemented was to make it easier for other
developers to use the output from the component as input for their own
applications.

The stdout output mode was mainly implemented for testing purposes,
as it prints the output directly to the screen. By doing this, we can easily
see if rules are working as they should. This can also be used to pipe the

42

output to another programs using Unix pipes. However, this is not the
most suited output mode if the output is going to be used as input for an
other application. See listing 4.2 for an example of how output from the
stdout output mode looks like.

Listing 4.2: Example output from the stdout output mode

2011−11−13 1 6 : 2 9 : 3 6 − S e r v i c e detec ted − 1 4 3 . 2 2 0 . 5 . 2 7 , 5 3 /UDP
2011−11−13 1 6 : 2 9 : 5 6 − S e r v i c e detec ted − 1 4 3 . 2 2 0 . 1 1 . 6 2 , 8 0 /TCP
2011−11−13 1 6 : 2 9 : 3 6 − Host detec ted − 1 4 3 . 2 2 0 . 9 . 2 1 6
2011−11−13 1 6 : 2 9 : 3 6 − OS detected − 1 4 3 . 2 2 0 . 1 . 9 , 7 4 2 , Windows
2011−11−13 1 6 : 2 9 : 3 6 − S e r v i c e detec ted − 1 4 3 . 2 2 0 . 6 1 . 1 3 1 , 2 2 /TCP
2011−11−13 1 6 : 2 9 : 3 6 − S e r v i c e detec ted − 1 4 3 . 2 2 0 . 4 . 4 0 , 5 3 /UDP
2011−11−13 1 6 : 2 9 : 3 6 − Host detec ted − 1 4 3 . 2 2 0 . 1 5 . 7
2011−11−13 1 6 : 2 9 : 3 6 − OS detected − 1 4 3 . 2 2 0 . 3 . 4 0 , RedHat
2011−11−13 1 6 : 2 9 : 3 6 − S e r v i c e detec ted − 1 4 3 . 2 2 0 . 1 . 9 , 2 5 /TCP
2011−11−13 1 6 : 2 9 : 5 6 − S e r v i c e detec ted − 1 4 3 . 2 2 0 . 8 . 3 9 , 2 1 /TCP

To make it easier for external components to use the output from Flow-
dump, the CSV output mode was implemented. This output mode stores
assets detected by Flow-dump in a file as comma-separated values. This
makes using the output from Flow-dump as simple as just reading the file.
Basic UNIX tools like cat could also be used to print the file to stdout and
piping it into the application. See listing 4.3 for example output using this
output mode.

Listing 4.3: Example output from the CSV output mode

Service , 1 4 3 . 2 2 0 . 7 . 4 5 , 4 4 5 /TCP,2011−11−13 1 6 : 2 9 : 0 8
Service , 1 4 3 . 2 2 0 . 3 . 3 , 5 3 /UDP,2011−11−13 1 6 : 2 9 : 2 8
Host ,143.220.13.7 ,2011 −11 −13 1 6 : 2 9 : 2 8
Host ,143.220.240.101 ,2011 −11 −13 1 6 : 2 9 : 3 2
Service , 1 4 3 . 2 2 0 . 4 . 4 0 , 5 3 /UDP,2011−11−13 1 6 : 2 9 : 2 8
OS, 1 4 3 . 2 2 0 . 4 . 5 , RedHat,2011−11−13 1 6 : 2 9 : 3 5
Service , 1 4 3 . 2 2 0 . 1 5 . 7 , 8 0 /TCP,2011−11−13 1 6 : 2 9 : 4 8
Service , 1 4 3 . 2 2 0 . 1 2 . 4 0 , 4 4 5 /TCP,2011−11−13 1 6 : 2 9 : 2
Service , 1 4 3 . 2 2 0 . 6 5 . 3 , 1 2 3 /UDP,2011−11−13 1 6 : 2 9 : 4 0
Host ,143.220.250.211 ,2011 −11 −13 1 6 : 2 9 : 3 2

The last output method implemented is the FIFO output method. A FIFO
is similar to a pipe, except that it is accessed as part of the file system [16].
It can be opened simultaneously by multiple processes for reading and
writing. When a FIFO is used the kernel passes all data internally without
writing it to the file system. Data is sent through first-in first-out, meaning
that the first data that is written on one end is the first data that is read
on the other end. The FIFO implemented in Flow-dump is implemented

43

as a blocking FIFO. This means that the FIFO must be opened on both
ends (reading and writing) before data can be passed. Flow-dump opens a
FIFO, then it blocks until an other process starts reading from the FIFO. The
data sent through is on the same format as the data from the CSV output
method, making it easy to read by other processes.

4.3 Flow-dump Rules

To collect assets using Flow-dump we have implemented several rules.
These rules make Flow-dump able to detect hosts and services on the
network. In this section we are going to describe the different rules that
are implemented in this thesis.

4.3.1 Host Detection Based on ICMP

A simple way to detect hosts on a network is to look for ICMP echo packets
sent by network administration utilities, like Ping. What we are interested
in are the ICMP echo replies that are sent back from a machine, indicating
that the machine is on the network [8].

Figure 4.3: ICMP echo reply

Figure 4.3 shows a scenario where host A is sending an ICMP echo request
to host B. In this case host B sends an ICMP echo reply back to host A saying
that it is present on the network. The most likely alternative would be to
get a host unreachable reply back indicating that the host is not available.

44

The reason why this rule is set up to trigger on only ICMP echo replies and
not ICMP echo requests as well, is because that would have led to many
false positives. A host would be "detected" every time a machine on the
network tries to ping another machine, even if there is no echo reply.

Type Code Description
0 0 Echo reply
3 1 Host unreachable
3 3 Port unreachable
3 10 Destination host administratively prohibited
3 13 Communication administratively prohibited by filtering
8 0 Echo request
11 0 TTL equals 0 during transit

Table 4.3: Common ICMP types

In Nfdump the destination port indicates what type of ICMP packet is
being sent. This makes it easy to pick out the flows containing ICMP echo
replies with the correct response code by looking for flows with protocol
ICMP and destination port 0.0. See table 4.3 for an overview of the most
used ICMP types.

This rule is especially useful when management tools like Nagios are used
on the network. Nagios, like many other management tools uses ICMP
actively to check if hosts they are monitoring are responsive.

A flow chart of the implementation of the host detection rule can be seen
in figure 4.4.

45

Figure 4.4: Flow chart of host detection based on ICMP

When this rule triggers, it uses Flow-dump’s output module to output that
a host has been detected, the IP address of the host, and a timestamp of
when the host was detected.

4.3.2 Service Detection Based on Ports

One limitation of using NetFlow data instead of network traffic data is that
we can not rely on TCP flags to detect which host is acting as the server.
This is important to determine to detect which services are running on
which host. The reason why TCP flags can not be used for this purpose
is because TCP flags in NetFlow are aggregated. This can be explained by
looking at the TCP handshake that occurs every time a TCP connection is
initiated (see figure 4.5).

Figure 4.5: TCP handshake

46

The client sends a SYN packet to the server indicating that it wants to
connect to a port. The server answers with a SYN/ACK packet. When
the client sends the last ACK packet, the TCP connection is established. In
a normal setting it would be easy to see that host B is the server in this
example because of the SYN/ACK packet sent. However, since we are
using NetFlow this TCP handshake would be separated over two flows
(remember that NetFlow is unidirectional), one flow from the client to the
server, and one flow from the server to the client. Both of these flows would
have the TCP flags SYN and ACK set. It would therefore be impossible to
make a decision on the roles of the hosts based on TCP flags when using
NetFlow data.

There are some Cisco switches and routers that do not fully support
sending TCP flags with NetFlow data [17]. We have therefore decided to
not rely on TCP flags in our implementation.

The method we have chosen to determine the direction of the traffic is
by looking at which ports the hosts are communicating on. Most services
listen on ports under 1024. When a client connects, it usually communicates
from a port above 1024. To detect services, the rule looks for hosts
communicating on a port under 1024 with another host on a port above
1024. This means that we do not detect services communication on ports
above 1024. The next rule tries to solve this problem (see section 4.3.3).

There are some pitfalls to using this method. Apart from not detecting
services on ports above 1024 some services generate false positives by
communicating from a port above 1024 with ports under 1024. One service
that in our experience causes lots of false positives is NFS (Network File
System). The reason for this is because NFS uses a vast amount of ports,
alternating. We solve this by creating a port blacklist. Entries to this
blacklist can be added to the Flow-dump configuration file and are on
the format direction,port. To blacklist services where portmap (used by
NFS) is contacting another host, we can add dst,2049 to the blacklist. By
using the blacklist actively the number of false positives could be reduced
considerably.

47

Figure 4.6 shows a flow chart of the implementation of the service detection
based on ports rule.

Figure 4.6: Flow chart of service detection based on ports

When this rule triggers it uses Flow-dump’s output module to output that
a service has been detected, the IP address of the host, what protocol
the service is communicating with (TCP or UDP), the port number of the
service, and a time stamp of when the service was detected.

48

4.3.3 Service Detection Based on Pre defined Services

As mentioned in section 4.3.2, we can not rely on TCP flags when using
NetFlow data for asset detection, which limits us when detecting services.
By using the rule in the previous section we only detect services running
on ports beneath 1024.

The next rule tries to make the results a little more accurate by looking for
known services. What it does is to look for hosts communicating on ports
specified in the Flow-dump configuration file. Similar to the rule in section
4.3.2, the port number used by the other host must be above 1024 for the
rule to trigger. The reason for this is to avoid false positives. One example
of this is that Host B is running a web server on port 80. Host A connects to
Host B and is assigned a random port number to communicate on. If this
random port number is the same as one of the pre defined services used
by this rule, then it would look like both Host A and Host B is running
a service even if only one of them really are. It is far more unlikely to
encounter this if we limit the ports of Host A to port numbers above 1024.

Services can easily be added to the services array in the Flow-dump
configuration file. The format used is port,service. Services can be fetched
from /etc/services or from Nmap’s nmap-services file. An example can be seen
in listing 4.4.

Listing 4.4: Array of pre-defined services

@services = [
’2049 ,TCP’ , # portmap
’3306 ,TCP’ , # mysql
’5432 ,TCP’ , # p o s t g r e s q l
’4045 ,TCP’ # lockd used by NFS

] ;

This rule also uses the host blacklist to avoid network scanners and hosts
that we consider uninteresting in a service respect. However, it does not
use the port blacklist used by the rule in section 4.3.2, because the port
blacklist could easily contain services that generate false positives when
used with detection in the previous section, but that we want to look closer
at using this new rule.

This rule only detects known and pre defined services. It falls short when
trying to detect unknown services, like backdoors. It is primarily meant as
a supplement to service detection based on ports beneath 1024.

49

Figure 4.7 shows a flow chart of the implementation of the service detection
based on pre defined services rule.

Figure 4.7: Flow chart of service detection based on pre-defined services

When this rule triggers it uses Flow-dump’s output module to output that
a service has been detected, the IP address of the host, what protocol
the service is communicating with (TCP or UDP), the port number of the
service, and a time stamp of when the service was detected.

50

4.3.4 Operating System Detection Based on Update Servers

For an asset detection system to be valuable, it should provide as much
information about the target hosts as possible. Knowing the operating
system of a host can be useful when trying to determine if it is vulnerable to
new exploits. It is also useful to be able to easily see what kind of operating
systems hosts on the network use.

The method this rule uses to detect operating systems is to look for
connections made to update servers. Based on observations, this usually
seems to be done using TCP on port 80. The reason probably being to avoid
firewalls, since it is uncommon to filter this port, as clients use this port to
browse the web.

The update servers for the different operating systems can be specified in
the Flow-dump configuration file and is on the format IP address,Operating
System,port. Adding the port number is not mandatory, and it defaults to
port 80 if not specified.

Listing 4.5: Update servers used in this thesis

@updateservers = [
’ 1 4 3 . 2 2 0 . 2 . 2 5 , RedHat ’ , # yum. uio . no
’ 6 5 . 5 5 . 0 . 0 / 1 6 , Windows ’ , # update . microsof t . com
’ 1 4 3 . 2 2 0 . 1 2 . 2 7 , Windows ’ , # wsus . uio . no
’ 1 7 . 2 5 0 . 2 4 8 . 9 5 , Darwin ’ , # swscan . apple . com
’ 1 2 9 . 2 4 1 . 9 3 . 3 7 , Ubuntu ’ # no . archive . ubuntu . com
] ;

Update servers for the operating systems shown in listing 4.5 was added,
because these are the most common operating systems on the specific
network that was used to test our implementation. However, additional
update servers could easily be added to the configuration file.

It is also possible to add entire subnets to the configuration file, instead of
just single IP addresses. This is mainly to detect hosts running Windows,
as Microsoft uses load balancing on their update servers, and therefore
changes the IP address that update.microsoft.com resolves to once every three
hundred seconds. We originally made a script to keep a list of update
servers used by Microsoft (see Appendix C.3). This worked when feeding
Flow-dump with real-time data, but it proved inaccurate when running
Flow-dump with historic data. Therefore, we added the possibility to add
entire subnets instead.

51

A flow chart of the implementation of the operating system detection based
on update servers can be seen in figure 4.8.

Figure 4.8: Flow chart of operating system detection based on update
servers

The order of the checks has been carefully selected to save processing
time. It was possible to increase the processing speed by checking for port
numbers used by the update servers before comparing the destination IP
address with the IP addresses in the list of update servers. This is because
comparing port numbers is faster than comparing IP addresses.

When this rule triggers it uses the Flow-dump output module to output
that an operating system has been detected, the IP address of the host, the
operating system that has been detected, and a time stamp.

52

4.4 Flow-store

Flow-store is responsible for reading the asset data provided by Flow-
dump and storing it in a database for later usage. The reason why Flow-
dump does not handle this task itself is because database operations take
longer time to process than the implemented output modes, and time
is sparse when we are handling real time NetFlow data. Separating
components also makes it easier to share the workload between several
servers, making it possible to use the implemented system on low end
equipment.

Figure 4.9: Overview of Flow-store

When handling around half a million entries once every five minutes the
need for speed is a priority. Therefore, measures have been taken to make
Flow-store as fast as possible. Speed improvement measures include both
on the database queries and on pre processing of data.

Instead of searching for similar entries when trying to store assets in the
database, the new assets are blindly inserted into the database using a
INSERT or IGNORE query. If the asset already exist the INSERT query fails
and an UPDATE query is run instead to update the last seen time stamp of
the asset. Doing this saves one or two SELECT queries depending on the
asset that is being inserted, thus saving processing time.

However, the biggest time saver came from pre processing the asset data
before storing it in the database. Flow-dump produces a lot of similar
entries, since each connection made to a web server would make Flow-
dump detect that a web server is running and writing this to the asset file.
Traversing through the asset data and removing similar entries makes the

53

amount of data considerably smaller. This is done by taking a backup of
the asset file, reading through it line by line, and storing the unique entries
in a hash (the time stamp is removed before comparing). The original asset
file is then replaced by the new one only containing unique entries. Testing
shows that this reduces the amount of data that Flow-dump produced by
approximately twenty times.

By default, Flow-store reads from assets.csv. However, this can be
overwritten by the command line option –read <file>. The data is read from
the file, processed and then stored in a database. The default database is
assets.db. This can also be overwritten by a command line option, by –write
<database>. The complete usage information for Flow-store can be seen in
listing 4.6.

Listing 4.6: Usage information for Flow-store

Usage : ./ flow−s t o r e [OPTION] . .
S tore a s s e t s detec ted by Flow−dump in a database

−r , −−read < f i l e > : read from s p e c i f i e d CSV f i l e
−w, −−write <database > : wri te to s p e c i f i e d database
−h , −−help : display t h i s help and e x i t

There are three types of asset entries that can be stored by Flow-store. These
are host entries, operating system entries, and service entries. When storing
host entries in the database a blind insertion is first attempted. If a host
with the same IP address already exist in the database, then only the last
seen time stamp of the host is updated. Otherwise, the new host is added to
the database. The same goes for storing operating system entries. The only
difference is that instead of just updating the last seen field in the database,
the operating system field is also updated. When storing service entries,
a host is added in the same way as when storing host entries. In addition
to this, there is also added a service that is linked to the host entry by IP
address.

54

4.5 Database

The database is used to store the asset data collected. Because of the vast
amount of data that needs to be processed and stored, the database is a vital
component in the system. The database is used by Flow-store to store assets
detected by Flow-dump. It is also used by Flow-map when presenting the
collected data to the user.

Because of this there are certain criteria that needs to be fulfilled:

Lightweight The database must consume a small amount of the systems
total processing resources.

Portable It must be easy to create new databases. It must also be easy to
move the databases between systems and to backup the database.

Speed The database must be fast enough to handle the amount of data
provided by Flow-store.

Programming language bindings There must exist libraries for interact-
ing with the database from the selected programming language.

After evaluating different databases using the criteria above, the decision
finally landed on using a SQLite database for the system. The main reason
for this is because it is self contained, meaning that it requires very minimal
support from external libraries or from the operating system [18]. This
makes it highly portable from system to system. This also makes it easy
to write programming language bindings for SQLite, which has already
been done for a lot of programming languages, including Perl used for the
system in this project. In addition to this, the entire SQLite database is
contained in a single file, making it easy to move around and back up if
necessary. Testing, using a SQLite database with Flow-store shows that it
is more than fast enough.

The database schema used by the system is quite simple (see figure 4.10).
It consists of two tables, one for hosts and one for services.

55

Figure 4.10: E-R diagram of the database used by the system

The host table is used for storing hosts. A host is identified in the table by
the IP field. This field is the primary key in the host table, meaning that
there can not exist two hosts with the same IP address in the database. This
makes it simple to look up hosts based on IP address. Other fields in the
host table are OS used to store the operating system of the host, and first
and last seen used to store time stamps of when the host was detected. The
last seen time stamp can be used to remove hosts that have not been seen
in a while from the database.

The service table is used for storing services in the database. It consists of
only two fields, a port field for storing the port number of the service and
a IP field for storing the IP address the service belongs to. A host in the
database is allowed to have several services connected to it while a service
must belong to a single host.

A shell script was added to set up and create the database. This script is
added in Appendix C.1.

4.6 Flow-map

Flow-map is the component that presents the asset data stored in the
database to the user. Flow-map is intended to look like the active
fingerprinting tool, Nmap. It has a command line interface and it allows the
user to search for assets by specifying a target. It can also display statistics
of assets discovered.

When using Flow-map to display asset data, a target must be specified.
This can be done by using the command line option –target <target>. The
target could be either a single IP address, a host name or an entire IP range.
If the target is a single IP address, Flow-map only shows data for that IP
address, the same thing applies when a hostname is selected as the target.
In this case, the hostname is resolved and the asset data for that IP address

56

is displayed. When an entire IP range is selected, then asset data for each
host in that IP range is displayed.

Listing 4.7: Example output from Flow-map

$./ flow−map −t 1 4 3 . 2 2 0 . 8 .
S t a r t i n g Flow−map 1 . 0 a t Mon Nov 28 1 0 : 5 0 : 4 9 2011

Host : 1 4 3 . 2 2 0 . 8 . 4 0 (fuzzy . uio . no)
F i r s t seen : 2011−11−12 0 1 : 0 4 : 2 6
Last seen : 2011−11−15 1 6 : 0 0 : 1 8
PORT SERVICE DESCRIPTION
111/TCP rpcbind portmapper , rpcbind
445/TCP microsoft−ds SMB d i r e c t l y over IP

Host : 1 4 3 . 2 2 0 . 8 . 4 5 (ryder . uio . no)
F i r s t seen : 2011−11−12 0 3 : 1 6 : 1 2
Last seen : 2011−11−15 1 6 : 0 0 : 0 3
OS : RedHat
PORT SERVICE DESCRIPTION
111/TCP rpcbind portmapper , rpcbind
445/TCP microsoft−ds SMB d i r e c t l y over IP
80/TCP http World Wide Web HTTP
139/TCP netbios−ssn NETBIOS Sess ion S e r v i c e

Host : 1 4 3 . 2 2 0 . 8 . 4 6 (s p e c t r e . uio . no)
F i r s t seen : 2011−11−12 1 2 : 0 0 : 5 1
Last seen : 2011−11−15 1 5 : 5 9 : 4 2
PORT SERVICE DESCRIPTION
445/TCP microsoft−ds SMB d i r e c t l y over IP
139/TCP netbios−ssn NETBIOS Sess ion S e r v i c e
80/TCP http World Wide Web HTTP
137/UDP netbios−ns NETBIOS Name S e r v i c e

Flow−map done . Found 3 hosts .

Flow-map displays the IP address and host name of the selected targets.
It also displays the time stamp of when the host was first detected and
when it was last seen. In addition to this, it displays the operating system
of the targets and which services they are running. In the listing 4.7 the
operating system is only shown for one of the hosts. The reason being that
the operating systems for the other two hosts has not yet been detected.

When displaying services, Flow-map uses the nmap service file nmap-
services to map port numbers to known services. This provides the user
with the name of the service and a description, making it easier to get a
quick glimpse of what services that are running on a target.

The amount of data displayed as default can be quite overwhelming
when displaying data for many hosts simultaneously. Therefore, it is also

57

possible to limit the amount of data to only a list of hosts. This is done by
specifying the command line option –list.

Listing 4.8: Flow-map list view

$./ flow−map −t 1 4 3 . 2 2 0 . 1 . −− l i s t
S t a r t i n g Flow−map 1 . 0 a t Mon Nov 28 1 1 : 0 7 : 0 1 2011
Host : 1 4 3 . 2 2 0 . 1 . 1 (e l i x i r . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 0 (arcadia . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 0 7 (e r i s . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 0 8 (c e r e s . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 1 7 (eve . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 1 9 (c a l i b a n . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 2 (cosmo . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 5 (bane . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 7 (oor t . uio . no)
Host : 1 4 3 . 2 2 0 . 1 . 1 8 (oryx . uio . no)
Flow−map done . Found 10 hosts .

When this is done, it only displays the IP address and host name of the
targets. This is useful when the user only wants a quick overview of the
hosts on the network. This resembles using Nmap to display a list of hosts
in an IP range.

Flow-map can also be used to display statistics of the assets in the database.
Flow-map can display the amount of hosts and services in the database and
a list of the most common services.

Listing 4.9: Flow-map statistics view

$./ flow−map −−s t a t s
−−− Flow−map 1 . 0 s t a t i s t i c s −−−
Hosts in database : 18505
S e r v i c e s in database : 56223

−−−− Top S e r v i c e s −−−−

AMOUNT PORT SERVICE DESCRIPTION
6197 22/TCP ssh Secure S h e l l Login
6088 80/TCP http World Wide Web HTTP
2551 25/TCP smtp Simple Mail Transfer
2381 443/TCP ht tps secure ht tp (SSL)
1650 81/TCP hosts2−ns HOSTS2 Name Server
1058 161/UDP snmp Simple Net Mgmt Proto
909 135/TCP msrpc Microsof t RPC s e r v i c e s
595 113/TCP auth ident , tap , Authent icat ion S e r v i c e
441 445/TCP microsoft−ds SMB d i r e c t l y over IP
298 23/TCP t e l n e t

58

By default the ten most frequent services are displayed. The size of the list
can be changed by specifying the command line option –num <number>. It
is also possible to specify which IP range to show statistics for. This can
be done by specifying a target with the target command line option. The
complete usage information for Flow-map can be seen in listing 4.10.

Listing 4.10: Usage information for Flow-map

Usage : ./ flow−map [OPTION] . .
Present a s s e t data f o r s e l e c t e d t a r g e t .

−t , −−t a r g e t < t a r g e t > : t a r g e t to display
−s , −−s t a t s : summary of a s s e t s in database
−n , −−num <number> : number of top s e r v i c e s to show in summary
−l , −− l i s t : simple l i s t of t a r g e t s in given IP range
−r , −−read <database > : read from s p e c i f i e d database
−h , −−help : display t h i s help and e x i t

Target can be e i t h e r a hostname , a s i n g l e IP or an e n t i r e IP range .

59

60

Chapter 5

Evaluation

In this chapter we evaluate the implementation of our passive asset
detection system. We begin by describing the goals for our evaluation
(section 5.1), then we describe our test setup (section 5.2). Finally we
present the results (section 5.3).

5.1 Goals

The objectives in this evaluation is to verify that the system implemented
fulfills the requirements it was designed for:

• It must be fast enough to run in real-time

• It must be scalable, to handle high amounts of data

• It must have a high asset detection rate

• It must have a low rate of false positives

5.2 Test Setup

The system was tested on USIT’s (The University Center for Information
Technology) NetFlow collector. This server collects NetFlow data from
several Cisco switches and routers on the University of Oslo’s computer
network.

61

The server used as the collector has 16 Intel Xeon 2.27 GHz CPU cores, 74
GiB [19] RAM and 3 TiB storage space. Almost all the storage space is used
to store NetFlow data. The collector heaps flow-records for approximately
three months at a time.

Figure 5.1: Traffic flowing through one of the University’s gateways at 5
January 2012

All the tests were performed using data collected from one of the border
gateways on the University network, at 5 January 2012. Figure 5.1 shows
the amount of traffic that went through the selected gateway on that day.

5.3 Results

In the following sections we verify that the implemented system behaves
as expected. Since the system relies on being able to run in real-time, be
scalable, have a decent detection rate, and a low rate of false positives, we
have decided to show the results as graphs.

5.3.1 Run-time

The system should be able to run in real-time to be able to constantly
pick up new network assets. To be able to do this, the total run-time of
the components must be lower than five minutes, because Nfdump tools
rotates the files containing NetFlow data every five minutes by default.

Figure 5.2 (page 64) shows the run-time of the Flow-dump component
throughout the day. When compared to the network traffic graph (figure

62

5.1) we see that the run-time does not seem to be affected much by the
amount of network traffic. This is mostly due to NetFlow’s ability to group
the traffic into flows, so that even though the traffic amount is high, the
amount of flows is much lower.

To get the full picture, we also have to look at the run-time of the Flow-store
component. All the data collected by Flow-dump has to be parsed and
stored in the database by Flow-store, and this also has to happen within
the five minute period. The run-time for Flow-store is shown in figure 5.3.
Instead of showing the run-time per hour, we show how long it takes to
process and store different amounts of data. When looking at the graph,
we see that the amount of time it uses does not have a linear growth. The
reasons why it behaves the way it does is because of the pre processing of
data that Flow-store does, and that the amount of database operations has
been minimized. This makes the system highly scalable and able to handle
large amounts of data.

We can conclude that the system is fast enough to handle real-time data,
and that we have plenty of room for adding more rules if we find it
necessary.

In addition to being able to run the system in real-time it is also interesting
to see how well the system handles historic data. To be capable of doing
this, it should be fast enough to process several days of data within a
reasonable amount of time. To test this we checked how much time the
script mentioned in section 4.2 uses when processing a whole days worth
of flows. Table 5.1 shows the amount of time used by the script when
processing five different days.

Date Run-time (minutes) Data Amount (TB)
2011-01-01 28 25.9
2011-01-02 27 29.7
2011-01-03 26 34.4
2011-01-04 26 30.4
2011-01-05 26 35.3

Table 5.1: Run-time of script when processing five whole days of data

If we look at the average processing time it is close to half an hour, so
processing a week worth of flows would take a couple of hours. This makes
the system capable of getting a detailed view of how a network looked at
any point in time, as long as NetFlow data for that period is stored.

63

Figure 5.2: Run-time of the Flow-dump component

Figure 5.3: Run-time of the Flow-store component

64

5.3.2 Host Detection Rate

For the system to actually be of any use it has to detect network assets. This
is even more important than being able to run the system in real-time. If
the system does not detect assets, it is of no use to us or anyone else.

Figure 5.4 (page 66) shows the detection rate of hosts every fifteen minutes
over a period of three hours. As we see in the graph there is a peak at
the beginning, which means that the detection rate is at its highest when
the system is started. The reason for this is that at that time the system
does not know of any hosts, a "learning phase" and therefore most of the
hosts are detected as new by the system. As more and more hosts are
discovered, there is a longer interval of time between each time a new host
is discovered.

In addition to discovering hosts using ICMP, hosts are also detected each
time a service is detected and each time a operating system is detected.
Basically, we can say that as long as a host is communicating with other
hosts on the network it will be detected by the system.

The total amount of hosts discovered the day the graphs were made (5
January 2012) was 17 643 hosts. This means that within the first fifteen
minutes of running the system we had already discovered a quarter of
the hosts. After the first time period, the amount of hosts discovered each
period was steadily declining.

Figure 5.5 shows an overview of the host detection rate for the entire day
(the two graphs are independent of each other). The measurements are
from every run made by Flow-store. This is done once every two hours
and forty minutes and only unique hosts are shown. This graph shows
that around half the hosts were detected within the first couple of hours. It
also shows that after a little while very few hosts were detected. At 10:00
p.m. only four new hosts were detected.

65

Figure 5.4: Host detection rate (short time span)

Figure 5.5: Host detection rate (day)

66

5.3.3 Service Detection Rate

Each host on the network can have several network services running, and
not all of these services are used at all times. Therefore we can expect to
find more services than hosts, and at different times of the day. The total
amount of services discovered in one day (5 January 2012) were 88 595
services

Figure 5.6 (page 68) shows the detection rate of services every fifteen
minutes over a period of three hours. As with the host detection the largest
spike of services detected were right after the system had started. One
difference is that we do not detect as high percentage at the start. We detect
a little less than ten percent of the total services detected that day within the
first fifteen minutes, compared to twenty-five percent of the hosts. On the
other hand we detect around five hundred services every fifteen minutes
after the first period, which is promising.

Figure 5.7 shows the detection rate of services for an entire day. As with
figure 5.5 it shows the services detected and inserted into the database
each time Flow-dump runs. It shows that we detect around a quarter of
the services detected that day within the first couple of hours. The curve
for the service detection is not as steep as for the host detection. There are
still services to detect at the end of the day.

Amount Port Service Description
5868 22/TCP ssh Secure Shell Login
4127 80/TCP http World Wide Web HTTP
3659 23/TCP telnet Telnet
3280 21/TCP ftp File Transfer [Control]
3228 443/TCP https secure http (SSL)
1978 81/TCP hosts2-ns HOSTS2 Name Server
1807 135/TCP msrpc Microsoft RPC services
1407 445/TCP microsoft-ds SMB directly over IP
1151 161/UDP snmp Simple Net Mgmt Proto
984 25/TCP smtp Simple Mail Transfer

Table 5.2: Top ten services detected

Table 5.2 shows the top ten services detected by the system. Around thirty
percent of the service instances detected are among the top ten services.

67

Figure 5.6: Service detection rate (short time span)

Figure 5.7: Service detection rate (day)

68

5.3.4 Operating System Detection Rate

Each host will only be registered with one operating system in the system
created for this thesis, even though systems may for instance be running
virtual operating systems that are using network address translation (NAT)
to share one IP address. This limitation is probably not going to distort the
results much, since the University has a policy against using NAT.

Figure 5.8 (page 70) shows the detection rate of operating systems every
fifteen minutes over a period of three hours. The curve is even less steep
in this case than in the host and service detection cases. This is because we
have to wait for the hosts to connect to the update servers they are using to
update their operating system. Only about fifteen percent of the operating
systems detected that day, was detected within the first fifteen minutes.

Figure 5.9 shows the operating system detection rate for a full day. The
measurements are made for every run made by Flow-store. It shows that
around eighty percent of the operating systems detected that day was
detected within the first couple of hours.

Amount Operating System
13059 Unknown
4362 Windows
181 RedHat
35 Darwin
6 Ubuntu

Table 5.3: Distribution of detected operating systems

Table 5.3 shows the distribution of the different operating systems detected.
Only twenty-six percent of the operating systems for the hosts was detected
within the first day. When looking at the graphs it does not look like
this will improve much by processing more data. The detection rate can
probably be increased by adding more update servers to the configuration
file used by Flow-dump. The list of update servers used in this thesis is
only a subset of all the update servers that exist.

69

Figure 5.8: Operating system detection rate (short time span)

Figure 5.9: Operating system detection rate (day)

70

5.3.5 Success Rate

In addition to having a good detection rate, it is also important to verify that
the assets detected by the implemented system are correct. Verifying the
hosts and services detected would require us to have direct access to all the
machines. Because of lack of access and time constraints, we chose to not do
this. Verifying the operating systems detected are a whole lot easier, since
the University is running Active Directory (AD), which contains records
for almost all the machines on the University network running Windows.

Manually looking up machines in AD is laborious and it consumes lots of
time. Therefore, we ended up writing ad-check-os.pl, a Perl program that
goes through a list of all the hosts running Windows, search through AD,
and checks if the hosts are in fact running Windows. The source code is
available in Appendix B.5.

Total Correct False
4305 4220 85

Table 5.4: Results from running ad-check-os.pl

Table 5.4 shows the results from running ad-check-os.pl on the hosts detected
by Flow-dump that claims to be running Windows. These are the same
hosts used in 5.3.4, but the number of total hosts differ a little, since only
hostnames are used in AD. Hosts were the hostname did not resolve was
excluded from the results.

Of the 4305 hosts checked there are only 85 that according to AD is not
running Windows. This gives us a success rate of 98.00 %.

Total Correct False
4305 4259 46

Table 5.5: Results after manually looking up hosts in Cerebrum

Luckily for us, the University of Oslo has records of all the hosts they
manage in their administration system called Cerebrum [20]. This is mainly
a system that is used for user management, but they also keep records
of hosts they manage there. By manually looking up the 85 hosts that
according to AD allegedly were not running Windows, we found out that
about half of them (39 hosts) actually were (see table 5.5). Because of this,

71

the success rate of Flow-dump’s Windows operating system detection is
98.93 %. This gives us a fault rate close to one percent, which means that
the operating system detection has a low enough rate of false positives.

The first half of the false positives mainly consisted of network equipment
and servers, like for instance gateways and PXE servers. The other half
consisted of hosts running Darwin (Mac OS and iPhone OS). The most
probable reason why so many hosts running Darwin was detected as
hosts running Windows, is because they have Microsoft Office installed.
Microsoft office uses the same address range as Windows update for their
update servers, and it is therefore difficult to differentiate between them.
It is also worth mentioning that Mac’s are capable of running Windows,
so some of these host may in fact be running Windows, but this is a more
unlikely scenario.

72

Chapter 6

Discussion

In this chapter we discuss the benefits and drawbacks of using active and
passive asset detection (section 6.1), and on-line and off-line asset detection
(section 6.2). Then we discuss the advantages and disadvantages of using
NetFlow for asset detection (section 6.3). Finally, we discuss legal concerns
connected to asset detection (section 6.4).

6.1 Active or Passive Asset Detection

Passive asset detection tools like PRADS (section 2.6) and the system
implemented in this thesis (chapter 4) sees all the traffic that passes through
the network, if placed correctly, hence a host will be detected as long as it
communicates with other hosts on the network.

Active asset detection tools like Nmap (section 2.5), on the other hand, only
detects hosts and services they actively scan. To save time and resources,
they also often only scan the most common ports, so services running
on non standard ports are usually not detected by active scanning tools.
Scanning all 65 535 ports for both TCP and UDP services takes too much
time, especially if this has to be done on thousands of hosts.

Another drawback of using active asset detection tools is that they do not
detect services that are filtered, either by the application or by a filtering
gateway. Passive tools detect filtered services as long as these services are
used and data is transmitted. Active tools often show that the service is
filtered, but it is almost impossible to know if there is actually a service

73

running on the filtered port or not.

Active scanning is resource intensive, both for the host scanning the
network and for the network, since it generates lots of network traffic. In
addition to this, it is host intrusive. It tries to open up many TCP and UDP
connections to the target host, making the target host use more resources
than it usually does. It also triggers a lot of alarms in other systems, like
intrusion detection systems.

Figure 6.1: Venn diagram of service detection

Another disadvantage of using active scanning tools is that the result of the
scan gets outdated very quickly. A network service could be started on the
target host only minutes after the scan took place. By using a passive asset
detection tool, the service would be detected as soon as the service starts
sending data.

One downside to passive asset detection tools is that they only detect
services that are sending data, hence idle network services will not be
detected.

Because of the different advantages and disadvantages of using either
active or passive asset detection, the detection result will vary. Figure 6.1
illustrates that active and passive asset detection detects mostly the same
services, but active tools picks up a few services passive tools misses, and
the other way around.

74

6.2 On-line or Off-line Asset Detection

By on-line asset detection, we mean passive tools that process the network
traffic on the fly, thus not storing the network traffic before processing it.
Off-line asset detection, on the other hand, is done by processing already
stored data. The system implemented for this thesis does off-line asset
detection. PRADS has the capability to do both on-line and off-line asset
detection as long as the network traffic data is stored.

Off-line asset detection using full network traffic data is difficult to do,
due to the amount of traffic data collected. This is possible to do on
networks with low network throughput, but it does not scale well on high
traffic networks. At one point in the network we saw 4.6 Tbit/s network
throughput, which means we would have to store 575 GB per second. This
is not possible to do with the hard disk technology that exists today.

If we use a more modest example, like a network with a throughput of 1
Gbit/s, we would have to store 125 MB per second. This is still a lot, but
at least it is feasible to do. In this case we would have to store 450 GB per
hour. This is possible but it would require lots of disc capacity and cost lots
of money.

Compression could be used to save hard disk space. However, it is difficult
to find a compression tool with a good compression ratio and low enough
time usage. Table 6.1 shows a test we did with common Unix compression
tools. It shows the compression ratio and time used from a compression
test done on a 252 MB network dump file using several available tools.

Tool Time Ratio Speed
gzip (fast) 5.2s 3.15 48.46 MB/s
gzip (best) 14.6s 3.36 17.26 MB/s
bzip2 (fast) 22.6s 3.32 11.15 MB/s
bzip2 (best) 22.9s 3.67 11.00 MB/s
lrzip (LZO compression) 14.3s 6.33 17.62 MB/s
lrzip (level 1) 20.2s 7.49 12.48 MB/s
lrzip (level 7) 37.2s 7.64 6.77 MB/s

Table 6.1: Compression ratio, time and speed of common compression tools

As seen in table 6.1, the compression tool with the best time versus
compression ratio is lrzip with LZO compression. However, it is not fast
enough to use for any of the examples mentioned above. It can only

75

compress 17.62 MB per second, meaning that it can handle network traffic
speeds up to 141 Mbits per second. Because of the high compression ratio
the 252 MB file is compressed down to 40 MB.

The fastest compression tool tested is gzip with the –fast flags set. It
does not have as high compression ratio as lrzip (LZO compression) but
it several times faster. Gzip (fast) is able to compress 48.46 MB per second.
Thus, being able to handle network speeds up to 387.7 Mbits per second.
This is not fast enough to handle the traffic amounts in the examples above,
but it is fast enough to handle the network throughput for a reasonably
large computer network.

Off-line asset detection is easier to do if only the necessary traffic
information is stored. NetFlow does this by only storing IP header
information, and grouping the traffic together into flows. This, combined
with Nfdump tools binary format for storing NetFlow data, makes us able
to store months and even years of network traffic data. However, this
comes at the cost of not having the entire IP packet available for analysis.

6.3 Using NetFlow for Asset Detection

In the following sections we discuss the advantages and disadvantages of
using NetFlow for asset detection.

6.3.1 Advantages

One of the biggest advantages of using NetFlow data for asset detection
is that many companies already collect NetFlow data for other purposes.
This makes it easy to get more value out of already collected data. An
other advantage is that most Cisco equipment in addition to several other
vendors support collecting NetFlow data (see section 2.1.2). Therefore, it
is simple for companies with Cisco switches and routers to start collecting
NetFlow data.

The system implemented for this thesis is a passive asset detection system
so it process all the traffic that flows through the network. NetFlow has
the benefit of storing all the flow data collected on the network centrally,
and at the same time collecting the flows on de-centralized nodes spread

76

around on the network. NetFlow lets the switches and routers collect the
NetFlow data, which is a huge benefit since no extra equipment than the
core network equipment is needed. This makes NetFlow a cost effective
solution compared to other alternatives.

Because NetFlow collects flow data in a de-centralized manor and aggre-
gate the network traffic, it is capable of handling large amounts of network
traffic, and we saw in the experiments that NetFlow scales up to even ter-
abits of network traffic per second. Other passive asset detection systems
like PRADS would have a hard time analyzing high traffic networks like
this, since it would have to be able to read network traffic at this pace. Since
no network cards support network speeds this high, the traffic would have
to be divided amongst several servers running PRADS, making this an ex-
pensive alternative to NetFlow, and even impossible in some cases.

Source Number of Flows Traffic Amount
uio-gateway1 2487715 147.4 TB
uio-gateway2 1521585 156.2 GB
uio-gateway3 1324694 44.4 GB

Table 6.2: Statistics gathered by Nfdump tools for a five minute interval

Another advantage of NetFlow, is that the amount of network traffic
flowing through a switch does not affect the amount of flows in a linear
way. Table 6.2 show that even though almost more than a thousand times
more traffic flows through uio-gateway1 than uio-gateway2, the amount of
flows is not that much higher. The amount of flows for the selected period
is only almost twice as large. Because of this, the system implemented for
the thesis have no problems handling traffic speeds that exceed terabits per
second.

The traffic stored to disk by Nfdump, makes it possible to easily go back
and check how the network looked at a certain point in time, due to the
low disk usage by Nfdump tools. Even though 147.4 TB of data flowed
through uio-gateway1 over a five minute time period, the captured amount
of NetFlow data that were stored to disk was only 52 MB. Hence, by using
NetFlow we do not require much disk space to store months, or even years
of NetFlow data.

The high detection rate shown in the evaluation (section 5) is also an
advantage. With a little tweaking, by adding more services and operating

77

system update servers, we could probably get the detection rate even
higher. The system implemented detects both TCP and UDP services.
PRADS only detect one UDP service, DNS running on port 53.

6.3.2 Disadvantages

One disadvantage with NetFlow is that it stores filtered traffic, even though
it is dropped by the switch or router. We have solved this issue in the
system implemented by only looking at the flows going from the server to
the client, so this is not a problem in our case. By doing this, we avoid the
problem with clients generating false positives by trying to contact services
that does not exist.

The largest disadvantage of using NetFlow data for asset detection is that
we do not have access to the raw network traffic data, but only a limited
subset of the total data. This limits what we are able to detect and the
methods we can use to detect network assets.

Because of the limited amount of data fields available in NetFlow version
5, we do not get the MAC address of the hosts in the flows. Therefore, we
have to use IP addresses to identify hosts on the network. This is far from
optimal, since one host can have one IP address one day and another next
day. It would be better to use MAC addresses as a unique identifier for the
hosts, since MAC addresses are supposed to be unique. MAC spoofing is
possible, but it is rare that someone does it, and it is therefore not important
to us. NetFlow version 9 has the capability to add a source and destination
MAC address data fields to the flows.

Another limitation to NetFlow in asset detection, is that TCP flags are
grouped together. Because of this, most of the service detection methods
mentioned in section 2.3 can not be used, thus forcing us to use port
numbers to detect services instead. This is not easy to do and the amount
of false positives are higher than if we could use TCP flags.

Because we do not have access to the raw network traffic data, we can not
inspect the traffic to identify which services that are actually running on
the hosts. In the system implemented for this thesis we have to rely on
ports. Therefore, if the service runs on a non standard port, we will identify
the service as unknown or as the service that runs on that port by default.
We would detect the service, but the service name and description would

78

potentially be wrong. In addition to this we would not be able to detect the
version of the service running, unlike PRADS, which is capable of doing
this.

6.4 Legal Concerns

The legal concerns connected to asset detection methods like port scanning,
and even to asset detection in general are complicated. The laws vary
from country to country and there are few legal cases available to set legal
precedent for port scanning.

One example of a case is a 17 year old Finnish boy who was convicted of
attempted computer intrusion for port scanning a bank [9]. The supreme
court stated in its ruling that the defendant had systematically carried
out port scanning operations to gather information for the purpose of
unauthorised break in to the bank’s computer network. This was in the
verdict defined as an attempted computer break in. The defendant had to
pay a fine for telecommunications interference and attempted computer
break in. He also had to compensate the bank for the amount the
investigation had cost.

Here in Norway we had a case in 1998, where the University of Oslo
(UiO) accused Norman Data Defence Systems (NDDS) of trying to break
into their systems [21]. NDDS had port scanned UiO’s computer network
without permission and tried to log in to one of UiO’s machines using telnet
with a guest account. The reason supplied by NDDS for doing this was
that they were going to show on a TV documentary aired by NRK (the
Norwegian state television channel) that the Internet is a dangerous place
if precautions are not made.

NDDS was charged with breaking the Norwegian penal code paragraph
145, that states that it is illegal to break protections to get access to data that
are stored or that can be transfered electronically. UiO stated that they used
25-30 working hours on investigating the security breach.

The Norwegian supreme court concluded that none of the programs that
were used against UiO’s computer network would have given access to
protected data. One of the judges stated that by connecting a computer
to the Internet the owner of the computer has accepted that others ask the

79

computer which services it has to offer, and is therefore not looked upon as
unsolicited use of the machine. NDDS ended up being acquitted for all the
accusations.

In Norway IP addresses are considered "personal" information, hence is
governed by privacy laws. This may be changing as a EU court now
deemed IP addresses "non personal" which could become a precedence.
Some voice concern about the visibility of services at each host, exposing
personal data usage habits. However, most operational and security factors
overrule this concern.

When performing a port scan on someone else’s computer network it is
best to always get a written consent beforehand. If this is done it is easier
to avoid ending up spending all your money and time in court.

80

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main goal of this project was to implement a passive asset detection
system that detects assets on a computer network using NetFlow data. We
have successfully accomplished this goal.

The evaluation shows that the implemented system is able to run in real-
time, even with good margins opening for adding additional rules and
functionality.

The system has a good detection rate and is therefore able to detect most
of the hosts on the network, and the network services they are running
within a short period of time. Given enough time, the system should be
able to detect all the services running on all the hosts on the network it is
monitoring. In addition to this we verified the results from the operating
system detection rule used by Flow-dump, and it had just above one
percent false positives.

As discussed in section 6.3.2 there are disadvantages to using NetFlow for
this purpose. By having direct access to the network traffic as PRADS do,
we are able to detect versions of the services running. It is also easier to
get a more correct guess of which operating system that are running on
the hosts. These are things that are not so easy to do when only NetFlow
data are available. However, we have tried to minimize these limitations
by guessing operating systems based on connections made to operating
system update servers. The results from this looks promising, but it needs

81

more adjustments to be of any real use.

We have also tested the scalability of using NetFlow for asset detection.
The system implemented had no problems running on a network with a
throughput of 4.6 Tbit/s. Because of this, we can conclude that the system
is scalable enough to use on high speed networks. A system like PRADS
with direct access to the network traffic would not have been able to process
traffic from networks with as high throughput as in this case.

We have also tested running the system on historic data, which only takes
a little less than thirty minutes when distributed over several CPU cores.
Therefore, it is possible to process weeks or even months of data without
much hassle.

Flow-map can provide an easy and reasonable system for asset detection
for network administrators. It can give a quick overview and an early
warning about rouge services and hosts.

7.2 Future Work

Due to some time limitations, there are still some improvements that can be
made to our system. In this section we list some of the improvements and
future research that can be made to make asset detection using NetFlow
even better.

7.2.1 IDS Correlation

It would be useful to test how well the system performs when the data
produced is correlated with an Intrusion Detection System like Snort. It
could be used to escalate the degree of seriousness on alerts that relates to
services that are actually running on hosts on the network. If a snort alarm
regarding a web vulnerability hits a host running a web server, then it is
worth investigating more closely.

7.2.2 Detect Software Running on Hosts

In this thesis we tried to guess which operating systems the different hosts
were using based on the update servers they contacted. This could also

82

be used to detect other software running on the different hosts, if a host is
contacting a Java update server, it is probably running Java.

7.2.3 Operating System Detection Based on Services

In addition to detecting operating systems based on connections made to
update servers, we could also use services running on hosts to guess which
operating system they are running. For instance if a host is running the
service Microsoft RPC services on port 135, then it is probably running some
version of Microsoft Windows.

7.2.4 Rules Engine

By writing a rules engine for the system, it would be easier to implement
new asset detection rules. The rules engine could use an approach similar
to the one used in snort rules. By using a rules engine, the host detection
rule implemented in this thesis could have looked something like this:

host icmp $HOME_NET 0 -> any 0.0

7.2.5 NetFlow version 9

In this thesis we did not get the possibility to test the full extents of the
benefits that using NetFlow version 9 would bring. NetFlow version 9
adds more possible data fields, and it includes IP version 6 traffic. It is
worth investigating this closer.

7.2.6 Evaluation

Because of time constraints we did not get to fully test how many false
positives and false negatives the system has when detecting assets. This is
a cumbersome task because it requires us to manually check which services
that are running on the hosts, and this requires access to all the systems.
The alternative is to do a port scan of the hosts, which may not be accurate
because of filtered ports.

83

84

Bibliography

[1] Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley
Professional, 2003.

[2] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(Informational), October 2004.

[3] Introduction to cisco ios netflow. http://www.cisco.com/go/netflow.
Accessed: 2011-10-25.

[4] Netflow data export. http://www.cisco.com/en/US/docs/switches/
lan/catalyst6500/ios/12.2SXF/native/configuration/guide/

nde.pdf. Accessed: 2011-12-22.

[5] Nfdump tools. http://nfdump.sourceforge.net. Accessed: 2011-11-
10.

[6] Flow-tools. http://www.splintered.net/sw/flow-tools. Accessed:
2011-12-14.

[7] Lawrence Teo. Port scans and ping sweeps explained. Linux J., 2000,
November 2000.

[8] Internet control message protocol rfc. http://tools.ietf.org/html/
rfc792. Accessed: 2011-11-21.

[9] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning. Nmap Project,
2009.

[10] Address resolution protocol (arp). http://linux-ip.net/html/

ether-arp.html. Accessed: 2011-12-28.

[11] Raw ip networking faq. http://www.ntua.gr/rin/rawfaq.html.
Accessed: 2012-10-28.

85

[12] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFCs 1122, 3168, 6093.

[13] Ryan Spangler. Analysis of remote active operating system
fingerprinting tools. http://www.packetwatch.net>. http://www.

packetwatch.net/documents/papers/osdetection.pdf, 2003.

[14] Xprobe - active os fingerprinting tool. http://sourceforge.net/

projects/xprobe. Accessed: 2011-01-03.

[15] Passive real-time asset detection system. http://gamelinux.github.
com/prads/. Accessed: 2012-01-02.

[16] Linux programmer’s manual, december 2008. FIFO(7).

[17] Cisco catalyst 6500 series flaws. http://www.cisco.com/en/

US/products/hw/switches/ps708/products_configuration_

example09186a0080721701.shtml#switched. Accessed: 2011-11-
05.

[18] Sqlite, sqlite is self-contained. http://www.sqlite.org/

selfcontained.html. Accessed: 2011-11-28.

[19] Nist - prefixes for binary multiples. http://physics.nist.gov/cuu/

Units/binary.html. Accessed: 2011-12-19.

[20] Cerebrum. http://sourceforge.net/projects/cerebrum/. Ac-
cessed: 2012-01-28.

[21] Norwegian supreme court, norman vs uio. http://heim.ifi.uio.no/
gisle/local/law/norman2_hak_hr.html. 1998-12-15.

86

Appendix A

Abbreviations

ACK Acknowledgement
ARP Address Resolution Protocol
BSD Berkeley Software Distribution
CLI Command Line Interface
CSV Comma-Sepparated Values
DOS Denial of Service
DNS Domain Name Service
FIFO First in, first out
Gb Gigabit
GB Gigabyte
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
ISP Internet Service Provider
LAN Local Area Network
Mb Megabit
MB Megabyte
NAT Network Address Translation
NDDS Norman Data Defence Systems
P.M. Post Meridiem
PRADS Passive Real-time Asset Detection System
RST Reset
STDOUT Standard Output Stream
SYN Synchronize
Tb Terabit
TB Terabyte
TOS Type of Service
UiO University of Oslo
USIT University Center for Information Technology

87

88

Appendix B

Source Code

This chapter contains the source code for the passive asset detection system
implemented in this thesis. To run it a Perl interpreter and Nfdump tools
must be installed.

B.1 flow-dump

1 # ! / usr / b in / p e r l −w
2 #
3 # Flow−dump − P a s s i v e A s s e t D e t e c t i o n us ing Net f l ow
4 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
5 #
6
7 use s t r i c t ;
8 use Getopt : : Long ;
9 use Time : : Local ;

10 use NetAddr : : IP ;
11 require ’ conf ig . pl ’ ;
12
13 # Command l i n e o p t i o n s
14 my $help = ’ ’ ;
15 my $read = ’ ’ ;
16 my $output = ’ ’ ;
17 my $wri te = ’ ’ ;
18 GetOptions (’ usage|help|h|? ’ => \$help , ’ read|r=s ’ => \$read ,
19 ’ wri te|w=s ’ => \$write , ’ output|o=s ’ => \$output) ;
20
21 # D e c l a r e v a r i a b l e s from c o n f i g f i l e
22 our $debug ; # e n a b l e / d i s a b l e debugging
23 our $ f i l e p a t h ; # pa th t o n e t f l o w f i l e s
24 our @flowsources ; # f l o w s o u r c e s t o moni t o r
25 our @networks ; # n e t w o r k s t o moni t o r
26 our $outputmode ; # program o ut pu t mode
27 our @ b l a c k l i s t ; # b l a c k l i s t known network s c a n n e r s
28 our $windowsupdate ; # pa th t o f i l e c o n t a i n i n g Windows Update s e r v e r s
29 our @updateservers ; # hash c o n t a i n i n g OS upd a t e s e r v e r s
30 our @ p o r t _ b l a c k l i s t ; # b l a c k l i s t p o r t s g e n e r a t i n g f a l s e p o s i t i v e s
31
32 # P r e p a r e a r r a y c o n t a i n i n g n e t w o r k s t o moni to r
33 my @home_net = () ;
34

89

35 foreach (@networks)
36 {
37 push (@home_net , NetAddr : : IP−>new($_)) ;
38 }
39
40 # P r e p a r e a r r a y c o n t a i n i n g OS upd a t e s e r v e r s
41 my @os_update_servers = () ;
42
43 foreach (@updateservers)
44 {
45 my @server = s p l i t (’ , ’ , $_) ;
46 $server [0] = NetAddr : : IP−>new($server [0]) ;
47 push @os_update_servers , [@server] ;
48 }
49
50 # P r e p a r e l i s t o f upd a t e s e r v e r s t o use f o r OS d e t e c t i o n
51 my @windowsupdateservers = () ;
52 fetch_windows_update_server_l is t () ;
53
54 # Overwr i t e ou t pu t mode i f −−ou tp ut i s s p e c i f i e d
55 i f ($output) {
56 $outputmode = $output ;
57 }
58
59 # P r i n t usage
60 i f ($help) {
61 usage () ;
62 e x i t ;
63 }
64
65 # I n i t i a l i z e a r r a y t o s t o r e NetFlow d a t a in
66 my @data = () ;
67
68 # Read f i l e and e x i t i f −−r e a d i s s p e c i f i e d
69 i f ($read) {
70 i f (! e x i s t ($read)) {
71 die " Could not read f i l e : $!\n" ;
72 }
73 @data = r e a d f i l e ($read) ;
74 parse (@data) ;
75 e x i t ;
76 }
77
78 # Otherwi s e l o o p through a l l Nfdump f i l e s s t a r t i n g from now
79 my ($min , $hour , $day , $month , $year) = (local t ime) [1 , 2 , 3 , 4 , 5] ;
80 $min −= ($min % 5) ; # round t ime t o c l o s e s t f i v e minutes
81
82 # Loop f o r e v e r
83 while (1)
84 {
85 foreach (@flowsources)
86 {
87 my $ f i l e = g e t _ f i l e _ p a t h ($_) ;
88
89 while (! e x i s t ($ f i l e))
90 {
91 print " Waiting f o r f i l e $ f i l e . S leeping .\n" unless ! $debug ;
92 sleep 5 ; # s l e e p f i v e s e c o n d s
93 }
94
95 print " Parsing f i l e $ f i l e \n" unless ! $debug ;
96 @data = r e a d f i l e ($ f i l e) ;
97 parse (@data) ;
98 @data = () ;
99 }

100
101 fetch_windows_update_server_l is t () ;
102 increment_f ive_minutes () ;
103 }
104
105

90

106 # F e t c h l i s t o f Windows Update s e r v e r s f o r OS d e t e c t i o n
107 # Used by o l d OS d e t e c t i o n .
108 sub fe tch_windows_update_server_l is t
109 {
110 @windowsupdateservers = () ;
111
112 open (WINDOWS, $windowsupdate) or die " Could not read f i l e : $!\n" ;
113 while (<WINDOWS>)
114 {
115 # Conver t IP a d d r e s s t o number t o make i t e a s i e r t o compare
116 chomp (my $ip = $_) ;
117 my @octets = s p l i t (/\ ./ , $ip) ;
118 my $ip_address = ($ o c t e t s [0]*1 < <24)+($ o c t e t s [1]*1 < <16)+($ o c t e t s [2]*1 < <8)+($ o c t e t s [3]) ;
119
120 push (@windowsupdateservers , $ip_address) ;
121 }
122 c lose (WINDOWS) ;
123 }
124
125
126 # Get f i l e pa th o f nex t Nfdump f i l e t o r e a d
127 sub g e t _ f i l e _ p a t h
128 {
129 my ($ s r c) = @_ ; # name o f f l o w s o u r c e
130 my ($mi , $ho , $da , $mo, $ye , $ f i l e) ;
131 $mi = pad_number ($min) ;
132 $ho = pad_number ($hour) ;
133 $da = pad_number ($day) ;
134 $mo = pad_number ($month + 1) ;
135 $ye = $year + 1900 ;
136
137 $ f i l e = " $ f i l e p a t h /$ s r c/$ye/$mo/$da/nfcapd . yemodaho$mi " ;
138 return $ f i l e ;
139 }
140
141
142 # Pad numbers s m a l l e r than t e n with z e r o
143 sub pad_number
144 {
145 my ($num) = @_ ;
146 i f ($num < 10) {
147 $num = 0 . $num ;
148 }
149 return $num ;
150 }
151
152
153 # I n c r e m e n t t ime f i v e minutes
154 sub increment_f ive_minutes
155 {
156 my $next = t i m e l o c a l (0 , $min , $hour , $day , $month , $year) ;
157 $next += 3 2 0 ; # 5 * 60 s e c
158 ($min , $hour , $day , $month , $year) = (local t ime ($next)) [1 , 2 , 3 , 4 , 5] ;
159 }
160
161
162 # Check i f f i l e e x i s t
163 sub e x i s t
164 {
165 my ($ f i l e) = @_ ;
166 i f (!−e $ f i l e) {
167 return 0 ;
168 }
169 return 1 ;
170 }
171
172
173 # Read Nfdump f i l e
174 sub r e a d f i l e
175 {
176 my ($ f i l e) = @_ ;

91

177
178 # About 300 p e r c e n t f a s t e r t o s e l e c t t h e f i e l d s we need i n s t e a d
179 # o f us ing t h e c s v out pu t f o r m a t
180 my $output = ’ fmt:% ts ,%sa ,%da,%sp ,%dp,%pr ,% f lg ,% ipkt ,% i b y t ’ ;
181 my @data = qx/nfdump −r $ f i l e −o $output ’ s r c net $networks [0] ’ / ;
182 return @data ;
183 }
184
185
186 # P a r s e a r r a y c o n t a i n i n g n e t f l o w d a t a
187 sub parse
188 {
189 my (@data) = @_ ;
190 s h i f t (@data) ; # remove f i r s t l i n e c o n t a i n i n g meta d a t a from r e s u l t
191 s p l i c e @data , −4; # remove l a s t f o u r l i n e s c o n t a i n i n g meta d a t a from r e s u l t
192
193 foreach (@data)
194 {
195 # Trim w h i t e s p a c e added t o make t h i n g s l o o k n i c e
196 my $entry = join ’ ’ , s p l i t ’ ’ , $_ ;
197 $entry =~ s / ,\ s +/,/g ;
198 $entry =~ s/\s + ,/ ,/g ;
199
200 # S p l i t comma−s e p a r a t e d v a l u e s i n t o v a r i a b l e s
201 my ($time , $src ip , $dst ip , $srcport , $dstport , $protocol , $ t c p f l a g s ,
202 $packets , $bytes) = s p l i t (’ , ’ , $entry) ;
203
204 # Host d e t e c t i o n b a s e d on ICMP
205 h o s t _ d e t e c t i o n ($time , $src ip , $dstport , $protoco l) ;
206
207 # S e r v i c e d e t e c t i o n b a s e d on p o r t s
208 s e r v i c e _ d e t e c t i o n _ p o r t s ($time , $src ip , $dst ip , $srcport , $dstport , $protoco l) ;
209
210 # S e r v i c e d e t e c t i o n b a s e d on TCP f l a g s
211 # s e r v i c e _ d e t e c t i o n _ f l a g s ($t ime , $ s r c i p , $ d s t i p , $ s r c p o r t , $ d s t p o r t , $ t c p f l a g s , $ p r o t o c o l) ;
212
213 # OS d e t e c t i o n
214 # w i n d o w s _ o s _ d e t e c t i o n ($t ime , $ s r c i p , $ d s t i p) ;
215 o s _ d e t e c t i o n ($time , $src ip , $dst ip , $dstpor t) ;
216 }
217 }
218
219
220 # Check i f IP a d d r e s s i s on one o f t h e s u b n e t s we a r e m o n i t o r i n g
221 sub within_home_net
222 {
223 my $ip = NetAddr : : IP−>new($_ [0]) ;
224
225 foreach (@home_net)
226 {
227 i f ($ip−>within ($_)) {
228 return 1 ;
229 }
230 }
231 return 0 ;
232 }
233
234
235 # Host d e t e c t i o n
236 sub h o s t _ d e t e c t i o n
237 {
238 my ($time , $src ip , $dstport , $protoco l) = @_ ;
239
240 # D e t e c t h o s t s b a s e d on ICMP e c h o r e p l y
241 i f ($protoco l eq ’ICMP ’ and $dstpor t eq ’ 0 . 0 ’ and within_home_net ($ s r c i p)) {
242 output (’ Host ’ , $src ip , $time) ;
243 }
244 }
245
246
247 # S e r v i c e d e t e c t i o n b a s e d on p o r t s under 1024 . Por t s cann ing makes i t

92

248 # hard t o r e l y on t h i s one . We on ly need t o c h e c k one way , s i n c e f l o w s a r e
249 # u n i d i r e c t i o n a l . To a v o i d f a l s e p o s i t i v e s from p o r t scanning , we c h e c k t h e
250 # t r a f f i c coming from t h e s e r v e r .
251 sub s e r v i c e _ d e t e c t i o n _ p o r t s
252 {
253 my ($time , $src ip , $dst ip , $srcport , $dstport , $protoco l) = @_ ;
254
255 # Check i f c l i e n t IP a d d r e s s i s b l a c k l i s t e d as a network s c a n n e r
256 foreach (@ b l a c k l i s t)
257 {
258 i f ($ds t ip eq $_) {
259 return ; # r e t u r n i f c o n t a c t e d by b l a c k l i s t e d h o s t
260 }
261 }
262
263 # No s e r v i c e s i s us ing ICMP, so r e t u r n i f t h i s p r o t o c o l i s d e t e c t e d
264 i f ($protoco l eq ’ICMP ’) {
265 return ;
266 }
267
268 # D e t e c t p o r t s under 1024
269 i f ($ s r c p o r t < 1024 and $dstpor t > 1024 and within_home_net ($ s r c i p)) {
270
271 # Check i f p o r t i s b l a c k l i s t e d
272 foreach (@ p o r t _ b l a c k l i s t)
273 {
274 my ($dir , $port) = s p l i t (’ , ’ , $_) ;
275 i f (($d i r eq ’ s r c ’ and $ s r c p o r t eq $port) or ($di r eq ’ dst ’ and $dstpor t eq $port)) {
276 # We can s t i l l use t h i s r e s u l t f o r h o s t d e t e c t i o n
277 output (’ Host ’ , $src ip , $time) ;
278 return ;
279 }
280 }
281
282 output (’ S e r v i c e ’ , " $src ip , $ s r c p o r t /$protoco l " , $time) ;
283 }
284 }
285
286
287 # S e r v i c e d e t e c t i o n b a s e d on TCP f l a g s
288 # Th i s won ’ t work with C i s c o HW t h a t don ’ t e x p o r t TCP f l a g s in n e t f l o w data ,
289 # l i k e f o r i n s t a n c e C a t a l y s t 6500 .
290 sub s e r v i c e _ d e t e c t i o n _ f l a g s
291 {
292 my ($time , $src ip , $dst ip , $srcport , $dstport , $ t c p f l a g s , $protoco l) = @_ ;
293
294 # D e t e c t s e r v i c e b a s e d on SYN−ACK from s e r v e r from TCP t h r e e−way−handshake
295 i f ($protoco l eq ’TCP ’ and $ t c p f l a g s eq ’ .A . . S . ’ and within_home_net ($ s r c i p)) {
296 output (’ S e r v i c e ’ , " $src ip , $ s r c p o r t /$protoco l " , $time) ;
297 }
298
299 # D e t e c t s e r v i c e b a s e d on ACK from c l i e n t from TCP t h r e e−way−handshake
300 i f ($protoco l eq ’TCP ’ and $ t c p f l a g s eq ’ S . ’ and within_home_net ($ds t ip)) {
301 output (’ S e r v i c e ’ , " $dst ip , $dstpor t/$protoco l " , $time) ;
302 }
303 }
304
305
306 # D e t e c t h o s t s us ing Windows o p e r a t i n g sys t em b a s e d on c o n n e c t i o n s made
307 # t o upd a t e s e r v e r s . Old OS d e t e c t i o n .
308 sub windows_os_detection
309 {
310 my ($time , $src ip , $ds t ip) = @_ ;
311
312 # Conver t IP a d d r e s s e s t o numbers t o make them e a s i e r t o compare
313 my @octets = s p l i t (/\ ./ , $_ [1]) ;
314 my $ s r c = ($ o c t e t s [0]*1 < <24)+($ o c t e t s [1]*1 < <16)+($ o c t e t s [2]*1 < <8)+($ o c t e t s [3]) ;
315 @octets = s p l i t (/\ ./ , $_ [2]) ;
316 my $dst = ($ o c t e t s [0]*1 < <24)+($ o c t e t s [1]*1 < <16)+($ o c t e t s [2]*1 < <8)+($ o c t e t s [3]) ;
317
318 foreach (@windowsupdateservers)

93

319 {
320 i f ($ s r c == $_ and within_home_net ($ds t ip)) {
321 output (’OS ’ , " $dst ip , windows" , $time) ;
322 return ;
323 }
324 i f ($dst == $_ and within_home_net ($ s r c i p)) {
325 output (’OS ’ , " $src ip , windows" , $time) ;
326 return ;
327 }
328 }
329 }
330
331
332 # D e t e c t what OS h o s t s a r e us ing b a s e d on c o n n e c t i o n s made t o up da t e
333 # s e r v e r s .
334 sub o s _ d e t e c t i o n
335 {
336 my ($time , $src ip , $dst ip , $dstpor t) = @_ ;
337
338 # Saves a l o t o f t ime by on ly c o n t i n u i n g i f s r c p o r t i s 8 0 . Th i s a l s o h e l p s us
339 # a v o i d a l o t o f f a l s e p o s i t i v e s from name s e r v e r s , ma i l s e r v e r s , and s i m i l a r
340 i f ($dstpor t != 80) {
341 return ;
342 }
343
344 # P r e p a r e IP a d d r e s s f o r compar ing
345 my $dst = NetAddr : : IP−>new($dst ip) ;
346
347 foreach my $row (@os_update_servers)
348 {
349 # We on ly have t o c h e c k one d i r e c t i o n s i n c e t h e r e s h o u l d be two f l o w s
350 # p e r s e s s i o n anyway
351 i f ($dst−>within (@$row [0])) {
352 output (’OS ’ , " $src ip , @$row [1] " , $time) ;
353 }
354 }
355 }
356
357
358 # D i r e c t ou t pu t t o s e l e c t e d ou t pu t s o u r c e ; FIFO , s t d o u t or CSV
359 sub output
360 {
361 my ($type , $output , $time) = @_ ;
362 $time = substr ($time , 0 , −4); # we don ’ t need m i l l i s e c o n d s
363
364 # Write t o STDOUT
365 i f (! $outputmode or uc $outputmode eq ’STDOUT ’) {
366 print " $time − $type detected − $output\n" ;
367 }
368
369 # Write t o CSV f i l e
370 e l s i f (uc $outputmode eq ’CSV ’) {
371 $wri te = ’ a s s e t s . csv ’ unless $wri te ;
372
373 open (CSV, ’>> ’ , $wri te) or die " Could not open f i l e : $!\n" ;
374 print CSV " $type , $output , $time\n" ;
375 }
376
377 # Write t o FIFO
378 e l s i f (uc $outputmode eq ’ FIFO ’) {
379 $wri te = ’ a s s e t s ’ unless $wri te ;
380
381 # C r e a t e FIFO u n l e s s i t a l r e a d y e x i s t
382 unless (−p $write) {
383 unlink $wri te ;
384 system (’mknod ’ , $write , ’p ’) and die "Can ’ t mknod $write : $! " ;
385 }
386
387 # Next l i n e b l o c k s u n t i l t h e r e i s a r e a d e r
388 open (FIFO , ">" , $wri te) or die "Can ’ t wri te $wri te : $! " ;
389 print FIFO " $type , $output , $time " ;

94

390 c lose FIFO ;
391 s e l e c t (undef , undef , undef , 0 . 0 0 5) ; # wa i t t o a v o i d dup s i g n a l s
392 }
393
394 e lse {
395 die ’ Output mode not supported . Choose \ ’CSV\ ’ , \ ’FIFO\ ’ or \ ’STDOUT\ ’ ins tead . ’ ;
396 }
397 }
398
399
400 # P r i n t usage
401 sub usage
402 {
403 print " Usage : $0 [OPTION] . . . \ n" ;
404 print " Pass ive Asset Detect ion using Netflow .\n\n" ;
405 print " −r , −−read < f i l e > : netdump f i l e to read\n" ;
406 print " −o , −−output <type > : overwrite output mode (csv/ f i f o /stdout)\n" ;
407 print " −w, −−write < f i l e > : wri te to f i l e \n" ;
408 print " −h , −−help : display t h i s help and e x i t \n\n" ;
409 print " Write option only works f o r CSV and FIFO output modes .\n" ;
410 }

95

B.2 flow-store

1 # ! / usr / b in / p e r l −w
2 #
3 # Flow−s t o r e − S t o r e a s s e t s d e t e c t e d by Flow−dump in d a t a b a s e
4 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
5 #
6
7 use DBI ;
8 use s t r i c t ;
9 use Getopt : : Long ;

10
11 # Command l i n e o p t i o n s
12 my $help = ’ ’ ;
13 my $read = ’ ’ ;
14 my $wri te = ’ ’ ;
15 GetOptions (’ usage|help|h|? ’ => \$help , ’ read|r=s ’ => \$read ,
16 ’ wri te|w=s ’ => \$write) ;
17
18 # V a r i a b l e s used f o r s t a t i s t i c s
19 my $num_host = 0 ;
20 my $num_service = 0 ;
21 my $num_os = 0 ;
22
23 # Turn debug m e s s ag e s on / o f f
24 my $debug = 0 ;
25
26 # P r i n t usage
27 i f ($help) {
28 usage () ;
29 e x i t ;
30 }
31
32 # Read from a s s s e t s . c s v i f −−r e a d i s not s p e c i f i e d
33 i f (! $read) {
34 $read = " a s s e t s . csv " ;
35 }
36
37 # Write t o a s s e t s . db i f −−w r i t e i s not s p e c i f i e d
38 i f (! $wri te) {
39 $wri te = " a s s e t s . db " ;
40 }
41
42 # Connect t o d a t a b a s e
43 my $db = DBI−>connect (" dbi : SQLite : $wri te " , " " , " " ,
44 { RaiseError => 1 , AutoCommit => 1 }) ;
45
46
47 # Remove d u p l i c a t e e n t r i e s from CSV f i l e
48 my %seen = () ;
49 {
50 l o c a l @ARGV = ($read) ;
51 l o c a l $^ I = ’ . bac ’ ;
52 while (< >){
53 my @str = s p l i t (’ ’ , $_) ;
54 $seen { $ s t r [0] } + + ;
55 next i f $seen { $ s t r [0] } > 1 ;
56 print ;
57 }
58 }
59
60
61 # Read CSV f i l e and p r o c e s s c o n t e n t
62 open (ASSETS , $read) or die $! ;
63 while (<ASSETS>)
64 {
65 chomp ;
66 my @data = s p l i t (’ , ’ , $_) ;
67
68 # Handle Host e n t r i e s

96

69 i f ($data [0] eq ’ Host ’) {
70 add_host ($data [1] , ’ ’ , $data [2]) ;
71 }
72
73 # Handle OS e n t r i e s
74 i f ($data [0] eq ’OS ’) {
75 add_host ($data [1] , $data [2] , $data [3]) ;
76 }
77
78 # Handle S e r v i c e e n t r i e s
79 i f ($data [0] eq ’ S e r v i c e ’) {
80 add_host ($data [1] , ’ ’ , $data [3]) ;
81 add_service ($data [1] , $data [2]) ;
82 }
83 }
84 c lose (ASSETS) ;
85
86
87 # P r i n t s t a t i s t i c s
88 i f ($debug) {
89 print " Database Changes\n−−−−−−−−−−−−−−−−\n" ;
90 print " Host : " . $num_host . "\n" . "OS : " . $num_os . "\n" ;
91 print " S e r v i c e : " . $num_service . "\n" ;
92 }
93
94
95 # Add h o s t t o d a t a b a s e
96 sub add_host
97 {
98 my ($ip , $os , $date) = @_ ;
99 my $sq l ;

100 my $rows_af fected ;
101
102 i f (! $os) {
103 $sq l = <<SQL ;
104 INSERT OR IGNORE INTO host (IP , f i r s t _ s e e n , l a s t _ s e e n)
105 VALUES (’ $ip ’ , ’ $date ’ , ’ $date ’) ;
106 SQL
107 } e lse {
108 $sq l = <<SQL ;
109 INSERT OR IGNORE INTO host (IP , OS, f i r s t _ s e e n , l a s t _ s e e n)
110 VALUES (’ $ip ’ , ’ $os ’ , ’ $date ’ , ’ $date ’) ;
111 SQL
112
113 }
114
115 $rows_affected = $db−>do ($sq l) ;
116
117 # Update i f i n s e r t f a i l e d
118 i f ($rows_affected != 1) {
119 i f ($os) {
120 $sq l = "UPDATE host SET l a s t _ s e e n = ’ $date ’ AND OS = ’ $os ’ WHERE IP = ’ $ip ’ " ;
121 } e lse {
122 $sq l = "UPDATE host SET l a s t _ s e e n = ’ $date ’ WHERE IP = ’ $ip ’ " ;
123 }
124 $rows_affected = $db−>do ($sq l) ;
125 }
126
127 # C o l l e c t s t a t i s t i c s
128 i f ($rows_affected == 1) {
129 i f ($os) {
130 ++$num_os ;
131 } e lse {
132 ++$num_host ;
133 }
134 }
135 }
136
137
138 # Add s e r v i c e t o a h o s t in t h e d a t a b a s e
139 sub add_service

97

140 {
141 my ($ip , $port) = @_ ;
142 my $rows_affected ;
143 my $sq l = <<SQL ;
144 INSERT OR IGNORE INTO s e r v i c e (port , ip)
145 VALUES (’ $port ’ , ’ $ip ’)
146 SQL
147
148 $rows_affected = $db−>do ($sq l) ;
149
150 # C o l l e c t s t a t i s t i c s
151 i f ($rows_affected == 1) {
152 ++$num_service ;
153 }
154 }
155
156
157 # P r i n t usage
158 sub usage
159 {
160 print " Usage : $0 [OPTION] . . \ n" ;
161 print " Pass ive Asset Detect ion using Netflow .\n\n" ;
162 print " −r , −−read < f i l e > : read from s p e c i f i e d CSV f i l e \n" ;
163 print " −w, −−write <database > : wri te to s p e c i f i e d database\n" ;
164 print " −h , −−help : display t h i s help and e x i t \n\n" ;
165 }

98

B.3 flow-map

1 # ! / usr / b in / p e r l −w
2 #
3 # Flow−map − P r e s e n t a s s e t s s t o r e d in d a t a b a s e
4 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
5 #
6
7 use DBI ;
8 use s t r i c t ;
9 use Getopt : : Long ;

10 use Socket ;
11
12 my $vers ion = ’ 1 . 0 ’ ;
13
14 # F i l e c o n t a i n i n g s e r v i c e i n f o r m a t i o n
15 my $ s e r v i c e _ f i l e = ’nmap−s e r v i c e s ’ ;
16
17 # Command l i n e o p t i o n s
18 my $help = ’ ’ ;
19 my $ l i s t = ’ ’ ;
20 my $ s t a t s = ’ ’ ;
21 my $read = ’ ’ ;
22 my $ t a r g e t = ’ ’ ;
23 my $num = ’ ’ ;
24 GetOptions (’ usage|help|h|? ’ => \$help , ’ l i s t | l ’ => \ $ l i s t ,
25 ’ s t a t s |s ’ => \ $ s t a t s , ’ read|r=s ’ => \$read ,
26 ’ t a r g e t | t =s ’ => \$targe t , ’num|n= i ’ => \$num) ;
27
28 # Read from a s s s e t s . db i f −−r e a d i s not s p e c i f i e d
29 i f (! $read) {
30 $read = " a s s e t s . db " ;
31 }
32
33 # D e f a u l t t o 10 t o p s e r v i c e s t o show in summary
34 i f (! $num) {
35 $num = 1 0 ;
36 }
37
38 # Connect t o d a t a b a s e
39 my $db = DBI−>connect (" dbi : SQLite : $read " , " " , " " ,
40 { RaiseError => 1 , AutoCommit => 1 }) ;
41
42 # P r i n t usage
43 i f ($help) {
44 usage () ;
45 e x i t ;
46 }
47
48 # P r i n t s t a t s
49 i f ($ s t a t s) {
50 p r i n t _ s t a t s () ;
51 e x i t ;
52 }
53
54 # P r i n t usage i f no t a r g e t i s s p e c i f i e d
55 i f (! $ t a r g e t) {
56 print "You must s p e c i f y a t a r g e t .\n\n" ;
57 usage () ;
58 e x i t ;
59 }
60
61 # Allow hostname as t a r g e t
62 unless ($ t a r g e t =~ m/^(\d\d?\d ?) . * $ /) {
63 my @host = (gethostbyname ($ t a r g e t)) [4] ;
64 i f (@host) {
65 $ t a r g e t = i n e t _ n t o a ($host [0]) ;
66 } e lse {
67 print " Error . Could not r e s o l v e hostname .\n" ;
68 e x i t ;

99

69 }
70 }
71
72 print " S t a r t i n g Flow−map " . $vers ion . " a t " . local t ime (time) . "\n" ;
73
74 my $sq l ;
75
76 # I f a c o m p l e t e IP a d d r e s s i s p r o v i d e d we on ly match one h o s t
77 i f ($ t a r g e t =~ m/\d { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d { 1 , 3 } \ . \ d { 1 , 3 } /) {
78 $sq l = "SELECT * FROM host WHERE IP = ’ $ t a r g e t ’ " ;
79 } e lse {
80 $sq l = "SELECT * FROM host WHERE IP l i k e ’% $ t a r g e t %’ ORDER BY IP " ;
81 }
82
83 my $ t a r g e t s = $db−>s e l e c t a l l _ a r r a y r e f ($sq l) ;
84 my $count = 0 ;
85
86 foreach my $row (@$targets)
87 {
88 my ($ip , $os , $ f i r s t , $ l a s t) = @$row ;
89
90 # R e s o l v e hostname
91 my $host = gethostbyaddr (i n e t _ a t o n ($ip) , AF_INET) ;
92
93 # P r i n t h o s t
94 print " Host : " . $ip ;
95 print " (" . $host . ") " unless ! $host ;
96 print "\n" ;
97
98 # P r i n t s e r v i c e s i f l i s t o p t i o n i s not s p e c i f i e d
99 i f (! $ l i s t) {

100 print " F i r s t seen : " . $ f i r s t . "\n" ;
101 print " Last seen : " . $ l a s t . "\n" ;
102 print "OS : " . $os . "\n" unless ! $os ;
103 p r i n t _ s e r v i c e s ($ip) ;
104 print "\n" ;
105 }
106
107 ++$count ;
108 }
109
110 print " Flow−map done . Found $count hosts .\n" ;
111
112
113 # P r i n t s e r v i c e s f o r a s p e c i f i c h o s t
114 sub p r i n t _ s e r v i c e s
115 {
116 my ($ip) = @_ ;
117 my $sq l = "SELECT * FROM s e r v i c e WHERE ip = ’ $ip ’ " ;
118 my $ s e r v i c e s = $db−>s e l e c t a l l _ a r r a y r e f ($sq l) ;
119
120 p r i n t f "%−10s%−20s%s\n" , "PORT" , "SERVICE" , "DESCRIPTION" ;
121
122 foreach my $ s e r v i c e (@$services)
123 {
124 my ($port , $ip) = @$service ;
125
126 match_service ($port) ;
127 }
128 }
129
130
131 # Find s e r v i c e name and d e s c r i p t i o n b a s e d on p o r t
132 sub match_service
133 {
134 my ($port , $count) = @_ ;
135
136 open (DATA, $ s e r v i c e _ f i l e) or die $! ;
137 my @ l i s t = grep /\b$port\b/i , <DATA>;
138
139 i f (@ l i s t) {

100

140 my @desc = s p l i t (’ # ’ , $ l i s t [0]) ;
141 my @name = s p l i t (’ ’ , $ l i s t [0]) ;
142
143 my $name = $name [0] ? $name [0] : " " ;
144 my $desc = $desc [1] ? $desc [1] : " \n" ;
145 my $count = $count ? $count : " " ;
146
147 p r i n t f "%−9s " , $count unless ! $count ;
148 p r i n t f "%−10s%−20s%s " , $port , $name , $desc ;
149 } e lse {
150 # Only p r i n t p o r t number and unknown i f we can ’ t f i n d t h e s e r v i c e
151 p r i n t f "%−9s " , $count unless ! $count ;
152 p r i n t f "%−10s%−20s\n" , $port , "unknown" ;
153 }
154 }
155
156
157 # P r i n t d a t a b a s e s t a t i s t i c s
158 sub p r i n t _ s t a t s
159 {
160 my $subnet = $ t a r g e t ? $ t a r g e t : " * " ;
161
162 my ($hosts) = $db−>se lec t row_array ("SELECT COUNT(*) FROM host WHERE IP l i k e ’% $ t a r g e t %’ ") ;
163 my ($ s e r v i c e s) = $db−>se lec t row_array ("SELECT COUNT(*) FROM s e r v i c e WHERE IP l i k e ’% $ t a r g e t %’ ") ;
164
165 print "−−− Flow−map " . $vers ion . " s t a t i s t i c s −−−\n" ;
166 p r i n t f "%−22s %d\n" , " Hosts in database : " , $hosts ;
167 p r i n t f "%−22s %d\n\n" , " S e r v i c e s in database : " , $ s e r v i c e s ;
168
169 print "−−−− Top S e r v i c e s −−−−\n\n" ;
170 p r i n t f "%−9s%−10s%−20s%s\n" , "AMOUNT" , "PORT" , "SERVICE" , "DESCRIPTION" ;
171
172 # Get t h e t e n most common p o r t s
173 my $sq l = <<SQL ;
174 SELECT port , COUNT(port) FROM s e r v i c e
175 WHERE IP l i k e ’%$ t a r g e t%’
176 GROUP BY port HAVING COUNT(port) > 1
177 ORDER BY COUNT(port) DESC LIMIT $num
178 SQL
179
180 my $topten = $db−>s e l e c t a l l _ a r r a y r e f ($sq l) ;
181
182 foreach my $row (@$topten)
183 {
184 my ($port , $count) = @$row ;
185 match_service ($port , $count) ;
186 }
187 }
188
189
190 # P r i n t usage
191 sub usage
192 {
193 print " Usage : $0 [OPTION] . . \ n" ;
194 print " Pass ive Asset Detect ion using Netflow .\n\n" ;
195 print " −t , −−t a r g e t < t a r g e t > : t a r g e t to display\n" ;
196 print " −s , −−s t a t s : summary of a s s e t s in database\n" ;
197 print " −n , −−num <number> : number of top s e r v i c e s to show in summary\n" ;
198 print " −l , −− l i s t : simple l i s t of t a r g e t s in given IP range\n" ;
199 print " −r , −−read <database > : read from s p e c i f i e d database\n" ;
200 print " −h , −−help : display t h i s help and e x i t \n\n" ;
201 print " Target can be e i t h e r a hostname , a s i n g l e IP or an e n t i r e IP range .\n" ;
202 }

101

B.4 config.pl

1 # Th i s i s t h e c o n f i g u r a t i o n f i l e f o r Flow−dump .
2
3 # Enab l e / d i s a b l e debugging .
4 $debug = 1 ; # on
5
6 # Path t o Nfdump f i l e s .
7 $ f i l e p a t h = "/ u s i t / n e t t f l y t /flow/ l i v e " ;
8
9 # Flow s o u r c e s t o moni t o r .

10 @flowsources = (" uio−gw8") ;
11
12 # D e f i n e n e t w o r k s t o moni t o r (s u b n e t / netmask) .
13 @networks = (" 1 2 9 . 2 4 0 . 0 . 0 / 1 6 ") ;
14
15 # S e l e c t o u t pu t mode . Suppor t ed modes a r e STDOUT, FIFO and CSV .
16 $outputmode = "CSV" ;
17
18 # B l a c k l i s t known p o r t s c a n n e r s .
19 @ b l a c k l i s t = () ;
20
21 # F i l e c o n t a i n i n g Windows Update IP a d d r e s s e s
22 $windowsupdate = " updateservers . csv " ;
23
24 # D e f i n e u pd a t e s e r v e r s f o r d i f f e r e n t Opera t ing s y s t e m s
25 @updateservers = (
26 " 1 2 9 . 2 4 0 . 2 . 2 5 , RedHat " , # yum . u i o . no
27 " 6 5 . 5 5 . 0 . 0 / 1 6 , Windows" , # u pd a t e . m i c r o s o f t . com
28 " 1 2 9 . 2 4 0 . 1 2 . 2 7 , Windows" , # wsus . u i o . no
29 " 1 7 . 2 5 0 . 2 4 8 . 9 5 , Darwin " , # swscan . a p p l e . com
30 " 1 2 9 . 2 4 1 . 9 3 . 3 7 , Ubuntu " # no . a r c h i v e . ubuntu . com
31) ;
32
33 # B l a c k l i s t s e r v i c e s t h a t g e n e r a t e f a l s e p o s i t i v e s
34 # Use ’ d s t ’ when you want t o b l a c k l i s t b a s e d on t h e p o r t t h a t t h e
35 # s e r v i c e i s c o n n t a c t e d on (d s t p o r t) . Use ’ s r c ’ t o b l a c k l i s t a
36 # s e r v i c e in g e n e r a l
37 @ p o r t _ b l a c k l i s t = (
38 " dst , 4045 " , # b l a c k l i s t l o c k d used by n f s
39 " dst , 2049 " , # b l a c k l i s t portmap (n f s and n i s)
40 " dst , 4046 " , # a n o t h e r p o r t used by n f s
41 " src , 7 " # e c h o
42) ;

102

B.5 ad-check-os.pl

1 # ! / usr / b in / p e r l −w
2 #
3 # ad−check−os . p l − Read a l i s t o f h o s t s and compare OS a g a i n s t A c t i v e D i r e c t o r y
4 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
5 #
6
7 use s t r i c t ;
8 use Net : : LDAP;
9 use Socket ;

10
11 my $ad ; # LDAP o b j e c t
12 my $base ; # s e a r c h b a s e
13 my $ r e s u l t s ; # s e a r c h r e s u l t s
14 my $count = 0 ; # number o f e n t r i e s r e t u r n e d
15 my $ t o t a l = 0 ; # number o f h o s t s c h e c k e d
16 my $true = 0 ; # number o f h o s t s t h a t a c u a l l y run Windows
17 my $ f a l s e = 0 ; # number o f f a l s e p o s i t i v e s
18
19 my $ f i l e = $ARGV[0] ;
20
21 # P r i n t usage i f no arguments a r e s u p p l i e d
22 i f (! $ARGV[0]) {
23 print " Usage : $0 < f i l e >\n" ;
24 print " Read l i s t of hosts and compare OS a g a i n s t Active Direc tory .\n" ;
25 e x i t ;
26 }
27
28 $ad = Net : : LDAP−>new(" ldap :// alexander . uio . no ")
29 or die (" Could not connect to LDAP server . ") ;
30
31 # Bind t o LDAP s e r v e r
32 $ad−>bind (" username\@uio . no " , password=>" password ") ;
33
34 # D e f i n e t h e b a s e
35 $base = "DC=uio ,DC=no " ;
36
37 # Read f i l e and c h e c k OS o f h o s t s
38 open (FILE , $ f i l e) or die $! ;
39 while (<FILE >)
40 {
41 chomp ;
42
43 # R e s o l v e hostname
44 my $host = gethostbyaddr (i n e t _ a t o n ($_) , AF_INET) ;
45
46 # Do not c h e c k i f hostname d o e s not r e s o l v e
47 i f (! $host) {
48 next ;
49 }
50
51 # Remove domain
52 my @hostname = s p l i t (/\ ./ , $host) ;
53
54 i f (compare ($hostname [0])) {
55 ++$true ;
56 } e lse {
57 ++ $ f a l s e ;
58 print " Fa l se : $host\n" ;
59 }
60
61 ++ $ t o t a l ;
62 }
63
64 # P r i n t r e s u l t s
65 print "+−−−−−−−+−−−−−−−−−+−−−−−−−+\n" ;
66 print "| Tota l | Correct | Fa l se |\n" ;
67 print "+−−−−−−−+−−−−−−−−−+−−−−−−−+\n" ;
68 p r i n t f "| %5s | %7s | %5s |\n" , $ t o t a l , $true , $ f a l s e ;

103

69 print "+−−−−−−−+−−−−−−−−−+−−−−−−−+\n" ;
70
71 # C l e a n in g up :)
72 c lose (FILE) ;
73 $ad−>unbind ;
74
75
76 # Compare
77 sub compare
78 {
79 my $ f i l t e r = " (cn=$_ [0]) " ;
80
81 $ r e s u l t s = $ad−>search (base=>$base , f i l t e r => $ f i l t e r) ;
82 $count = $ r e s u l t s −>count ;
83
84 # Loop through r e s u l t s
85 for (my $ i =0; $i <$count ; $ i ++) {
86
87 my $entry = $ r e s u l t s −>entry ($ i) ;
88 my $ o s _ s t r i n g = $entry−>get_value (’ operatingSystem ’) ;
89
90 i f (! $ o s _ s t r i n g) {
91 next ;
92 }
93
94 my @os = s p l i t (" " , $ o s _ s t r i n g) ;
95
96 # Check f o r Windows o p e r a t i n g sys t em
97 i f ($os [0] eq ’Windows ’) {
98 return 1 ;
99 }

100 }
101 return 0 ;
102 }

104

Appendix C

Shell Scripts

This chapter contains shell scripts written during the thesis. It includes a
script for creating the database used by Flow-store and Flow-map, a script
for processing a day of flows, and a script for maintaining a list of Windows
update servers.

C.1 create_db.sh

1 # ! / b in / bash
2 # C r e a t e d a t a b a s e used by f low−s t o r e t o s t o r e a s s e t d a t a
3 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
4
5 s q l i t e 3 a s s e t s . db "CREATE TABLE host (
6 IP TEXT PRIMARY KEY,
7 OS TEXT ,
8 f i r s t _ s e e n TEXT ,
9 l a s t _ s e e n TEXT

10) ; "
11
12 s q l i t e 3 a s s e t s . db "CREATE TABLE s e r v i c e (
13 port TEXT ,
14 IP TEXT ,
15 PRIMARY KEY(port , IP)
16) ; "

105

C.2 runwholeday.sh

1 # ! / b in / bash
2 # Simple s c r i p t t o run through an e n t i r e day worth o f f l o w s
3 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
4
5 CONCURRENT=11 # number o f p r o c e s s e s t o run a t t h e same t ime
6 count=0 # c o u n t e r t o k e e p t r a c k o f t h e number o f p r o c e s s e s
7 run_number=0 # number o f t i m e s runned s i n c e l a s t Flow−s t o r e
8
9 # P r i n t usage i f no argument i s p r o v i d e d

10 i f [−z $1] ; then
11 echo " Usage : $0 <FOLDER>"
12 e x i t
13 f i
14
15 # Loop through a l l f i l e s in f o l d e r
16 for f l o w f i l e in ‘ l s $1 ‘
17 do
18 # Wait i f t o o many p r o c e s s e s a r e running
19 i f [" $count " −eq "$CONCURRENT"]
20 then
21 wait $!
22 count=0
23 run_number=$ ((run_number +1)) # i n c r e m e n t run number
24
25 # R o t a t e a s s e t s f i l e and c l e a n up
26 i f [$run_number −ge 3]
27 then
28 mv a s s e t s . csv a s s e t s . csv . s t o r e
29
30 ./ flow−s t o r e −r a s s e t s . csv . s t o r e &
31 time = ‘ date + ’%F %H:%M’ ‘
32 echo " $time − Rotat ing a s s e t s f i l e and running flow−s t o r e "
33
34 run_number=0
35 f i
36 f i
37
38 time = ‘ date + ’%F %H:%M’ ‘
39 echo " $time − Parsing f i l e : $ 1 $ f l o w f i l e "
40 ./ flow−dump −r $1/ $ f l o w f i l e &
41
42 count=$ ((count +1)) # i n c r e m e n t c o u n t e r
43 done
44
45 wait $!
46 time = ‘ date + ’%F %H:%M’ ‘
47 echo " $time − Running flow−s t o r e one l a s t time , and c leaning up"
48 ./ flow−s t o r e
49 rm a s s e t s . csv a s s e t s . csv . bac a s s e t s . csv . s t o r e a s s e t s . csv . s t o r e . bac
50 echo " Finished . "

106

C.3 winupdate.sh

1 # ! / b in / bash
2 # Mainta in a l i s t o f t h e f i f t e e n l a s t IP a d d r e s s e s used by Windows Update
3 # C o p y r i g h t (C) 2011−2012 Mats K l e p s l a n d < m a t s e k l @ i f i . u i o . no>
4 #
5 # Windows Update u s e s l o a d b a l a n c i n g on t h e i r up da t e s e r v e r s and s p r e a d s
6 # t h e t r a f f i c o v e r s e v e r a l ne twork b l o c k s . The IP a d d r e s s t h e y a r e us ing
7 # c h a n g e s a p p r o x i m a t e l y once e v e r y f i v e minutes .
8
9 hosts =(" update . microsof t . com") # domains t o r e s o l v e

10 f i l e =" updateservers . csv " # s t o r e l i s t in t h i s f i l e
11 number_of_entries =15 # on ly s t o r e a c e r t a i n amount o f e n t r i e s
12
13 # C r e a t e f i l e i f i t d o e s not e x i s t
14 i f [! −e $ f i l e] ; then
15 touch $ f i l e
16 f i
17
18 # Loop f o r e v e r
19 while t rue
20 do
21 for i in " $ { hosts [@] } "
22 do
23 # We do not want t h e f i l e t o become huge , so we ’ l l remove e n t r i e s so
24 # we a lways have a c e r t a i n amount .
25 i f [‘wc − l < $ f i l e ‘ −ge $number_of_entries] ; then
26 sed − i ’ 1d ’ $ f i l e # remove f i r s t l i n e
27 f i
28
29 ip = ‘ nslookup $ i | grep Address | grep −v ’ # ’ | cut −f 2 −d ’ ’ ‘
30 echo $ip >> $ f i l e # s a v e r e s o l v e d IP in f i l e
31 done
32
33 # Remove d u p l i c a t e l i n e s from f i l e
34 # Th i s s a v e s us a l o t o f p r o c e s s i n g when l o o k i n g f o r up da t e s e r v e r s in
35 # Flow−dump . I t a l s o makes us a b l e t o s t o r e a b o u t 2 . 5 hours worth o f up da t e
36 # s e r v e r s in j u s t f i f t e e n e n t r i e s .
37 re s=$ (awk ’ ! x [$0]++ ’ $ f i l e)
38 echo " $res " > $ f i l e
39
40 sleep 30 # s l e e p f o r 30 s e c o n d s
41 done

107

108

Appendix D

NetFlow Version 9 Field Type
Definitions

Field Type Value Length (bytes) Description
IN_BYTES 1 N (default is 4) Incoming counter with length N x 8 bits for number of bytes

associated with an IP flow.
IN_PKTS 2 N (default is 4) Incoming counter with length N x 8 bits for the number of

packets associated with an IP Flow.
FLOWS 3 N (default is 4) Number of flows that were aggregated.
PROTOCOL 4 1 IP protocol byte.
SRC_TOS 5 1 Type of Service byte setting when entering incoming

interface.
TCP_FLAGS 6 1 Cumulative of all the TCP flags seen for this flow.
L4_SRC_PORT 7 2 TCP/UDP source port number i.e.: FTP, Telnet or equiva-

lent.
IPV4_SRC_ADDR 8 4 IPv4 source address.
SRC_MASK 9 1 The number of contiguous bits in the source address sybnet

mask i.e.: the submask in slash notation.
INPUT_SNMP 10 N Input interface index; default for N is 2 but higher values

could be used.
L4_DST_PORT 11 2 TCP/UDP destination port number i.e.: FTP, Telnet, or

equivalent.
IPV4_DST_ADDR 12 4 IPv4 destination address.
DST_MASK 13 1 The number of contiguous bits in the destination address

subnet mask i.e.: the submask in slash notation.
OUTPUT_SNMP 14 N Output interface index; default for N is 2 but higher values

could be used.

109

Field Type Value Length (bytes) Description
IPV4_NEXT_HOP 15 4 IPv4 address of next-hop router.
SRC_AS 16 N (default is 2) Source BGP autonomous system number

where N could be 2 or 4.
DST_AS 17 N (default is 2) Destination BGP autonomous system number

where N could be 2 or 4.
BGP_IPV4_NEXT_HOP 18 4 Next-hop router’s IP in the BGP domain.
MUL_DST_PKTS 19 N (default is 4) IP multicast outgoing packet counter with

length N x 8 bits for packets associated with the
IP Flow

MUL_DST_BYTES 20 N (default is 4) IP multicast outgoing byte counter with length
N x 8 bits for bytes associated with the IP Flow.

LAST_SWITCHED 21 4 System uptime at which the last packet of this
flow was switched.

FIRST_SWITCHED 22 4 System uptime at which the first packet of this
flow was switched.

OUT_BYTES 23 N (default is 4) Outgoing counter with length N x 8 bits for the
number of bytes associated with an IP Flow.

OUT_PKTS 24 N (default is 4) Outgoing counter with length N x 8 bits for the
number of packets associated with an IP Flow.

MIN_PKT_LNGTH 25 2 Minimum IP packet length on incoming pack-
ets of the flow.

MAX_PKT_LNGTH 26 2 Maximum IP packet length on incoming pack-
ets of the flow.

IPV6_SRC_ADDR 27 16 IPv6 Source Address.
IPV6_DST_ADDR 28 16 IPv6 Destination Address.
IPV6_SRC_MASK 29 1 Length of the IPv6 source mask in contiguous

bits.
IPV6_DST_MASK 30 1 Length of the IPv6 destination mask in contigu-

ous bits.
IPV6_FLOW_LABEL 31 3 IPv6 flow label as per RFC 2460 definition.
ICMP_TYPE 32 2 Internet Control Message Protocol (ICMP)

packet type; reported as ((ICMP Type*256) +
ICMP code).

MUL_IGMP_TYPE 33 1 Internet Group Management Protocol (IGMP)
packet type.

SAMPLING_INTERVAL 34 4 When using sampled NetFlow, the rate at
which packets are sampled i.e.: a value of
100 indicates that one of every 100 packets is
sampled.

SAMPLING_ALGORITHM 35 1 The type of algorithm used for sampled Net-
Flow: 0x01 Deterministic Sampling ,0x02 Ran-
dom Sampling.

FLOW_ACTIVE_TIMEOUT 36 2 Timeout value (in seconds) for active flow
entries in the NetFlow cache.

110

Field Type Value Length (bytes) Description
FLOW_INACTIVE_TIMEOUT 37 2 Timeout value (in seconds) for inactive flow

entries in the NetFlow cache.
ENGINE_TYPE 38 1 Type of flow switching engine: RP = 0, VIP/-

Linecard = 1.
ENGINE_ID 39 1 ID number of the flow switching engine.
TOTAL_BYTES_EXP 40 N (default is 4) Counter with length N x 8 bits for bytes for the

number of bytes exported by the Observation
Domain.

TOTAL_PKTS_EXP 41 N (default is 4) Counter with length N x 8 bits for bytes for the
number of packets exported by the Observation
Domain.

TOTAL_FLOWS_EXP 42 N (default is 4) Counter with length N x 8 bits for bytes for the
number of flows exported by the Observation
Domain.

IPV4_SRC_PREFIX 44 4 IPv4 source address prefix (specific for Catalyst
architecture).

IPV4_DST_PREFIX 45 4 IPv4 destination address prefix (specific for
Catalyst architecture).

MPLS_TOP_LABEL_TYPE 46 1 MPLS Top Label Type: 0x00 UNKNOWN 0x01
TE-MIDPT 0x02 ATOM 0x03 VPN 0x04 BGP
0x05 LDP.

MPLS_TOP_LABEL_IP_ADDR 47 4 Forwarding Equivalent Class corresponding to
the MPLS Top Label.

FLOW_SAMPLER_ID 48 1 Identifier shown in "show flow-sampler".
FLOW_SAMPLER_MODE 49 1 The type of algorithm used for sampling data:

0x02 random sampling. Use in connection with
FLOW_SAMPLER_MODE.

FLOW_SAMPLER_RANDOM_
INTERVAL

50 4 Packet interval at which to sample. Use in
connection with FLOW_SAMPLER_MODE.

MIN_TTL 52 1 Minimum TTL on incoming packets of the flow.
MAX_TTL 53 1 Maximum TTL on incoming packets of the

flow.
IPV4_IDENT 54 2 The IP v4 identification field.
DST_TOS 55 1 Type of Service byte setting when exiting out-

going interface.
IN_SRC_MAC 56 6 Incoming source MAC address.
OUT_DST_MAC 57 6 Outgoing destination MAC address.
SRC_VLAN 58 2 Virtual LAN identifier associated with ingress

interface.
DST_VLAN 59 2 Virtual LAN identifier associated with egress

interface.
IP_PROTOCOL_VERSION 60 1 Internet Protocol Version Set to 4 for IPv4, set to

6 for IPv6. If not present in the template, then
version 4 is assumed.

111

Field Type Value Length (bytes) Description
DIRECTION 61 1 Flow direction: 0 - ingress flow, 1 - egress flow.
IPV6_NEXT_HOP 62 16 IPv6 address of the next-hop router.
BPG_IPV6_NEXT_HOP 63 16 Next-hop router in the BGP domain.
IPV6_OPTION_HEADERS 64 4 Bit-encoded field identifying IPv6 option head-

ers found in the flow.
MPLS_LABEL_1 70 3 MPLS label at position 1 in the stack. This com-

prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_2 71 3 MPLS label at position 2 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_3 72 3 MPLS label at position 3 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_4 73 3 MPLS label at position 4 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_5 74 3 MPLS label at position 5 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_6 75 3 MPLS label at position 6 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_7 76 3 MPLS label at position 7 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_8 77 3 MPLS label at position 8 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_9 78 3 MPLS label at position 9 in the stack. This com-
prises 20 bits of MPLS label, 3 EXP (experimen-
tal) bits and 1 S (end-of-stack) bit.

MPLS_LABEL_10 79 3 MPLS label at position 10 in the stack. This
comprises 20 bits of MPLS label, 3 EXP (experi-
mental) bits and 1 S (end-of-stack) bit.

IN_DST_MAC 80 6 Incoming destination MAC address.
OUT_SRC_MAC 81 6 Outgoing source MAC address.
IF_NAME 82 N Shortened interface name i.e.: "FE1/0".
IF_DESC 83 N Full interface name i.e.: "’FastEthernet 1/0".
SAMPLER_NAME 84 N Name of the flow sampler.
IN_PERMANENT_BYTES 85 N (default is 4) Running byte counter for a permanent flow.
IN_PERMANENT_PKTS 86 N (default is 4) Running packet counter for a permanent flow.
FRAGMENT_OFFSET 88 2 The fragment-offset value from fragmented IP

packets.

112

Field Type Value Length (bytes) Description
FORWARDING STATUS 89 1 Forwarding status is encoded on 1 byte with

the 2 left bits giving the status and the 6
remaining bits giving the reason code.

MPLS PAL RD 90 8 (array) MPLS PAL Route Distinguisher.
MPLS PREFIX LEN 91 1 Number of consecutive bits in the MPLS prefix

length.
SRC TRAFFIC INDEX 92 4 BGP Policy Accounting Source Traffic Index.
DST TRAFFIC INDEX 93 4 BGP Policy Accounting Destination Traffic In-

dex.
APPLICATION DESCRIPTION 94 N Application description.
APPLICATION TAG 95 1+n 8 bits of engine ID, followed by n bits of

classification.
APPLICATION NAME 96 N Name associated with a classification.
postipDiffServCodePoint 98 1 The value of a Differentiated Services Code

Point (DSCP) encoded in the Differentiated
Services Field, after modification.

replication factor 99 4 Multicast replication factor.
DEPRECATED 100 N DEPRECATED.
layer2packetSectionOffset 102 - Layer 2 packet section offset. Potentially a

generic offset.
layer2packetSectionSize 103 - Layer 2 packet section size. Potentially a

generic size.
layer2packetSectionData 104 - Layer 2 packet section data.

113

