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Abstract 1 

 2 

Rock deformation experiments performed at X-ray synchrotrons provide unique insights into 3 

the nature of fracture network development. However, these insights depend on the limitations 4 

of the X-ray tomography data. Here, we examine how spatial resolution and noise influence 5 

the calculated fracture network properties. To assess the influence of spatial resolution, we 6 

acquire two overlapping X-ray tomograms with spatial resolution that differ by an order of 7 

magnitude. To assess the influence of noise, we produce sets of synthetic tomograms with 8 

varying degrees of noise, including point-source noise and blurring noise. In the absence of 9 

noise, the differing spatial resolutions produce calculated porosities that differ by 0.05%, or 10 

30% of the porosity measured in the high-resolution data. The fracture property that changes 11 

the most in the datasets of varying resolution is the fracture surface area, rather than the 12 

volume, length, or aperture. The two types of noise influence the porosity and fracture 13 

characteristics in opposite ways. In the synthetic tomograms in which higher values indicate 14 

fractures, added point noise increases the porosity while blurring noise decreases the porosity. 15 

In volumes with a mapping of gray values in which fractures have lower values, this trend 16 

would be reversed. This study is the first to quantify differences in fracture network properties 17 

extracted from X-ray tomograms due to spatial resolution and noise. 18 
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Highlights 23 

- We assess the influence of spatial resolution and noise on fracture properties. 24 

- Porosity differs by 0.05% between the tomograms of two spatial resolutions. 25 

- Varying the spatial resolution produces the largest changes in the surface area. 26 
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- The calculated fracture volume, lengths and apertures change the least. 27 

- Point noise increases the porosity; blurring decreases the porosity. 28 

 29 

1. Introduction 30 

The field of digital rock physics uses precise measurements of rocks to construct three-31 

dimensional numerical representations of the system. Analysists then use these numerical 32 

representations to calculate various properties of the rock that are difficult to measure on 33 

natural rock samples, such as the elastic moduli, electrical resistivity, permeability and porosity 34 

[e.g., 1, 2, 3]. These numerical representations also enable analysists to perform simulations 35 

on these digital rocks, such as triaxial compression and fluid flow tests, that would be more 36 

expensive to perform on real rocks. The fundamental steps that comprise a digital rock physics 37 

investigation include 1) capturing detailed images of the rock, ideally in three-dimensions, 2) 38 

classifying or segmenting the rock microstructure into different mineral phases and/or different 39 

solid and fluid phases, 3) building a numerical representation from the segmented image of 40 

the rock, and 4) performing the desired numerical simulations. To accomplish step one, 41 

experimentalists may capture the highest spatial resolution three-dimensional images at X-ray 42 

synchrotron sources [e.g., 4, 5, 6]. Desktop X-ray sources can also provide lower resolution 43 

images.  44 

In addition [JM1]to the insights provided by digital rock physics analyses, imaging during 45 

in situ synchrotron X-ray microtomography experiments reveals detailed mechanisms of rock 46 

deformation leading to system-size failure [e.g., 7, 8]. In these experiments, a powerful 47 

synchrotron X-ray source is coupled with an X-ray transparent deformation apparatus to 48 

acquire three-dimensional images of rocks while they are at the stress and/or temperature 49 

conditions of the natural crust [e.g., 9, 10, 11]. These experiments thus allow analysists to 50 

capture the evolving fracture network of the rock at a range of stress and temperature states, 51 

such as the evolving stress field that may precede a large earthquake. 52 

This ability to observe rock deformation in situ during triaxial compression significantly 53 

increases the temporal resolution of the observations of these types of experiments. This non-54 

destructive technique also reduces the uncertainty in the observations caused by unloading 55 

at the end of the experiment. Consequently, these in situ observations have provided 56 

fundamental insights into a wide range of geophysical phenomena, including the potential 57 

precursors that signal the timing of catastrophic failure, such as earthquakes [e.g., 12, 13, 14], 58 

the evolution of the fracture network during deformation [e.g., 15, 16, 17], the evolution of the 59 

local strain field [18, 19, 20, 21], the similarity between rock failure and critical phase 60 

transitions [e.g., 8, 22, 23], the influence of heating on shale [e.g., 24, 25, 26, 27], the 61 

deformation of shale during indentation [28], the deformation of porous rocks and sediments 62 

[e.g., 29, 30], the fragmentation of chondrites [31], hydration reactions that break rock during 63 
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metamorphism [32, 33, 34], porosity reduction by pressure solution creep [35], the flow of melt 64 

in volcanic rocks [36], and the partitioning of the energy budget [37]. Because this technology 65 

has provided such significant insights, it is critical to examine the shortcomings in the 66 

methodologies and how they may be improved. 67 

A common caveat of this technique is the spatial sampling and the corresponding 68 

spatial resolution [e.g., 38, 39, 40, 41[JM2]]. The spatial sampling is the side length of a pixel in 69 

two-dimensional images and a voxel in three-dimensional volumes. The spatial resolution, in 70 

contrast, measures the ability to separate two different objects. Thus, following the Nyquist-71 

Shannon sampling theorem [42], the spatial resolution is at least twice the sampling distance 72 

(i.e., the Nyquist frequency). In a three-dimensional volume acquired at a synchrotron, the 73 

spatial resolution is a function of the voxel size and blurring produced during tomogram 74 

acquisition and reconstruction. The spatial resolution thus influences the proportion of the true 75 

fracture network that we may identify in the tomogram. To extract the fracture network, we 76 

must decide which voxels are those dominated by solid and which are dominated by air or 77 

pore fluid. This classification step is often called segmentation. Thus, it is challenging to 78 

identify fractures with thicknesses (apertures) that are less than twice the spatial sampling 79 

[e.g., 43]. This lack of identification of the smallest fractures leads to intuitions about the 80 

difference between the true fracture network and the observed fracture network. For example, 81 

we expect that the true porosity is higher than the observed porosity. Because many of the 82 

fundamental insights about rock deformation and rock properties depend on the 83 

characteristics of the porosity and fracture network properties calculated from segmented 84 

tomograms, it is critical to more precisely quantify the differences between the true and 85 

calculated fracture network. 86 

In addition to the spatial resolution, the accuracy of the segmentation depends on the 87 

noise level, and spatial complexity of the material [e.g., 1, 2, 6, 44, 45[JM3]]. Unless 88 

experimentalists measure a property independently, such as the porosity, we cannot know the 89 

difference between the true value of the property and the value measured from a tomogram. 90 

Thus, we usually cannot determine the accuracy of the measurement, unless we use synthetic 91 

datasets with a known ground-truth dataset [e.g., 46, 47]. A previous analysis [47] 92 

demonstrated that three segmentation techniques (global thresholding, watershed, machine 93 

learning) provide different results depending on the noise of the image. When the noise level 94 

is low in X-ray tomography data, the difference between the three segmentation techniques is 95 

negligible [Figure 3h in 47]. Thus, to assess the influence of spatial resolution and noise, in 96 

this analysis we compare the fracture network properties calculated from two tomograms of 97 

differing spatial resolutions and various degrees of noise.  98 

 99 

2. Methods 100 
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2.1. Analysis design[JM4] 101 

We compare the fracture characteristics calculated from two tomograms that differ in 102 

spatial resolution by one order of magnitude (Figure 1). Typically, in experiments at the 103 

tomography beamline ID19 at the European Synchrotron and Radiation Facility (ESRF), we 104 

only acquire tomograms with a spatial sampling of 6.5 µm/voxel side length. To compare the 105 

influence of resolution, in one experiment we also acquire one tomogram at a higher spatial 106 

sampling of 0.65 µm/voxel side length (Figure 1). We acquire tomograms with the lower 107 

resolution, rather than the higher resolution, because it allows capturing the entire core sample 108 

within a volume (cube) of 1 cm3. In contrast, the higher resolution image is restricted to a 109 

volume of 1 mm3. The higher resolution tomogram thus only overlaps a small volume of the 110 

lower resolution tomogram. This unique dataset allows precisely comparing the differences in 111 

fracture network characteristics due to differences in spatial resolution. 112 

To compare these differences, we extract fracture networks from the portion of the low-113 

resolution data that overlaps the high-resolution data (Figure 1), and calculate properties of 114 

the fracture network, such as the porosity and geometric characteristics of individual fractures. 115 

Because some fractures may have apertures, or portions of their aperture, below the spatial 116 

resolution, the calculated fracture properties must be inaccurate. The key questions we 117 

examine here are the magnitude of the inaccuracy of the calculated characteristics, and which 118 

characteristics suffer the most from the limited spatial resolution. For example, the fractures 119 

in the high-resolution data appear more continuous and thicker than the fractures in the low-120 

resolution data (Figure 2). To quantify how the limited spatial resolution influences the 121 

calculated porosity and other fracture characteristics, such as the volume, surface area, 122 

length, and aperture, we compare the fracture characteristics calculated using the tomograms 123 

at the two resolutions. 124 

Another key caveat of the data acquired in X-ray tomography experiments is the noise 125 

included in the tomogram during acquisition. To quantify the influence of noise on the 126 

calculated fracture characteristics, we produce synthetic tomograms from the low-resolution 127 

tomograms with two types of noise. Then, we calculate the same suite of aforementioned 128 

fracture characteristics. We add point-source noise in order to mimic the effects of X-ray 129 

scattering to one set of synthetic tomograms. We also add blurring noise to another set of 130 

synthetic tomograms in order to mimic the effects of inadequate focusing of the beamline 131 

optics. Comparing the resulting fracture characteristics quantifies how both the resolution and 132 

noise change the calculated characteristics, and thus how inaccurate these calculations may 133 

be in a tomogram subjected to varying degrees of noise. Here, we assume that the fracture 134 

properties calculated with the high-resolution data that lack noise are closer to the true values 135 

of these properties than the low-resolution data. By quantifying these differences in the 136 

calculated fracture properties, we help constrain the true inaccuracy of the calculated fracture 137 
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properties, and thus how these inaccuracies may bias analyses of the evolving fracture 138 

network and pore structure. 139 

In the present analysis, we extract the fracture networks using one segmentation 140 

method based on a global threshold that we have used in previous analyses [e.g., 15]. 141 

Although we have used this method in previous studies, we have not described the algorithm 142 

in precise detail that would allow replication. Here, we describe the details of this algorithm so 143 

that other scientists may apply it to their data, and provide the corresponding code. In future 144 

work, we assess the influence of the segmentation method on the calculated fracture 145 

properties. 146 

 147 

2.2. Experimental conditions 148 

To quantify the influence of spatial resolution on the observed fracture network, we 149 

acquired two tomograms of two spatial resolutions that overlap the same volume of rock 150 

(Figure 1, Figure 2). We acquired these tomograms during a triaxial compression 151 

experiment on Westerly granite. During this experiment, we inserted a 1 cm tall and 0.4 cm 152 

wide cylinder of Westerly granite into the HADES apparatus [9]. This apparatus enables 153 

acquiring tomograms of the deforming rock while it experiences triaxial compression loading 154 

inside the rig at the temperature and pressure conditions relevant for crustal processes. In 155 

this experiment, we applied a confining stress (10 MPa) and then increased the axial stress 156 

in steps. After each axial stress increase, we acquired a tomogram at the typical (lower) 157 

resolution of 6.5 µm/voxel. When the rock was subjected to an axial stress of 149.5 MPa 158 

(and differential stress of 139.5 MPa), we also acquired the higher resolution tomogram at 159 

0.65 µm/voxel. [JM5]To acquire this second tomogram, we changed the resolution by 160 

changing the objective in front of the camera from x1 to x10, while keeping all the other 161 

equipment at the beamline the same, including the distance between the sample and the 162 

camera (36 cm). The experiment was performed at ambient temperature. 163 

Each X-ray tomography acquisition lasts for 1.5 minutes. When using the full white beam 164 

of the synchrotron, with maximum energy close to 200 keV, the average beam energy 165 

crossing the sample is close to 85 keV because the triaxial rig absorbs a proportion of the X-166 

ray energy. For the low-resolution volume, we acquired 1600 radiographs, at 32 bytes gray 167 

scale resolution of X-ray absorption, while the sample was rotated over 180°. The volume of 168 

the reconstructed sample contains 1600 x 1600 x 1600 voxels. For the high-resolution 169 

volume, we acquired 2500 radiographs. The volume of the reconstructed sample is 2048 x 170 

2048 x 2048 voxels. Both volumes are available publicly [48]. In order to analyze the same 171 

volume of the rock, we cropped the lower resolution tomogram so that it only overlaps the 172 

higher resolution tomogram.[JM6] 173 

 174 
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2.3. Data reconstruction and spatial resolution 175 

From the X-ray radiographs, we reconstructed three-dimensional volumes using both X-176 

ray absorption and phase contrast [49]. We use the phase contrast data to build the 177 

synthetic tomograms in this analysis because the X-ray absorption data was noisier than the 178 

phase contrast data. During the reconstruction, we applied corrections to remove acquisition 179 

noise, including ring artefacts, and to smooth variations of intensity of the X-ray source 180 

during the experiment. To remove noise from the reconstructed images, we pre-processed 181 

these data using the commercial image analysis software AvizoFire™. First, we denoised 182 

the volumes using a non-local-means filter [50]. Second, we cropped the low- and high-183 

resolution data so that these datasets exactly overlap each other, thereby aiding direct 184 

comparison of their subsequent segmentations. 185 

On beamline ID19, we performed a test to determine the spatial resolution. We used a 186 

standard pattern of Siemens stars and line pairs to separate objects. This test showed that 187 

we could separate objects of the size of the voxel. Due to phase contrast, we can also detect 188 

features that are smaller than the voxel size. For example, we can observe some cracks in 189 

the phase contrast data, but not the absorption fields because the crack interfaces produce 190 

contrast. On beamline ID17 at ESRF, using the same detector and optics as on beamline 191 

ID19, [51] found a spatial resolution of the order of 20 micrometers when the voxel size was 192 

6.5 micrometers (Table 5 of [51]). However, these authors did not use the phase contrast 193 

imaging technique we used on beamline ID19. Moreover, they used an energy (50 keV) 194 

lower than the energy used here (85 keV). In summary, the phase contrast enables 195 

differentiating between objects with dimensions near the voxel size. If the direct 196 

measurements of [51] apply to our data, then our low-resolution tomogram with a spatial 197 

sampling distance of 6.5 micrometers has a true spatial resolution of about 20 micrometers. 198 

For the high-resolution tomogram, with a spatial sampling distance of 0.65 micrometers, the 199 

true spatial resolution is about 2 micrometers.[JM7] 200 

 201 

2.4. Extraction of the fracture network 202 

Following tomogram reconstruction and denoising, we extract the fracture network from 203 

the surrounding solid rock core. The tomograms consist of a three-dimensional field of scaled 204 

values derived from the linear attenuation coefficient, which depends on the X-ray energy and 205 

density of the material. These values are often called the gray values of the tomogram. To 206 

extract the fracture network, we identify a global threshold of the gray values that represents 207 

the boundary between the solid and fluid. We chose this segmentation method because it is 208 

well-established, contains only one parameter required to segment the data (the gray scale 209 

threshold) and segments tomograms with little computational cost.  210 
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To select this global threshold, we follow the idea that the two populations of the voxels 211 

dominated by solid and those dominated by air form Gaussian distributions (Figure 3). 212 

Experimental observations support this idea because the main minerals in Westerly granite 213 

are quartz and feldspar, which have similar X-ray absorption properties. In addition, denser 214 

phases (biotite) have an absorption signature outside of the range of quartz and feldspar, and 215 

thus may be independently segmented. Thus, the histogram of gray values of a given 216 

tomogram that encompass the air, quartz, and feldspar should consist of two overlapping 217 

Gaussian distributions. The global threshold between the solid and air thus represents the 218 

boundary between these two Gaussian distributions. Thus, identifying this threshold requires 219 

finding an equation of two overlapping Gaussian distributions that best fits the histogram of 220 

gray values. 221 

To find this equation, we calculate a histogram (or probability distribution function, PDF) 222 

of the gray values in semi-log space that includes the range that contains the pores, quartz 223 

and feldspar gray values (Figure 3). We formulate the PDF, and corresponding Gaussian 224 

equations, in semi-log space because 1-2% of the tomogram is air-dominated voxels, while 225 

98-99% is solid-dominated. Then, we fit two overlapping Gaussian distributions to the 226 

log10(PDF) of the tomogram gray values (Figure 3a). Fitting these distributions requires finding 227 

the three different fitting parameters of both Gaussians. A Gaussian function, 𝑔(𝑥), includes 228 

the real constants a, b, and c: 229 

𝑔(𝑥) = 𝑎𝑒𝑥𝑝(
−(𝑥−𝑏)2

2𝑐2
).  Eq. 1 230 

Thus, we must find the parameters a, b, and c of both Gaussian distributions, with a total 231 

of six free parameters to identify the function f(x) that describes the two overlapping Gaussian 232 

distributions in log space: 233 

𝑓(𝑥) = 𝑙𝑜𝑔10 (𝑎𝑒𝑥𝑝 (
−(𝑥−𝑏)2

2𝑐2
) + 𝑑𝑒𝑥𝑝(

−(𝑥−𝑒)2

2𝑓2
))   Eq. 2 234 

where the parameters d, e, and f in Eq. 2, represent the values a, b, and c, in Eq. 1 for the 235 

second Gaussian population. To perform the fit of the PDF of the gray values, we select the 236 

minimum and maximum gray values to which the two Gaussian distributions will be fit. These 237 

values may be different from the minimum and maximum values of the full populations 238 

because sometimes the PDF of the gray values contains an additional peak when there are 239 

distinct populations of mineral density. Thus, the total PDF will contain three peaks and fitting 240 

two Gaussian distributions will not be successful. 241 

Next, we calculate the six free parameters that best fit 𝑓(𝑥) to our data using a standard 242 

non-linear fitting procedure with a least-square minimization criterion. Then, we identify a 243 

boundary between the two populations that represent the solid- and air-dominated voxels. To 244 

identify this boundary, we calculate the second derivative of the fit, 𝑓(𝑥), and then find where 245 
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the second derivative is closest to zero, indicative of the inflection point between the two 246 

Gaussian distributions (Figure 3b). This method then uses this gray value as the global 247 

threshold, tG, between the solid- and air-dominated voxels. The solid-dominated voxels are 248 

those with gray values above tG, and the air-dominated voxels are those with gray values 249 

below tG. Note, the low-resolution and high-resolution data have different tG. 250 

 251 

3. Results 252 

Here, we first examine how varying the spatial resolution of the tomogram changes the 253 

calculated fracture characteristics. We also assess how changing the global segmentation 254 

threshold changes the calculated characteristics. We then test how varying the types and 255 

magnitudes of noise influence the calculated characteristics.  256 

3.1. How spatial resolution influences the characteristics of the fracture network 257 

The example two-dimensional slices of the segmented fracture network appear to differ in 258 

the low-resolution and high-resolution data (Figure 3d-g). To quantify these differences using 259 

the fracture characteristics, we must identify the individual fractures within the segmented 260 

three-dimensional image. We extract the fractures from the tomogram using the global 261 

threshold identified with the method described in Section 3.2: voxels with gray values above 262 

and below the derived threshold are segmented into solid and fracture-dominated voxels, 263 

respectively. Thus, the segmented volume is a binary field of zeros and ones with ones 264 

representing the voxels dominated by air (i.e., fractures). Thus, we identify individual fractures 265 

from clusters of air-dominated voxels by grouping the voxels that have 26-fold connectivity, 266 

the most conservative type of connectivity in three dimensions. We then calculate the 267 

geometric properties of the resulting fracture networks in both the high-resolution and low-268 

resolution data using the threshold identified with our method, tG (Figure 3). We also test the 269 

influence of changing the selected threshold by -100 and +100 gray values on the calculated 270 

fracture network characteristics. We perform this test because the range of gray values over 271 

which the second derivative of the fit to the PDF is close to zero, indicative of the boundary 272 

between solid and air, spans tG-100 to tG+100 (Figure 3). Thus, any threshold within this range 273 

may be appropriate for segmenting the air-dominated and solid-dominated voxels. Note the 274 

threshold, tG, identified for the high-resolution and low-resolution tomogram differ from each 275 

other. 276 

We calculate the fracture geometric characteristics that we have used in previous studies 277 

to predict the timing of system-size failure, and thus identify potential precursors to failure 278 

[e.g., 12, 13]. Moreover, many other fracture mechanics and digital rock physics analyses 279 

depend on the accuracy of these measurements. These characteristics include the fracture 280 

volume, surface area, major axis length (indicative of fracture length), and minor axis length 281 

(indicative of fracture aperture or thickness). We calculate the major and minor axis lengths of 282 
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the best-fit ellipsoid using the covariance matrix and corresponding eigenvalues of the 283 

fracture. 284 

The histograms of the fracture characteristics indicate that the populations of 285 

characteristics generally overlap for the networks derived from the tomograms of varying 286 

resolutions (Figure 4). The few exceptions to this overlap include the volume of larger 287 

fractures, and the minor axis length. The low-resolution data appears to host a few larger 288 

(more volumetric) fractures than the high-resolution data (Figure 4a). The low-resolution data 289 

hosts thicker fractures, with larger minor axis lengths, than the high-resolution data (Figure 290 

4d). These histograms indicate that varying the threshold from tG-100 to tG+100 does not 291 

produce systematic changes in the calculated fracture properties. 292 

To more precisely compare the differences between the extracted fracture characteristics, 293 

we now examine the differences between the total porosity, and the mean and maximum of 294 

the fracture characteristics (Figure 5). The low-resolution data produces a system with 1.1-295 

1.4% porosity, whereas the high-resolution data produces a lower range (0.9-1.05%) of 296 

porosity (Figure 5a). This difference may arise from the hallows of darker gray values that 297 

surround the biotite minerals in the low-resolution data (arrows in Figure 2) that do not appear 298 

in the high-resolution data.  299 

The mean and maximum fracture volume, surface area, and major axis length are higher 300 

in the high-resolution data than the low-resolution data. However, the mean minor axis length 301 

is larger in the low-resolution data than the high-resolution data. In contrast, the maximum 302 

minor axis length is larger in the high-resolution data than the low-resolution data. Therefore, 303 

although the overall porosity is higher in the low-resolution data, many of the statistics of the 304 

fracture characteristics host larger values for the high-resolution data than the low-resolution 305 

data. Thus, the high-resolution data reveals more volumetric and longer fractures with greater 306 

surface area than the low-resolution data. 307 

Next, we more precisely quantify the observed differences in the fracture characteristics 308 

observed in the data with varying resolutions (Figure 6). In particular, we calculate the 309 

difference between the porosity, and mean and maximum fracture network characteristics 310 

observed in the low- and high-resolution data using the threshold, tG, identified with our 311 

segmentation method. This difference is shown as (vL-vH)/vH, where vL is the value found in 312 

the low-resolution data and vH is the value found in the high-resolution data. Thus, negative 313 

values indicate that vL > vH. 314 

The porosity and mean minor axis length are the only characteristics for which the values 315 

from the low-resolution data are greater than the high-resolution data, vL > vH (Figure 6). The 316 

low-resolution porosity is 29% higher than the high-resolution porosity. The mean fracture 317 

properties differ by smaller percentages than the porosity: surface area (27%), major axis 318 

length (12%), minor axis length (11%), and volume (8%). The maximum fracture properties 319 



10 

 

tend to differ by larger percentages than the mean properties: surface area (44%), minor axis 320 

length (29%), volume (20%), and major axis length (13%). Thus, calculations of the fracture 321 

surface area from tomograms are likely to be the most inaccurate of the selected fracture 322 

characteristics, rather than the volume or axes lengths. 323 

 324 

3.2. How noise influences the characteristics of the extracted fracture network 325 

To further constrain how the calculated fracture characteristics may deviate from the true 326 

values in X-ray tomography data, we next produce segmented images with added synthetic 327 

noise from the high-resolution data. This noise reflects two types of noise that arises during 328 

X-ray acquisition due to X-ray scattering (point-source noise) and limited optical focusing 329 

(blurring noise). From these noised images, we then calculate the fracture network 330 

characteristics and compare the differences in these values across differing levels of noise. 331 

This comparison reveals how each type of noise influences the calculated characteristics, and 332 

thus how these calculated characteristics differ from the true values. 333 

We adopt the procedure of 47 to produce the synthetic tomograms. This procedure 334 

includes segmenting the original tomogram into fractures and solid, scaling this binary field by 335 

the mean gray value of the original tomogram, and then adding noise to the segmented data. 336 

After we add noise to the segmented data, we consider these noised-images as synthetic 337 

representations of a tomogram with a continuum of gray values that are not yet segmented. 338 

Then, to calculate the fracture characteristics of the noised tomograms, we calculate a new 339 

global threshold for each of the noised images following our method, described in Section 2.3 340 

(Figure 3). 341 

We expect that the influence of noise on the high-resolution data mirrors that of the low-342 

resolution data. Thus, we only test the influence of noise on the high-resolution data. We apply 343 

noise to the two-dimensional slices of the tomogram at each z-coordinate (height above the 344 

base). So, we first extract two-dimensional, horizontal slices of the segmented high-resolution 345 

volume (Figure 3). Then we scale this binary field by the mean of the gray values of the 346 

original three-dimensional tomogram, following [47]. This scaling increases the similarity 347 

between the distribution of gray values of the original image and the noised images [47]. Thus, 348 

when the added noise parameter, n, is 0, only two gray values exist in the image (Figure 7), 349 

with the larger value corresponding to fractures. 350 

 351 

3.2.1. Point-source noise 352 

To add point-source noise, we build normal distributions of random numbers with a 353 

mean of zero and standard deviations of increasing value with increasing n. We then add 354 

these random numbers to the segmented image to simulate the addition of point-source noise 355 

to the tomogram. To calculate[JM8] the applied standard deviations of the normal distributions 356 
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of random noise, we find the standard deviation of the original tomogram, s, and then multiply 357 

s by 0.5 (n=1), 1 (n=2), 2 (n=3), 3 (n=4), 4 (n=5) and 5 (n=6) (Figure 7). The parameter n is 358 

not a value used to calculate the applied standard deviation, but only a method of labelling the 359 

synthetic tomograms. 360 

The calculated fracture characteristics are nearly identical in the tomograms with 361 

added point-source noise, except when n>3 (Figure 8). Above this threshold of noise, the 362 

fracture network appears to host less volumetric fractures, with lower surface areas, and lower 363 

major axis lengths. The added point noise thus acts to dissect the true fractures so that the 364 

detected fractures appear smaller. 365 

 366 

3.2.2. Blurring noise 367 

Next, we examine differences in the fracture characteristics in tomograms with varying 368 

degrees of blurring noise. This type of noise reflects the distortion of the tomogram that could 369 

arise from the limited resolution of the optical system. We create these synthetic images by 370 

segmenting the original image using our method (Figure 3) and then applying a filter with a 371 

2D Gaussian smoothing kernel of increasing standard deviations with increasing n (Figure 9). 372 

We increase the applied standard deviation, s, from one to 16 in increments of three such that 373 

when n=1 then s=1, n=2 then s=4, n=3 then s=7, n=4 then s=10, n=5 then s=13, and n=6 then 374 

s=16. 375 

Increasing the blurring noise produces fracture networks that appear to host less 376 

volumetric fractures with lower surface area, shorter major axes and thicker minor axes 377 

(Figure 10). Blurring thus thickens and shortens the detected fractures. 378 

 379 

4. Discussion 380 

In this analysis, we compare differences in the geometric properties of fractures in 381 

tomograms at two spatial resolutions and varying degrees of noise. To summarize our analysis 382 

and discuss its implications, we now compare the influence of these parameters on the 383 

porosity (Figure 11). We calculate both the total porosity of the tomogram (three-dimensional 384 

porosity), and the porosity of individual horizontal slices along a vertical profile parallel to the 385 

longest axis of the cylindrical core sample (two-dimensional porosity). We calculate the two-386 

dimensional porosity in order to quantify how the porosity varies throughout the tomogram, 387 

and thus how the observed fracture network varies. Because the three-dimensional porosity 388 

of the tomogram provides one specific value representative of the complete system, we may 389 

more directly compare the influence of resolution to the influence of noise. 390 

Examining the trends in the three-dimensional porosity indicates that increasing the 391 

resolution decreases the porosity, in contrast to expectations (Figure 11a). The lower 392 

resolution data may produce higher calculated porosity because some voxels were incorrectly 393 
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labelled as fractures using the segmentation method. Although some misclassification may 394 

also exist in the high-resolution data, the low-resolution data appears to suffer from the darker 395 

voxels between different minerals to a greater extent than the high-resolution data. For 396 

example, the biotite minerals (colored yellow in Figure 2) often host a halo of darker voxels.  397 

This halo is an artefact of the phase contrast that is not as significant in the high-resolution 398 

data. As a result, our segmentation method misclassifies these voxels as fractures, producing 399 

the circular structures in the low-resolution segmented data (arrows in Figure 2a) that do not 400 

occur in the high-resolution segmented data (Figure 2g). These artefacts help produce the 401 

0.05% higher range of porosity of the low-resolution data (Figure 11a). Analyzing the 402 

absorption data, rather than the phase contrast data, may have produced varying results. 403 

However, we used the phase contrast data in this analysis because these data were less noisy 404 

than the absorption data. Such artefacts may also be removed manually, if the size of the data 405 

is sufficiently low. We did not remove them here because such manual removal is not feasible 406 

for a typical X-ray synchrotron experiment in which we acquire 50-100 tomograms.[JM9] 407 

Increasing the point-source noise increases the porosity, as expected. This trend is 408 

expected because adding point-source noise involves increasing the gray values of the 409 

segmented, synthetic tomograms. Because higher values represent fractures in these noised 410 

images, increasing the gray values of the solid makes them appear closer to the gray values 411 

of the fractures. Thus, in images in which higher gray values represent fractures, noise that 412 

increases the gray value will tend to misclassify solid as fractures. Similarly, in images in which 413 

lower gray values represent fractures, noise that artificially decreases the calculated gray level 414 

may cause voxels to be misclassified as solid. In tomograms, some select a gray scale 415 

assignment in which the solids have higher gray levels than air/fluids. Thus, point-source noise 416 

that increases the gray value in such tomograms with solids of higher gray levels may tend to 417 

lead to the misclassification of fracture-dominated voxels as solid, and thus lower porosities, 418 

in contrast to the synthetic tomograms analyzed here.[JM10] 419 

Increasing the blurring noise decreases the porosity in our synthetic tomograms. This 420 

trend occurs because the two-dimensional Gaussian blurring noise tends to decrease the gray 421 

value (Figure 9). Thus, more voxels are misclassified as solid because the solid has a lower 422 

range of gray values than the fractures. Similar to the trend with the point-source noise, if the 423 

gray scale range is lower for air/fluids than solids, then blurring noise that reduces the gray 424 

value will tend to increase the porosity in such tomograms. 425 

The range of tested values of tomogram resolution, added point-source noise, and 426 

added blurring noise suggests that the degree of noise may exert a greater influence on the 427 

calculated fracture properties than the resolution (Figure 11a). However, this conclusion 428 

depends on the amount of noise in a given tomogram. If point-source noise produces 429 

histograms of gray values similar to the highest values tested here (Figure 7), then the 430 
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calculated porosity may be more than three times higher than the true porosity (Figure 11). If 431 

blurring noise produces histograms of gray values similar to the highest values tested here 432 

(Figure 9), then the calculated porosity may be near zero, and thus less than the true value 433 

(Figure 11). 434 

Examining the trends in the two-dimensional porosity calculated in each horizontal 435 

slice indicates that this porosity distribution follows similar trends as the porosity calculated 436 

from the three-dimensional tomograms. In both dimensions, increasing point-source noise 437 

increases the porosity and increasing blurring noise decreases the porosity.  438 

With the vertical distributions of two-dimensional porosity, we may observe the regions 439 

of the tomograms that differ the most in porosity between the low- and high-resolution data. In 440 

particular, the volume of the high-resolution tomogram between 1200-1400 voxels above the 441 

base (z-coordinate) reaches more than 2% porosity, while the rest of the tomogram appears 442 

to host porosity near 1% (Figure 11b, c). In contrast, the vertical distribution of porosity 443 

observed in the low-resolution tomogram does not host such a spike in porosity from 1200-444 

1400 voxels, but instead ranges from 1-2% porosity across the full height of the tomogram. 445 

Note, we report the height throughout both tomograms using the voxel dimension of the high-446 

resolution tomogram. Examination of the two-dimensional slices of the tomograms between 447 

1200-1400 voxels shows that this portion of the tomogram hosts thin fractures that are visible 448 

(and thus detected) in the higher-resolution data, but not in the lower-resolution data (Figures 449 

2, 3). 450 

This example underscores that the largest fractures that are below the resolution of 451 

the tomograms have the most significant impact on the inaccuracy of the calculated properties. 452 

Rocks with many small fractures and pores, and only a few fractures with dimensions above 453 

the resolution, will produce the most inaccurate fracture network properties. Thus, we may use 454 

the distribution of the size (volume or area) of the fractures and pores observed in other 455 

datasets, such as Scanning Electron Microscopy images, to constrain the magnitude of the 456 

inaccuracy of the calculated fracture characteristics and resulting porosity. If such datasets 457 

indicate that the rock hosts a wide range of fracture sizes, with many fractures with dimensions 458 

below the spatial resolution of the tomogram, we expect larger differences between the true 459 

and calculated porosity and fracture geometric characteristics than if the data set has a narrow 460 

distribution of fractures with dimensions above the spatial resolution. Rocks that tend to have 461 

a narrower range of pore and fracture sizes with dimensions above the spatial resolution may 462 

include higher porosity (25%), well-sorted sandstones, limestones and other rocks composed 463 

of cemented grains [e.g., 52, 53, 54, 55]. In contrast, lower porosity rocks, such as granite, 464 

may tend to host a wider range of fracture sizes that overlap the spatial resolution, and thus 465 

produce calculated fracture properties that are the most inaccurate.[JM11] Consistent with this 466 

idea, an analysis of the influence of spatial resolution on the physical properties of porous 467 
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rocks, including sandstone, limestone and carbonate, found that the spatial resolution has 468 

minimal influence on the calculated properties [56]. Similarly, tomograms of two resolutions of 469 

Berea sandstone yield different porosities, surface area and tortuosity, but similar 470 

permeabilities [57]. Thus, the smallest pores that were only detected in the higher resolution 471 

tomogram did not significantly influence the calculated permeability of the system.[JM12] 472 

Our analysis indicates that decreasing the spatial resolution produces the most 473 

inaccurate calculations of the surface area, rather than the volume or axes lengths (Figure 6, 474 

Figure 12). Thus, calculations that depend on the fracture surface area, such as those used 475 

for estimates of the kinetics of chemical reactions during fluid-rock interactions [58, 59, 60], 476 

may have wider error ranges than calculations that depend on the volume, fracture length or 477 

aperture, such as the stress intensity factor [e.g., 61]. Thus, calculations that depend on the 478 

surface area should be used with greater caution than calculations that depend on the other 479 

fracture properties. 480 

Similar to the influence of resolution, the presence of point-source noise has the most 481 

significant impact on the calculated fracture volume and surface area (Figure 8, Figure 12). 482 

However, the presence of blurring noise has the most significant impact on the calculated 483 

fracture volume, without a strong influence on the surface area (Figure 10, Figure 12). Thus, 484 

when tomograms contain significant amounts of point-source noise and blurring noise that 485 

cannot be removed through image pre-processing techniques, the fracture volume and 486 

surface area will contain greater error ranges than the minor and major axis lengths. 487 

Due to the significant influence of noise on the properties calculated from tomograms, 488 

denoising algorithms are particularly useful to apply before the segmentation of a fracture 489 

network. In our analyses, we denoise the volumes using a non-local-means filter [50]. There 490 

is a wide variety of other denoising algorithms and software available [62, 63].   [JM13] 491 

 492 

5. Conclusions 493 

To quantify how the spatial resolution and noise influence the fracture characteristics 494 

calculated from X-ray tomography data, we acquired two overlapping tomograms with spatial 495 

resolutions that differ by an order of magnitude during a triaxial compression experiment on 496 

granite. We compare the fracture network characteristics calculated from both tomograms of 497 

differing spatial resolutions, and from synthetic tomograms with two distinct types of noise. In 498 

contrast to expectations, the lower resolution tomogram appears to host higher porosity (1.1-499 

1.4%) than the higher resolution tomogram (0.9-1.05%). The presence of halos of darker 500 

voxels surrounding minerals, an artefact of phase contrast, contributes to this unexpected 501 

result. However, this analysis reveals that some regions of the tomograms host many thin 502 

fractures that are below the resolution of the low-resolution data and above the resolution of 503 

the high-resolution data. In these regions, the calculated porosity in the high-resolution data 504 
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is twice that of the porosity of the low-resolution data, consistent with expectations. Thus, 505 

when the fracture network contains many thin fractures, the lower-resolution data may miss 506 

more than 50% of the true fracture network. Therefore, the size distribution of the fractures 507 

and pores of a rock helps constrain the magnitude of inaccuracy of the porosity and fracture 508 

network characteristics calculated from tomography data. 509 

The influence of added noise on the fracture characteristics is stronger than the influence 510 

of spatial resolution, using the ranges of spatial resolutions and noise tested here. The 511 

addition of point-source noise, which may arise due to X-ray scattering, tends to increase the 512 

porosity in our synthetic images in which higher values represent fractures. The point noise 513 

tends to dissect the true fractures so that the detected fractures appear smaller, with lower 514 

volumes, surface areas, lengths, and apertures than the true fractures. The addition of 515 

blurring noise, which may arise due to the limitations of the optics or due to the 516 

reconstruction algorithm, tends to decrease the porosity in our images. Blurring tends to 517 

thicken and shorten the detected fractures, producing observed fractures that are less 518 

volumetric, with lower surface area, shorter major axes, and thicker minor axes than the true 519 

fractures. In X-ray tomography data in which lower gray values represent fractures, these 520 

trends would be reversed. 521 

The fracture property that differs the most between the fracture networks calculated in 522 

the low and high-resolution data is the fracture surface area, rather than the volume, length, 523 

or aperture of the fracture. This result suggests employing a larger degree of caution when 524 

using equations that depend on the fracture surface area calculated in X-ray tomography 525 

data, rather than equations that use the other fracture properties. 526 
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 719 

 720 

Figure Captions 721 

Figure 1. Fractures extracted from low-resolution (blue) and high-resolution (red) tomograms 722 

in a core of Westerly granite deformed within the HADES apparatus on beamline ID19 at the 723 

European Synchrotron Radiation Facility. Leftmost 3D synchrotron X-ray microtomography 724 

image shows the full core captured in the low-resolution data. Ellipse at the top of the core 725 

shows the upper piston of the deformation apparatus. The high-resolution tomogram (0.65 726 

µm/voxel side length) covers a small subvolume of the low-resolution tomogram (6.5 µm/voxel 727 

side length). 728 

 729 

Figure 2. Example slices of low-resolution (a, c, e) and high-resolution (b, [JM14]d, f) tomograms 730 

oriented perpendicular to 𝜎1, at three example heights (z-coordinate) above the base of the 731 

tomogram in a granite sample. The slices are colored by the gray values of the tomogram, 732 

which depend on the X-ray energy and material density (i.e., linear attenuation coefficient). 733 

Thus, higher values (yellow to light green in the figure) correspond to minerals of varying 734 

density (biotite, quartz, K-feldspar, and plagioclase), and lower values correspond to fractures 735 

and pores (dark blue). The white arrows in a), c), and e) show the dark rims around biotite 736 

grains produced by the phase contrast in the low-resolution dataset. These dark rims may be 737 
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misclassified as pore space because they host gray values that overlap the range of the gray 738 

values of the pore space. 739 

 740 

Figure 3. Method of selecting the appropriate gray level threshold to identify voxels dominated 741 

by solid and by air (i.e., fractures and pores) (a) for the low-resolution (b) and high-resolution 742 

(c) tomograms, and resulting segmentation of example slices (d-g). In the example segmented 743 

slices (d-g), the solid-dominated voxels (with gray values above the threshold) are blue and 744 

the air-dominated voxels (with gray values below the threshold) are yellow. 745 

 746 

Figure 4. Histograms of geometric characteristics calculated for the high-resolution (solid 747 

lines) and low-resolution (dashed lines) fracture networks derived from segmenting the 3D 748 

data using a range of thresholds. We calculate the volume (a), surface area (b), major axis 749 

length (indicative of fracture length) (c) and minor axis length (indicative of fracture aperture) 750 

(d) of all the fractures. The sketches in (c) and (d) show that the major and minor axes lengths 751 

(highlighted with blue arrows) are calculated from the best-fit 3D ellipsoid of the fracture 752 

derived from the covariance matrix and corresponding eigenvalues. The threshold tG is the 753 

threshold derived using our method, for either the low-resolution or high-resolution data 754 

(Figure 3). We calculate the fracture characteristics with thresholds from tG-100 to tG+100 755 

because the inflection point between the two gaussian distributions of the solid- and air-756 

dominated voxels (where the second derivative is close to zero) includes this range. 757 

 758 

Figure 5. Porosity (a) and mean (blue) and maximum (red) fracture characteristics (b-e) 759 

calculated from the high-resolution (solid lines with circles) and low-resolution (dashed lines 760 

with triangles) data using segmentation thresholds from t-100 to t+100. We calculate the 761 

porosity (a) and mean and maximum of the fracture volume (b), surface area (c), major axis 762 

length (d) and minor axis length (e) of all the fractures. 763 

 764 

Figure 6. Difference in the porosity (black), and mean (blue) and maximum (red) fracture 765 

network characteristics observed in the low- and high-resolution data using the threshold, tG. 766 

This difference is shown as (vL-vH)/vH, where vL is the value found in the low-resolution data 767 

and vH is the value found in the high-resolution data. Thus, negative values indicate that vL > 768 

vH. Note, the differences for the maximum values are all negative. 769 

 770 

Figure 7. Example slices of tomogram with increasing magnitudes of added point-source noise 771 

(a-f) and corresponding histograms (g). The example slice is a horizontal slice (perpendicular 772 

to 𝜎1) at the coordinate z=1253 voxels above the base of the tomogram. When the added 773 

noise parameter, n=0, only two values of the gray values exist in the image (g). With increasing 774 
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n, the distributions of gray values surrounding these values broaden, producing wider ranges 775 

of values that are fractures and wider ranges that are solid material. 776 

 777 

Figure 8. Histograms of geometric characteristics calculated for the fracture networks derived 778 

from synthetic images with point-source noise. Increasing noise parameter, n, indicates 779 

increasing point-source noise. We calculate the volume (a), surface area (b), major axis length 780 

(indicative of fracture length) (c) and minor axis length (indicative of fracture aperture) (d) of 781 

all the fractures. 782 

 783 

Figure 9. Example slices of tomogram with increasing magnitudes of added blurring noise (a-784 

f) and corresponding histograms (g). The example slice is a horizontal slice (perpendicular to 785 

𝜎1) at the coordinate z=1253 voxels above the base of the tomogram. Blurring tends to 786 

decrease the range of gray values because the smoothing kernel overlaps increasing amounts 787 

of smaller gray values, indicative of solid material, rather than higher gray values, indicative of 788 

fractures and pores. 789 

 790 

Figure 10. Histograms of geometric characteristics calculated for the fracture networks derived 791 

from synthetic images with blurring noise. Increasing noise parameter, n, indicates increasing 792 

blurring noise. We calculate the volume (a), surface area (b), major axis length (indicative of 793 

fracture length) (c) and minor axis length (indicative of fracture aperture) (d) of all the fractures.  794 

 795 

Figure 11. Differences in three-dimensional porosity (a), and two-dimensional porosity (b-e) 796 

due to differences in resolution (a-c), and differences in noise (a, d-e). The three-dimensional 797 

porosity is the total porosity of the tomogram. The two-dimensional porosity profiles (c-e) are 798 

calculated from individual horizontal slices at varying heights above the base of the tomogram. 799 

We report the height throughout both tomograms using the voxel dimension of the high-800 

resolution tomogram for simplicity. 801 

 802 

Figure 12. Influence of each parameter on the calculated fracture properties relative to the 803 

values measured without noise in the highest resolution tomogram (a). b) Lowering the 804 

resolution influences the surface area the most of the fracture properties, producing the largest 805 

normalized magnitude of the difference between the mean value measure in the low-resolution 806 

data, vL, and the high-resolution data, vH: |vL – vH|/vH. c) Point source noise produces the 807 

largest differences in the volume and surface area, measured with the normalized difference 808 

in the mean value measured in the tomogram without noise, v0, and at the highest level of 809 

tested noise, vn: |vn – v0|/v0. d) Blurring noise produces the largest difference in the volume, 810 

as measured with |vn – v0|/v0. 811 

 812 


