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Abstract—Indoor positioning systems are crucial to provide
location based services in areas that are not covered by a Global
Navigation Satellite System. Among the many technologies ap-
plied to this field, ultrasound has emerged as a potential low-cost,
high-accuracy approach to positioning based on trilateration.
Several ultrasonic systems have been proposed over the years.
Of these, academic systems are typically prototypes that are
unavailable to the public, whereas commercial systems generally
do not provide characterization test results. In this work, we
have conducted a detailed characterization study of a commer-
cial indoor positioning system for smart devices developed by
Forkbeard Technologies AS. We tested the system under static
and dynamic conditions in a motion capture lab of approximately
150 m2. We considered different room occupancies, beacon
configurations, and device positions. The results, given in terms
of 2D absolute errors at different confidence levels, show great
variation depending on the aforementioned conditions. The worst
case scenario corresponds to a pedestrian in motion in an office
setup with 4 beacons, with the phone placed in the pocket. In
this case, 80% of the errors were below 143 cm. The best results
were obtained under static conditions using 10 beacons, for which
80% of the errors were below 44 cm.

Index Terms—indoor positioning; performance evaluation; ul-
trasound ranging

I. INTRODUCTION

W ITH the advent of increasingly powerful smartphones
and wearable technology, the fields of Real-Time Loca-

tion Systems (RTLS) and Location Based Services (LBS) have
grown significantly over the last couple of decades. Before,
LBS were generally limited to outdoor and relatively open
areas due to their dependence on a Global Navigation Satel-
lite System (GNSS). Recent developments in Micro-Electro-
Mechanical Systems (MEMS), however, combined with a
growing implementation thereof in Commercial-Off-The-Shelf
(COTS) devices, have expanded these fields towards areas
beyond GNSS coverage.

Some of the industries that have adopted LBS in recent
years are: healthcare, where it saves time locating equipment
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or people, increasing productivity [1]; retail, for inventory
management and evaluating marketing techniques and shop-
per behavior [2]; search and rescue missions, performed by
unmanned vehicles and robots navigating the environment [3];
logistics and transportation, for cargo tracking and fleet man-
agement [4]; and, more recently, contact-tracing applications
during a pandemic event [5]–[7]. The increasing interest in
RTLS and LBS was highlighted in a recent market report,
which predicted an annual growth rate of 22.5% for indoor
LBS between 2020 and 2025 [8].

While generic solutions exist for outdoor RTLS, as evi-
denced by the widespread use of GNSS services such as GPS
or Galileo, no such consensus has yet been reached for indoor
RTLS. Indoor environments present a broad range of potential
use cases, each with its own specifications and corresponding
trade-off between design parameters like accuracy, cost, energy
efficiency, lag time, infrastructure, and privacy considerations.
In order to meet these specifications, different technologies
have been developed over the years.

A low-cost solution to the indoor positioning problem is to
use the Earth magnetic field and/or artificial magnetic sources
to provide location information based on fingerprinting [9],
[10]. These systems typically do not require a dedicated infras-
tructure (when based on the Earth magnetic field), making it
easy to implement and scale. The provided accuracy, however,
is relatively low and sensitive to changes in the environ-
ment, such as metal structures [11]. Another infrastructure-
free approach is to use pedestrian dead reckoning techniques
based on an Inertial Measurement Unit (IMU) [12], [13].
Nowadays, these low-cost sensors are standardly embedded in
smart devices like smartphones. While generally accurate over
short time intervals, these sensors are subject to error accumu-
lation due to sensor noise and bias. This requires periodical
corrections based on external measurements [11]. Computer
vision systems [14], [15] can provide accuracies ranging from
room-level to mm–cm. They can however be computationally
demanding, suffer under challenging lighting conditions, and
may be a concern in privacy-oriented applications. Systems
based on visual-light communications may remove the privacy
concern [16], [17], but not the dependence on proper lighting
conditions. Both systems also require an unobstructed line-
of-sight between beacons and the smartphone camera. Wi-Fi
[18], [19], Zigbee [20], [21] and Bluetooth [22], [23] systems
benefit from the ubiquity of access points and standard sensors
embedded in smart devices, but their accuracy is typically
in the order of a few meters [11], [24]. Ultra-wideband
systems can deliver more accurate positions with median errors
between tens of cm to 1 m [25]. These systems require a
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dedicated infrastructure of beacons, which can be costly and
create scalability issues [11].

A different group of indoor RTLS is based on acoustic
waves, which provide some advantages and disadvantages
over electromagnetic waves. Firstly, one advantage is that the
speed of sound is several orders of magnitude smaller than
the speed of light. Therefore, inaccuracies in Time-of-Flight
(TOF) estimation translate to smaller range errors than those
produced by systems based on radio-frequency (RF) waves.
Thanks to this property, ultrasonic systems can provide up to
cm-level accuracy. Secondly, acoustic waveforms behave more
consistently indoors than their electromagnetic counterparts,
since they are heavily attenuated and reflect on virtually all
surfaces. This natural property can be a strong advantage
when room-level accuracy is the primary goal. A drawback
of this property is that it creates complex interference terms
at the receiver. Adding to this complexity is the Doppler
effect, caused by a moving transmitter and/or receiver [11].
Thirdly, hardware for common working frequencies, between
10–50 kHz, is low-cost and readily available. This eases
the scalability issue for large areas [26]. Moreover, if the
frequency of the waves is around 18–20 kHz, then a standard
smartphone can be used as transmitter/receiver. This reduces
the need for specially designed hardware like tags, in contrast
to ultra-wideband systems, for example. A potential disadvan-
tage is that the bandwidth of an acoustic wave is very limited,
in particular when using the narrowband channels accessible to
smartphones. This narrower bandwidth, combined with the low
sampling speeds required for near ultrasound reception, can
however be favorable from a power consumption perspective.
Finally, since audio processing is supported as a background
process on smartphones, and audio signals readily propagate
through textiles, an acoustic positioning system may also
operate in-pocket. Overall, these challenging phenomena make
acoustic positioning an active research topic [27], [28].

In this work, we present the results of a characterization
study of the commercial indoor positioning system developed
by Forkbeard Technologies AS (Oslo, Norway) [29]. We
have conducted a range of experiments in a testing area
equipped with this positioning system and a Motion Cap-
ture (MoCap) system to provide ground truth reference. The
system performance was evaluated under static and dynamic
conditions, considering the effects of beacon placement and
quantity, infrastructure and physical barriers, and position of
the phone on the carrier. The main contributions may be
summarized as follows: 1) a detailed statistical analysis under
static conditions, 2) extensive testing for two realistic dynamic
scenarios, and 3) accurate error calculation based on a MoCap
system.

The rest of the paper is structured as follows: Section II
gathers the related work, and Section III gives an overview
of the Forkbeard positioning system and main components of
the algorithm. Section IV describes the testing environment
and the experimental setup. Results and discussion are given
in Section V, with conclusions and future work outlined in
Section VI.

II. RELATED WORK

Ultrasonic ranging systems date back to the 1970s [30], and
were popularized during the 1980s with the introduction of
the pulse-echo systems from Polaroid and Yodel Technologies
[31], [32]. The first Ultrasonic Indoor Positioning Systems
(UIPS) were presented at the end of the 1980s [33], [34].
In general, UIPS can be classified into two main categories:
centralized, in which a central unit computes the location of
the device [35], and decentralized, in which the calculations
are performed on the device itself [28], [34]. Privacy-oriented
RTLS generally fall into the second category. Since the 1980s,
most of the known UIPS are academic prototypes, many of
which provide clearly defined experiments and results, thereby
allowing for proper performance assessment. We will focus
here on systems for smart devices that use similar center
frequencies and testing areas for evaluation.

The system described by [36] used four transmitters and
a smartphone as receiver. The synchronized transmitters si-
multaneously sent a unique ID by chirp modulation. The
smartphone, which was not synchronized to the transmitters,
was placed on a stand from where it recorded the received
signals. The data were then sent to a computer for later
processing. A grid of 25 points was considered for two
rooms of respectively 25 and 400 m2. Five measurements
were taken per grid point. 95% of the errors were reported
below 15 cm in the small room, and below 3 m in the large
room. The architecture presented in [37] consisted of a set of
synchronized receivers placed at fixed positions in a room. A
smartphone was assigned a unique ID upon entering the room,
which it transmitted by chirp modulation. The microphones
sent this information to a central unit, which computed the
smartphone location. Seven receivers were placed in a clear
test area of 100 m2. The smartphone followed a trajectory
of 14 m, covering ca. 35 m2 of the test area, with an average
deviation of 34 cm. ARABIS [35] consisted of a set of beacons
deployed at fixed, known positions, which transmitted their
signals sequentially to avoid collisions. Upon data detection, a
smartphone calculated the time-stamp of the received message,
and sent this information via RF link to a location server,
which computed the smartphone position. Two environments
were considered in the experiments: an office setup of 83 m2,
and a clear test area of 225 m2. Six test points and 8 beacons
were considered in the office setup, obtaining 95% errors
below 16–29 cm, depending on the positioning algorithm
used. 5 test points and 4 beacons were considered for the
clear testing area, obtaining 95% errors below 40–66 cm. The
AALTS system consisted of a similar architecture. In this
case, the smartphone also calculated the Doppler shifts of the
received signals [38], fusing all the information in a particle
filter. Experiments were done in different environments with
areas between 40 and 175 m2. Different noise levels and
beacon geometries were tested under static conditions. 95% of
the errors ranged between 20–75 cm, depending on the noise
and beacon geometry. Dynamic tests were also performed by
following three different trajectories of up to 18 m length
and covering ca. 36 m2 of the total test area. They obtained
deviations below 22–49 cm, for 90% of the measurements.
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Besides academic prototypes, there are also some commer-
cially available UIPS. The system from Hexamite consists of
a set of transmitters and receivers, synchronized by an RF link
[39]. The receivers, placed on the target, calculate the distances
to the transmitters, which are sent via RF to a monitoring
station. This station then calculates the position and orientation
of the target. The IS-900 system from InterSense is used for
tracking applications with a focus on industrial simulators
and immersive displays, among others [40]. It fuses inertial
navigation technologies with ultrasound signals to provide po-
sition and orientation of the target’s attached tags. Marvelmind
Robotics provides a UIPS where, in what they describe as
non-inverse architecture (centralized), the target is equipped
with a mobile beacon, which may also contain an IMU [41].
Four static beacons receive the ultrasonic signal from the
mobile beacon, and location information is calculated by a
central unit, which transmits it back to the target. The system
can also work in inverse architecture mode (privacy-oriented),
where the target is equipped with a receiver and calculates
its own position from the ultrasonic signals transmitted by
the beacons. Transmitters and receiver are synchronized by an
RF link. This system was recently used in a structural health
monitoring application using drones [42]. The centralized
mode was used, and the ultrasonic ranges were fused with
an IMU using a Kalman filter. For a squared trajectory in a
room of approximately 170 m2 and a true coverage area of
27.5 m2, the reported errors at waypoints were below 20 cm.

III. THE FORKBEARD POSITIONING SYSTEM

The positioning system developed by Forkbeard Technolo-
gies AS consists of a network of beacons placed at strategic
locations around the target area. This system positions standard
iOS and Android smartphones using ultrasound and Bluetooth
Low Energy (BLE) signals [43]. The positioning algorithm
is build into an app (Forkbeard Lyra) which runs on the
smartphone. The positioning also works while the app is
running in the background or with the screen turned off. The
beacons are battery powered with a claimed battery life of 10
years under the most adverse conditions [29].

The beacons are synchronized using RF communication.
Each beacon transmits a locally unique, frequency-modulated
ultrasonic signature at 1 second intervals. The signature has a
duration of 10 ms and is modulated around a carrier frequency
of 20.4 kHz. The transmit protocol is optimized to avoid
audibility, by using low sound pressures and through suppres-
sion of sub-harmonics [44]. Due to this low carrier frequency,
compared to standard RF protocols, the transmitted signals
have a much longer duration and are therefore more prone to
cross-interference. While the beacon signatures are selected
to be locally unique, a combination of multiple reflections
with Doppler shifts may degrade the phone’s ability to identify
signals unequivocally. The Forkbeard system minimizes such
interference by assigning each beacon a different time offset
for transmitting. In this system, a second is divided into 16
time slots of 60 ms each, plus 2.5 ms unused. This allows
the system to maximize the physical distance between beacons
transmitting at the same time, thereby minimizing the potential

impact of signal interference. Both the frequency-modulated
signature and time slot assignment are configured automati-
cally using an optimization algorithm based on maximizing
the distance between beacons with similar configurations. The
update rate of the system can go up to 16.6 Hz (16 slots),
depending on the number of allocated time slots and beacons
in range. Since the transmission rate per beacon is fixed at
one transmission per second, a small system with unallocated
time slots will, on average, have a lower update rate.

The receiving device, a smartphone, communicates with
the Forkbeard system using Wi-Fi or a cellular network [45].
The device is synchronized with the system and updated with
relevant system information such as beacon IDs, positions
and time slots. The positioning algorithm itself consists of
three consecutive parts: raw audio processing, optimum range
estimation per beacon, and finally position and velocity opti-
mization of the device. Each part is described in further detail
below.

A. Raw audio processing

The device listens continuously for raw audio signals in
the ultrasonic spectrum. A signal is “detected” if its Re-
ceived Signal Strength (RSS) exceeds a predefined threshold,
whereupon its time-of-arrival (TOA) is stored in memory. The
signal is correlated with a shaped window function to assess
its validity. The shape of the window function corresponds
to a generic ultrasonic signal which is expanded/compressed
to coincide with the length of the received signal. Upon
validation, the signal is decoded yielding the unique identifier
of the transmitting beacon. Since detection range is limited
due to attenuation effects, the time-of-transmission (TOT) is
equal to the most recent time slot before TOA. Subtracting
TOT from TOA yields the TOF of the signal. In addition, the
Doppler shift is estimated by deconvolution of the received
signal using the known code templates at various Doppler
offsets. The deconvolution corresponding to the highest signal-
to-noise (S/N) ratio is used to estimate the Doppler shift. The
Doppler shift gives an indication of the radial “Doppler derived
speed” (DDS), denoted vr, which is the relative speed between
the device and the beacon. Combining TOF, vr and the local
speed of sound c, the estimated range becomes

r = [c(T )− vr] · TOF (1)

where T represents the temperature dependence of the speed
of sound.

The intensity of an unobstructed sound wave is proportional
to the inverse of its range squared, i.e. I(r) ∝ 1

r2 . Therefore,
the computed range can be converted into an expected intensity
value and compared to the RSS of the signal itself to estimate
the probability of it being a line-of-sight (LOS) signal. A
lower-than-expected intensity may indicate signal interference,
obstructed LOS or reflected/non-LOS (NLOS), in which case
the signal should be rejected. This comparison functions as an
additional quality check, which, along with the deconvolution
results, yields an overall probability weight wp of the detected
signal.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2021.3136261, IEEE
Transactions on Instrumentation and Measurement

4

The final step is to group the processed data into a single
observation, which consists of a timestamp (TOA), the esti-
mated range r and DDS vr, their respective standard deviations
σr and σv , and the probability parameter wp. The device
maintains an independent observation buffer per beacon, and
adds the new observation to its respective buffer. The set of
observations is used to estimate the optimum range per beacon,
described next.

B. Optimum range estimation

Optimum range estimation is an independent process per
beacon based on its buffer of N historical observations. The
idea is to extrapolate historical ranges towards a common
point in time (timestamp of the most recent observation),
thereby creating a set of quasi static ranges (QSR) whose
weighted average yields the optimum range. In the following
derivation, time t runs backwards starting from t0, where
t0 corresponds to the most recent observation in the buffer.
The i-indices indicate historical observations at ti. The time
between observations is approximately one second, though
his may vary due to movement of the device and/or rejected
observations. The objective is to find the optimum range
and corresponding standard deviation at t0, denoted r0 and
σr0 , based on the buffered data. This process consists of the
following steps.

First, the change in range between ti and t0, described
by the range increment dri, is calculated using numerical
integration of the Doppler derived speeds. This is done by
backwards integration,

dri = −
i−1∑
j=0

vrj · (tj − tj+1), (2)

Simpson’s rule or a similar technique. The computed incre-
ments are added to their respective range estimates to obtain
a set of QSR estimates SQSR =

{
r01, · · · , r0N

}
, where

r0i = ri + dri, (3)

is the QSR of ri at t0.
Next, the weight of each QSR, denoted wq

i , is calculated
based on the standard deviation (σri ) and probability (wp

i ) of
the underlying observation, a time-dependent weight wt

i , and
a fixed constant representing system uncertainty. The time-
dependent weight is given by a linearly decreasing function
based on the time difference between ti and t0. Starting from
a value of one at ti = t0, it decreases towards zero at (t0 −
ti) = ∆tmax, the maximum length of the buffer. The system
uncertainty σs is a general noise term which includes e.g. the
physical limitations of the system and specific characteristics
of the particular area. The weight of the QSR is given by

wq
i =

wt
i · w

p
i

σ2
ri + σ2

s

(4)

where the i-index indicates observation specific input data. The
optimum beacon range and corresponding standard deviation

can now be computed by taking the weighted mean and
standard deviation over the elements of SQSR,

r0 =
N∑
i=1

ŵq
i r

0
i and σ2

r0 =
N∑
i=1

ŵq
i (r

0
i − r0)

2 (5)

where ŵq
i are the normalized QSR weights.

In addition to r0 and σr0 , an “overall” beacon weight W0

is required as input to the cost function of the positioning
algorithm. The beacon weight is based on the computed
standard deviation σr0 , the system uncertainty σs, and the sum
of the time-dependent weights and probability parameters of
the underlying observations,

W0 =
1

σ2
r0 + σ2

s

[
N∑
i=1

wt
i · w

p
i

]2

(6)

Note that W0 depends on all data in the buffer, whereas the
weights in (4) use single observations only.

The process described this far is based on a single, indepen-
dent beacon with t0 defined by its most recent observation. For
a system composed of multiple beacons, there still remains a
time difference between t0 and the timestamp of the most
recent observation system-wide, denoted t∗0. The final step
is thus to extrapolate the local optimum range towards this
common timestamp shared by all beacons in the system. The
extrapolation is a straightforward process based on the Doppler
derived speed at t0,

r∗0 = r0 + vr0∆t and σ∗
r0 =

√
σ2
r0 + σ2

v0
∆t2 (7)

where ∆t = t∗0− t0. The most recent DDS and overall beacon
weight remain unchanged during the extrapolation process
(vr∗0 = vr0 and W ∗

0 = W0). Applying the QSR estimation
process to all beacons in the system yields a set of independent
optimum beacon ranges, Doppler derived speeds, standard
deviations and beacon weights at t∗0. The next step is to convert
these beacon ranges into a position and velocity estimate of
the device.

C. Position and velocity estimation based on QSR

The aim of the positioning algorithm is to find the 3D
position of the device at t∗0. This is done by trilateration, where
the weighted sum of squared residuals between the set of opti-
mum ranges and the ranges derived from the proposed device
position is minimized. From hereon, the device position and
velocity, as well as beacon ranges, DDS and weights are given
at t∗0, and so the sub- and superscripts are dropped. Instead,
i-indices now correspond to beacon number (r∗0,i −→ ri). The
cost function takes the form of a chi-square,

C(p) =
N∑
i=1

Wi (Ri(p)− ri)
2 (8)

where p is the proposed device position, N the number of
beacons, Wi the beacon weight, ri the optimum range, and
Ri the calculated range. The calculated range is given by

Ri(p) = ∥p− bi∥ (9)
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where ∥ · ∥ refers to the vector norm and bi is the known
position of the i-th beacon. Minimizing the cost function
requires its derivative to be equal to zero,

∂C

∂p
=

N∑
i=1

2Wi (Ri − ri)

Ri
[bi − p]T = 0. (10)

The global minimum of (8) is found by applying a quasi-
Newton optimizer to solve (10). The starting point of the
optimization process is typically provided by the last known
position. The final result is the optimized device position p. In
addition, the position error can be estimated from the residual
of the optimization routine. Combined with the Hessian of
(8), this produces a 3-by-3 position covariance matrix Pp.
Error estimation allows for filtering of position measurements
exceeding a certain predefined threshold.

The next step is to estimate the device velocity, denoted v,
from p and the latest DDS per beacon vi. This requires the
directional unit vector between each individual beacon and the
optimized device position,

m̂i =
1

Ri

(bi − p) (11)

where m̂i is the directional unit vector of beacon i, and Ri

follows from substituting p = p in (9). Vector m̂i runs parallel
to the LOS between device and beacon, and represents the
direction of the DDS in the frame of the phone. The directional
unit vectors are combined into a weighted directional matrix
M̂ = [W1m̂1, · · · ,WNm̂N ]T , where Wi are the beacon
weights. In addition, the most recent DDS per beacon are
combined into a single vector vr = [vr1, · · · , vrN ]T . The
optimized device velocity can now be described in terms of
M̂ and vr as follows,

v = M̂−1vr (12)

where M̂−1 is the pseudo-inverse of M̂ . The velocity covari-
ance matrix can be computed in a similar way: defining P

DDS

as the N -by-N diagonal matrix of DDS variances σ2
vi

, we get

Pv = M̂−1P
DDS

(M̂−1)T . (13)

where Pv is the 3-by-3 covariance matrix of the device
velocity.

The position p, velocity v and their respective covariance
matrices Pp and Pv are integrated into an Extended Kalman
filter (EKF) framework. The propagation step is based on the
current velocity, and the state corrections on new position
and velocity measurements. The EKF setup allows the system
to compute new position updates even when there are only
two beacons in range, i.e. when the trilateration problem is
technically under-determined.

D. Additional optimization techniques

The position optimization process can be extended by incor-
porating “landscape” information of the area. The landscape
describes the physical boundaries (walls, floor and ceiling)
and static obstacles (e.g., desks) which represent a reduced
probability for the device position. The landscape is converted
into a potential field based on costs associated to particular

Fig. 1: An overview of the test area showing the “office” setup.
Ground truth walking trajectory is given in light-grey.

TABLE I: Beacon coordinates and configurations

beacon Coordinates Beacon subsets
no. x (m) y (m) z (m) 10 8 6 5 4 3

1 -6.2 -11.1 2.1 ✓ ✓ ✓ ✓ ✓

2 0.1 -12.2 2.6 ✓ ✓ ✓ ✓ ✓

3 6.4 -11.4 2.0 ✓ ✓ ✓ ✓ ✓

4 -3.1 -9.4 2.9 ✓

5 3.3 -9.4 2.9 ✓

6 -6.2 -3.0 2.1 ✓ ✓ ✓ ✓ ✓ ✓

7 -2.9 -4.0 2.4 ✓ ✓

8 0.1 -5.8 2.4 ✓ ✓ ✓

9 3.0 -4.0 2.4 ✓ ✓

10 6.0 -2.8 2.1 ✓ ✓ ✓ ✓ ✓ ✓

Beacon density (beacons / m2): 0.07 0.06 0.04 0.03 0.03 0.02

types of boundaries and obstacles [46]. Contrary to a binary
obstacle cost, which changes instantaneously at the obstacle
edge, a potential field is continuous and can be implemented
directly into the optimization algorithm.

A further optimization constraint is the expected height of
the device. Beacons are typically placed on a horizontal plane
(ceiling), which generates large errors along the normal to that
plane (vertical direction). Assigning a cost to deviations from
the expected height reduces this effect. The default height is
set to 1.2 m, which corresponds to a phone carried in the
hand.

IV. EXPERIMENTAL SETUP

We tested the Forkbeard positioning system in a motion
capture lab with a test area of approximately 150 m2 (Fig.
1). The MoCap system uses 28 cameras providing up to 99
% coverage at sub-millimeter accuracy [47]. The Forkbeard
installation consists of 10 beacons evenly distributed over the
test area. An overview of the beacon positions is shown in
Fig. 2. The beacons are attached to the ceiling or directly un-
derneath the cameras, at a height of 2 to 3 m. The coordinates
of the beacons are given in Table I.

Reduced systems, i.e., systems with less than 10 beacons,
are described as modified configurations of the main system.
We will use reduced systems to study the effect of beacon



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2021.3136261, IEEE
Transactions on Instrumentation and Measurement

6

6 4 2 0 2 4 6
x (m)

14

12

10

8

6

4

2

0

y 
(m

)

  1
  2

  3

  4   5

  6
  7

  8

  9
  10

beacon
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

obstacle cost

Fig. 2: Top view of the test area. Potential field of the obstacles
and outer walls is given in blue. Ground truth trajectory is
shown in grey, with the start and end points marked in green
and red, respectively. Beacon positions are shown in black.
Details on beacon coordinates and subsets are given in Table
I.

quantity and distribution on the accuracy of the positioning
algorithm. The particular beacon subset per configuration
is based on preliminary testing, which showed that using
beacons on the perimeter generally produces better results.
Configuration details are given in Table I. In practice, all
beacons transmitted continuously throughout the experiments.
That is, beacons were not physically turned off to create a
reduced system. Instead, a modified recording of a reduced
system was created by filtering out specific beacons during
post-processing. This way, position estimates produced by a
reduced system are still based on the same raw audio input.
A potential concern here could be that the signals of the
removed beacons are still present in the raw audio signal,
causing interference. This effect, however, is negligible due
to the locally unique signatures of the beacons, the differently
allocated time slots, and the long time slot duration which
minimizes reverberation effects.

Beacon geometry has a significant effect on the final
positioning results. Preliminary insights into the differences
between configurations can be obtained by computing the
dilution-of-position (DOP) per configuration. Since we are
interested in 2D positioning we limit ourselves to horizontal-
dilution-of-position (HDOP) here. The results for the two main
test cases, i.e. a 10- and 4-beacon configuration, are shown
in Fig. 3 and Fig. 4, respectively. The main takeaways are
that 1) the highest accuracy is expected in the center, and 2)
the stability of the system goes down with decreasing number
of beacons. Note, however, that the final positioning results
are influenced by many more factors, such as attenuation,
reflections, interference and noise.
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Fig. 3: Calculated HDOP for a 10-beacon setup. The results
show a symmetric trend, with low dilution in the center and
higher dilution towards the edges. This coincides with an
evenly-distributed, mostly symmetric beacon geometry.
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Fig. 4: Calculated HDOP for a 4-beacon setup. To improve
visibility, HDOP values have been capped at a maximum value
of 20. Compared to Fig. 3, the dilution is significantly higher.
This can partly be explained by the lower beacon quantity.
Interestingly, the results are not symmetric, even though the
beacon positions approximately are. Additional evaluation, in
which the beacon positions were altered slightly, produced a
wide variety of HDOP trends. This implies that the 4-beacon
setup is relatively unstable.
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‘Hand’

‘Pocket’

Fig. 5: Two phone positions used in this study: 1) phone in
hand, and 2) phone in the left pocket.

The experiments are separated into two categories: static and
dynamic. The static experiments are based on an equidistant
grid of 73 points spread out over the floor of the test area.
The ground truth reference of the grid points is based on the
MoCap system. A smartphone was placed horizontally at each
grid point on the floor for around 90 seconds, before moving
it to the next grid point. This produced enough data to obtain
100 position measurements per grid point for any beacon
configuration. For grid points with more than 100 position
measurements, the first and last measurements were discarded
to ensure stable conditions and avoid signal blockages. The
dynamic experiments are based on a pedestrian carrying a
smartphone, at an average walking speed of 0.8 m/s. Figure
2 shows the walking trajectory (42 m) used in all dynamic
experiments. The trajectory was repeated five times per exper-
iment, thereby generating five independent recordings. Each
contains its own MoCap reference data to account for small
deviations between recordings.

Two types of landscapes were considered. The first, referred
to as the “clear” setup, consisted of an obstacle-free test area
bounded by the walls, floor and ceiling. The second, referred
to as the “office” setup, contained additional infrastructure in
the form of chairs, desks and dividers (see Fig. 1). The cost
of the outer walls was set to 1.5 and of additional obstacles
to 1.0. Fig. 2 shows the potential field of the office setup. The
static experiments were performed in the clear setup with the
height constraint set to 0 m. For the dynamic experiments, we
applied both setups and a height constraint of 1.2 m.

We used a Samsung Galaxy S9 for all experiments. For the
dynamic experiments, we also recorded the specific force using
the 3-axis accelerometer of the device. The specific force was
then correlated with the acceleration obtained by the MoCap
system to generate timestamps for the MoCap data based on
the smartphone. This allowed us to compare the estimated
positions generated by both systems under dynamic conditions,
and calculate the position error. We further distinguish between

two possible device positions for the dynamic experiments, as
shown in Fig. 5. The first (“hand”) is a device held in the
hand. The second (“pocket”) is a device in the left pocket.

V. RESULTS

This section shows the results obtained from the char-
acterization experiments. First, we will present the results
under static conditions, where different beacon configurations
have been taken into account. Next, we will present the
results under dynamic conditions, evaluating different beacon
configurations, two types of landscape, and the two phone
positions over a repeated trajectory.

A. Characterization under static conditions

The results of the static experiments, in terms of accuracy
and precision, are summarized in Fig. 6 for the 10-beacon
configuration. This situation represents the best-case scenario
for the system. Orange crosses mark the ground truth (grid
points), whereas each individual position estimate provided by
the Forkbeard system is represented by a blue circle. The figure
includes two figures of merit: the 95% confidence ellipses are
shown in red, and the errors between the averaged position
and ground truth per grid point are depicted by black lines.
The errors are calculated as the Euclidean distance between
the grid point and the average of the estimated positions.

The upper-right area exhibits higher precision and accuracy
than the left area. Based on the calculated HDOP values
for a 10-beacon configuration (see Fig. 3), this behaviour
cannot be explained by the beacon distribution. Furthermore,
environmental conditions remained constant throughout the
experiment: no air currents or significant temperature changes
were observed. Therefore, we believe this behavior may be
caused by small differences in orientation of the beacons,
which, together with the limited aperture of the transducers,
created coverage areas of different quality. Another explana-
tion could be multipath components caused by nearby walls
and columns. Two grid points in particular provide consider-
able worse positions than the rest, at (-2.15, -4.12) m, and
(-4.54, -5.34) m. On those two grid points, the 95% ellipses
overlap with their neighbours.

Next, we assessed the effect of the number of beacons on the
system performance. The positions obtained with a 4-beacon
configuration are shown in Fig. 7. Overall, the precision and
accuracy of the 4-beacon configuration are slightly worse
compared to the 10-beacon configuration, as may be expected
from the higher HDOP values (see Fig. 4). This is reflected
by the 95% ellipses, which exhibit a larger area in most cases.

For a smoother visualization, and to gain a better insight into
the error distribution, we interpolated the average error per grid
point over a denser grid of 100×100 grid points. The resulting
heat maps are shown in Figures 8 and 9 for the 10-beacon and
the 4-beacon configuration, respectively. For the 10-beacon
configuration, the largest errors are between 63-93 cm and
primarily related to the aforementioned two problematic grid
points. The upper-right area exhibits lower average errors,
generally below 30 cm with a minimum value of 13 cm. The
maximum error of the 4-beacon configuration is 1.58 m at
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Fig. 6: Static positions obtained with the 10-beacon configu-
ration. Each grid point (orange cross) contains 100 position
estimates by the Forkbeard system (blue circles). Mean error
distance is given in black, and 95% confidence ellipses in red.
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Fig. 7: Static positions obtained with the 4-beacon configu-
ration. Each grid point (orange cross) contains 100 position
estimates by the Forkbeard system (blue circles). Mean error
distance is given in black, and 95% confidence ellipses in red.

the problematic grid point at (-2.15, -4.12) m, whereas the
minimum error is 14 cm on the right area. Interestingly, the
second problematic point exhibits a better behavior now than
with the 10-beacon configuration. This seems counter-intuitive
since the HDOP values worsen when going from a 10- to a 4-
beacon configuration. However, we believe that this behavior
may be caused by poor range estimations introduced by one
or more of the removed six beacons. For instance, due to a
particular multipath interference from nearby walls towards
this point.

Finally, we calculated the Euclidean distance between all
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Fig. 8: Average error heat map for the 10-beacon configuration.
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Fig. 9: Average error heat map for the 4-beacon configuration.

estimated positions with regard to their corresponding ground
truth to obtain the absolute errors. This was done for all
configuration described in Table I. The results are gathered
in Fig. 10, which shows the Cumulative Distribution Function
(CDF) of the position errors per configuration. It can be seen
that 95% of the obtained positions, marked by the black-
dashed line, have errors below 65 cm when using 10 beacons.
This error increases to 1.12 m when reducing the number of
beacons to 3. Nevertheless, it seems that there is not so much
difference in the system performance when using 4–8 beacons,
although all of these produce slightly larger errors than the 10-
beacon configurations. A small increase in the performance at
the 95% level when using 5 beacons instead of 8, can again
be caused by the removal of beacons that introduce erroneous
estimations in the TOF calculation. Table II summarizes the
results of all beacon configurations at the 95, 80 and 68%
levels. While the CDFs show similar trends for configurations
above 4 beacons, it is important to note that reduced systems
provide a lower update rate. Furthermore, these systems will
be more sensitive to losing individual beacons due to an
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obstructed line-of-sight. While the first issue may be resolved
by designing the time slots to be contiguous, this will not
resolve the second issue.
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Fig. 10: CDF of the absolute errors produced by the static
experiments, per beacon configuration. The black-dashed line
indicates the 95% level, whereas the 80 and 68% levels are
indicated by grey-dashed lines.

TABLE II: Maximum error at different levels - static

No. Error (m)
of beacons 95% 80% 68%

10 0.64 0.44 0.37
8 0.74 0.51 0.43
6 0.73 0.53 0.44
5 0.71 0.53 0.44
4 0.82 0.55 0.45
3 1.12 0.78 0.68

B. Characterization under dynamic conditions

The second part involves experiments performed under
dynamic conditions. Each experiment consists of five sep-
arate recordings along the trajectory shown in Fig. 2. The
dynamic experiments are defined by phone position (“hand”
or “pocket”), landscape (“clear” or “office”) and number of
beacons (3 to 10). A phone in hand provides better microphone
exposure than a phone in the pocket. Furthermore, a clear
landscape contains less reflective surfaces than an office setup.
Therefore, we will focus on the following two cases: case I is
a clear setup with phone in hand (best case), whereas case II
is an office setup with phone in the pocket (worst case).

Figure 11 shows the five trajectories obtained for case I
and a 10-beacon configuration. Measurements with estimated
errors above 1.5 m, as internally computed by the positioning
algorithm described in Section III, have been filtered out. The
removed data constitute 56 measurements (ca. 2%) out of a
total of 2650 measurements. All trajectories follow the ground
truth reference well with some notable exceptions: track 3
contains a series of large offset points in the middle of the
test area, all tracks seem to drift slightly outwards at the top,

and the bottom-left is the main problem area for all tracks.
The last observation coincides with what was observed in the
static experiments.

Both cases were tested against all beacon configurations.
The resulting CDFs are shown in Fig. 12 for case I and Fig.
13 for case II. It is apparent in both figures that accuracy is
not linearly correlated with beacon quantity, once a minimum
of four (case I) or five (case II) beacons has been reached.
Note, however, that the update rate does increase with beacon
quantity, allowing for stricter filtering criteria. The 3-beacon
configuration stands out negatively in both cases, as might be
expected: An erroneous range measurement, caused by e.g.,
an obstructed line-of-sight and a strong multipath, weighs
heavier when there are fewer other range measurements to
compensate. This effect is also apparent for the 4-beacon
configuration in case II, though not as strongly. The results
are summarized in Table III, which gives the maximum error
considering 95, 80, and 68%.

While the general trend reflects the initial observations,
a noticeable exception is the 95% level of the 10-beacon
configuration in case II. To gain a better insight into the
specific problem areas, we divided the test area into bins
of 25×25 cm. The average absolute distance error per bin
was then computed based on the ground truth of the five
trajectories per experiment. The results for case I with a 10-
beacon configuration are shown in Fig. 14a. The results for a
reduced configuration of 4 beacons are shown in Fig. 14b. The
differences between the figures are small. While the 10-beacon
configuration contains more problematic areas, the overall
error is slightly lower than for the 4-beacon configuration.
The results for case II are shown in Fig. 14c (10 beacons)
and Fig. 14d (4 beacons). The advantage of increased number
of beacons is more apparent here. Overall, the 10-beacon
configuration contains lower errors, with the exception of the
right side of the map. This could be the result of the phone
being carried in the left pocket. While the pedestrian blocks
the direct line-of-sight for beacons on the left, their signals
may still reach the phone via a multipath, using the wall on
the right. Since more beacons are affected by this in the 10-
beacon configuration than in the 4-beacon configuration, larger
errors may be produced in the former configuration.

The effects of multipath, noise and attenuation can be inves-
tigated further by considering the individual set of valid beacon
ranges per position estimate. That is, a position estimate is
not always based on all available beacons. If the probability
of a range measurement being a true LOS measurement is
low, e.g. due to an unexpected RSS value, then the beacon
is excluded from the trilateration process of that particular
position estimate. For example, position estimates in the first
10 seconds of the trajectory (straight path on the right side of
the test area) are typically based on 9-10 (all) beacon ranges
for case I, but only on 7-9 ranges for case II, considering a
10-beacon configuration. This means that up to three beacons
did not provide a valid LOS range measurement according to
the algorithm. In the most problematic area, around (-3, -5) m,
the set of valid ranges goes down to 3-6 beacons for case II. In
other words, between four to seven beacons produced NLOS
ranges and were thus rejected. For the 4-beacon configuration,
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position estimates for case I are generally based on 3-4
beacons, whereas case II positions are often limited to 2-3
beacon ranges. The latter explains the large errors along the
entire trajectory in Fig. 14d. Note that the above observations
depend on proper filtering of LOS/NLOS signals. This may not
always be the case, resulting in occasional erroneous position
estimates.

Besides accuracy, another important aspect of a positioning
system is its consistency, here defined as the ability to generate
a constant stream of position updates at a predefined update
rate. We tested the consistency of the system by setting the
target update rate to 1 Hz. For each 1-second time interval, we
take the measurement with the smallest error (as estimated by
the internal Forkbeard algorithm) and discard the rest. If the
interval contains no measurements, then the default error is set
to > 1.5 m. The results for the 10- and 4-beacon configurations
(Case II - filtered) are shown in Fig. 14e and 14f. Since
the 10-beacon configuration has a potential update rate of 10
measurements per second, and the 4-beacon configuration has
a maximum rate of 4, we expect more “gaps” in the latter
configuration, which will appear as red blocks. From the two
figures we see that this is indeed the case. The 10-beacon
configuration gives a near-continuous trajectory, whereas the
4-beacon configuration shows many gaps. Comparing the
filtered results with the non-filtered results (Fig. 14c and 14d),
we see that the consistent update rate has a minor effect on the
10-beacon configuration, whereas the results for the 4-beacon
configuration are significantly worse.
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Fig. 11: A set of five independent trajectories computed by the
Forkbeard system. The trajectories shown here are based on
a clear area, with the phone carried in the hand (case I) and
a 10-beacon configuration. The average walking speed was
0.8 m/s. Errors over 1.5 m have been filtered out.
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Fig. 12: CDF for case I (clear area with phone in hand) of the
dynamic experiments for different beacon configurations. The
black-dashed line indicates the 95% level, with the 80% and
68% levels given by grey-dashed lines.
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Fig. 13: CDF for case II (office setup with phone in pocket) of
the dynamic experiments for different beacon configurations.
The black-dashed line indicates the 95% level, with the 80%
and 68% levels given by grey-dashed lines.

TABLE III: Maximum errors at different levels - dynamic

Error (m)
No. case I case II

of beacons 95% 80% 68% 95% 80% 68% 68%1

10 1.63 0.88 0.71 2.54 1.02 0.82 1.01
8 1.91 0.96 0.78 1.64 1.04 0.84 1.07
6 1.43 0.9 0.76 1.94 1.06 0.82 1.09
5 1.51 0.92 0.78 1.91 1.07 0.85 1.38
4 1.69 0.98 0.77 2.24 1.43 1.12 1.55
3 5.23 1.48 1.14 6.61 4.36 2.73 2.21

1 Positions based on ultrasound only (potential field disabled).

VI. CONCLUSIONS

This work describes an extensive evaluation of the com-
mercial indoor positioning system developed by Forkbeard
Technologies AS. The system performance has been assessed
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(a) Case I, 10-beacon configuration.
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(b) Case I, 4-beacon configuration.
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(c) Case II, 10-beacon configuration.
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(d) Case II, 4-beacon configuration.
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(e) Case II, 10-beacon configuration, filtered to 1 Hz.
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(f) Case II, 4-beacon configuration, filtered to 1 Hz.

Fig. 14: 2D error maps of the dynamic experiments (average walking speed: 0.8 m/s). Top row: phone in hand (Case I). Middle
row: phone in pocket with obstacles (Case II). Bottom row: Case II with constant update rate at 1 Hz. 10-beacon configuration
on the left, 4-beacon configuration on the right. Each figure contains the data of five independent trajectories, divided over bins
of 25×25 cm. Each colored bin contains at least one measurement. Errors larger than 1.5 m are shown in red. Comparison
between (d) and (f) shows that a 4-beacon configuration is insufficient to produce a stable update rate at 1 Hz.
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under static and dynamic conditions, for different beacon con-
figurations, test landscapes and phone positions on the carrier.
We performed a statistical analysis under static conditions
using a grid of 73 points and 100 measurements per grid
point. Positioning errors were found to be below 44 cm when
using 10 beacons, and below 55 cm when using 4 beacons,
considering 80% of the measurements. Considering 95% of
the measurements, the errors increased to 64 cm and 82 cm,
respectively.

For evaluation under dynamic conditions, we used a walking
trajectory of 42 m, covering an area of 80 m2. Each experiment
was repeated five times. The observed positioning errors were
up to 88 cm (10 beacons) and 98 cm (4 beacons) for a hand-
carried phone in an obstacle-free test area, considering 80%
of the measurements. The most challenging condition, i.e, a
phone in the pocket and an “office” setup, produced errors
up to 102 cm and 143 cm, respectively. Applying a filter to
obtain a consistent update rate shows that adding beacons to
the system improves the reliability significantly.

These results are comparable to those obtained by academic
prototypes that considered similar acoustic frequencies, test
areas and smart devices [35]–[38]. Two main factors may
account for the differences in accuracy: 1) The number of
grid points considered for evaluation under static conditions.
The system in [36] considered 25 points, five and six test
points were used in [35], and eight in [38]. 2) The trajectory
length and true coverage area of the dynamic experiments. The
trajectory in [37] was 14 m, and the longest trajectory in [38]
ca. 20 m. Both covered an area of approximately 35 m2.

The positioning algorithm evaluated here is based on ultra-
sonic ranges and floor plan information. While it uses BLE for
communication between beacons and the smartphone, it is not
part of the positioning engine itself. Furthermore, the system
does not utilize other sensors available in the smartphone, most
notably the IMU. Future work could focus on improving the
algorithm by fusing the ultrasonic ranges with BLE, IMU,
and other sensor data. In addition to increasing positioning
accuracy, this could improve reliability and lower the cost by
reducing the number of beacons required.
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