Aggregating the Bandwidth of Multiple Network
Interfaces to Increase the Performance of Networked

Applications

by

Kristian Riktor Evensen

Doctoral Dissertation submitted to
the Faculty of Mathematics and Natural Sciences
at the University of Oslo
in partial fulfilment of the requirements for

the degree of Philosophiae Doctor

September 2011

© Kristian Riktor Evensen, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1148

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.

The thesis is produced by Unipub merely in connection with the

thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

Devices capable of connecting to two or more different networks simultaneously, known
as host multihoming, are becoming increasingly common. For example, most laptops
are equipped with a least a Local Area Network (LAN) and a Wireless LAN (WLAN)
interface, and smartphones can connect to both WLANs and 3G-networks (High-Speed
Downlink Packet Access, HSDPA). Being connected to multiple networks simultaneously
allows for desirable features like bandwidth aggregation and redundancy.

Enabling and making efficient use of multiple network interfaces or links (network
interface and link will be used interchangeably throughout this thesis) requires solving
several challenges related to deployment, link heterogeneity and dynamic behavior. Even
though multihoming has existed for a long time, for example routers must support con-
necting to different networks, most existing operating systems, network protocols and
applications do not take host multihoming into consideration. The default behavior is
still to use a single interface for all traffic. Using a single interface is, for example, often
insufficient to meet the requirements of popular, bandwidth intensive services like video
streaming.

In this thesis, we have focused on bandwidth aggregation on host multihomed devices.
Even though bandwidth aggregation has been a research field for several years, the related
works have failed to consider the challenges present in real world networks properly, or does
not apply to scenarios where a device is connected to different heterogeneous networks.

In order to solve the deployment challenges and enable the use of multiple links in a way
that works in a real-world network environment, we have created a platform-independent
framework, called MULTI. MULTT was used as the foundation for designing transparent
(to the applications) and application-specific bandwidth aggregation techniques. MULTI
works in the presence of Network Address Translation (NAT'), automatically detects and
configures the device based on changes in link state, and notifies the application(s) of any
changes.

The application-specific bandwidth aggregation technique presented in this thesis was
optimised for and evaluated with quailty-adaptive video streaming. The technique was

evaluated with different types of streaming in both a controlled network environment and

real-world networks. Adding a second link gave a significant increase in both video and
playback quality. However, the technique is not limited to video streaming and can be
used to improve the performance of several, common application types.

In many cases, it is not possible to extend applications directly with multilink sup-
port. Working on the network-layer allows for the creation of bandwidth aggregation
techniques that are transparent to applications. Transparent, network-layer bandwidth
aggregation techniques must support the behavior of the different transport protocol in
order to achieve efficient bandwidth aggregation. The transparent bandwidth aggregation
techniques introduced in this thesis are targeted at Universal Datagram Protocol (UDP)
and Transmission Control Protocol (TCP), the two most common transport protocols in

the Internet today.

Acknowledgements

Working on the PhD has been a sometimes frustrating, but most of all a fun, rewarding
and fulfilling experience. I would like to thank my supervisors, Dr. Audun F. Hansen,
Prof. Paal E. Engelstad, Prof. Carsten Griwdoz and Prof. Pal Halvorsen for interesting
discussions, encouragement, ideas, for learning me to work more independently and for
putting up with me during my most stubborn times. I would also like to thank my
colleague Dominik Kaspar for a fruitful collaboration on the topic of multilink.

Simula Research Laboratory has provided an excellent working environment with great
colleagues, several whom have become good friends. I would especially like to thank Paul
Beskow, Havard Espeland, Hakon Stensland, Andreas Petlund, Ragnhild Eg, Pengpeng
Ni, Tomas Kupka, Saif Shams, Molly Maleckar, Vo Quoc Hung and Ahmed Elmokashfi
for a great time and lots of fun.

Thanks to my girlfriend, Aiko, for keeping me sane during the last months of thesis
writing, giving me other things to think of and focus on, and making sure that I got fresh
air. Finally, I would like to thank my friends and family for supporting me in whatever I

choose to do, and my parents for providing cheap accommodation.

il

Contents

1 Introduction

1.1 Background and motivation L L.
1.2 Bandwidth aggregation related challenges

1.2.1 Deployment challenges

1.2.2 Link heterogeneity L.

1.2.3 Unstable link performance
1.3 Problem statement
1.4 Limitations o
1.5 Scientific context and Methodology
1.6 Contributions
1.7 Outlineof thesis.

2 Background and related work

2.1 Transport protocols
21.1 UDP . ..
212 TCP ..o

2.2 Related work o
2.2.1 Linklayer o
2.2.2 Network layer
2.2.3 Transport layer oo
2.2.4 Application layer Lo

2.3 SUIMMATY .« . v v v v e e e e e e e

3 Designing an experimental multilink infrastructure

31 Overview Lo
3.1.1 Application specific use of MULTT.
3.1.2 Enabling transparent multilink
3.1.3 Building a multilink overlay network
3.1.4 Packet and processing overhead00

12
12
13
13
16
17

19
20
20
21
26
27
28
30
34
36

3.1.5 Solving the connectivity challenge 45

3.2 Modules 45
3.2.1 Linkmodule. 46
3.22 DHCP module 47
3.2.3 Probingmodule oo 48
3.24 Tunneling moduleo oo 48

3.3 Implementation details oL 49
331 Linux/BSD 49
332 Windows 50

3.4 TImplementation examples 50

3.5 SUmMMAary ... e 54

Application-specific bandwidth aggregation 57

4.1 HTTP and multiple links o 0L 58
4.1.1 Range retrieval requests 60
4.1.2 Pipelining Lo 63
4.1.3 Persistent connections 66

4.2 Quality-adaptive streaming over multiple links 67
4.2.1 Startupdelay 67
4.2.2 Adaptive streamingo 67
4.2.3 The DAVVI streaming system 68
4.2.4 Quality adaption mechanism and request scheduler 70

4.3 Evaluation methodo 72
4.3.1 Controlled network environment 74
4.3.2 Real-world networkso 75

4.4 Static subsegment approach L0000 76
4.4.1 Static links 76
442 Dynamiclinks o oo 81
443 SUMMATYo 83

4.5 Dynamic subsegment approach 0oL 84
4.5.1 Bandwidth heterogeneityo oo 85
4.5.2 Latency heterogeneity 91
4.5.3 Emulated dynamics Lo 96
4.5.4 Real world networkso 99
455 SUMMATY .« . . o o oo 103

4.6 Conclusion 104

5 Transparent bandwidth aggregation
5.1 Transparent bandwidth aggregation of UDP-streams
5.1.1 Architecture
5.1.2 Evaluation in a controlled network environment
5.1.3 Evaluation in real-world networks
514 Summary .. o.o. ..
5.2 Transparent bandwidth aggregation of TCP-streams
5.2.1 Architecture
5.2.2 Evaluation in a controlled network environment
5.2.3 Bandwidth aggregation using TCP connection splitting
5.2.4 Summary

5.3 Conclusion L

6 Conclusion
6.1 Summary and contributions L oL
6.2 Concluding remarkso
6.3 Future work

A Publications
A.1 Conference publications o
A2 Journal articles L

A.3 Patent applications L

107
109
111
118
124
125
126
127
129
131
135
135

137
137
139
141

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1
2.2

3.1

3.2

3.3

34
3.5

The default host multihoming scenario. A client device is equipped with
multiple network interfaces and has several active network connections.
The four layers of the Internet Protocol stack, or the TCP/IP model.
Throughput aggregation with BitTorrent over simultaneous HSDPA and
WLAN links, using Equal-Cost Multipath Routing. The results were ob-
tained by downloading a total of 75 copies of a 700 MB large file.
An example of NAT. Two clients that are place behind the same NAT-box
communicates with the same server. When the server sends a packet, it
uses the NAT’s IP and the port assigned to the mapping.
Achieved TCP-throughput when doing pure round-robin striping over links
with heterogeneous RT'T (10 ms and 100 ms, throughput averaged for each
second). ...
Achieved TCP-throughput with pure round-robin and weighted round-
robin striping over links with heterogeneous bandwidth (5 Mbit/s and
10 Mbit /s, throughput averaged for each second).
HSDPA throughput varying over a period of 14 days. Results obtained by
repeatedly downloading a 5 MB large file over HTTP.

Example of a TCP receive buffer.

An illustration of slow start, retransmission timeout and fast retransmit . .

An example of MULTT running in visible mode on a client with four active
network interfaces. oo
An overview of a transparent multilink solution using MULTT (on a client
with two interfaces).
Overview of MULTI run in invisible mode on a client with four active
interfaces. L
How the core modules in the MULTTI client interacts (invisible mode). . . .
The architecture of the HTTP downloader used to demonstrate MULTT’s

visible mode.

ix

3.6 Achieved aggregated throughput with our MULTI example application
(visiblemode).
3.7 The architecture of the transparent handover solution.
3.8 The achieved throughput and data downloaded over WLAN and 3G in our
transparent handover experiment.
3.9 The tram route used to test the transparent handover solution. The two

marked areas show where WLAN was available.

4.1 An example of application layer bandwidth aggregation. A multihomed
client is connected to a server using three interfaces and requests one sub-
segment over each connection (5j...,53), achieving bandwidth aggregation.

4.2 An example of the effect the subsegment size has on performance (the
average experienced throughput of the HSDPA network was 300 KB/s). . .

4.3 With sequential requests, the client has to wait until the previous request
has been finished before it can make a new. This requirement is removed
when pipelining is used and the next request(s) can be sent at any time,
eliminating the time overhead.

4.4 An example of the benefit of using HTTP request pipelining. These results

were obtained by simultaneously downloading a 50 MB large file over HS-

61

DPA (avg. throughput 300 KB/s) and WLAN (avg. throughput 600 KB/s). 64

4.5 Increasing the number of pipelined subsegments results in a more efficient
throughput aggregation. L.

4.6 Startup phase — Requesting subsegments in an interleaved pattern helps
to provide a smooth playback and reduces the initial response time. The
figure shows interleaved startup for a client with three interfaces (I;...,13)

and a pipeline depth of three.

66

4.7 Snapshot of a stream in progress. The striped areas represent received data. 68

4.8 The controlled environment-testbed used to evaluate the performance of
video streaming over multiple links.
4.9 An example of the static subsegment approach. The two interfaces Iy and
I have finished downloading segment sy of quality Q2. As the throughput
has dropped, they currently collaborate on downloading a lower-quality
segment. Lo L L
4.10 Video quality distribution when the scheduler was faced with bandwidth
heterogeneity in a fully controlled environment (0.1 ms RTT on both links),
using the static subsegment approach.
4.11 The number of buffered segments plotted against video quality distribution
(bandwidth ratio 80:20), using the static subsegment approach.

4.12

4.13

4.14

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27
4.28

Deadline misses for 2-segment buffers and various levels of bandwidth het-
erogeneity, using the static subsegment approach.
Video quality distribution when the scheduler was faced with latency het-
erogeneity in a fully controlled environment, buffer size of two segments
and using the static subsegment approach.
Deadline misses when the scheduler is faced with latency heterogeneity in
a controlled environment, using the static subsegment approach.

The average achieved throughput (for every segment) of the scheduler with

emulated dynamic network behaviour, using the static subsegment approach.

Deadline misses of the scheduler with emulated dynamics, using the static
subsegment approach. Lo L
Average achieved throughput of the scheduler in real-world wireless net-
works, using the static subsegment approach.o
An example of the dynamic subsegment approach. The two interfaces
Iy and I; have finished downloading segment sqg of quality Q2. As the
throughput dropped, the links currently collaborate on downloading the
third subsegment of a lower quality segment.
Video quality distribution for different bandwidth heterogeneities, buffer
size/startup delay of two segments (4 seconds) and on-demand streaming. .
Deadline misses for different levels of bandwidth heterogeneity with on-
demand streaming, buffer size/startup delay of two segments (4 seconds). .
Video quality distribution for different levels of bandwidth heterogeneity,
buffer size/startup delay of one segment (2 second startup delay) and live
streaming with buffering. oL

Deadline misses for a buffer size of one segment (2 second startup delay)

and various levels of bandwidth heterogeneity, live streaming with buffering.

Video quality distribution for a buffer size of one segment (2 second startup
delay), live streaming without buffering and bandwidth heterogeneity. . . .
Video quality distribution for two-segment buffers and various levels of
latency heterogeneity. L
Average deadline misses for a buffer size of two segments (4 second startup
delay), with latency heterogeneity. L.
Average achieved throughput of the schedulers with emulated dynamic
network behaviour, on-demand streaming.
Deadline misses with on-demand streaming and emulated dynamics.
Average achieved throughput of the schedulers with emulated dynamic

network behaviour, live streaming without buffering.

79

80

80

82

82

83

85

86

88

89

90

92

93

95

97
98

4.29 Deadline misses with live streaming without buffering and emulated dy-

NAIICS. . . o v v o o e

4.30 Average achieved throughput of the schedulers with real-world networks,

on-demand streaming.

5.1 An example of a transparent bandwidth aggregation solution built around
a proxy, for a client with two interfaces The stream is split/merged at the
proxy and internally in the client, as unmodified hosts expects the original
stream (the transport protocol). oL

5.2 An overview of our multilink proxy architecture running on a client with
two active interfaces.

5.3 The packet format used with the transparent UDP bandwidth aggregation

technique. e
5.4 Snapshots of the packet scheduler.
5.5 A state-diagram showing how the resequencer works
5.6 The three states of the resequencer. Q1 and Q2 are the resequencing queues

for two different interfaces. oL
5.7 The controlled environment-testbed used to evaluate the performance of

the transparent bandwidth aggregation technique for UDP.

5.8 Achieved aggregated bandwidth with a constant 10 Mbit/s UDP stream
and fixed bandwidth heterogeneity. The X:Y notation means that link 1
was allocated X Mbit/s and link 2 'Y Mbit/s. :0 means that a single link
was used. ...

5.9 Achieved aggregated bandwidth with a constant 10 Mbit/s UDP stream
and fixed latency heterogeneity. The X:Y notation means that link 1 had

an RTT of X ms and link 2 Y ms. :0 means that a single link was used. . .

5.10 Achieved bandwidth aggregation with emulated network dynamics and a

constant 10 Mbit/s UDP-stream. The bandwidth was measured every second.

5.11 Achieved aggregated throughput with a bandwidth ratio of 8 Mbit/s:2 Mbit /s
(equal RTT) and a constant 10 Mbit/s UDP stream. The throughput was
measured for every second. The spikes are caused by data being released
in bursts because of the heterogeneity.

5.12 Achieved aggregated throughput with a latency ratio of 10 ms:100 ms
(equal bandwidth) and a constant 10 Mbit/s UDP stream. The throughput
was measured for every second. The drops in throughput are caused by

the slower growth rate of the congestion window on the high RTT link

120

120

. 122

5.13

5.14

5.15

5.16

5.18

5.19

5.20

Achieved aggregated throughput with a combination of bandwidth and
latency heterogeneity (8 Mbit/s, 10 ms RTT and 2 Mbit/s, 100 ms RTT),
and a constant 10 Mbit/s UDP stream. The throughput was measured for
every second.
Achieved aggregated throughput with emulated network dynamics and a
constant 10 Mbit/s UDP stream. The throughput was measured every
second. . . oL oL
The aggregated throughput experienced in real-world networks. The sender
sent a constant 10 Mbit/s UDP stream and the throughput was measured
for every second. L
Average achieved aggregated throughput with TCP for fixed levels of band-
width heterogeneity. The X:Y notation means that link 1 had a bandwidth
of X Mbit/s, link 2 Y Mbit/s and :0 means that a single link was used.
Average achieved aggregated throughput with TCP for fixed levels of la-
tency heterogeneity. The X:Y notation means that link 1 had an RTT of
X ms, link 2 Y ms and :0 means that a single link was used.
Example of the design of a bandwidth aggregation solution based on con-
nection splitting. Lo
Average achieved aggregated TCP-throughput using emulated connection
splitting for different levels of bandwidth heterogeneity.
Average achieved aggregated TCP-throughput using connection splitting
for different levels of latency heterogeneity, compared to the throughput

achieved by the fully transparent technique.

. 129

133

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

Observed TCP Throughput (KB/s) when measuring processing overhead
with L2TP-tunneling. oo 39

Quality levels and bitrates of the soccer movie used to evaluate the perfor-
mance of video streaming. oL Lo 73
Observed characteristics of the real-world links that were used when com-
paring the static subsegment approach to using a single link. 5]
Observed characteristics of the real-world links that were used when com-
paring the performance of the static and dynamic subsegment approach. . 75
Quality distribution for emulated dynamics and on-demand streaming. . . 96
Quality distribution for emulated dynamics and live streaming with buffering. 98
Quality distribution for emulated dynamics and live streaming without
buffering. 99
Quality distribution for real world networks and on-demand streaming. . . 101
Quality distribution for real world networks and live streaming with buffering.103
Quality distribution for real world networks and live streaming without
buffering. 103

XV

Chapter 1
Introduction

Video streaming, cloud storage and other bandwidth intensive applications are among
the most popular services on the Internet today. As the total available network capacity
increases, so do the consumption rate of such services and the user’s expectations. At the
same time, most networked devices come equipped with multiple network interfaces. For
example, smart-phones can typically connect to both WLAN and 3G-networks (HSDPA),
while laptops come equipped with at least a LAN and a WLAN-interface. Due to the
increased development of different types of wireless networks, devices are often within

coverage range of multiple networks simultaneously.

Remote
peer

Connection 1

-<-—-

Client 7 s -

onnection 2 Internet

S

N

Remote
peer

Connection N

Figure 1.1: The default host multihoming scenario. A client device is equipped with
multiple network interfaces and has several active network connections.

2 Chapter 1. Introduction

Devices that have multiple active network connections and have acquired a unique
network identifier (for example, an IP-address) for more than one interface, are known
as multihomed. There exists two types of multihoming, site and host multihoming. Site
multihoming is used to describe multihoming in access and core networks. An example
of a site multihomed device is a router. Host multihoming, on the other hand, is used to
refer to client devices that can connect to multiple networks simultaneously. The default
host multihoming scenario is shown in figure 1.1. A client is equipped with different
network interfaces, has several active network connections to the Internet and wants to
request a resource from a remote peer. Host multihoming enables applications to provide
two desirable features, i.e., sequential access over different links and simultaneous use of
multiple links. Sequential access can be used to for example add support for connection
handover, by rerouting traffic to another interface if the current loses its connection to the
network. Simultaneous use of multiple links is required to support bandwidth aggregation,
which is the focus of this thesis.

For applications to communicate through a computer network, well-defined protocols
are used. However, most standardized protocols only make use of a single link at a time.
Even though the overall network capacity increases, clients will frequently be connected
to networks that are unable to meet the requirements imposed by the services or the users
expectations. For example, smooth streaming of high quality video frequently requires
more bandwidth than what is often available in public WLANSs, and having to wait a
long time to receive a remotely stored file will lead to annoyed users. In our work, we
have designed, implemented and evaluated different techniques for efficiently aggregating
the bandwidth of multiple links. When our techniques are used, the logical bandwidth
aggregation-enabled link provides higher bandwidth and a higher in-order throughput
(throughout this thesis, throughput implies in-order throughput also known as goodput)
than any of the single links. This allows, for example, increased quality in video streaming

systems.

1.1 Background and motivation

The dominating design principle in the Internet today, is the end-to-end principle [67].
It states that the core Internet shall be as simple as possible, while all advanced logic is
placed in the endpoints. This principle is followed by the Internet Protocol Suite [10,11],
commonly referred to as TCP/IP, a less rigidly designed model than the standardized
OSI-model [80]. TCP/IP consists of a set of protocols deciding how computers commu-
nicate through networks. The suite is divided into four abstraction layers, i.e., the link

layer, the network layer, the transport layer and the application layer, as summarized in

1.1. Background and motivation 3

Application layer
Transport layer
Network layer
Link layer

Figure 1.2: The four layers of the Internet Protocol stack, or the TCP /TP model.

figure 1.2. A layer can only communicate with the ones directly above and beneath it.
At the bottom, the link layer is responsible for communicating with the actual, physical
network. Then, the network layer (or Internet layer) transports packets between hosts
across network boundaries (routing). Furthermore, the transport layer provides end-to-
end communication, while the application layer enables processes to communicate. While
the three others typically belong to the operating system (OS) kernel, application layer
protocols are defined and implemented by the application developers. This allows for a
great deal of flexibility, as the developer has full control over the behavior of the protocol.

Even though multihoming has existed for many years, it has been in the context of
site multihoming. Site multihoming is described already in [10] and is used in access and
core networks. Routers have to be connected to several networks in order to move packets
between end-hosts belonging to different networks. However, as wireless technologies like
WiFi and 3G have become sufficiently cheap, the number of clients that are able to con-
nect to multiple networks simultaneously (known as host multihoming ') has increased
rapidly. For example, almost every smartphone in sale today can connect to WiFi and
3G. However, most existing operating systems, network protocols and applications do not
take multihoming properly into consideration. For example, Linux does not configure its
routing tables correctly when more than one network interface is active, while a Transmis-
sions Control Protocol-connection (TCP) [5,61] is by design bound to a single interface.
TCP is the most commonly used transport-layer protocol today.

As the overall capacity of the Internet has increased, along with the bandwidth of
available consumer Internet connections, so has the consumption of high-bandwidth ser-
vices. As of 2011, two billion videos are streamed from the video service YouTube every
day, and over 24 hours worth of content is uploaded every minute 2. Moreover, larger and
larger files are stored in the cloud and downloaded from the web or through peer-to-peer
networks. At the same time, client devices equipped with multiple network interfaces have

become the norm. Today, smartphones can offload data traffic from 3G to WLAN (to pro-

'In the rest of the thesis, we refer to host multihoming when we say multihoming.
http://www.youtube.com/t/fact_sheet

4 Chapter 1. Introduction

vide higher bandwidth and reduce the load on the phone network), while most computers
are equipped with at least LAN- and WLAN-cards. Due to the increased popularity and
expansion of different wireless networks, clients are often within coverage range of multi-
ple networks simultaneously. For example, bigger cities, at least in most well-developed
countries, have close to 100% 3G coverage. In addition, telecommunication companies,
private companies and individuals offer access to WiFi-hotspots. One example of such a
company is Telia, which gives their cell phone subscribers access to hotspots in several
cities around the world 3.

However, even though multiple networks are available, the default behavior is still to
use a single link for all network communication. The OS regards one of the links as the
default link, and the default link is only updated when the current becomes unavailable.
In many cases, using a single link is insufficient to meet the requirements imposed by a
service, or a user’s expectations. For example, a public WiFi-network might not be able
to stream a video without causing playback interruptions due to buffer underruns, and the
download time when receiving a large file over a 3G-connection might not be acceptable.
The problem can be alleviated by aggregating the bandwidth of the different links, giving
applications access to more bandwidth than a single link can provide. Multiple links can
also be used to provide different services or features, for example, increased reliability of

a networked application by using the additional link(s) for redundancy.

(4]

B HSDPA
Bl WLAN
@ZZ HSDPA + WLAN (ECMP)

IN

N w

Average Throughput (Mbit/s)

o

HSDPA WLAN HSDPA + WLAN

Figure 1.3: Throughput aggregation with BitTorrent over simultaneous HSDPA and
WLAN links, using Equal-Cost Multipath Routing. The results were obtained by down-
loading a total of 75 copies of a 700 MB large file.

An example of the potential of bandwidth aggregation is shown in figure 1.3. Here, the
client was connected to one HSDPA-network and one WLAN, and the popular peer-to-

3http://www.homerun.telia.com/eng/start /default.asp

1.1. Background and motivation)

peer protocol BitTorrent 4 was used to download a 700 MB large file. In BitTorrent, files
are divided into smaller pieces. A client (peer) is connected directly to several other peers,
and pieces are requested from different peers. To use both interfaces simultaneously, we
enabled Equal-Cost Multipath Routing [34] (ECMP). ECMP enables system administra-
tors to allocate weights to different routes and thereby distribute the traffic. We gave each
link the same weight, and the connections to the other BitTorrent-peers were distributed
across the two links using round-robin. As can be seen in the graph, when the WLAN-
and HSDPA-connections were used together, the average achieved throughput was close
to the sum of the throughputs when the two links were used alone.

What makes BitTorrent ideal for showing the potential of bandwidth aggregation, is
that it relies on opening several connections. These connections can be distributed among
the available interfaces, ideally ensuring full utilization of every link. This behavior is not
common, most networked applications use a single connection for receiving all data related
to one item, for example a file. Adding support for bandwidth aggregation either requires
changing the application, or developing a transparent bandwidth aggregation solution.
Transparent bandwidth aggregation solutions operate on the network layer, and can be
designed in such a way that no changes to either application, operating system or network
protocols is needed.

Bandwidth aggregation has been a research field for many years, as will be discussed
in chapter 2. However, the related work we have found (some developed in parallel
with our techniques) is mostly either based on 1) unrealistic or incorrect assumptions
or requirements [12], 2) simulations [3, 12, 38], 3) fail to consider the different challenges
present in real-world networks [2,59,70,71] or 4) cannot be applied to a scenario where
the devices are connected to different networks (2,6, 71]. Performing efficient bandwidth
aggregation requires addressing challenges related to connectivity, link heterogeneity and
link reliability. A presentation of the different challenges and their effects is given in
section 1.2.

For this thesis, we have designed, implemented and evaluated techniques to perform
bandwidth aggregation at both the application and the network layer, and these tech-
niques were experimentally evaluated in both fully controlled and real-world network
environments. The proposed application layer technique is optimized for improving the
performance of quality-adaptive video streaming. However, the technique is not limited
to video streaming. As long as a common requirement is met (the client must be able to
simultaneously request different parts of a file over different links), it can also be applied
to for example bulk data transfer.

Operating on the network layer allows for the development of transparent multilink

4http:/ /www.bittorrent.org/

6 Chapter 1. Introduction

techniques, i.e., no changes have to be made to the applications running on top, the
network protocols or the operating system. In many cases, changes to the application code
would not be desirable or even possible. For example, several applications are proprietary
and only the original developers have access to the source code, while protocol changes
have to be implemented at all machines that will communicate. As many protocols
behave differently and require different techniques in order to achieve efficient transparent
bandwidth aggregation, we have limited this thesis to TCP [61] and UDP [60]. These are
the two most common transport layer protocols, and are used by almost every mainstream

application communicating over the Internet today.

1.2 Bandwidth aggregation related challenges

Multihoming is supported by all major operating systems - Linux, Windows and BS-
D/OS X all support multiple active network interfaces simultaneously. However, when
the different network protocols was designed, client devices were only equipped with a
single interface, and multihoming has not been considered properly. For example, TCP-
connections are bound to one interface, and operating systems, by default, regard one
link as the default link and uses it for all traffic.

In order to enable efficient bandwidth aggregation, different challenges have to be
overcome. Some are introduced by the operating system or network design, while others
are a consequence of combining different networks or network technologies. For example,
most Internet Service Providers (ISP) use NAT [17] to manage their networks, which
makes clients unreachable from the outside. Link heterogeneity, on the other hand, have
to be taken into consideration in order to utilize the full capacity of the links.

We have identified the key challenges relevant for our targeted scenarios and divided
them into three main groups - deployment, link heterogeneity and unstable link perfor-
mance. The first group contains challenges involving deployment, i.e., how to enable
multiple links and build multilink applications/solutions that will also work in real-world
networks. The second group consists of challenges related to the performance characteris-
tics of different network technologies. Unstable link performance is especially a challenge
when wireless links are used, different phenomenas and events (like rush hour or physical
objects blocking the signal) affect the available bandwidth.

There are several other types of challenges related to multihoming and multilink usage.
However, we consider them to be outside the scope of this thesis. For example, using
multiple links will increase battery consumption, which is critical on mobile devices, and
we have not looked into the financial side of multilink. In order for, amongst others,

companies to develop and encourage the use of a multilink service, they need a sound

1.2. Bandwidth aggregation related challenges 7

business model.

1.2.1 Deployment challenges

Even though all major operating systems support multihoming, the behavior when more
than one network interface is connected differs. This is caused by differences in the routing
subsystem of each operating system. Before a packet is sent from a machine, lookups are
performed to find its correct route. On OS X and Windows (from Vista and onwards),
the routing subsystem is configured correctly by default, and the operating system is able
to send the packets in the presence of multiple active links. On Linux, on the other hand,
the routing subsystem will in many cases be unable to make a routing decision and drop
the packet. For example, when different networks provide a Linux-client with overlapping
routes, the subsystem can not make routing decisions and packets will be dropped. The
first deployment challenge is to ensure that the operating system is properly configured,
and that the correct routing decisions will be made.

Properly configured routing tables are sufficient for enabling the use of multiple links
when either a connection-oriented transport protocol (for example TCP) is used, or when
a connectionless protocol (for example UDP) is combined with machines placed inside
the same network. Network sockets can be bound by the applications to the different
interfaces and, thus, traffic will pass through the chosen networks. If all interfaces are
within the same network, the machines can communicate directly and the connectionless
datagrams can flow in both directions.

In the real-world, however, the different interfaces rarely belong to the same sub-
net/network. For example, a web server is likely on a different network than the WLAN
and 3G networks a client is connected to, and the networks are in most cases separated
by NAT. NAT is summarized in figure 1.4 and is used to reduce the number of global IP
addresses. NAT-boxes are given a public IP address and is placed on the border between
a local network and the Internet. Private [P-addresses are assigned to local clients, and
when a client connects to a machine on another network, the NAT creates a mapping
between the private I[P and the destination IP (often by allocating a unique network port
number). Then, the NAT rewrites the packet headers, for example the source IP address
is set to that of the NAT. When packets arrive from the destination IP, the NAT looks
up the mapping and rewrites the packet headers again.

In the scenario presented in figure 1.4, the NAT has been assigned the global 1P
128.39.36.93 and the local network consists of two machines. Both machines connect to
port 80 of the server with IP 74.125.77.99, and the NAT has created a mapping for each
connection. A port number is used to identify each connection, 6666 and 6667. The

packet headers are rewritten before packets are sent to the server, and any reply is sent

8 Chapter 1. Introduction

74.125.77.99

128.39.36.93:6667
128.39.36.93:6666

NAT IP: 128.39.36.93

Client IP | Destination IP |Client Port[Destination Port [NAT Port

10.0.0.1] 74.125.77.99 | 9998 80 6666

10.0.0.2 | 74.125.77.99 | 9999 80 6667
74.125.77.99:80| [74.125.77.99:80|

Figure 1.4: An example of NAT. Two clients that are place behind the same NAT-box
communicates with the same server. When the server sends a packet, it uses the NAT’s
IP and the port assigned to the mapping.

to the NAT’s IP using the port number that identifies the correct mapping. The NAT
then rewrites the headers again so that they contain the address for the local machine.
Without knowledge about the NAT’s TP and the mapping, a client is unreachable
from the outside. The client’s private IP address, which is the only one it is aware of
by default, is invalid in other networks than its own. Techniques for working around the
limited connectivity caused by NAT exists and is presented in chapter 3, along with our

technique for supporting dynamic configuration of the network subsystem.

1.2.2 Link heterogeneity

Different network and network technologies often have significantly different performance
characteristics. For example, the total bandwidth of a WLAN is usually several tens of
megabits (the common 802.11g can support a theoretical maximum of 54 Mbit/s and
802.11n 600 Mbit/s [55]), while most HSDPA-networks support a theoretical maximum
of 14 Mbit/s. Similarly, the latency of HSDPA is most of the time at least one order of

1.2. Bandwidth aggregation related challenges 9

Single link

Multi link -=-----

Throughput (in Mbit/s)

3 L L L L
0 50 100 150 200

Time (in seconds)

Figure 1.5: Achieved TCP-throughput when doing pure round-robin striping over links
with heterogeneous RTT (10 ms and 100 ms, throughput averaged for each second).

magnitude higher than that of WLAN.

Latency heterogeneity

Latency heterogeneity causes packet reordering and imposes a significant challenge when
doing bandwidth aggregation, especially with reliable transport protocols. They deliver
data to the applications in-order, and any out-of-order data will cause delays in delivery
and a drop in performance. Also, TCP, among others, interprets packet reordering as loss.
A TCP sender relies on feedback (acknowledgements, ACKs) from the receiver in order to
send new data. If reordering occurs, TCP sends a duplicate acknowledgement (dupACK)
of the previous in-order packet it has received. Unlike with normal ACKs, the receiver
interprets a dupACK as if a packet has been lost, and TCP assumes that packet loss is
caused by link congestion. By default, TCP invokes congestion control after receiving
three of the same dupACK (known as Fast Retransmit [5]), reducing the sender’s allowed
sending rate.

The achieved aggregated throughput is dependent on the latency heterogeneity. As
the heterogeneity increases, the throughput decreases due to the reordering. In order to
illustrate the effect that latency heterogeneity can have on a TCP connection, we created a
testbed consisting of two machines running Linux. The machines were connected directly

to each other using two 100 Mbit/s Ethernet cards, and the network emulator netem °

®http://www.linuxfoundation.org/collaborate/workgroups/networking /netem

10 Chapter 1. Introduction

was used to add 10 ms round-trip time (RTT, the time it takes for a packet to travel to
and from a receiver [51]) to one link, and 100 ms RTT to the second link. The bandwidth
of each link was limited to 5 Mbit/s in order to avoid bandwidth heterogeneity having
an effect. A 100 Mb large file was downloaded over HTTP, and the achieved throughput
is shown in figure 1.5, using pure round-robin to stripe the packets over the two links.
As can be seen, the aggregated throughput was worse than a 5 Mbit/s link alone (which
achieved ~ 4.5 Mbit/s due to congestion control). Before the in-order packet(s) sent over
the high RTT-link arrived and the proper ACK was sent from the receiver, the sender
had often received enough dupACKs for a Fast Retransmit.

How UDP reacts to latency heterogeneity depends on the application. UDP is a non-
reliable, best-effort transport protocol that will try to send all the traffic generated by the
application. Unless the receiver is programmed to send feedback to the sender, the sender
will never reduce its send rate, and the performance depends on the in-order requirement
of the receiver application.

Application layer bandwidth techniques usually rely on opening multiple connections,
and then requesting/receiving data over these connections. Each independent connec-
tion will not experience any reordering caused by the latency heterogeneity. However,
the heterogeneity can affect the performance of the application. A significant latency
heterogeneity causes gaps in the received data, which is critical as most applications pro-
cess data sequentially. For example, a video streaming application will not be able to
resume playback before the gap is filled, and gaps can lead to higher memory (buffer)

requirements as applications need a temporary storage for out-of-order data.

Bandwidth heterogeneity

Bandwidth heterogeneity has to be taken into consideration in order to utilize the links
efficiently. Otherwise, the slow(er) link might be allocated too much data and reduce the
network performance of the application/bandwidth aggregation technique. For example,
with TCP and pure round-robin striping, the aggregated bandwidth is limited by the
bandwidth of the slowest link. As mentioned earlier, TCP invokes congestion control
when it detects packet loss, and this will happen as soon as the congestion window has
grown to N times what the slowest link can support (where N is the number of links).
When the congestion window reaches this size, the slow link will be saturated and starts
loosing packets. Thus, the full capacity of the other links will never be used. We have
illustrated this in figure 1.6. The same testbed was used as in the latency-heterogeneity
example, except that we limited the bandwidth instead of adding latency. Using the

hierarchical token bucket 9, the bandwidth of one link was limited to 5 Mbit/s (measured

Shttp://luxik.cdi.cz/~devik/qos/hth/

1.2. Bandwidth aggregation related challenges 11

‘Weighted round-robin striping
Pure round-robin striping -------

%
=
3 |
= |
8
Z |
o
=
=)
=
E of .
=
=
4l g
2 f |
0 ‘ ‘ ‘ ‘
0 10 20 30 40 50

Time (in seconds)

Figure 1.6: Achieved TCP-throughput with pure round-robin and weighted round-robin
striping over links with heterogeneous bandwidth (5 Mbit/s and 10 Mbit/s, throughput
averaged for each second).

to ~ 4 Mbit/s), while the other was limited to 10 Mbit/s (measured to ~ 9 Mbit/s). With
pure round-robin striping, the achieved aggregated throughput was close to 9 Mbit/s, or
almost twice that of the slowest link. However, when striping the packets according to the
bandwidth ratio (1:2), using weighted round robin, an aggregated throughput of close to
14 Mbit/s was achieved. The reason that the full 15 Mbit/s was not reached, was TCP’s

congestion control.

As with the latency heterogeneity, the behavior of UDP when faced with bandwidth
heterogeneity depends on the applications. Because UDP has no congestion control,
a UDP sender will never back off and might generate a high-bandwidth stream that
will saturate every link. However, packets will be lost over the links that are unable to
support the bandwidth requirement for their share of the stream. The effect of bandwidth
heterogeneity on an application layer bandwidth aggregation technique resembles that of
latency heterogeneity. If too much data is allocated to a slower link, more and larger gaps

will occur in the received data.

In summary, not properly considering bandwidth heterogeneity limits the effectiveness
of bandwidth aggregation. The links will not be fully utilised and, thus, the performance

will suffer.

12 Chapter 1. Introduction

2.8

0.8

T T T T T T
1 1 1 Midnights — HSDPA
0 1 1 1
D 24 i 1 i .
2 1 1 1
=) 1 i
520 i
o
<
o
3
216 i .
£ i h 1
o U 1 1
S0 I 1 i i
1 1 1
1 1 1
!] L] I I I I I I I I I I
1 2 3

5 6 7 8 9
Time Elapsed (days)

Figure 1.7: HSDPA throughput varying over a period of 14 days. Results obtained by
repeatedly downloading a 5 MB large file over HTTP.

1.2.3 Unstable link performance

In addition to bandwidth and latency heterogeneity, wireless network technologies tend to
deliver unstable throughput and latency. How much capacity a client is allocated or able
to use is decided by several factors including numbers of users sharing a wireless channel,
fading, interference and radio conditions. This must also be taken into consideration, for
example through dynamic adaptation, when developing multilink applications for use in
or with wireless networks. An example of the fluctuating performance can be seen in
figure 1.7. A 5 MB large file was downloaded repeatedly over a period of 14 days using a
public HSDPA network, and a significant variance in the throughput can be observed.
Not considering unstable link performance when designing a bandwidth aggregation
solution, will lead to a combination of the drawbacks discussed for bandwidth and latency
heterogeneity. The solution will not properly consider the capacity and characteristics of

the links and, thus, the performance will suffer.

1.3 Problem statement

Bandwidth aggregation is often a desirable property for a client device being connected to
multiple networks simultaneously, at least from a user’s perspective. However, performing
efficient bandwidth aggregation requires addressing several challenges, as described in the
previous section. One has to consider connectivity issues, link heterogeneity and link
stability. The main goal of this thesis has been to design, develop and evaluate bandwidth
aggregation techniques that address these challenges, and improve the performance of
different bandwidth intensive applications when run on multihomed devices. We divided

the main goal into the following subgoals:

1.4. Limitations 13

e Design, develop, optimise and evaluate a platform-independent technique for solving
the deployment challenges, in order to ease the design, development and deployment

of multilink solutions.

e Design, develop, optimise, and evaluate a technique for aggregating bandwidth at
the application layer, optimised for on common type of bandwidth-intensive appli-

cation - quality-adaptive video streaming.

e Design, develop, optimise and evaluate techniques for transparently aggregating
UDP and TCP-streams, the two most common transport protocols. Neither the

protocol nor protocol behavior can be changed.

e A technique should not require changes to the existing protocols, protocol behavior

or the operating systems.

e Every solutions must work in real-world networks.

1.4 Limitations

Due to time constraints, we have had to limit the scope of this thesis. The following areas

have not been investigated:

e IPv6: IPv6 would remove some of the deployment challenges. For example, due
to the large increase in number of available IP-addresses, NAT will probably no
longer be needed. However, even though our techniques have been designed for and
evaluated with IPv4, they do not rely on it and should work with any network layer

addressing protocol.

e Other transport protocols than UDP and TCP: A transparent bandwidth
aggregation technique has to support the behavior of the targeted transport pro-
tocol. Because it is not feasible to design a technique for every existing transport

protocol, we have focused on the two most common, TCP and UDP.

1.5 Scientific context and Methodology

Science is derived from the Latin word scientia and means knowledge. A more precise
definition is given in [54]: Science is knowledge or a system of knowledge covering general
truths or the operation of general laws especially as obtained and tested through scientific
method. Computer science is a subset of science and was introduced in the 1940’s, with

the first computer science department formed at Purdue University in 1962.

14 Chapter 1. Introduction

Computer science encompasses several different fields, however, they are all related
to the evolution of computers and how computers have become a part of every day life.
Fields include system design, studying the properties of complex computational problems
and computer architecture and engineering. According to [16], computer science can be

divided into three paradigms:

e The rationalist paradigm defines computer science as a branch of mathematics.
Programs are treated as mathematical objects, and deductive reasoning is used to

evaluate their correctness based on a priori knowledge.

e The technocratic paradigm defines computer science as an engineering discipline.
Programs are treated as data and the knowledge is collected a posteriori. l.e., pro-
grams are evaluated using testing suites, and the results/experience are considered

as the knowledge.

e The scientific paradigm defines computer science as natural (empirical) science.
Programs are entities on par with mental processes, and a priori and a posterior
knowledge is gathered using a combination of formal deduction and scientific exper-

imentation.

Similar paradigms are introduced by the Association for Computing Machinery (ACM)
in [14]. They describe three main paradigms: abstraction, design and theory. The ab-
straction paradigm seeks knowledge through validating models of given systems, while
the design paradigm seeks knowledge through building systems and then validating them
through testing. Finally, the theory paradigm is rooted in mathematics and knowledge is
gathered by giving formal proof of the properties of a system.

All the different paradigms can be applied to the field of computer networks and
communications. For example, the rationalist paradigm is needed when the goal is to
prove certain properties, for example the effect of latency heterogeneity on TCP, while
the technocratic paradigm can be used when the research is targeted at improving the
performance of specific application types in real-world networks.

In terms of the paradigms, we make use of the technocratic paradigm and ACM’s
design paradigm. The work presented in this thesis was motivated by the potential of
bandwidth aggregation and the increasing number of multihomed clients. In order to get
realistic results, as well as the fact that most related work has only been implemented and
evaluated in simulators, the techniques were evaluated by building systems that make use
of them. To get the most realistic behavior and test conditions, the systems were inserted
into real computer networks.

According to [41], there are three main techniques for evaluating the performance of

a system. Analytical modeling uses mathematics and formulas to describe the behavior

1.5. Scientific context and Methodology 15

of a system, Simulation involves implementing a model of a system and then evaluates
it using different workloads in a deterministic state-machine. Measurements can be used

when the system can be implemented and evaluated in the real world.

Doing measurements provides the most valid results for the techniques presented in
this thesis. The simplifications caused by modelling or simulating the behavior of different
types of networks and protocols, can have a significant impact on the results. In addition,
link characteristics like fluctuating bandwidth (present in for example wireless networks)
are difficult to model. Finally, our goal was to develop techniques that would work in
real-world networks and without changing existing infrastructure. This claim needs to be

verified.

In order to do measurements and get reproducible results, as well as evaluate the
effect of different levels of different parameters (bandwidth and latency), each bandwidth
aggregation technique was evaluated in two testbeds. The first testbed was a controlled
network environment where a network emulator was used to limit the bandwidth and
control link latency. This allowed us to emulate different types of networks. The second
testbed consisted of a client connected to multiple, real-world wireless network. This
testbed was used to provide results that gave an impression of the performance if a

technique is deployed.

Using emulators and real-world machines affects the validity of results, as the results
are affected by both hardware and software. For example, there exist different implemen-
tations of TCP, drivers for wireless cards might behave differently and applications/OSes
might contain bugs. Ideally, one should test every possible combination of software and
hardware, and fix every possible bug, but this is not feasible. In order to reduce the prob-
ability of our results being affected by implementation differences, the same machines
were used for every experiment, with the same hardware and OS configuration. Also,
all the techniques presented in this thesis are based on standards and the core concepts
of the different protocols. The same applies to the implementations used for the evalua-
tions. No operating system specific optimizations have been made or features used, and
no assumptions have been made about the behavior of the underlaying operating system.
In other words, the techniques presented in this thesis are generic. The only exception
is our multilink framework, MULTI, which relies on operating system specific behavior.

However, the features required by MULTTI are supported by all major operating systems.

There is related work in the field of bandwidth aggregation. However, comparing the
performance of different techniques and solutions directly is difficult. Different metrics and
scenarios have been used, and we did not find any working open-source implementations
of related work. However, there is some common ground. For transparent bandwidth

aggregation solutions, the aggregated bandwidth and the throughput are the preferred

16 Chapter 1. Introduction

metrics, as they are what one seeks to improve. The bandwidth indicates the effective-
ness of the solution, while the throughput is of uttermost importance to the application.
Because most applications, as well as TCP, require data to arrive in-order, out-of-order
data will cause processing delays.

The application-specific bandwidth aggregation technique was evaluated together with
quality-adaptive video streaming. The goal of adding a second link is to increase the
achieved video quality, and both video quality and deadline misses were used as metrics
for evaluating the performance gain. Deadline misses give an indication of how correct
the solution is, i.e., is the technique able to request a higher quality video without caus-
ing playback interruptions. If a video segment is not ready for playout, it will cause
interruptions in playback and annoy the user.

Our workloads were based on a combination of applications generating synthetic
streams, real applications and real video clips. The transparent techniques were eval-
uated together with applications that generate a data stream of a given bandwidth or
used as much of the capacity as possible, in order to get an impression of the possible
performance gain offered by multilink. As transparent techniques can be used together
with any kind of application, creating a workload for every scenario is not feasible. The
application-specific bandwidth aggregation technique was evaluated using a real, variable

bitrate encoded video showing a football match.

1.6 Contributions

In this work, we present multiple techniques for achieving efficient bandwidth aggrega-
tion. Unlike several of the techniques presented in the related work, all the techniques
introduced in this thesis address the different challenges presented earlier, and can be
used in real-world networks. Each technique was evaluated both in a controlled network

environment and real-world networks. The main contributions are summarized here:

e A framework for enabling multiple links dynamically and automatically:
Different operating systems vary in how they behave when the client device is con-
nected to more than one network. In order to provide a platform-independent,
generic way to enable the use of multiple links, as well as allow for easier design,
development and deployment of multilink applications, we developed our own frame-
work called MULTI. MULTT automatically detects new network connections, con-

figures the routing subsystem and notifies the application.

e Application-specific bandwidth aggregation: Two of the most popular, bandwidth-

intensive services on the Internet today is bulk data transfer and video streaming.

1.7. Outline of thesis 17

We have created a technique for increasing the performance of bulk data transfers
when multiple links are present. Each file is divided into smaller pieces, and the
pieces are requested over the different available links. The technique was refined and
optimised to meet the demands of video streaming, and was evaluated together with
a segmented HTTP-based quality-adaptive video streaming solution. Our approach
utilized close to 100 % of the available bandwidth, and, compared to when a single

link was used, the video and playback quality increased significantly.

e Transparent bandwidth aggregation for UDP and TCP: Transparent band-
width aggregation must be used when it is not desirable or possible to change the
applications that would benefit from bandwidth aggregation. We have focused on
improving the performance of applications using the two most common transport
layer protocols, TCP and UDP. Due to their different characteristics and behavior,
separate techniques are needed for each protocol. Our techniques operate on the
network layer, and the technique for transparent bandwidth aggregation of UDP
was able to cope well with both bandwidth and latency heterogeneity. The per-
formance of the TCP technique, however, depended on the latency heterogeneity.
Based on our experiences, observations and knowledge of TCP’s design and default
behavior, we have not been able to design a bandwidth aggregation technique for
TCP that is independent of latency heterogeneity. Instead, we present the design of
a semi-transparent bandwidth aggregation technique that is more robust to latency

heterogeneity.

The work presented in this thesis has resulted in 10 peer-reviewed conference publi-
cations, one patent-application and one journal article. Descriptions of the publications

are given in appendix A.

1.7 Outline of thesis

Chapter 2 presents the related work in the fields of multilink and bandwidth aggrega-

tiomn.

Chapter 3 introduces our multilink framework MULTI. We describe how it is designed,

how it can be used and how it was implement for Linux, BSD and Windows 7.

Chapter 4 presents our application-layer bandwidth aggregation technique, based on
HTTP. After giving an introduction to how HTTP can be used to support simul-
taneous use of multiple links, we present how bandwidth aggregation was used to

enhance the performance of quality-adaptive streaming.

18 Chapter 1. Introduction

Chapter 5 presents the transparent bandwidth aggregation techniques for UDP and
TCP. The techniques are built around the same core concepts. However, based on
our experience and evaluations, we were not able to design a transparent bandwidth
aggregation technique for TCP. Therefore, a semi-transparent technique based on

the concept of connection splitting is also described.

Chapter 6 concludes the thesis and presents ideas for future work.

Chapter 2
Background and related work

Bandwidth aggregation has been a research topic for several years and different solutions
have been proposed at every layer of the TCP/IP stack. However, the existing work has
mostly involved 1) stable links, 2) fully controlled network environments, 3) will not work
with clients connected to independent networks, or 4) require changes to the existing
infrastructure. In other words, the deployment and link heterogeneity challenges, as well
as the dynamic behavior of wireless links, have largely been ignored or not considered
properly by existing research. Ignoring any of these challenges will lead to a less than
ideal performance in the real world, if the solution/technique works at all. For example,
not properly considering the effect of reordering will lead to bad throughput. Also, new
protocols or protocol modifications take years until they reach standardization and wide-
spread deployment, if it ever happens.

In this thesis, we have focused on transparent and application-specific bandwidth ag-
gregation. The application-specific bandwidth aggregation technique presented in this
thesis was optimised for quality-adaptive video streaming, which has, to the best of our
knowledge, not been done before. The amount of related work we found were therefore
limited. However, certain techniques and ideas could be used as inspiration or borrowed
from other types of application-specific bandwidth aggregation, as well as parallel down-
load.

Transparent bandwidth aggregation requires knowledge about the transport protocol
being used. The transport layer is the second highest layer in the IP-stack, and is re-
sponsible for providing end-to-end communication. When an application wants to send
data through a network, it first has to open a network socket. This socket is then bound
to a specific transport protocol. There exists a large number of transport protocols, each
offering a different, sometimes partially overlapping, set of features, and the behavior is
defined by a set of rules and mechanisms. In order for a transparent bandwidth aggrega-

tion technique to aggregate bandwidth efficiently, it has to be designed according to and

19

20 Chapter 2. Background and related work

support the behavior of the targeted protocol(s).

Even though there are several different transport protocols, only two have so far
reached widespread deployment and is supported by all major operating systems, TCP
and UDP. The transparent bandwidth aggregation techniques developed during the work
with this thesis are targeted at improving the performance of these two protocols. In
the first part of this chapter, we describe TCP and UDP. Knowledge about TCP and its
features is also needed in order to understand parts of the related work, which is presented

in the second part of this chapter.

2.1 Transport protocols

In order to understand the transparent bandwidth aggregation techniques presented in
chapter 5, as well as parts of the related work, knowledge about TCP and UDP is needed.

In this section, we describe the two transport layer protocols.

2.1.1 UDP

The User Datagram Protocol, UDP, was standardized in 1980 and is described in REC768 [60].
It provides a simple, best-effort protocol for applications to communicate.

UDP allows applications to send messages (called datagrams) to each other without
setting up a connection. In addition, UDP does not provide any guarantees for reliability,
ordering or data integrity. In other words, UDP will not react if packets are lost during
transmission, have been tampered with or arrive in incorrect order. Supporting any of
these features is offloaded to the application, in order to reduce the processing overhead.
Also, unlike TCP, UDP is compatible with both packet broadcast and multicast.

Applications using UDP are mostly those concerned with latency, for example voice
over IP or games. The loss of sound or movement while waiting for a packet retransmis-
sion will have a more significant effect on the user experience than dropping the packet.
Another common use for UDP is IP tunneling. An IP tunnel works by encapsulating the
original data packet (containing both network and transport layer header) inside another
packet, and is used to for example create secure communication channels between corpo-
rate sites. Except for a reduction in the amount of payload one packet can contain, the
behavior and performance of the original transport protocol is not affected, as UDP only
provides a best-effort service and introduces no new mechanics (like congestion control).

UDP is, for the reasons described in the previous paragraph, used as the tunneling
protocol by our multilink framework MULTT (introduced in the next chapter). Also, in
chapter 5.1 we describe a technique for efficient, transparent bandwidth aggregation of
UDP-streams.

2.1. Transport protocols 21

2.1.2 TCP

TCP [61], or the Transmission Control Protocol, is used by popular services like SMTP
(e-mail), HTTP (web) and FTP (file transfers). It is significantly more advanced than

UDP and has several desirable and advanced features:

Connection-oriented - A connection has to be established before data can be

transferred.

e Stream-oriented - The application can send a continuous stream of data for trans-
mission, TCP is responsible for dividing it into suitable units for the network layer

to process.

e Reliable - All sent data will arrive and be delivered in order to the application. In

addition, TCP uses checksums to detect (and reject) corrupted packets.

e Flow control - Throughout the connection, the receiver keeps the sender updated
on how many packets it is able to receive. The sender has to adjust the packet send
rate to avoid exceeding this limit, otherwise the receiver will not be able to process

packets fast enough and overflows will occur.

e Congestion control - To stop the sender from consuming so much bandwidth that
it would affect the performance of other streams, TCP limits the packet send rate.
In addition, TCP assumes that all packet loss is caused by congestion, and reduces

the send rate when loss occurs.

One of the design goals of TCP is to be considerate to other streams sharing the same
path. TCP assumes that all packet loss is due to congestion, and as long as no packets
are lost, the sending rate is increased. When congestion occurs, the protocol follows an
“Additive Increase, Multiplicative Decrease” scheme (AIMD) to adjust the sending rate.
The name of the scheme implies that the sending rate increases linearly and decreases
exponentially.

To ensure reliability, each TCP packet is marked with a sequence number. This
number is the byte offset for the packet’s payload (the data contained in the packet) in
the file/stream that is transferred. To let the sender know that the data has been received,
the receiver sends an ACK-packet containing the next expected sequence number. In other
words, the receiver lets the sender know that it has received all bytes up to this sequence
number. Should a packet arrive out of order (i.e., the sequence number is higher than the
expected one), the receiver sends a dupACK. Exactly what these are used for, and how

the sender reacts to them will be discussed later.

22 Chapter 2. Background and related work

Seql | Seq2| Seq3 | Seq 4

(a) All packets arrive in order and is delivered to the
application.

Seq 5 | | Seq7 | Seq8

(b) The packet with sequence number 6 is lost. The
two last packets cannot be delivered to application
before the lost packet is retransmitted (and received).

Figure 2.1: Example of a TCP receive buffer.

If a packet arrives out of order, it will be buffered (stored) at the receiver until the
expected packet(s) arrive (figure 2.1). The size of the receiver’s advertised window (rwnd)
states how much outstanding data the receiver is able to store, and every ACK contains its
size. The sender has to adjust the send rate accordingly, and this is the flow control [5]. At
the sender, the congestion window (cwnd) determines the amount of data that can be sent
before receiving an ACK. The cwnd and rwnd change throughout the connection, and the
lowest of the two decide the transfer rate. RFC2581 [5] states that TCP is never allowed
to send data with a sequence number higher than the sum of the highest acknowledged

sequence number, and the minimum of cwnd and rwnd.

TCP congestion control

Congestion control is concerned with how much network resources senders are allowed
to consume, and its goal is to avoid what is known as a congestion collapse. This is a
condition where the network is constantly overloaded, thus, the delays will be long, the
loss rate high and the throughput low. A large number of TCP protocol variations have
been developed in order to optimise TCP’s performance in different scenarios (very high
speed links, wireless, and so on), and what they alter is mostly related to the congestion
control. However, in order to understand the work presented in this thesis, only knowledge
about the concepts and mechanisms introduced by TCP Reno [5] and TCP New Reno [27]
are needed.

When starting a transmission, TCP Reno uses a technique called slow start to avoid
sending more data than the network can support, i.e., to avoid causing congestion. During
the initial phases of a connection, TCP determines the maximum segment size (MSS, the
largest amount of data a TCP segment can contain) and initializes the cwnd to be less than
or equal to 2*¥MSS (depending on the implementation). The size of the cwnd is increased
by one MSS for every ACK that the sender receives, which means that the size of the
congestion window doubles for every RTT. Provided that there is enough data to transfer

and no packets are lost, the connection will first be allowed to send one packet, then two,

2.1. Transport protocols 23

g —
Timeout
40 —
B Threshoki
'Q Fast Retransmit
& !
= ’
£
= Thrashokd /
[~}
=
£
=
=
=
:
&
IS Y I Y IS S N Y |
g a 1a 1z 14 15 18 20 22 24

Transmission number

Figure 2.2: An illustration of slow start, retransmission timeout and fast retransmit

then four, and so on without receiving ACKs. Figure 2.2 shows how the cwnd grows, and
also what happens when a packet is lost. The latter will be discussed later in this section.

This doubling of the cwnd continues until a pre-determined threshold, called the slow-
start threshold (ssthresh), is reached, or packet loss occurs. When ssthres is exceeded,
the connection enters the congestion avoidance phase. The cwnd is increased by one MSS
for each RTT, thus, we have exponential growth before ssthresh is passed and linear
growth after. To avoid relying on clocks (which are often too coarse), it is recommended [5]

that the cwnd is updated for every received ACK using the following formula:

cwnd = cwnd + (MSS * MSS/cund). (2.1)

TCP Reno uses two different techniques to discover and retransmit lost packets. If
no acknowledgment is received before the retransmission timer expires, a retransmission
timeout (RTO) is triggered. Exactly how and when the timer is updated is OS-specific.
When a timeout occurs, the ssthresh is set to cwnd/2 and the connection re-enters slow
start. The reason for reducing ssthresh is that TCP Reno assumes that all loss is due
to congestion. The estimated share of the bandwidth was apparently too high, and must
therefore be reduced. Also, a lower ssthresh-value ensures a slower growth rate. This
stops the connection from suddenly flooding the network with more data than it can

handle.

Another important event that occurs when an RTO occurs, is that the retransmission

timer is doubled. This is called the exponential backoff and will inflict severe delays if

24 Chapter 2. Background and related work

the same packet is lost several times. In for example Linux, the minimum RTO (minRTO)
value is 200 ms, meaning that if the packet is lost three times, then the wait for the next
retransmission is over a second long (200 * (29 + 2! + 22)).

As mentioned in the previous section, when a receiver receives a packet with a higher
sequence number than the one expected (e.g. if the previous packet was lost or reordered),
it sends a dupACK. This is done to let the sender know that it has not received all of
the previous packets, meaning that it can not deliver any more data to the application.
Because of the in-order requirement, data delivered to the application must form a con-
tinuous byte range.

Until the packet with the expected sequence number arrives, the receiver will continue
to send dupACKs for every received packet. After N dupACKs (three is a frequently
used value) are received, the sender will retransmit the first lost packet (this is called
a fast retransmit) and enter fast recovery. In this state, ssthresh is set to cwnd/2 (as
when an RTO occurs), but the connection does not have to go through slow start again.
DupACKSs indicate that the packets are buffered at the receiver and no longer consume
network resources.

Instead of 2+MSS (or less), cwnd is set to ssthresh + 3+MSS. The latter part of the
last equation is there to ensure that new data can be sent, as long as it is permitted
by the cwnd and rwnd. The three packets that generated the dupACKs have not been
“properly” acknowledged, and are therefore occupying space in the congestion window.
Thus, the cwnd has to be artificially inflated to allow new data to be transferred. The
cwnd is increased by one MSS for every received dupACK for the same reason. When
the next ACK arrives, the cwnd is reduced to ssthresh and the connection leaves fast
Tecovery.

Because an ACK indicates that the network is no longer congested, it is “safe” to
start with a congestion window size of ssthresh (since this is the estimated share of
bandwidth). If the sender continues to receive dupACKs, the fast retransmit/recovery
will be repeated until the cwnd is so small that no new packets can be sent. If the
retransmitted packet is then lost, a retransmission timeout will occur.

The way TCP Reno deals with fast recovery is not ideal when there are multiple
packet losses. If the ACK that makes the sender leave fast recovery is followed by N
dupACKs, the sender will enter fast recovery again, halving the cwnd once more. TCP
New Reno [26] modifies the way fast recovery/retransmission works, it stays in fast
recovery until all unacknowledged data has been confirmed received.

To be able to do this, New Reno uses a partial acknowledgment concept. When
entering fast retransmit, the highest sequence number sent so far is stored. Every received

ACK is then compared against this value, and if the acknowledged sequence number covers

2.1. Transport protocols 25

the stored sequence number, then it is safe to leave fast recovery. Otherwise, more packets
will be lost and the first unacknowledged packet is retransmitted (when an ACK arrives).

The partial acknowledgment concept also allows TCP New Reno to check for false
dupACKs. The highest transmitted sequence number is also stored whenever an RTO
occurs. When three dupACKs are received, the sender checks if they cover this sequence
number. If they do, then the connection enters fast recovery. Otherwise, the dupACKs
are for packets sent before the timeout, thus the lost packet is already retransmitted.

One scenario where false dupACKs may be a problem, is when there are long RTTs.
If a packet is lost and the N consecutive packets arrive, the dupACKs might not get back
before an RTO is triggered. When they are received they will acknowledge a packet with
a lower sequence number than the highest transmitted. The sender will then detect these
dupACKs as false and not enter fast recovery.

TCP New Reno does not fix all the flaws in TCP Reno. It could still take many RTT’s
to recover from a loss (since a sender have to wait for the ACK/more dupACKs), and a

sender will have to send enough data to get the receiver to respond with N dupACKs.

TCP SACK

Selective Acknowledgment (SACK) [40] [53] is a strategy that handles multiple packet
losses better than plain TCP Reno and TCP New Reno. When a packet arrives out of
order, TCP will send a dupACK acknowledging the last packet that arrived in order.
Thus, the sender will be informed that one packet has arrived, but not told which one.
This forces the sender to wait at least an entire RTT to discover further packet loss (since
it must wait for a retransmission to be acknowledged), or it might retransmit packets that
have already been received (if allowed to by the flow- and congestion control). In other
words, multiple packet losses can cause a significant reduction in throughput.

With SACK, however, the dupACK will also contain the sequence number of those
packets that have arrived out of order. SACK does this by using SACK Blocks (which
are stored in the option part of the TCP header), and each block contains the start and
end sequence number of the most recent continuous byte ranges that have been received
(up to three). This leads to an increased throughput, the sender no longer has to wait at
least one RT'T to discover further packet loss, and only the packets that have not arrived

will be retransmitted.

TCP fairness

One of the most important aspects of TCP is the fairness principle. If N TCP streams
share the same link, they will each get an equal share (1/N) of bandwidth. Congestion

control, which was discussed earlier, is used to enforce fairness by limiting the packet send

26 Chapter 2. Background and related work

rate (the cwnd), and reducing it if needed. As previously mentioned, TCP assumes that
all loss is due to congestion, i.e., the stream has exceeded its fair share of the bandwidth.
For example, a TCP session is never allowed to send more than the congestion window
allows to avoid flooding the network, and exponential backoff tells the streams to hold
back due to congestion.

However, the fairness principle does not apply to all streams. If several streams with
different RTT use the same link, then those with a short RTT will have an advantage.
Their send rate will grow faster, e.g., in slow start the cwnd will double for each RTT,
and they will spend shorter time recovering from a loss. Thus, they will consume a larger
share of the bandwidth.

The work presented in this thesis will, according to some, violate the TCP fairness
principle, or at least allow for an uneven use of resources. Even though each TCP stream
is fair, opening multiple TCP-streams (or TCP-friendly streams) will allow some clients to
consume more bandwidth than others (for example at the server or in shared bottlenecks).
However, we believe that ensuring a fair usage is a network engineering and protocol design

task. We have only focused on the potential benefit of using multiple links simultaneously.

TCP and reordering

By default, TCP will struggle with the packet reordering caused by dividing a TCP stream
over heterogeneous links. Each out-of-order packet will cause the receiver to generate
a duplicate acknowledgement, and the receiver triggers a fast retransmit when it has
received N dupACKs. When doing fast retransmit, TCP reduces the cwnd and, thereby,
the throughput. In other words, if the reordering is higher than N, often unnecessary
retransmissions will frequently be triggered.

In order to be more robust against reordering, different OS-specific optimizations
have been implemented. Linux, for example, adjusts the dupACK-threshold dynamically
if reordering is constant. However, this technique is a trade-off. In addition to struggling
with dynamic packet reordering, it will delay the triggering of the fast retransmits that
are caused by packet loss. Because we have not developed or optimised for a specific
OS or TCP-variant, we have ignored the behavior of the different reordering specific

optimizations.

2.2 Related work

Bandwidth aggregation, also referred to as inverse multiplexing or multilink transfer in
related work, is the process of aggregating the bandwidth of physical links into one logical

link. The main purpose is to give applications access to more bandwidth than a single

2.2. Related work 27

link can provide. Bandwidth aggregation techniques have been proposed on all layers of
the network stack, and the structure of this section follows the IP-stack.

In addition to the work done within the field of bandwidth aggregation, we also present
different techniques for parallel download, i.e., when a file is downloaded from multiple
servers. Parallel download techniques apply when the content is mirrored and the client
has access to more bandwidth than any one server. Even though the scenarios are the
opposite of each other, bandwidth aggregation is motivated by the assumption that the
server has more available bandwidth than a single link at the client, several of the same

challenges have to be solved in order to increase performance.

2.2.1 Link layer

The link layer is the lowest layer of the TCP/IP stack and is responsible for communicating
with the actual, physical network. Bandwidth aggregation at this layer is commonly
referred to as channel or Ethernet bonding, and requires support in an external device
(for example a switch) as well as changes to the operating system kernel.

Channel bonding was motivated by the fact that network bandwidth usually increases
by an order of a magnitude for each generation (10 Mbit/s, 100 Mbit/s, 1000 Mbit/s and
so on). Upgrading equipment to support the next generation is expensive and will in many
cases be unnecessary. For example, if a server needs 200 Mbit/s of available bandwidth,
the only choice without bonding would be to invest in 1000 Mbit/s equipment.

The general idea of channel bonding is that a client stripes its traffic over multiple
network interfaces, according to some scheme. This traffic is merged at an endpoint,
for example a switch, and the client and the endpoint must be connected directly by a
physical medium. I.e., if wired networking is used, then one end of the cable is connected
to the client, and the other to the endpoint. Also, all interfaces have to be connected to
the same endpoint. The endpoint will also stripe traffic going back to the client and it
has to support the aggregated bandwidth. Using bonding, 200 Mbit/s can be achieved
by for example using two 100 Mbit/s cards.

In addition to commercial solutions like Cisco’s EtherChannel [13] and Atheros’ WLAN-
specific ”"Super G” [7], the IEEE has created a standard for channel bonding, IEEE
802.1AX Link Aggregation [6]. To deal with the packet reordering that can occur due
to link heterogeneity, IEEE 802.1AX supports different techniques. The most common
approach to avoid reordering is to send packets that belong together (for example a TCP
connection) over the same link. Unfortunately, this does not guarantee an even distribu-
tion of traffic over the multiple links. Also, this will not increase the performance of a
single stream.

A potential solution to the load balancing and reordering problem is presented in [2].

28 Chapter 2. Background and related work

Even though the authors have not targeted IEEE 802.1AX specifically, they suggest a more
advanced striping algorithm, combined with a resequencer at the receiver. The purpose of
the resequencer is to buffer out-of-order packets until reordering has been resolved. Their
striping algorithm, Surplus Round Robin (SRR), is targeted at downstream traffic (even
though it can be applied to uplink as well) and the sender (or switch) adjusts the weight
of the links dynamically based on feedback from the receiver. However, this solution does
not properly consider the effects the resequencer can have on the transport protocol. Also,
SRR requires the sender and receiver to frequently sync up in order for the striping to be
correct.

Another striping algorithm is presented in [71]. The authors have focused on wide-
area wireless networks (WWAN like 3G), and suggest a link-layer striping approach where
packets are fragmented and distributed based on the MTU of an interface. The MTU
is adjusted dynamically based on link layer feedback, thus, dynamic load balancing is
achieved. Fragmented packets are reassembled by an endpoint before they are forwarded
to another network. This approach works well with homogeneous links, however, the
technique will not work with significant link heterogeneity. The delay while waiting for the
missing packet fragments will increase along with the heterogeneity, affecting throughput.
The loss rate will also have a significant, effect: While WWANS typically have a low loss
rate (due to aggressive link layer retransmissions), a high packet loss can be a problem in
for instance public WLANs.

The Point-to-Point Protocol (PPP) [68], which is frequently used for dial-up connec-
tions, is an example of a link layer protocol with support for channel bonding. Through
Multilink PPP [70] (MLPPP), multiple channels can be aggregated. However, MLPPP
only supports round robin striping or an MTU-based approach, similar to the one de-
scribed in the previous paragraph, and does not perform any resequencing (only merging
of fragments). Thus, it is not well suited for use with heterogeneous links.

Different approaches for bandwidth aggregation at the link layer exist. However, they
all have different drawbacks and can not be applied to our scenario. In addition to the need
for operating system support (or for changing the operating system), link layer bonding
requires the interfaces to be connected directly to the endpoint, and all interfaces have to
be connected to the same endpoint. We aggregate the performance of different network

technologies, with interfaces belonging to different networks.

2.2.2 Network layer

The network layer is responsible for routing, i.e., forwarding packets to another network or
delivering them to the current machine. The primary addressing and routing protocol in

computer networks today is IP (version 4). Every connected network interface is given an

2.2. Related work 29

IP-address, and doing bandwidth aggregation on the network layer offers several advan-
tages. For example, solutions can be completely transparent and bandwidth aggregation
does not require modifying the IP-protocol. As IP is connectionless, packets are simply

forwarded to the machine/interface with the correct IP address.

The most common way of enabling bandwidth aggregation at the network layers is
to establish IP-tunnels between an endpoint and the different interfaces at a multihomed
client. Packets are striped across the multiple links according to a scheme, similar to link
bonding. However, unlike link bonding, network layer solutions for bandwidth aggregation
does not require the client and endpoint to belong to the same network. Unless they are
blocked by a firewall or another middlebox, the IP packets will be routed automatically

to their destination.

An example of a network layer bandwidth aggregation solution is presented in [59].
Here, the authors propose using IP-in-IP tunnels between a multihomed client and a
server, and they present a striping scheduler which is able to utilize the full bandwidth of
the links. However, the work is based on the assumption that bandwidth heterogeneity
presents the largest challenge, and that latency heterogeneity can be compensated for by
adjusting the packet size. Our observations and experiences contradict this assumption -
compensating for bandwidth heterogeneity is often the easiest of the two heterogeneities,
and the latency does not only depend on the packet size. For example, the queue delay
imposed by routers or link layer retransmissions can be significant. In addition, even
though the solution is presented as transparent, it requires changes to the IP and transport
layer header. Also, TCP must be tuned in order to achieve maximum performance.
Finally, IP-in-IP tunneling does not work between most real-world networks, as both end
points must be able to communicate directly for it to work. This is often not possible due
to for example NAT, due to the required port translation taking place in the NAT. As IP
has no knowledge of port, NATSs are by default not able to create a mapping.

Another network layer bandwidth aggregation approach is described in [12]. The
authors focus on WLANs and downstream traffic. A proxy is used and the desired traffic
to and from the multihomed client goes through the proxy. An algorithm called Earliest
delivery path first is used to stripe packets efficiently. The algorithm relies on knowledge
about the queue length at the base stations to which each client interface is connected, and
then the proxy sends packets over the link with the earliest delivery time. Earliest delivery
path first is able to reduce reordering and utilizes the links effectively (the queue length
is another way to express the current available link capacity). However, in real world
networks, proxies (or external machines) do not have access to link-layer information for
the active base stations. Also, Earliest delivery path first has only been evaluated with

simulations, and, for example, the effect of fluctuating link performance has not been

30 Chapter 2. Background and related work

considered.

A network layer approach which does not make use of proxies or tunnels, and is truly
transparent, is the earlier mentioned Equal Cost Multipath Routing [34]. It allows users
to assign weights to the network interfaces, and then these weights are used to decide
which interface shall be used when network connections are opened. ECMP works well
in a static scenario and with applications which opens several connections (for example
P2P-applications), but it is not well suited for a real-world scenario with dynamic link
behavior. Without static links, the weight of each link changes dynamically. In addition,
a transparent bandwidth aggregation technique should not rely on a certain application
behavior.

The current network layer approaches to bandwidth aggregation does not consider the
challenges present in real-world networks properly, or are based on unrealistic assump-
tions (for example about available information). A transparent network layer bandwidth
aggregation solution or technique must work in real-world networks and with real-world
link behavior. Also, one of the requirements to the techniques presented in this thesis is
that they cannot rely on changes to existing protocols. Therefore, none of the existing

solutions seems complete, and can not be applied to the scenario we have focused on.

2.2.3 Transport layer

When applications want to communicate over a network, they have to create a network
socket. This network socket is bound to a specific transport protocol, and transport pro-
tocols are responsible for the end-to-end communication. In other words, an application
passes the data that will be sent to the network socket, and then the transport protocol
sends and delivers the data to an application on the other machine.

Bandwidth aggregation at the transport layer has mostly focused on modifying the
Stream Control Transmission Protocol [72] (SCTP) or TCP. This requires changing the
OS’ network stack at both the client and server. The rest of this subsection is focused on
and is structured according to these two protocols. Because the transparent bandwidth
aggregation techniques presented in this thesis operate on the network layer, the transport
layer solutions cannot be applied directly. However, some of the concepts and ideas can
be reused by the network layer techniques, as they have to be tuned to the behaviour of

the transport protocol(s).

SCTP

Stream Control Transmission Protocol was motivated by the need for better signaling

support than any current transport protocol could support. Signaling is important to for

2.2. Related work 31

example multimedia applications, and the first version of the protocol was introduced in
2000. SCTP is similar to TCP in that it provides reliable, message-oriented data trans-
port, and the congestion control follows the AIMD-rules and uses the same mechanisms.
SCTP also has native multi-homing support. A connection, known as an association,
can consist of several paths established over different interfaces. However, by default, the
additional paths are only used to increase reliability. When an association is initiated,
one interface at each host is selected to form the primary path, and this path is used for
all communication. The associations only changes which path to use when the current is

no longer available.

SCTP-bandwidth aggregation is known as concurrent multipath transfer (CMT), and
different CMT-approaches have been suggested. CMT was introduced in [38]. In addition
to transferring data over multiple paths, the most important changes compared to plain
SCTP are that flow and congestion control are decoupled, and that each path is assigned
its own congestion window. With a shared congestion window, congestion control will be
invoked when the slowest path gets congested. This limits the growth of the congestion
window and causes underutilization of the other paths. The flow control still belongs
to the association and makes sure that the receiver(s) is not overwhelmed with traffic.

Packets are sent, over the first path with an open congestion window.

With separate congestion windows, the challenge of transport layer reordering is re-
moved. Unless there is internal reordering on one path, all packets will arrive in order
(except when there is packet loss). However, the association will experience reordering,.
The different transport layer bandwidth aggregation solutions we have found have all ig-
nored the application layer effect of the bursty delivery pattern caused by this reordering.

Instead, the focus has been on removing the unnecessary retransmissions.

CMT allocates one virtual buffer to each path, and this buffer contains meta-information
about the sent packets. By parsing the SACK-field of the SCTP-header, the sender de-
termines which packets are lost and which have been reordered. In addition to avoiding
superfluous retransmissions, the information is used to ensure proper growth of the con-
gestion window. CMT was evaluated using simulations and achieved a good bandwidth
aggregation. For example, the transfer time of a file was significantly reduced compared
to a single path. However, the authors only analyzed the performance for different loss

rates, the links were otherwise homogeneous.

More advanced CMT-techniques are introduced in the SCTP-variations in [3] and [25],
which are both based on the core CMT-concepts (such as decoupling). LS-SCTP [3] uses
both the congestion window and the measured RTT when scheduling packets. A path
monitor is used to gather statistics about the paths and keep the set of active paths

updated, while retransmits are never sent over the same path as the original packet. LS-

32 Chapter 2. Background and related work

SCTP was also evaluated using simulations and homogeneous links, and it scaled with the
number of available paths and achieved a good bandwidth aggregation in the presence of
cross-traffic.

W-PR-SCTP [25] is built on the concept of partial reliability, meaning that a packet
is only retransmitted a limited number of times before it is assumed delivered. Partial
reliability cannot be applied to every scenario, for example a file transfer requires that all
data arrives, but partial reliability fits well with the requirements of multimedia streaming.
W-PR-SCTP is inspired by TCP Westwood+ [52], and it continuously estimates the
available bandwidth. The bandwidth measurements are used to determine which path a
packet shall be sent over, and the authors achieved efficient bandwidth aggregation in a
controlled environment with stable link heterogeneity.

Because we have focused on transparent bandwidth aggregation at the network layer
and application specific bandwidth aggregation, none of the SCTP-solutions for band-
width aggregation can be applied directly. Also, one goal with the techniques presented
in this thesis is that they cannot rely on transport protocol changes. However, some of
the ideas introduced by the SCTP-solutions can be reused. For example, our bandwidth
aggregation technique for UDP traffic schedules packets based on the available space in a

congestion window, similar to CMT [38].

TCP

TCP is designed to allow communication between two end-hosts with a single, unique
identifier (for example an IP-address), and will by default never support multi-homing.
In order to augment TCP with support for bandwidth aggregation, protocol extensions or
new TCP-based protocols are needed. Two such protocols are pTCP [35] and mTCP [79].
pTCP makes use of a striping manager (SM), which wraps around multiple normal
TCP connections (called TCP-v connections or subflows). Like SCTP CMT, pTCP makes
use of a virtual buffer for each interface, and SACKs are parsed in order to separate packet
loss from reordering. In order to determine which path to use when a packet is to be sent,
the amount of open space in the congestion window is used. The authors are able to
achieve good bandwidth aggregation in a network emulator, but the solution has some
shortcomings. Most notably is how they propose to deal with reordering (which is not
evaluated). The suggested approach is to combat reordering by increasing the SM’s buffer
size. This will work, however, artificially inflating buffers is generally not recommended
due to memory constraints. Also, applications will still see a bursty traffic pattern.
mTCP is an improved version of pTCP. It does not provide any additional techniques
for dealing with reordering, but it is able to detect shared paths in the network and react

accordingly. mTCP assumes that if two subflows share a congested path, packet loss will

2.2. Related work 33

occur at almost the same time. Therefore, the mTCP sender assumes shared congestion if
there is a strong correlation (in time) between when retransmits occurs for the subflows.
If two paths share a congested path, the path with the lowest throughput is removed from
the set of active paths. In scenarios with shared congestion, mTCP outperform pTCP.

Otherwise, they show the same performance.

Currently, the multipath TCP variant with the most momentum is MPTCP [36].
MPTCP is currently under standardisation by IETF and borrows several of the ideas from
SCTP CMT. An MPTCP connection consists of several independent TCP-connections
(subflows) and packets are striped according to each connection’s congestion window. A
resequencer is used at the receiver to delay delivery of packets to userspace until reordering
is resolved. Even though a lot of the fundamentals are in place, MPTCP still has some
way to go before it is ready for deployment. For example, the developers have yet to agree
on which congestion control to use, and if different congestion controls shall be used by

the independent subflows and the main flow.

Another technique for doing bandwidth aggregation at the transport layer is PRISM [48].
PRISM consists of a network layer proxy and a sender-side TCP modification, and is tar-
geted at downstream traffic. The solution is designed for community networking, where
several multihomed mobile hosts in close proximity pool their resources together. Mobile
hosts typically have one fast (WLAN) and one slower WWAN interface (e.g., 3G). In
PRISM, the latter is used to receive data from the Internet, while the WLAN is used to

share data (and requests) between hosts using a separate application.

With PRISM, IP-tunnels are established between the proxy and different interfaces
at the clients, and packets are striped according to the current path capacity. In order
to avoid congesting the paths, the proxy has implemented its own AIMD-like congestion
control. The senders all use normal TCP and the proxy parses the generated ACKs
(SACK-field), in order to separate packet loss from reordering. If reordering is detected,
an ACK is buffered until reordering is resolved. When packet loss has occurred, before
ACKSs are released, the proxy notifies the sender of which path has experienced loss and
of its share of the total bandwidth. Using this information, TCP-PRISM reduces the
congestion window according to this share and does not, for example, halve it. Also,
TCP-PRISM retransmits packets more aggressively, as the dupACK threshold is set to
one. In their evaluations (simulations and real-world experiments), the authors show that

PRISM was able to increase the performance over normal TCP by up to 310%.
As with the SCTP solutions for bandwidth aggregation, none of the TCP solutions can

be applied directly as we have focused on the network layer and required that the trans-
port protocols remain unmodified. However, we have made use of some of the concepts
introduced, particularly by PRISM and SCTP CMT/MPTCP. For example, the trans-

34 Chapter 2. Background and related work

parent bandwidth aggregation techniques for UDP and TCP makes use of a resequencer

to reduce the reordering exposed to the higher layer.

2.2.4 Application layer

Application layer bandwidth aggregation solutions provide a trade-off between flexibility
and fine-tuned approaches, and can be designed as application-specific extensions or mid-
dleware. As the behavior at the application layer is completely up to the developers, he
or she can tune the bandwidth aggregation approach to fit the needs of a specific appli-
cation or application type. This allows for the creation of the most efficient bandwidth
aggregation techniques possible. However, the drawback is that the approach will not
apply to other applications or application types. Also, changes have to be made to every
application that wants to benefit from bandwidth aggregation, which in many cases is not
possible due to, for example, the source code not being available. The application-specific
bandwidth aggregation technique introduced in this thesis is targeted at quality-adaptive
video streaming. To the best of our knowledge, this has not been done before and, thus,
no directly related work exists. In this section, we therefore present examples of other
application-layer bandwidth aggregation solutions and approaches, as well as parallel ac-
cess schemes.

In [63], a middleware called Tavarua is introduced. The goal of the middleware is to
enable ambulances to use the Internet to transfer more and richer information (for example
video streams) to hospitals. Each ambulance has several small routers which are equipped
with up to two WWAN interfaces. These routes are connected to a laptop using normal
Ethernet, and an application named Tribe is responsible for detecting available networks
and notifying the laptop of changes in link state. The laptop creates a virtual network
interface for each available WWAN-connection, and IP-tunnels are used to transfer data
between the laptop and the router. The routers forwards the packets it receives to a central
server located at the relevant hospital, which then reassembles the stream (if needed).

In addition to Tribe, the laptop also runs another application, known as Horde. Dif-
ferent applications request a certain level of QoS from Horde, and Horde will react ac-
cordingly. For example, one application requires a reliable connection, while another has
a higher bandwidth requirement than any single link can meet. In the latter case, Horde
will stripe packets over the multiple available links (assuming the ambulance is within
coverage range).

A more generic approach to application layer bandwidth aggregation is presented
in [75]. An overlay network is created between two end-points, consisting of one TCP
connection for each available network interface. Initially, each connection is assumed to

have a certain capacity, and then probing is used to get a more accurate estimate. The

2.2. Related work 35

packet scheduler schedules packets iteratively and the approach is able to achieve a fair
usage of the links. For each scheduler-iteration, paths are selected and the send rate
adjusted in order to maximise the aggregated send rate of the source and distribute the
bandwidth fairly.

The same authors propose another application-layer bandwidth aggregation technique
in [74], targeting live video streaming. A client opens multiple TCP-connections to the
server, and the server assigns one manager to each connection. The server maintains a
FIFO-queue of packets, and only one manager is allowed to access the queue at a time.
Operating systems allocate a certain amount of memory to each network socket (used for
buffering), and a manager can consume packets until the buffer is filled (known as socket
block). When a socket blocks, the next available manager accesses the queue (if any).
Using their solution, the authors show that as long as the aggregated throughput is 1.6
times higher than the bandwidth requirement of the video, a good playback quality will

be achieved (with a few seconds startup delay).

Parallel access schemes use multiple sockets rather than multiple interfaces, but the
goal is still the same, i.e. to increase the throughput. The performance of a TCP con-
nection is bound by the size of the send/receive buffer, and this is a problem with for
example high bandwidth and high latency links. Even though the link can deliver more
data, the high latency limits the growth of the congestion window and thereby the avail-

able throughput.

The buffers are, however, only bound to a single socket. In other words, opening
multiple TCP connections will allow an application to overcome the challenge introduced
by limited buffers. Two parallel access schemes are presented in [69] and [4]. A middleware
named PSockets is introduced in [69]. PSockets provide a new type of network socket and
is based on TCP. One TCP connection is opened for each active interface, and the data
received by the PSocket (on the sender side) is divided into equal size pieces (based on
the number of connections). Then, the data is striped across the different connections.
XFTP [4] is an FTP-modification which makes use of a similar idea. A requested file is
divided into 8 kB blocks and the blocks are sent over the first socket which is not blocked.
The number of connections is adjusted dynamically based on changes in the measured
RTT.

Another scenario where using multiple sockets can result in a performance benefit, is
when the clients has more available bandwidth than the server. Several content providers
use mirroring, meaning that the same file is stored at multiple locations, to achieve load
balancing. By requesting different parts of a file from different servers, a potentially
higher throughput can be achieved. The HTTP-protocol, which is the foundation for

data communication on the world wide web and will be discussed in more detail later,

36 Chapter 2. Background and related work

allows a client to divide a file into multiple, logical and independent blocks. An approach
which combines HT'TP with multiple servers is presented in [66]. A file is divided into a
fixed number of blocks, and then the parts are requested through the different sockets.
The number of blocks is not properly defined and only described as ”significantly higher
than the number of servers”. An improvement to this technique is presented in [31]. Here,
the client divides the file into blocks dynamically and on the fly, and the size is based
on the measured throughput. In addition, pipelining is used to removed the ideal period
between to requests.

As mention earlier, our bandwidth aggregation work at the application layer has fo-
cused on improving the performance of quality-adaptive video streaming, without chang-
ing the existing infrastructure (like [74] does). To the best of our knowledge, this has not
been done before and, thus, no related work exists. However, we have used several of the
ideas presented by the related work. For example, the streaming system that was used
to evaluate the performance of our technique used HTTP and TCP for requesting and
receiving video. The approaches for dividing files into blocks, presented in [4] and [31],

served as inspiration for how to efficiently aggregate the bandwidth.

2.3 Summary

Bandwidth aggregation techniques have been proposed at every layer of the network stack.
However, none of the existing techniques can be applied directly to address the scenarios
and challenges we have focused on in this thesis: real-world networks and heterogeneous
links. The existing solutions are mostly either based on 1) unrealistic or incorrect as-
sumptions or requirements [12], 2) simulations [3,12,38], 3) fail to consider the different
challenges present in real-world networks [2,59,70,71] or 4) cannot be applied to a scenario
where the devices are connected to different networks [2,6,71].

In this thesis, we present two types of bandwidth aggregation techniques: application-
specific and transparent. Our application-specific bandwidth aggregation technique was
optimised for quality-adaptive streaming, which, to the best of our knowledge, has not
been done before. However, some of the techniques developed for parallel download, par-
ticularly [4] and [31], served as inspiration for how to efficiently aggregate the bandwidth.

The transparent bandwidth aggregation techniques must support the behavior of the
transport protocol. Before an application can communicate over a network, it must create
a network socket. This socket is bound to a transport protocol, and each protocol offers
a different set of features. The transparent techniques presented in this thesis have been
designed for improving the performance of UDP and TCP. They are the two most common

transport protocols in use today - TCP is reliable and has both flow and congestion control,

2.3. Summary 37

ensuring fair usage of the network, while UDP provides best effort transfer and is typically
used by applications which requires low-latency.

Even though none of the existing solutions are a perfect match to the techniques
presented in this thesis, we have used several of the concepts that were introduced by the
related work. For example, our technique for transparently increasing the performance
of UDP-based applications uses a scheduler similar to that of SCTP CMT [38], and both
transparent bandwidth aggregation techniques use a resequencer [36,48] to reduce the
degree of reordering exposed to the higher layer.

Next, we present our multilink framework, called MULTI. MULTT is designed to over-
come the deployment challenges and ease the development and deployment of multilink

solutions.

Chapter 3

Designing an experimental multilink

infrastructure

Enabling and using multiple links requires solving two deployment challenges. In addition
to some operating systems requiring explicit configuration changes when multiple network
interfaces become available, NAT limits the connectivity of a client. NAT is used by most
ISPs to manage their networks, and limited connectivity is a problem because it makes
a machine unreachable from outside its own network. Unless static port mappings are
configured in the NAT, an external machine by default can not communicate with any
machines placed behind a NAT.

During the work with this thesis, we have tried several different solutions and tech-
niques for enabling and making use of multiple links. The goal was to find something that
was able to overcome the deployment challenges, and ease the development, deployment
and evaluation of multilink applications, techniques and solutions. For example, the sys-
tem configuration has been done statically through scripts, while we have tried building
transparent multilink solutions on top of many different, standardized IP tunneling solu-
tions. However, none of the existing solutions were able to meet all of our requirements,
or provide a flexible enough foundation for designing and deploying multilink techniques
and solutions. Static configuration of routing tables are error prone and will not work

in a mobile or roaming scenario, while the tunneling solutions have added a too large

WLAN
Throughput (KB/s) || min. ‘ avg. ‘ max. ‘ std.
No Tunneling 623.5 | 694.9 | 720.4 | 21.0
L2TP Tunnels 571.9 | 646.3 | 686.5 | 33.3

Table 3.1: Observed TCP Throughput (KB/s) when measuring processing overhead with
L2TP-tunneling.

39

40 Chapter 3. Designing an experimental multilink infrastructure

overhead, been unstable or not offered sufficient multilink support. We identified two
tunneling solutions that we got working with multiple links, the Point-to-Point Tunneling
Protocol [33] (PPTP) and the Layer-2 Tunneling Protocol [73] (L2TP). However, PPTP
only supports round-robin striping of packets, while the L2TP implementations we have
found proved unstable and difficult to configure, and added a significant overhead. Ta-
ble 3.1 shows the achieved throughput of an L2TP tunnel compared to when tunneling
was not used (for TCP connections between the same machines over the same WLAN).
On average, the throughput of the connection going through the tunnel was 7.5 % lower.

Because no existing work was able to meet our requirements, we developed our own,
generic, platform-independent framework, called MULTI. MULTT is optimised for down-
stream traffic to multihomed clients and consists of different modules. Each module has a
specific purpose, for example detecting changes in the available network connections. An
application implementing MULTT is known as a manager, and MULTT exports a contin-
uously updated list of active network interfaces to the managers. Then, it is up to the
managers to make use of the interfaces by supporting scenario specific optimizations. For
example, one manager could use the additional interfaces for redundancy, while another
for striping packets. That network changes are detected automatically marks a significant
improvement over previous approaches, which has mostly relied on static configuration
through scripts.

MULTT can either be used to extend existing applications with multilink support, or
to create transparent multilink solutions. When used to create a transparent multilink
solution, a globally reachable proxy is used, and the manager must create a virtual in-
terface. To an application, there is no difference between a virtual and a normal network
interface. Thus, in order to benefit from the scenario specific optimizations, it is sufficient
for an application to bind to the virtual interface. This can either be done explicitly
by binding the network socket to the IP of the interface, or implicitly by routes being
configured to go through the virtual interface. MULTI was used as the foundation for the
implementations of the techniques that will be presented throughout this thesis, and the

framework is designed to meet the following requirements:

e Support the most common operating systems (Linux, BSD/OS X, Win-
dows): One of the goals with MULTT is that it shall ease the deployment of multilink

solutions.

e Handle roaming: MULTI must be able to automatically detect changes in network
connectivity, dynamically configure the network subsystem (if needed) and notify

the manager.

e Work without affecting other applications: MULTT must not change the be-

3.1. Overview 41

havior of the network subsystem of a machine, only augment it with support for
multiple links. The routing table must still contain a default route so that, for
example, networked applications that do not use multilink will continue to work as

normal.

e Work without changes to the end-systems: Changing different parts of the
end-systems is in many cases not desirable or even possible. For example, applica-
tions are often proprietary and cannot be changed, while OS” and transport-protocol
changes are complex, error-prone and will take a long time until widespread deploy-
ment. In addition, most changes have to be reflected at the remote server, which is

often controlled by an independent third-party.

e Be compatible with NAT and other middle-boxes: NAT and other middle-
boxes can limit the connectivity of a client. This is critical when MULTT is used in
invisible mode, as the tunnels require each end-point to be directly reachable. The
proxy will often belong to a different network than the interfaces at the client, and,

thus, will in many cases by default not be able to send packets back to the client.

In the rest of this chapter, we will give a more thorough introduction to MULTT and
introduce its different core components. We also give two examples of how it can be

implemented and describe our Windows and Linux/BSD-implementations.

3.1 Overview

MULTT is a modular framework which monitors available networks (active network inter-
faces), and that provides the applications implementing it with a continuously updated
list of available interfaces. An application implementing MULTT is known as a MULTI
manager, and developers will implement scenario-specific optimizations or features in the
managers. For example, in order to avoid connections failing when a network becomes
unavailable, one manager can transparently hand the connection over to another network.
Another purpose is that the manager might be to increase the available bandwidth by

pooling links together, and stripe downstream traffic to a multihomed client.

3.1.1 Application specific use of MULTI

MULTT is designed to support two types of multilink solutions, application-specific and
transparent. In the first type of solution, illustrated in figure 3.1, the application itself
is extended with multilink support, i.e., the application is also the MULTIT manager.

This can be used when a developer has access to and can change both client and server

42 Chapter 3. Designing an experimental multilink infrastructure

Client

Connection 1

MULTI client

manager Connection 4

Server

Figure 3.1: An example of MULTT running in visible mode on a client with four active
network interfaces.

application, or the server already supports serving multiple connections. When used to
create application-specific multilink solutions, MULTT is run in wisible mode and is only
used at the client. The application has access to a list of the available interfaces, and
can, for example, create one connection to a server for each available interface. Then, for
example, file requests can be distributed over the connections, or a video streaming server
can send the base layer over one connection, and then use the others for the additional

quality layers.

3.1.2 Enabling transparent multilink

Transparent multilink solutions, on the other hand, are transparent to the applications
running on top, as well as to the operating system and transport protocols. Changing
the actual application is in many cases not possible or desirable. For example, many
applications are proprietary and the changes have to be reflected in the remote applications
as well. The remote applications are often managed by independent third-parties, on
machines where the client or the client developer has no control. Similarly, modifying
the OS or transport protocol is a complex and error-prone process. The changes have
to be implemented at every machine that will communicate, often by the OS-developers
themselves. New transport protocols or changes to existing protocols take a very long
time to gain acceptance and reach widespread deployment.

When used to implement transparent multilink solutions, MULTI runs in invisible
mode and operates on the network layer. Working on the network layer allows a multilink
solution to be transparent to both applications and the transport layer. Also, through the
use of network tunnels, network layer solutions can be implemented in userspace, i.e., no
change to the OS kernel is needed. In addition, operating on the network layer removes
the addressing challenges limiting the deployment of link layer bandwidth aggregation.

As discussed in the related work, link layer bandwidth aggregation requires all network

3.1. Overview 43

interfaces to be directly connected to the same endpoint. We aggregate links that are
connected to different networks, using different technologies.

[Probe packet

I Data packet

Entry/exit point

Application overlay network

Client Proxy
Virtual MULTI client MULTI proxy | |Virtual
Interface ||manager manager Interface
Tunnel #2
N (]
] I I

Tunnel #1

Figure 3.2: An overview of a transparent multilink solution using MULTT (on a client
with two interfaces).

MULTT used in invisible mode is illustrated in figure 3.2, for a client with two network
interfaces. In invisible mode, MULTT requires a globally reachable proxy to avoid changing
the remote server, as unmodified hosts can only parse the original packet stream. In the
figure, the MULTT client manager makes use of both the available network interfaces.
Virtual interfaces are used to avoid changing the applications that want to benefit from
the scenario specific optimization(s) in the managers.

When using MULTT in invisible mode, the developer has to implement both a client
and proxy manager. One example of a transparent multilink solution is a bandwidth
aggregation proxy. The developer can for example implement a packet scheduler in the
proxy manager, in order to utilize the links efficiently, and then a resequencer at the
client manager will buffer packets until packet reordering is resolved. Such solutions will

be discussed in more detail in chapter 5.

3.1.3 Building a multilink overlay network

MULTT requires that both the client and proxy manager create virtual interfaces. Virtual
interfaces behave as normal network interfaces and are for example given a regular IP-
address. However, unlike a normal network interface, the virtual interface is owned and
controlled by a user-space application. This application receives all the data written to
the virtual interface and is responsible for sending it through an actual network. Virtual
interfaces are typically used for IP-tunneling and applications can make use of a virtual

interface, for example, by explicitly binding network sockets to it, or desired routes can be

44 Chapter 3. Designing an experimental multilink infrastructure

configured through the interface. The latter is truly transparent multilink support, as the
operating system will route any connection that matches the route through the virtual
interface. Thus, the configuration change required by explicit binding is not needed.
Exactly how the virtual interface is given an IP address is up to the developer, it can for
example either be static or be retrieved from a pool.

For each active interface at the client, an IP-tunnel to the proxy is established. In
other words, a multilink overlay network is built, and the manager is notified when a
tunnel is added or removed. Data is then sent through or received from these tunnels,
and in order to reach machines outside the multilink overlay network, the proxy uses IP
forwarding and source NAT (SNAT). IP forwarding is an operating system setting and it
must be enabled in order for a machine to be allowed to forward packets to their correct
destination.

SNAT is also supported by most operating systems and is used to change the source
IP of a packet to that of the proxy. This is needed to make sure that packets destined for
the client are routed back through the proxy, and thereby the multilink overlay network.
When packets destined for the client arrives at the proxy, SNAT automatically rewrites
the destination IP to the client’s TP (the virtual interface). In order to separate between
packets that will and will not have their IP address rewritten (for example those destined

for the proxy), SNAT, makes use of a mapping, like NAT.

3.1.4 Packet and processing overhead

The reason a virtual interface is needed at both the proxy and client, is that the data
sent through the tunnels gets encapsulated and, thus, must be decapsulated. In addi-
tion to the additional network and transport layer header added when a packet is sent
by the physical interface, a separate tunneling header is added. This header contains
management information needed by the client and proxy manager. We use UDP as the
tunnel transport protocol, due to its low-overhead and best-effort design, and the total
per packet overhead is 24 bytes (including IP and UDP header). With a 1500 byte MTU
(default for normal Ethernet), the overhead is 3.5 %.

Because MULTT and the MULTT managers are userspace applications, the processing
overhead is only affected by the speed of and the load on the host computer. Most modern
computers, including the ones used for the experiments performed during the work with
this thesis, are at least able to support streams of several hundred megabit per second.
For example, when measuring MULTT in the same network as used for table 3.1, the
observed overhead (throughput reduction) was 3.5 %. This was caused by the packet
overhead. That is, the processing overhead did not have an effect, and was significantly
less than the 7.5 % seen with L2TP.

3.2. Modules 45

| Virtual Network Interface |

H Data

| MULTI client manager |

MULTI Aquire IP/ Change in Change related Data
Change in IP link state to tunnels List of
P i il 3 IP tunnels

DHCP Link Probing Tunneling
module module module module

Fy A A Fy

Data
IP tunnels Probes
v A v

| MULTI Proxy |

Data | | Data
List of IP tunnels

| MULTI proxy manager |

H Data

| Virtual Network Interface |

Figure 3.3: Overview of MULTT run in invisible mode on a client with four active inter-
faces.

3.1.5 Solving the connectivity challenge

In order to solve the limited connectivity challenge caused by clients placed behind NAT,
MULTT uses NAT hole punching. At a given interval, probes are sent from the client
to the proxy. The proxy stores the source IP and port of the packet (which is set to
the NAT mapping if the client is behind NAT) and sends a reply to the client, using
the NAT mapping as destination address. This forces the NAT to keep a state for each
“connection”, allowing packets to flow in both directions. When the proxy sends packets
to clients, it sets the destination IP and port to the values it has stored. If the client
is behind NAT, the NAT will match the destination address stored in the packet to the
correct mapping, and forward the packet. The reason the NAT hole punching is initiated
by the client, is that many NAT-implementations only create a state when the first packet
was sent from within its network. The probe packets are also used for maintaining the

overlay network, which is also why they are sent from clients that are not behind NAT.

3.2 Modules

MULTT consists of four core modules, illustrated in figure 3.3. The different modules
are responsible for 1) monitoring the state of the OS’ network subsystem (Link module),
2) configuring interfaces and routing tables automatically (Link and DHCP module), 3)

managing the IP tunnels and constructing the overlay network (Probing module) and 4)

46 Chapter 3. Designing an experimental multilink infrastructure

Establish/
Link up/ Update maintain
Link down network tunnels
l /jubsystem
Link Probing MULTI
P
Got IP . .
module| Link available/ | Module Proxy
‘/ Link removed
Tunnel up
DHCP Request IP /down v
@dule Tunneling
module Data packets
Aquire IP,
maintain lease Available send(link_id, data)
tunnels
L, MULTI

Client Manager

Figure 3.4: How the core modules in the MULTT client interacts (invisible mode).

sending/receiving data from the tunnels (Tunneling module).

When used in invisible mode, the MULTIT manager communicates with the tunneling
module. When a tunnel is added or removed, the module notifies the manager. The tun-
neling module also provides a function for sending data through the overlay network, and
calls a callback function when data arrives. This function is specified by and implemented
in the manager.

Only the link and DHCP module is active when MULTT is used in visible mode, as
the manager makes use of the different interfaces directly. I.e., tunneling and thereby the
probing module is not needed, or it will be implemented in the manager. The different
modules can be regarded as black boxes that provide certain functionality and options to
the MULTT Managers. How the different modules and the client-side manager interact is

shown in figure 3.4. The following describes the functionality of the modules:

3.2.1 Link module

The link module monitors and detects changes in a client’s network subsystem (when the
interface is connected to a new network or the current connection is lost), and performs
the necessary network and routing configuration. When a new link is ready or a link has
been removed, either the manager (visible mode) or the probing module (invisible mode)
is notified. A link is not considered ready until it has been assigned an IP address and
the client’s routing tables have been updated (if needed). TP addresses are either assigned

statically (parsed from a configuration file) or requested using the Dynamic Host Control

3.2. Modules 47

Protocol [15] (DHCP) module. The link module also calculates a unique ID for each link.
This ID can for example be used by the proxy to determine if tunnels have been added
or removed.

On OSes where it is required, MULTT must update the routing tables, so that the
operating system is able to continue routing packets in the presence of multiple links.
If for example two default routes with the same priority exists on a Linux machine,
the kernel will become confused when packets are sent, a routing decision will not be
made and the packets discarded. The IETF have established a working group, Multiple
Interfaces ! (MIF), for designing a standard on how operating systems shall behave when
a multihomed client is connected to multiple networks. However, their work has yet to
be completed and they are currently behind schedule. If their work is successful, the
configuration part of the link module can be replaced by or removed in favor of MIF

(depending on whether the OS kernel supports it or not).

Present in proxy or client: Client only. If run in invisible mode, MULTT currently
requires the proxy to have one or more fixed addresses, and that the network sub-
system has been configured in advance. The reason for this requirement is that the

client manager must know how to reach the proxy.

Options: The link module can be provided as a configuration file stating how the
different interfaces shall be given an IP. This file specifies in which networks DHCP
will be used, and in which network the interface(s) will be assigned a static IP. If
an interface will be assigned a static IP, the file contains the TP address, netmask

and gateway.

3.2.2 DHCP module

MULTTI performs DHCP for those interfaces that are not assigned a static IP address.
DHCP is a protocol used to assign IP addresses dynamically. When connected to a net-
work using DHCP, the client first creates a DHCP DISCOVERY-message and broadcasts
it, using UDP, to the pre-defined destination port 68. The network’s DHCP server has a
database of all valid IP-addresses, and, assuming that there is an IP address left, replies
to the client with a DHCP OFFER-message. This message contains information such as
the reserved IP address, the netmask of the current network and gateway, as well as the
lease time for an IP. A client is only allowed to keep an IP address for a given amount
of time, and has to apply for an extension of the lease before the previous expires. If the
client accepts the OFFER, a DHCP REQUEST is sent, and the DHCP server replies with
a DHCP ACK. If packets are lost during the DHCP packet exchange, it is the client’s

Thttp://www.ietf.org/dyn/wg/charter /mif-charter

48 Chapter 3. Designing an experimental multilink infrastructure

responsibility to retransmit packets. Also, if the client does not accept the OFFER or
aborts the exchange, it sends a DHCP NAK. If a client no longer needs an IP address, it
sends a DHCP RELEASE.

The DHCP module supports the full state machine (described in more detail in the
DHCP RFC [15]), and a separate DHCP thread is started for each interface that will
request a dynamic IP address. The link module is notified when either the DHCP module

receives configuration information for an interface, or if an error occurs.

Present in proxy or client: Client only.

Options: If the link has previously been assigned an IP address through DHCP, the
Link module includes the old IP address as an argument to the DHCP thread.
DHCP then starts in the REBOOT state and will first request the old IP address.

3.2.3 Probing module

In the invisible mode, MULTT creates a multilink overlay network consisting of an IP-
tunnel for each active interface. The probing module is responsible for establishing the
tunnels between the client and the proxy, as well as sending probe packets in order to
maintain the multilink overlay network, and performing NAT hole punching. Each probe
packet contains a list of all available interfaces (the unique IDs calculated by link module).
This information is used at the proxy to export a list of available tunnels to the MULTI

proxy manager.

Present in proxy or client: Both. The client initiates the tunnels and sends the
probes. The proxy updates its information based on the received information and

replies to the probes, in order to keep the NAT hole open.

Options: The default interval between probe packets is 5 seconds. This can be changed

during runtime by the MULTT client manager.

3.2.4 Tunneling module

The tunneling module is responsible for encapsulating/decapsulating and sending/receiv-
ing data from the tunnel(s). To send data, the manager calls a function in the tunneling
module with the intended payload and desired tunnel as parameters. If the payload fits
within the tunnel MTU, the payload is encapsulated and sent through the tunnel. If the
size of the payload exceeds the MTU, an error code is returned to the manager. When
data is received from a tunnel, it is decapsulated and the tunneling module calls a callback

function implemented in the manager. This function is specified during the initialization.

3.3. Implementation details 49

An example of a callback function is a function which stores the received data in a buffer

for further processing.
Present in proxy or client: Both.

Options: The callback function called when data is received.

3.3 Implementation details

MULTT mostly uses functionality that is the same in all OS’. For example, the tunnels
and DHCP use normal network sockets that can be used together with standard, network
function calls. However, how to detect changes in link state and configure the network
subsystem differ between OS’. In this section, we will describe how this functionality was
implemented in the Linux and Windows version. The BSD-implementation, which also
works on OS X, is, except for a few minor details related to the used libraries, the same

as Linux.

3.3.1 Linux/BSD

Our Linux MULTI-implementation was written in C. When changes in the network sub-
system occur in Linux, the kernel broadcasts messages. These messages are divided into
several groups and are available to userspace applications. In order to receive these mes-
sages, a client must create a NETLINK-socket and subscribe to one or more groups.
Sending network configuration messages to the the kernel requires the use of the RT-
NETLINK 2-library. MULTT’s link module must be notified when new links are added or
if a link has been removed/lost connection to its network. These messages are sent to the
RTMGRP _LINK-group.

The information MULTT needs is contained in RTM_NEWLINK messages, and when
such a message is received and after the link module has received an IP for the interface,
RTNETLINK-messages are used to update the network configuration of the client. First,
an RTM_NEWADDR message is sent to assign the IP address to the network interface.
Then, RTM_NEWROUTE messages are sent to update the main routing table, as well as
the private routing table for the current network interface. When multiple interfaces are
active, Linux requires that each has its own routing table. Finally, a RTM_NEWRULE
message is sent to create a rule stating which table shall be used for lookup when pack-
ets are sent to or received from the current interface’s network. If an interface is no
longer active, the opposite messages are sent (RTM_DELADDR, RTM_DELROUTE and
RTM _DELRULE) and in the opposite order.

Zhttp:/ /www.kernel.org/doc/man-pages/online/pages/man7 /rtnetlink.7.html

50 Chapter 3. Designing an experimental multilink infrastructure

Linux provides several types of virtual interfaces and we used TUN/TAP 3. TUN/TAP
is robust, well-documented and enables applications to either receive the IP packet (TUN)
or the entire Ethernet frame (TAP). When MULTT is used in invisible mode on Linux, the
manager first has to create a TUN interface and assign it an IP address (an IP address
can for example be requested from the proxy). Then, the client manager or users can add
routes that go through it, and applications bind to the interface.

The only change between a Linux and a BSD-implementation of MULTT is that instead
of a NETLINK-socket, the client must create a routing socket . Also, even though we have

used C, RTNETLINK and TUN can be used from every major programming language.

3.3.2 Windows

Windows supports host multihoming and automatically configures the routing tables when
interfaces are added. In other words, the OS configures the system, and the Windows-
version of the link module only needs to detect when the state of a network interface
changes.

The MULTI-prototype for Windows was written in C#, Microsoft’s own object-
oriented language. In order to detect new network interfaces, the link module maintains
a list of all available interfaces and listens for the NetworkAddressChanged-event. This
event is triggered by the operating system when a network interface changes address, i.e.,
when it either becomes unavailable, switches network or has been configured.

After the event has triggered, the link module compares the most recent list of available
network interfaces to its own list, and interfaces are either added or removed. The probing
module is then notified and reacts accordingly. Finally, as TUN/TAP also exists for

Windows, they were used as virtual interfaces.

3.4 Implementation examples

MULTT can be used in two different modes, visible and invisible. In this section, we will

give a detailed example of how MULTT can be used in each mode.

Visible mode

Visible mode is intended for applications that will be extended with multilink support.
Only the link and DHCP-modules are in use, and the framework notifies the applica-
tion when a new interface is ready or when an interface has been removed/no longer is

connected to a network.

3http://vtun.sourceforge.net/
4http:/ /www.netbsd.org/docs/internals/en/chap-networking-core.html#netcore-sockets

3.4. Implementation examples 51

In order to demonstrate MULTI’s visible mode, we created a multilink enabled file
downloader. Using the common Hyper Text Transfer Protocol (HTTP), a file was di-
vided into several smaller logical segments. These segments were then requested over
the available links to achieve bandwidth aggregation. The application supported changes
in link state, and adapted which segments were requested over which links dynamically

according to the available resources.

Link state
updates

HTTP multilink downloader MULTI

Request | Request | Request | Request
segment |segment | segment| segment
1 2 3 4

Web server

Figure 3.5: The architecture of the HTTP downloader used to demonstrate MULTT’s
visible mode.

The architecture of the file downloader is shown in figure 3.5, for a client device with
four active links. Each link has been made responsible for one segment, and MULTI
notifies the application of changes in link state. When notified of a new link, the manager
created a socket, bound it to the corresponding interface, connected to the web server
and requested data over it. If a link became unavailable, the remaining data would be
requested over the first connection that was finished with its current segment.

To measure the performance of our HT'TP multilink downloader, the client machine
was connected to three 5 Mbit/s links, where only one link was available initially. The
achieved aggregated bandwidth is shown in figure 3.6. As the transfer progressed, the two
other interfaces were connected (at around 22 and 32 seconds) and the client was able to

use close to 100 % of the available capacity, i.e., 15 Mbit/s.

Invisible mode

In many cases, it is not desirable or even possible to extend applications with multilink
support, for example with closed source applications. When used to develop transparent
multilink solutions, MULTTI’s invisible mode must be used. In invisible mode, MULTI
makes use of a globally reachable proxy and creates a multilink overlay network consist-

ing of IP-tunnels. In order to provide transparency, both MULTI Managers must create

52 Chapter 3. Designing an experimental multilink infrastructure

Throughput (in Mbit/s)

0 I I I I I I I)
10 15 20 25 30 35 40 45 50

Time (in seconds)

Figure 3.6: Achieved aggregated throughput with our MULTT example application (visible
mode).

virtual interfaces. A virtual interface is perceived as a normal network interface by appli-
cations and is given its own IP-address. However, the interface is controlled by a userspace
application and, in our case, all data flows through the MULTT managers. The managers

are then responsible for sending the data over the network.

To demonstrate MULTTI’s invisible mode, we created a solution that performs trans-
parent connection handover, based on the physical location of a device. Connection
handover increases the reliability of network connections from a client and is especially
useful in a roaming scenario. Other techniques that could be used to implement transpar-
ent connection handover include Mobile IPv6 [44] and Mobile SIP [76]. We would like to
point out that this solution also supports bandwidth aggregation. However, as bandwidth

aggregation was demonstrated for MULTT’s visible mode, it will not be the focus here.

The system that was extended with support for transparent connection handover,
was a location-aware quality-adaptive video streaming system [65]. The streaming client
uses its current position to predict a path, and then plans for which video quality to
request when based on information returned from a lookup service. The client queries the
service using its GPS-coordinates, and the reply contains the capacity (bandwidth) of the
available networks in the area. Earlier, the system has been limited to using one network.
However, by applying transparent connection handover, the client device can switch to

the network with the most available bandwidth without changing the application.

The architecture of our location-based, transparent handover application is shown

in figure 3.7. To perform transparent handover, the roaming client (the MULTT client

3.4. Implementation examples 53

[HTTP streaming system |
Data TJ,

[Virtual Network Interface |
Dataf]

[Transparent roaming client (MULTI manager) J¢———*
query

Data {| Data : GPS-que
List of IP tunnels H
MULTI client

IP tunnels ! Data
Client Probes

MULTI Proxy

Data || Data
List of IP tunnels

GPS-query

|Transparent roaming proxy (MULTI manager)|

Datat] Data :
|Virtua| Network Interface|« g External network

Figure 3.7: The architecture of the transparent handover solution.

manager) at given intervals, or when the connection to the current network is lost, queries
the same lookup service as described in the previous paragraph. The MULTI Client
manager selects the available link (tunnel) with the most available capacity. The ID of
the selected tunnel is relayed to the roaming proxy (the MULTI proxy manager), and
the handover is completed when the proxy updates which tunnel to use for downstream
traffic. Because the “normal” applications on the multihomed client are bound to the
virtual interface, they will not be affected by the handover and will proceed as normal.
Thus, they do not need to be modified to support handover. The different components of
our solution, as well as a more thorough set of evaluations, are presented in detail in [23].

In order to evaluate the performance of our solution, the video streaming client
streamed a video from our webserver, using TCP. The experiments were performed on
a tram commute route in Oslo, Norway (see figure 3.9) with 100 % 3G coverage. In
addition, WLAN was available at the first station, as well as at a second station along
the path. The WLANSs always offered a higher bandwidth than the 3G network and was
therefore used when possible.

An example of the achieved throughput, in addition to the amount of data downloaded
over each interface, is shown in figure 3.8. Initially, a large amount of data was downloaded
over the WLAN, at a much higher rate than the 3G network could support. As the
tram moved away from the first station, the connection to the WLAN was lost and the
connection transparently handed over to the 3G network (at around the 150 second mark).
Without transparent handover, the connection would have been closed when the WLAN
was no longer available. TCP connections are bound to one interface and fails if an

interface becomes unavailable. When the WLAN became available again, after around

54 Chapter 3. Designing an experimental multilink infrastructure

° - 3G: 171.3MB
8 —— WLAN: 67.5 MB
©
g
o
©
[“
So
g8
< P
o \Y:
=3 d
o
N
o e L . X 7 ’;,;
0 200 400 600 800 1000 $G708 S S N

Seconds from start of test

Figure 3.9: The tram route used to test
Figure 3.8: The achieved throughput and the transparent handover solution. The
data downloaded over WLAN and 3G in two marked areas show where WLAN was
our transparent handover experiment. available.

750 seconds, the connection was again handed over. However, the WLAN was only
available for a few seconds, and the connection was handed back to the tunnel established
oved the 3G link. 3G was then used for the rest of the journey. Because of the additional
capacity offered by WLAN, the video quality increased significantly compared to when
only 3G was used [23].

3.5 Summary

To address the shortcoming of earlier multilink solutions, we have designed and imple-
mented MULTI. MULTT is a generic, platform-independent, modular framework for en-
abling multiple links, overcoming the deployment challenges described in section 1.2.1,
and allowing for easier development and deployment of multilink solutions. It automati-
cally detects changes in link state and configures the network subsystem, supports both
application-specific and transparent multilink solutions and either notifies applications
(called managers) of the changes in link state directly (visible mode), or updates its mul-

tilink overlay network first (invisible mode). In this section, we have introduced the design

3.5. Summary 55

of MULTT and the four core modules, given examples of how it can be used and described
how MULTT has been implemented for Windows and Linux. All implementations that
will be presented in the rest of this thesis used MULTI. In the next chapter, we look at

application-specific, non-transparent bandwidth aggregation.

Chapter 4

Application-specific bandwidth

aggregation

Several types of applications would benefit from having access to multiple links. For ex-
ample, a video streaming application could request different segments over different links,
a computer game could send the most important traffic over one link and use the others to
support additional services (like voice), or a file downloader could use the additional links
for redundancy. Implementing multilink support directly into the applications enables
the creation of solutions that are tuned to a particular application, or application type.
Our application-specific bandwidth aggregation solution improves the performance of
one of the most popular bandwidth intensive Internet services today - streaming of high
quality video content. Video aggregation sites like YouTube ! and Vimeo 2 serve millions
of HD-videos every day, various events are broadcasted live over the Internet and large
investments are made in video-on-demand services. One example is Hulu 2, which is
backed by 225 content providers and allows users to legally stream popular TV-shows like
Lost, House, Community and Grey’s Anatomy. Techniques developed to enhance video
streaming can be applied to other types of applications as well. For example, file transfer
(bulk data transfer) also aims at transferring large amounts of data as fast as possible.
In order to provide easy deployment and interoperability with the existing server infras-
tructure and streaming solutions, we have implemented our techniques using the popular
and widely supported Hypertext Transfer Protocol [24] (HTTP). However, we would like
to point out that our techniques are not exclusive to HTTP, the streaming platform we
have worked with or video streaming. The only requirement is that a client must be able

to request independent parts of a file over different links, as shown in figure 4.1. Dividing

thttp://www,youtube.com
Zhttp:/ /www.vimeo.com
3http://www.hulu.com/about

57

58 Chapter 4. Application-specific bandwidth aggregation

Server
Connection 1 ?
- 1D
3) —|a
- - Connection 2 S,| t
°
Connection 3 s
- >3 f
Client :
e

Figure 4.1: An example of application layer bandwidth aggregation. A multihomed client
is connected to a server using three interfaces and requests one subsegment over each
connection (S...,53), achieving bandwidth aggregation.

a file into independent, logical parts, from now on referred to as subsegments, allows a
client to request the file in parallel over multiple links, thereby achieving bandwidth ag-
gregation. Requesting subsegments is also supported by for example the commonly used
File Transfer Protocol [62].

In this chapter, we introduce the HTTP protocol and present a generic technique for
improving HTTP transfers using multiple links. Then, this technique is optimised for, ap-
plied to and evaluated together with quality-adaptive video streaming. Quality-adaptive
video streaming allows clients to switch video quality while streaming and is supported
by, amongst others, Microsoft (SmoothStreaming [78]), Apple (QuickTime Streaming
Server [37]) and Move Networks [56].

4.1 HTTP and multiple links

The Hypertext Transfer Protocol is an application layer protocol that serves as the foun-
dation of the World Wide Web. HTTP was introduced in 1991 * and is defined in
RFC2616 [24] as a network protocol for distributed, collaborative hypermedia systems.
The current version, 1.1, was released as an RFC [24] in 1999, and added several features
that will be discussed in the next section. The protocol is designed as a request-response
protocol for a client-server scenario. A client, for example a web browser, will first request
a resource, for example a file, from the server. The server then replies with a response
to the client’s request. With HTTP, the response always starts with an HTTP header

containing status information, before continuing with the requested content (if the request

4http:/ /www.w3.org/Protocols/HTTP /AsImplemented.html

4.1. HTTP and multiple links 59

was successful). HTTP implicitly assumes that TCP is used as the transport protocol.
However, this is not dictated by the RFC, and there are applications that use HT'TP on
top of UDP. Since the application-type we have focused on require a reliable connection
and in-order delivery of data, all our applications combine HTTP with TCP connections.

When an HTTP client requests a resource, it starts by creating an HI'TP GET message
containing all relevant information. This message is then sent to the server. If the server
is able to serve the request, an HT'TP 200 OK header is sent to the client, together with
the requested content. Otherwise, the server replies with a HTTP 4XX error code, for
example, a HT'TP 404 Resource Not Found message. The request methods and status
codes are defined by the protocol, and a pre-defined string is added to the end of each
HTTP message. Using this string, the client can determine where in the message the
content payload starts. The status information is only contained in the first packet of a
request.

HTTP servers are developed to handle several connections simultaneously. Further-
more, HTTP supports, by default, three separate features which together make the pro-

tocol well suited for use together with multihomed clients. The features are:

e Range retrieval requests are required in order to divide a request for a file into
multiple requests for smaller, independent parts (the subsegments). The subsegment
requests will be distributed among the multiple available links. Achieving good
bandwidth aggregation depends on requesting the right amount of data over each

link, and we have created a formula for calculating this amount.

e Pipelining allows a client to send a new request before a response to the previous
request has been received or processed at the server. It is used to remove the idle
period caused by a client waiting for the first bytes of the next request to arrive. In
order for pipelining to have an effect, the next request has to be sent early enough
(in time). We have developed a technique for achieving efficient use of pipelining

when requesting data over HT'TP.

e Persistent connections enables reusing TCP connections, i.e., multiple requests
can be sent over the same connection to the server. Having to open a new TCP
connection for every request would incur a large time overhead, especially on links
with a high RTT.

In the rest of this section, we will introduce these features and explain how we have
used them to improve the performance of HT'TP transfers when multiple links are available

on the client.

60 Chapter 4. Application-specific bandwidth aggregation

4.1.1 Range retrieval requests

Range retrieval requests, or range requests, was introduced in HTTP/1.1 and allows a
client to request specific byte-ranges of a given file. For example, if the first 50 kB of a
100 kB file is requested, only bytes 0 - 49 999 is sent. Range requests was introduced with
the intention of supporting efficient recovery of partially failed transfers, as well as partial
retrieval of large resources, and is commonly used by download managers. Download
managers can for example resume interrupted transfers or improve the performance of
a transfer by opening multiple connections to a server, and then request different parts
of a file over each connection. However, to the best of our knowledge, no download
manager supports using multiple links [77]. They all focus on single-link hosts with a
high bandwidth connection to the Internet.

Range requests is the only feature that, together with server-side support for multiple
simultaneous connections, is required in order to do bandwidth aggregation. Using range
requests, a file is divided into logical subsegments. The subsegment-requests are then

distributed among the different available links and requested in parallel.

Calculating the subsegment size

The subsegment size has a significant impact on throughput, both for a single link and for
the achieved aggregated performance over multiple links. Finding the ideal subsegment
size for a link is possible. However, it requires detailed knowledge about different link
characteristics, such as the available bandwidth and the RTT. This information may not
be readily available, accurate enough or require a significant time overhead caused by a
probing period. Often, a trade-off has to be made between accuracy (in terms of how
much data is allocated to one link) and performance. If an inaccurate amount of data
is allocated to one link, it can have a negative effect on the performance and reduce the
effectiveness of bandwidth aggregation.

The technique used for deciding how to divide a file into subsegments is known as
the subsegment approach. Choosing a too small subsegment size will cause the server to
process the request too quickly for the client to have time to pipeline another request,
leading to idle periods at the server. Pipelining allows clients to make additional requests
before the previous are finished and will be presented and discussed in more detail in the
next subsection. A too small subsegment size will be referred to as the minimum segment
problem, and the idle periods will occur if the one-way transmission delay d; over interface
I; is larger than the time ¢; it takes for the HTTP server to send out a subsegment. In
other words, the server will have finished processing the previous request before the next
arrives.

An estimate of the transfer time is given by the subsegment size S and the average

4.1. HTTP and multiple links 61

throughput ®; over interface I;:

ti = S/®, (4.1)

For pipelining to work efficiently over a path, a new request has to be sent from the

client to the server at time t,., after the current time ¢,,:

t'r'eq = tnow + S/q)v, - da, (42)

The minimum segment size S,,;, required for efficient pipelining, can be calculated by
setting treq = 0 and ¢, = 0 and then solving equation 4.2 for the segment size S. This
is the equivalent to the bandwidth-delay product of the path (the maximum amount of

data the can be in transit on a link):

Smin = di * P (4.3)

350 T T T T

300F L II’!! iiiiiii -
@ i
m
X 2501 A 1
<
o : 4
% ’
@ 2001 A .
B e
@ x
-
g 150 ~ 1

[
o
/
§, s
3 100 ,n
= "
’
50 b
r
£ = = Single-Segment Pipelining
= Throughput-Delay Product
0 , . N i
0 10 20 30 40 50 60

Segment Size (KB)

Figure 4.2: An example of the effect the subsegment size has on performance (the average
experienced throughput of the HSDPA network was 300 KB/s).

An example of how different subsegment sizes affect performance is shown in fig-
ure 4.2. Here, data was requested over an HSDPA network with an average throughput of
300 KB/s and a one-way delay of 110 ms. When for example a subsegment size of 10 KB

was used, the server required around 33 ms (equation 4.1) to send the entire subsegment.

62 Chapter 4. Application-specific bandwidth aggregation

However, 33 ms is significantly shorter than the average one-way delay. Equation 4.2
gives a t.., of -77 ms, in other words, the next subsegment must be requested before
the current subsegment’s download has even started. The minimum segment problem has
occurred. Using equation 4.3, we get an ideal Sy, of 30 KB (110 ms*300 KB/s). For

other combinations of bandwidth and delay, S,,;, would be different.

This is confirmed by figure 4.2. The throughput increased together with the subseg-
ment size, and at almost precisely 30 KB, the throughput reached the expected value.
The reason this did not occur at exactly 30 KB, is that the HSDPA link was not able to
provide a stable throughput at exactly 300 KB/s. Increasing the subsegment size even
further had very little effect, as the throughput was close to what the link could support

for a subsegment size of 30 KB.

When subsegments are used together with multiple links, the subsegment size also
has an upper bound. Choosing a too large subsegment size will lead to the last segment
problem. This problem is caused by one or more links being allocated larger subsegment(s)
than they can receive within a given time. Ideally, every subsegment that was requested
at the same time, should also be finished at the same time. Thus, the sizes of the different
subsegments should be set so that each link will spend an equal amount of time receiving
data. However, if the subsegment size is set too large, the high bandwidth links will

remain idle while waiting for the low bandwidth links to finish.

An example to illustrate this is as follows: Assume a client has two active links with
different bandwidths. If we assume that a segment is divided into two equal sized subseg-
ments, the high bandwidth link will finish receiving its subsegment first and remain idle
for the rest of the transfer. Thus, the full capacity of both links will not be utilized and
the bandwidth aggregation will be less efficient.

Additional byte overhead

Subsegments lead to a higher byte overhead because of the additional HTTP headers
(i.e., HTTP requests and responses). This metadata noticeably reduces the throughput
aggregation efficiency when the segmentation granularity approaches the size of a single
IP packet. Each request/reply contains at least the name and location of the requested
resource, the server’s IP address and a byte-range specification. For normal length URLS,
the byte overhead in each request/response is around 100 bytes. This is negligible com-
pared to the minimum subsegment size for most realistic combinations of bandwidth and

delay, which will need a subsegment size in the order of at least several kilobytes.

4.1. HTTP and multiple links 63

Sequential requests:

lRequest | Receive |Request| Receive | Requestl Receive |Request| Receive]

Pipelined requests:
[Request | Receive [Request | Receive [Request [Receive [Request | Receive
[Request [Receive [Request | Receive [Request [Receive [Request [Receive |

- Pipeline depth (number of pipelined segments)

Figure 4.3: With sequential requests, the client has to wait until the previous request has
been finished before it can make a new. This requirement is removed when pipelining is
used and the next request(s) can be sent at any time, eliminating the time overhead.

4.1.2 Pipelining

HTTP pipelining is, according to the protocol specification [24], a method that ”allows
a client to make multiple HTTP requests without waiting for each response, allowing a
single TCP connection to be used more efficiently, with much lower elapsed time”. The
benefit of pipelining is depicted in figure 4.3. Without pipelining (”Sequential requests”),
each request has to be fully served before the next can be sent. Whenever a client makes
a request, it has to wait at least one RTT before the first data arrives. A new request
cannot be made before all the data belonging to the previous request has been received,
introducing a large time overhead for high-RTT connections. For a large number of

subsegments, this overhead significantly impairs the throughput.

Without pipelining, a subsegment approach will cause a reduction in throughput.
The reduction depends on the number of subsegments, as well as the RTT of the link(s).
First, a higher RTT causes an increase in the time it takes for the request and reply to
arrive at the server and client, respectively. If we assume a one-way delay of 50 ms in
both directions (a 100 ms RTT), it will take at least 50 ms before the server receives
the request. Then, another 50 ms (or more) will pass before that client receives the first
bytes. The client and server’s idle time (while they wait for the next request) will increase
together with the number of subsegments. If links are idle, they are not utilized at their
maximum capacity, and, thus, the performance and effect of bandwidth aggregation is
reduced.

An example of the performance gain that can be achieved with HTTP pipelining,
combined with multiple links, is shown in figure 4.4. Here, the client was connected to
one WLAN (average throughput 600 KB/s) and one HSDPA-network (average throughput
300 KB/s), and the aggregated throughput increased significantly compared to requesting
subsegments sequentially, even for small values of S (the subsegment size). For example,

with pipelining, the ideal throughput (900 KB/s) was reached with a subsegment size of

64 Chapter 4. Application-specific bandwidth aggregation

[<=]
a
o

©
o
o

o]

5

o
T

[o+]
o
o

~
a
o

Average Aggregated Throughput (KB/s)
~
o
(=]

650 b
600 k
550 1
= = Pipelined Requests (HSDPA + WLAN)
500 — Sequential Requests (HSDPA + WLAN) |7
- = Throughput of Fastest Interface (WLAN)
450 ! ;

10 100 1000
Segment Size (KB)

Figure 4.4: An example of the benefit of using HTTP request pipelining. These re-
sults were obtained by simultaneously downloading a 50 MB large file over HSDPA (avg.
throughput 300 KB/s) and WLAN (avg. throughput 600 KB/s).

50 KB. The throughput when sequential requests was used never reached this level.

Multi-segment pipelining

In order to benefit from pipelining, it must be guaranteed that the amount of pipelined
(not yet received) data exceeds a path’s bandwidth-delay product. Otherwise, idle periods
can occur because the client has received all the requested data before the next request has
been processed by the server. This can be solved by either increasing the subsegment size
or by pipelining multiple requests. Increasing the subsegment size is in many cases not
ideal as it reduces the accuracy of the subsegment approach, in addition to the increased
probability of causing the last subsegment problem. A better idea is therefore to increase
the length of the pipeline. This means to increase the number of pipelined requests,
known as the pipeline depth and symbolised by the dots in figure 4.3.

An example of the performance gain offered by pipelining multiple requests is shown
in figure 4.5, using an HSDPA-connection with an average throughput of 300 KB/s.
Even though the numbers are only valid for this connection, the observations are generic.
While single-segment pipelining (a pipeline length of two) suffered from a low throughput
for segment sizes below the bandwidth-delay product (the minimum segment problem

occurs), multi-segment pipelining achieved close to optimal throughput with subsegment

4.1. HTTP and multiple links 65

350 T T T T

I' \\l-\'“‘lm.u\‘,\I' '
300F - .I.:r I.IIII II II i%}i 'J!H!I'i;i\i Eii' o
/

2501 T
200

150

100

Throughput over HSDPA (KB/s)

50 11 Multi-Segment Pipelining
= = Single-Segment Pipelining
= No Pipelining
0 . 1 \ N N
0 10 20 30 40 50 60

Segment Size (KB)

Figure 4.5: Increasing the number of pipelined subsegments results in a more efficient
throughput aggregation.

sizes in the order of a few IP packets. The ideal length of the pipeline depends on both the
subsegment size and the bandwidth delay product of the links. However, a long pipeline is
not always ideal. Because HT'TP does not support a client removing or aborting a request
without closing down the connection, allocating (pipelining) too many subsegments to one
link can have a negative effect on the throughput. For example, the available bandwidth
changes frequently in a wireless scenario, and pipelining decisions might not be valid for
very long. Restarting a connection involves a large time and processing overhead.
Assuming that an appropriate subsegment size has been chosen, a pipeline length of
two (single-segment pipelining) is ideal. This reduces the probability of making a wrong
pipelining decision, while still benefiting from pipelining. By requesting a new subsegment,
as soon as the first bytes of the previous subsegment arrives, the server will always have

at least one request to process (pipelined).

Interleaved startup phase

Different link characteristics, like bandwidth and RTT, is not known in advance. There-
fore, the technique used to allocated data to the links during the initial phase of a transfer,
can have a significant effect on the performance of for example video streaming applica-

tions. If consecutive subsegments are requested over the same link, a longer waiting

66 Chapter 4. Application-specific bandwidth aggregation

time before the playback starts might occur. The application has to wait for gaps in the

received data to be filled by requests made over a slower link(s).

Second
iteration

ly || #1 #4 ||| #7

|| #2 ||| #5 ||| #8

ls| | #3 ||| #6 ||| #9

First Third
iteration iteration

Figure 4.6: Startup phase — Requesting subsegments in an interleaved pattern helps
to provide a smooth playback and reduces the initial response time. The figure shows
interleaved startup for a client with three interfaces (I;...,I3) and a pipeline depth of three.

In order to avoid consecutive subsegments requested over the same link, we recom-
mend using a pre-defined scheduling pattern during the startup phase (see figure 4.6).
During the interleaved startup phase, it is guaranteed that consecutive subsegments are
not assigned to the same interface. After the interleaved startup phase (when the num-
ber of sent requests exceeds number_of _inter faces * pipeline_depth), subsegments will
automatically be requested based on the performance of the link(s). A faster interface
will finish receiving subsegments faster and, thus, request more subsegments than slower

links (assuming pipelining is enabled).

4.1.3 Persistent connections

The final feature that makes HTTP well-suited for use with multilink networked applica-
tions, is persistent connections. In HT'TP versions prior to 1.1, a client could only send
one request per connection. If for example a web browser were to retrieve a webpage
containing 10 pictures, 11 connections would have to be opened (one for retrieving the

webpage and ten for the pictures).

4.2. Quality-adaptive streaming over multiple links 67

Having to open a new connection for every request can introduce a significant time
overhead, especially on links with a high RTT. Persistent connections removes this over-
head by allowing multiple requests to be sent over one connection. The server then uses a

timeout to determine when a connection should be closed (unless done so by the client).

4.2 Quality-adaptive streaming over multiple links

Video streaming is a generic term that refers to several different types of streaming. The
most common type of streaming on the Internet is progressive download, which allows a
stream to be played out while it is being downloaded. A particular property of progressive
download is the use of client-side buffering for achieving smooth playback during periods of
congestion. The buffer is also used to compensate for the difference between the required
bitrate of the video and the available bandwidth. If the buffer is emptied too fast, the
playback pauses until sufficient data is available again. In order to avoid emptying the
buffer, the buffer is initially filled up to a certain point. Then, a video streaming client will
aim to keep the buffer sufficiently full at all times. From a user’s perspective, the required
buffer size (in terms of bytes required in memory) is of little relevance. However, when
developing multilink streaming solutions on devices with limited memory, the maximum
possible buffer represents an important design factor. We assume that the devices always
have enough available memory to buffer the requested data. Still, our goal has been to

achieve the best possible video playback quality with the smallest possible buffer.

4.2.1 Startup delay

The initial filling of the buffer is known as the startup delay or latency, and is an important
factor for the user-perceived quality of service. For example, when starting a full-length
movie of two hours, users might be willing to wait a few minutes before playback starts.
However, for shorter clips, the startup latency should be perceived as instantaneous. Also,
the startup latency affects the liveness of a stream. We define liveness as how far behind
the playback is the no-delay broadcast. Liveness is used as a parameter in our evaluations,
and we try to achieve the best playback with the shortest startup delay (and thus, highest

degree of liveness).

4.2.2 Adaptive streaming

Quality-adaptive, segmented video streaming is a more advanced type of progressive down-
load. Earlier, streams were typically encoded in a single bitrate and the client was unable

to adapt the stream to the available resources, except for increasing the buffer size, startup

68 Chapter 4. Application-specific bandwidth aggregation

delay and rebuffering periods. With quality-adaptive streaming, each video is divided into
fixed-length segments, and each segment is encoded at different bitrates. The clients are
given more control and can for example adjust the requested video quality based on the
measured throughput, as well as the number of segments currently in the buffer.

By requesting different parts of the video file or video segments over different links, a
device should ideally be able to utilize the full capacity of the different links and achieve
better performance than the fastest of the single links (for example a higher video quality
with fewer playback interruptions). Also, using several independent interfaces makes a

solution more robust against link variance, congestion and failure.

Playback buffer
S1 S2 S3 S4

Ready for Partially Received Requested
playback received

Figure 4.7: Snapshot of a stream in progress. The striped areas represent received data.

However, different techniques are needed to overcome the link heterogeneity challenges
described in section 1.2.2. Due to differences in bandwidth and delay, there can be gaps
in the received content, as shown in figure 4.7. Video is read sequentially, so any gap must
be filled before segments can be played back. If a segment is not ready before it is to be
played out, a deadline miss occurs. A deadline miss causes interruptions in playback, as
the client has to wait for the rest of segment, and reduces liveness even further. If the
stream is a live broadcast, each deadline miss causes the client to lag further behind the
broadcast. One technique used to increase liveness, is to skip segments if the client lags

too far behind. This will be discussed later.

4.2.3 The DAVVI streaming system

In order to design, develop and evaluate HT'TP-based quality adaptive multilink streaming
in a real-world environment and for real-world networks, a video streaming system is
needed. There exists several different such systems, however, except for one, those we
found were all proprietary.

Because it is open-source and provides the features we need, we extended the DAVVI-
platform [43]. DAVVI is an HTTP-based streaming system that supports several types
of streaming, and offers several of the same features as popular commercial, proprietary
solutions (like Microsoft’s SmoothStreaming [78]). Each video is divided into fixed-length,
independent video segments with constant duration (set to two seconds for the work done

related to this thesis). The segments are encoded in multiple qualities (bitrates) and

4.2. Quality-adaptive streaming over multiple links 69

each segment (in each quality) is stored as a separate file. The constant duration of the
segments limits the liveness of a stream, i.e., how live a stream can be compared to the
broadcast. At least one segments must be ready and received by the client before playback
can start.

DAV VI stores video segments on regular web servers, so a dedicated streaming server is
not needed, and the video segments are retrieved using HTTP GET. Because no additional
feedback is provided by the server, the client monitors the available resources. This
information is used to adapt the video quality and ensure that the buffer is always as
full as possible, ideally avoiding deadline misses. The quality can be changed whenever
a new segment is requested. However, the change will not be visible to the user before
the segment is actually played out. In our case, each segment contains two seconds of
video, which has been shown in [57] to be a good segment length. According to their
work, changing video quality more frequently than every 1-2 seconds annoys the user.

For this thesis, we have focused on the three main types of streaming. They are as

follows:

e On-demand streaming: On-demand streaming is used together with full-length
movies and similar content, meaning that video quality and continuous playback are
the most important metrics. This is the most common type of streaming, and the
performance is only limited by the available bandwidth. Because the entire video
is available on the server in advance, segments can be requested as soon as there is

room in the receive buffer.

e Live streaming with buffering: Live streaming with buffering is very similar to
on-demand streaming, except that the whole video is not available when the stream-
ing starts. Live in the context of this thesis is liveness, and by delaying playback
by a given number of segments (the startup delay), a trade-off between liveness
and smoothness is made. Provided that all requested segments are received before
their playout deadline, the total delay compared to the broadcast is startup_delay
+ inital_segments_transfer_time. Live streaming with buffering is frequently used to

stream sports events, for example cross country or road cycling.

e Live streaming without buffering: Live streaming without buffering has live-
ness as the most important metric. Segments (requests) are skipped if the stream
(playback) lags too far behind the broadcast, and a requirement for being as live
as possible is that the startup delay is the lowest that is allowed by the streaming
system. In our case, this limit is two seconds (one segment), so the client lags 2s +
initial_segment_transfer_time behind the broadcast when playback starts, and skips

segments if the lag exceeds the length of one segment. Even though most content

70 Chapter 4. Application-specific bandwidth aggregation

providers use a startup delay of some segments, we have also looked at live streaming

without buffering as it is the most extreme case and provides valuable knowledge.

In order to better utilise available network resources, DAVVI was extended with mul-
tilink support through MULTI. MULTT was used in visible mode, meaning that the appli-
cation was notified directly of changes in link state. Whenever the client was connected to
a new network, the DAV VI client application created a new connection to the video server
and started requesting subsegments. In order to use multiple links efficiently, subsegments
must be requested according to the available resources. If a slow interface is allocated
a large share of a segment, the performance of the whole application might suffer. For
example, the segment may not be ready when it is supposed to be played out, causing a
deadline miss and an interruption in playback.

The core of DAVVI’s multilink extension is the request scheduler. The request sched-
uler is responsible for making and distributing subsegment requests, adjusting the desired
video quality and forwarding complete segments to the video player. The size of each
subsegment is decided by the subsegment approach. Without a good scheduler and a
good subsegment approach, adding multiple interfaces can cause a drop in performance,
affecting the user experience. For example, the quality adaptation might be too optimistic
and select a higher quality than the links can support, or links might not be used to their
full capacity. The request scheduler and how it adapts quality is presented in the next
section. Then, in the subsequent sections, we combine and evaluate the scheduler together
with two different subsegment approaches. In the static subsegment approach, each sub-
segment has a fixed size, while the dynamic subsegment approach divides segments into

subsegments based on the measured throughput.

4.2.4 Quality adaption mechanism and request scheduler

In order to utilize the available client interfaces efficiently, to avoid video deadline misses
and to prove the best possible user experience, we extended DAVVI with a new request
scheduler. The client monitors the throughput (both aggregated and per link), and the
request scheduler uses this information to adjust the video quality level and request sub-
segments over the available interfaces.

Our request scheduler is outlined in algorithm 1. The first segment is always requested
in the highest quality offered by DAVVI (line 1-3). The highest quality level consists of
the largest files, i.e., the files that will be divided into the most subsegments (“samples”).
This enables the client to quickly make the most accurate aggregated throughput estimate,
at the expense of a longer startup delay. Also, the first segment is the only segment that

can not cause a deadline miss, so it is safe to request it in any quality. The aggregated

4.2. Quality-adaptive streaming over multiple links 71

Algorithm 1 Request Scheduler [simplified]
1: quality_level = “super”
2: request(subsegment over each interface)
3: request(“pipelined” subsegment over each interface)
4: while (stream not finished) do
5. data = receive()
6: I = interface that received data
7. if (data == complete subsegment) then
8
9

estimate aggregated throughput

: if (data == complete segment) then
10: queue_for_playback(segment)
11: quality_level = quality_adaption_mechanism
12: end if
13: end if
14: if subsegment’s pipelined_subsegment then
15: request(subsegment, I, quality_level)
16: subsegment’s pipelined_subsegment = true
17 end if

18: end while

throughput estimate is updated once for every subsegment (line 9), and is estimated by
the client measuring how long it takes to receive the subsegments over the different links.
The measurements are averaged, using the previous average and the current measurement,
and then added together.

The request scheduler uses interleaved startup (line 2 and 3), and as long as there are
video segments available and space in the buffer, the client will continue to request sub-
segments. If the subsegment is the first subsegment of the next video segment, the quality
is adjusted (line 11) based on the aggregated throughput. Pipelining is done as soon as
possible (line 14-17) in order to ensure that the server always has one segment to process.
Each subsegment has a pipelined_subsegment variable, which is used to determine if the
current subsegment has spawned a pipelined subsegment request or not. Algorithm 1
assumes that a pipeline length of two is used, otherwise, pipeline_subsegments would be
replaced with a counter.

If there are no more segments available (for example if the client has caught up with
a live-stream) or the buffer is full, the request scheduler will wait before it requests more
data. When a segment is then available, the algorithm will restart, i.e., interleaved startup
will be used. However, unlike for the initial segment, which is always requested in the
highest quality, the measured throughput is used to select the quality.

The quality adaption mechanism is summarized in algorithm 2. Three parameters are
used to select the quality: the amount of buffered data (num_buf fered_segments), the

measured aggregated throughput (aggregated_throughput) and the size of the different

72 Chapter 4. Application-specific bandwidth aggregation

Algorithm 2 Quality adaptation mechanism
1. transfer_deadline = time_le ft_playout + (2s * num_buf fered_segments)
2: pipeline_delay = pipelined_bytes_left | aggregated_throughput
3: for quality level = “super” to “low” do
transfer_time = segment_sizelquality_level] / aggregated_throughput
5. if transfer_time <(transfer_deadline - pipeline_delay) then
6 return quality_level
7. end if
8
9

b

reduce quality level
: end for

quality levels of a segment (in bytes, segment_size[quality_level]). The size of the video
segment is parsed from a continuously updated logfile generated by the server. Requesting
and receiving the updated parts of this file adds some overhead, however, measurements
has shown that it does not have an effect on the overall performance. The requests are
made in parallel with the requests for subsegments, and each update is less than one
kilobyte large.

The goal of the quality adaption mechanism is to find the highest possible quality
that will not cause a playback interruption. When selecting video quality, the client
first calculates how much content it has already received and that is ready for playout
(transfer_deadline, line 1). This is the sum of what is left of the segment that is currently
being played out (time_le ft_playout), and how much content has been buffered (2 seconds
* num_buf fered_segments. Then, an estimate for how long it will take to receive the
data that has already been requested (pipeline_delay, line 2) is calculated.

For each quality level, starting from the highest, the time it will take to receive the
segment in the given quality level is calculated (transfer_time, line 4). By subtracting
the pipeline_delay from the trans fer_deadline, an estimate of how much additional time
can be spent receiving data without causing a deadline miss is obtained (line 5). If
transfer_time is less than this estimate, the segment should be received and ready for
playback before a deadline miss occurs, and the quality level is returned to the scheduler
(line 6).

4.3 Evaluation method

When evaluating the performance of video streaming, we measure the video quality and
deadline misses. The video quality is dependent on the bandwidth aggregation, i.e., an
efficient aggregation results in a higher throughput. Thus, the quality increases. Dead-
line misses are of the highest importance from a user’s perspective, with respect to the

perceived video quality. The number of deadline misses depends on the subsegment ap-

4.3. Evaluation method 73

proach. A poor approach allocates too much data to slower interfaces, causing data to
arrive late and segments to miss their deadlines.

Initially, we developed the static subsegment approach and evaluated the performance
difference between using a single and two links. The subsegment approach was combined
with live streaming with buffering, and we measured the effect of both bandwidth and
latency heterogeneity. If the heterogeneity is not properly considered, adding multiple
links can lead to a reduction in throughput. However, as we discovered, the performance
of the static subsegment approach depends on the buffer being large enough to compen-
sate for the bandwidth heterogeneity. Increasing the buffer is not always ideal, so the
static subsegment approach was improved by making it more dynamic. In our second
set of experiments, we compared the performance of the static and dynamic subsegment
approaches, and evaluated them together with all the three types of streaming.

The experiments were performed both in a fully controlled environment and in real-
world networks. A fully controlled environment allows us to isolate and analyze the effect
of different parameters, while real-world networks give an impression of how the multilink
streaming would perform if deployed. To get comparable results from real-world networks,
the tests were run interleaved, and the experiments were performed during peak hours

(08-16) to get the most realistic network conditions.

Quality level Low | Medium | High | Super
Minimum bitrate (Kbit/s) | 524 866 | 1491 | 2212
Average bitrate (Kbit/s) 746 1300 | 2142 | 3010
Maximum bitrate (Kbit/s) | 1057 1923 | 3293 | 4884

Table 4.1: Quality levels and bitrates of the soccer movie used to evaluate the performance
of video streaming.

The same video clip was used in all the experiments. The clip was Variable Bitrate-
encoded (VBR) and shows a football match. It has a total playout duration of 100 minutes
(3127 segments of two seconds) and was available in four different qualities. A subset of
100 video segments were used in the evaluations, and the bandwidth requirements for this
subset is shown in table 4.1. In all the experiments performed in the controlled network
environment, the sum of the available link bandwidth was always equal to the average
requirement for super quality, 3 Mbit/s. In other words, the client should on average be
able to stream video in the highest quality. Limiting the bandwidth also allows us to
evaluate the gains of bandwidth aggregation, otherwise, a single link would in many of
the evaluations have been sufficient for receiving the highest quality.

For each experiment, the buffer size and startup delay were always equal, forcing the

client to fill up the buffer before starting playback.

74 Chapter 4. Application-specific bandwidth aggregation

4.3.1 Controlled network environment

5 -(
<

Client

Figure 4.8: The controlled environment-testbed used to evaluate the performance of video
streaming over multiple links.

Link 1

>
Link 2 =

\—-o-—»m—cBn‘l|

Server

The controlled environment testbed, shown in figure 4.8, consisted of a client and a
server (Apache 2 °) connected using two independent 100 Mbit/s Ethernet links. Both
client and server ran Linux 2.6.31, and to control the different link characteristics, the
network emulator netem was used with a hierarchical token bucket queueing discipline.

In the controlled network environment, we measured how different levels of bandwidth
and latency heterogeneity affected the video streaming. In addition, we performed ex-
periments where we emulated link dynamics. This allowed us to expose the subsegment

approaches to dynamic links, while still having some control over the parameters.

Bandwidth heterogeneity

Bandwidth heterogeneity is one of the two challenges that are especially important when
aggregating multiple links. Unless the traffic is balanced properly, the links will not be
used at their full capacity.

In order to evaluate the effect of bandwidth heterogeneity, the combined bandwidth of
the two links was always 3 Mbit /s, emulated using the hierarchical token bucket. This is
equal to the average bandwidth requirement for the highest video quality (see table 4.1).

The latency was that of the links, i.e., it was homogeneous.

Latency heterogeneity

Different types of networks often have significantly different latencies, causing requests
to arrive and be processed at different times. When measuring the effect of latency
heterogeneity on video quality and deadline misses, one link had a constant RTT of
10 ms, while the other link was assigned an RTT of » ms, with » € {10, 20, ..., 100}.
The bandwidth of each link was limited to 1.5 Mbit/s, to avoid bandwidth heterogeneity

affecting the results.

Shttp://www.apache.org

4.3. Evaluation method 75

Emulated link dynamics

Dynamic links impose different challenges than static links do, as the scheduler has to
adapt to often rapid changes in the network. To expose the two subsegment approaches
to dynamic links while still having some control over the parameters, we created a script
which adjusts the link characteristics based on observed real-world network behavior. The
purpose of this script is not to recreate reality, but to give an impression of real-world
link behavior.

The sum of the bandwidth of the two links was always 3 Mbit/s, but at random
intervals of ¢ seconds, t € {2, ..., 10}, the bandwidth bw Mbit/s, bw € {0.5, ..., 2.5}
of each link was updated. The RTT of link 1 was normally distributed between 0 ms
and 20 ms, while the RTT of link 2 was uniformly distributed between 20 ms and 80 ms.
The script was used in the experiments conducted to gather the results presented in
section 4.4.2 and 4.5.3.

4.3.2 Real-world networks

WLAN | HSDPA
Average experienced throughput | 600 KB/s | 250 KB/s
Average RTT 30ms 220 ms

Table 4.2: Observed characteristics of the real-world links that were used when comparing
the static subsegment approach to using a single link.

WLAN HSDPA
Average experienced throughput | 287 KB/s | 167 KB/s
Average RTT 30ms 220 ms

Table 4.3: Observed characteristics of the real-world links that were used when comparing
the performance of the static and dynamic subsegment approach.

Measuring the performance of the subsegment approaches in real-world networks, gives
an impression of how they will perform if deployed. We made experiments in a wireless
scenario where the client was connected to a public WLAN (IEEE 802.11b) and an HSDPA
network. The characteristics of these networks are summarized in table 4.2. The reason
we worked with wireless networks is that they present a more challenging environment
than fixed links. When comparing the static to the dynamic subsegment approach, the
characteristics of the wireless networks had changed. The performance of the wireless
networks when performing the second set of evaluations is summarized in table 4.3. That
the performance of the networks had changed means that the results cannot be compared

directly. However, any general trends and observations are still valid.

76 Chapter 4. Application-specific bandwidth aggregation

4.4 Static subsegment approach

[ONot downloaded
Downloaded data

Subsegmelntsl (100 KB)

L1177 177 LT T A 17T R TV)

A time [s]
: - = - - -
0 Segment sg 2 2+A Segment s1 4+A
(currently played out) (currently downloading)

Figure 4.9: An example of the static subsegment approach. The two interfaces I, and
I, have finished downloading segment sy of quality Q2. As the throughput has dropped,
they currently collaborate on downloading a lower-quality segment.

The first of the two subsegment approaches, the static subsegment approach, divides
each two-second video segment into fixed-sized, logical subsegments, as shown in figure 4.9.
In the figure, a client equipped with two interfaces will request a new video segment. This
segment is divided into fixed-size subsegments that are requested interleaved over the two
interfaces. The performance of the static subsegment approach was measured together
with live streaming with buffering and was compared to that of the single, faster link. We
did not want to add additional time overhead by measuring the capacity of each link and
then calculating a subsegment size, so a size of 100 KB was used. Based on experimental
evaluation and the formulas for calculating the ideal subsegment size, 100 KB was found
to give a good trade-off between performance and accuracy (in terms of how much data
is allocated to one interface). It provides sufficient slack and is large enough to not cause
the minimum segment problem, while still being small enough to avoid the last segment
problem for any link used in the evaluations. Even the slowest link is able to receive
100 KB within a few seconds.

4.4.1 Static links

The emulation testbed introduced in section 4.3.1 provides a static, fully controllable net-
work environment, where it is possible to isolate, adjust and analyze different parameters.
The purpose of the experiments with static links was to evaluate how bandwidth and
latency heterogeneity affects the video quality. The total available bandwidth was always
equal to 3 Mbit/s.

4.4. Static subsegment approach 7

100 - Super m—
High »xewes
. Medium
ook Low -
Y 2 % e -
~ 3 b3 s EI
) i<] o) o) b
& i g S g
= i kS S S
g & S <Z e &
= " S 3 b
£ 50| & s SR 5
> 2 S s et
] - S S s Q
kS b 2 i ORI b
> b o) S 5
= g . S %
g 3 k3 < g s
25 | e X X s ¥
o W 3 <, i i
5 g <, S S
i S X o ! ¥
b :?: ?* I ? I E:
& % R E}
ﬁ:::g] :f: "\70: M \Ef

0 Lot 2o R,
50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Figure 4.10: Video quality distribution when the scheduler was faced with bandwidth
heterogeneity in a fully controlled environment (0.1 ms RTT on both links), using the
static subsegment approach.

Bandwidth heterogeneity

Figure 4.10 shows the video quality distribution for various levels of bandwidth hetero-
geneity. The bandwidth ratio is shown along the x-axis, and the X:Y notation means that
one link was allocated X % of the bandwidth, while the other link was allocated Y %.
The bars represents the four video qualities, and the y-value of each bar is its share of

the received segments.

In this experiment, a buffer size of two segments was used, meaning that the client
lagged at least 4 seconds behind the live stream when the video started playing. With a
single link (the X:0 bars), the quality, as expected, increased as more bandwidth became
available. Adding a second link increased the quality even further, however, only for some
levels of bandwidth heterogeneity. When the bandwidth ratio was 80:20, the performance

was worse than when a single link was used (80:0).

This was caused by the buffer being too small to compensate for the link heterogeneity,
and the client was unable to reach maximum performance. With a short startup delay
and small buffer, the request scheduler is only allowed a little slack when requesting the
first segment after the playout has started. Assuming that the links are heterogeneous
and none exceeds the bandwidth requirement for the stream by a large margin, the small
amount of buffered content forces the scheduler to pick a segment of lower quality. Smaller

segments consist of fewer subsegments, so the slowest link is allocated a larger share of the

78 Chapter 4. Application-specific bandwidth aggregation

100
75
< -
8 §
=) K}
=2 9
£
= b4
2 §
R é g
;g g]
>
z :
= g
< %
s $
o 5

g
i
E
g
sz
I
9
i
fi
a
:

E
B Ix
E §
] %
i o h o
ol @ . g: | 5 Nt &

19 1m 269 2m) 3s) m) 4) Am) 5E) 5m) &) 6m)
Buffer size (in segments). (s) is single link, (m) is multilink

Figure 4.11: The number of buffered segments plotted against video quality distribution
(bandwidth ratio 80:20), using the static subsegment approach.

requested data, and the link has a more significant effect on the throughput measurements.
This quality reduction continues until the throughput and quality stabilizes at a lower
level than the links might support.

Increasing the receive buffer size and startup delay improves the situation, as can be
seen in figure 4.11. This figure shows how a larger buffer size increased the efficiency of
throughput aggregation for a high bandwidth ratio (80:20). A larger receive buffer allows
the scheduler more slack, so the first segment after the startup delay (the buffer has been
filled completely) is requested in a higher quality than with a small buffer. Larger segments
consist of a higher number of subsegments than smaller ones, so fewer subsegments are
requested over the slowest interface, i.e., it is made responsible for less data (relative to the
total amount of requested data). Provided that the buffer is large enough, the links are
allocated their correct share of subsegments (or at least close to). Thus, the throughput
measurements are more accurate and a better video quality distribution is achieved.

A rule of thumb with the static subsegment approach is that the buffer size must be
equal to the bandwidth ratio. For example, a bandwidth ratio of 80:20, requires a buffer
size of five segments (the low bandwidth link can receive one segment for every fourth the
hight bandwidth one receives). However, this is only correct for a video with constant bit
ratio. With a VBR-video, which was used in the experiments presented in this chapter,
the segments are of different sizes and have different bandwidth requirements. The latter
explains why a buffer size of four was sufficient for the multilink performance to exceed

that of a single link, as seen in figure 4.11.

4.4. Static subsegment approach 79

0.7
0.6 v
:(-8\ v
=
o 05
Q
15}
N
& 04r
g
2
= 03F
= a
8 v
o v
s 021 .
>
< N ¥
0.1
i
oL Ha v o o 84 HEH e

v
50:0 66:0 80:0 100:0 50:50 66:34 80:20
Bandwidth ratio. :0 means that a single link was used

Figure 4.12: Deadline misses for 2-segment buffers and various levels of bandwidth het-
erogeneity, using the static subsegment approach.

Another interesting observation made in figure 4.11, is that limiting the buffer size
also affects the single link performance. Even though the connections to the server were
kept alive (persistent connections), the cost of having to wait for room in the buffer and
then request a new segment is high.

Figure 4.12 shows the deadline misses for the different bandwidth ratios. The RTT was
close to constant at 0.1 ms, and the majority of deadline misses occurred when the buffer
was not large enough to compensate for the bandwidth heterogeneity. Thus, another
consequence of the buffer being to small, is that the slow interface caused the reception

of the complete video segment to be delayed.

Latency heterogeneity

For the results presented in figure 4.13, the latency heterogeneity was varied between
different levels. The bandwidth of each link was limited to 1.5 Mbit/s, to avoid bandwidth
heterogeneity affecting the results, and the buffer size was set to two segments.

As depicted in Figure 4.13, video quality was not significantly affected by latency
heterogeneity. Through efficient use of pipelining and adding a startup latency, the latency
heterogeneity was compensated for.

However, not taking the latency heterogeneity into account can have an effect on
deadline misses, as seen in figure 4.14. The buffer size limits the frequency of subsegment

requests, and after an interface has been idle, it will take at least one RTT before the

80 Chapter 4. Application-specific bandwidth aggregation

100 - Super m—
High S
Medium N
S) Low =
_ >: S 5
S s 8
= 3 g
£ ;
2 sl 3 5
E < g
~— X X
= ; g
é 25 |- ; g
3 g
; ; 3 ;
3 4 ; g 3
8 X g 5 %
i 3] B I I {;;%l ~3;::<>l # l

0 _ VA & e
10.0 10:10 10:20 10:40 10:60 10:80 10:100
RTT of each link (in ms). :0 means that a single link was used

Figure 4.13: Video quality distribution when the scheduler was faced with latency hetero-
geneity in a fully controlled environment, buffer size of two segments and using the static
subsegment approach.

03
025 . .
2
kel
=
8
o} 0.2
w2
2 "
E o5t
Q
8 *
k<)
S
S o1l
oh
>
< n .
0.05 [
*] L] A v *
u
0oL m HEH HH o 2] 2 gl 2 2]

10:0 10:10 10:20 10:40 10:60 10:80 10:100
RTT of each link (in ms). :0 means that a single link was used

Figure 4.14: Deadline misses when the scheduler is faced with latency heterogeneity in a
controlled environment, using the static subsegment approach.

first bytes of a requested subsegment is received. Then, for example packet loss or an
overestimation of bandwidth by the scheduler can lead to deadline misses. However,
the observed lateness was not significant compared to the complete segment length. The

average lag for all bandwidth ratios was close to 0 s, and the maximum observed reduction

4.4. Static subsegment approach 81

in liveness was less than 0.3 s.

Buffering is one way of avoiding deadline misses. By adding a larger buffer and sacri-
ficing the liveness, the client has enough stored data to compensate for deadline misses.
The same test performed with a buffer size of one and three segments confirm this. A
buffer size of one caused a significant increase in the number of deadline misses, and they
were more severe. When the buffer was increased to three segments, all deadline misses

were eliminated.

4.4.2 Dynamic links

Dynamic links impose different challenges than static links do. Their behaviour requires
that the request scheduler adapts to changes in the network, often rapidly. We evaluated
the scheduler and static subsegment approach in two different scenarios. In the first,
we emulated dynamic network behaviour to control all parameters and analyze how the
scheduler and subsegment approach performs. In the second, they were evaluated using
public WLAN and HSDPA networks to get an impression of their performance in the real

world.

Emulated network dynamics

In order to emulate network dynamics, a script that at random intervals updated the
bandwidth of the links was used. In addition, the RTT of the two links followed dif-
ferent distributions. The worst case bandwidth heterogeneity was 5:1 (2.5Mbit/s and
0.5 Mbit/s), and a buffer size of six segments was used, according to the rule of thumb
discussed in section 4.4.1.

Figure 4.15 shows the average achieved throughput for every run (40 runs), both when
two different single links were used and when the client aggregated the bandwidth over
multiple links. When both links were used at the same time, the throughput was most
of the time equal to the bitrate-requirement for the highest quality. In total, 95 % of
segments were in ”Super” quality. When single links were used, the achieved throughput
stayed between ”Medium” and ”High”. With single links, 35 % of the segments had
"Medium” and 20 % "High” quality, 26 % ”Super” and 18 % ”Low”.

Figure 4.16 shows that deadline misses did occur when each of the links were used
alone, but never when they were used together. This is as expected. When a single link
was used, the link was often unable to meet the bandwidth requirement of the requested
quality because of the fluctuating bandwidth. When the bandwidth was aggregated, the

two links together were always able to provide the required bandwidth.

82 Chapter 4. Application-specific bandwidth aggregation

3000 |
2500 -
2000

1500 i,

Average achieved throughput (kbit/s)

1000
500 |-
Link 1 ——
Link 2 -------
Multilink --------
0 .) . . |
° 2 40 60 80 100

Segment number

Figure 4.15: The average achieved throughput (for every segment) of the scheduler with
emulated dynamic network behaviour, using the static subsegment approach.

0.5

+

~ 04 F

o2

el

=

o

5]

2 %

Y 03| + %

2 + *

£ *

S N *

= +

= 02 %

15} +

o

: ! :

2 1 %
+ %X

0.1 | réﬁij ; %ﬂ
+ bl
+ ol
T 2
(VI + X e B
Link1 Link2 Multilink

Figure 4.16: Deadline misses of the scheduler with emulated dynamics, using the static
subsegment approach.

Real-world networks

To get an impression of the scheduler’s performance over real wireless networks, we ex-
perimented with the multilink-enabled DAVVI player using WLAN and HSDPA networks

summarized in table 4.2. The observed worst case heterogeneity was also here around 5:1,

4.4. Static subsegment approach 83

3000

2500

2000

1500

1000

500 -

Average achieved throughput (kbit/s)

WLAN ———
HSDPA -------
) Multilink e

0 1 1 1
0 20 40 60 80 100

Segment number

Figure 4.17: Average achieved throughput of the scheduler in real-world wireless networks,
using the static subsegment approach.

so a buffer size of six segments was used.

Figure 4.17 shows the average achieved throughput (also over 40 runs) for every re-
quested segment. The scheduler improved the performance and thereby the video quality
significantly. With the fastest of the two interfaces, WLAN, 45 % of the segments were
in ”Super” quality, compared to 91 % when both links were used. The worst observed

deadline miss over both links was only 0.3 s.

4.4.3 Summary

The static subsegment approach divides the two-second video segments generated by
DAVVI into fixed-size 100 KB subsegments. These subsegments are requested in parallel
and are distributed over the multiple links by the request scheduler. The multilink per-
formance of the request scheduler and the static subsegment approach was evaluated with
stable and dynamic link behavior, and was compared to that of the single, faster link.
Using the static subsegment approach, adding a second link gave a significant increase in
video quality, provided that the buffer was large enough to compensate for the bandwidth
heterogeneity. Buffering and smart use of HT'TP pipelining was able to compensate for
the latency heterogeneity, i.e., the heterogeneity did not have an effect.

Increasing the buffer size, in order to compensate for the bandwidth heterogeneity,
involves trading liveness for playback quality. This is in many cases not desirable or

possible. In the next section, we present an improved subsegment approach which is able

84 Chapter 4. Application-specific bandwidth aggregation

to achieve the same performance independent of bandwidth heterogeneity (for a given

buffer size).

4.5 Dynamic subsegment approach

The static subsegment approach does not handle the challenges introduced by limited
receive buffers and timeliness optimally. It is unable to reach maximum performance
unless the receive buffer is large enough to compensate for the bandwidth heterogeneity.
Increasing the buffer size is in many cases not acceptable, desirable or even possible, as it
involves reducing the liveness of a stream. We therefore designed the dynamic subsegment
approach, which allocates data to the links in a more dynamic fashion. With the dynamic
subsegment approach, each link is allocated their correct share of a segment (according to
the measured throughput at the time of a request), so the slower links are made responsible

for less data.

Algorithm 3 Dynamic subsegment approach [simplified]
. block_length = number_of _inter faces * 100 KB
: share_inter face = throughput_link | aggregated_throughput
. size_allocated_data = share_inter face * block_length
. if size_allocated data >left block then
size_allocated_data = left_block
end if
: left block -= size_allocated_data
: request new Subsegment (size_allocated_data)

0 N T A W =

Using the dynamic subsegment approach, as with the static subsegment approach,
100 KB is regarded as a well suited share of data to request over one link. However, the
video segments are now divided into blocks of number_of inter faces * 100 KB (limited
by the total segment size), and not fixed-size subsegments of 100 KB. These blocks are
then divided into subsegments, and the size of each subsegment is decided by the measured
throughput of the interface it will be requested through. Pipelining is still done as soon
as possible. The dynamic subsegment algorithm is outlined in algorithm 3. First, the
share of the throughput of the interface is calculated (line 2). Then, this value is used to
decide the size of the subsegment (line 3). The size of the subsegment is adjust in case it
exceeds the amount of data left in the block (line 4-6), before the block is updated and
the subsegment is requested (line 7-8).

By allocating the data dynamically based on performance, the need for a big buffer is
removed. A link should never be allocated more data than it can receive within the time

limit. When dividing segments dynamically and based on the throughput, the perfor-

4.5. Dynamic subsegment approach 85

mance for a given buffer size should ideally be the same for all bandwidth heterogeneities.

This approach is hereby referred to as the dynamic subsegment approach.

JNot downloaded
Downloaded data

220) ‘ ‘ ‘

I/ L L2 L1 LI il LT LT LB T LT LR T 777 A

Subsegmeintsl (200 KB)

‘ A) / time [s]
: - = - :
0 Segment sQ 2 2+A Segment s1 4+A
(currently played out) (currently downloading)

Figure 4.18: An example of the dynamic subsegment approach. The two interfaces I
and I; have finished downloading segment sy of quality Q3. As the throughput dropped,
the links currently collaborate on downloading the third subsegment of a lower quality
segment.

Figure 4.18 shows an example of how the dynamic subsegment approach works. A
block size of 200 KB is used, and the bandwidth ratio between the two links is 3:2.
Instead of allocating a fixed size subsegment to either link, interface zero requests 120 KB
and interface one 80 KB.

4.5.1 Bandwidth heterogeneity

In order to measure the effect of bandwidth heterogeneity on the two subsegment ap-
proaches, the controlled testbed was used and configured to provide different levels of
bandwidth heterogeneity. The goal with using multiple links simultaneously, was that the

performance should match that of a single 3 Mbit/s link.

On-demand streaming

Figure 4.19 shows the quality distribution for the two subsegment approaches when eval-
uated together with on-demand streaming, with a buffer size of two segments. When a
single link was used, the expected behavior can be observed. As the available bandwidth
increased, so did the video quality.

With multiple links, the static subsegment approach behaved as earlier. At a band-
width ratio of 80:20, using multiple links resulted in a worse quality distribution than
when a single link was used alone. The dynamic subsegment approach, on the other
hand, adapted to the heterogeneity. The performance was almost the same irrespective

of link heterogeneity, and significantly better than when a single link was used. However,

86 Chapter 4. Application-specific bandwidth aggregation

100 - Super m—
High 2
Medium
Low :.
75 +
S
8
<
=
.8 .
E .
= 50
S -
= .,
O -
25 | -
. i i .
By 8 &
- B 2
B 9 .
S IR &7
L ol -0 RS I Sl s
50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used
(a) Static subsegment approach
100 - Super m—
High 2
Medium
Low :.
75
S
8
=2
=
.S
E
= 50
]
S
2z
=
=
o
25 |
K2
I
&

50:0 50:50 66:0 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

(b) Dynamic subsegment approach

Figure 4.19: Video quality distribution for different bandwidth heterogeneities, buffer
size/startup delay of two segments (4 seconds) and on-demand streaming.

4.5. Dynamic subsegment approach 87

the performance never reached the level of a single 3 Mbit/s link. This was caused by the
initial segment, which was requested in the highest quality and had a higher bandwidth
requirement than 3 Mbit/s. The low bandwidth link was allocated too much data, and,
due to the limited buffer, this caused an idle period for the high bandwidth link. In order
to avoid further deadline misses, the scheduler requested the next segment(s) in a lower
quality. This observation is valid for all the results presented in this section. In other
words, the multilink performance was never as good as a single 3 Mbit/s link.

Figure 4.20 shows the average number of deadline misses for the bandwidth ratios, and
both subsegment approaches performed well. The bandwidth measurements and quality
adaption were accurate, there were close to no deadline misses, except when the buffer
was unable to compensate for the heterogeneity. The deadline misses when the bandwidth
ratio was 80:20 and the static scheduler was used, were caused by the slow interface not
receiving the data fast enough. However, all deadline misses were significantly shorter than

the segment length of two seconds. The worst observed miss was only of 70.3 seconds.

Live streaming with buffering

With live streaming with buffering, the results were similar to those of the on-demand
streaming tests. When multiple links were used, the dynamic subsegment approach
showed similar performance irrespective of bandwidth heterogeneity, while the perfor-
mance of the static subsegment approach suffered from the buffer being too small to
compensate for the link heterogeneity. The number of deadline misses were also the same
as with on-demand streaming. The reason for these similar results is that segments were
always ready also when live streaming with buffering was used. The client was never able
to fully catch up with the no-delay broadcast.

With on-demand streaming, it makes no sense to discuss liveness. However, in live
streaming with buffering, liveness is one of the most important criteria. With a buffer size
of two segments, the static subsegment approach added an additional worst-case delay of
4 seconds compared to the no-delay broadcast. This means that, in addition to the delay
caused by the startup latency and retrieval of the initial segments, the deadline misses
caused the stream to lag an additional 4 seconds behind the broadcast. The dynamic
subsegment approach resulted in an additional worst-case delay of 2.5 seconds.

Figure 4.21 shows the effect of increasing the liveness to the maximum allowed by
DAVVI. Both the startup delay and buffer size was set to one segment (two second
delay). The dynamic subsegment approach was able to cope well with the increased
liveness requirement, and showed a significant increase in performance compared to using
a single link. Also, the performance was independent of the bandwidth heterogeneity.

The static subsegment approach, on the other hand, struggled because of the small buffer.

88

Chapter 4. Application-specific bandwidth aggregation

0.7

0.6

0.5

0.4

0.3

0.2

Avg. deadline miss (seconds)

0.1

0.7

0.6

0.5

0.4

0.3

Avg. deadline miss (seconds)

0.2

0.1

R e
50:0 50:50

*
*
3
o
R e - * e
66:.0 66:34 80:0 80:20 100:0

Bandwidth ratio (in Mbit/s). :0 means that a single link was used

[l
50:0 50:50

(a) Static subsegment approach

B e e e
66:.0 66:34 80:0 80:20 100:0

Bandwidth ratio (in Mbit/s). :0 means that a single link was used

(b) Dynamic subsegment approach

Figure 4.20: Deadline misses for different levels of bandwidth heterogeneity with on-
demand streaming, buffer size/startup delay of two segments (4 seconds).

4.5. Dynamic subsegment approach 89

100
75
< “
s
8 2 <
=] S 2%
2 50 % % 5t
= S] i
5 S
o 5 < <
2z & e
= X S &3
g . <>$ 2% %
g S s
< 5 5 &
25 & 45
S :
3 2
% S
% E?
8 o
5 & kS
ol S0 YOS | jts | oo £
50:0 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used
(a) Static subsegment approach
100 Super m—
75 |
<
& S
g %
a2 "
g S
2 50| 2 2 3 o
= & S S S
= & S 5 S|
o & o % &
> s S P 23
t ?Y x‘. % X
—_— &Q 0(O] O
S 5 S 3 3
S 3 9 5
o % S S X2
25 kS 3 S
ig o o
g 5 3
3 : 2
3 5
O ,y?
ol - S 2

50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

(b) Dynamic subsegment approach

Figure 4.21: Video quality distribution for different levels of bandwidth heterogeneity,
buffer size/startup delay of one segment (2 second startup delay) and live streaming with
buffering.

90 Chapter 4. Application-specific bandwidth aggregation

0.7
0.6 -
2
g osp .
19)
Q
2
g 04l ¢
E
g .
= 03}
<
Q
o *
f v
g
< 0.2 v .
v *
01t .
N v o
oLl b e e P [N PN et
50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used
(a) Static subsegment approach
0.7
0.6 -
Z o5t
5
19)
Q
2
«w 04
.4
g
Q
g
= 03[
<
Q
kS
)
Z oz2f
0.1 -
*
ol bk e e . e i

50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

(b) Dynamic subsegment approach

Figure 4.22: Deadline misses for a buffer size of one segment (2 second startup delay) and
various levels of bandwidth heterogeneity, live streaming with buffering.

4.5. Dynamic subsegment approach 91

In addition to pipelining only being effective within a segment, the buffer size problem
became even more apparent. The performance hit was reflected in the deadline misses,
shown in figure 4.22. While the dynamic subsegment approach was able to avoid almost
all deadline misses, the static subsegment approach caused several misses. When the
dynamic subsegment approach was used, a worst-case additional delay of 2.3 seconds was

observed, compared to 6 seconds with the static subsegment approach.

Live streaming without buffering

By skipping segments, i.e., only requesting the most recent segment, a client can try to
catch up with the broadcast, and skipping segments leads to interruptions in playback.
However, prioritizing liveness did not affect the video quality, as shown in figure 4.23.
The results were the same as for live streaming with buffering and a buffer size/startup
delay of one segment (figure 4.21) - the dynamic subsegment approach improved the
performance significantly compared to a single link, while the performance of the static
subsegment approach suffered due to the limited buffers. The deadline misses were similar
to figure 4.22. Unlike the static subsegment approach, the dynamic subsegment approach
was able to avoid most deadline misses.

However, the number of skipped segments were the same for both subsegment ap-
proaches, with a worst case of two segments. This was because of the first segment, which
is requested in the highest quality to get the most accurate throughput measurements.
Both subsegment approaches assume that all links are equal and initially allocate the
same amount of data to each. If the links are heterogeneous, which was the case in al-
most all of our experiments, or unable to support the video quality, the first segment will
often take longer than two seconds to receive. As a new segment is generated every two

seconds, the transfer time causes the client to skip one or more segments.

4.5.2 Latency heterogeneity

When measuring the effect of latency heterogeneity on video quality and deadline misses,
the controlled network environment testbed was used. The bandwidth of each link was
limited to 1.5 Mbit/s to avoid bandwidth heterogeneity affecting the results, and a buffer

size of two segments was used.

On-demand streaming

Figure 4.24 depicts the video quality distribution for different levels of latency heterogene-
ity. As shown, latency heterogeneity did not have a significant effect on video quality,

independent of subsegment approach. Smart use of HT'TP pipelining and the buffering

92 Chapter 4. Application-specific bandwidth aggregation

100
75
’g\ .
B
R . o
~ 4 5 %
= fﬂ 20 3
; 3 2
.8 4 e &
5 ks X ol
b el {o3 e
T osor & : 8
- 3 & % 2
2 & < 5 St
o Pl < %)
> & 0 5 S
Z) % X g
= j&] o1 2 3
] 2 S ot i
= i'f,‘ X S ;
© 5 : 2
25 ff X S S
& 5
5 : :
5 5
fj : %3
<X> 5 O
3 3
S 5 25
S s SRR 5
oL L e ik TN CM D By
50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used
(a) Static subsegment approach
100 - Super m—
75
<
IS8 &=
o ?i
< 5
%
=] . < -
2 50 | %5 %) %
= & < < <
= & 5 8 2
£ & S 5 5
o] S X ot X
> s Sy S s
= & X %5 s
— &Q O 0{ 0,
< S & ot &
= R O, 3o {03
o 5 5 5 2
> % S 5
25 g S
ks S S
s 3 S
g & :
{o O O,
O
ol - 2 -

50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

(b) Dynamic subsegment approach

Figure 4.23: Video quality distribution for a buffer size of one segment (2 second startup
delay), live streaming without buffering and bandwidth heterogeneity.

4.5.

Dynamic subsegment approach

93

Quality distribution (in %)

Quality distribution (in %)

100

75 |

50 |-

25

100 -

50 |-

25

v,

L

10:0

[
0]

10:40

10}

O . e
10:10 10:20 10:60 10:80

RTT of each link (in ms). :0 means that a single link was used

(a) Static subsegment approach

10:60
RTT of each link (in ms). :0 means that a single link was used

(b) Dynamic subsegment approach

|

10:100

10:100

Figure 4.24: Video quality distribution for two-segment buffers and various levels of la-
tency heterogeneity.

94 Chapter 4. Application-specific bandwidth aggregation

compensated for the heterogeneity. The bandwidth ratio was 50:50, and both subsegment
approaches achieved close to the same quality distribution as in the on-demand band-
width heterogeneity experiments (for a 50:50 bandwidth ratio), shown in figure 4.19, for
all latency heterogeneities. The reason for the performance difference between the two
subsegment approaches, is that the dynamic subsegment approach is able to use the links
more efficiently.

A slight decrease in video quality as the heterogeneity increased can be observed for
both subsegment approaches. This indicates that the latency heterogeneity at some point
will have an effect. The reason for the quality decrease is that it takes longer to request,
and thereby receive, the subsegments over the high RTT link. The client then measures
a lower throughput and potentially reduces the quality of the requested segments. Even
though HTTP pipelining in most cases is able to compensate for the RTT, it is not
possible when the buffer is full and the next segment cannot be requested immediately.
When space is again available in the buffer, it will take at least one RTT before the first
bytes of a subsegments arrives. In order to get accurate throughput measurements, the
client starts measuring when the request is sent. Thus, a high RTT will lead to a lower
measured throughput. Also, the TCP throughput is lower for short transfers over high
delay links. As we use TCP as the underlying transport protocol, this also affects the
performance. The congestion window grows slower, and it will take longer time to recover
from packet loss.

The deadline misses, shown in figure 4.25, were also similar to the 50:50-case from the
bandwidth heterogeneity experiments. As expected in a stable network environment, both

subsegment approaches made accurate decisions and no deadline misses were observed.

Live streaming with buffering

As with bandwidth heterogeneity, the results when measuring the effect of latency het-
erogeneity on live streaming with buffering were very similar to those with on-demand
streaming. The quality distribution and deadline misses were not affected for the levels of
heterogeneity used in this experiment. However, a slight decrease in video quality as the
latency heterogeneity increases was seen also here. The worst case observed additional
delay compared to the no-delay broadcast was 2 s for both subsegment approaches. This
was, as with bandwidth heterogeneity, caused by the first segment being requested in the
highest quality.

Reducing the buffer size to one, caused a similar reduction in performance to the ones
seen in figures 4.21 and 4.22 (for a 50:50 bandwidth ratio). However, as for a buffer size of
two segments, the latency heterogeneity did not affect the quality distribution or deadline

misses. Both subsegment approached caused a worst case additional delay of 2.5 s.

4.5. Dynamic subsegment approach 95

0.7

0.5 |

0.4

02

Avg. deadline miss (seconds)

0.1 |

oL (=l R - (= 2 [] = ol (=
10:0 10:10 10:20 10:40 10:60 10:80 10:100

RTT of each link (in ms). :0 means that a single link was used

(a) Static subsegment approach

0.7

0.5 |

0.4

Avg. deadline miss (seconds)

0.1 |

(= HEH o o e o ot
10:0 10:10 10:20 10:40 10:60 10:80 10:100

RTT of each link (in ms). :0 means that a single link was used

(b) Dynamic subsegment approach

Figure 4.25: Average deadline misses for a buffer size of two segments (4 second startup
delay), with latency heterogeneity.

96 Chapter 4. Application-specific bandwidth aggregation

Live streaming without buffering

The observed video quality and deadline misses using live streaming without buffering,
were similar to the earlier latency heterogeneity experiments. Latency heterogeneity did
not have a significant impact on video quality, however, a slight decrease can be observed,
indicating that the latency heterogeneity will affect the performance at some point. As in
the bandwidth heterogeneity experiments for live streaming without buffering, the number
of skipped segments and the total delay compared to the no-delay broadcast were the
same for both approaches. When multiple links were used, zero segments were skipped,
and a worst case additional delay of 1.86 seconds was observed for both subsegment
approaches. This was caused by the first segment. Even though the request scheduler’s
initial assumption that the links are homogeneous, was correct, the links were unable to

support the bandwidth requirement for this segment.

4.5.3 Emulated dynamics

Dynamic links impose different challenges than static links, the scheduler has to adapt
to often rapid changes in the network. To expose the two subsegment approaches to
dynamic links while still having some control over the parameters, the script described
in section 4.3.1 was used. A buffer size of six segments was used to compensate for the
worst case bandwidth heterogeneity, except for in the live streaming without buffering
experiments. Each subsegment approach was tested 30 times for each type of streaming,

and the results shown are the averages of all measurements.

On-demand streaming

Subsegment approach | Low | Medium | High | Super
Static, single-link 3% | 2% 28% | 15%
Static, multilink 4% 4% 11% | 81%
Dynamic, single-link | 30% 26% 29% | 15%
Dynamic, multilink 3% 3% 10% | 83%

Table 4.4: Quality distribution for emulated dynamics and on-demand streaming.

The aggregated throughput when combining emulated link dynamics with on-demand
streaming, is shown in figure 4.26. With both subsegment approaches, adding a second
link gave a significant increase in throughput, and thereby achieved video quality. Also,
as in the other experiments where the buffer size was large enough to compensate for
link heterogeneity, both approaches gave close to the same video quality distribution,

with a slight advantage to the dynamic subsegment approach. The average aggregated

4.5. Dynamic subsegment approach

97

3000 |
2500
A
4 -
,}“n DALY & et
F VAN A s AN AN
y J
2000 15 § N A N R Y

Average achieved throughput (kbit/s)

1000
500 {
o
0 20 40 60 80
Segment number
(a) Static subsegment approach
3000 |
2500 |
oah
‘.l' .:“'. N “.",.u" .
. o, Soe 27 R
2000 - o AT e e
ey Sy

1000 -

Average achieved throughput (kbit/s)

500 H

0 20 40 60 80
Segment number

(b) Dynamic subsegment approach

S

oo

. 7,‘/\%,_./—\'\.\’\/*\/\/_\‘/\/*’\—\%'

ot

100

T \/\/__/\—W_/—WW

100

Single link
Multilink

Single link
Multilink

Figure 4.26: Average achieved throughput of the schedulers with emulated dynamic net-

work behaviour, on-demand streaming.

98 Chapter 4. Application-specific bandwidth aggregation

0.7 -

06 -

03 -

Avg. deadline miss (seconds)

.
M
02 %

.
0.1 F {
oL - [a—
Single-link(s) Multilink(s) Single-link(d) Multilink(d)
Deadline misses with emaulte dynamics (s) is the static request scheduler, (d) dynamic

Figure 4.27: Deadline misses with on-demand streaming and emulated dynamics.

throughput oscillated between the average bandwidth requirement for “High” and “Super”
quality. The quality distribution is presented in table 4.4.

In terms of deadline misses, shown in figure 4.27, both approaches were equally ac-
curate. When a single link was used, misses occurred due to a single link being more
vulnerable to the fluctuating link characteristics, however, none was severe. The worst
case observed miss for both approaches was of less than 0.5 seconds. With multiple links,

both approaches avoided all deadline misses.

Live streaming with buffering

Subsegment approach | Low | Medium | High | Super
Static, single-link 30% | 26% | 28% | 16%
Static, multilink 4% 4% 11% | 81%
Dynamic, single-link | 29% 26% 29% | 15%
Dynamic, multilink 3% 3% 11% | 82%

Table 4.5: Quality distribution for emulated dynamics and live streaming with buffering.

As with both bandwidth and latency heterogeneity, the performance of live streaming
with buffering was similar to the on-demand streaming experiments, seen in figure 4.26.
A significant increase in performance was seen when a second link was added, and the
quality distribution is found in table 4.5. The deadline misses were also the same as in

the on-demand experiments (figure 4.27), and when multiple links were used, no misses

4.5. Dynamic subsegment approach 99

occurred. The worst-case additional delay compared to the no-delay broadcast was of

2.3 seconds, caused exclusively by the initial segment transfer time.

Live streaming without buffering

The live streaming without buffering experiments were performed with the same settings
as used in the other emulated dynamics experiments, except that a buffer size and startup
delay of one segment were used. This was, as discussed earlier, done to increase the liveness

to the maximum that DAVVI allows (one segment).

Subsegment approach | Low | Medium | High | Super
Static, single-link 1% | 44% 14% | 1%
Static, multilink 15% | 45% 35% | 5%
Dynamic, single-link | 44% | 41% 14% | 1%
Dynamic, multilink 2% 28% 55% | 15%

Table 4.6: Quality distribution for emulated dynamics and live streaming without buffer-
ing.

As in the earlier live streaming without buffering experiments, the two subsegment
approaches performed differently, the static approach was outperformed by the dynamic
approach. The reason is that the dynamic subsegment approach adapts better to smaller
buffers, and the performance difference is reflected in the quality distribution, presented
in table 4.6, and seen in figure 4.28. While the static subsegment approach most of the
time achieved a throughput that exceeded the average requirement for “Medium” quality,
the dynamic subsegment approach exceeded the requirement for “High” quality.

However, both subsegment approaches experienced deadline misses, as shown in fig-
ure 4.29. No misses were severe. As before, the worst case observed miss was around
0.5 second. However, if continuous playback had been important, a bigger buffer and
startup delay should have been used. This, of course, would involve making a trade-off
between liveness and quality of the user experience. The deadline misses are also reflected
in the number of skipped segments. For each deadline miss, the liveness is reduced and
on average both subsegment approaches had to skip five segments in order to catch up to
the broadcast.

4.5.4 Real world networks

Our real world experiments were conducted with the networks described in table 4.3,
and a buffer size of three segments was used to compensate for the worst-case measured
bandwidth heterogeneity. The only exception was when measuring the performance for

live streaming without buffering.

100 Chapter 4. Application-specific bandwidth aggregation

Single link
3000 - Multilink ======-
2500 |
2000

1500

1000

Average achieved throughput (kbit/s)

500

ot
i * " 60 80 100
Segment number
(a) Static subsegment approach
I Single link
- Multilink =======
2500

2000

1500

1000

Average achieved throughput (kbit/s)

500

0 20 40 60 80 100
Segment number

(b) Dynamic subsegment approach

Figure 4.28: Average achieved throughput of the schedulers with emulated dynamic net-
work behaviour, live streaming without buffering.

4.5. Dynamic subsegment approach 101

07
06 |
Z o5} 1
el
g E: x .
3 + .
2
Z 04f E o
4 t H
*
2 : . 3
5 03 * §
<
Q
: |
o0
E 02 | g
01| %
b
o+ +

L] L]
Single-link(s) Multilink(s) Single-link(d) Multilink(d)
Deadline misses with emaulte dynamics (s) is the static request scheduler, (d) dynamic

Figure 4.29: Deadline misses with live streaming without buffering and emulated dynam-
ics.

On-demand streaming

Subsegment approach | Low | Medium | High | Super
Static, single-link 1% 8% 51% | 40%
Static, multilink 5% 6% 10% | 79%
Dynamic, single-link | 3% 11% 46% | 41%
Dynamic, multilink 3% 2% 9% | 86%

Table 4.7: Quality distribution for real world networks and on-demand streaming.

The average aggregated throughput for on-demand streaming and real world networks
can be found in figure 4.30. There was a significant difference in performance between the
two subsegment approaches. While the dynamic subsegment approach showed an increase
in performance when a second link was added, the static subsegment approach did not
benefit that much. In fact, sometimes the aggregated throughput was less than when a
single link was used. The reason for the performance difference was, as earlier, that the
dynamic subsegment approach is able to utilize the links more efficiently, it adapts better
to the buffer size. Because the link’s performance are used when calculating the subseg-
ment size, the links should never be allocated more data than they can receive within the
given time. The performance difference is also reflected in the quality distribution, shown
in table 4.7.

In terms of deadline misses, both subsegment approaches performed equally. Except

for some misses caused by significant and rapid changes in the network conditions, like

102

Chapter 4. Application-specific bandwidth aggregation

Average achieved throughput (kbit/s)

Average achieved throughput (kbit/s)

3000

2500

2000

1500 H

1000

500

3000

2500

2000

1500

1000

500

°© =

°© =

WLAI
WLAN + HSDPA =======

20 40 60 80 100
Segment number

(a) Static subsegment approach

20 40 60 80 100
Segment number

(b) Dynamic subsegment approach

Figure 4.30: Average achieved throughput of the schedulers with real-world networks,

on-demand streaming.

4.5. Dynamic subsegment approach 103

Subsegment approach | Low | Medium | High | Super
Static, single-link 1% 10% 49% | 40%
Static, multilink 5% 4% % | 84%
Dynamic, single-link | 1% 9% 49% | 41%
Dynamic, multilink 3% 2% 5% | 91%

Table 4.8: Quality distribution for real world networks and live streaming with buffering.

congestion and interference, both approaches were able to avoid deadline misses when

multiple links were used.

Live streaming with buffering

The performance with live streaming with buffering was, as in the other live streaming
with buffering experiments, similar to the on-demand performance. The quality distribu-
tion is shown in table 4.8 (for emulated dynamics), and both approaches avoided almost
all deadline misses when multiple links were used. A worst-case additional delay compared

to the no-delay broadcast of 4 seconds was observed for both subsegment approaches.

Live streaming without buffering

Subsegment approach | Low | Medium | High | Super
Static, single-link 0% 27% 68% | 5%
Static, multilink 10% 12% 45% | 32%
Dynamic, single-link 0% 27% 68% | 5%
Dynamic, multilink 1% 10% 35% | 55%

Table 4.9: Quality distribution for real world networks and live streaming without buffer-
ing.

When live streaming without buffering was combined with our real world networks, the
performance was similar to the results presented in section 4.5.3. The static subsegment
approach struggled with the small buffer, while the dynamic approach adapts better,
which resulted in a significantly improved performance. The only significant difference
compared to section 4.5.3, is that the quality distribution for both approaches were better
due to more available bandwidth and more stable links, as can be seen in table 4.9. This

was also reflected in the deadline misses and a lower number of skipped segments.

4.5.5 Summary

The static subsegment approach was able to improve the video quality significantly when
a second link was added. However, it depends on the buffer being large enough to com-

pensate for bandwidth heterogeneity. However, increasing the buffer size is in many cases

104 Chapter 4. Application-specific bandwidth aggregation

not desirable, as it reduces the liveness of the stream and increases the memory footprint
of the client application. To avoid the buffer requirement and allow quasi-live streaming
at high quality, we developed a dynamic subsegment approach that calculates the subseg-
ment size dynamically, based on the current throughput of the interface. By doing this, a
link should ideally never be allocated more data than it can receive within a given time.

In this section, we have compared the performance of the static and dynamic sub-
segment approach in both a fully controlled network environment, and with real-world
networks. The two approaches were evaluated in the context of on-demand streaming
and live streaming with and without buffering, and the dynamic subsegment approach
always performed better. It was able to alleviate the buffer problem and showed similar

performance independent of link heterogeneity for a given buffer size.

4.6 Conclusion

Application-specific bandwidth aggregation solutions allows for approaches that are tai-
lored to a specific set of needs. We have focused on improving the performance of HTTP-
transfers, using quality adaptive video streaming over HTTP as a case study. HTTP
supports three features which make it suitable to combine with multiple links - range
requests enables a client to request specific byte ranges (subsegments) of a file over inde-
pendent interfaces in parallel, pipelining reduces (and ideally removes) the time overhead
between subsegment requests, and persistent connections removes the need to open a
new connection for every request. We would like to point out that even though we have
used HTTP, similar features are offered by other protocols. Thus, our application layer
bandwidth aggregation technique is also compatible with for example FTP.

In this chapter, we have evaluated two different subsegment approaches, the static and
dynamic subsegment approach, together with on-demand streaming and live streaming
with and without buffering. A subsegment approach decides how a file is divided into
subsegments, and the approaches were evaluated in a controlled network environment
and real-world networks. The approaches were implemented as extensions to the HTTP-
based, quality-adaptive, segmented DAVVTI streaming platform [43]. Each video is divided
into fixed-length segments, and each segment is encoded at different bitrates in order to
allow for quality adaption. In terms of video encoding and data retrieval, DAV VT offers
the same features as many popular commercial and proprietary systems (for example
Microsoft’s SmoothStreaming [78]).

The static subsegment approach divides segments into fixed-size subsegments and
improved the video quality significantly compared to that of a simple link. However, for

the static subsegment approach to improve performance, the buffer size has to be large

4.6. Conclusion 105

enough to compensate for the bandwidth heterogeneity. Increasing the buffer size is in
many cases not desirable or possible, as it for example reduces the liveness of a stream
and increases the memory footprint of an application.

The dynamic subsegment approach was motivated by the buffer challenge. By basing
the subsegment size on the capacity of the different links, the dynamic subsegment ap-
proached performed the same independent of bandwidth heterogeneity (for a given buffer
size). Using this approach, the client was able to utilize the links more efficiently than
the static subsegment approach, and a considerable increase in quality was seen. Both
compared to a single link and the static subsegment approach.

Application-specific bandwidth aggregation techniques requires extending existing ap-
plications. This is not always possible or desirable (for example with closed-source ap-
plications), and, therefore, in the next chapter, we present techniques for transparent
bandwidth aggregation of UDP and TCP.

Chapter 5
Transparent bandwidth aggregation

In many cases, extending an application with multilink support and bandwidth aggrega-
tion is not possible. For example, the source code might not be available or changes will
incur a too large development and time overhead. Also, it is unrealistic to assume that
most users will be willing to update the code themselves. A similar challenge exists on the
server-side. Servers are often operated by third-parties that have no incentive to update
their machines or software. If application-specific bandwidth aggregation is not possible,
then transparent bandwidth aggregation can be used.

Bandwidth aggregation techniques that are transparent to the applications can be
designed to operate at any layer of the IP stack. We have proposed techniques at the
network layer. The network layer receives packets from and passes packets to the transport
layer. IP is the default addressing protocol in the Internet today, is connectionless and 1P
packets will be routed through the Internet according to the information in the header.
By intercepting packets at the network layer and updating the IP header (for example
the destination address) or by tunneling packets, packets can transparently be routed to
different interfaces at a multihomed device.

Network layer bandwidth aggregation techniques also has the advantage that transport
protocol modifications are not needed. Every transport protocol in use on the Internet
creates a layer 3 protocol data unit, consisting of the transport protocol header and the
payload. This unit is sent to the network layer, where it is encapsulated inside an IP
header. Updating or changing a transport protocol, if at all possible, is not desirable as
the change must be reflected in all machines that will communicate. External machines
are often controlled by independent third parties without an incentive to update their
systems. In addition, new transport protocols or transport protocol modifications take
a long time until they reach wide-spread deployment. For example, SCTP, which was
standardized already in 2000, is still not implemented in Windows.

In addition, network layer techniques do not have to overcome the deployment chal-

107

108 Chapter 5. Transparent bandwidth aggregation

lenges faced by link layer bandwidth aggregation techniques. Link layer bandwidth aggre-
gation techniques require the different interfaces at a client to be directly connected to the
same endpoint. This is not feasible in our scenario, as we aggregate links using different
technologies and that are connected to different networks. The deployment challenges
faced by a network layer technique, especially the limited connectivity of a device caused
by NAT, is solved by each transparent bandwidth aggregation technique being designed
on top of the features offered by MULTT’s invisible mode.

Link 1
l Data Y

Data < Pata
Link 2

Client

Proxy Server

Figure 5.1: An example of a transparent bandwidth aggregation solution built around
a proxy, for a client with two interfaces The stream is split/merged at the proxy and
internally in the client, as unmodified hosts expects the original stream (the transport
protocol).

A common way to enable bandwidth aggregation at the network layer, is to make
use of a proxy in order to avoid changing the server, as shown in figure 5.1 for a client
with to interfaces. Unmodified hosts are only able to receive/send the original packet
streams, the streams must at some point be merged/split across the multiple links. The
network layer bandwidth aggregation techniques we have found, are all based on incorrect
assumptions or unrealistic requirements. For example, the technique presented in [59]
requires changes to the protocol headers and protocol tuning, and assumes that latency
heterogeneity can be compensated for by adjusting the packet size. Our observations
contradict this, the latency heterogeneity depends on several factors (for example queueing
delay in intermediate routers), and reducing the packet size will cause a higher network
load (due to the larger number of packets that will be in transit). In [12], a technique
based on an algorithm called Farliest delivery path first is introduced. The algorithm runs
on a proxy, and the proxy is aware of the queue length at the different base stations that
a client is connected to. However, this information is typically not available in real-world
networks. In addition, in our scenario, there can be multiple hops (and thereby queues)
between the proxy and the client, since they often belong to different networks. Finally,
the authors have not considered the impact of links with fluctuating performance. Lastly,

ECMP [34] allows users to assign static weights to different interfaces, and then these

5.1. Transparent bandwidth aggregation of UDP-streams 109

weights are used to distribute connections across the available interfaces. However, for
ECMP to be efficient, the available bandwidth of each link has to be static (so that the
ratio between the weights are correct), and applications must be designed so that they
open and make use of several simultaneous connections.

Unlike the existing network layer bandwidth aggregation techniques, our technique
does not require modifications to existing protocols, depend on a certain application
behavior or make unrealistic assumptions about available information. Also, link hetero-
geneity has been considered properly. No changes are needed at the server, because of
the proxy, and only a small userspace application has to be installed on the client. Thus,
neither the OS nor the transport protocols have to be modified. Because none of the
existing network layer bandwidth aggregation techniques can be applied to our scenario,
the performance of our technique is only compared to that of itself, i.e., the performance
of multiple links versus a single link with the same bandwidth as the ideal, aggregated
bandwidth.

Transport protocols provide a different, but sometimes partly overlapping set of fea-
tures. For example, TCP guarantees a reliable connection and in-order delivery of the
packets to the application, while UDP provides a best-effort transmission of data. In
order to achieve efficient bandwidth aggregation, a transparent technique must support
the behavior of the targeted transport protocol(s). Otherwise, the links will not be fully
utilised. For example, incorrect distribution of traffic will limit the growth of TCP’s
congestion window and thereby the throughput of the connection (see figure 1.6). There
exists a large number of transport protocols, but TCP and UDP are the main transport
protocols in the Internet today. Thus, in this chapter, we have focused on improving the

performance of TCP- and UDP-streams using multiple links.

5.1 Transparent bandwidth aggregation of UDP-streams

UDP provides a best-effort way for applications to communicate. A data packet is referred
to as a datagram, and UDP does not provide any additional functionality like reliability or
congestion control. In other words, there is by default nothing stopping a UDP sender from
overflowing a network. UDP is mostly used by applications that prioritize low latency.
For example, waiting for a retransmission might have a larger effect on a computer game
than just ignoring the lost packet. The game might not be able to progress until the lost
packet has arrived, causing interruptions in the gameplay.

Increasing the performance of UDP-based applications involves solving two challenges.
First, packets have to be striped efficiently over the often heterogeneous network paths

(between the client and the proxy) corresponding to each link at the client, and in a

110 Chapter 5. Transparent bandwidth aggregation

[___1 Probe packet
I Data packet Server
Entry/exit point
Application overlay network
MULTI Client Manager MULTI Proxy Manager
Virtual Packet Packet Virtual
Interface | | resequencer scheduler Interface
Tunnel #2
N (]

] I I
Tunnel #1

Figure 5.2: An overview of our multilink proxy architecture running on a client with two
active interfaces.

manner which avoids congesting the paths. If packets are not striped according to path
capacity, the paths will not be utilized to their fullest, while ignoring congestion will be
unfair to other traffic. For example, if the bandwidth ratio between two paths is 3:1 and
packets are scheduled round-robin, only a third of the capacity of the fastest path is used.
Also, a UDP sender by default have no incentive to reduce its send rate. If the slowest
path is not able to support its allocated share of the bandwidth, the congestion will reduce

the performance of other streams that share the same network path.

Second, packet reordering caused by latency heterogeneity has to be compensated for.
When packets are striped over paths with different latencies, they will in many cases
arrive out of order at the client. Most applications process data sequentially and, thus,
require packets to arrive in-order. Significant packet reordering might for example cause

an increase in the buffer usage of a video streaming application.

In the rest of this section, we first introduce our proposed bandwidth aggregation tech-
nique, before continuing with the results from the evaluations we performed. To properly
evaluate the performance, experiments were performed in a fully controlled environment
and with real world networks. The latter gives an impression of how the proxy will bene-
fit potential users, as well as how it performs with a combination of dynamic bandwidth
and latency heterogeneity. A controlled environment allows us to isolate and control the
level of bandwidth and latency heterogeneity, and study how they affect the performance.

Finally, we summarise our contributions.

5.1. Transparent bandwidth aggregation of UDP-streams 111

5.1.1 Architecture

Figure 5.2 summarizes our proposed bandwidth aggregation technique targeted at UDP-
based applications. MULTTI is used in invisible mode. In invisible mode, MULTT (de-
scribed in chapter 3) makes use of a globally reachable proxy and a private overlay net-
work is built between a client and the proxy. The network consists of one IP tunnel for
each active network interface at the client. The MULTI managers create virtual inter-
faces, and the clients configures desired routes to go through this interface. The routing
subsystem of the OS will then route the traffic through the virtual interface, and it will be
intercepted by the managers. Packets are then encapsulated and sent through a tunnel.
No changes have to be made to either application or transport layer protocol.

The proxy uses SNAT to ensure that all packets destined for the multihomed client
passes through the proxy. When a packet destined for a client arrives at the proxy, the
operating system looks up the mapping. After rewriting the address information in the
header, the packet is forwarded to the client through the overlay network. Probe packets
are sent at a given interval to maintain the overlay network and keep the NAT hole open
(if any).

In order to solve the two challenges described earlier, compensating for packet re-
ordering and efficient packet striping without causing path congestion, three different
components are needed. Congestion control is used to avoid congesting the paths. The
information gathered by the congestion control is also used to estimate the available path
capacity. The packet scheduler uses the capacity estimates to efficiently stripe the pack-
ets. Finally, a packet resequencer at the client buffers out of order packets until reordering
is resolved. The packet scheduler was implemented in the MULTI Proxy manager, the
resequencer in the MULTT Client manager, while the congestion control requires support
from both the client and the proxy manager. The rest of this subsection describes the

three components in more detail.

Congestion control

Congestion control is a mechanism used by several different transport protocols. The
purpose, as mentioned in related work, is to limit the send rate and avoid congestion
collapse, a state in which little or no useful communication can happen because the
network is congested. Congestion causes high loss rate and low throughput. There are
several different congestion controls, and each is designed based on the features offered by
the targeted transport protocol. For example, the different TCP variations all have rules
for how to deal with packet loss and retransmission (due to the reliability requirement).

A transport protocol that includes congestion control and closely resembles UDP, is
the Datagram Congestion Control Protocol [49] (DCCP). DCCP is a datagram based,

112 Chapter 5. Transparent bandwidth aggregation

unreliable protocol that supports reliable connection setup and teardown, feature nego-
tiation, Explicit Congestion Notification [64] and congestion control. The main purpose
of DCCP is to provide applications using UDP with standardised congestion controls
below the application layer. Earlier, if congestion control was to be used, it had to be
implemented in each UDP-based application.

DCCP currently provides three different congestion controls, Congestion Control 1D
(CCID) 2 [28], CCID3 [30] and CCID4 [29]. CCID3 and CCID4 are targeted at UDP
streams that sends fixed-sized packets and where a smooth send rate is important. CCID2,
on the other hand, is, according to the RFC, not dependent on a fixed packet size and
is recommended for applications that need to transfer as much data as possible as fast
as possible. All three congestion controls are TCP fair (also known as friendly). This
is important, as TCP is the dominating transport protocol, and no stream should claim
more than its fair share of the resources.

Since DCCP is datagram-based and unreliable, the congestion controls can also be
viewed as general congestion control mechanisms that can be used by UDP-based appli-
cations. The proxy applies congestion control to each active tunnel. Because the goal of
the bandwidth aggregation technique presented in this section is to be completely trans-
parent, no assumptions about packet size or desired send rate can be made. Also, the
focus of this work has been on bandwidth intensive applications that need to send as
much data as possible. For these reasons, we have used CCID2 rather than CCID3 or
CCID4.

Version (1 byte)
Type (2 byte)
Tunnel header: Link ID (4 byte)
Timestamp (4 byte)
IP header Global sequence number (4 byte)
Local sequence number (4 byte)

Original payload

UDP header

Figure 5.3: The packet format used with the transparent UDP bandwidth aggregation
technique.

CCID2 closely resembles TCP’s congestion control, described in section 2.1.2. CCID2
follows TCP’s AIMD-rules (Additive Increase/Multiplicative Decrease) for congestion
window development and uses slow-start, fast recovery, delayed ACKs and an equiva-
lent of the retransmission timeout. The proxy maintains a congestion window for the
tunnel established over each path, updated according to CCID2. The congestion window
is updated based on ACKs (or lack of ACKs) sent from the client. Each tunnel data

5.1. Transparent bandwidth aggregation of UDP-streams 113

packet, shown in figure 5.3, has two sequence numbers. One is a global sequence num-
ber that is valid for all tunnels and used by the packet resequencer, while the other is
local to each tunnel. The local sequence number is the one used by CCID2 to detect
packet loss and do congestion control. Packet loss is detected by checking for gaps in the
acknowledged sequence numbers.

Packets occupy a certain amount of space in the congestion window, and the client
acknowledges the packets it has received. The acknowledgements are used to free up space
in the window and increase its size. If packet loss has occurred, the size of the congestion
window will be reduced. The overall size of a congestion window gives a good estimate
of the current path capacity. By comparing the total window size with the free space, an
estimate of the available capacity can be derived.

One could also have used TCP as the tunneling mechanism, as this would have ensured
fair utilization of the paths and removed the need for a new congestion control. However,
TCP adds a significant overhead. In addition to a larger packet header, leaving less room
for payload, TCP’s reliability feature would increase the latency of the UDP stream. For
example, if packet loss occurs, a TCP-based tunnel will not deliver more packets to the
manager before the lost packet has been retransmitted and received. As UDP by definition
is unreliable, adding reliability would alter the expected behavior of the protocol. Also,
because UDP provides no additional features than best-effort delivery, it ensures that the

behavior of the encapsulated transport protocol is preserved.

Packet scheduler

A packet scheduler is responsible for achieving efficient bandwidth aggregation by striping
packets according to the available path capacity. Otherwise, the paths might not be fully
utilized or congestion can occur. The packet scheduler used by our transparent bandwidth
aggregation proxy makes its decisions based on the information gathered by the congestion
control. Namely, information related to the each tunnel’s congestion window size.

Instead of designing a new packet scheduler, we have used the scheduler introduced
by TCP PRISM [48]. To the best of our knowledge, this is the only window-based packet
scheduler that exists that has been shown to work well in scenarios similar to ours (a
heterogeneous network environment). Even though the scheduling part of PRISM is built
for TCP, it can be applied to any bandwidth aggregation approach based on window-based
congestion control.

The PRISM scheduler provides a good technique for scheduling packets according to
available path capacity, without requiring any a priori knowledge. The metric used for
scheduling by PRISM is the path utilization. A high bandwidth path will support a

larger congestion window than a low bandwidth path, and a tunnel established over a

114 Chapter 5. Transparent bandwidth aggregation

low RTT path will have packets removed from its congestion window faster than a tunnel
established over a high RTT path. By dividing the number of packets currently in flight
(i.e., not yet acknowledged) with the congestion window size, one gets the utilization of
that path. By dividing each tunnel’s congestion window size with the sum of the size of
all congestion windows, a globally valid path utilization value is calculated. The scheduler
picks the tunnel with the lowest utilization, i.e., the path with the most available capacity.
If two or more paths have equal capacity, the least recently used tunnel is chosen. If every

congestion window is full, the packet is dropped.

Algorithm 4 Packet scheduler
1. main_utilisation = INFINITE
2. scheduled_tunnel = None
3 tunnels = [set of tunnels with an open congestion window]

5 if tunnels == Empty then
6. drop packet

7 return None

s end if

1. for all tunnels do
w. if wtilisation_path[tunnel] <min_utilisation then

12 min_utilisation = utilisation_path[tunnel]
13 scheduled_tunnel = tunnel

14: end if

15 end for

16: return scheduled_tunnel

The scheduling algorithm is summarized in algorithm 4. When a packet destined
for the client arrives at the proxy, the proxy first initialises the required variables and
creates a set containing all the tunnels with an open congestion window (line 1-3). If the
set is empty, then the packet is dropped in order to avoid causing congestion (line 5-6).
Otherwise, the tunnel with the lowest path utilization is chosen (line 10-16). The capacity
metric is the global path utilization value for each tunnel (utilisation_path[tunnel]). This
value is currently recalculated every time a scheduling decision has to be made received.

Figure 5.4(a) shows an example of how the packet scheduler works. A client equipped
with two active network interfaces has established two tunnels to the proxy. Tunnel 1 has
a congestion window of size four, while tunnel 2 has a window size of two. The number
of unacknowledged packets in tunnel 1 is three, while tunnel 2 has one unacknowledged
packet. When the proxy decides which tunnel to send packet A through, it first calculates
the path utilisation. For the path corresponding to tunnel 1, this is %7 while for tunnel

1

2 the utilisation is 5. In order to get a globally valid utilisation value, the window size

5.1. Transparent bandwidth aggregation of UDP-streams 115

[Occupied space

[]Free space
Congestion window, tunnel 1
I] Outgaing packets
(to client)

Packet

Congestion window, tunnel 2 scheduler —

(a) The proxy schedules packet A to go through tunnel 2, as this tunnel has most
available capacity.

[Occupied space

[]Free space

Congestion window, tunnel 1
Outgoing packets

Packet (to client)
acke
Congestion window, tunnel 2 scheduler

(b) The proxy schedules packet B to go through tunnel 1.

Figure 5.4: Snapshots of the packet scheduler.

has to be divided with sum of the window size of every tunnel. This gives 3 = g =45
for tunnel 1 and § = 3 for tunnel 2. Because tunnel 2 has the lowest patfl utilisation
(most available ca;)acity)7 it is chosen by the scheduler. Assuming that no ACKs arrive
before packet B will be sent from the proxy, tunnel 1 will be chosen because there is no

free space in the congestion window for tunnel 2 (shown in figure 5.4(b).

Packet resequencer

Even though bandwidth aggregation increases the available bandwidth, it does not guar-
antee a higher throughput for the application. That packets arrive in-order is important
because most applications process data sequentially. Therefore, a bandwidth aggregation
technique should also support reducing the degree of reordering exposed to the higher
layers.

In a multilink scenario, packet reordering is mainly caused by latency heterogeneity.
With the bandwidth aggregation technique presented in this section, reordering is com-
pensated for at the client by resequencing packets. Resequencing is a common approach
and is for example used by MPTCP [36] and by the link layer technique introduced in [2].
The only difference between ours and the default packet resequencer behavior, is that we
have added timers to avoid unlimited blocking. Because UDP is unreliable, there is no
guarantee that the packet(s) that solves reordering will ever arrive. Thus, a timeout is

needed to avoid infinite blocking.

116 Chapter 5. Transparent bandwidth aggregation

Initial state
] Wait for packet or timeout \] Release one packet
New packet Timeout First/second
W’ Solves reordering?\ First, second or third
consecutive timeout?
Yes
Release data }
Third

Figure 5.5: A state-diagram showing how the resequencer works

The resequencer is summarised in figure 5.5. When a packet arrives at the client,
it is automatically passed to the resequencer. If the packet has arrived in-order, it is
released from the buffer. Similarly, if the packet solves reordering, then the packet and
other buffered in-order packet are released. How packet reordering is detected, will be
explained later in this section. If a timeout is triggered while the resequencer is waiting
for packets, the behavior depends on the number of consecutive timeouts.

The timeout used to avoid infinite waiting is calculated in the same way as TCP’s
Retransmission Timeout (RTO) [58], except that the one way delay (OWD) is used. The
OWD is measured from the client (by probing the proxy) and provides a good estimate
for the worst-case time between a packet is sent and its reception at the client. When the
timeout expires for the first and second time, one packet is released. When it expires for
the third consecutive time, all packets held in the buffer are released. Waiting until the
third timeout to release all buffered packets is done to reduce the probability of releasing
large bursts of data. The timeout and consecutive timeout counter are reset for every
in-order packet that arrives.

In order to detect reordering, the global sequence number (the sequence number that
is valid across all the tunnels) is used. Packets are sent in-order from the proxy, and we
assume that there is no internal reordering on a single path. This is a fair assumption,
since the reordering in the backbone network is between 0.01 % and 1.65 % [32]. However,
we would like to point out that the technique for detecting reordering also works in the
presence of internal reordering.

The resequencer stores the largest global sequence number that has arrived for each
tunnel. When a packet arrives, the resequencer selects the lowest of these values. This

global sequence number is the largest sequence number the resequencer can assume is

5.1. Transparent bandwidth aggregation of UDP-streams 117

Q1 13 Q1 15 Q1 15
Q2 24 Q2 23 Q2 26

(a) In-order (b) Out of order (c) Loss

Figure 5.6: The three states of the resequencer. Q1 and Q2 are the resequencing queues
for two different interfaces.

covered. That is, because UDP is unreliable, one can assume that no packets with a lower
global sequencer number will arrive later. Packets with a sequencer number larger than
the one selected can not be released, as the sequence number(s) belonging to the gap can
not be account for. The packets with the missing sequencer number(s) (i.e., covered by
the gap) can either be lost or still be in transit (reordered). We would like to point out
that if a path experiences internal reordering, the technique will still work as the largest
global sequencer numbers are stored. If a packet with a lower global sequencer number
arrives, it will just be released immediately.

An example of how reordering is detected is shown in figure 5.6. The implementation
of the resequencer only maintains one packet queue. However, in order to provide a better
explanation and illustration, we have used one packet queue per tunnel in the figure. The

three different states shown in the figure can be explained as follows:

Figure 5.6(a) Here, every packet has arrived and is in order. Consequently, all packets

are released by the resequencer.

Figure 5.6(b) In this state, the resequencer detects potential reordering. The highest
sequence number the resequencer can assume is covered is three, meaning that
packet 1, 2 and 3 will be released. Packet four cannot be accounted for, it can either
be lost or reordered and still in transit, so packet five is held by the resequencer
until a decision can be made. This figure also demonstrates the need for a timeout.
If the sender for example has stopped sending data and packet four has been lost,

then, without a timeout, packet five will never be released.

Figure 5.6(c) shows how the resequencer deals with packet loss. Packet loss has oc-
curred on both paths (packet three and four are missing). However, because more
packets have arrived on both paths, and they are in-order, all four packets will be
released. In other words, if packet loss is detected, the missing global sequence

number(s) is ignored.

118 Chapter 5. Transparent bandwidth aggregation

| -(
=

Client

Figure 5.7: The controlled environment-testbed used to evaluate the performance of the
transparent bandwidth aggregation technique for UDP.

Link 1

>
Link 2 =

\—-o—»m—c3m|

Server

5.1.2 Evaluation in a controlled network environment
Testbed

Our controlled network environment testbed consisted of three machines, shown in fig-
ure 5.7, each running Linux 2.6.31-14. The machines were connected directly to each
other using 100 Mbit/s Ethernet, and one machine was used as both proxy and sender,
the second emulated path delay (when needed), while the third was the multilink-enabled
client and also where we limited the bandwidth. Our own tool was used to generate the
constant UDP bitrate stream that was used to measure the performance of the technique.
To emulate bandwidth and RTT, the network emulator netem ' was used, together with

the hierarchical token bucket.

Bandwidth aggregation

A good bandwidth aggregation depends on an efficient packet scheduler and correct con-
gestion control. The proxy has to accurately estimate the capacity of each path and select
the “correct” tunnel. Otherwise, if for example a slow path is prioritized, the full capac-
ity of the faster paths will not be used. To measure how efficiently the proxy aggregates
bandwidth, three sets of experiments were performed. For all the results presented in
this subsection, the server sent a 10 Mbit/s UDP-stream to the client, and the sum of
the available bandwidth at the client was always equal to 10 Mbit/s. Due to congestion
control, the full 10 Mbit/s was never used.

In the first series of tests, the proxy was faced with different levels of bandwidth
heterogeneity (the RTT was not changed and was less than one 1 ms). The results are
shown in figure 5.8. For each level of bandwidth heterogeneity, the proxy achieved close
to the same bandwidth as a single 10Mbit/s link, and, hence, using multiple links gave

a significant performance increase over a single link for all levels of heterogeneity. The

Thttp:/ /www.linuxfoundation.org/collaborate/workgroups /networking /netem

5.1. Transparent bandwidth aggregation of UDP-streams 119

Single-link ——
Multi-link - m—

Bandwidth (Mbit/s)

10:0 5.0 55 60 64 80 82
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Figure 5.8: Achieved aggregated bandwidth with a constant 10 Mbit/s UDP stream
and fixed bandwidth heterogeneity. The X:Y notation means that link 1 was allocated
X Mbit/s and link 2 Y Mbit/s. :0 means that a single link was used.

congestion control accurately estimated the capacity of each path, which enabled the
packet scheduler to make the right scheduling decisions.

The purpose of the second series of tests was to see how latency heterogeneity affects
the effectiveness of the bandwidth aggregation technique. Each link had a bandwidth of
5 Mbit/s, to avoid potential side-effects caused by bandwidth heterogeneity, while the
RTT of one path was set to 10 ms, and the other assigned an RTT of r ms, with r €{10,
20, ..., 100}. The results are shown in figure 5.9. The proxy significantly improved the
performance compared to a single 5 Mbit/s link.

A small decrease in the aggregated bandwidth can be observed as the heterogeneity
increased, indicating that the latency heterogeneity would at some point have an effect.
This is as expected when congestion control is used. As the latency increases, the growth
rate of the congestion window decreases due to the increased time it takes for feedback
(the ACKs) to arrive. During the initial phase, or when congestion control has been
invoked, the congestion window and thereby throughput will grow at a slower rate.

Finally, to get an impression of the effectiveness of the bandwidth aggregation tech-
nique when faced with dynamic link behavior, we used a modified version of the script
described in section 4.3.1 to emulate dynamics. The bandwidth of the links was updated
at a random interval, t € {2, ..., 10}, and the sum of the available bandwidth was always
equal to 10 Mbit/s. The RTT of path 1 was normally distributed between 0 ms and
20 ms, while the RTT of path 2 was uniformly distributed between 20 ms and 80 ms.

120 Chapter 5. Transparent bandwidth aggregation

Bandwidth (Mbit/s)

10:0 10:10 10:20 10:30 10:40 10:50 10:60 10:70 10:80 10:90 10:100
Latency ratio (in ms). :0 means that a single link was used

Figure 5.9: Achieved aggregated bandwidth with a constant 10 Mbit/s UDP stream and
fixed latency heterogeneity. The X:Y notation means that link 1 had an RTT of X ms
and link 2 Y ms. :0 means that a single link was used.

Aggregated bandwidth ——
andwidth link 1
Bandwidth link 2

Bandwidth (in Mbit/s)
o

0 50 100 150 200 250 300
Time (in seconds)

Figure 5.10: Achieved bandwidth aggregation with emulated network dynamics and a
constant 10 Mbit/s UDP-stream. The bandwidth was measured every second.

5.1. Transparent bandwidth aggregation of UDP-streams 121

The results are shown in figure 5.10. Using the bandwidth aggregation proxy resulted
in a higher achieved bandwidth. The average aggregated bandwidth was 6.92 Mbit/s,
compared to 4.72 Mbit/s for the fastest the single link.However, even though the band-
width was higher than that of the fastest single link, the difference was not as significant
as in the other experiments. This was caused by the combination of bandwidth and la-
tency heterogeneity, as well as the dynamic behavior. Due to frequent changes in available
bandwidth, the client often experienced packet loss, and the size of the congestion window
was reduced at the proxy, reducing the allowed send rate. In addition, the RTT affected
the growth of the congestion window, causing the bandwidth to increase more slowly
than with lower RTTs. The size of these drops depends on the RTT. With a high RTT,
it will take longer for the proxy to get acknowledgements and, thus, adjust the congestion

window for each tunnel.

Throughput gain

Increasing the throughput is important for most applications, as they process data se-
quentially. Reducing reordering is the responsibility of the resequencer at the client. For
measuring the throughput, four sets of tests were run. One for different levels of band-
width heterogeneity, one for different levels of latency heterogeneity, one where different
bandwidth and latency heterogeneities were combined, and one were we emulated link
dynamics.

One representative sample of the throughput for the most severe bandwidth hetero-
geneity, 8:2, is shown in figure 5.11. The throughput increased significantly, however, a
bursty pattern can be observed. This is caused by the bandwidth heterogeneity. Due to
the difference in capacity, the tunnel established over the path with the most capacity
was allocated a larger share of the packets. When a packet that solved reordering arrived
over the slow path, the buffer often contained several packets waiting to be released to
the virtual interface and the application, causing the spikes.

Figure 5.12 displays the measured throughput for a case of worst-case latency hetero-
geneity (10ms:100ms). As with bandwidth heterogeneity, the throughput was significantly
better than that of a single link. However, a distinct pattern can be seen also in this graph.
When the path with the highest RTT got congested (due to the congestion window reach-
ing its maximum capacity) and the proxy invoked congestion control, it took a significant
amount of time before the aggregated throughput grew back to the previous level. As
with the decrease in aggregated bandwidth, this was caused by the increased RTT af-
fecting the growth rate of the congestion window. The reason there were no significant
throughput spikes, is that the bandwidth was homogeneous (in order to isolate the effect

of latency heterogeneity), so close to the same number of packets were sent through each

122 Chapter 5. Transparent bandwidth aggregation

Link 1 + Link 2 ——

Throughput (in Mbit/s)

0 10 20 30 40 50 60
Time (in seconds)

Figure 5.11: Achieved aggregated throughput with a bandwidth ratio of 8 Mbit/s:2 Mbit/s
(equal RTT) and a constant 10 Mbit/s UDP stream. The throughput was measured for

every second. The spikes are caused by data being released in bursts because of the
heterogeneity.

Link 1 + Link 2 ——

Throughput (in Mbit/s)

0 10 20 30 40 50 60
Time (in seconds)

Figure 5.12: Achieved aggregated throughput with a latency ratio of 10 ms:100 ms (equal
bandwidth) and a constant 10 Mbit/s UDP stream. The throughput was measured for

every second. The drops in throughput are caused by the slower growth rate of the
congestion window on the high RTT link

5.1. Transparent bandwidth aggregation of UDP-streams 123

tunnel. Thus, there were few out-of-order packets in the buffer.

12

Link 1 +Link 2 ——

Throughput (in Mbit/s)

0 50 100 150 200 250 300
Time (in seconds)

Figure 5.13: Achieved aggregated throughput with a combination of bandwidth and la-
tency heterogeneity (8 Mbit/s, 10 ms RTT and 2 Mbit/s, 100 ms RTT), and a constant
10 Mbit/s UDP stream. The throughput was measured for every second.

In figure 5.13, we show the results from one experiment with the combination of the
worst-case bandwidth and latency heterogeneity. A more bursty traffic pattern can be
observed, which was caused by the low bandwidth path also having the highest RTT.
Reordering occurred more frequently, and when a packet that solved reordering arrived
over the slow path, more packets were waiting in the out-of-order buffer than in the tests
with only bandwidth heterogeneity. The reason for the lack of the throughput drops seen
in figure 5.12, was that less traffic was sent through the tunnel established over the high
RTT path. When looking at the logs, we see that the drops were present, however, they
are less visible in the graph.

Finally, figure 5.14 displays the achieved throughput with emulated network dynamics
for one representative sample, using the same script and parameters as in section 5.1.2. As
with bandwidth aggregation, adding a second link increased the performance. However,
also here, the performance gain was not as significant in the other experiments. This was,
again, caused by the combination of bandwidth and latency heterogeneity, as well as the
dynamic behavior. The total average aggregated throughput was 6.88 Mbit/s, compared
to 4.60 Mbit/s for the single fastest link.

One difference between the bandwidth aggregation and aggregated throughput, was
that the throughput was significantly more bursty. This can also be observed by compar-

ing figure 5.10 and 5.14. The burstiness was, in addition to the dynamic link behavior,

124 Chapter 5. Transparent bandwidth aggregation

Aggregated throughput

Throughput link 1 -=------
Throughput link 2 =------+

Throughput (in Mbit/s)

0 50 100 150 200 250 300
Time (in seconds)

Figure 5.14: Achieved aggregated throughput with emulated network dynamics and a
constant 10 Mbit/s UDP stream. The throughput was measured every second.

caused by the resequencer. Packets would frequently be buffered longer in the resequencer,
causing the throughput drops. When reordering was resolved, a larger number of packets
were released to the higher layer, causing a spike. In order to avoid the spikes and drops
in throughput caused by the resequencer, a smoothing filter could have been applied.
By for example adding a second buffer to ensure a smooth delivery of data, one could

compensate for the bursty delivery of data to the higher layer.

5.1.3 Evaluation in real-world networks

Testbed

To get an impression of how our bandwidth aggregation technique performs in real-world
networks, and in the presence of dynamic bandwidth and latency heterogeneity, we also
measured the performance when the client was connected to one public WLAN (placed
behind a NAT) and one HSDPA-network. The specified bandwidth and average measured
RTT of the networks were 4 Mbit/s / 25 ms and 2.5 Mbit/s / 60 ms, respectively. The

same application was used to generate the network traffic as in the other experiments.

Throughput gain

As in the experiments performed in the controlled network environment, the sender sent

a 10 Mbit/s stream to the client. The average aggregated bandwidth when the client was

5.1. Transparent bandwidth aggregation of UDP-streams 125

connected to the real-world networks was 5.52 Mbit/s, which is a significant improvement

over using only WLAN (which measured an average of 3.34 Mbit/s).

Throughput (in Mbit/s)

0 50 100 150 200 250 300
Time (in seconds)

Figure 5.15: The aggregated throughput experienced in real-world networks. The sender
sent a constant 10 Mbit/s UDP stream and the throughput was measured for every second.

The measured throughput for one experiment is shown in figure 5.15. As can be
seen, the aggregated throughput was better than that of the single, fastest link, and this
observation is valid for all the experiments. Also, the throughput was significantly more
bursty than in the experiments performed in the controlled network environment. This
was caused by the dynamic behavior of the links, as well as the combined heterogeneities.
A higher number of out-of-order packets will often be buffered at the client, so when

reordering is resolved, a larger amount of data will be delivered to the application.

5.1.4 Summary

In this section, we have presented a technique for how to use multiple links to improve the
performance of UDP-streams. Unlike the related work we are aware of, our technique can
be used in real-world networks and requires no changes to existing transport protocols,
applications or infrastructure. The only requirement is that a globally reachable proxy
must be present, in order to stripe traffic across the multiple paths to a client. In order
to avoid overflowing the paths and get a measurement of the current path capacity, we
have implemented the window-based CCID2 congestion control. CCID2 is a TCP-like

congestion control and a congestion window is maintained for each tunnel. Packets are

126 Chapter 5. Transparent bandwidth aggregation

sent over the path with the most available capacity, i.e., the tunnel with the most free
space in its congestion window.

Most applications process data sequentially, thus, efficient bandwidth aggregation is
not always sufficient. Packet reordering, caused by for example latency heterogeneity,
must be considered as well. In order to compensate for the reordering caused by the
latency heterogeneity, and improve the throughput, we use a resequencer. The resequencer
buffers packets until reordering is resolved or a timeout expires, in order to avoid deadlocks
or head of line blocking.

Our technique was implemented together with MULTT running in invisible mode. In
a controlled network environment and with real-world networks, our technique provided
efficient bandwidth aggregation and increased the throughput significantly compared to
that achieved by the single fastest link.

5.2 Transparent bandwidth aggregation of TCP-streams

TCP is, together with UDP, the most common transport protocol in use today. Unlike
UDP, TCP is reliable and guarantees in-order delivery of data to the application. It
performs congestion control to ensure a fair usage of the network, and flow control to
avoid sending packets faster than they can be processed at the receiver. The transparent
bandwidth aggregation technique presented in this section is designed based on the same
core principles as the UDP-technique. A proxy is used to stripe packets according to
path capacity, while a resequencer at the client compensates for reordering by buffering
packets. However, in order to support the specific features of TCP, a core change was
needed.

Because TCP itself does congestion control, a load balancing scheme similar to what
was presented in the previous section will not work. Prior knowledge about each path’s
capacity is needed, otherwise, it will affect the growth of the TCP connection’s congestion
window and thereby the send rate (see also figure 1.6 and the discussion on the effects
of bandwidth heterogeneity in section 1.2.2). If we assume that the paths have differ-
ent bandwidth and equal RTT (for simplicity), the packet scheduler used to aggregate
bandwidth for UDP-streams will behave like round-robin when faced with TCP traffic.
Each corresponding tunnel’s congestion window will grow at the same rate, as the sender
receives ACKs and the TCP connection’s congestion window grows and the send rate
increases. However, as soon as the path with the lowest bandwidth becomes congested,
TCP will invoke congestion control. This will affect the performance of the whole transfer,
and the full capacity of the other paths will not be utilized. The maximum possible size of

the congestion window at the sender is equal to the number of links times the maximum

5.2. Transparent bandwidth aggregation of TCP-streams 127

congestion window of the lowest bandwidth path. This is similar to the discussion in the
introduction about the challenges introduced by bandwidth heterogeneity.

Instead of passive capacity measurements, for example active probing can be used. By
actively measuring the available capacity of each path, the proxy can adjust the weight of
the paths on the fly and ensure a correct load balancing of the traffic. Because TCP itself
guarantees fairness, there is no need for the proxy to check that this principle is upheld.

In the rest of this section, we will first introduce the active probing technique. Then,
we continue with presenting the results from our evaluations. With TCP, it makes no
sense to look at the achieved bandwidth, as this does not imply a better performance for
the connection. TCP requires packets to be in-order and any lost data to have arrived
before data is released to the application. Therefore, the evaluations are only focused on
the achieved throughput.

Based on the evaluations, we discovered that the performance of transparent TCP
bandwidth aggregation depends on the latency heterogeneity. Because of TCP’s default
behavior, we have not been able to design a transparent bandwidth aggregation to improve
the performance of a TCP stream in the presence of severe latency heterogeneity. Instead,
we present the design of a semi-transparent bandwidth aggregation technique that will
not be affected by latency heterogeneity. Finally, we summarize and conclude our TCP

work.

5.2.1 Architecture

The core architecture for the transparent TCP-based bandwidth aggregation technique is
the same as for UDP. The technique is designed around MULTT being used in invisible
mode. A proxy is responsible for distributing packets amongst the different tunnels that
make up the multilink overlay network, while a resequencer at the client compensates
for reordering by buffering packets until the in-order criteria is fulfilled, or packet loss is
detected.

The only significant change compared to the UDP-technique is that the packet sched-
uler has been replaced. TCP is not compatible with passive load balancing, and our
technique instead makes use of active probing in order to determine path capacity. The

rest of this subsection describes the new packet scheduler.

Send vector-based packet scheduling

In order to achieve efficient transparent bandwidth aggregation of TCP streams, a priori
knowledge of the capacity of each path is needed. The send rate of a TCP connection

depends on the size of and the free space in the congestion window. Inaccurate scheduling

128 Chapter 5. Transparent bandwidth aggregation

of packets will lead to congestion, which in turn causes TCP to perform congestion control
and reduce the send date.

To get an estimate of the capacity of each path, the proxy sends a UDP packet train [42]
through each tunnel every second. By sending several equal sized packets back-to-back,
and measuring the inter-arrival time between the first and last packet in the train, the
current available bandwidth can be calculated. The reason for using a packet train rather
than a packet pair (introduced in [39] as packet dispersion), is that the estimations are
more accurate. By sending a single packet pair, i.e., a packet train with a length of two,
queueing delays in the network and cross-traffic can have a more significant effect on the
estimations.

There exists several different packet scheduling disciplines, however, few of them can
be applied to our scenario. In order to achieve efficient path utilisation, the packet sched-
uler must take the measured bandwidth into consideration and then balance the traffic
accordingly. To achieve this, we propose the use of Weighted Round Robin-scheduling
(WRR). WRR generates a scheduling sequence, from now on referred to as the send vec-
tor, and each element in the set used to generate the vector is assigned a weight. In our
case, the elements are the different tunnels and the weights the bandwidth measurements

of the corresponding paths.

Algorithm 5 createSendVector(n, wy, w;)
Input: Vector length n € N > 0 and weights wg, w1 € R>g
Output Send vector V' of length n
: V = zeros(n); {initialize V' with the ID of tunnel 1}
r = w1 /(wo 4+ wy); {calculate weight ratio}
r = round(r * n)/n; {adjust r such that r % n is an integer}
fori=1tor*ndo
V([i/r]) =1D of tunnel 2;
end for

The send vector contains the order of tunnels (identified by their unique IDs) to be
picked and is used to decide the forwarding destination of incoming packets at the proxy.
A pointer into the send vector is incremented after each lookup and reset when the end
is reached. During initialization, the send vector V' is set to emulate pure round-robin
behavior (equivalent to WRR where the paths have equal weight), i.e., V = {0,1,...,m}
for m client interfaces. Once bandwidth estimations have been made, the send vector is
updated accordingly. For the bandwidth estimates of two paths, which correspond to two
weights wy and wq, the send vector V' is constructed as described in algorithm 5, a fair
variant of weighted round-robin scheduling. Send vectors for more than two paths can be

created by recursively merging send vectors created for two weights.

5.2. Transparent bandwidth aggregation of TCP-streams 129

5.2.2 Evaluation in a controlled network environment

Testbed

The controlled network environment used to evaluate the performance of the technique for
transparent bandwidth aggregation of TCP streams, was the same as for the UDP-based
technique. Three machines, each running Linux 2.6.31-14, were connected directly to each
other using 100 Mbit/s Ethernet. One machine was used as both proxy and sender, the
second emulated latency (when needed), while the third was the multilink-enabled client.
In order to measure the achieved throughput, the tool wget 2 was used to download the
same file from our web-server. The network emulator netem ® was used, together with the

hierarchical token bucket, to emulate different levels of RT'T and bandwidth heterogeneity.

Bandwidth heterogeneity

1200
1000 |
800 |-

Q

M

S

2 600 |

=

e

=

=}

2

=

(=
400
200

10:0 5:0 55 60 64 8:0 8:2
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Figure 5.16: Average achieved aggregated throughput with TCP for fixed levels of band-
width heterogeneity. The X:Y notation means that link 1 had a bandwidth of X Mbit/s,
link 2 Y Mbit/s and :0 means that a single link was used.

Figure 5.16 * shows the achieved throughput for different levels of bandwidth hetero-
geneity. As can be seen, the packet scheduler was able to efficiently estimate path capacity
and stripe packets. The achieved throughput with aggregation was always significantly

better than that of a single link. However, there was a slight performance difference

Zhttp:/ /www.gnu.org/software/wget/
Shttp://www.linuxfoundation.org/collaborate /workgroups /networking /netem
4Please note that the scale of the Y-axis has been changed from Mbit/s to kB/s.

130 Chapter 5. Transparent bandwidth aggregation

between when a single 10 Mbit/s link and when bandwidth aggregation was used. This
was caused by the finite length of the send vector, which was sometimes not sufficient
to represent the ratio between the two paths with full accuracy. Because of this, paths

sometimes got congested and the throughput was reduced for slight periods of time.

Latency heterogeneity

Latency heterogeneity causes packet reordering, which has a significant effect on TCP-
performance. Because TCP assumes that packet loss is caused by congestion, reordering
will trigger congestion control and cause a reduction in throughput. In order to avoid
exposing TCP to the additional reordering caused by the latency heterogeneity, the tech-
nique presented in this section makes use of a resequencer. The resequencer was the same
as in section 5.1.1 and buffers packets until reordering was resolved, loss was detected or
a timeout expired. The timeout was used to prevent excessive waiting, which will trigger
a retransmission timeout. As retransmission timeouts causes a connection to enter slow

start again, it is more desirable to trigger some potentially redundant fast retransmissions.

1200
5 { : g
1000 |- * < o g .
I Y > ;
< K
$ K b ¢
5 3 S . %
L & o » > 2 < o
_ 800 < < o ¢ < 5 3
2 5 $ b g 5) o« 5
@ ¢ ” < S 5
j=2 5 < {) ¢ <
=) < < K S " < 2 4 < !
= S i X] > 0 i < <
a, 600 g > o 4 < 3 <, S D <
< & S o 2 < { > b ¢
S g . i e ¢
< M ¢ > <
2 : S ¢ y
I 5 > 3 2 g
£ 3 < 3 N : ¢ 4 3]
S <, ¥ ” > 9 R X S > ¢
400 3 < ¢) e 2 4 ; S i
g < < S S X < 3
< < < > {
> b g 2 - ¥
S i < % > {
¢ 2 : ¢ 9 K <
200 A R T 3 3 . ‘
« 2 % i < S > :
S A S S - S R
2 : $ X 2 , g
& 3 % 5 :
I : : 5 3 %, <

o W P S S W X - > > e
10:0 10:10 10:20 10:30 10:40 10:50 10:60 10:70 10:80 10:90 10:100 10:300
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Figure 5.17: Average achieved aggregated throughput with TCP for fixed levels of latency
heterogeneity. The X:Y notation means that link 1 had an RTT of X ms, link 2 Y ms
and :0 means that a single link was used.

Figure 5.17 depicts the achieved throughput for different levels of latency heterogene-
ity. The bandwidth was limited to 5 Mbit/s on both links in order to avoid bandwidth
heterogeneity affecting the results, and we see that the achieved throughput is higher than

that of a single 5 Mbit /s link for all levels of latency heterogeneity. However, even though

5.2. Transparent bandwidth aggregation of TCP-streams 131

there was some instability, the overall trend was that the gain offered by adding another
link decreased as the latency heterogeneity increased.

The decrease was caused by the default behavior of TCP, together with the rese-
quencer. When looking at the logs, we saw a large number of redundant retransmissions
caused by the packets arriving over the low RTT path. That is, fast retransmits were
triggered and reordered packets that had not arrived yet were retransmitted. The only
difference was that as the timeout value increased, so too did the number of RTOs. Also,
increasing the time which packets were held by the resequencer, caused the congestion
window to grow slower and delayed actual retransmissions because of the increase in time
before feedback was sent from the receiver.

Another problem is TCP’s behavior when deciding which packet to retransmit. TCP
will only retransmit the first packet that has not been acknowledged. Thus, even if the
resequencer detects loss, it is not necessarily the lost packet that is retransmitted. If the
most recent acknowledged packet had sequence number X, then packet X+1 is the one
that will be retransmitted. Even if the resequencer detects that it is X42 that has been
lost, and X+1 cannot be accounted for.

Due to TCP’s default behavior, we have not been able to design a latency independent,
fully transparent bandwidth aggregation technique for TCP. Out-of-order packets are
interpreted as lost and causes TCP to trigger congestion control and reduce the send
rate. Hiding reordering from the receiver by using the resequencer either causes redundant
retransmissions (by making use of a time and releasing out-of-order data), or increases
the number of RTOs. Also, because a TCP connection is end-to-end and not aware of
the multiple links, congestion control affects the overall performance. Ideally, it should
only affect the path that is congested. In other words, if two links were used, the send
rate should only be reduced by one half, instead of one fourth. A semi-transparent
technique that would achieve efficient bandwidth aggregation in the presence of severe
latency heterogeneity, is one based on TCP connection splitting. This will be discussed

in more detail in the next subsection.

5.2.3 Bandwidth aggregation using TCP connection splitting

The concept of TCP connection splitting, in literature also referred to as Split TCP [50],
I-TCP [9] or TCP acceleration, was introduced in the early 1990’s and is based on the
indirect protocol model [8]. The main idea is that a TCP connection is split into multiple
independent parts using a proxy/gateway. Connection splitting was originally designed
to improve the performance of mobile hosts connected using wireless links. By inserting
an intermediate node on the path between a server and the client, the node can buffer

packets and implement scenario specific optimizations to improve the throughput at the

132 Chapter 5. Transparent bandwidth aggregation

client.

In order to avoid having to modify the server and make it aware of the connection
splitting, the intermediate node establishes a connection to the server on behalf of the
client [9]. Packets from the client are forwarded on this connection, and the node fakes
an image of the client [8]. By using an intermediate node, the flow and congestion control
of the fixed and wireless part of the connection are separated. This is desirable because
of the often very different performance characteristics of the different types of links.

The send rate to the node is decided by its available downstream bandwidth and
buffer space. For connection splitting to make sense, the node has to at least support the
available bandwidth at the client. How the client behaves and communicates with the
node depends on the scenario. It can for example use normal TCP and rely on a more
aggressive retransmission scheme being implemented at the intermediate node, or use a

proprietary protocol designed to maximize performance over a specific type of link.

Data
‘O - Data + ACKs
<>
=N Data +
packets from
_ client
Client Proxy Server

Figure 5.18: Example of the design of a bandwidth aggregation solution based on con-
nection splitting.

An overview of how TCP-based bandwidth aggregation can be achieved using con-
nection splitting, is shown in figure 5.18. The proxy (the intermediate node) fakes the
behavior of the multihomed client. Any packet containing data sent from the client is
forwarded, and data from the server is acknowledged and buffered at the proxy. The data
will then be sent to the multihomed client according to any fit scheme. For example, the
packet scheduler and congestion control discussed in section 5.1 can be extended with
reliability and used to aggregate bandwidth.

At the client, packets can be buffered until reordering is resolved. Because the send
rate at the server does not depend on feedback from the client, resequencing packets will
not affect the throughput. Latency heterogeneity will still increase the time a packet is
buffered by the resequencer, and thereby cause a more bursty release of data. However,

it will not affect the send rate from the server, and, thus, the aggregated throughput is

5.2. Transparent bandwidth aggregation of TCP-streams 133

more robust against latency heterogeneity. A high RTT will still limit the throughput if
congestion control is used, as was discussed in section 5.1.2.

Even though connection splitting would allow for designing a transparent technique
for TCP bandwidth aggregation, it is outside of the main focus of this thesis. By doing
connection splitting, the end-to-end principle of TCP is violated and the behavior of the
protocol modified. One of our goals was to design techniques for transparent bandwidth
aggregation that was compatible with the default behavior of the protocols. Therefore,
we have not performed any thorough analysis of bandwidth aggregation for TCP-streams
based on connection splitting. However, in order to give an impression of the potential
performance gain, we created a client and server application which emulates connection
splitting.

Assuming that the proxy and server is able to support the aggregated bandwidth of
the client, bandwidth aggregation using connection splitting is the equivalent of sending
as much data over the paths as fast as possible. Our emulated proxy makes use of the
send vector for packet scheduling, while the client establishes one TCP connection to the
proxy for each active interface and acts as a sink for the received data. This is similar to
what MPTCP [36] and SCTP CMT [38] does, except for the use of the send vector. The
experiments were performed in the same testbed and for the same bandwidth and latency

heterogeneities as in section 5.2.2.

1200
1000 |
800 |-

Q

2

=

2 600 |

=

)

=

=}

2

=

(=
400
200 |

10:0 5:0 55 6:0 6:4 8:0 8:2
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Figure 5.19: Average achieved aggregated TCP-throughput using emulated connection
splitting for different levels of bandwidth heterogeneity.

Figure 5.19 shows the achieved, aggregated in-order throughput for different levels

of bandwidth heterogeneity. As with the fully transparent TCP-based bandwidth aggre-

134 Chapter 5. Transparent bandwidth aggregation

gation, the send vector provided an accurate representation of available path capacity.
The aggregated throughput was close to the ideal value (10 Mbit/s) for every level of
bandwidth heterogeneity.

1200 M M M M M M M M _ Connection splitting ——
Fully transparent &25Cx=
5. b > 5.
1000 ks LR L
2 SN AR 3 %
% < ? %
< < || ¢ 2
AN IS Rk B
< & % < & N L
800 [<4 [K [[B[R R
> > b | b SRR 2K
= " % < by B i
o) % < < > : S
< S SN < I I R <
= 3 N X " 2 I $
=] K’ < > N
B.0600 [f4 |5 |k | IR TR "
= > S > 2 5 2 4
2] < < % < y " 2 i
= < < SN ” 5 3 >
g AR R e :
= < % < " " b .
= K, % < ¢ > : >
400 | % 54 SR | 3 <
< -, > 2 »
ALK | > ¢
> s >3 > L, ”
< 4l R 5
200 [P X R S o
< < i > >
3 g 53 > % < 3! :
% » 4K)< ¢ %
> b3 >3 S b i <

o Lo Loy L2y L Lkd Ld Lol L8 LD L&
10:1010:20 10:30 10:40 10:60 10:70 10:80 10:90 10:100 10:300
Latency ratio (in ms)

Figure 5.20: Average achieved aggregated TCP-throughput using connection splitting for
different levels of latency heterogeneity, compared to the throughput achieved by the fully
transparent technique.

The achieved throughput for different levels of latency heterogeneity is shown in fig-
ure 5.20, together with the results from the experiments done using the fully transparent
aggregation technique. The throughput improved significantly and was much more stable
than when fully transparent bandwidth aggregation was used. This was because the send
rate from the server (the packet generation rate when the prototype was used) was no
longer affected by the feedback generated by the client. Also, as the congestion control for
the paths to the client are decoupled, a congestion event on one path no longer reduces
the send rate of the overall connection. Finally, the effect of packet reordering has been
removed. Because TCP is reliable, the packet(s) that solve reordering will arrive at some
point in time. Thus, the resequencer never has to release packets early, and there are no
redundant retransmissions. However, a slight decrease in the aggregated throughput can
be seen as the heterogeneity increased. This is expected when TCP is used over a high
RTT path, as it takes longer for a connection (the congestion window) to recover after

packet loss has occurred.

5.3. Conclusion 135

5.2.4 Summary

The initial bandwidth aggregation technique for increasing the performance of TCP
streams was based on the same core concepts as the UDP technique. The only differ-
ence was that active probing and a send vector were used to stripe packets, instead of
a congestion window. This was done because TCP requires prior knowledge about the
bandwidth of each path, and correct load balancing, in order for the congestion window
to grow properly.

Unlike the UDP technique, the performance of the TCP-based bandwidth aggregation
technique depended on the level of latency heterogeneity. TCP interprets out-of-order
packets as packet loss and invokes congestion control, and hiding reordering completely
caused a significant increase in the number of RTOs. Because of how TCP is designed,
we have not been able to design a fully transparent, latency independent technique for
bandwidth aggregation. When faced with severe heterogeneity, the throughput decreases
and is in some cases worse than that of a single link.

Instead, we introduce a semi-transparent technique. By making use of connection
splitting, the congestion controls are decoupled. The send rate from the server depends
only on the feedback generated at the proxy. The TCP connection at the client acts as a
sink, and any fit approach can be used to distribute the packets across the multiple links.
Because connection splitting violates the end-to-end principle, it is outside the main focus
of this thesis and did not perform any thorough evaluations of such a bandwidth aggre-
gation technique. However, in order to give an impression of the potential performance
gain, we emulated connection splitting and showed the achieved aggregated throughput
for different levels of bandwidth and latency heterogeneity. As expected, a significant
improvement over the fully transparent technique was seen in the latency heterogeneity
experiments. The bandwidth heterogeneity experiments gave the same results as for the

fully transparent technique.

5.3 Conclusion

Transparent bandwidth aggregation is desirable because bandwidth aggregation can be
achieved without changing applications or transport protocols. In this chapter, we have
presented techniques for how to increase the performance of UDP and TCP using multiple
links. Both techniques were focused on downstream traffic and designed based on the same
core concepts. A proxy was used to stripe packets and to avoid requiring changes to the
server. To reduce reordering, a resequencer at the client buffered packets until reordering
was resolved or a timeout was triggered. The timeout was used to avoid deadlock, head

of line blocking and excessive waiting.

136 Chapter 5. Transparent bandwidth aggregation

In order to balance the traffic correctly when used together with UDP-traffic, the
TCP-like CCID2 congestion control was used. The bandwidth aggregation technique for
UDP was able to utilize almost the full capacity of the paths independent of bandwidth
and latency heterogeneity. The throughput also increased when a second link was added.

Because of the way TCP is designed, it requires prior knowledge about the capacity of
each path in order for the congestion window to grow properly. Therefore, the feedback-
based CCID2 was replaced with active probing and dynamic weighting of the paths, in
order to enable the proxy to efficiently aggregate the bandwidth. The technique increased
the performance when faced with bandwidth heterogeneity, but the performance depended
on the level of latency heterogeneity.

Based on the results from our experiments and knowledge about TCP and its default
behavior, we have not been able to efficiently aggregate the bandwidth without changing
TCP in the presence of severe latency heterogeneity. A decoupling of the connection’s
congestion control from each path’s congestion control is needed. TCP connection split-
ting supports this decoupling, and would allow for the design of a bandwidth aggregation
technique that is more resilient to latency heterogeneity. However, such a technique is
outside of the main focus of this thesis, as it violates the end-to-end principle of TCP. Still,
in order to show the potential of a technique based on connection splitting, we emulated
bandwidth aggregation using connection splitting. The achieved aggregated throughput
was independent of bandwidth heterogeneity, and the performance for the different levels
of latency heterogeneity was significantly better then for the fully transparent technique.

In the next chapter, we summarize and conclude the work presented in this thesis, as

well as present our ideas for future work.

Chapter 6
Conclusion

Today, several different types of devices are multihomed. For example, smart phones can
connect to 3G-networks and WLANSs, while most laptops at least come equipped with
LAN and WLAN interfaces. In addition, the coverage area of different wireless networks
are ever-expanding. Thus, clients are often within the coverage area of multiple networks.
Using multiple links, or network interfaces, simultaneously allows for desirable proper-
ties like increased network performance or reliability. In this thesis, we have investigated
the potential of aggregating the bandwidth of different, heterogeneous links. FEfficient
bandwidth aggregation relies on solving a set of challenges. In addition to deployment
challenges, bandwidth aggregation techniques must consider the link heterogeneity. For
example, latency heterogeneity causes packet reordering, while bandwidth heterogeneity
requires the traffic to be balanced accordingly. Also, especially wireless links typically dis-
plays fluctuating behavior, which must be compensated for. In this chapter, we summarise

the thesis, as well as propose some ideas for future work.

6.1 Summary and contributions

The research presented in this thesis has resulted in three major contributions, as outlined
in section 1.6: 1) We have developed a framework, called MULTT, that eases the develop-
ment, deployment and evaluation of multilink solutions and techniques, and 2) designed
and evaluated an application-layer technique for bandwidth aggregation, optimised for
quality-adaptive video streaming, as well as 3) techniques for transparently improving
the performance of UDP and TCP streams.

MULTT was motivated by our observation that no existing solution was able to meet
our deployment requirements. For example, current solutions do not traverse NAT prop-
erly, rely on static configuration or add a significant overhead. MULTT is platform inde-

pendent and solves the different challenges related to deployment. It works by monitoring

137

138 Chapter 6. Conclusion

and automatically configuring the network subsystem of the operating system. It then
exposes a continuously updated list of available interfaces to the applications making use
of the components in framework (known as managers). The content of this list is depends
on if MULTT is used to extend an application with multilink support directly, or used
together with a transparent multilink solution. In the first case, the available interfaces
are exposed to the manager directly. Otherwise, MULTT operates on the network layer
and makes use of a proxy (to avoid changing the remote machine), and creates a multilink
overlay network consisting of IP tunnels for each active interface. The available tunnels

are then exposed and used by the managers.

The application-specific bandwidth aggregation technique was optimised for quality
adaptive video streaming, and implemented on top of the common HTTP-protocol. When
adding a second link, a significant increase in the visual video quality compared to using
a single link was observed, both in the presence of bandwidth and latency heterogeneity.
Also, the number of data delivery deadline misses was reduced, reducing the number of
buffer underruns and meaning that the playback was smoother. However, the technique
is not limited to HTTP or streaming. As long as the client is able to divide a file into
smaller segments, so that the logical parts that can be requested over different links, the

technique can be used to increase the performance of any bandwidth intensive application.

The two transparent bandwidth aggregation techniques presented in this thesis were
targeted at improving the downstream performance of UDP and TCP-streams, the two
most common transport protocols in use today. The techniques were based on the same
core concepts and both operate on the network layer, were designed around the features
offered by MULTT’s invisible mode, and make use of a proxy to stripe traffic and avoid
changing the server. In addition, both techniques rely on a resequencer to buffer out-of-

order packets until reordering is resolved.

Where the two techniques differ, is in how the proxy distributes the traffic across
the paths from the proxy to the client, as this depends on the behavior of the targeted
transport protocol. Because UDP has no congestion control, the bandwidth aggregation
technique makes use of the TCP-friendly CCID2 congestion control [28]. Applying con-
gestion control is important because it ensures that the sender does not consume a too
large share of the available resources. The amount of free space in each tunnel’s con-
gestion window is used by the packet scheduler at the proxy to select which tunnel to
use. The congestion window represents the current capacity of the corresponding path,
and the free window space represent the current available capacity. Adding a second link
increased the performance of the UDP streams compared to using a single link. Almost
the full capacity of each path was utilised, and the throughput was close to the maximum

possible value (sum of all aggregated capacities), both in the presence of bandwidth and

6.2. Concluding remarks 139

latency heterogeneity.

Because of how TCP’s own congestion window grows, prior knowledge about the avail-
able capacity of a path is needed. Otherwise, packets will be dropped when the lowest
bandwidth path gets congested. This will cause the TCP connection’s congestion control
to be triggered and the throughput to be reduced. In order to increase the performance of
a TCP stream using transparent bandwidth aggregation, we made use of active probing
and weighted round-robin striping. UDP packet trains were used to measure the avail-
able bandwidth, and this information was used by the weighted round-robin scheduler
to create a send vector. The send vector is a finite length vector containing the tunnels
making up the multilink overlay network, sorted by the order in which they will be used.
Using these techniques, we achieved an increase in performance when the technique was
faced with bandwidth heterogeneity. However, the performance depended on the latency
heterogeneity. The packet reordering caused TCP to trigger congestion control, due to
packets being interpreted as lost, and reduce the send rate.

Because of the way TCP is designed, we have not been able to design a technique for
transparent bandwidth aggregation that will work in the presence of latency heterogeneity.
The reordering caused by latency heterogeneity will limit the growth of the congestion
window, and thereby the throughput. The only way to efficiently aggregate bandwidth
with TCP, is to decouple the connection’s congestion control from the path’s congestion
control. One possible way to do this is to use connection splitting, and we present the
design of a semi-transparent bandwidth aggregation technique based on this concept.
The send rate from the server is decided based on the feedback generated by a node
(the bandwidth aggregation proxy) inserted on the path between the client and server.
This node “fakes” the behavior of a TCP client, and, in our case, any scheduler can be
used to distribute the packets destined for the multihomed client. Connection splitting
violates TCP’s end-to-end principle and is outside the scope of this thesis. However,
in order to get an impression of the possible performance gain, we emulated bandwidth
aggregation based on connection splitting. The throughput was significantly more robust
against latency heterogeneity, compared to the fully transparent bandwidth aggregation

technique.

6.2 Concluding remarks

Users’ appetite for bandwidth intensive services, like video streaming and moving content
to and from cloud storage, shows no sign of slowing down. In addition, multihomed
devices are becoming even more powerful and wireless networks capable of supporting

higher bandwidths. For these reasons, we believe bandwidth aggregation both is and will

140 Chapter 6. Conclusion

be an even more desirable property.

In this thesis, we have shown the potential of bandwidth aggregation. Bandwidth
aggregation has been an active research field for several years. However, the related work
has failed to consider challenges present in the real world networks. As we discovered
through performing experiments and doing analysis, bandwidth and latency heterogeneity
must be considered in order to do efficient bandwidth aggregation. Also, much related
work ignore connectivity challenges. For example, NAT causes clients to be unreachable

outside their own network.

There are several different approaches that can be used to enable bandwidth aggrega-
tion. One can for example modify or create new transport protocols, or design techniques
optimised for one specific application or application type. During the work with this
thesis, we built a framework which supports and eases the development of application
specific and transparent, network layer bandwidth aggregation techniques. On top of this
framework, we have designed one bandwidth aggregation technique optimized for quality-
adaptive video streaming, as well as fully transparent techniques optimised for UDP and
TCP. A network layer technique must support the behavior of the targeted transport

protocols.

Each of the bandwidth aggregation techniques increased the throughput compared to
using a single link. The application-specific technique, as well as the transparent technique
targeted at UDP, utilised close to 100 % of the link capacity when faced with both
bandwidth and latency heterogeneity, as well as real-world networks. The performance of
the initial TCP technique depended on the latency heterogeneity. However, by splitting
the connection, close to 100 % utilisation can be achieved also with TCP. Connection
splitting violates the TCP end-to-end principle and has therefore not been a main focus
of this thesis. A technique built on this concept requires no changes to either transport

protocol or OS, and is therefore transparent to both sender and receiver.

After working on this thesis, we believe that the application and network layer are
the most suited layers for implementing bandwidth aggregation. The application layer
is controlled by developers and allows for unlimited flexibility. The network layer, on
the other hand, allows for the design of fully transparent techniques that requires no
changes to transport protocol or OSes. Transport layer/protocol changes take a long time
to reach standardisation and deployment, while the link layer is limited by connectivity
issues. Link layer techniques require interfaces to be connected to the same end point and
be based on the same technology. This is not possible in our scenario, where a client’s

interfaces often use different technology and are connected to different networks.

6.3. Future work 141

6.3 Future work

We have presented several different techniques for how to efficiently aggregate bandwidth
when a device has several links available. However, the field of bandwidth aggregation
and use of multihoming in general is far from explored, and our ideas for future work

includes:

e Several typical multihomed devices are mainly powered by battery, for example
smart phones. Using multiple network interfaces simultaneously will consume more
battery, reducing the time between when the device has to be charged. Evaluating
the impact of bandwidth aggregation on battery life, as well as optimise techniques
for devices with limited battery capacity, would increase the popularity and the
probability of bandwidth aggregation being deployed. One possible idea is to limit
the use of bandwidth aggregation to those cases where the client knows it will

improve performance.

e The transparent bandwidth aggregation techniques presented in this thesis increases
both bandwidth and throughput. However, we have not evaluated the effect band-
width aggregation has on different types of applications. For example, a game might
react completely different to an application streaming video. An interesting research
task would be to look into these differences, and see if extending the aggregation

techniques with a form for profile support (or similar) would improve performance.

e The bandwidth aggregation techniques presented in this thesis have been designed
to be technology agnostic. That is, no assumptions have been made about the
underlying technology. However, wireless technologies behave differently at the link
layer and in the physical domain. For example, HSDPA has a more aggressive
link layer retransmission scheme than for example WLAN, and is therefore more
reliable at the expense of an increased latency. Also, wireless technologies can affect
each other. For example, using two WLAN interfaces can cause interference, even
if the interfaces are connected to different networks. Making a trade-off between
technology independence and technology-specific optimisations might lead to even

better performance.

e Another desirable property of multilink is the increased reliability offered by network
handover. This has not been the focus of this thesis, however, it was used as
an example of MULTD’s invisible mode. Different handover approaches already
exists, for example Mobile IPv6 [44] and Mobile SIP [76], but they, to the best
of our knowledge, all rely on new protocols or protocol changes. We believe that

transparent, application-layer handover has a large potential, and exploring this

142 Chapter 6. Conclusion

field further would allow for the design of innovative, flexible and easily deployable

handover techniques.

Appendix A

Publications

The work presented in this thesis has resulted in 10 peer-reviewed conference publications,
one patent application and one journal article. This appendix contains summaries of each

publication, as well as the contribution of each author.

A.1 Conference publications

Title: An Analysis of the Heterogeneity and IP Packet Reordering over Multiple Wireless
Networks [47]

Authors: D. Kaspar, K. R. Evensen, A. F. Hansen, P. E. Engelstad, P. Halvorsen, and
C. Griwodz.

Published: IEEE Symposium on Computers and Communications (ISCC), 2009.

Summary: This paper explores how link heterogeneity affects IP packet reordering. It
also introduced the concept of the send vector (described in section 5.2.1).

Contributions: Dominik Kaspar was responsible for the performance evaluation and the
writing. The other authors contributed with input and feedback on the text and

the implementation/experiments.

Title: A Network-Layer Proxy for Bandwidth Aggregation and Reduction of IP Packet
Reordering [18]

Authors: K. R. Evensen, D. Kaspar, P. E. Engelstad, A. F. Hansen, C. Griwodz, and P.
Halvorsen.

Published: The 34rd Annual IEEE Conference on Local Computer Networks (LCN),
2009.

Summary: The work done for this publication was our first attempt at transparent
bandwidth aggregation. We focused on improving the performance of downstream

UDP-streams, and made use of a proxy to avoid changing the server. The proxy

143

144 Appendix A. Publications

striped packets according to the send vector, and a delay equalizer at the proxy de-
layed packets and thereby reduce reordering. The performance was evaluated inside
a controlled network environment, and we achieved efficient bandwidth aggregation
and saw a significant throughput increase. The work done in this paper served as
the foundation for the work presented in chapter 3 and 5.

Contributions: Kristian Evensen was responsible for writing the code, while Dominik
Kaspar was in charge of the writing the paper and creating the figures. The two
were also both responsible for designing the technique and algorithms, as well as
conducting the experiments. Every author contributed with feedback on the design

and implementation, as well as contributing to the writing of the paper.

Title: Enhancing Video-on-Demand Playout over Multiple Heterogeneous Access Net-
works [46]

Authors: D. Kaspar, K. R. Evensen, P. E. Engelstad, A. F. Hansen, P. Halvorsen, and
C. Griwodz.

Published: Consumer Communications and Networking Conference (CCNC), 2010.

Summary: In this paper, we explore how bandwidth aggregation can be achieved using
the range-request feature of the common HTTP-protocol. The findings was the
start of the work that is presented in chapter 4.

Contributions: The idea for using range-requests to request different parts of a file over
multiple links came from Kristian Evensen, who was also responsible for implement-
ing a prototype tool. Dominik Kaspar conducted all the experiments and was also
the main author of the text. Every author contributed with feedback to the text,

implementation and evaluation.

Title: Using HTTP Pipelining to Improve Progressive Download over Multiple Hetero-
geneous Interfaces [45]

Authors: D. Kaspar, K. R. Evensen, P. E. Engelstad, and A. F. Hansen.

Published: International Conference on Communications (ICC), 2010.

Summary: This paper was a continuation of the CCNC-paper and we analyzed how
HTTP pipelining can be used to improve the performance of HTTP-based band-
width aggregation.

Contributions: Dominik Kaspar and Kristian Evensen both contributed to the improve-
ment of the prototype used for the CCNC-paper. Dominik Kaspar was also respon-
sible for performing the evaluations, while each author participated in discussions

about the content of the paper, as well as giving feedback.

Title: Quality-Adaptive Scheduling for Live Streaming over Multiple Access Networks [21]
Authors: K. R. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz.

A.1. Conference publications 145

Published: The 20th International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), 2010.

Summary: In this paper, we applied the previous HTTP-based bandwidth aggregation
techniques to quality-adaptive video streaming. This paper introduced the first
version of the request scheduler and quality adaption mechanism (section 4.2.4) and
the static subsegment approach (section 4.4). Evaluations were performed both in a
controlled environment and with real-world networks, and a significant improvement
in video quality was seen.

Contributions: Kristian Evensen and Tomas Kupka were responsible for designing the
request scheduler, quality adaption mechanism and static subsegment approach.
Kristian Evensen was also responsible for the implementation and evaluation. Do-
minik Kaspar, Kristian Evensen and Pal Halvorsen wrote the text, and every author

participated in discussions about the content as well as provided feedback.

Title: Improving the Performance of Quality-Adaptive Video Streaming over Multiple
Heterogeneous Access Networks [19]

Authors: K. R. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen, and P. E.
Engelstad.

Published: Proceedings of the second annual ACM conference on Multimedia systems
(MMSYS), 2011.

Summary: As discussed in section 4.4, the performance when the static subsegment
approach is used depends on the size of the receive buffer at the client. In this
paper, we introduced the dynamic subsegment approach (section 4.5) and compared
the performance of the two approaches with three different types of streaming. The
dynamic subsegment was able to utilise the links better and improved the video
quality compared to the static approach.

Contributions: Kristian Evensen was responsible for the design of the technique, imple-
mentation, evaluation and most of the writing. Dominik Kaspar and Pal Halvorsen
also contributed to the writing, as well as creating figures used for illustration. Every

author provided feedback on the content.

Title: Using Multiple Links to Increase the Performance of Bandwidth-Intensive UDP-
Based Applications [20]

Authors: K. R. Evensen, D. Kaspar, A. F. Hansen, C. Griwodz, and P. Halvorsen.

Published: Proceedings of IEEE Symposium on Computers and Communications (ISCC),
2011.

Summary: This paper was an improvement of our LCN-paper. The technique for band-
width aggregation of UDP-streams presented here copes with the deployment chal-

lenges (especially NAT), in addition to compensating for reordering and scheduling

146 Appendix A. Publications

packets in ways which work with real-world networks. Most of the content in sec-
tion 5.1 comes from this paper.

Contributions: Kristian Evensen was responsible for the design, implementation, eval-
uation and writing. Each author contributed with feedback on the text, as well as

participating in different technical discussions.

Title: Mobile video streaming using location-based network prediction and transparent
handover [23]

Authors: K. R. Evensen, A. Petlund, H. Riiser, P. Vigmostad, D. Kaspar, C. Griwodz,
and P. Halvorsen.

Published: The 21th International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), 2011.

Summary: A desirable feature of having access to multiple links is transparent con-
nection handover. For this paper, MULTI was used to implement this feature.
In addition, we made use of a database containing bandwidth measurements of
the different networks available at given co-ordinates. These two components were
combined with an unmodified quality-adaptive video streaming system using path
prediction to schedule which video quality to request when. Evaluations were per-
formed along a tram-line in Oslo, which had a 100 % 3G coverage and a fast WLAN
was available at two stops. In addition to sustaining the connection for the whole
journey, a higher video quality was achieved when the client was able to use the
WLAN when available. The system presented in this paper was used as the exam-
ple of MULTT’s invisible mode (section 3.4).

Contributions: Kristian Evensen was responsible for implementing transparent han-
dover, as well as some of the writing. Andreas Petlund designed and configured the
location-based database, while Haakon Riiser and Paul Vigmostad was responsible
for performing the evaluations and analysing the findings. Each author contributed
to the text.

Title: Demo: Quality-Adaptive Video Streaming With Dynamic Bandwidth Aggregation
on Roaming, Multi-Homed Clients [22]

Authors: K. R. Evensen, A. Petlund, D. Kaspar, C. Griwodz, P. Halvorsen, H. Riiser,
and P. Vigmostad.

Published: Proceedings of the 9th international conference on Mobile systems, applica-
tions, and services (MOBISYS), 2011.

Summary: For this demo, the video streaming client used in the MMSYS-paper [19] was
extended with support for roaming clients, i.e., support for changes in link state.
Participants could plug and unplug network cables, and the application aggregated

the performance of the available links dynamically, increasing video quality when

A.2. Journal articles 147

possible. The implementation example of MULTT’s visible mode served as the foun-
dation for this demo (section 3.4).

Contributions: Kristian Evensen was responsible for the design, implementation, as
well as most of the writing. Haakon Riiser presented the demo, while every author
contributed to the text.

A.2 Journal articles

Title: Improving MPEG DASH-like systems using Multiple Access Networks

Authors: K. R. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen, and P. E.
Engelstad.

Published: Accepted for publication in Signal Processing: Image Communication.

Summary: This paper is an extension of the MMSYS-paper [19], describing how the
data retrieval technique presented in that paper can be implemented by clients
supporting the coming MPEG DASH standard [1].

Contributions: Same as for MMSYS.

A.3 Patent applications

Title: “Data Segmentation, Request and Transfer Method”, US Patent application (num-
ber 12/713,939), filed February 2010

Authors: D. Kaspar, K. Evensen, P. Engelstad, A. Hansen, C. Griwodz, and P. Halvorsen.

Summary: This patent application is based on the CCNC [46] and ICC [45] papers.

Contributions: Dominik Kaspar was responsible for most of writing, as well as com-
munication with the patent experts Adam Piorowicz and Tom Ekeberg. The two
pattern experts converted the content of the papers into proper “patent language”.
Each co-inventor participated in meeting and discussions about the content of the

patent.

Bibliography

[1] MPEG DASH, ISO/IEC 23001-6 CD (N11578), 2011.

[2] H. Adiseshu, G. Parulkar, and G. Varghese. A reliable and scalable striping protocol.
SIGCOMM Comput. Commun. Rev., 26:131-141, August 1996.

[3] A. A. E. Al; T. Saadawi, and M. Lee. Ls-sctp: a bandwidth aggregation technique
for stream control transmission protocol. Computer Communications, 27(10):1012 —
1024, 2004. Protocol Engineering for Wired and Wireless Networks.

[4] M. Allman, H. Kruse, and S. Ostermann. An application-level solution to tep’s

satellite inefficiencies, 1997.

[5] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581 (Pro-
posed Standard), Apr. 1999. Obsoleted by RFC 5681, updated by RFC 3390.

[6] 1. S. Association. Link aggregation for local and metropolitan area networks. IEEE
Standard 802.1AX-2008, November 2008.

[7] Atheros. Super G — Maximizing Wireless Performance. White Paper, No. 991-00006-
001, March 2004.

[8] B. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mobile clients: A
case for indirect interaction. In Workstation Operating Systems, 1993. Proceedings.,
Fourth Workshop on, pages 91-97. IEEE, 1993.

[9] A. Bakre and B. Badrinath. I-tcp: Indirect tcp for mobile hosts. In Distributed
Computing Systems, 1995., Proceedings of the 15th International Conference on,
pages 136-143. IEEE, 1994.

[10] R. Braden. Requirements for Internet Hosts - Application and Support. RFC 1123
(Standard), Oct. 1989. Updated by RFCs 1349, 2181, 5321, 5966.

. Braden. Requirements for Internet Hosts - Communication Layers.
11} R. Brad Requi for 1 H C ication L RFC 1122
(Standard), Oct. 1989. Updated by RFCs 1349, 4379, 5884, 6093.

149

150

Bibliography

12]

(19]

22]

K. Chebrolu and R. Rao. Bandwidth aggregation for real-time applications in het-
erogeneous wireless networks. IEEE Transactions on Mobile Computing, 5:388-403,
2006.

Cisco. Cisco EtherChannel Technology, 2003.

D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young.
Computing as a discipline. Commun. ACM, 32:9-23, January 1989.

R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard), Mar.
1997. Updated by RFCs 3396, 4361, 5494.

A. H. Eden. Three paradigms of computer science, 2007.

K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631
(Informational), May 1994. Obsoleted by RFC 3022.

K. R. Evensen, D. Kaspar, P. E. Engelstad, A. F. Hansen, C. Griwodz, and
P. Halvorsen. A network-layer proxy for bandwidth aggregation and reduction of
ip packet reordering. In N/A, editor, The 3/rd Annual IEEE Conference on Local
Computer Networks (LCN), pages 585 — 592. IEEE, 2009.

K. R. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen, and P. E. Engel-
stad. Improving the performance of quality-adaptive video streaming over multiple
heterogeneous access networks. In K. M.-P. Ali C. Begen, editor, Proceedings of
the second annual ACM conference on Multimedia systems (MMSYS), pages 57-68.
ACM, ACM, 2011.

K. R. Evensen, D. Kaspar, A. F. Hansen, C. Griwodz, and P. Halvorsen. Using multi-
ple links to increase the performance of bandwidth-intensive udp-based applications.
In A. S. Elmaghraby and C. Douligeris, editors, Proceedings of IEEE ISCC 2011,
volume 16, pages 1117-1122. IEEE, IEEE, 2011.

K. R. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz. Quality-adaptive
scheduling for live streaming over multiple access networks. In D. C. A. Bulterman,
editor, The 20th International Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV 2010), pages 21-26. ACM, 2010.

K. R. Evensen, A. Petlund, D. Kaspar, C. Griwodz, P. Halvorsen, H. Riiser, and
P. Vigmostad. Demo: Quality-adaptive video streaming with dynamic bandwidth
aggregation on roaming, multi-homed clients. In A. Agrawala, editor, Proceedings

of the 9th international conference on Mobile systems, applications, and services
(MOBISYS), pages 355-356, New York, 2011. ACM, ACM.

Bibliography 151

[23] K. R. Evensen, A. Petlund, H. Riiser, P. Vigmostad, D. Kaspar, C. Griwodz, and
P. Halvorsen. Mobile video streaming using location-based network prediction and
transparent handover. In C. B. Krasic and K. Li, editors, NOSSDAV, pages 21-26,
New York, 2011. ACM, ACM.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616 (Draft Standard), June
1999. Updated by RFCs 2817, 5785.

[25] M. Fiore, C. Casetti, and G. Galante. Concurrent multipath communication for
real-time traffic. Comput. Commun., 30:3307-3320, November 2007.

[26] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582 (Experimental), Apr. 1999. Obsoleted by RFC 3782.

[27] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC 3782 (Proposed Standard), Apr. 2004.

[28] S. Floyd and E. Kohler. Profile for Datagram Congestion Control Protocol (DCCP)
Congestion Control ID 2: TCP-like Congestion Control. RFC 4341 (Proposed Stan-
dard), Mar. 2006.

[29] S. Floyd and E. Kohler. TCP Friendly Rate Control (TFRC): The Small-Packet (SP)
Variant. RFC 4828 (Experimental), Apr. 2007.

[30] S. Floyd, E. Kohler, and J. Padhye. Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC). RFC 4342
(Proposed Standard), Mar. 2006. Updated by RFC 5348.

[31] J. Funasaka, K. Nagayasu, and K. Ishida. Improvements on block size control method
for adaptive parallel downloading. In Proceedings of the 24th International Confer-
ence on Distributed Computing Systems Workshops - W7: EC (ICDCSW’04) - Vol-
ume 7, ICDCSW ’04, pages 648-653, Washington, DC, USA, 2004. IEEE Computer
Society.

[32] L. Gharai, C. Perkins, and T. Lehman. Packet reordering, high speed networks and
transport protocol performance. In Proc. IEEE ICCCN, pages 73-78, 2004.

[33] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn. Point-to-Point
Tunneling Protocol (PPTP). RFC 2637 (Informational), July 1999.

[34] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992 (Informa-
tional), Nov. 2000.

?

152

Bibliography

(35]

(36]

(37]

(38]

[46]

H.-Y. Hsieh and R. Sivakumar. ptcp: An end-to-end transport layer protocol for

striped connections, 2002.
IETF. MPTCP Status Pages. Online: http://tools.ietf.org/wg/mptep.

A. Inc. Mac OS X server — QuickTime streaming and broadcasting administration,
2007.

J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent multipath transfer using
SCTP multihoming over independent end-to-end paths. IEEE/ACM Trans. Netw.,
14:951-964, October 2006.

V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer
Communication Review, volume 18, pages 314-329. ACM, 1988.

V. Jacobson and R. Braden. TCP extensions for long-delay paths. RFC 1072, Oct.
1988. Obsoleted by RFCs 1323, 2018.

R. Jain. The Art of Computer Systems Performance Analysis: techniques for exper-

imental design, measurement, simulation, and modeling. Wiley, 1991.

R. Jain and S. Routhier. Packet trains—measurements and a new model for computer
network traffic. Selected Areas in Communications, IEEE Journal on, 4(6):986-995,
1986.

D. Johansen, H. Johansen, T. Aarflot, J. Hurley, A. Kvalnes, C. Gurrin, S. Zav,
B. Olstad, E. Aaberg, T. Endestad, H. Riiser, C. Griwodz, and P. Halvorsen. DAV VT:
A prototype for the next generation multimedia entertainment platform. In Proc.
ACM MM, pages 989-990, 2009.

D. B. Johnson, C. E. Perkins, and J. Arkko. Mobility support in IPv6. RFC 6275,
RFC Editor, Fremont, CA, USA, July 2011.

D. Kaspar, K. R. Evensen, P. E. Engelstad, and A. F. Hansen. Using http pipelining
to improve progressive download over multiple heterogeneous interfaces. In W. L.
Fambirai Takawira, editor, International Conference on Communications (ICC),
pages 1-5. IEEE, 2010.

D. Kaspar, K. R. Evensen, P. E. Engelstad, A. F. Hansen, P. Halvorsen, and C. Gri-
wodz. Enhancing video-on-demand playout over multiple heterogeneous access net-
works. In IEEE, editor, Consumer Communications and Networking Conference
(CCNC). IEEE, 2010.

Bibliography 153

[47] D. Kaspar, K. R. Evensen, A. F. Hansen, P. E. Engelstad, P. Halvorsen, and C. Gri-
wodz. An analysis of the heterogeneity and ip packet reordering over multiple wireless
networks. In ISCC, editor, IEEE Symposium on Computers and Communications
(ISCC), number CFP0ISCC, pages 637-642. IEEE, 2009.

[48] K.-H. Kim and K. G. Shin. Prism: Improving the performance of inverse-multiplexed
tep in wireless networks. IEEE Transactions on Mobile Computing, 6:1297-1312,
December 2007.

[49] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340 (Proposed Standard), Mar. 2006. Updated by RFCs 5595,
5596.

[50] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and S. Tripathi. Split tcp for mobile
ad hoc networks. In Global Telecommunications Conference, 2002. GLOBECOM’02.
IEEE, volume 1, pages 138-142. IEEE, 2002.

[51] G. Malkin. Internet Users’ Glossary. RFC 1983 (Informational), Aug. 1996.

[52] S. Mascolo, L. A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli. Performance
evaluation of westwood+ tcp congestion control. Perform. FEval., 55:93-111, January
2004.

[53] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment
Options. RFC 2018 (Proposed Standard), Oct. 1996.

[54] Merriam-Webster. Merriam-Webster’s Collegiate Dictionary, 11th Edition. Merriam-
Webster, 2003.

[55] F. Miller, A. Vandome, and J. McBrewster. [EEE 802.11. VDM Publishing House
Ltd., 2010.

[56] M. Networks. It’s not web video, it’s television: The power of internet tv. Technical

report, Move Networks, Inc., September 2008.

[57] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen. Fine-grained scalable streaming
from coarse-grained videos. In Proc. ACM NOSSDAV, pages 103-108, 2009.

[58] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988
(Proposed Standard), Nov. 2000.

[59] D. S. Phatak, T. Goff, and J. Plusquellic. Ip-in-ip tunneling to enable the simulta-
neous use of multiple ip interfaces for network level connection striping. Computer
Networks, 43:787-804, 2003.

154

Bibliography

(60]

(61]

(64]

(68]

(69]

J. Postel. User Datagram Protocol. RFC 768 (Standard), Aug. 1980.

J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Updated
by RFCs 1122, 3168, 6093.

J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct. 1985.
Updated by RFCs 2228, 2640, 2773, 3659, 5797.

A. Qureshi, J. Carlisle, and J. Guttag. Tavarua: video streaming with wwan strip-
ing. In Proceedings of the 14th annual ACM international conference on Multimedia,
MULTIMEDIA 06, pages 327-336, New York, NY, USA, 2006. ACM.

K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard), Sept. 2001. Updated by
RFCs 4301, 6040.

H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen. Video streaming
using a location-based bandwidth-lookup service for bitrate planning (accepted for
publication). ACM Transactions on Multimedia Computing, Communications and

Applications, 2011.

P. Rodriguez and E. W. Biersack. Dynamic parallel access to replicated content in
the internet. IEEE/ACM Trans. Netw., 10:455-465, August 2002.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. Comput. Syst., 2:277-288, November 1984.

W. Simpson. The Point-to-Point Protocol (PPP). RFC 1661 (Standard), July 1994.
Updated by RFC 2153.

H. Sivakumar, S. Bailey, and R. L. Grossman. Psockets: the case for application-level
network striping for data intensive applications using high speed wide area networks.
In Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ‘00, Washington, DC, USA, 2000. IEEE Computer Society.

K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti. The PPP Multilink
Protocol (MP). RFC 1990 (Draft Standard), Aug. 1996.

A. C. Snoeren. Adaptive inverse multiplexing for wide-area wireless networks. In
GLOBECOM, pages 1665-1672, 1999.

R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard),
Sept. 2007. Updated by RFC 6096.

Bibliography 155

(73]

[76]

(80]

W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. Layer Two
Tunneling Protocol “L2TP”. RFC 2661 (Proposed Standard), Aug. 1999.

B. Wang, W. Wei, Z. Guo, and D. Towsley. Multipath live streaming via tcp: Sche
performance and benefits. ACM Trans. Multimedia Comput. Commun. Appl., 5:25:1—
25:23, August 2009.

B. Wang, W. Wei, J. Kurose, D. Towsley, K. R. Pattipati, Z. Guo, and Z. Peng.
Application-layer multipath data transfer via tcp: Schemes and performance trade-
offs. Perform. Ewval., 64:965-977, October 2007.

E. Wedlund and H. Schulzrinne. Mobility support using sip. In Proceedings of the
2nd ACM international workshop on Wireless mobile multimedia, pages 76-82. ACM,
1999.

Wikipedia. Comparison of Download Managers, June 20009.

A. Zambelli. IIS Smooth Streaming technical overview. Technical report, Microsoft
Corporation, 2009.

M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A transport layer ap-
proach for improving end-to-end performance and robustness using redundant paths.
In Proceedings of the annual conference on USENIX Annual Technical Conference,
ATEC 04, pages 8-8, Berkeley, CA, USA, 2004. USENIX Association.

H. Zimmermann. OSI Reference Model-The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications, 28(4):425-432,
1980.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

