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Abstract—The availability of inertial navigation sensors
in smartphones has facilitated the development of pedes-
trian dead reckoning (PDR) models on a large scale. These
models often consist of a step detection algorithm com-
bined with a heading estimation routine. Common approaches
to step detection include searching for peaks/valleys in
the acceleration signal, principle frequency estimation, and
machine learning techniques. Since the sensors embedded
in smart devices are prone to noise, the position error grows
unbounded if unchecked and requires periodical corrections
based on external measurements. In this work, we propose a
novel step detection algorithm based on sine-wave approxi-
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mation of the acceleration signal. This method detects step fractions as well as full steps, which allows for continuous and
real-time updates. The step detection algorithm is combined with a heading estimation routine described in our previous

work to obtain a stand-alone PDR model. To mitigate error

accumulation, we fuse the proposed model with position

and heading measurements provided by a commercial indoor positioning system based on ultrasound. We evaluate the
performance of the PDR and fused model in an open office environment, by walking along a trajectory while carrying a
smartphone in hand or in the pocket. The results demonstrate the feasibility of the sine-wave approximation approach to
step detection, as well as the expected benefits of fusing PDR with the ultrasonic system.

Index Terms— Indoor positioning, pedestrian dead reckoning, step detection, ultrasonic positioning system.

|. INTRODUCTION

MART devices have boosted the development of Loca-
tion Based Services (LBS) in recent years, due to their
diverse set of embedded sensors and widespread availability.
LBS utilize the position of a device, often a smartphone
or smartwatch, to provide location specific information and
services. In outdoor and open areas, the position estimation
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process is typically based on a Global Navigation Satellite
System (GNSS). In indoor environments, accurate positioning
remains a challenge due to the high attenuation and distortion
of GNSS signals when propagating through buildings. Due
to the wide range of use cases, no consensus has yet been
reached regarding a single, all-purpose Indoor Positioning
System (IPS) for smart devices. Rather, many different types
of IPS and related technologies have been developed over the
last couple of decades.

Systems based on radio frequency (RF) signals are a popular
choice [1], [2], due to the ubiquity of Wi-Fi access points in
buildings. The accuracy of these systems is relatively low,
typically in the order of a few meters [3]. Besides, radio
waves penetrate relatively easily through building infrastruc-
ture, making it harder to distinguish between adjacent rooms or
floors. This has a direct impact on user experience and limits
the applicability of RF-based systems. A strong alternative to
RF are ultrasonic signals. Contrary to radio waves, ultrasonic
signals are largely contained within the room of the transmitter.
Systems based on ultrasound can thus solve the adjacent room
problem. The lower speed of sound also allows for much
higher accuracies in terms of range estimates, in the order of
centimeters [4]. Ultrasonic signals are, however, sensitive to
multipath and Doppler effects [5], which can hinder the overall
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performance of such a system. Both RF and ultrasonic systems
have in common that they rely on some form of infrastructure,
e.g., beacons or Wi-Fi access points. Even for optimized
beacon distributions, there often remain some regions with
low coverage and poor results, reducing the overall reliability
of the system [4].

Inertial Navigation Systems (INS) provide positions without
the need for a dedicated infrastructure. Instead, positions are
based on dead reckoning, where information regarding device
heading, speed, and time are integrated and subsequently
added to the last known position. Historically, dead reckoning
was mainly used in marine [6], air [7] and car navigation [8],
especially before the introduction of GNSS. More recently,
dead reckoning has expanded into the field of pedestrian
navigation, in a process commonly referred to as Pedestrian
Dead Reckoning (PDR) [9]-[13]. This expansion has, in large
part, been facilitated by the global adoptation of smart devices
containing the necessary sensors for inertial navigation. These
sensors primarily include a 3-axis accelerometer and 3-axis
gyroscope, combined in the Inertial Measurement Unit (IMU),
and a 3-axis magnetometer.

PDR consists of a step or walk detection algorithm and some
form of user heading estimation. The aim of a step detection
algorithm is to provide a real-time estimate of accumulated
steps or step fractions based on IMU measurements. A typical
approach is to look for peaks, valleys or a combination
thereof in the acceleration signal [14]-[17]. Other methods
include principle frequency estimation [18]-[20] and feature
extraction combined with machine learning techniques [21],
[22]. Each method has its pros and cons, including sensitivity
to false positives (e.g., false peak detections), computational
intensity, requiring substantial historical data, and/or pre-
training of the the algorithm. Given an estimated step length,
the step detection algorithm provides an estimate of the
distance travelled. This does not yet include the direction of
travel, or heading. A common approach to inertial heading
estimation is to compute the change in device attitude based
on gyro data, sometimes complemented by the accelerometer
and magnetometer [23]. A known device attitude allows for
Principle Component Analysis (PCA) from which the direction
of movement can be derived [24]. An alternative is to compute
the gravity vector first, and apply it directly to the gyro
measurement to extract the horizontal rotation [25], [26]. The
latter method implicitly assumes that the change in horizontal
orientation of the device is equal to the change in heading of
the person carrying the device.

INS are subject to error accumulation due to sensor
noise and limitations of the applied model. In the spe-
cific case of PDR, main error sources include residual gyro
bias and bias drift, causing attitude drift over time, unre-
solved variations in step length, and incorrect classification
of detected steps. Error accumulation requires periodical cor-
rections based on an external system. Therefore, PDR is
often fused with an infrastructure-based positioning system,
typically in a Kalman filter setup. A fused system exploits the
best of both worlds: high-accuracy IPS measurements correct
position deviations generated by the PDR model, whereas
the continuous availability of PDR mitigates areas poorly

covered by the IPS. In this work, we will use an Ultra-
sonic Indoor Positioning System (UIPS) to generate external
measurements.

Several examples of fused systems based on inertial mea-
surements and ultrasonic signals can be found in literature.
In [27], ultrasonic beacons were deployed in the ceiling, and
three receivers were carried by a robot. Time-Of-Flight (TOF)
measurements were fused with odometry information to obtain
the required input for the correction phase of the Kalman
filter. The prediction phase consisted of odometry readings
alone. The system in [28] was able to detect Non-Line-Of-
Sight (NLOS) conditions using a classifier. If that situation
occurred, an INS provided a position estimate based on the
step count derived from accelerometer data, and heading based
on the compass. These inertial measurements were inputs to
the propagation phase of an Extended Kalman Filter (EKF).
For the measurement model, the last estimated position from
TOF measurements was used. In [29], a smartphone acted
as the ultrasonic transmitter, and a network of beacons as
receivers. Position was calculated in a central unit. In case
of no coverage by the ultrasonic system, the inertial sensors
from the smartphone provided the position, calculated from
the step length and orientation. This ultrasonic system was
later used in [30] to fix the position estimates provided by an
INS based on a Fuzzy Inference System (FIS). FIS was used
to reduce the error in velocity and position after integration,
caused by the remaining gravity component. Both positions
were fused in a Kalman filter. One of the most recent exam-
ples was described in [31]. Several ultrasonic modules, each
containing five beacons, were deployed at key points in the
test area. To enable navigation in areas with limited ultrasonic
coverage, an external INS was attached to the user’s leg, and
connected to the device via Bluetooth. It calculated the step
length from the pitch signal, obtained from an EKF. Together
with the rotation angles it provided position and orientation.
This information was fused with the ultrasonic positions in a
second EKF.

In this work, we present a novel step detection algorithm
based on sine-wave approximation of the accelerometer signal.
The proposed algorithm does not require significant fine-
tuning or historical data to function, although historical data
may be used in addition to improve its robustness. The step
detection algorithm is combined with a heading estimation
method, developed previously by the authors [26], to obtain
a stand-alone PDR algorithm. This PDR algorithm is fused
with positions and heading measurements obtained from a
UIPS. The fusion process is based on an EKF setup. We test
the PDR and fused methods in two scenarios: 1) a phone
in the hand, and 2) a phone in the pocket, while walking
through an open office environment with significant NLOS
conditions.

The rest of the paper is organized as follows: Section II
describes the step detection algorithm, the inertial heading
estimation process, and the dynamic model of the PDR
algorithm. An overview of the UIPS is given in Section III.
The EKF setup is described in Section IV. We present the
experimental setup and results in Section V, with conclusions
in Section VI.
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Il. PEDESTRIAN DEAD RECKONING
This section describes the main components of the inertial
navigation process. First, we introduce a novel step detection
algorithm based on sine-wave approximation of accelerometer
data. This is followed by a description of the inertial heading
estimation process, and finally the dynamic model, which
combines the two into a stand-alone PDR algorithm.

A. Step Detection Algorithm

The 3-axis accelerometer measures the specific force,
denoted f, as the sum of the instantaneous user acceleration
and local gravity. The first step is to apply a low-pass filter to
each of the three axes of the accelerometer to reduce the effect
of sensor noise and small movements unrelated to the walking
motion. In this study, we use a second-order Butterworth filter
with a cut-off frequency at 2.5 Hz, based on the upper limit
of typical walking frequencies [32].

The filtered signal is used to calculate the gravity-free
acceleration norm, denoted a, by computing the Euclidean
norm and removing the local gravity magnitude:

a(t) =\ 02 + [, + (07 — g, (1)

where f;, with i = x, y, z, denotes the filtered accelerometer
signal, and g the local gravity magnitude. The walking motion
is a recurrent process, so the corresponding gravity-free accel-
eration norm signal constitutes a periodical function. Typical
pedestrian acceleration profiles show that this periodical func-
tion can be approximated by a sine wave,

a(t) ~ AsinQz fut), 2)

where f,, is the walking frequency and A an unknown
amplitude. In addition, we define the scaled derivative of the
above equation as

a*(t) ~ AcosQ2r ft), 3)

where a scaling factor (27 f,,)~! has been applied to ensure
that the amplitudes are equal in both functions. The gravity-
free acceleration norm and its derivative can be represented by
a complex number, where the real part is given by a(f) and
the imaginary part by a*(¢). Given a discrete accelerometer
measurement a;y = a(f), we can now compute a “step
completeness” estimate (/ﬁ,f based on the phase angle,

op ~ atan2 (ak , ak) “)

where the (27)7! scaling factor ensures that the value of ¢
falls within the interval [—0.5, 0.5]. The step completeness
estimate represents the current step fraction based on a single
step. Thus, a value close to —0.5 indicates the start of a step,
whereas a value close to 4-0.5 indicates the end of a step. The
total fractional step count, ¢, keeps track of the total number
of steps taken by the pedestrian. This value gets updated for
each incoming step completeness estimate according to

Pt = P — [P — Pl )

where the brackets indicate rounding to nearest integer and
¢o = —0.5. To filter out small movements unrelated to the
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Fig. 1. Step detection algorithm example. Top: raw (solid) and

smoothed (dashed) accelerometer data. Middle: gravity-free acceleration
norm and its scaled derivative. Bottom: the phase angle, scaled down to
a[—0.5, 0.5] range, shows the completeness of individual steps. A clear
continuous trend is shown for each step.

walking motion, (4) is only evaluated if the magnitude of the
complex number described by a and a* exceeds a predefined
threshold. Otherwise, the measurement is rejected and ¢g4+1 =
¢k. The threshold value was determined empirically for a
phone in hand and a phone in pocket, and set to 0.02 g for all
experiments presented in this work. Fig. 1 shows the results
of an implementation of the step detection algorithm for a
phone carried in the pocket. The individual steps are difficult
to extract from the raw (solid lines) and smoothed (dashed
lines) accelerometer data (top), but become more apparent
in the gravity-free acceleration norm plot (middle). The step
completeness plot (bottom), however, gives a much clearer
representation of the continuous trend of individual steps.
The proposed algorithm provides step fractions, in addition to
full steps, which allows for continuous and real-time updates.
This in contrast to conventional algorithms using peak/valley
detection, which typically provide updates at discrete intervals,
based on the detection of full steps.

Eq. (4) and (5) are based on a single acceleration measure-
ment and therefore sensitive to temporal perturbations of the
user acceleration, as well as artifacts related to the underlying
sine-wave approximation. The robustness of the algorithm
can be improved by adding a simple linear regression over
the last N estimates. This alternative process requires N
samples for it to be initialized, but still provides output in
real time for subsequent estimates. Setting i = k — N, and
defining the vectors ¢ = [¢;,..., ] and ¢t = [1;, ..., 1],
the fitting parameters of the linear expression ¢ () = A + Bt
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are given by (6),

A = ¢gy — Bty
ZzNzl (ti - tal)) (¢l - ¢av)
B = 6
Zl{\;l (ti - tav)2 ( )

where ¢,, and f,, are the vector averages, and the gradient B
provides a new estimate of the walking frequency. The linear
fit is accepted if B falls within the expected walking frequency
range, fuw,., < B < fuma> With fu,., = 0.5 Hz and f,,,. =
2.5 Hz. The new walking frequency can be used as input to
(2) and (3) of the next iteration. The new “best estimate” of
the total fractional step count becomes,

= A+ By (7)

This value is used in the propagation phase of the EKF to
compute displacement between IMU measurements.

B. Relative Heading Estimation

The inertial heading estimation process applied here pro-
vides the change in user heading, Ay, based on IMU mea-
surements. This process builds upon the assumption that the
change in user heading is equal to the change in horizontal
orientation of the device, also known as yaw. This assumption
is generally valid if the device position with respect to the
carrier remains constant, e.g., a phone in the pocket or a
smartwatch attached to the wrist. The full derivation of the
heading estimation algorithm, developed by the authors in a
previous work, can be found in [26]. The main components
are summarized here.

Computing Ay requires the horizontal component of the
rotation rate, which can be extracted from a raw gyro mea-
surement by way of the gravity vector. The gravity vector,
denoted p, is a unit vector representing the “down” direction of
the device in the local North-East-Down (NED) frame. Given
a gyro measurement @; and estimated gravity vector y;, the
change in yaw can be computed by forward integration,

Ay, =@l Y AL, (8)

where At is equal to the inverse of the IMU rate. There are
two main error sources contributing to the error of Ay. The
first relates to sensor noise, and the second to errors contained
within the gravity vector estimate. A first order approximation
of the estimated error of Ay, described in terms of the
variance ai e is given by

03, = Vi QF + @) Py o ©)

where Q is the covariance matrix of the integrated gyro
noise and P,, the gravity vector covariance matrix. Assuming
uncorrelated noise, Q is a 3-by-3 diagonal matrix whose
elements are given by the variances of the individual sensor
axes, multiplied by Ar2. The propagation of P, is derived
below and formalized in (13).

The heading estimation process requires the gravity vector
to be known at all times. Given an initial vector y, and
associated covariance matrix Py, the gravity vector can be
estimated by adjusting for device rotation. The change in

device orientation is given by the rotation matrix R, which
we obtain by forward integration of the rotation rate. Given
a gyro measurement @y, the rotation between f; and fy41 is
given by,

R@y) = I +sin(a) [ul + (1 - cos(@) [u]},)  (10)
where [u]x is the skew-symmetric matrix of # and
a = @A,
u= % (11

Applying Ry = R(wy) to the previous estimate of the gravity
vector yields an updated estimate,

Vi1 = Ry (12)

The corresponding gravity vector covariance matrix also
requires the rotation matrix, plus an additional term to account
for gyro noise. The time update of the gravity vector covari-
ance matrix becomes,

Py, = RePy Rl + [7,1< 017, 1%.

The initial gravity vector estimate, as well as independent
periodical corrections, are based on the accelerometer, e.g.,
by averaging the measured specific force over a period of time
during which the device remains static.

13)

C. State Vector and Dynamic Model

Combining the step detection algorithm with the inertial
heading estimation process, we can now formalize the PDR
model. This model consists of a state vector, describing the
current state of the device/user, and a dynamic model, describ-
ing the change in state based on incoming IMU measurements.
The state vector, denoted x, is defined as follows,

x=[x y v 7. (14)

where (x, y) is the 2D position of the device, y the user
heading, and p the gravity vector. Since IMU measurements
come in at discrete time intervals, the propagation of the state

constitutes a discrete, non-linear estimation problem of the
form

Xi+1 :f(xk»wk’ fk’At)’ (15)

where the dynamic model f is a function of the current
state xy, the rotation rate wy, the specific force f;, and time
increment Af. The rotation rate is processed directly by the
dynamic model according to (8)—(13), whereas the specific
force is processed separately by the step detection algorithm.
The latter produces the step increment A¢y = ¢r+1 — P, and
corresponding change in 2D position as,

Axp = A¢rL cos(yi)
Ay = A¢yLsin(yy),

where L is the step length. Since the step length may vary
between steps, we assume that each step increment adds an
independent amount of noise to the system. Therefore, the step
length is not part of the state vector itself. Instead, step length
variations will be introduced as uncorrelated noise, similar to

(16)
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sensor noise. By combining (8), (12) and (16), we obtain the
discrete dynamic model for PDR as

X A¢r L cos(yy)
Vi Ay L sin(yy)
Xk, Wk, [, At) = 17
fxr, ox, fr, At) i + o]y, At (17)
0 R(wr At)yy

I1l. ULTRASONIC POSITIONING SYSTEM

In this section, we give a short summary of the UIPS used
in this study to correct the PDR error. A detailed description
and performance evaluation is given in [33]. This system,
developed by Forkbeard Technologies AS [34], provides mea-
surements of device position and velocity using an app on
an 10S or Android smartphone. These measurements will be
used for periodical corrections of the state vector. The UIPS
is based on an infrastructure of battery-powered beacons with
Bluetooth Low Energy (BLE) and ultrasonic capabilities. The
system assigns a locally unique signature and time slot to
each beacon. The beacons transmit their respective signatures
periodically using a frequency modulated ultrasonic signal.

The receiving device, a smartphone, calculates the beacon
range based on estimated TOF and Doppler derived radial
velocity. In addition, it uses a buffer of historical Doppler
derived velocities to extrapolate the last N range estimates,
calculated at times ¢y . . . t1, towards the current time #y. Taking
the weighted average yields the “Doppler stabilized range” for
each beacon at 1.

A 2D position estimate, p, is generated for each valid
incoming signature by optimizing the set of most recent
Doppler stabilized beacon ranges. The algorithm also provides
an estimation of the position error, based on the residual of the
optimization routine. Assuming no correlation between errors,
the position error is described by a covariance matrix P, where
all non-diagonal elements are equal to zero.

A 2D velocity vector v and corresponding covariance matrix
P, are computed in a similar fashion by optimizing the set of
Doppler-derived radial velocities. The velocity vector is related
to the user heading y as follows,

v
Y= cos™! (—x)
[vll

where substituting v = v, the computed value, gives the
estimated user heading y in the local frame of the UIPS. The
heading variance, ayzj, can be derived from (18) using a first
order Taylor expansion and applying the product rule, giving

(18)

oy =0—y)y'MP,M" (19)

where P, again is the velocity vector covariance matrix, and
the Jacobian M is given by

w=r (- ) o]
wi '~ wF)

The position (p), heading () and corresponding error esti-
mates (P, and ayz/), generated by the UIPS are used in the
correction phase of the EKF setup, described next.

(20)

IV. FusING PDR WITH ULTRASONIC POSITIONS

Here, we describe the setup of the EKF which fuses the PDR
output with measurements from the UIPS. The EKF consists of
three distinct phases: the initialization phase, the propagation
phase and the correction phase. The initialization phase is
based on both IMU and ultrasound data, the propagation phase
on IMU data alone, and the correction phase on ultrasound
data.

A. Initialization Phase

The filter requires a 2D position, heading, gravity vector
and step length for initialization. The initial gravity vector is
derived from accelerometer data under static conditions, and
should be determined before the initial position and heading
are set. Therefore, the initial position and heading are based
on the first valid ultrasonic measurement after initialization
of the gravity vector. The step length, which typically varies
between 0.5 and 1 m, is set to 0.7 m. We assume uncorrelated
errors for the initial state, except for 1) the 2D position, and
2) the three components of the gravity vector. The initial state
vector and associated covariance matrix become

X0 Py ... 0

X0 = %0 L Po=| 1 o2 1)
0
Yo 0 PVo

where o, is the standard deviation of the initial user heading,
Pp, is the 2-by-2 covariance matrix of the initial position, and
Py, the 3-by-3 covariance matrix of the initial gravity vector.

B. Propagation Phase

The EKF updates at discrete intervals, based on the mea-
surement rate of the IMU. The estimated state follows directly
from (15) by setting x; = X;. The propagation of the
covariance matrix requires the Jacobian of the dynamic model,
given by (17), evaluated at X;. The time-dependent Jacobian
Fi becomes,

1 0 —Ay, o7
0 1 Ax o7
Fy = 22
““lo o 1 ®! At @2)
0 0 0 R@wAD

Variations in step length introduce additional errors into
the 2D position estimate. Since these errors are generally
uncorrelated, step length variations are modeled as additive
white Gaussian noise, similar to sensor noise. The noise term
containing the gyro sensor noise Q is thus extended to

0* = 0L2 0
0 o
where O'Z is the step length variance. The noise term is related

to the state vector by (9), (13) and (16), which together make
up the G matrix,

(23)

AXy/Ly 0T
Ayy/Ly 0T

Gy = e (24)
0 Vi

0 [7]{] X
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Combining (22)—(24), we now obtain a formulation of the
propagation of the covariance matrix as

Piy1 = FkPeFl 4+ G O*GT (25)

C. Correction Phase

Corrections to the state vector are based on position and
heading measurements generated by the ultrasonic system. The
standard Kalman equations apply with H = I,

Ky = Pr(Pr+ F)™!
Xr = X + Ki(zx — Xk)

Py = (Is — Ki) Px (26)

where x; and ﬁk are the corrected state and covariance matrix,
2k = [Xk, Yk, Wk, k| 17 contains the ultrasound-based position
and heading measurements (and gravity vector, if available),
and P; the corresponding covariance matrix. Since the UIPS
does not provide gravity vector measurements, corrections to
the gravity vector are independent from position and heading
corrections. Instead, the gravity vector is corrected based on
IMU data. See [26] for details.

V. EXPERIMENTS AND RESULTS

This section describes the experiments we conducted to
demonstrate the feasibility of the proposed PDR algorithm,
both as a stand-alone system, as well as fused with external
position and heading measurements.

A. Experimental Setup

The experimental data presented here were taken as part
of a characterization study of the UIPS, see [33]. Data were
collected using a Samsung Galaxy S9 smartphone, which
was carried by a user while following a predefined walking
trajectory at an average walking speed of 0.8 m/s. The IMU
measurement rate was set to 100 Hz. The test area was approx-
imately 150 m? and included furniture and panels to induce
multipath and NLOS conditions. The test area was equipped
with a Motion Capture (MoCap) system which provided a
ground truth reference of the walking trajectory. The UIPS
consisted of 10 beacons which provided position and heading
measurements at an average rate of 10 Hz. An overview of
the test area is shown in Fig. 2, with the walking trajectory
marked in light-grey color.

The experiments consist of three parts. First, we test the
accuracy of the step detection algorithm by comparing the total
number of detected steps with the true number of steps. This is
done by walking along a circular trajectory of approximately
50 steps. In the second part we test the fusion algorithm in
two stages: first, we validate the fusion process by combining
simulated PDR data with synthetic external measurements.
The simulated PDR data are generated following the same
update rate as the real PDR data (100 Hz) by converting
MoCap positions into step increments and horizontal rotation
increments. No artificial noise is added to the simulated PDR
data. The synthetic external measurements are generated every
second and derived from MoCap positions by adding Gaussian
noise, described by standard deviation ¢, (m) for position

? camera (Miqus M3)
“ ultraBeacon

Fig. 2.
Light-grey line indicates walking trajectory.

Overview of the test area with “open office” setup, from [33].

and o0y, (deg) for heading measurements. In the second stage,
we exchange the simulated PDR data for real data based on
IMU measurements, while keeping the external measurements
synthetic. This allows us to evaluate the performance of the
PDR and fusion algorithms without the added uncertainties
introduced by a real UIPS. In the third set of experiments,
we use an actual UIPS to obtain real position and heading
measurements. This allows us to assess the performance of the
fusion algorithm under realistic conditions. Two UIPS setups
are considered here: 1) a 10-beacon system with an update
rate of 10 Hz, and 2) a reduced system of five beacons with
an update rate of 1 Hz.

For all experiments, we focus on two phone positions: the
first is a phone carried in the hand, at a fixed position in front
of the carrier. This simulates navigation, in contrast to, for
example, a “swinging hand” position. The second position is
a phone carried in the left pocket. All IMU and ultrasonic data
collected by the phone were processed offline.

B. Results

1) Experiment I: We performed two experiments, one per
phone position, to test the accuracy of the step detection algo-
rithm. For a phone carried in the hand, the algorithm counted
a total of 55.4 steps over a trajectory of 54 true steps, yielding
an accuracy of 97.5%. The accuracy increased to 99.9%
for a phone carried in the pocket, based on 52.1 detected
steps against 52 true steps. In both cases, the step detection
algorithm detected more steps than the actual number of steps.
This was due to false-positives at the end of the walking
trajectory, where the user stopped walking but the phone still
experienced some form of motion (e.g., moving the phone out
of the carrying position).

2) Experiment II: The validity of the fusion algorithm was
tested by performing three experiments using simulated PDR
data. Each experiment involved fusion between PDR and
synthetic external measurements at different noise levels. The
results are shown by increasing levels of artificial noise as
blue, orange and green lines in Fig. 3. All trajectories start in
the top-right corner and initially show significant errors before
converging towards the ground truth (grey line). Figure 4
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Fig. 3. Validation of the fusion algorithm: combining simulated PDR  Fig. 5. Phone carried in hand, PDR fused with synthetic measurements.

data with synthetic ultrasonic measurements. The PDR data (PDR*)
was derived from the ground truth trajectory (grey line) and consists
of step increments and horizontal rotation rates. Synthetic ultrasonic
measurements (US*) were also based on ground truth and generated
every second. The measurements contain artificial Gaussian noise with
a standard deviation of o (m) for 2D position and o, (deg) for heading.
The PDR trajectory is not shown here, as it is very close to ground truth.
The fused solutions with synthetic PDR and ultrasonic measurements
are shown in blue, orange and green. The blue shapes represent the
tables and obstacles of the “open office” setup, shown in Fig. 2.

1.0

0.8

o
o

=}
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s

—— PDR" + US” (0,=0.1] 0, =5)
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PDR" + US" (0,=0.3 | 0, = 10)
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Fig. 4. CDF of the 2D position errors for the trajectories shown in Fig. 3.
Dashed lines represent the errors of the synthetic 2D positions generated
per trajectory. The solid lines represent the position errors produced
by the fusion algorithm. As expected, the fused solution produces
better results than the independent position measurements. Note that
this involves ‘ideal’ circumstances, where the errors of the ultrasonic
position measurements follow a Gaussian distribution and errors do not
accumulate in the PDR algorithm.

shows the Cumulative Distribution Function (CDF) of the
position error derived from the results. The dashed lines are
based on the artificially generated 2D position measurements,
and the solid lines on the 2D position of the fused solution
taken at the same time instances. As shown, the fused solu-
tion always performs better than the independent synthetic
position measurements. This is as expected and validates the

The PDR-based trajectory is shown in red, and the fused solutions with
synthetic measurements (US*) are shown in blue, orange and green.
The PDR algorithm detected a total of 84.1 steps.

theoretical base of the fusion algorithm. Next, we repeated
the experiments by introducing real PDR data derived from a
phone carried in hand and a phone carried in the pocket. Both
cases contain an additional experiment based on PDR only (no
fusion) for comparison. The results are shown in Fig. 5 for a
phone carried in hand, and in Fig. 6 for a phone carried in
pocket. The figures clearly demonstrate that a trajectory based
on PDR alone, as shown in red, can divert quickly from its true
trajectory. This is a common issue, since there are no further
reference points after initialization and errors caused by step
length variations, gyro drift, and unintended phone movements
start to accumulate. The fusion-based experiments, on the
other hand, are much closer to the ground truth trajectory.

Figures 7 (hand) and 8 (pocket) present the corresponding
CDF of the 2D position errors for all fusion experiments. Both
figures show the increasing value of PDR as the accuracy of
the external measurements decreases. PDR does appear to have
a negative effect for highly accurate external measurements,
as shown by the blue-colored lines. This discrepancy between
the simulated and real PDR experiments may indicate that the
PDR algorithm produces residual non-Gaussian noise which
cannot be resolved by the fusion process. Note, however, that
PDR produces near-continuous position updates, whereas the
external measurements are generated every second.

3) Experiment Ill: The final set of experiments focuses
on fusing the PDR solution with real position and heading
measurements obtained from two different UIPS setups. The
results for the first setup, a 10-beacon configuration with a
10 Hz update rate, are shown in Fig. 9 for a phone carried in
the hand, and in Fig. 10 for a phone carried in the pocket. Both
figures show the independent position estimates generated by
the UIPS as red dots, the estimated walking trajectory based on



THIO et al.: FUSING OF CONTINUOUS OUTPUT PDR ALGORITHM WITH ULTRASONIC POSITIONING SYSTEM

2471

—— PDR
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Fig. 6. Phone carried in pocket, PDR fused with synthetic measure-

ments. PDR and fused (PDR + US*) trajectories are shown in red,
blue, orange and green. Ground truth trajectory is given by the grey line.
Fused trajectories are characterized by noise levels (based on op for 2D
position and oy, for heading) and generated every second. 82.9 steps
were detected by the PDR algorithm.

—— PDR + US" (0,=0.1|0,=5)
——- Us*
PDR + US" (0, =0.3 | 0, =10)
us*
—— PDR + US" (0, =0.6 | 05 = 15)
-—- Us”

Cumulative frequency
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T
1.00
Error (m)

Fig. 7. CDF of the 2D position errors for a phone carried in hand (see
Fig. 5). Dashed lines are based on the synthetic 2D positions generated
for each trajectory in Fig 5. Solid lines are based on the positions obtained
by the fusion algorithm of the corresponding trajectory. The dashed blue
line contains the best results, with ca. 95% of positions falling within
0.25 m error. The corresponding fused solution is less accurate with
ca. 60% below 0.25 m error. For very noisy measurements (green), the
advantage of the fused solution becomes clear, with ca. 78% of position
errors below 0.74 m, versus ca. 0.47% for US* positions only.

the stand-alone PDR algorithm in orange, and the results of the
fused method in green. Similar to the previous experiments,
the trajectories based on PDR alone show the correct walking
pattern, but with increasing deviation from the ground truth.
These trajectories are not affected by the UIPS data and
therefore not corrected after initialization.

For a phone carried in hand, the microphone is exposed
directly to its surroundings, which increases its receptive-
ness to ultrasonic signals. Therefore, a hand-carried phone

1.0 — —_—
’ _—
r’ ‘/—--
7 1
! 4 A
0.8 1 e
| R
{ 4
> 1 S
2 ! 7
So06 ¥ 7
g . H ///
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000 025 050 075 1.00 125 150 175  2.00
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Fig. 8. CDF of the 2D position errors for a phone carried in the
pocket (see Fig. 6). Dashed lines represent the errors of the synthetic 2D
positions generated per trajectory. The synthetic positions are based on
the same Gaussian noise as was used for a phone in hand (Fig. 7), and
thus follow a similar trend. The solid lines represent the position errors
produced by the fusion algorithm. These results are generally better than
those obtained for a phone in hand, implying that the PDR algorithm is
more robust for a phone in the pocket.

== Ground truth
# Beacon

Ultrasound (US)
PDR
—— PDR + US

y (m)

X (m)

Fig. 9. Phone carried in hand, 10-beacon UIPS at 10 Hz. Red dots
indicate US position measurements. Walking trajectory based on PDR
is given in orange, and the results of the fused method is represented by
the green line. The ground truth reference is given by the grey line.

is expected to produce high-accuracy ultrasonic position esti-
mates. This is demonstrated by the small spread of red markers
in Fig. 9, with most points falling within 0.75 m of the
reference line. The position measurements become more noisy
for a phone carried in the pocket, as shown by the red dots in
Fig. 10. This is primarily due to the user blocking the direct
line-of-sight between some of the beacons and the smartphone,
as well as increased attenuation of the ultrasonic signal by
clothing. This effect is clearly seen on the right side in Fig. 10.

For both phone positions, the fusion algorithm produces a
continuous trajectory which follows a similar path as described
by the individual UIPS position measurements, but smoother
and less affected by outliers. As expected, the fused solution
provides continuous tracking in areas with few ultrasound
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Ultrasound (US)
PDR
—— PDR + US

= Ground truth
# Beacon

y (m)

X (m)

Fig. 10. Phone carried in the pocket, 10-beacon UIPS at 10 Hz. Ultra-
sonic positions are represented by red dots, the PDR-based trajectory
in orange, and the fused PDR/US ftrajectory in green. Ground truth
reference is shown in grey.
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Fig. 11. CDF of the 2D position errors obtained from PDR and a 10-
beacon UIPS at an update rate of 10 Hz (see Fig. 9 and 10). Results for
a phone carried in hand are shown in blue, and for a phone carried in
pocket in orange. Dashed lines represent the errors of the 2D positions
obtained by the UIPS, whereas the solid lines represent the positions
obtained by the fusion algorithm at the same time instances.

measurements (such as the bottom-left part of both trajecto-
ries), and the ultrasonic updates mitigate drift and improve
performance in areas of good coverage (center part). The
fusion algorithm does not perform well, however, for areas
of continuous measurement offset, such as shown on the right
side in Fig. 10. Since this group of measurements contains
a consistent offset towards the right, the fused solution also
diverts towards that direction. It takes some time before the
fusion-based trajectory corrects for this unwanted deviation.
In contrast, trajectories based purely on interpolation between
UIPS measurements are less affected by this, since each
measurement is obtained independently.

The CDFs of the 2D position errors are shown in Fig. 11
for both phone positions. Based on the previous experiments
with synthetic measurements, and the ultrasonic position errors

Ultrasound (US)
PDR
—— PDR + US

== Ground truth
# Beacon

y (m)

X (m)

Fig.12. Phone carried in hand, 5-beacon UIPS at 1 Hz. Red dots indicate
US position measurements. Walking trajectory based on PDR is given
in orange, and the fused method combining PDR and US data in green.
The ground truth reference is given by the grey line.

= Ground truth
# Beacon

« Ultrasound (US)
PDR
—— PDR + US

y (m)

X (m)

Fig. 13. Phone carried in pocket, 5-beacon UIPS at 1 Hz. Ultrasonic posi-
tions are represented by red dots, the PDR-based trajectory in orange,
and the fused PDR/US trajectory in green. Ground truth reference is
shown in grey.

found here, we would expect the fused solutions to produce
better results than the UIPS by itself. This, however, is not
reflected in the CDF plots, where adding PDR even seems
to have a slight negative effect on the overall accuracy.
As mentioned in the previous experiments, this may be due
to limitations of PDR, rather than the fusion process itself.
Another reason may be local areas of consistent measurement
offset, as described above, as opposed to the Gaussian nature
of the errors applied to the synthetic positions. Finally, the
observed deviations may be due to incorrect estimation of
the “measurement error” provided by the UIPS. Since these
errors form the weights in the correction step of the Kalman
filter, they have a direct effect on the accuracy of the fusion-
based trajectory. While these factors seemingly reduce the
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combining simulated and real PDR data with synthetic position
and heading measurements at different noise levels. These
experiments clearly demonstrate the feasibility of the PDR
model and added value of the fused solution. Finally, we tested
the fusion algorithm with a real UIPS. In this case, the
furniture and walls created consistent offsets in the ultrasonic
measurements, which introduced a strong deviation in some
parts of the trajectory for the fused solution. Nevertheless, the
system was able to recover after a series of accurate ultrasonic
measurements were received, while providing a continuous

1.0 —-
—— PDR + US (hand) —
--- Us T
PDR + US (pocket) -

0.8 us ’
g
f=
Q
3 0.6 1
g
g
&
S 0.4 4
E
=3
O

0.2 4

0.0 =] T T T T T T

0.00 025 050  0.75 1.00 125 150 175  2.00
Error (m)
Fig. 14. CDF of the 2D position errors obtained from PDR and a 5-

beacon UIPS at an update rate of 1 Hz (see Fig. 12 and 13). Phone
carried in hand is shown in blue, and in orange a phone carried in the
pocket. Dashed lines represent the 2D positions obtained by the UIPS,
whereas the solid lines represent the positions obtained by the fusion
algorithm at similar time intervals.

advantages of the fusion solution, adding PDR still mitigates
the effect of large outliers and provides a smoother, continuous
trajectory.

The previous experiments use a relatively high beacon
density and update frequency. To simulate a more conserv-
ative situation, we repeated the same two experiments for a
5-beacon configuration and a reduced update rate of 1 Hz
by subsampling at 1 second intervals. The results are shown
in Fig. 12 for a phone in hand and Fig. 13 for a phone in
pocket. The corresponding CDF plots of the 2D position errors
are shown in Fig. 14. Since there are fewer measurements,
a single measurement has a much stronger effect on the overall
trajectory produced by the fusion algorithm. Still, the fusion-
based trajectory is closer to ground truth, particularly for a
phone in hand, than the trajectory based on PDR alone. Since
the update frequency was reduced to 1 Hz, the UIPS system
has a latency of up to one second, whereas the fused solution
provides continuous position updates.

VI. CONCLUSION

This work introduces a novel step detection algorithm based
on sine-wave approximation. The proposed method provides
continuous and real-time step count information in the form of
step fractions. Combined with inertial heading estimation, the
proposed method yields a stand-alone PDR model. The PDR
model is fused with a UIPS to account for error accumulation.
The fused model, based on an EKF, provides a smoothed 2D
trajectory for navigation applications for smartphone users.

We conducted multiple experiments in an open office setup
with an area of approximately 150 m”. The setup included
furniture and panels to create a realistic scenario with NLOS
conditions. Each experiment was performed for a phone car-
ried in hand and a phone carried in pocket. First, we tested
the accuracy of the step detection algorithm by walking
along a trajectory of approximately 50 steps. This gave an
accuracy of 97.5% for a phone in hand and 99.9% for a
phone in pocket. Next, we validated the fusion algorithm by

and smoother trajectory than the US system by itself.
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