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Abstract—The research around developing methods for debug-
ging and refining Machine Learning (ML) models is still in its
infancy. We believe employing tailored tools in the development
process can help developers in creating more trustworthy and
reliable models. This is particularly essential for creating black-
box models such as deep neural networks and random forests,
as their opaque decision-making and complex structure prevent
detailed investigations. Although many explanation techniques
provide interpretability in terms of predictive features for a
mispredicted instance, it would be beneficial for a developer to
find a partition of the training data that significantly influences
the anomaly. Such responsible partitions can be subjected to
data visualization and data engineering in the development phase
to improve the model’s accuracy. In this paper, we propose a
systematic debugging framework for the development of ML
models that guides the data engineering process using the
model’s decision boundary. Our approach finds the influential
neighborhood of anomalous data points using observation-level
feature importance and explains them via a novel quasi-global
explanation technique. It is also equipped with a robust global
explanation approach to reveal general trends and expose poten-
tial biases in the neighborhoods. We demonstrate the efficacy of
the devised framework through several experiments on standard
data sets and black-box models and propose various guidelines
on how the framework’s components can be practically useful
from a developer’s perspective.

Index Terms—Trustworthy Machine Learning, Black-box
Models, Model Debugging, Data Engineering, Explainability,
Quasi-Global Explanations

I. INTRODUCTION

Data engineering is an inseparable part of the Machine
Learning (ML) development workflow, which highly affects
the performance of a resultant model. In this phase, we
identify the problems associated with the data set and endeavor
to refine them to create a better ML model. Traditional
techniques mostly concentrate on the feature space and the
model’s predictions, but they do not take into account the
structure of the decision function [1]. Although we benefit
from applying these preprocessing methods, when a developer
faces a misprediction, he may be interested in finding the
answer to the following questions: 1) what subset of training
data most influenced this prediction? 2) what are the important
features in the discovered subset that affect the prediction?
3) what are the problems associated with this subset (e.g.,
bias, class imbalance, etc.)? 4) what is the explanation for the

anomaly and its retrieved subset? Answering these questions
can help the developer peek into different partitions of the data
and perform strategic data cleaning, data gathering, and model
augmentation.

For a specific choice of ML model, anomalies can occur due
to various factors such as class imbalance, data bias, non-linear
data, etc., and the severity of the anomalies depends on the
expressiveness of the model. Having tools in the training phase
that assist the developer to debug anomalies regarding the
model’s output can increase the quality and the trustworthiness
of the deployed model. This is even more critical for black-
box ML approaches like deep neural networks and random
forests because their opaque decision-making procedure pre-
vents direct debugging and interpretation [2]. The complexity
imposed by such models calls for developing tailored debug-
ging and explanation techniques that can reveal misbehaviors
and enhance the understandability of the model’s decision-
making. Techniques that identify and explain anomalies can
provide developers with interactive data analysis to achieve
highly accurate ML models.

There are substantial research works around data prepro-
cessing, model validation, and model calibration [1], [3],
[4]. A commonality between these approaches is relying on
the feature space without considering the decision boundary
of the black-box. Consequently, these techniques focus on
global data improvement instead of identifying the causes
of individual anomalies. The ML development process is
an iterative task that involves the black-box model as an
indispensable part. Therefore, debugging techniques must take
into account both feature space and decision boundary in order
to precisely locate the causal effects of anomalies. There are
a variety of local and global explanation methods [5] that
provide useful insights about the model’s decision-making
mechanism. LIME [6] explains the prediction of a particular
instance through creating a linear model trained on the locality
of the instance where coefficients of the model present the
importance of each individual feature. EXPLAN [7] is a
model-agnostic rule-based explanation method for tabular data
that justifies the output of a black-box model using IF-THEN
statements. TreeExplainer [8] is an explanation approach for
tree-based models based on coalitional game theory, which
calculates the exact contribution of features in the model’s



prediction using Shapley values. Partial Dependence Plot
(PDP) [9] and Accumulated Local Effects (ALE) [10] are
global explanation methods that reveal the average relationship
of features with the predicted outcome of a black-box model.
Although post-hoc explanation techniques are successful in
providing transparency for black-box models, they only justify
the models’ predictions. In contrast, having a method during
the development/training phase that can help us refine the data
with respect to the decision function is useful for creating a
model that performs well in the deployment/testing phase.

In this paper, we propose a general framework that helps the
developers through the ML development pipeline. The applica-
tions range from data cleaning, bias reduction, mislabeled data
detection, and feature engineering. Although there are tools
and algorithms to perform data preprocessing tasks [1], no
work exploits the information derived from decision function
structure into these operations to the best of our knowledge.
This work is the first attempt to bring the utility of explanation
methods into ML models’ development. From our perspective,
creating a black-box machine learning model is an iterative
development process where the output of the created black-
box can be fed into the data engineering pipeline for further
refinement. In addition to the feature values, we incorporate
knowledge about the decision function into the development
process, improving the construction of a black-box model with
the desired level of accuracy. By focusing on the mispredicted
samples (anomalies) in each iteration of the development
process, the proposed framework identifies influential samples
in the training data that have contributed to each anomalous
instance. Moreover, local and global explanations are provided
to enhance the understandability of the occurred misbehaviors.
The main contributions of this work are as follows:

1) Creating a nearest neighbor model based on feature
contributions for finding the most influential samples in
the training data for an anomalous instance.

2) Devising a quasi-global explanation method based on
genetic algorithm that selects representative samples in
the influential neighborhood of an anomaly and provides
a set of local rule-based explanations.

3) Explaining the influential neighborhood of an anomalous
instance globally to identify the important features for
the neighborhood and to reveal potential biases.

For each contribution, we provide several guidelines for the
developers that can assist in finding the potential benefits of
the proposed techniques. This work mainly focuses on the
theoretical aspects of the proposed framework and leaves the
practical investigation for future work. The rest of the paper
is organized as follows. Proposed methodology is described in
Section II. Section III reports validation and analysis results
of the devised framework. Section IV concludes the paper and
states future works.

II. PROPOSED DEBUGGING FRAMEWORK

In the following, we present our debugging framework that
is designed to identify and explain the influential neighborhood
of anomalies. The framework consists of three components:
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Fig. 1: Visualization of data points in different perspectives:
feature values vs. feature contributions.

neighborhood model construction, quasi-global explanation of
anomalies, and global explanation of influential neighbor-
hoods. Although we have created the method for refining
the black-box model during the training phase, the developer
can adopt the methodology in the deployment phase to warn
potential anomalous instances. A complete implementation of
the methodology along with the experiments is available at:
https://github.com/peymanrasouli/XdebugML.

A. Influential Neighborhood of Anomalies

Anomalies are the result of blind spots, regions in the
decision function that cause model’s misbehavior. Identifying
the most influential samples in the prediction of an anomalous
instance is considered as the first and essential step of the
debugger framework. Although creating a neighborhood using
samples with similar feature values to the anomaly seems a
reasonable idea, it is noteworthy that a diverse set of training
samples form the non-linear decision boundaries of a ML
model. Therefore, finding a set of samples in the training data
which are contributing to the prediction of an anomaly merely
through feature value comparison is not practical.

In this section we introduce an algorithm for finding
influential neighborhood for an anomalous instance using
observation-level feature importance/contributions. We employ
feature contributions because they provide useful information
about the structure of the black-box decision function. We can
consider feature values and feature contributions as different
perspectives of the data, where the former is merely about
the distribution of the data, while the latter is the result
of the created decision boundary of a particular black-box
model. We illustrate this distinction in Fig. 1 by plotting the
data points of German credit 1 data set in a 2D space. We
used Principal Component Analysis (PCA) [11] to reduce the

1Data set is available at: https://archive.ics.uci.edu/ml/datasets/

https://github.com/peymanrasouli/XdebugML


feature values and feature contributions into two dimensions,
denoted by x1 and x2. It can be seen that feature contributions
are highly distinguishable regarding the model’s prediction.
This allows us to find samples that are contributing to a
specific region of the decision space. Consequently, this is
beneficial for recognizing the neighborhood of a blind spot
for further investigation.

Algorithm 1 Neighborhood Model Construction

Input: f : black-box model, Xtrain: training data, K: number
of neighborhood samples

Output: Nmodel: neighborhood model, C: feature contribu-
tions

1: function Ω(f,Xtrain,K)
2: procedure CONTRIBUTIONEXTRACTION(f,Xtrain)
3: C ← {}
4: for all x ∈ Xtrain do
5: l← f(x)
6: c← ShapleySamplingValues(f, x)
7: C ← C ∪ cl
8: return C
9: procedure NEIGHBORHOODMODEL(C,K)

10: Nmodel ← KNN-Constructor(C,K)
11: return Nmodel

12: return Nmodel, C

To achieve the influential samples of anomalies we create
a neighborhood model based on the training data. Given a
tabular data set D = (X,Y ), we split the data into train
Dtrain ∈ D and test set Dtest ∈ D. A black-box classifier
f : X → Y using Dtrain is then created that maps inputs
X to the labels Y . We call an instance (x, y) ∈ Dtrain as an
anomaly if f(x) 6= y. The problem is to find data points in the
training data, Dtrain, that are contributing to the prediction of
x. These samples form a neighborhood N ⊂ Dtrain that is
responsible for the prediction f(x). A simple way to evaluate
the influence of N is by perturbing the label of its members,
creating a new training data D̂train, and training a new black-
box classifier f̂ (same class as f with the same seed and hyper-
parameters) using D̂train. An influential neighborhood should
normally change the prediction of the anomalous instance in
the new classifier, i.e., f̂(x) = y. We propose a function Ω
for creating a neighborhood model Nmodel based on feature
contributions, defined in Eq. (1):

Nmodel, C = Ω(f,Xtrain,K) (1)

where f is the black-box classifier, Xtrain refers to the
inputs in the training data, and K is the number of desired
neighborhood samples. The implementation of function Ω,
which returns a neighborhood model Nmodel and feature
contributions of the training data C, is described in Algorithm
1. Our devised algorithm is model-agnostic, so it can be
applied to any tabular black-box classifier regardless of its
internal structure and mechanism.

Algorithm 1 consists of two steps for creating the neigh-
borhood model that are explained in the following. We recon-
struct Nmodel after each cycle of the development process,
as modifying the data/model is likely to change the feature
contributions. Further, we introduce computationally efficient
methods for constructing the neighborhood model with a time
complexity comparable to the black-box model construction.

In CONTRIBUTIONEXTRACTION step, for every instance
in the training data, observation-level feature contributions are
extracted. There are several ways to achieve feature importance
such as Shaply sampling values (aka. IME) [12], local expla-
nation methods (e.g., LIME [6] and TreeExplainer [8]), and
TreeInterpreter [13]. For tree-based models, TreeExplainer or
TreeIntepreter can provide contribution values more efficiently.
It is also possible to create a tree-based surrogate model for
the black-box and to use a tree-based contribution extractor.
However, this may lead to a representation gap between the
black-box and the surrogate model. IME is a method based
on fundamental concepts from coalitional game theory that
measures the contribution of individual feature values in the
prediction of a ML model. More precisely, feature values of a
data point interact together to cause a change in the model’s
prediction with respect to the model’s expected output (average
prediction of the training data); here, IME distributes this
change in the prediction among the features in a fair manner
that describes the contribution of each feature in the prediction
of the instance. The contribution values have either positive
or negative sign which indicate their contributions towards
increasing or decreasing the model’s output, respectively. IME
is a model-agnostic approach, therefore it can be applied to any
ML model. We use IME for this work and leave the exploration
of other contribution extraction techniques for the future work.
Shapley sampling values is applied on black-box f and the
training data Xtrain to generate feature contributions. Given
an instance x ∈ Xtrain, it produces contribution values c of
every feature with respect to every class in the data. Eventually,
the contribution vector associated to the predicted label by f ,
denoted by cl, for ∀x ∈ Xtrain is returned as matrix C.

In the second step, NEIGHBORHOODMODEL, a nearest
neighbor model [14], denoted by Nmodel, using the feature
contribution matrix C is created. Given the contribution vector
of a particular instance x, the model outputs the indices of its
influential samples in the training data, i.e., I = Nmodel(x).
The only required hyper-parameter is the number of neigh-
borhood samples that is determined by K. The selection of
K depends on the size of the training data, as larger data sets
demand larger values of K, which results in creating a more
influential and reliable neighborhood. We study the impact of
different values of K in future work.

B. Quasi-Global Explanation of Anomalies

The created neighborhood model, i.e., Nmodel, provides
various analysis opportunities for resolving the anomalies and
improving the model’s development. Local explanation of the
adjacent samples can help the domain expert to understand the
behavior of the model in the neighborhood of the anomalous



TABLE I: Local explanation of the representative set of the anomalous instance x̂.

y f(x) Explanation Rule

>50K <=50K capital-gain<=0 ∧ capital-loss<=0 ∧ 40<age<=53 ∧ relationship=Husband ∧ education=Some-college ∧ hours-per-week<=42

>50K <=50K 44<age<=59 ∧ hours-per-week<=47 ∧ capital-gain<=0 ∧ relationship=Wife ∧ education=HS-grad ∧ capital-loss<=0

>50K <=50K capital-gain<=4945 ∧ age>44 ∧ relationship=Husband ∧ education=HS-grad ∧ capital-loss<=904 ∧ hours-per-week<=41

>50K <=50K capital-gain<=0 ∧ age<=48 ∧ hours-per-week<=43 ∧ relationship=Husband ∧ capital-loss<=0 ∧ education=HS-grad

>50K <=50K capital-gain<=2105 ∧ relationship=Husband ∧ capital-loss<=0 ∧ education=HS-grad

>50K <=50K hours-per-week<=46 ∧ capital-gain<=0 ∧ age<=49 ∧ capital-loss<=0 ∧ relationship=Wife ∧ education=HS-grad

<=50K <=50K relationship=Wife ∧ education=HS-grad ∧ occupation=Prof-specialty

<=50K <=50K age>36 ∧ capital-gain<=5178 ∧ relationship=Wife

<=50K <=50K age>30 ∧ relationship=Husband ∧ education=5th-6th

<=50K <=50K capital-gain<=6849 ∧ relationship=Wife ∧ age>30 ∧ education=HS-grad

<=50K <=50K capital-gain<=0 ∧ hours-per-week<=43 ∧ capital-loss<=0 ∧ relationship=Husband ∧ education=HS-grad

instance and to get insights about the causes of the anomaly.
Even though local explanation of multiple samples can be
insightful, the user may not have time to examine a large
number of explanations. Therefore, we denote the user’s time
for investigating local explanations by a budget B and propose
an algorithm for picking a set of B representative and diverse
samples for local explanation. Our algorithm can be considered
as a ’Quasi-Global’ explanation technique which generates
non-redundant local explanations where their association can
provide a global explanation of the influential neighborhood
for the domain expert.

1) Example: Imagine a gradient boosting model f that is
trained on Adult 2 data set. The data set contains demographic,
educational, and other information of individuals for classify-
ing their income to over/under 50K dollars. Consider an in-
stance (x̂, ŷ) that is mispredicted by the model, i.e., f(x̂) 6= ŷ.
Using Nmodel, we identify the influential neighborhood of x̂
and generate its quasi-global explanation via the algorithm
described in Section II-B2. The explanation listed in Table
I consists of IF-THEN rules for the anomalous instance x̂.
The first row of the table corresponds to the local explanation
of x̂ and the rest of the rows are the explanations of the
representative set. The selected set is diverse, and this diversity
is reflected by the contrastive explanations for anomalous
(f(x) 6= y) and non-anomalous (f(x) = y) instances. The
generated rules are different regarding feature names, feature
values, and length because our proposed algorithm takes into
account the diversity of feature contributions for instance
selection. A developer can observe noticeable differences
between the explanations of the anomalous instances and non-
anomalous instances. In this example, it can be seen that
explanations of the anomalous instances have a longer length
than the explanations of the non-anomalous instances. A likely
reason is the position of the anomalous instances in the feature
space which are close to the decision boundary of the classes.
This results in more complicated explanations. We see the
explanations of anomalous and non-anomalous instances are

2Data set is available at: https://archive.ics.uci.edu/ml/datasets/

distinguishable in some ways. For example, ”hours-per-week”
is repeated frequently in the explanation of the anomalous
instances while it rarely appears in the explanation of the non-
anomalous instances. Moreover, anomalous instances have a
large value for the feature ”age” while the value is smaller
for non-anomalous instances. Given the derived insights, a
possible following action is to look into the correlation of the
”hours-per-week” and ”age” features for different classes of
the data. By having explanations of several representative sets,
a developer may notice difficulties of the classifier in learning
the decision boundary with respect to particular features (e.g.,
”age”); in this case, doing feature engineering (e.g., creating
new features based on available features like combining ”age”
with ”hours-per-week”) is useful to help the classifier to
understand the relationships of features more effectively, and
eventually making correct decisions.

2) Algorithm: Instead of focusing on feature values of
the samples in the neighborhood, we take into account the
importance of each feature in the prediction of the black-box
for selecting representative samples. Because, different feature
values in various samples may have similar contribution to the
black-box prediction, thus it is likely that their corresponding
local explanation will be similar as well. Thus, we need to
pick a set of diverse instances (from the feature contribution
perspective) that maximize the overall importance value. The
approach for obtaining diversity and importance information
are mentioned below as well as Fig. 2 demonstrates a toy
example for each step of the procedure.

Given an anomalous instance x, the indices of its influ-
ential neighborhood in the training data are retrieved, i.e.,
I = Nmodel(x). The corresponding contribution matrix of the
selected samples is denoted by Ĉ where Ĉ = {Ci|∀i ∈ I}.
Utilizing Ĉ, we construct two customized weight matrices
that are used as importance and diversity information in the
instance selection mechanism. Fig. 2(a) depicts an example of
a retrieved neighborhood where I is the single vector (left)
and Ĉ is the matrix (right) with features F = {F1, .., F6}.

The retrieved importance matrix Ĉ has the shape |K×|F ||
where K is the number of neighborhood samples and F
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Fig. 2: Construction procedure of the importance and diversity matrices.

refers to the set of features in the data. A contribution vector
c ∈ Ĉ contains low-importance and high-importance features
with negative or positive sign. Since the importance degree of
features is independent of their signs, the absolute value of
contributions is used in further operations. Obviously, high-
importance features are more informative, and subsequently
the local explanation is likely to contain them. In order to
foster the selection of representative samples based on high-
importance features, we create a list L that contains NF ,
2 ≤ NF � |F |, top features of every neighborhood instance
(∀c ∈ Ĉ). After this process, the list L may not include the
index of all features, because some low-importance features
may be neglected for all instances in the neighborhood. Fig.
2(b) illustrates the list L for NF = 3 where high-importance
features are placed into first to third places, and it can be seen
that feature F6 is dropped because it is not among the NF
high-important features of the neighborhood samples.

We create a new contribution matrix called W with a size
of |K × MaxInd(F̂ )| where F̂ ⊆ F is the set of unique
features available in L and MaxInd(.) is the maximum index
of the features in F̂ . The entries of W are then filled by the
corresponding values from Ĉ. For every sample w ∈W there
may be some features that do not have contribution values
as we have selected NF high-importance features for the
construction of W . In this case, the value 0 is assigned to
these features. Fig. 2(c) demonstrates the generated importance
matrix W from the the original neighborhood contribution
matrix Ĉ that has F̂ = {F1, .., F5} features.

To measure the diversity of the selected samples, we create
a binary version of W , called Wb, where features with
contribution value greater than 0 are set to 1, otherwise to
0. This allows us to measure the variation of each feature.
For example, if a feature F1 ∈ F̂ has the same value (either
0,1) for every sample, it indicates that this feature has low
variation and is more likely to be present in most of the B local
explanations. Fig. 2(d) depicts the created diversity matrix Wb
from the importance matrix W .

We refer to W as an indication of the feature importance
and Wb as an indication of the feature diversity and employ
them simultaneously to pick B diverse, representative samples
from the influential neighborhood. We formulate this as an
optimization problem and solve it using the Genetic Algorithm

(GA) [15]. Compared to simple greedy search algorithms
(like Hill Climbing), GA is likely to find a globally optimal
solution by avoiding local optima and effectively searching
problem space. These properties are useful when dealing with
an extensive data set in which anomalous samples have broad
influential neighborhoods, leading to ample search space. To
this end, we select B instances by maximizing the following
fitness function using GA:

Φ(W,Wb,R) = Sum
R⊂{1..K},∀j∈F̂

(WR,j)· Var
R⊂{1..K},∀j∈F̂

(WbR,j)

(2)
where R (|R| = B) is a set of the selected samples in the
influential neighborhood. In Eq. 2, the first term calculates
the overall contribution and the second term measures the
variance of the selected B instances for every feature ∀j ∈ F̂ ,
respectively. The result of each Sum and Var function is a
vector with the size of |1 ×MaxInd(F̂ )|. The dot product
of these two one-dimensional vectors results in a fitness
value that we aim to maximize. We can see the variation of
the selected samples as a weight vector for the contribution
vector that encourages the selection of diverse samples. High-
importance features are usually common among the samples
in a neighborhood, and therefore, they have values 1 in Wb for
many instnaces. If we do not weigh the overall contribution of
features with their variation values, the algorithm converges
early and chooses similar samples that increase the fitness
value regardless of diversity consideration. Incorporating the
variation ensures that features that rarely have contributions in
W get attention, and thus their corresponding samples will be
elected for the local explanation.

Algorithm 2 outlines our devised procedure for picking
representative samples based on the genetic algorithm. Using
Initialization, we create and evaluate the fitness of the initial
population PIt for iteration It = 0 with population size nPop.
Every individual in the population (∀p ∈ PIt) is a solution
vector with a length of budget B, i.e., ∀p ∈ PIt · |p| = B.
They are initialized with random values within the range [1,K]
to refer to the index of the potential representative samples in
the neighborhood. In Eq. 2, R indicates the set of indices
represented by an individual, i.e. R = p where p ∈ PIt.
Given a solution p ∈ PIt, the following constraint should be



Algorithm 2 Representative Sample Selection using GA

Input: Φ: fitness function, B: user’s budget, K: number of
neighborhood samples, I: indices of influential neighbor-
hood, W : contribution matrix, Wb: binarized contribution
matrix, nPop: population size, MaxIt: maximum number
of generations, pc: cross-over percentage, pm: mutation
percentage

Output: Î: index set of the representative instances

1: function GA(nPop,MaxIt, pc, pm,Φ, B, I,W,Wb)
2: It← 0
3: BestSol← {}
4: PIt ← Initialization(nPop,B,K,Φ,W,Wb)
5: while It < MaxIt do
6: P co

It ← Selection(PIt, pc)
7: Pco ← Cross-Over(P co

It ,Φ,W,Wb)
8: Pmu

It ← Selection(PIt, pm)
9: Pmu ← Mutation(Pmu

It ,Φ,W,Wb)
10: Pmerged ← Merge(PIt, Pco, Pmu)
11: Psorted ← Sort(Pmerged)
12: Ptruncated ← Truncate(Psorted, nPop)
13: PIt ← Ptruncated

14: BestSol← PIt{0}
15: PIt+1 ← PIt

16: It← It + 1

17: Î ← {Ii|∀i ∈ BestSol}
18: return Î

satisfied: ∀x, y ∈ p · x 6= y. It means that the solution should
be a representative set with unique instances that explain
different regions in the neighborhood. Using a loop block,
several operations of the genetic algorithm are applied on the
population until the algorithm reaches the maximum iteration,
MaxIt. The Selection function chooses a portion of parents
for cross-over and mutation, specified by pc and pm hyper-
parameters, respectively. During the Cross-Over procedure,
one-point cross-over at a random point is applied on every
pair of the selected parents P co

It to generate off-springs Pco by
swapping the cross-over decision variables of the parents. The
Mutation operator selects a random point in every selected
parent Pmu

It and returns off-springs Pmu by changing the
value of the random point with a random value r ∈ [1,K].
The original, cross-over, and mutation populations are merged
together via Merge function results in Pmerged. Using Sort
operator, the population is sorted in descending order based on
the fitness values and a new population is created, denoted by
Psorted. The final operator is Truncate which selects the best
nPop solutions (Ptruncated) for the next generation (the rest of
the population will be discarded). At the end of each iteration,
the best solution is the first individual in the population, i.e.,
PIt{0}, which has the highest fitness value. Once the loop
reaches MaxIt, the genetic algorithm terminates and returns
the best solution BestSol. Representative instances Î are then
the neighborhood samples that are referenced by the BestSol.

To understand the behavior of the model in predicting an
anomaly, we provide the developer with insights into the
influential neighborhood by explaining the derived representa-
tive instances. These instances can be seen as prototypes for
anomaly and their accumulative explanations acts as a quasi-
global explanation for the neighborhood. There are several
explanation techniques one can use to explain the prototypes
locally. In this paper, we employ EXPLAN [7] due to its rule-
based explainability style that are intuitive to comprehend. In
addition to its high fidelity, precision, and stability properties,
it is a computationally efficient algorithm that is suitable
for generating a quasi-global explanation from multiple local
explanations.

C. Global Explanation of Influential Neighborhoods

Discovering a set of samples in the training data that
impact the prediction of an anomaly can provide a wide
range of analysis opportunities for the developer. The set
of local explanations provided in Section II-B gives detailed
descriptions about the behavior of the model for individual
instances. The explanations generated for the prototypes can
be directly compared and correlated to the anomalous instance.
Furthermore, it enables deeper and precise investigations into
the neighborhood data. However, it is not adequate for speci-
fying the general trend in the locality of the anomaly. Global
explanation is suitable for discovering population level pattern
such as bias and important features in a data set. Therefore, it
is worth having a comprehensive understanding of the model’s
behavior using both complementary approaches.

Partial Dependence Plot (PDP) [9] is a well-known global
explanation technique that shows the marginal effect of one
or two features on the prediction of a machine learning
model. A partial dependence plot demonstrates whether the
relationship between the model outcome and a feature is linear,
monotonic or more complex. Although partial dependence
plots are intuitive and easy to implement, they have two major
problems. First, the PDP does not show the distribution of
the features which can be misleading, because one might
over-interpret the regions with almost no data. Second, PDP
assumes the feature for which partial dependence is calculated
has no correlation with other features in the data. Due to this
assumption, PDP creates unlikely data points which results in
an biased estimation of the feature’s effect.

Accumulated Local Effects (ALE) plots [10] remedies the
feature distribution illustration and assumption of indepen-
dence associated with PDP. Similar to PDP, it answers the
following question: how does the effect of a feature on the
outcome vary with the feature’s value? The only distinction
is in the approach of measuring the effect. PDP calculates
the cumulative effects of a feature value over a marginal
distribution, while ALE plot computes the same effect over
a conditional distribution. In case the features are highly
correlated, the marginal distribution can be much wider than
conditional distribution and contain feature space regions
where no likely data exists. This can be problematic because
the model is not well-trained in the areas of the feature space



where no training data exist, consequently leading to unrealis-
tic prediction outcomes. The narrower conditional distribution
used by ALE plots helps to mitigate this issue and make them
preferable in cases where features are highly correlated. We
refer the reader to [16] which provides a comparative review
of PDP and ALE methods.

According to the stated advantages of ALE plot, we visual-
ize the global effect of features in an influential neighborhood
using ALE plots. Given an anomalous instance x, the indices
of its impactful samples in the training data are returned, i.e.,
I = Nmodel(x). Then, ALE function is applied on all features
in the neighborhood for generating global explanations, i.e.,
{ALE(Fi)|i = 1, .., |F |}, where F is the set of features in the
data. The crated ALE plots can assist the feature engineering
process, as features that reveal a high effect in the ALE plots
can be subjected to further investigation. The plots are also
helpful for finding common features with high impact among
different anomalous data points. We could also identify low-
importance features in the data set that unjustifiably affect the
model’s prediction to a great extent. Moreover, by observing
the effect of the features that are amenable to bias, the potential
biases in the model can be detected.

III. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the proposed methodology with
respect to several data sets and black-box models. We evaluate
the utility of the proposed framework theoretically and leave
its practical applications for future work. The evaluation
results are reported in three sections: A) neighborhood model
analysis, B) quasi-global explanation of anomalies, and C)
global explanation of influential neighborhoods.

Experimental Setup. The proposed method has been devel-
oped in Python programming language, and the experiments
were run on a system with an Intel Core i7-8650U processor
and 32GB of memory. We used scikit-learn library for im-
plementing the machine learning and data mining algorithms
[17]. Source code for replicating our experiments is available
at: https://github.com/peymanrasouli/XdebugML.

In the experiments, three tabular classification data sets
including Adult, German credit, and COMPAS3 were used.
Each data set was split into 80% train set and 20% test
set. We performed experiments on the anomalous instances
existing in the train set. The achieved improvement as the
result of applying our technique can be validated using the test
set. A Gradient Boosting classifier (GB) [9], a Logistic Re-
gression classifier (LR) [18], and a Neural Network classifier
(NN) [19] with the default hyper-parameters specified in the
scikit-learn library were employed as black-box models.

A. Neighborhood Model Analysis

The aim of a neighborhood model is to identify samples
in the training data that contribute mostly to the prediction of
an anomalous instance. In other words, the identified samples
influence the prediction of a specific anomalous data point.

3Data set is available at: https://www.kaggle.com/danofer/compass

TABLE II: Comparison of the neighborhood influences.

Data set Black-box Nc
model Nf

model Np
model

Adult
GB 0.975±.1 0.548±.1 0.195±.1
LR 0.334±.2 0.209±.1 0.077±.1
NN 0.830±.1 0.690±.2 0.349±.2

German
GB 0.933±.1 0.742±.1 0.163±.1
LR 0.990±.0 0.755±.1 0.254±.1
NN 0.874±.1 0.773±.1 0.191±.1

COMPAS
GB 0.924±.1 0.625±.1 0.179±.1
LR 0.726±.1 0.472±.2 0.106±.1
NN 0.898±.1 0.819±.1 0.223±.1

Imagine we are capable of finding common influential samples
for various groups of anomalous instances; by investigating the
obtained data, we are likely to resolve the model for different
groups of anomalous instances, and consequently improve the
overall accuracy of the black-box model. To compare the
efficacy of the devised neighborhood model (Algorithm 1),
we create two other neighborhood models based on feature
values and prediction probabilities of the black-box model
with the same configurations. To avoid probable bias that can
be caused by the nearest neighbor method, we apply feature
scaling on the feature values. By convention, we denote the
neighborhood models based on feature contributions, feature
values, and prediction probabilities by N c

model, N
f
model, and

Np
model, respectively. The number of neighborhood samples,

K, for Adult, German credit, and COMPAS data sets is set to
2000, 200, and 500, respectively.

In this part of the experiment, we measure the influence of
a retrieved neighborhood for anomalous instances appeared in
the training data. The procedure is as follows: 1) for an anoma-
lous instance (x̂, ŷ) where f(x̂) 6= ŷ, we achieve its influential
neighborhood in the training data, i.e., I = Nmodel(x̂); 2) the
labels of the retrieved samples (indicated by I) are flipped, for
example in a binary data set, if a label is 1, it is changed to
0 and vice versa; 3) we retrain the black-box model with the
modified data and measure whether the label of the anomalous
instance change. This procedure is conducted for 100 trials of
10 randomly selected anomalous samples in the training data
and the results are reported in Table II. This metric measures
the influence rate of a selected neighborhood, in other words,
if the prediction of the neighborhood were changed, how much
would the prediction of the anomalous instance change.

According to the reported results in the Table II, neigh-
borhoods determined by N c

model have the highest influence
compared to Nf

model and Np
model for all data sets and black-

box models. We can see the localities derived from Np
model

impact the anomalous samples slightly. Compared to Np
model,

Nf
model has a higher performance, especially for NN and GB

models. The N c
model created based on feature contributions

outperforms both Np
model and Nf

model. Therefore, feature
contributions provide a more precise representation of the
decision boundary that allow us to identify the neighborhood
of anomalous instances effectively.

Exploring the influential neighborhood of a particular

https://github.com/peymanrasouli/XdebugML
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Fig. 3: Occurrence histogram of training samples in the influential neighborhoods.

anomalous instance can provide various investigation oppor-
tunities to find the causes of mispredictions. However, it be-
comes more useful when we find common influential samples
for different categories of anomalous instances. For example,
we can create clusters of anomalies based on different features,
and then find samples in the training data that jointly contribute
to each cluster. This operation provides valuable insights into
the training data, which by engineering and refining the related
data of the members of each cluster, the accuracy of the black-
box model can be improved with respect to the specific groups
of anomalies.

To this end, we measure the occurrence histogram of the
training data for all anomalous instances. We create a his-
togram H with a size of |H| = |Dtrain| where every bin cor-
responds to a training example. When a neighborhood model is
invoked for an anomalous instance x̂, i.e., I = Nmodel(x̂), bins
in H corresponding to the indices in I are incremented by the
value of 1. By updating the histogram H using the locality of
every anomalous instance, we achieve the common influential
data points. Fig. 3 illustrates the occurrence histogram of the
training data for LR black-box model applied on all three data
sets for N c

model and Nf
model.

Histograms plotted in Fig. 3 convey two important matters.
First, the histograms of both N c

model and Nf
model models are

similar. This indicates that N c
model is not biased towards se-

lecting globally important samples for the decision boundary.
Therefore, it retrieves locally relevant samples for the anoma-
lous instances. Second, we can see there are some samples in
the training data that contribute to the anomalous instances
most frequently. This can effectively guide developers in
finding partition of the training data that seems problematic
and require further investigation/mitigation.

Mainly, there are two sources of computational complexity
for the neighborhood model: feature contribution extraction
and neighborhood model construction. Our framework allows
using any arbitrary method for these processes. For the exper-
iments, we had used IME contribution extraction method [12]
with the explanation time complexity O(mTf (x)), where m
is the number of features and Tf (x) is the prediction time of
the model f on the instance x. We used KD tree algorithm
[20] for creating the neighborhood model that has a very

fast construction time of O(mN log(N)) and a query time
of O(log(N)) where N is the number of data samples.

B. Quasi-Global Explanation of Anomalies

By observing local explanations for the anomalous in-
stances, a domain expert can get insights about the causes of
anomalies. Here, we apply our devised representative sample
selection that is combined with EXPLAN method to provide
local explanations for mispredicted instances in the training
data. The provided set of explanations are diverse in the
sense that each one explains a different spot in the influential
neighborhood. The IF-THEN rules reveal locally important
features for every representative instance selected for an
anomalous instance and allow us to compare their explanations
and understand their relations. For these experiments, we set
the user’s budget as B = 10 and the number of top features as
NF = 5. The hyper-parameters of the genetic algorithm are
set as follows: nPop = 300, MaxIt = 100, pc = 0.8, and
pm = 0.4. Moreover, we run EXPLAN with its default values
for hyper-parameters that are stated in the original paper.

To evaluate the efficacy of our devised sample selection
procedure, we apply it to the neighborhood of 100 randomly
selected anomalies in the training data, and compare the results
with a random sample selection procedure. Specifically, we
perform the following tasks: 1) for an anomalous instance
(x̂, ŷ) where f(x̂) 6= ŷ, we achieve its influential neighborhood
in the training data, i.e., I = N c

model(x̂); 2) Algorithm 2
is applied on the neighborhood to select B representative
samples for local explanation (GA); 3) selected samples are
explained using EXPLAN approach. We repeat the mentioned
experiment for a scenario where B samples in step 2 are picked
using a random selection procedure (Random). Results of this
benchmark are evaluated with respect to the following metrics
that measure the diversity of a representative set:
• Sample Diversity (SD): The majority of samples in the

neighborhood of an anomalous instance x̂ are either
anomalous or non-anomalous with the same prediction
as x̂. This metric measures the ratio of anomalous to
non-anomalous instances in a representative set. For
comparison purposes, selecting a diverse set of samples
is preferred (i.e., higher SD values).
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TABLE III: Diversity of the quasi-global explanations.

Data set Method SD FS LD

Adult GA 0.698±.2 0.578±.1 1.406±.5
Random 0.369±.2 0.640±.1 1.272±.5

German GA 0.672±.2 0.744±.1 0.435±.2
Random 0.391±.1 0.775±.1 0.388±.1

COMPAS GA 0.515±.2 0.587±.1 0.963±.4
Random 0.327±.2 0.695±.1 0.645±.4

• Feature Similarity (FS): Using Jaccard coefficient we
measure the similarity between the predicates (feature
names) of the generated local explanations for B repre-
sentative samples. We would like to have explanations
that reveal different information about the influential
neighborhood, therefore, having different explanations
are desired (i.e., lower FS values).

• Length Deviation (LD): Decision tree models
(EXPLAN’s interpretable model) that capture different
spots in the influential neighborhood space would have
varied depth, and consequently, they would provide
various length explanations. This metric measures the
deviation of the length of the explanation rules. We are
interested in a set of explanations with diverse lengths
(i.e., higher LD values).

Table III reports the results of the stated benchmark for NN
black-box model that is applied on all data sets. It exhibits
that our devised genetic-based algorithm outperforms random
sample selection on all defined metrics. A representative set
created by GA selects prototype instances that lead to diverse
local explanations for the various spots in the neighborhood.
The generated explanations vary with respect to feature names
(small FS values) and rule length (large LD values). By
considering the variation among feature contributions, in the
fitness function, this diversity is achieved. As indicated by SD

metric, the ratio of anomalous to non-anomalous data points
in the representative sets selected by GA are significantly
higher than Random method. This diversity implies gener-
ating contrastive explanations that can guide the developer for
debugging the model.

Bearing this in mind that the computational complexity of
the genetic algorithm heavily depends on the fitness function,
our quasi-global explanation method is very efficient as it uses
a simple fitness function. The function performs three low-cost
operations, i.e., summation, variance, and dot product, on pre-
calculated matrices. It does not involve any time-consuming
process like calling the black-box model or extracting feature
contributions. As a result, computational complexity is negli-
gibly affected by varied neighborhood sizes.

C. Global Explanation of Influential Neighborhoods

There are some questions that can not be answered using
the local explanation techniques. Finding globally important
features and bias existence are a few examples that require
a broader understanding of the model. This demand can be
fulfilled by global explanation methods that reveal general
trends existing in the data and the black-box model.

We demonstrate the global insights into a retrieved influen-
tial neighborhood using ALE plots. Fig. 4 depicts three highly
important features of the locality identified by N c

model for
an instance from COMPAS data set (analysis on recidivism
decisions in the United States) that is mispredicted by NN
black-box model. The ML model’s task is to predict which of
the bail applicants will recidivate in the next two years. It can
be seen that for this particular anomalous instance, features
”age”, ”race”, and ”priors count” have a major effect on
the overall prediction of its neighborhood. For instance, as
”age” increases, the probability of the recidivism increases.
In contrast, as ”priors count” increases, the probability of
the recidivism decreases. The global explanation here exposes
a strong evidence of bias caused by the feature ”race”. By



having different values for feature ”race”, the recidivism
probability increases up to 0.3. The neighborhood, hence, can
be subjected to fairness analysis and refinement.

Global explanation methods sacrifice the precision for cov-
ering the whole decision boundary. To make a trade-off be-
tween precision and coverage, one can apply our neighborhood
model on partitions of the data and derive a more precise
explanation (rather than generating a single explanation for the
entire data set). Specifically, this can be done by invoking the
N c

model for multiple anomalies and integrating their explana-
tions. By doing this, we provide a global understanding of the
behavior of the model by means of locally global explanations.
We can repeat the mentioned procedure for non-anomalous
instances, and by comparing them we are able to highlight the
causes of anomalies.

IV. CONCLUSIONS

The research around developing methods for debugging
and refining black-box ML models is still in its infancy. We
believe such techniques can aid the developer to create a more
trustworthy and reliable model. In this paper, we proposed a
systematic debugging framework for developing ML models
that incorporates the model’s decision boundary for guiding
the data engineering process. Using a neighborhood model
based on feature contributions, we identify locally influen-
tial samples in the training data for a particular anomaly.
By highlighting and explaining impactful data partitions for
anomalies, a developer can interactively use our framework to
perform various data visualization and data engineering tasks.
The conducted benchmarks showed the superiority of feature
contributions over feature values and prediction probabilities
in finding responsible data points for anomalies. Our devised
quasi-global explanation technique selects representative sam-
ples in a neighborhood to provide insights into the anomaly.
Through an illustrative example, we described the utility
and potential applications of such an explanation. We also
equipped our framework with a robust global explanation
technique to detect general trends and potential biases in
the influential neighborhoods. The main application of the
framework is for the development phase. Still, one can use
it in the deployment phase to calibrate the prediction of new
inputs through the provided explanations. We proposed several
guidelines on the utility of our framework for data engineering.
As future work, we validate its practical benefits on a real-
world, industrial use-case.
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