
University of Oslo
Department of Informatics

Simulation and
design of MIMO
algorithms for
correlated wireless
channels

Hilde Skjevling

Cand Scient Thesis

25th July 2003





Preface

This thesis is submitted to the Department of Informatics, Faculty of
Mathematics and Natural Sciences, University of Oslo, for the Candidata
Scientiarum (Cand.Scient.) degree.

Within the Department of Informatics, I have been working under the
supervision of the Digital Signal Processing and Image Analysis Group.

I would like to thank my magnificent supervisors, Prof. David Gesbert
and Prof. Nils Christophersen, for invaluable help and motivation.

Hilde Skjevling
25th July 2003

i



ii



Contents

1 Introduction 3

2 Background on wireless communication and antenna systems 9
2.1 Digital wireless transmission . . . . . . . . . . . . . . . . . . . 9

2.1.1 Modelling a digital communication system . . . . . . 10
2.1.2 Signal propagation in multi-path environments . . . . 18
2.1.3 A SISO signal model. . . . . . . . . . . . . . . . . . . . . 23

2.2 Multiple antenna systems (SIMO, MISO and MIMO) . . . . . . 26
2.2.1 Motivations for MIMO . . . . . . . . . . . . . . . . . . . . 27
2.2.2 SIMO, MISO and MIMO systems . . . . . . . . . . . . . . 28
2.2.3 A MIMO signal model . . . . . . . . . . . . . . . . . . . . 29
2.2.4 A model for channel correlation . . . . . . . . . . . . . 30

3 Performance of MIMO algorithms in correlated channels 35
3.1 MIMO schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Channel knowledge . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Maximum Ratio Combining . . . . . . . . . . . . . . . . 37
3.1.3 MRC for MIMO: The Maximum Singular Vector Ap-

proach (MSVA) . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Alamouti space-time coding . . . . . . . . . . . . . . . . 44
3.1.5 Spatial multiplexing with zero-forcing . . . . . . . . . 46

3.2 Performance comparisons of MD and SM schemes . . . . . . 50
3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Combining SM and MD algorithms via the SMAL scheme 57
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Combining SM and MD in time . . . . . . . . . . . . . . . . . . 59
4.3 Combining SM and MD in space; the SMAL scheme . . . . . . 60

4.3.1 The SMAL channel model . . . . . . . . . . . . . . . . . 61
4.3.2 Pattern optimisation: principles . . . . . . . . . . . . . 69
4.3.3 Instantaneous channel vs long-term statistics . . . . . 69
4.3.4 Instantaneous pattern optimisation . . . . . . . . . . . 70
4.3.5 Performance evaluation of the instantaneous SMAL-

version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iii



4.3.6 Pattern optimisation based on correlation . . . . . . . 74
4.3.7 Performance evaluation of the correlation-based SMAL 79
4.3.8 Comparison between the instantaneous and the correlation-

based SMAL . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 89
5.1 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Miscellaneous 95
A.1 SMAL channel matrices, N = 6 . . . . . . . . . . . . . . . . . . 95
A.2 The expected value of H̃(pk)H̃H(pk) . . . . . . . . . . . . . . . 96
A.3 Extra performance plots for the SMAL scheme . . . . . . . . 98

A.3.1 BER-results of fixed patterns over time, N =M = 6 . 98
A.3.2 Best pattern for correlation-based SMAL, N = M = 6

and r = 0.90 . . . . . . . . . . . . . . . . . . . . . . . . . 98

B List of acronyms and mathematical notations 101
B.1 List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.2 Mathematical notations and list of symbols . . . . . . . . . . 102

C Matlab simulations, background and code 105
C.1 An overview of the simulation framework . . . . . . . . . . . 105
C.2 Matlab functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

iv



List of Figures

1.1 A general MIMO model. . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Basic elements of a digital communication system . . . . . . 10
2.2 QPSK constellation. . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 16QAM constellation. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 A simplified digital communication system . . . . . . . . . . 18
2.5 Propagation in free space (only LOS) . . . . . . . . . . . . . . . 19
2.6 Three basic multi-path propagation mechanisms. . . . . . . 20
2.7 Propagation in multi-path environments (N-LOS) . . . . . . . 20
2.8 A wireless model. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 A general MIMO model. . . . . . . . . . . . . . . . . . . . . . . . 28
2.10 Bessel function of the first kind . . . . . . . . . . . . . . . . . 31
2.11 Correlation between neighbouring antennas . . . . . . . . . . 32

3.1 SIMO system with MRC . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 MIMO system with diversity . . . . . . . . . . . . . . . . . . . . 43
3.3 A 2-by-2 Alamouti system . . . . . . . . . . . . . . . . . . . . . 44
3.4 A square MIMO system with SM. . . . . . . . . . . . . . . . . . 48
3.5 MIMO algorithms, no correlation, N = M = 2 . . . . . . . . . 52
3.6 MIMO algorithms, correlation r = 0.29, N = M = 2 . . . . . . 52
3.7 MIMO algorithms, correlation r = 0.90, N = M = 2 . . . . . . 53
3.8 MIMO algorithms, no correlation, N = 2,M = 4 . . . . . . . . 54
3.9 MIMO algorithms, correlation r = 0.29, N = 2,M = 4 . . . . 54
3.10 MIMO algorithms, correlation r = 0.29, N = 2,M = 4 . . . . 55

4.1 Antenna assignment patterns for N = 4. . . . . . . . . . . . . 62
4.2 Antenna assignment patterns for N = 6. . . . . . . . . . . . . 65
4.3 BER results, instantaneous SMAL, N = M = 4, r = 0.29 . . . 71
4.4 BER results, instantaneous SMAL, N = M = 6, r = 0.29 . . . 72
4.5 BER results, instantaneous SMAL, N = M = 4, r = 0.90 . . . 72
4.6 BER results, instantaneous SMAL, N = M = 6, r = 0.90 . . . 73
4.7 Minimum singular values of E

(
H̃H(pk)H(pk)

)
, N = 4 . . . . 80

4.8 Minimum singular values of E
(
H̃H(pk)H(pk)

)
, N = 6 . . . . 80

4.9 BER results, correlation-based SMAL, N = M = 4, r = 0.29 . 82

v



4.10 BER results, correlation-based SMAL, N =M = 6, r = 0.29 . 82
4.11 BER results, correlation-based SMAL, N =M = 4, r = 0.90 . 83
4.12 BER results, correlation-based SMAL, N =M = 6, r = 0.90 . 84
4.13 BER results, comparing SMAL schemes, N = M = 4, r = 0.29 85
4.14 BER results, comparing SMAL schemes, N = M = 6, r = 0.29 85
4.15 BER results, comparing SMAL schemes, N = M = 4, r = 0.90 86
4.16 BER results, comparing SMAL schemes, N = M = 6, r = 0.90 86

A.1 Fixed patterns, one curve for each, N = M = 6, r = 0.29. . . 99
A.2 Fixed patterns, one curve for each, N = M = 6, r = 0.90. . . 99
A.3 Minimum singular values of E

(
H̃H(pk)H(pk)

)
, N = 6 . . . . 100

vi



Abstract

Spatial multiplexing and space-time codes are competing ways of ex-
tracting capacity from MIMO wireless systems. We present examples of
both approaches and study their performance, in particular in the case
of correlated channels. Next, we show that multiplexing and diversity
oriented schemes (like STC) react differently to the correlation structure
of MIMO arrays.

We address the problem of finding an optimal combination of mul-
tiplexing and diversity in a MIMO system. We develop a combining ap-
proach in the form of an optimal spatial assignment of antennas, in
order to multiplex space-time coded symbol blocks. We call this scheme
SMAL, and develop it in two versions, first for the case when instant-
aneous channel information is available at the transmitter, and second
when only long-term correlation statistics are known. We investigate the
performance of both versions in the practical case when correlation is
not uniform across all antenna pairs (e.g. in linear arrays).

The SMAL scheme is tested for two levels of correlated fading between
neighbouring antenna elements, r = 0.29 and r = 0.90. A compar-
ison between the two versions shows that the instantaneous SMAL is
especially useful at low levels of correlated fading (r = 0.29). Under
conditions of heavily correlated fading (r = 0.90) the correlation-based
approach performs just as well and is preferred because of its lower
complexity.

We also vary the number of transmit and receive (N,M) antennas,
and test the SMAL scheme for the two MIMO systems N = M = 4 and
N = M = 6.

For the instantaneous version of SMAL and r = 0.29, we show im-
provements of over 2 dB over the case of random pattern selection , at a
target bit-error rate of 10−4, both for N = M = 4 and N = M = 6. With
the statistical SMAL for r = 0.90, a performance gain of almost 5 dB is
shown in the case of N =M = 4.

The development and results of the SMAL scheme have also resulted
in the submission of a conference article to NORSIG 2003 [17].
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Chapter 1

Introduction

A wireless communication system transfers information through space,
from one point to another. In its simplest form, it consists of a single
antenna on each side of the wireless communication channel. This is
what we call a SISO (Single-Input Single-Output) or a 1-1 system.

To offer high-quality communication services, the reliability and speed
of the transmission are of key importance. Improved electrical compon-
ents, along with advances in coding and modulation techniques are some
causes for the high reliability and speed we enjoy today, but the demand
for further increase seems to be without limit.

MIMO systems

One approach towards additional gain in quality or rate is to use multiple
antennas, yielding SIMO, MISO and MIMO systems.

In SIMO (Single-Input Multiple-Output) and MISO (Multiple-Input Single-
Output) systems multiple antennas are employed at the receive or the
transmit side, respectively.

When arrays of multiple antennas are used in both ends of the com-
munication channel, a MIMO (Multiple-Input Multiple-Output) system is
formed, (see e.g. [8] for a recent tutorial). A MIMO system with N trans-
mit and M receive antennas gives rise to NM wireless channel propaga-
tion coefficients in the frequency non-selective case.

The maximum achievable order of diversity is the number of such
channel coefficients that are statistically independent. SIMO, MISO and
MIMO systems can be used to improve the reliability of transmission
through this property of spatial diversity.

The antenna arrays may be configured in a number of different pat-
terns, for example along a line or in a circle. In our simulations, we
will assume uniform, linear arrays (ULA) [21] on both sides, although the
algorithms developed here are transparent to the array configuration.

3
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Figure 1.1: A general MIMO model.

A MIMO system with N transmit andM receive antennas is illustrated
in figure 1.1. The propagation environment is drawn as a cloud, labelled
H.

MIMO algorithms

By appropriate “combining” of the signals before transmission and after
reception, we may improve the quality and/or speed of the communic-
ation process, compared to traditional 1-1 systems. The quality of a
wireless communication process is measured by the bit-error rate (BER)
between the original bit sequence and the detected bits at the receiver.
The speed metric is given by the bit rate efficiency (in bits/sec/Hz).

A multitude of algorithms provide different forms of combining suit-
able for MIMO systems. The algorithms describe how to do coding
in time and space before transmission along with the detection pro-
cess after reception. The schemes may be divided into two categories;
diversity-oriented (MD for MIMO diversity) and spatial multiplexing (SM)
schemes.

In diversity-oriented transmission the information symbols are spread
over multiple antennas, to mitigate the fading effects of the individual
channels. With a simple SISO system, when the only observable channel
goes into a deep fade, it is not possible to recover the signal. Multiple an-
tenna systems using MD transmit schemes rely on the likely assumption
that all the transmit channels are not heavily faded at the same time.
The obtained diversity is used to ensure a more constant signal strength
at the receiver. The effect of diversity transmission manifests itself in a

4



lower BER.
The low error rate provided by MD schemes may in turn be exploited

to increase the capacity [14]. This is done by using higher order modu-
lation.

Some examples of MD transmission schemes are transmit and receive
MRC (Maximum Ratio Combining) [14], for MISO and SIMO systems, re-
spectively. For MIMO systems, an extension of MRC has been developed,
based on singular value decomposition. We refer to it as the maximum
singular vector approach (MSVA), and it requires channel knowledge at
both sides of the channel. It uses the top singular vectors of the com-
munication channel as transmit and receive weights [2].

Yet another way to do diversity transmission is by Space-Time Cod-
ing (STC) [20]. One simple, but powerful STC algorithm is the Alamouti
scheme [1]. By building orthogonal blocks of space-time coded inform-
ation symbols the receiver may retrieve the information symbols with a
simple linear receiver. This leads to a significant decrease in the number
of errors is achievable.

For the second category of MIMO schemes, spatial multiplexing schemes
use the multiple antennas of MIMO systems to increase the data rate in
a more direct way than in MD. This is done by sending independent sub-
streams of information symbols from each transmit antenna. In general,
the capacity of the system is limited by the rank of the channel. Hence,
for a full rank channel, the theoretical capacity is linear to min(N,M).
In order to retrieve the transmitted symbols, the scheme implies that
M ≥ N. One famous spatial multiplexing scheme is Diagonal BLAST (Bell
Labs Layered Space-time), also called D-BLAST [6]. A simpler version is
the Vertical BLAST (V-BLAST) [22] [4].

Effects of correlation

The performance of many MIMO algorithms depends on the order of
diversity and the rank of the channel matrix, both of which are affected
by correlation between antennas. The maximum number of independent
coefficients in a MIMO system is the product NM , setting the upper limit
for the diversity order. The rank is at most min(N,M). In the likely
case when the coefficients are spatially correlated to some degree the
effective diversity order and the rank may not reach their upper limits.
As the correlation levels on both sides of the channel rise, the individual
channels of neighbouring antennas become increasingly dependent on
each other. In fact, with fully correlated channels, the MIMO system has
but a single independent channel, and both the diversity order and rank
equals 1.

One key point of this thesis is that the performance of the algorithms
suffers when the channels are correlated, but to different degrees. For
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some MIMO algorithms, such as SM approaches, correlation is more de-
structive than for others. The impact of a decrease in the diversity order-
/channel rank will be examined through studies of error rates for both
independent (uncorrelated) and correlated channel coefficients.

Combining spatial multiplexing and diversity schemes

MIMO diversity and spatial multiplexing have so far been considered as
competing approaches to exploiting the spatial dimension offered by
MIMO systems. The trade-offs between the two are only beginning to be
understood [8].

First, it is clear that diversity schemes yield diminishing returns when
increasing the number of antennas [3]. This suggests that using all an-
tennas on one array for diversity through for example STC is not a sens-
ible approach.

It is also known that an SM scheme with a simple (e.g. linear) receiver
lags in performance because of a lack of diversity [9], implying that using
SM only on a transmit array is not a good idea either. Therefore, one of
the remaining important problems in the field of MIMO algorithms is the
question:

• How do we design schemes that offer the benefits of both MD and
SM approaches, i.e. both diversity and a direct increase in the data
rate?

Goals of the thesis

We address the above question in two ways. First, we compare the per-
formance of known MIMO algorithms for different levels of correlated
fading among the channels, and then we attempt to combine the MD
and SM approaches in one scheme.

Regarding the combination, previous work has been carried out in
the case where the desired combination is to switch between MD and SM
over time [12]. Either MD or SM is chosen as the transmit algorithm, a
choice based on instantaneous channel state information. In [12], the
proposed scheme exploits the fact that MD is sensitive to total channel
matrix energy, while SM performance depends on the channel eigenvalue
spread.

Our approach will be different, as we focus on the problem of switch-
ing between SM and MD in space, i.e. both schemes are used simul-
taneously on the same array. To our knowledge, this problem has not
been addressed before. Our attempt is a generalization of the work in
[12], and the idea is to spatially multiplex several blocks of Alamouti
coded symbols. We refer to this scheme as SMAL (Spatial Multiplexing of

6



ALamouti), and develop it in two versions for use under different levels
channel knowledge.

To summarise, the contributions of this thesis are

• a comparison of known MIMO algorithms for different levels of
correlated fading among the channels

• the proposed SMAL scheme, combining MD and SM, developed for
the case when instantaneous and full channel feedback is available
at the transmit side.

• the proposed SMAL scheme, combining MD and SM, developed for
the case when only long-term correlation statistics are known to
the transmitter.

We show the performance gains of both the instantaneous and the
statistical version of SMAL, and evaluate the loss in using statistical in-
formation alone. These gains are illustrated with bit-error rate simula-
tions using a fading channel model. The latter results are published in a
submission to NORSIG 2003 [17].

The organisation of this thesis

The text is organised in 5 chapters, starting with this introduction. In ad-
dition, there are some appended sections at the end. Chapter 2 presents
background on wireless communication and builds a channel model for
MIMO systems. This is followed by a review of some existing MIMO al-
gorithms in chapter 3, along with the study of their compared perform-
ance in the case of correlated channels.

In chapter 4, the SMAL combination of algorithms is proposed and
evaluated, in search of further improvement. This is the main contribu-
tion of the thesis. The conclusions in chapter 5 summarise the results
from the preceding chapter’s analysis.

Appendix A holds some larger figures and extended mathematical
developments that did not fit in the main text.

Common abbreviations and acronyms are explained when they ap-
pear in the text for the first time, but also in appendix B, along with
a list of the mathematical symbols used in the text. The last chapter
found as supplementary material is the Matlab code written to perform
the simulations, in appendix C.
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Chapter 2

Background on wireless
communication and antenna
systems

This chapter presents background and necessary theory, so that later
algorithms and results can be described using this foundation. We ex-
amine the characteristics of digital wireless transmission, and describe
what happens to a signal when it is propagating in space. From this
knowledge we develop a suitable mathematical model, first for a SISO
system, and later extended to the more general MIMO case.

2.1 Digital wireless transmission

Wireless communication systems transmit information from one point
to another, with air as the propagation medium. Because electromag-
netic waves are used to carry the information symbols, rather than the
traditional wire, these systems are called ’wireless’. The transmission
procedure requires at least one antenna at each end-point, in combin-
ation with signal processors and amplifiers. At the transmit side the
system must be able to obtain and digitise information, transform it
into transmittable form and send it out over the wireless channel. At
the other end of the channel, the receive part of the system registers the
wave-forms and extracts the original information from them.

We want to develop a conceptual model for a wireless digital commu-
nication system with multiple antennas, and in particular a model that
depicts the parts important to this text. The next section starts out with
a general model and later adjusts it to the topic of this thesis.

9
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Figure 2.1: Basic elements of a digital communication system

2.1.1 Modelling a digital communication system

A general digital communication system, based on the one presented in
[14], is shown in figure 2.1. First, we briefly explain the elements of such
a general system, with reference to the boxes in figure 2.1.

A general digital communication system accepts digital input, and may
convert possible analog input into digital form, using an A/D converter.
The source encoder accepts a sequence of binary digits and codes them
in an efficient way, with fewer bits and lower redundancy. The coded bit
stream is passed on to the channel encoder, which inserts extra bits that
will be used to detect and correct errors after reception. The extra bits
introduce redundancy in a controlled manner. One example of channel
encoding is to map a k-bit sequence into a unique n-bit sequence, where
n > k.

Next, the digital modulator accepts the output from the channel en-
coder, and transforms this stream of bits into a stream of analog wave-
forms. In this text, M-ary modulation schemes will be used, where b
coded bits can be transmitted at once, using one of M = 2b different
waveforms, described later in this section (2.1.1). The waveforms are
then frequency up-converted by impressing them on a high-frequency
carrier wave.

Now, the signal wave is ready to be sent out over the wireless chan-
nel. This channel is assumed to be bandpass, with a limited bandwidth
Bc around a centre frequency fc . Such channels will only pass signals
with frequency contents within the channels own bandwidth. When the
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signals and channels have bandwidths much smaller than the carrier
frequency, they are referred to as narrow-band band-pass signals and
systems. Such systems will be used later on.

At the receiving end, a signal affected by the channel is registered.
Imperfect electrical components will invariably add noise, so this is also
assumed when modelling a communication system, although not depic-
ted in the figure. The signal wave is frequency down-converted, and the
demodulation extracts bit-values from the signal waveforms using some
form of decision method.

The channel decoder removes and checks the redundant information
introduced by the channel encoder. If the check-sums are not correct,
an error is detected, and may be corrected. The source decoder reverses
the encoding performed by the source encoder, attempting to restore
the original data. The performance of the channel and source decoders
depend on the amount of distortion introduced by the propagation and
the added noise.

This text is mainly concerned with MIMO systems and algorithms,
and for our purpose the model in figure 2.1 is not the optimal. Some
of the model’s components are of little importance to our theme, while
other parts need further elaborations. We build a model that more ac-
curately describes the focus of this thesis, based on the one in figure
2.1.

The first change we make is to ignore the frequency up-conversion
of the low-pass information signal to a transmittable bandpass signal,
along with the down-conversion after reception. This reduces the com-
plexity of our model, allowing us to represent the transmission in base-
band, independent of the carrier frequency.

The background for this representation is explained in the next sec-
tion, after which we return to adjusting the communication system model.

Baseband representation of bandpass signals

Assume we have an information signal that we wish to transmit over
a bandpass channel. To ensure passage, the signal wave is frequency
up-converted, by impressing it on a cosine carrier wave with frequency
fc . This produces a bandpass signalm(t), with frequency fc , the centre
frequency of the bandpass channel.

Depending on the method of modulation, both the amplitude and
the phase of the carrier may be modulated according to the low-pass
information signal. We show this by representing these values as time-
dependent in the modulated signal, following the changing information
signal. The bandpass signal can be expressed as

m(t) = a(t)cos(2πfct + θ(t)
)

(2.1)

11



This real signal m(t) is what we transmit over the channel. We remark
that the above expression may be rewritten as [14]

m(t) = Re{a(t)ejθ(t)ej2πfct}, (2.2)

where j is the complex number satisfying j = √−1. We label the low-
pass, complex term

s(t) = a(t)ejθ(t) (2.3)

the complex envelope ofm(t), and use it as a short-hand representation
for the signal. That is; the real bandpass signal m(t) is modelled as a
complex low-pass signal s(t). The main benefit of this is not having to
involve the carrier frequency fc . The relation between m(t) and s(t) is
given by

m(t) = Re{s(t)ej2πfct} (2.4)

In nature, there is of course no room for complex numbers, everything
is real. We understand what happens in reality by observing that (2.4)
may be rewritten as

m(t) = Re{s(t)(cos(2πfct)+ jsin(2πfct)
)}

= Re{s(t)}cos(2πfct)− Im
{
s(t)

}
sin(2πfct)

(2.5)

In other words, we simply send two signals at the same time, but
on orthogonal carriers, which enables us to separate the streams at the
receiver. The real part is sent on the cosine carrier, while the imagin-
ary part is sent on the sine carrier, together adding up to a real wave.
The sine and cosine components are in phase quadrature, and are often
referred to as the in-phase and quadrature components.

The baseband signal s(t), will be used throughout this text, disreg-
arding the frequency up- and down-conversion, as these operations do
not help to clarify the subject of MIMO systems. The choice of baseband
representation applies to the whole transmission model, including the
representation of the propagation environment, as we see later.

The signal s(t) is obtained by using a digital linear modulation method,
which is discussed in the next section. Two examples of such modula-
tion are also presented; namely QPSK and 16QAM.

Digital linear modulation and pulse shaping

The signal s(t) is obtained in two steps. First we use a digital linear
modulation constellation to map a bit stream bk into complex symbols
sk and then we apply a pulse-shaping filter to these symbols.

12



The latter results in the analog signal s(t) and is represented by the
convolution

s(t) =
∞∑

k=−∞
skp(t − kTs), (2.6)

where p(t) is an analog pulse-shaping filter and Ts is the symbol period,
the time between two consecutive transmissions.

In most wireless communication systems, the traditional analog mod-
ulation techniques are replaced by digital schemes, representing the sig-
nals as a sequence of pulses. This choice has several advantages; for
example that digital modulation methods provide better noise immunity
and they are easy to implement due to compatibility with digital signal
processing methods [16].

In this thesis, we focus on simulation using two digital linear modu-
lation techniques; namely Quadrature Phase Shift Keying (QPSK) and 16
Quadrature Amplitude Modulation (16QAM), whose individual character-
istics are described in the following sections. However, it is important to
note that the choice of modulation scheme is not dictated by the MIMO
algorithms.

Both QPSK and 16QAM generate complex symbols sk by applying an
M-ary complex, digital modulation method to a stream of bits. In this
text, the information bits are modelled as random, to ensure complete
generality. M-ary modulation schemes have a symbol constellation of
sizeM , where each symbol corresponds to a unique sequence of log2(M)
bits. Hence, the bit rate is M times the baud rate, the latter representing
the rate of change in the signal.

For both QPSK and 16QAM, the distance between neighbouring signal
points in the constellation is an important characteristic. It is referred to
as the minimum euclidean distance and denoted d(e)min. A large distance
between the points reduces the probability of erroneous detection at the

receiver because a transmitted constellation with a large d(e)min is less
likely to be distorted so severely that different signals are mistaken for

each other. However, to increase d(e)min uncritically consumes too much
transmit power, so the average power of the symbols is limited to one;
E(|sn|2) = σ 2

s = 1.
Finally, we note that Gray encoding is used for both methods. This

implies that the symbols that are neighbours in the constellation dia-
grams correspond to bit-permutations that differ by only one bit. The
reason for this choice is that neighbouring symbols are most easily mis-
taken for each other, in which case only one bit error will occur [14].

Quadrature Phase Shift Keying
In Quadrature Phase Shift Keying (QPSK) modulation, a cosine carrier
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Figure 2.2: QPSK constellation.

is varied in phase while keeping a constant amplitude and frequency.
Information is conveyed using the phase variations. The term "Quadrat-
ure" implies that there are 4 phases, i.e. 4 different states. That means
each state can contain R = 2 bits of information, as M = 22 = 4 are the
number of possible variations with 2 bits. The original QPSK symbols
are placed in the 4 phases {0, π/2, π,3π/2}, but in this text a variation
is used. Our constellation is simply rotated by π/4 (counter-clockwise),
as can be seen from the illustration in figure 2.2.

The rate of change (baud) in this signal determines the signal band-
width, but the throughput or bit rate for QPSK is twice the baud rate,
because R = 2.

QPSK is also called 4PSK, and we can define this technique for other
number of states too, such as 8PSK. All the forms of PSK modulation
maintain equal power in all the states, unlike other methods.

Referring to the constellation figure, we see that all QPSK symbols
have equal power. The constellation also shows that for a complex QPSK
symbol, we have

s =sr + sii, where |sr | = |si| = d (2.7)

The Pythagorean theorem then yields the following for the power of the
symbol s:

|s|2 =s2
r + s2

i = 2d2 (2.8)

By demanding unit power, |s|2 = 1, we get that

d = 1√
2

(2.9)
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Figure 2.3: 16QAM constellation.

We may then express the minimum euclidean distance between two
symbols as

d(e)min = 2d = 2/
√

2 =
√

2 (2.10)

16 Quadrature Amplitude Modulation
In the family of QAM-techniques, both the amplitude and the phase of
the carrier wave is modulated. Some forms are 4QAM, 8QAM, 16QAM
and 64QAM, where the 4QAM has a constellation identical to that of
QPSK. Each symbol is generated from R = 4 bits, yielding M = 2R = 16
states. The constellation of states and their corresponding Gray-encoded
bit-pairs are pictured in figure 2.3.

Compared to QPSK, 16QAM encodes twice as many bits into one com-
plex symbol, increasing the bit rate. The drawback, however, is that the
rate of error will increase too. The reason is that the symbols in 16QAM
are closer together than those in the QPSK constellation, because a max-
imum level of power must be considered.

As seen from the figure, the symbols does not have equal power. Be-
cause the bits required to generate the symbols are assumed to be ran-
dom, we stipulate that all the symbols in the constellation are equally
likely to occur for a given sequence of R = 4 bits. In that case, to main-
tain unit power over time, we must only ensure that average symbol
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power is equal to 1. With reference to the constellation, we see that
there are three levels of power, depending on how far from origin a
given symbol is. These levels are

|s1|2 =d2 + d2 = 2d2,

|s2|2 =d2 + (3d)2 = 10d2 and

|s3|2 =(3d)2 + (3d)2 = 18d2.

(2.11)

Given that all the symbols are equally likely to occur, the average power
is given by

|savg|2 =
4s2

1 + 8s2
2 + 4s2

3

16
= 10d2

(2.12)

With the demand that |savg|2 = 1, we see that

10d2 = 1

=⇒ d = 1√
10
,

(2.13)

where d is the same as in the constellation figure. Recall that the euc-

lidean distance d and the minimum inter-point distance d(e)min are related

as d(e)min = 2d, so the latter is given by

d(e)min =
2√
10
, (2.14)

which we note is a smaller inter-point distance than for QPSK, as expec-
ted.

Summing up, we note that transmission with 16QAM modulation

achieves a higher bit rate than with QPSK. However, the decrease in d(e)min
means that symbols modulated with 16QAM are also more likely to be
erroneously determined at reception.

Pulse shaping
Assume we have used a certain modulation method (e.g. QPSK or 16QAM)
to map bits into complex symbols sk. Next, we generate the analog signal
s(t) by convolving the symbols with an analog pulse-shaping filter p(t),
as given in (2.6). This signal is transmitted over the baseband channel.

To avoid interference between consecutive symbols, only pulse-shaping
filters that satisfies the Nyquist criterion are used [14].

With a clear model of the transformation from bit sequences via com-
plex symbols to a transmittable analog baseband signal, we now return
to the task of customising the system model in figure 2.1 to our needs.
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A customised model for the digital transmission

The first adaption made was to use a complex baseband model for the
real bandpass signals, a model that is now established. Next, we make
the simplification that only digital input is assumed in this text, making
the A/D and D/A converters superfluous.

Furthermore, we ignore the components for source encoding and de-
coding. In an real-world wireless communication system they are cer-
tainly implemented, as data compression is an important part of efficient
transmission. However, including them here will not contribute to the
understanding of MIMO systems and algorithms, so we choose to ignore
them. We also disregard the channel encoding and decoding parts.

One aspect that needs to be included in the model is the choice of
transmit algorithm, as there are many possibilities in MIMO systems.
On the transmit side, they provide descriptions on how the informa-
tion symbols are mapped to the transmit antennas, both in time and
space. We refer to this component as the space-time (ST) encoder. On
the receive side, the ST decoder reverses the encoding performed by the
transmitter.

When all the simplifications and adaptations to the communication
system model in figure 2.1 are considered, the result is the customised
model in figure 2.4.

In short, what happens is that the input bit stream bk is sent to the
digital modulator, which forms a stream of complex symbols, sk. The
ST encoder maps the symbols to the N transmit antennas and transmits
them over time, possibly with some space-time coding.

The receiver registers an incoming signal on each antenna, affected
by the wireless channel and additive noise. The ST decoder uses know-
ledge of the channel to equalise the fading effects of the propagation,
and decodes the matrix into a stream of approximated symbols ŝk. The
digital demodulator slices these symbols to bits b̂k, after which the ori-
ginal and the approximated bit-sequences may be compared to count the
number of errors.

The channel-component in the model is actually composed of sev-
eral parts, consisting of both a transmit pulse shaping filter, a channel
propagation coefficient and a time-reversed, receive filter, matched to
the one on the transmit side. The total channel component will be de-
noted h, and it is presented in detail by section 2.1.2.

In this section, we have described two models of a digital communic-
ation system; one general and the other more adjusted to the topics of
this text. We have introduced the concept of representing a real, band-
pass signal by a complex, low-pass signal s(t). We have also established
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the relationship between this signal and the complex symbols sk that
are results of applying digital linear modulation methods to a stream of
information bits.

From this background, we are ready to move on to study how the
wireless channel and its characteristics affect the signal wave.

2.1.2 Signal propagation in multi-path environments

We assume that the analog signal s(t), see (2.6) is transmitted over the
baseband channel. The received signal r(t) is given by the convolution
of s(t) with a channel propagation filter hp(t), and distorted by addit-
ive noise v(t). All signals are represented in baseband. The noise is
modelled as being added at the receive side, and r(t) is expressed as
[14]

r(t) = s(t)∗ hp(t)+ v(t), (2.15)

In order to improve wireless transmission it is important to know
what affects a signal on its way to the receiver. This makes the charac-
teristics of the wireless propagation channel an interesting study.

The multi-path propagation environment

We characterise a propagation environment depending on the amount
of obstructing bodies found in the area. These obstructions can be large
objects like tall buildings and skyscrapers, or hills and mountains. Smal-
ler obstructions such as street signs and vegetation will also influence
the propagating wave, and must be taken into account.

Urban and suburban areas are assumed to have numerous and large
objects (buildings), while flat, rural areas have few or no obstructions.
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s(t)

Figure 2.5: Propagation in free space (only LOS)

If an area naturally provides an unobstructed signal path between
the transmitter and the receiver, it is called a LOS (Line-of-Sight) environ-
ment, usually found in the rural and flat areas. If there are no obstacles
in the area at all, there is only one possible path from transmitter to
receiver; the straight-lined LOS path. We refer to this as a free space
environment. An illustration of propagation in free space is shown in
figure 2.5.

Typically, free space propagation conditions are unachievable; flat
areas without any large structures are rare. In fact, in urban and sub-
urban surroundings, it is common to assume N-LOS (Non-Line-of-Sight)
conditions, i.e. no line of sight path at all. Throughout this text, we
assume that the signals propagate in N-LOS surroundings.

The large objects and structures in N-LOS environments cause changes
in the direction of propagation of a signal wave. This can happen through
reflection, when a propagating wave hits a very large object and is sent
out in another direction. Another way to change the direction of wave
is by diffraction, when the wave hits a large object and secondary waves
are formed behind the object. A third effect of multi-path propagation is
scattering, which occurs when the propagation medium contains a large
number of objects smaller than the signal’s wavelength, for example ve-
getation, clouds and street signs. These objects scatter the signal wave
in all directions. The reflection, diffraction and scattering mechanisms
are illustrated together in figure 2.6.

The N-LOS propagation effects of reflection, diffraction and scatter-
ing result in what we call multi-path propagation, and the mechanisms
are collectively termed multi-path propagation mechanisms. The res-
ult of multi-path propagation is that the transmitted signal reaches the
receiver on numerous paths, and from different directions. Multi-path
propagation under N-LOS conditions is illustrated in figure 2.7.

In this section, we have described the propagation environment, in
particular under N-LOS multi-path conditions. The next step is to study
what is the result of propagation under such conditions.
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Figure 2.7: Propagation in multi-path environments (N-LOS)
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Multi-path fading

A wave transmitted over wireless channels, in any kind of environment,
has lost power when it reaches the receiver. In the pure LOS case, the
received signal power depends only on the distance d from transmitter
to receiver. This power loss is called attenuation or path loss.

However, in a multi-path environment, this free-space model can not
explain all the effects the channel propagation is observed to have on
a transmitted signal. In such environments, we have seen that all re-
ceived signals have experienced reflection, diffraction or scattering on
their way, as there is no direct path available. What is registered at the
receiver is a sum of several versions of the same signal, coming in from
different directions.

We assume a finite number, L, of possible paths the signal can reach
the receiver over. In figure 2.7, we have that L = 4. With sufficient
multi-path it is likely, and will be assumed, that the various paths exper-
ience independent attenuation. Also, the paths are naturally of different
lengths, so the different multi-path components of the transmitted sig-
nal wave will not arrive simultaneously. Hence, a pulse transmitted in
a multi-path environment is received as a train of individually delayed
and attenuated pulses [14].

We recall the transmission model given in (2.15), where hp(t) is the
time-variant impulse response of the channel. In our assumed case of
multi-path propagation we give this channel propagation coefficient as

hp(t) =
L∑

l=1

αl(t)ejφl(t)δ[t − τl(t)]. (2.16)

Here, αl(t) and φl(t) are the attenuation factor and phase rotation in-
duced by path l, respectively. The value τl(t) represents the propaga-
tion delay of path l. All three are represented as time-dependent, due to
changes in the structure of the medium.

Mainly due to the time-variances in the phases φl(t), we experience
a variation in the received signal’s amplitude. We refer to this effect as
small-scale or signal fading, and say we have a fading channel.

Small-scale fading can lead to to dramatic changes in signal amp-
litude and phase by changing the distance between transmitter and re-
ceiver by as little as half a λfc , where λfc is the wave-length of the carrier
wave [18].

The small-scale fading manifests itself in two effects; time-spreading
of the transmitted signal and a time-variant behaviour of the channel
due to the relative motion of the transmit and receive antennas [18].
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Delay spread

The first effect is a result of the individual path delays τl(t) not being
equal. The maximum excess delay Tm, is defined to be the time between
the arrival of the first and the last component of a transmitted signal.

It is clear that if the maximum excess delay is larger the than symbol
period of (2.6), i.e. if Tm > Ts , consecutively transmitted symbols are
summed together and interfere at the receiver. This destructive mech-
anism is called inter-symbol interference (ISI). In the frequency domain,
ISI results in frequency selectivity, the fact that different frequencies
in the transmitted signal are subject to different attenuation and phase
shifting.

Throughout this text and in the results from the simulations, we as-
sume the multi-path channel to be free of ISI. In the frequency domain,
we say the channel is frequency non-selective or flat fading. The assump-
tion of flat fading reduces (2.15) to

r(t) = hp(t)s(t)+ v(t), (2.17)

In practise, ISI is very frequent in urban environments, but it is still
common to model the channel without it.

This choice facilitates the analysis and is also justified by the following:

• Short-range wireless communication (such as in a wireless LAN) is
a hot topic these days, and over short distances ISI may be avoided
because the travelling distance is very short compared to current
symbol periods

• Multi-carrier systems, such as the OFDM (Orthogonal Frequency
Division Multiplexing), obtain ISI-free channels by transmitting in-
dependent data on multiple carriers, each satisfying a narrow-band
criterion. In this case we may apply transmit algorithms on each
sub-carrier independently.

Doppler spread

Fading was presented above as a time-variant behaviour of the channel.
It is caused by a non-zero relative motion of the transmit and receive an-
tennas, or motion of the structures that causes the multi-path propaga-
tion. These movements are expected to make the values of (2.16) change
over time. In practise, this includes changes in the number of paths,
along with the attenuation and the phase rotation experienced on the in-
dividual paths. This relative motion is what causes the so-called Doppler
spread effect.
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The coherence time, (∆t)c , of the channel is the period for which the
channel may be assumed to be constant. We wish to transmit a certain
number of symbols. The time it takes to transmit this symbol block is
denoted Tblock. If (∆t)c and Tblock are related so that Tblock� (∆t)c the
channel attenuation and phase shift are essentially constant during the
transmission of the block of symbols. In this case, we say the channel is
slow fading [14], and (2.17) is further simplified to

s(t) = hps(t)+ v(t), for t ∈ [0, Tblock] (2.18)

for which time the channel propagation coefficient hp may be considered
time-invariant and given as

hp =
L∑

l=1

αlejφl . (2.19)

A slowly changing channel allows us to model the it as quasi-static,
constant for during a period Tblock. After this time, hp is assumed to
change in a burst, to a new and independent value. In all, such a channel
is called bursty and quasi-static.

The quasi-static model is appropriate because perfect channel know-
ledge is demanded for all the later described transmit algorithms. Also,
none of the algorithms that will be tested depend on any preceding chan-
nel values. Thus, the smoothness of the change in the channel coefficient
is irrelevant to the transmit schemes.

When there are a large number of paths, the structures in the envir-
onment are randomly placed and no LOS-path is available, we say that
there is a lot of multi-path in the channel. When assuming the paths to
experience independent fading, the central limit theorem tells us that
the impulse response of such a channel may be modelled as a complex,
Gaussian random process [14].

When hp is a zero-mean, complex Gaussian process, its envelope fol-
lows a Rayleigh distribution and we refer to the channel as Rayleigh
fading. With a dominant non-fading component, such as a LOS com-
ponent, the envelope of hp(t) can be described by a Ricean probability
density function. Rayleigh fading channel coefficients will be assumed
throughout this thesis.

2.1.3 A SISO signal model.

As a seen in the previous section, the propagation channel is now mod-
elled as flat fading and quasi-static. Next, we develop this to a full model
of how a signal is affected from transmitter to receiver. Although the
main focus in this text is on MIMO systems, we allow for a slow start
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by first developing the model for a Single-Input Single-Output (SISO) sys-
tem.

We have seen that the N-LOS multi-path conditions affects the trans-
mitted signal as a complex-valued, multiplicative factor of attenuation
and fading, denoted hp. Another distorting effect is that of noise v(t),
which may arise from imperfections in the electrical components or as
interference noise from the channel.

For convenience, we repeat the model developed in last section, in
(2.18). The received signal r(t) is

r(t) = hps(t)+ v(t). (2.20)

in which an information signal s(t) is transmitted over the baseband
channel hp with additive noise represented by v(t).

We recall the relation between the modulated complex symbols sk
and the analog signal s(t) from (2.6). At the receiver the signal r(t) is
filtered through a time-reversed pulse-shaping filter p(−t), matched to
the one applied before transmission. This is done in order to maximise
the energy at sampling intervals of Ts , the symbol period.

y(t) = r(t)∗ p(−t)
= (hps(t)+ v(t)

)∗ p(−t)
= hps(t)∗ p(−t)+ v′(t)

(2.21)

By substituting (2.6) for the signal s(t), we get

y(t) = hp
( ∞∑

k=−∞
skp(t − kTs)

)
∗ p(−t)+ v′(t) (2.22)

We define the effective channel h, which takes into account both the
transmit and receive pulse shaping filters and the channel propagation
coefficient hp, such that

h(t) = p(t)∗ hp ∗ p(−t), (2.23)

which means that (2.21) may be rewritten as

y(t) =
∞∑

k=−∞
skh(t − kTs)+ v′(t) (2.24)

When y(t) is sampled once every symbol period Ts , the filtered received
signal can be expressed as

y(n) =
∞∑

k=−∞
skh(n− k)+ v′(n) (2.25)
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Setting Ts = 1 does not loose generality. For a flat fading channel, we
have that h(n− k) = hδ(n− k), so (2.25) is further simplified to

y(n) = hsn + v′(n), (2.26)

or equivalently, only more clearly expressed as complex symbols

yn = hsn + vn (2.27)

Given our quasi-static channel model, we may also build a vector
version of (2.27). Let us assume the channel may be considered constant
for the duration of K symbol periods. We collect K information symbols
in the 1 × K vector s, and independent noise values in v, of equal size.
The received symbols are placed in the vector y, also with dimensions
1×K, and we have

y = hs+ v. (2.28)

The transmission models of (2.27) and (2.28) is employed throughout
the text. A graphical view of a SISO system that fits the above model is
shown in figure 2.8, with one transmit and one receive antenna.

The channel is represented as a cloud, and is the same channel as the
one depicted in figure 2.4. The complex-valued sn, h, yn and vn repres-
ents the complex symbol we wish to transmit, a channel coefficient, the
noise and a received noisy symbol, respectively.

In section 2.1.1, the symbol sn was defined in the discussion on di-
gital, linear modulation. Now, we also take a brief look at how the noise
symbol vn and channel coefficient h are modelled.

Distributions of noise sample and channel

The noise sample vn is modelled as complex-valued random, following
a normal distribution. We may express vn as

vn = (u+w · j) (2.29)
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where u and w are real and normally distributed numbers; (u,w) ∼
N (

0, σv/
√

2
)
. Here, σv is the standard deviation of the complex noise,

so that

vn ∼ CN (0, σv) (2.30)

The variances of the noise and the signal coefficients form the re-
lation known as the signal-to-noise ratio (SNR). In linear scale it is ex-
pressed as

SNRlin = E(|sn|
2)

E(|vn|2) =
σ 2
s

σ 2
v
, (2.31)

We fix the variance of the information symbols to unity, so σ 2
s = 1. The

SNR is also often expressed in dB, as

SNRdB = 10 log10

(
1

σ 2
v

)
, (2.32)

and σ 2
v is given by

σ 2
v = 10−

( SNRdB
10

)
. (2.33)

The channel coefficient is assumed to have sufficient multi-path to be
modelled as a zero-mean Gaussian, see section 2.1.2. Each random real-
isation of h follows

h ∼ CN (0,1), (2.34)

that is; h is complex, with zero mean µ and unit variance σ 2. We re-
call that this is also referred to as a Rayleigh fading channel, because
the envelope of h follows a Rayleigh distribution. The channel real and
imaginary parts of h are modelled as (u,w) ∼N (

0,1/
√

2
)
.

So far, we have established a suitable signal model for transmission
over a baseband SISO channel. The next step is to extend this to MIMO
systems, yielding the final multiple antenna transmission model.

2.2 Multiple antenna systems (SIMO, MISO and MIMO)

This section is devoted to introducing and building a signal model for
multiple antenna systems. The work will build on the model for the a
SISO system, from (2.20). We begin with a short section to motivate the
use of multiple antennas, then section 2.2.2 presents SIMO, MISO and
MIMO systems. Finally, the MIMO signal model is given in section 2.2.3.
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2.2.1 Motivations for MIMO

We present two major motivations for the introduction of multiple an-
tenna systems; to increase the quality (lower bit-error rate (BER)) and to
increase the data rate of a communication process.

Starting with the increased quality, we note that if the channel of a
SISO system is in a fading dip, the original information is hard to recover
at the receiver, which makes the transmission less reliable.

Now, consider having several transmit antennas, each with an inde-
pendent channel coefficient. With knowledge of the coefficients, we may
ensure a steady level of tolerable quality by transmitting on the chan-
nel with the highest field strength at any time. This approach is called
switched or selection diversity and exploits the fact that it is unlikely
that all the channels (antennas) are in fading dips at the same time. It
will help decrease the BER, as long as the channel coefficients are not all
equal.

The method of selection diversity, and is only one of several possible
BER-reducing diversity schemes for MIMO systems.

Our second motivation concerns increasing the data rate, as more
capacity is always in question. The concept of multiple antennas opens
the possibility of exploiting the spatial dimension. With more than one
antenna on the sending and/or the receiving side, we obtain spatial di-
versity. This diversity can be used to reduce the BER, as described above,
but also to send data faster through higher order modulation. In MIMO
systems, the data rate may also be directly increased by transmitting
independent data streams on different antennas.

Before going any further, we define the three different types of gain
the use of multiple antennas and appropriate transmit algorithms may
produce. These are array gain, diversity gain and multiplexing gain.

Array gain is the improvement we get from coherent combining of sig-
nals arriving on the separate elements of an antenna array. This
gain is seen in increased signal power and quality, i.e. the SNR of
the combined array is better than that of the individual elements.

Diversity gain is the result of transmitting or receiving over more than
one channel, but relies on the channels being sufficiently independ-
ent of each other, so that all are not severely faded at the same
time. Transmission over independent channels offers diversity
gain in the form of fading mitigation, the result of which is seen in
a lowered BER.

Multiplexing gain is simply the gain of increasing the data rate, as done
in spatial multiplexing schemes, where each antenna transmits a
separate sub-stream of data.
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Figure 2.9: A general MIMO model.

Having presented the simple motivations above, we move on to de-
scribe different multi-antenna systems in the next section.

2.2.2 SIMO, MISO and MIMO systems

We define three cases of systems with multiple antennas; Single-Input
Multiple-Output (SIMO), Multiple-Input Single-Output (MISO) and Multiple-
Input Multiple-Output (MIMO). They are named after where the multiple
antennas are placed; on the sender side, the receiver side or both places.

A SIMO system has 1 transmit antenna andM receive antennas, while
a MISO system has N transmit and 1 receive antennas. A MIMO system is
a generalisation of the two, with N transmit and M receive antennas. An
important measure is the order of diversity, defined here as the number
of independently fading propagation paths.

With several antennas, there are a number of possible geometries to
arrange the antennas in. The elements may be distributed linearly, in
a circle or a square pattern, just to give some examples. In our simu-
lations, the simple uniform linear array (ULA) is assumed, that is; the
elements lie on a straight line with a common inter-element distance d
[21]. However, we note that the MIMO algorithms are transparent to the
choice of array geometry.

In figure 2.9 a MIMO system is shown, and can be seen as a general-
isation of the SISO figure in figure 2.8. The system has N transmit and
M receive antennas and the multi-path propagation environment is rep-
resented as a cloud. The additive noise is independent at each of the
receive antennas.
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A SIMO, MISO or MIMO system with knowledge of the channel can ad-
apt to the current channel conditions in order to optimise transmission
and reception of information signals. Depending on the system and the
choice of transmit algorithm, the channel information is used to exploit
the spatial dimension to achieve different forms of gain, for example a
decrease in the BER or a higher transmit data rate.

2.2.3 A MIMO signal model

We are now ready to extend the channel model in equation (2.28) to the
general MIMO case.

In a MIMO system, M · N flat fading and independent channel coef-
ficients are collected in an M × N channel matrix H. Each entry hmn
follows the same Gaussian distribution as h in (2.34).

An entry hmn denotes the multi-path channel from transmit antenna
n to receive antennam. The channels are assumed to be independent in
space (uncorrelated), constant over a block of symbols and independent
from block to block. This gives the so-called independent, identically
distributed (i.i.d.) block fading Rayleigh matrix model.

Later, spatially correlated channels will also be considered, but for
now, they are spatially independent.

By sending out symbols on all N transmit antennas at a given time,
we can exploit the spatial diversity these multiple antennas provide. We
build a general MIMO signal model, by defining the N ×K sized complex
symbol matrix S. K is the number symbol periods Ts we consider at a
time. For simplicity, we set K = 1 whenever possible. A symbol snk in S
is transmitted from antenna n in time slot k.

For each transmission, theM receive antennas take inM symbols and
add independent noise to each. These random complex noise symbols
are arranged in the M × K matrix V. Each noise entry vmk is a random
complex Gaussian, distributed as described in (2.30).

The receive matrix Y has dimensions M × K. Now, an MIMO-version
of the signal model of (2.20) is

Y = HS+V, (2.35)

We note that if K = 1, the above equation is simplified to a vector form,
so that

y = Hs+ v, (2.36)

where y and v are vectors of dimension M × 1, and s has the size N × 1.
This form will be used in some of the transmit algorithms in chapter 3.
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The channel matrix H in (2.36) is so far assumed to contain all inde-
pendent fading coefficients. But in practise, proximity naturally implies
similarity, and we present a model for correlated fading among the an-
tennas.

2.2.4 A model for channel correlation

Spatial independence of the propagation channels is important for many
schemes. This dependence makes it interesting to investigate how these
algorithms behave when spatially correlated channels are introduced,
thereby degrading the spatial independence. For simplicity in the cor-
relation model, we assume a uniform linear antenna array geometry, but
this choice is not important to the MIMO algorithms.

Finding a good model for the correlation is done by studying the nor-
malised signal correlation coefficient between antenna elements i and j,
rij . This value shows in what degree the fading coefficients of antennas
i and j are correlated. With rij = 1, they are completely correlated, i.e.
their corresponding fading coefficients are equal. Letting rij < 1 im-
plies greater independence, and for rij = 0, the fading levels of the two
antennas are completely independent.

From [11] and [10], the rij for a uniform linear array is given by

rij = 1
2∆

∫φ−∆
φ−∆

ejz(i−k) sinβdβ, z = 2π
d
λ
, (2.37)

where 2∆ is the angle spread of the incoming multi-paths, φ is the aver-
age angle of arrival, d is the distance between the antenna array elements
and λ is the carrier wavelength. It is possible to assume λ = 1, without
loosing generality [11]. When ∆ = π , equation (2.37) is reduced to

rij =J0(z(i− j))

=J0(
2π(i− j)d

λ
),

(2.38)

where J0 is the zero-order Bessel function of the first kind. Bessel func-
tions are solutions to a differential equation called Bessel’s equation. A
plot of a few Bessel functions of the first kind, but of different order, are
shown in figure 2.10.

From the figure we see that the odd-ordered Bessel functions are
symmetric about z = 0, so that

rij = rji.
From the figure and (2.38) we are also able to verify that the model

is correct when i = j; any antenna element is fully correlated with itself,
rii = J0(z(i− i)) = J0(0) = 1. We also see that
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Figure 2.10: Bessel function of the first kind

rij = rkl, when |i− j| = |k− l|

i.e. the correlation between two antennas is only dependent on the dis-
tance between them, resulting in a symmetric correlation matrix. For
later use, we denote the correlation between two neighbouring antenna
elements by r , so that

r = J0(z), z = 2π
d
λ

(2.39)

which is the case when |i− j| = 1

Another illustration is figure 2.11, where a zero-order Bessel function
is plotted as a function of wave-lengths λ. The inter-element distance d
is measured in meters.

As an example, let us look at the level of correlated fading for a few
different distances d:
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Figure 2.11: Correlation between neighbouring antennas, λ = 0.15 m

d =10λ =⇒ r = 7.10 · 10−2

d = 1λ =⇒ r = 2.20 · 10−1

d =0.3λ =⇒ r = 2.91 · 10−1

d =0.2λ =⇒ r = 6.43 · 10−1

d =0.1λ =⇒ r = 9.04 · 10−1

(2.40)

We see that when varying the inter-element distance from 10λ to
0.1λ, the correlation changes from a negligible level to almost 1. For
d > 0.3λ, the correlation r is not so severe, one may still expect some
diversity in the channel. It is also evident that the increase in r is quite
slow from d = 10λ to d = 0.3λ. This may be confirmed by the figure,
2.11.

Given the above discussion, we are able to build individual correla-
tion matrices for the transmit and receive antennas. It is worth noting
that the following simulations and results all employ only equi-distant
antenna arrays, with the same distance on both sides of the transmis-
sion, although varying the inter-element distances is also possible.
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Correlated MIMO model

The correlation matrices are called Rt on the transmit side and Rr on the
receive side. The entry in the i-th row and j-th column corresponds to
rij in (2.38), the correlation coefficient between antenna elements i and
j.

The Bessel functions are deterministic, so if N = M and d is the same
on both sides of the wireless channel, then we also have that Rt = Rr .
This text assumes d to be equal in both transmit and receive antenna
arrays, so the neighbouring element correlation level r is always the
same on both sides. An example of a transmit correlation matrix, Rt , for
a system of 3 transmit antennas, is

Rt =


r11 r12 r13

r21 r22 r23

r31 r32 r33


 .

Using the fact that rij = rji = r|i−j|, and that the elements on the
main diagonal all have the value 1, we may simplify the matrix to

Rt =



1 r1 r2

r1 1 r1

r2 r1 1


 .

When building the correlated channel matrix H, an uncorrelated Rayleigh
fading channel matrix H0 is used, from which H is computed as follows
[7]

H = √RrH0
√

Rt, (2.41)

where the square root sign implies a matrix square root operation, so
that

√
Rt ·

√
Rt = Rt and

√
Rr ·

√
Rr = Rr .

Recall that the Bessel function is unity when the input variable is
zero; J0(0) = 1. Hence, if d is close to zero, then all the entries in the
correlation matrix will be close to 1. The result is that the coefficients
in H are approximately equal and rank(H) = 1, which means that the
channel matrix is not invertible. This H is sufficiently ill-conditioned to
consist of only one effective channel, not a set of NM independent ones.

On the other hand, a low level of correlation is obtainable when the
antenna spacing d is kept above a certain level. This is a requirement
that can be hard to meet, e.g. if we wish to place more than one antenna
on a small unit, such as a cell-phone.

As seen from (2.38), the correlation depends both on the inter-element
spacing of the antenna array and on the carrier wavelength of the signal
wave. In this text we use λ = 0.15 meters, corresponding to a carrier
frequency
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fc = cλ =
3.0 · 108 m/s
1.5 · 10−1m

= 2.0GHz, (2.42)

which is used for the third generation of mobile communication sys-
tems, also known as 3G.

We now move on to presenting transmit algorithms for MIMO sys-
tems using the model in (2.35), possibly with correlated fading. The
next chapter presents known schemes and evaluates their performance
under different conditions.

34



Chapter 3

Performance of MIMO
algorithms in correlated
channels

This chapter presents some well-known techniques for wireless trans-
mission in MIMO systems. Each has a set of advantages and limitations,
and which algorithm is best may depend on the channel conditions. In
section 3.2, the performance of the various transmit algorithms are com-
pared, for both uncorrelated and correlated channels.

3.1 MIMO schemes

SIMO, MISO and MIMO systems can be used with a variety of transmit al-
gorithms, providing improvement in different forms. The algorithms es-
sentially exploit the spatial diversity offered by MIMO systems in one of
two ways: By reducing the number of errors through diversity-oriented
transmission, or by increasing the data rate through multiplexing of in-
dependent symbol streams. We refer to these different approaches as
MIMO diversity (MD) and spatial multiplexing (SM) [12], respectively.

Some MD schemes, aimed at reducing the bit-error rate (BER), are

• Switched or selection diversity
For SIMO/MISO systems, see section 2.2

• Maximum Ratio Combining (MRC)
For SIMO/MISO systems, see section 3.1.2

• The maximum singular vector approach (MSVA)
For MIMO systems, see section 3.1.2
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• Space-time coding schemes (e.g. Alamouti STC)
For 2×M systems, see section 3.1.4

An SM scheme, which maximises the data rate, is

• Spatial multiplexing (SM) with zero-forcing
For MIMO systems, see section 3.1.5.

As mentioned in the introduction, chapter 1, the SM and MD schemes,
have so far been competing approaches to exploit the spatial dimension
offered by MIMO systems. Spatial multiplexing uses the spatial degrees
of freedom to transmit information faster, by sending independent sym-
bol streams simultaneously.

MD algorithms, on the other hand, use the multiple antennas to mit-
igate channel fading, effectively lowering the BER. This is done through
transmission of redundant information, for example by using space-time
coding (STC) techniques[20].

However, despite different approaches, the ultimate goal of both ap-
proaches is increased capacity. With MD, this is achieved through in-
creasing the order of the modulation when the BER goes down, while
maintaining a certain target BER. In this way, the data rate is increased
by transmitting more bits with a single symbol. SM schemes increase
the capacity more directly, through multiplexing independent symbol
streams on the transmit antennas.

3.1.1 Channel knowledge

All the above algorithms require some knowledge about the channel mat-
rix H, on either one or both sides. One way to distinguish between the
algorithms is to study if and where this knowledge is required. As we
will see later in this chapter, the algorithms presented are different in
this respect, demanding knowledge either on the transmit side (transmit
MRC), the receive side (receive MRC, SM and Alamouti STC) or on both
sides (The MSVA approach).

In a cell phone system, it is common to see the base station as the
transmitter and the personal cell phone as the receiver. The receiver con-
stantly accepts incoming data, containing both the desired information
symbols, the channel coefficients and the additive noise, as in equation
(2.35).

By use of some form of training sequence, i.e. transmitting data
known to the receiver a priori, the receiver can extract the channel coef-
ficients, only distorted by the noise. The channel matrix estimated from
these training data is denoted Ĥ. This estimated channel matrix may
then be used to retrieve information symbols later in the transmission.
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Depending on how fast the channel coefficients change, the training se-
quence must be retransmitted at intervals, to update Ĥ.

When only the receiver needs knowledge of the channel, the use of
training sequences is a sensible way for it to acquire that knowledge. Be-
cause these training sequences do not need to be very long, the overhead
is limited.

The transmitter has no natural way to learn about the channel, unless
if the receiver sends feedback data, to let it know what it has learnt itself.
This introduces overhead and increased complexity in the transmitter.

For the sake of the derivation of the algorithms we assume to have
perfect channel knowledge.

In the following sections, we present some multiple antennas transmit
schemes; namely MRC, MSVA, Alamouti STC and SM. The MRC is not
suitable for MIMO systems, but is presented to explain the concept of
array gain and because the MSVA can be thought of as a MIMO exten-
sion/generalisation of this scheme.

3.1.2 Maximum Ratio Combining

Maximum Ratio Combining (MRC) [14] is an optimal combining tech-
nique for both transmit and receive diversity. The scheme uses weight-
ing and combining of the information symbols in order to increase the
link reliability, i.e. to reduce the number of errors between original and
received information symbols. The weights are chosen adaptively, using
channel knowledge.

In a 1 × M SIMO system, the transmitted signal reaches the M re-
ceive antennas asM independently faded signals, at which point they are
weighted and combined. With a N × 1 MISO system, the MRC technique
is employed before transmission. N copies of a signal are weighted with
different coefficients, and transmitted from the antennas. The single
receive antenna registers a sum of independently faded and weighted
versions of the same signal.

Both with receive and transmit diversity, we see that the same choice
of weight vector is optimal, selected to mitigate the fading effects of the
channel. This weight vector is optimal in the sense that it equalises the
phase rotations induced by the channels.

Depending on which side of the communication channel the multiple
antennas are placed on, either the transmitter or the receiver that is set
to handle the computational complexity of the MRC scheme. Because
the weights are chosen adaptively, using knowledge of the channel, this
side is also required to know the true channel coefficients or an estimate
of them.
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MRC for MIMO?

The MRC scheme can be used with SIMO or MISO systems; offering re-
ceive or transmit diversity. For MIMO systems, pure MRC is not achiev-
able. This is because the phase rotations induced by a MIMO channel
matrix of N ·M coefficients can not be completely mitigated by applying
weight vectors containing (M + N) coefficients at the transmit and the
receive sides. A MIMO approximation to MRC, henceforth referred to as
The Maximum Singular Vector Approach (MSVA), will be defined later.

A signal model for transmit and receive MRC

Based on the model presented in (2.36), this section presents signal mod-
els for both receive and transmit MRC.

Starting with receive MRC, we have 1 transmit antenna and M receive
antennas, offering receive diversity. The channels coefficients are collec-
ted in a M × 1 sized vector, h, each entry representing one independent
channel. Channel knowledge is required at the receiver.

We consider only one symbol period, over which one symbol s is
transmitted. The noise vector v is M × 1, and the received symbols are
placed in y, of dimensions M × 1.

We weigh and combine all the received symbols, in such a way as
to mitigate fading and increase the likelihood of recovering the correct
symbol. We call the weight vector w, with dimensions M × 1. After
combining, the received symbol ŝis

ŝ = wTy = wThs +wTv, (3.1)

The MRC uses the inverted and normalised channel as its weight vec-
tor,

w = h∗/‖h‖2, ensuring that ‖w‖2 = 1 (3.2)

For receive MRC, ‖h‖2 =
√

hHh, the length of the complex vector h. We
note that the phase rotations caused by the channel coefficients are can-
celled out and the recovered symbol ŝ can be written as

ŝ = hH

‖h‖2
y = ‖h‖2s + hH

‖h‖2
v, (3.3)

At the end of this section, we will see that the factor ‖h‖2 in front of s
yields the improvement we refer to as array gain.

In transmit MRC, the weights are applied before transmission, and
we send an N × 1-sized vector of pre-weighted versions of the symbol s
over the channel. We denote this vector sw , and the relation is

sw = wT s. (3.4)
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where the weight vector distributes the limited transmit power over the
N transmit antennas, fixed to unity by setting ‖w‖2 = 1.

In MISO systems, the propagation channels are represented in a chan-
nel vector h, of size 1 × N. There is no processing at the receiver with
transmit diversity, so the recovered information symbol is given as

ŝ = y = hsw + v = hwT s + v. (3.5)

where both y , ŝ and the noise v are scalars.
The weight vector in transmit MRC is chosen in the same way as for

receive MRC, and (3.5) is simplified to

ŝ = ‖h‖2s +n, (3.6)

now with ‖h‖2 =
√

hhH , in order to produce a scalar.
We see that this result is the same as for the receive diversity case,

except from a difference in the noise-term. However, given that both the
channel coefficients and the noise are modelled as independent zero-
mean processes, the expectation of ŝ is the same in (3.3) and (3.6).

For a certain target BER, the SNR of the combined array when us-
ing MRC in a SIMO system is M times better than the SNR-levels of the
separate channels, in linear scale. For MISO systems, the order of im-
provement is N. The advantage is that the output has an acceptable SNR
even if none of the individual channels are acceptable on their own [15].

In figure 3.1 a system with receive diversity is depicted, including the
estimation of the MRC weights. A mirrored illustration for the case of
transmit diversity is easily derived.

Array gain with MRC

The signal-to-noise ratio of a MISO or SIMO system with MRC is better
than that of a single-channel system, an improvement we denote array
gain. First, assume a symbol s is transmitted over the single channel h.
The received, noisy signal is expressed as

y = hs + v (3.7)

We recall that the channel follows the distribution in (2.34). The SNR is
the variance of the signal part divided by the variance of the noise. Here
the signal part is hs. We refer to this single-channel SNR as input SNR
SNRi.

SNRi = E(|hs|
2)

E(|v|2) =
E(|s|2)
E(|v|2) (3.8)

Now, in a MISO system, the symbol s is weighted and transmitted
from N antennas simultaneously. All the channels in h are assumed to

39



weight
estimation

.

.

.

n1

n2

*
22w = h

1w = *
1h

h

h1

h2

hM

ŝ
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have the same SNR-level, SNRi. The received signal in a MISO system is
presented in (3.6), and the signal part is ‖h‖2s. We refer to the SNR of
the combined signal at the receiver as the output SNR; SNRo.

SNRo = E
(|(‖h‖2)s|2

)

E(|v|2) = E(|h|2|s|2)
E(|v|2)

= N E(|s|
2)

E(|v|2)

(3.9)

The SNR of the MISO system with MRC is improved by a scale factor
N, when compared to the SNR of a single channel, and this is what we
refer to as array gain.

SNRo = NSNRi (3.10)

In dB-scale, this means that

SNRo,dB = 10 log10(N) SNRi,dB (3.11)

This result also applies when receive diversity with MRC is employed,
it is easily shown that array gain of the order M is obtained.
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3.1.3 MRC for MIMO: The Maximum Singular Vector Approach
(MSVA)

For the general case of multiple antennas on both sides, we have a MIMO
system with an M × N-sized channel matrix H. We want to generalize
the transmit- and receive-only diversity schemes of section 3.1.2 to a
combined transmit/receive diversity scheme.

There is no way to use pure Maximum Ratio Combining for this case,
as two weight arrays with a total of N +M coefficients can not equalise
the phase rotations induced by all the MN channel coefficients.

Instead, we will define an extension here, through use of a singular
value decomposition (SVD). For short notation, the MRC approximation
technique with SVD will be referred to as The Maximum Singular Vector
Approach (MSVA) in this text.

Due to coherent combining on both sides of the channel this ap-
proach benefits from array gain, although of a weaker kind than MRC.

To enable adaptive weighting of the information symbols both before
transmission and after reception, the MSVA scheme requires knowledge
of the channel matrix in both ends of the channel. In practise, this de-
mand results in the need for both training sequences and feedback in-
formation, making this scheme rather complex. However, for simplicity
we disregard that here, simply assuming that both the transmitter and
the receiver have perfect knowledge of the channel.

Signal model for The Maximum Singular Vector Approach

We consider one symbol period, the time it takes to transmit the symbol
s. As in transmit MRC, what is transmitted over the channel is not N
copies of the symbol s, but a vector of weighted symbols, sw . It is related
to s as follows

sw = wts, (3.12)

where the transmit weight array wt has the dimensions N × 1, Substitu-
tion of this sw into a vector version of the transmission model of (2.36)
yields

y = Hsw + v

= Hwts + v
(3.13)

When the receiver applies an M × 1-sized receive weight array wr , the
retrieved symbol ŝ is written as follows

ŝ = wTr y = wTrHwts +wTr v (3.14)
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An illustration of MIMO diversity is shown in figure 3.2. The applic-
ations of the weight vectors are depicted both before transmission and
after reception. Also, the figure indicates that the receiver estimates the
weights, possibly from known training sequences. The channel inform-
ation learnt by the receiver is transmitted to the sender as feedback, so
the appropriate weights may be applied there too.

To find the optimal weight vectors, we would like to maximise the
SNR of this expression; i.e. maximise the gain factor wTrHwt . A criterion
is that both wt and wr have unit norm, in order to avoid boosting the
transmit power with wt and amplifying the noise with wr .

For a given channel matrix, the maximum gain is found when wt
and wr correspond to the principal conjugate left and principal right
singular vectors, respectively [2].

These optimal weight vectors, wt and wr , are found by performing a
Singular Value Decomposition (SVD) on the channel matrix H. A singular
value σ and its corresponding singular vectors u and v are related as

Hv =σu and

HHu =σv.
(3.15)

With the singular values on the diagonal of a diagonal matrix Σ and
the corresponding singular vectors forming the columns of two unitary
matrices U and V, we have

HV =UΣ and

HHU =VΣ. (3.16)

The fact that U and V are unitary means that VVH = UUH = I, the
identity matrix, and we can combine (3.16) to

H = UΣVH (3.17)

We define

wt =V1 and

wr =U∗1 ,
(3.18)

where V1 and U1 are the top column vectors of V and U. Now, (3.14) is
rewritten into

ŝ =UH1 HV1s +UH1 v

=UH1 UΣVHV1s +UH1 v
(3.19)

Recall that U and V are unitary. Then, the expression is simplified to

ŝ =σ1s +UH1 v (3.20)
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Figure 3.3: A 2-by-2 Alamouti system .

where σ1 is the largest singular value of H.
Now we have used only the top singular vectors to weight, transmit

and combine information symbols. This scheme optimises the BER for
diversity transmission with a rate of one symbol per period. However,
it is also possible to increase the data rate directly by spatial multiplex-
ing of separate symbol streams, through using more than one singular
vector. In fact, one may use the SVD to create min(N,M) independent
spatial channels and transmit one sub-stream on each ([2], [13]).

3.1.4 Alamouti space-time coding

Space-time coding (STC) techniques, as described in [20], code the sym-
bols in both space and time, before transmission. A common idea is to
build a N ×K matrix of symbols by spreading out the information sym-
bols over space (the N transmit antennas) and time (the K columns may
be thought of as time slots). With multiple antennas, there are naturally
many ways to code a transmit pattern, but all are not equally effective.

The last of the diversity algorithms to be presented, and also a vital
part of the combination scheme described in chapter 4, is the Alamouti
space-time block code (STBC) [1], a particular STC scheme. This is a
simple, full rate MIMO algorithm, developed for a system of 2 transmit
antennas and M receive antennas, providing a diversity order of 2M . It
is full rate in the sense that it transmits one symbol per symbol period,
regardless of the multiple antennas.

The Alamouti scheme rearranges the symbol array to an orthogonal
space-time coded symbol matrix, targeting BER improvement. Principles
of STBC from orthogonal design are discussed in [19]. A graphical model
of transmission with Alamouti coding is shown in figure 3.3, where M =
2 for simplicity. The matrix to the left shows how the symbols are coded
in space and time.

For a 2 × 1 system, the Alamouti scheme offers only diversity gain.
However, for M > 1, there is also combining on the receive side, which
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gives the additional benefits of array gain.
The Alamouti STBC is part of the group of complex orthogonal designs,

as defined and discussed in [19]. The same text also proves that such
designs exist only for N = 2 transmit antennas, so it is not possible to
extend the very favourable qualities of orthogonality to N > 2. Hence,
the Alamouti STBC is in some sense a unique scheme.

Signal model for Alamouti STC

A vital assumption for the Alamouti algorithm is that the channel coef-
ficients can be regarded as constant over two time slots. This allows
transmitting the whole pattern over the same channel.

The Alamouti-coded symbol matrix for time interval (2k,2k + 1) is
given by S = Sk, where

Sk =
[
s2k −s∗2k+1
s2k+1 s∗2k

]
(3.21)

With this S, transmission with the Alamouti algorithm may be ex-
pressed using the model in (2.35), rewritten here as

Y = HS+V (3.22)

where the noise matrix V has dimensions M ×2. To limit the total trans-
mitted power from the two transmit antennas to 1, we normalize each
entry in the channel matrix H so that

hij ∼ C(0, 1√
N
) i ∈ [1,M], j ∈ [1,N], (3.23)

which gives mean µ = 0 and a standard deviation of σ = 1√
N .

A modified version of this representation is obtained if we move the
space-time coding from S to H, yielding a coded channel matrix H̃, of
dimensions 2M × 2. With this model, the received signal is given by

ỹ = H̃s+ n, (3.24)

where the signal vector s is

s = sk =
[
s2k
s2k+1

]
, (3.25)

and the receive vector ỹ has dimensions 2M × 1. The top M entries
are the received symbols in the first time slot, while the bottom half
represents the second symbol period.

We observe that the uncoded M × 2 channel matrix H can be seen as
a collection of 2 transmit vectors, hn, n ∈ [1,2].
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H =
[
h1 h2

]
, (3.26)

where each M × 1-sized hn is given by

hn =




h1n
h2n

...
hMn



, n ∈ [1,2] (3.27)

Using the notation from (3.26), the modified channel matrix H̃ is writ-
ten as

H̃ =
[

h1 h2

h∗2 −h∗1

]
, (3.28)

and we observe that the relation between the matrix Y in (3.22) and the
vector ỹ in (3.24) is

ỹ =




y11

y21

y∗12
y∗22


 , given Y =

[
y11 y12

y21 y22

]
(3.29)

To detect the original information symbols, the Alamouti algorithm
exploits the orthogonal structure of H̃, which may be expressed as

H̃HH̃ = (|h1|2 + |h2|2
)[1 0

0 1

]

= ‖H‖2
F

[
1 0
0 1

] (3.30)

Now, the retrieved symbols may be expressed as

ŝ = 1

‖H‖2
F

H̃H ỹ

= s+ 1

‖H‖2
F

H̃Hn
(3.31)

This operation requires that the receiver knows the channel matrix
H.

3.1.5 Spatial multiplexing with zero-forcing

Theoretic research in information theory, such as in [6] and [5], has
shown that multi-path channels have enormous capacities regarding the
transmission data rate. The demand is that the multi-path scattering
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must be sufficient and properly exploited. One approach that ensures
the latter is a diagonally layered space-time architecture by Foschini;
known as diagonal BLAST (Bell Labs Layered Space-Time) or D-BLAST [6].
Associated with this algorithm is a simplified version; vertical BLAST or
V-BLAST, see [22] and [4]. Both approaches are spatial multiplexing (SM)
schemes.

The effects of multi-path propagation have traditionally been con-
sidered to be destructive, but SM uses them constructively to increase
the data rate. This is done by demultiplexing an incoming symbol stream
into N independent sub-streams, N being the number of transmit an-
tennas. Next, these sub-streams are transmitted simultaneously from
separate antennas.

Each of the receive antennas sees a differently faded sum of all the
sub-streams, with noise added. Demultiplexing and detection is done
according to some chosen criterion, such as minimum mean-squared
error (MMSE) or zero-forcing (ZF). In this text, the symbol recovery is
shown using simple ZF, which means the inverse or the pseudo-inverse
of H, denoted H#, must satisfy

H#H = IN , (3.32)

where IN is the N ×N identity matrix. One requirement is that the num-
ber of receive antennas must at least equal the number of transmit an-
tennas, M ≥ N, or else the system of equations has more unknowns than
equations. Figure 3.4 shows a square MIMO system with N = M = 3 an-
tennas on each side. The incoming symbol stream is demultiplexed and
1/3 of the symbols are transmitted from each antenna. At the receiver,
demultiplexing is performed to retrieve the original symbols.

With sufficient multi-path, H is a full rank channel and the data rate
increases linearly with min(N,M). Cities and other densely populated
areas are well suited for SM transmission, but it does not work as well
with line-of-sight (LOS) paths. This is because the channel coefficients in
a pure LOS environment are highly correlated in space, rendering spatial
multiplexing useless.

A high level of correlation due to closely spaced antenna elements
at the transmit or receive side (or both) has the same effect, the BER
increases dramatically.

The BER-performance of a 2×2 MIMO system with spatial multiplex-
ing is similar to that of a SISO system, hiding the fact that the latter
case has a higher data rate. When adding more receive antennas, so that
M > N, the extra elements will help bring the BER down for SM[6].

47



multiplexer

s5

s8

s2

s7

s4

s1s3

s6

s9

s1
s2s3s4s5s6

s7s8s9

s1
s2s3s4s5s6

s7s8s9

N=3 transmit
   antennas

M=3 receive
  antennas

H

demultiplexed symbol sequence

sequence of information symbols

demultiplexer

Figure 3.4: A square MIMO system with SM.

48



Signal model for SM with zero-forcing

We study transmission over one symbol period, and build a symbol vec-
tor s as

s =




s1
s2
...
sN



.

This vector fits the model in equation (2.36), repeated here for conveni-
ence:

y = Hs+ v, (3.33)

where the dimensions of H, s and v are M × N, N × 1 and M × 1. We
ensure that the total transmit power is limited to 1 by normalising the
channel coefficients so that any hij in H is described as in (3.23).

We invert the system by using H#, the pseudo-inverse of H, and re-
cover the symbols by

ŝ =H#y

=H#Hs+H#v

=s+H#v

(3.34)

Impact of channel rank

From studying the above equation it is clear why spatial multiplexing
does not perform well with low rank channels. If H does not have full
rank, the relation in (3.32) does not hold, and the symbols will not be
properly resolved. In practise, the rank of real life MIMO channels is
almost always full. However, the matrix may still be ill-conditioned, in
which case inverting the system leads to amplification of the noise and
an increase in the BER.

Summary

This section has presented ideas and mathematical models for some
well-known multiple antenna transmit schemes. Both MD and SM ap-
proaches are represented, differing in the way they achieve higher capa-
city by use of antenna arrays. The next section is devoted to comparing
the BER performance of the respective algorithms, under assumptions
of both uncorrelated and correlated fading.

Before moving on, we note that we expect the BERs of both SM and
MD approaches to rise with increasing levels of correlated fading among
the antennas. However, SM with zero-forcing depends critically on the
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rank of the channel matrix, and can break down completely if it is lower
than expected. The MD schemes are expected to suffer from correlation
in a more smooth way, as they are not directly dependent the channel
being invertible.

3.2 Performance comparisons of MD and SM schemes

First, we present some of the conditions for the comparison, in order
to secure equal terms. We show and discuss the performance results
of transmission in both uncorrelated and correlated channels, and for
different number of antennas. We will see that, for given MIMO system
with (N,M), the compared schemes are very different when it comes to
how badly correlated channels they can tolerate and still perform at a
reasonable level.

We wish to compare and discuss performance results for the al-
gorithms previously presented, with varying levels of correlated fading.
We repeat the correlation model in (2.41) here. The channel matrix H
contains correlated fading coefficients, generated from the matrix of in-
dependent entries H0 and the correlation matrices Rt Rr , so that

H =
√

RrH0
√

Rt (3.35)

We assume the same level of correlated fading on both sides of the
channel, so a given correlation level between neighbouring antennas r ,
defined in (2.39) applies to both the transmit and receive arrays.

We choose to study the following schemes: MSVA, SM with zero-
forcing detection and the Alamouti STC. In order to perform a suit-
able comparison of these transmit methods, we need to ensure identical
premises for all. This is done by keeping an equal number of antennas
on both sides of the channel and transmitting at the same bit rate for
all the algorithms. In addition, the order of diversity is kept constant by
ensuring that the level of correlated fading does not change between the
compared schemes.

With N transmit antennas the spatial multiplexing approach will trans-
mit at N times the symbol rate of the diversity-oriented schemes (MSVA
and Alamouti STC). To keep the the bit rates equal we use modulation
schemes of different order.

If an M-ary modulation method is used for SM, each symbol repres-
ents RSM = log 2(M) bits. The MD schemes transmit one symbol per
period, so they achieve the same bit rate as SM by using a scheme with
a rate of RMD = N log 2(M). N is the number of transmit antennas used
for the SM.

We choose to study the performance of the various algorithms for
systems of sizes 2× 2 and 2× 4. The choices of modulation methods in
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this text are π/4 QPSK for SM and 16QAM for MSVA and Alamouti STC,
for details on modulation see section 2.1.1. Hence, all the schemes have
a common bit rate of 4 bits transmitted per symbol period.

We compare the schemes for the following settings:

• N = 2, M = 2

– no correlation, see figure 3.5

– correlation r = 0.29, see figure 3.6

– correlation r = 0.90, see figure 3.7

• N = 2, M = 4

– no correlation, see figure 3.8

– correlation r = 0.29, see figure 3.9

– correlation r = 0.90, see figure 3.10

These parameters are also found in the legends of the figures, for easy
reference.

With reference to (2.40), we see that the correlation levels r = 0.29
and r = 0.90 correspond to a distance between neighbouring antenna
elements of d = 0.3λ and d = 0.1λ, respectively.

3.2.1 Results

We observe that the BER performance of the schemes vary for different
number of antennas and varying levels of correlation.

First, we concentrate on the system N = M = 2. The case of no
correlation is shown in figure 3.5 while the results with correlated chan-
nel fading of r = 0.29 and r = 0.90, between neighbouring antenna
elements, are shown in figures 3.6 and 3.7.

The MSVA out-performs the Alamouti STBC, a result that is expected
because MSVA uses instantaneous and full channel state information
both at the transmit and receive sides of the communication channel.
Both schemes experience full diversity gain in the uncorrelated case, and
use channel information at the receiver to achieve receive array gain.
But, because MSVA has channel knowledge at the receiver too, it com-
bines to achieve transmit array gain as well.

Even in the case of no correlation, SM does not reach low BER-values,
and we see that it suffers from a lack of diversity in a square MIMO
system. It is also apparent from the plots that SM is heavily affected
by increasing correlation. For r = 0.90 the BER is very high, even for
relatively good SNR-levels, the performance is poor. At an SNR of about
23 dB, 1 out of 10 bits is erroneously determined at detection.
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Figure 3.5: Comparison of MIMO algorithms, no correlation, N = M = 2
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Figure 3.6: Comparison of MIMO algorithms, correlation r = 0.29, N =
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Figure 3.7: Comparison of MIMO algorithms, correlation r = 0.90, N =
M = 2

This is consistent with the SM model in section 3.1.5, when N = M
there is no diversity in SM, as all the degrees of freedom are used to
transmit independent data. So, in the case of a square H, SM is very
dependent on the channel matrix having full rank.

The MD schemes in figures 3.6 and 3.7 are also affected by the correl-
ation, but not as destructively, thanks to the diversity advantage and the
absence of any matrix inversions. In fact, there is not much of a differ-
ence in performance between the cases of no and moderate correlation,
figures 3.5 3.6. Both schemes enjoy the benefits of array gain.

If we move our attention to the figures 3.8, 3.9 and 3.10, where the
number of antennas are N = 2 and M = 4, we see that things are differ-
ent. For one, none of the transmit schemes are affected nearly as much
by a high level of correlation as they were when M = N. The extra re-
ceive antennas help in bringing the BER down, even when the fading is
correlated.

For SM with zero-forcing, a system where M > N is advantageous un-
der assumptions of correlated fading. More receive than transmit anten-
nas translates to having a system with more equations than unknowns,
which means that there is now some diversity to be exploited, even for
SM.

For the uncorrelated case and the case of low correlation, we see that
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Figure 3.8: Comparison of transmit algorithms, no correlation, N =
2, M = 4
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Figure 3.9: Comparison of transmit algorithms, correlation r = 0.29,
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Figure 3.10: Comparison of transmit algorithms, correlation r = 0.90,
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the SM approach actually out-performs the Alamouti STC at low SNR-
values, because it contains both diversity and multiplexing gain.

Summing up, it is clear that the performance comparison between SM
and MD schemes depends on the number of antennas. For MD schemes,
a higher number of antennas yield diminishing returns, while SM has
trouble dealing with a square MIMO system due to a lack of diversity.
This calls for using both SM and MD schemes on the same array instead
of just one of the schemes.

Another point is that the SM and MD approaches react differently to
antenna correlation, SM performance breaks down more abruptly than
that of MD schemes. In a practical array, the level of correlated fading
is not equal for all antenna pairs. Again, this calls for mixing the two
approaches over the same array, along with a clever mapping of SM and
MD to particular groups of antennas.

On this background, we attempt to build a spatial combination of SM
and MD schemes in the next chapter.
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Chapter 4

Combining SM and MD
algorithms via the SMAL
scheme

4.1 Motivation

In the previous chapter we studied examples of schemes following one
of two standard approaches; spatial multiplexing (SM) or MIMO diversity
(MD). SM schemes use the spatial diversity to maximize the data rate,
while MD algorithms aim at reducing the bit-error-rate, in order to make
the transmission more reliable.

However, both sets of algorithms have their limitations. Spatial mul-
tiplexing is very sensitive to severely faded channels or systems with a
high degree of correlation. Such conditions will increase the BER dra-
matically, as seen in section 3.2.1. For MIMO diversity the increased
reliability tends to saturate when we add more antennas [3].

To avoid allocating all degrees of freedom to any particular scheme
(SM or MD), which results in either an excess of diversity or a lack of it,
we consider the problem of combining both techniques on the same ar-
ray via allocation of groups of antennas to one scheme or the other. The
idea is that this spatial combination should give some combined gain
from both approaches; i.e. robustness against fading and correlation as
in MD schemes, while at the same time directly increasing the transmit
data rate, as in SM.

Our combining approach

We present a combination where the allocation of antenna groups to
transmit schemes may be done in several spatial patterns, shown to yield
significantly different performance when using an antenna array where
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the level of correlation is uneven across the antenna pairs (such as in a
linear array). Our goal is to choose the best of these antenna allocation
patterns.

The combination attempted in this thesis is inspired by the ideas
in an article by Heath and Paulraj [12], where instantaneous channel
information is used to switch between multiplexing and MIMO diversity
schemes over time.

Our approach is different, we study the problem of switching between
multiplexing and diversity over space, using both schemes simultan-
eously. We propose a simple algorithm allowing us to generalise the
work of [12], and develop it both for the case where instantaneous full
channel feedback is available to the transmitter and for the case where
only long-term correlation statistics are known.

In this text, MD schemes are represented by the Alamouti space-time
coding. The spatial combination is essentially a spatial multiplexing of
blocks of Alamouti-coded symbol blocks. This is done over a transmit
array with a multiple of two antennas. For easy reference, we call this
scheme SMAL (Spatial Multiplexing of ALamouti). Instantaneous SMAL
and statistical SMAL refers to two versions of the scheme, suitable for
the cases where full channel information is available and when we only
know the correlation statistics, respectively. We show the performance
gains by plotting the bit-error rate (BER) against the SNR for both cases.

This work has also resulted in an article submission to NORSIG 2003
[17].

Although the SMAL scheme differs greatly from the time-switching
presented in [12], parts of the work and results still apply , and we take
some time to present them in section 4.2.

The organisation of this chapter

First, section 4.2 presents results from the article by Heath and Paulraj
[12].

In section 4.3 we develop the model for the new SMAL scheme. It
illustrates how the combination of the two algorithms is performed, in
particular by developing a mathematical model.

A primary aim is to find a good decision metric in order to select
the best allocation pattern available, and some optimisation principles
are presented in section 4.3.2. They are based on the wish to maxim-
ise the distance between the received symbols, in order to decrease the
probability of making the wrong decision. This metric is used in the two
following sections, but for different scenarios of channel knowledge.

In 4.3.4 the criterion is used directly by using instantaneous channel
information. BER-performance results from simulations are also given.
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Section 4.3.6, is devoted to finding a metric that is not dependent
on instantaneous channel matrices. This is accomplished using the stat-
istical characteristics of the channel and the correlation matrices. The
performance measures of this version of SMAL is discussed and com-
pared to the instantaneous SMAL, which is shown to yield better results
but at the cost of increased complexity.

4.2 Combining SM and MD in time

In [12], the idea is to compare SM and MD schemes are compared to
determine which is best suited under the current conditions. One uses
different modulation schemes for MD and SM, to ensure the same bit
rate and a fair comparison.

The article presents and justifies a criterion for switching between SM
and MD schemes. The choice scheme is based on a desire to minimise
the BER and requires instantaneous channel state information.

A large distance between the symbols in the receive constellation is
one way to lower this measure; wrong decisions are less likely if the
symbols are spaced further apart.

Hence, at any given time, we choose the approach which offers the
largest minimum, squared, Euclidean distance of the receive constella-
tions [12], denoted d2

min,MD(H) for MD and d2
min,SM(H) for SM methods.

Lower and upper bounds on these distances are derived as [12]

d2
min,SM(H) ≥ σ 2

min(H)
d2
min,sm

N
(4.1)

d2
min,MD(H) ≤

1
N
‖H‖2

Fd
2
min,md (4.2)

where d2
min,sm and d2

min,md are the minimum, squared, Euclidean dis-
tances of the transmit constellations, σmin(H) is the minimum singular
value of H, and ‖H‖F is the Frobenius norm of the channel matrix H.

For the spatial multiplexing approach, we see that if the minimum
singular value of the channel matrix H is high, we know that even the
most heavily faded channel has tolerable quality. Then the chances of
a successful, simultaneous transmission of N independent data streams
are good.

When, on the other hand, σ 2
min(H) is small, the probability of error

is high. In extreme cases, the matrix may not have full rank, in which
case it is not invertible and the symbols will not be correctly determined
upon arrival.

The Frobenius norm of a matrix gives a measure of the magnitude
of its elements. For a channel matrix, these magnitudes may be seen
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as power measures. For MIMO diversity methods, higher total transmit
power means a lower probability of error.

When combining the two bounds, (4.2) and (4.1), and using a conser-
vative approach, we can derive a simple rule in which spatial multiplex-
ing is only used when

σ 2
min(H)d

2
min,sm ≥ ‖H‖2

Fd
2
min,md (4.3)

For a given channel matrix H, a large minimum eigenvalue implies
SM transmission, while a large Frobenius norm means diversity is prefer-
able.

With periodic evaluation of instantaneous channel information, this
time-switching scheme is able to adapt to the current conditions. Given
that the decision metric is reasonable, this adaptivity may greatly im-
prove transmission reliability.

In the next section, a new scheme is presented, based on switch-
ing between various spatial patterns of SM- and MD-combinations rather
than switching between SM and MD over time.

4.3 Combining SM and MD in space; the SMAL scheme

Inspired by the work in [12], this section presents an attempt to com-
bine SM and MD methods in space through mapping SM and MD-based
blocks of data to particular groups of antennas. In order to simplify
notation and exposition, the MD scheme considered is the Alamouti STC
algorithm. However, extensions to other space-time block codes are pos-
sible.

We wish to spatially multiplex several Alamouti ST-coded blocks con-
taining independent groups of 2 symbols each. We assume an even num-
ber of transmit antennas N

N = 2k, k ≥ 2 and M ≥ N/2, (4.4)

in which case there are room for N/2 Alamouti-coded blocks over the
transmit antenna array.

The symbol rate of a SMAL system with N transmit antennas is RSMAL =
N/2 per symbol period. This is obvious as there are N/2 Alamouti ST-
coded blocks that each transmits independent data at a symbol rate of
RAL = 1. In this thesis we do not optimise the rate of transmission, but
rather the antenna mapping for a fixed symbol rate of N/2.

Given (4.4), we know that N > 4 and the N/2 Alamouti-coded blocks
may be mapped to the transmit antennas in more than one spatial pat-
tern. Depending on the level of correlation, some of these antenna as-
signment patterns may yield better performance than others, i.e. a lower
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BER. With negligible correlation, switching between different spatial pat-
tern is without effect on the performance, as all the channel coefficients
are equally independent.

The SMAL scheme attempts to choose the pattern that offers the best
performance, with a decision metric inspired by the ones in (4.1) and
(4.2).

4.3.1 The SMAL channel model

We make the SMAL channel model fit the previously presented model in
equation (2.35), rewritten here as

Y =HS+V (4.5)

The channel matrix H is correlated, and defined as in (2.41). Assume we
wish to transmit the block

s =
[
s0 s1 . . . sN−1

]T
,

over two symbol durations. To do that, we build an N × 2-sized symbol
matrix S, from N/2 Alamouti ST-coded matrices Sk. This notation was
presented in (3.21), but the expression is repeated here.

Sk =
[
s2k −s∗2k+1
s2k+1 s∗2k

]
(4.6)

The most trivial way to assign the Alamouti blocks to all N antennas
is by selecting S in (4.5) such that

S =




S0

S1
...

SN/2−1



, (4.7)

in which case one Alamouti-coded block is mapped to the first two an-
tennas, the second block is mapped to the next antenna pair and so on
through the array. For N = 4, this is illustrated as pattern p1, to the left
in figure 4.1.

Alternatively, the combination may also be expressed by moving the
space-time coding structure from S to the channel matrix, as seen in the
section on Alamouti STC 3.1.4. In that case, we express the model as

ỹ = H̃s+ n, (4.8)

where H̃ has dimensions 2M × N, because it represents “the channel”
over two time slots. The noise vector n is 2M × 1 and ỹ is the 2M × 1
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Figure 4.1: Antenna assignment patterns for N = 4.

vector of received signals. The symbols are now represented by the N×1-
sized vector s, in which each symbol appears only once. It is built from
concatenating N/2 vectors of length 2, one for each ST-coded Alamouti
block, so that

s =




s0

s1
...

sN/2−1



, where sk =

[
s2k
s2k+1

]
(4.9)

More generally, the Alamouti-coded blocks may be assigned to any
antenna subgroups. Let us define PN , the number of non-trivially equi-
valent antenna assignment patterns. These patterns are labelled pk,
k ∈ [1, PN].

By trivially equivalent patterns, we mean patterns that result in the
same correlation information, as seen by the algorithms. We give an ex-
ample for the case of 6 transmit antennas. Pattern p2 in figure 4.2 maps
the 3 Alamouti-coded blocks to the following antenna pairs: (1,2), (3,5)
and (4,6). This pattern is trivially equivalent to a mirrored combination
p′2, in which antenna pairs (1,3), (2,4) and (5,6) are coupled for trans-
mission of ST-coded Alamouti blocks.

For each possible pattern pk, the space-time coded matrix H̃ has a
unique structure. The different H̃ are denoted H̃(pk), and for pattern
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pk, the general input/output model is now

ỹ = H̃(pk)s+ n, (4.10)

The goal is to find the best pattern pk, evaluated by a criterion used
on the space-time coded channel matrix H̃(pk). We later explain how to
express H̃(pk) mathematically and we develop a criterion, based on the
one in [12].

For the case of N = 4, the different patterns are shown in figure
4.1. There are P4 = 3 unique arrangements, and the system transmits
N/2 = 2 Alamouti-coded blocks simultaneously. The lines between the
transmit antennas and the labels show which antennas are paired to
transmit one ST-coded Alamouti block in cooperation. The figure also
shows the space-time coded symbol matrix S of the original model in
(4.5) over two symbol periods, for each of the patterns.

Pattern p1 is the most obvious arrangement, and equivalent to the
one in (4.7). In p1, the two Alamouti blocks are placed next to each other.
The two remaining patterns are p2; where antennas 1 and 3 transmit one
block, and antennas 2 and 4 the other, and p3; where the first transmis-
sion pair consists of antennas 1 and 4, while antennas 2 and 3 make up
the second.

From the space-time coded symbol matrices S in figure 4.1 we read
that, for p1, antennas 1, 2, 3 and 4 transmit the symbols s0, s1, s2, and
s3 in the first time slot, respectively. In the second time slot, the same
antennas transmit the symbols −s∗1 , s∗0 ,−s∗3 , and s∗2 . So, over two time
slots, antennas 1 and 2 have transmitted one Alamouti block together,
while the other block has been transmitted by antennas 3 and 4.

Next, we study the structure of the coded channel matrix H̃(pk). Us-
ing the notation from section 3.1.4, equation (3.26), we see that any
channel matrix may be rewritten as a collection of N transmit vectors
hn, n ∈ [1,N].

H =
[
h1 h2 · · · hN−1 hN

]
, (4.11)

where H is the uncoded, correlated MIMO channel matrix. Each M × 1-
sized hn is given by

hn =




h1n
h2n

...
hMn



, n ∈ [1,2] (4.12)

We continue to use N = 4 and pattern p1 as an example, and extend
the H̃ from the section on Alamouti STC, see (3.28), to our more general
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case. The SMAL space-time coded channel matrix for pattern p1 is given
as

H̃(p1) =
[

h1 h2 h3 h4

h∗2 −h∗1 h∗4 −h∗3

]
, (4.13)

where the top row represent the spatial coding of the channel coeffi-
cients in the first time period, while the bottom row is rearranged for
the second time period.

For the other patterns, p2 and p3, the vector-versions of the space-
time coded channel matrices are given as

H̃(p2) =
[

h1 h3 h2 h4

h∗3 −h∗1 h∗4 −h∗2

]

H̃(p3) =
[

h1 h4 h2 h3

h∗4 −h∗1 h∗3 −h∗2

] (4.14)

Other examples, N = 6

A more complex case arises when N = 6, because more antennas gen-
erate more patterns. There are P6 = 11 non-trivially equivalent patterns
for 6 transmit antennas, as shown in figure 4.2.

To avoid mirrored patterns, we always start with antenna 1, which
may be involved in 5 different pairs when N = 6. Given that a certain
pair has been chosen, there are only 4 unused antennas left, which we
know generates 3 patterns. The total number of patterns are the given
by 5 · 3 = 15. However, some of these are mirrored versions of each
other, which means they yield equivalent results because of the sym-
metric nature of the correlation pattern.

For pattern p5, we show H̃(p5) as the following

H̃(p5) =
[

h1 h3 h2 h6 h4 h5

h∗3 −h∗1 h∗6 −h∗2 h∗5 −h∗4

]
(4.15)

The full list of the P6 = 11 unique patterns is found in A.1.
As the number of transmit antennas, N, increases, so does the num-

ber of possible patterns. To keep the latter at a reasonable level, N = 4
and N = 6 are the values used for the SMAL scheme, in this text.

In contrast to the pure Alamouti STC, the space-time coded chan-
nel matrices H̃(pk) is not orthogonal, so the SMAL detection can not be
as simple as matched filter based decoding. The reason is that several
Alamouti-coded blocks are only internally orthogonal, and not to each
other.
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Figure 4.2: Antenna assignment patterns for N = 6.
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To retrieve the symbols, we rather use zero-forcing, in the same man-
ner as described in section 3.1.5. This is done by computing a pseudo-
inverse of H̃(pk), denoted H̃#(pk), and applying that to the received vec-
tor ỹ of (4.10).

ŝ = H̃#(pk)ỹ

= H̃#(pk)
(
H̃(pk)s+ v

)

= s+ H̃#(pk)v

(4.16)

So far, we have established a suitable model for the spatial combina-
tion of spatial multiplexing and Alamouti STC, where H̃(pk) depends on
the uncoded channel matrix H and the chosen spatial pattern pk.

Our goal is to choose the best pattern pk, in a way inspired by the
work of Heath and Paulraj [12]. In order to do this evaluate the pat-
terns against each other, an expression for the space-time coded H̃(pk)
is required, and this is the subject of the next section.

Expressing H̃(pk) as function of H and pk

We wish to write the space-time coded channel matrix H̃(pk) as a func-
tion of the correlated channel matrix H and the pattern pk.

As seen in the examples (4.13) to (4.15), the top half of H̃(pk) repres-
ents the space-time coded coefficients in the first time slot of an Alam-
outi STC transmission, while the bottom half are transmit vectors be-
longing to the second time slot.

We postulate that the space-time coded channel matrix may be ex-
pressed as

H̃(pk) =



H I(p1
k)

H∗ I(p2
k)G


 (4.17)

where I(p1
k) and I(p2

k) are N × N column permutation matrices for the
first and second symbol period, respectively. They rearrange the column
order of H according to the chosen pattern. To enable this, these matrices
are identity matrices, but with the columns arranged in the same, desired
order.

The matrix G ensures the even-numbered transmit vectors in the
second time slot are negated, and is given as the N ×N

66



G =




d1 0 . . . 0
0 d2 0
...

. . .
...

0 0 . . . dN



, with ~d = [1,−1,1,−1, . . . ,1,−1] (4.18)

With this, we have enabled correct rearrangement of the columns of H
to generate H̃(pk) in (4.17). To clarify, we continue with some examples.

Example 1, N=4 with pattern p2

With a transmit array of N = 4 antennas and a choice of pattern p2, the
4× 4 matrices I(p1

2), I(p2
2) and G look like

I(p1
2) =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 I(p2

2) =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 G =




1 0 0 0
0 −1 0 1
0 0 1 0
0 0 0 −1




Example 2, N = 6 with pattern p5

Here, we use 6 transmit antennas and the matrices I(p1
5), I(p2

5) and G
have dimensions 6×6. To generate the space-time coded channel matrix
H̃(p5), we build

I(p1
2) =




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0




I(p2
2) =




0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0




G =




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1




Finally, we write out (4.17) in one expression. It is given as the sum
of two sets of matrix multiplication, such that

H̃(pk) =Ir1 H I(p1
k)+ Ir2 H∗ I(p2

k)G, (4.19)
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where the matrices Ir1 and Ir2 are two simple 2M×M ’row permutation’
matrices

Ir1 =




1 0 . . . 0
0 1 . . . 0
...

. . .
0 . . . . . . 1
0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0




, Ir2 =




0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

. . .
0 . . . . . . 1




(4.20)

each being a combination of two M ×M matrices; a zero matrix and an
identity matrix IM .

Ir1 and Ir2 are not dependent on the choice of pattern pk, their only
purpose is to ensure that the top and bottom halves of H̃(pk) represent
the first and second time slots.

Expressing H̃(pk) for correlated channels

We assume a non-negligible level of correlated fading. Then, the entries
of H̃(pk) are correlated channel matrix coefficients, and as seen in (2.41)
and the correlated H is given by

H =
√

RrH0
√

Rt, (4.21)

where H0 is the channel matrix of uncorrelated entries, while Rr and Rr
are the correlation matrices on the transmit and receive side, respect-
ively. We assume the same level of correlation on both sides of the
channel, so for a square system the matrices will be equal. Writing out
H in (4.19) yields

H̃(pk) =Ir1
√

Rr H0
√

Rt I(p1
k)+ Ir2

√
Rr H∗0

√
Rt I(p2

k)G (4.22)

After the development of the transmission model in (4.16) and the
expression for H̃(pk) in (4.19), the next step is to formulate a decision
criterion for the choice of antenna pattern.

The following section deals with this subject, and the goal is to choose
the best pattern in the sense of the BER-based bounds shown in (4.2) and
(4.2). We develop a scheme for two cases, when instantaneous channel
conditions are available or when we only have access to some long-term
statistics. The latter reduces the feedback load and complexity.
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4.3.2 Pattern optimisation: principles

One way to solve the problem of which pattern is the best, is to find
the optimal antenna groups over which the independent Alamouti-coded
blocks will be multiplexed. This can be done by picking the pattern pk0

which maximises the performance in detecting s in (4.10), in the sense
that the squared, minimum, Euclidean distance of the receive constella-

tion, denoted d2
min,SMAL

(
H̃(pk)

)
, is maximised.

Inspired by [12], we consider the bounds in (4.2) and (4.1) and use
them as building blocks for a selection criterion for SMAL.

For our purpose we recognise that the model used in 4.10 is that of
an SM scheme where N/2 independent symbols are multiplexed over a
MIMO channel matrix H̃(pk). This MIMO channel has its structure from
the Alamouti STC and the choice of a specific pattern pk.

Seeing SMAL as a spatial multiplexing scheme, we choose the pattern
pk0 in order to maximise the lower bound of the performance. According
to (4.1) this is done by choosing the pattern pk0 satisfying

pk0 =arg
(

max
pk

[
d2
min,SM

(
H̃(pk)

) ])
, (4.23)

4.3.3 Instantaneous channel vs long-term statistics

In the following sections, we will find optimisation criteria for two scen-
arios; when we have access to instantaneous channel information and
when only long-term correlation statistics are known. The expression

for d2
min,SM

(
H̃(pk)

)
is different for the two cases, and in the latter it is

only an approximation based on “average behaviour” of the channel.
In the common case of frequency division duplex (FDD) systems, the

transmission from the transmitter to the receiver is carried out over
one frequency band, while another band is used for communication in
the other direction. When instantaneous channel state information is
required at the transmit side, the use of feedback information from the
receiver is necessary. This has the disadvantage of occupying channel
bandwidth.

In time division duplex (TDD) systems, two-way communication is
carried out over the same frequency band in both directions. This means
the propagation channel matrices seen from the two sides are each oth-
ers transpose. If the channel may be assumed constant for a long enough
period, the channel estimated from incoming data may also be used
when transmitting a reply. Hence, there is no need for feedback when
using TDD.

As FDD systems are more commonly used than TDD systems, we
assume that required channel information at the receiver implies the
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need for feedback information, in which case it occupies valuable chan-
nel bandwidth.

In the case of the SMAL schemes, the the version based on instantan-
eous channel state information will require feedback information, while
the correlation-based approach can do without it as we expect the long-
term correlation statistics to change very slowly.

We expect the former to achieve a BER-performance at least as good
as the latter, but must include the drawback of having to feedback chan-
nel information. We observe that there is a trade-off between perform-
ance and complexity that must be taken into account when evaluating
the results.

4.3.4 Instantaneous pattern optimisation

Assume instantaneous channel information is available at the transmit-
ter, that is; we know the channel H and may generate the space-time
coded H̃(pk). Then we may find pk0 by substituting (4.1) into (4.23). We
choose pk0 such that

pk0 := arg
(

max
pk

(
σ 2
min(H̃(pk))

d2
min
N

))

:=arg
(

max
pk

(
σ 2
min(H̃(pk))

))
,

(4.24)

where σmin(H̃(pk)) is the minimum singular value of the space-time
coded channel H̃(pk).

In other words, we choose the pattern pk0 that offers the largest
squared minimum singular value of all the possible H̃(pk). That the
minimum singular value is relatively large secures some quality even in
the most heavily faded channel.

For each update in the channel state information, the apply the cri-
terion in (4.24) to select a new pattern pk0 . This is done by building the
space-time coded channel matrix H̃(pk) for all k ∈ [1, PN], performing a
singular value decomposition (SVD) on it and then applying the criterion
to find the best pattern pk0 . We refer to this as the instantaneously op-
timised or instantaneous SMAL.

4.3.5 Performance evaluation of the instantaneous SMAL-version

Through simulations, we have obtained separate BER performance-results
for all the PN patterns, assumed fixed over time. For the same set-
tings, we have also tested the instantaneously optimised SMAL and a
non-optimised scheme based on a random pattern choice are given in
the same way. The latter picks a random pattern for each new realisa-
tion of the channel matrix, yielding a performance equal to the average
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Figure 4.3: BER results for 3 patterns fixed over time, random pattern
selection and the instantaneous SMAL, N = M = 4, r = 0.29

of all the patterns pk, k ∈ [1, PN], where we remember that PN is the
number of non-trivially equivalent patterns for a given N. For example,
given 4 transmit antennas, the random approach gives the same result
as averaging the performance of patterns p1, p2 and p3.

We consider two different levels of correlation, one low and one high.
The neighbouring element correlation coefficients, see (2.39) for a defin-
ition, are given as r = 0.29 and r = 0.90. Also, we employ two sets of
antenna arrays, both N =M = 4 and N = M = 6.

For the N = M = 4 case, there are only P4 = 3 patterns, and we plot
them together with the random and the instantaneous SMAL, all 5 curves
in one figure.

On the other hand, N = M = 6 yields P6 = 11 patterns. Hence, in
that case we rather depict only the instantaneous SMAL and the random
pattern selection. For reference, the respective BER results of the P6 = 11
fixed patterns are moved to appendix A.3. The plot for low correlation is
given in figure A.1, while the high correlation results is shown in figure
A.2.

The results are generated from simulations using N = M = 4, a block
size of 106 bits per channel iteration, averaged over 1000 channel real-
isations. The bits are modulated to complex symbols using the QPSK
modulation scheme.
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Figure 4.4: BER results for random pattern selection and the instantan-
eous SMAL, N = M = 6, r = 0.29
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Figure 4.5: BER results for 3 patterns fixed over time, random pattern
case and the instantaneous SMAL, N =M = 4, r = 0.90
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Figure 4.6: BER results for random pattern selection and the instantan-
eous SMAL, N = M = 6, r = 0.90

By referring to the legends in the figures we observe that the optimal
approach achieves the lowest BER in both cases, as was expected. How-
ever, the degree of improvement over the performance curves of the
fixed pattern differs:

Low-level correlation, r=0.29

BER-results for the case of low correlation r = 0.29 is plotted against the
SNR in figures 4.3 and 4.4, for N = M = 4 and N =M = 6, respectively.

We observe that all three patterns for N = M = 4 yield approxim-
ately the same results, hiding the average curve between them. It is also
possible to refer to the N = M = 6 settings, figure A.1 in the appendix,
which confirms this observation.

For both antenna settings, the time optimised case is better than the
random approach and all the patterns. We compare the former two; the
time optimised SMAL and the random pattern selection. The improve-
ment of the former over the latter at a target bit-error rate of 10−4 is
about 2 dB with N = M = 4 and over 3 dB with N = M = 6.

This tells us that there is a significant potential for improvement
using the instantaneous SMAL scheme for low correlation, especially as
the gain offered by the separate patterns is much less, even for the best
patterns.

High-level correlation, r=0.90
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Figures 4.5 and 4.6 show results given the same two antenna settings,
but for a high level of correlation r = 0.90.

In the case of heavily correlated fading, we observe that the bit-error
rates for all the curves are higher than for low correlation, as expected.
For N = M = 4, the instantaneous SMAL is about 5 dB better than the
random SMAL at a BER of 10−3, and we expect a similar result at the
target BER of 10−4.

However, we also see that the instantaneous SMAL has a perform-
ance curve almost equivalent to that of pattern p1, telling us that this is
almost always the pattern, for every new channel realisation. The reason
is that long-term correlation structure takes over possible short-term
variations and intantaneous correlation.

For N = M = 6, we observe that the instantaneous SMAL has a much
steeper slope than the random pattern, leading it towards lower BER-
values faster.

In figure 4.5 (and A.2 for reference), we observe a greater spread of
BER curves for the PN fixed patterns, the results are not similar as they
are for low correlation. This means that some patterns yield much better
BER performance than others, in some cases close to the instantaneous
SMAL version.

We conclude that for both high- and low-level correlation, the instant-
aneous SMAL scheme performs better than using any of the patterns
fixed over time. However, we observe that the instantaneous SMAL is es-
pecially useful at low correlation levels, while at high correlation levels
choosing the best fixed pattern works just as well.

The question then becomes:

• How do we decide which pattern is the best over time?

The idea is that with such knowledge we may transmit with this best
pattern fixed over time, regardless of instantaneous channel state in-
formation. This question is of highest importance when the average
correlation is strong.

In fact, the SMAL pattern optimization based on instantaneous chan-
nel state information may not always be the most sensible approach,
when both performance and complexity are considered. On this back-
ground, we move on to the task of developing a criterion for choosing
the best pattern based on long-term statistics.

4.3.6 Pattern optimisation based on correlation

This section is devoted to finding the best pattern based only on long-
term statistics, such as the average correlation. Our approach is to base
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the optimisation on the ’average behaviour’ of the channel. We will refer
to this approach as the correlation-based SMAL.

We quickly note that to replace the exact expression for H̃ with an
average value is not rewarding. We remember that the channel coeffi-
cients of H0 are complex, random numbers with zero mean. The same
goes for the coefficients of H and H̃(pk), so the expected value of H̃(pk)
is a zero-matrix. So, in the following, we attempt other ways of finding
which pattern can be expected to yield the maximum σ 2

min.

A singular value decomposition (SVD) allows a decomposition of H̃(pk)
into

H̃(pk) = UΣVH (4.25)

Because U and V are unitary matrices, it is clear that

H̃(pk)H H̃(pk) =VΣ2VH

H̃(pk) H̃(pk)H =UΣ2UH,
(4.26)

which are two eigenvalue decompositions, rather than SVDs. The di-
agonal matrix Σ2 contains the common eigenvalues of H̃(pk)HH̃(pk)
and H̃(pk)H̃(pk)H , which are identical to the squared singular values
of H̃(pk). Evidently, the squared minimum singular value we are inter-
ested in may also be found from the these eigenvalue decompositions,
and the evaluation in (4.24) yields the same result as

pk0 :=arg max
pk

[
λmin

(
H̃(pk)HH̃(pk)

)]

:=arg max
pk

[
λmin

(
H̃(pk)H̃(pk)H

)] (4.27)

that is; maximising the minimum eigenvalue of either H̃(pk)HH̃(pk) or
H̃(pk)H̃(pk)H .

However, the assumption is now that we do not have access to any
instantaneous channel matrices, so we rather attempt to maximise the
minimum eigenvalues of the averages of H̃(pk)HH̃(pk) or H̃(pk)H̃(pk)H ,
as given by the expected value. These averages are not necessarily equal,
and we may choose pk0 such that

pk0 := arg max
pk

[
λmin

(
E
(
H̃(pk)HH̃(pk)

))]
(4.28)
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or, a possibly different pattern by using

pk0 := arg max
pk

[
λmin

(
E
(
H̃(pk)H̃(pk)H

))]
. (4.29)

To evaluate the criteria in (4.28) and (4.29), we use the expression for
the combined channel matrix H̃(pk), given in (4.19).

Before continuing on to the evaluation of expectation, it is useful to
determine the expected value of some products that will be needed later.
Two independent, circular complex Gaussian random coefficients h1 and
h2 from H0, have mean µ and standard deviation σ given as

(
h1, h2

) ∼ CN (µ,σh) = CN (0,1)

E(h1h2) = E(h1)E(h2) = 0

E(h1h1) = E
(<{h}2 + i · <{h}={h} − ={h}2)

= 1
2
σ 2
h + 0− 1

2
σ 2
h = 0

E(h∗1h1) = E
( |hij|2

) = E(<{h}2 +={h}2)

= σ 2
h = 1

(4.30)

The results above assumes that the coefficients are complex numbers,
where the real and the imaginary parts are independent, but have the
same variance. The conclusion is that the only non-zero contribution
arises when we look at the expectation of the product of a coefficient
with its own complex conjugate; the squared complex norm.

The expected values of H̃(pk)H̃H(pk) and H̃H(pk)H̃(pk)

In this section, we study the expectations

E
(
H̃(pk)H̃H(pk)

)
and

E
(
H̃H(pk)H̃(pk)

)
,

(4.31)

and express them as functions of the correlation, which is assumed to
be known at the transmit side.

The idea is to perform an eigenvalue decomposition on the result. It
is worth noting that even though the eigenvalues of H̃(pk)H̃H(pk) and
H̃H(pk)H̃(pk) are the same, so that (4.27) holds, the eigenvalues of the
two expressions in (4.31) are not necessarily equal.

In fact, we will find that the evaluation of the first expression

E
(
H̃(pk)H̃H(pk)

)
(4.32)
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is fruitless for the SMAL scheme. The reason is that (4.32) is found not
to depend on the choice of pattern, which makes it useless as a selection
criterion. The development of this result is moved to appendix (A.2).

However, E
(
H̃H(pk)H̃(pk)

)
yields a useful result, given in lemma 1.

Next, the derivation is shown. We then study the obtained criterion and
compare it to the one based on instantaneous channel information.

Lemma 1 The expectation E(H̃H(pk)H̃(pk)) is given as

E(H̃H(pk)H̃(pk)) = M
(
I(p1

k)
TRtI(p1

k)+GT I(p2
k)
TRtI(p2

k)G
)

Derivation
Before evaluating the expected value of H̃H(pk)H̃(pk), we simplify the
expression. We recall (4.19), and use it to substitute for H̃(pk), obtaining

H̃H(pk)H̃(pk) =
(
Ir1
√

RrH0
√

RtI(p1
k)+ Ir2

√
RrH

∗
0

√
RtI(p2

k)G
)H·
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k)G
)
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T
HH0
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T
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T
HT0
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T
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·
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Ir1
√

RrH0
√

RtI(p1
k)+ Ir2

√
RrH

∗
0

√
RtI(p2

k)G
)

(4.33)
From section 3.2, we recall that the correlation matrices Rt and Rr are
symmetric. Simple linear algebra will show that this also apply to the
square roots, so that

√
Rt
T =

√
Rt, and

√
Rr
T =

√
Rr

By using this result to rewrite (4.33), we arrive at

H̃H(pk)H̃(pk) =
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H
0
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Rr I

T
r1 +GT I(p2

k)
T√RtH

T
0

√
Rr I

T
r2

)
(
Ir1
√

RrH0
√

RtI(p1
k)+ Ir2

√
RrH

∗
0

√
RtI(p2

k)G
)

= I(p1
k)
T√RtH

H
0

√
Rr I

T
r1Ir1

√
RrH0

√
RtI(p1

k)+
I(p1

k)
T√RtH

H
0

√
Rr I

T
r1Ir2

√
RrH

∗
0

√
RtI(p2

k)G+
GT I(p2

k)
T√RtH

T
0

√
Rr I

T
r2Ir1

√
RrH0

√
RtI(p1

k)+
GT I(p2

k)
T√RtH

T
0

√
Rr I

T
r2Ir2

√
RrH

∗
0

√
RtI(p2

k)G
(4.34)
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The matrices Ir1 and Ir2 are not influenced by the choice of pattern,
they are always as shown in equation (4.20). By studying these matrices,
it is clear that the following identities hold:

ITr1Ir1 = ITr2Ir2 = I, and ITr1Ir2 = ITr2Ir1 = 0

By incorporating this into the expression for H̃H(pk)H̃(pk), the second
and third parts of the sum equals 0, and the simplified result is given by

H̃H(pk)H̃(pk) =I(p1
k)
T√RtH

H
0 RrH0

√
RtI(p1

k)+
GT I(p2

k)
T√RtH

T
0 RrH

∗
0

√
RtI(p2

k)G (4.35)

This approach seems to hold some promise, so we move on to the
task of studying the expected value.

E(H̃H(pk)H̃(pk)) = E
(
I(p1

k)
T√RtH

H
0 RrH0
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(4.36)

Now, E
(
HH0 RrH0

)
and E

((
HH0 RrH0

)T)
are the only non-deterministic

factors left in the expression. We evaluate the matrix product HH0 RrH0,
of dimensions N×N. The entry in the kth column and the lth row of the
correlation matrix Rr is denoted rkl. With this notation, the coefficient
in the mth row and nth column of HH0 RrH0 may be written as the sum

M∑

k=1

h∗km
( M∑

l=1

rklhln
) =

M∑

k=1

M∑

l=1

rklh∗kmhln.

From (4.30), we know that the expectation of two independent chan-
nel coefficients is zero, so the only cases for which the above expression
has a non-zero expected value is when k = l and m = n, i.e. along the
main diagonal. Recalling that E(h∗ijhij) = 1, we see that

E
( M∑

k=1

M∑

l=1

rklh∗kmhln
)
=

M∑

k=1

rkkE
(
h∗kkhkk

) = M
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The last equality follows from the fact that Rr is a symmetric matrix,
and that the values the main diagonal are all equal to 1.

After this, the whole expression from (4.36) may be rewritten to the
simpler form

E(H̃H(pk)H̃(pk)) =M
(
I(p1

k)
TRtI(p1

k)+GT I(p2
k)
TRtI(p2

k)G
)
, (4.37)

where all factors are deterministic and may be evaluated without any
channel realisations. This is the postulated result in Lemma 1, and the
derivation is concluded. �

Performance criterion of correlation-based SMAL

Now, the criterion of the correlation-based SMAL scheme, presented in
(4.29), may be rewritten. Given the result in (4.37), we pick the pattern
pk0 that satisfies

pk0 := arg max
pk

[
λmin

(
I(p1

k)
TRtI(p1

k)+GT I(p2
k)
TRtI(p2

k)G
)]

(4.38)

We note that the choice of pattern depends on the uncorrelated chan-
nel matrix H0, the transmit correlation in Rt and the antenna assignment
pattern pk, the latter through the matrices I(p1

k), I(p2
k) and G.

In (4.37), the contribution from the correlation on the receive side
is only a constant factor M , and does not change the choice of pattern.
Therefore, it is not included in (4.38).

That the receive side is unimportant in the choice of the best SMAL
transmit pattern intuitively seems correct, as the assignments take place
on the transmit side of the channel. The receiver registers a sum of
all the transmitted signals, regardless of how they were mapped to the
antennas before transmission.

4.3.7 Performance evaluation of the correlation-based SMAL

Selection of best pattern

Given the criterion in (4.38), we choose to space-time code our sym-
bols according to the pattern with the largest minimum eigenvalue of
E
(
H̃H(pk)H̃(pk)

)
for k ∈ [1, PN].

This means the behaviour of the correlation-based SMAL follows the
ordering of these minimum eigenvalues, which we plot against an in-
creasing correlation level, one curve for each pattern. Figure 4.7 depicts
the N = 4 case while the P6 = 11 curves in figure 4.8 represent the
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patterns when N = 6. The correlation-based SMAL is, as noted earlier,
independent of the number of receive antennas.

We consider the correlation-based SMAL at our chosen levels of cor-
relation, namely r = 0.29 and r = 0.90, for the case of 4 transmit an-
tennas. At r = 0.29, the chosen pattern is p3, while p1 is the best at
r = 0.90.

The case of 6 transmit antennas yields a more crowded plot, because
there are now 11 non-trivially equivalent patterns to choose from. All the
same, some patterns still yield higher eigenvalues of E

(
H̃H(pk)H̃(pk)

)

than others. At r = 0.29, pattern p4 is chosen as the best. Although it is
hard to see clearly, magnification of the figure shows that p5 is the best
at r = 0.9.1

We observe that for very high or low levels of correlated fading, the
different patterns yield more similar results. At low correlation, there is
little difference between the patterns because the entries of the uncoded
channel matrix H are independent and spatial transmit patterns are ir-
relevant. The minimum eigenvalues under such conditions are relatively
high. At a high level of correlation, the ill-conditioned H results in very
low minimum eigenvalues of E

(
H̃H(pk)H̃(pk)

)
.

First, by referring to figures 4.3, 4.5, A.1 and A.2 we observe that the
correlation-based SMAL really does pick the best pattern at the correla-
tion levels r = 0.29 and r = 0.90, with respect the BER.

Performance gain of correlation-based SMAL

Next, we consider the gain achieved when using the instantaneous SMAL
compared to the previously mentioned random pattern selection, per-
formed for each channel realization.

Low-level correlation, r=0.29

For r = 0.29, a low level of correlated fading, we show the performance
gains of correlation-based SMAL over random pattern selection in figure
4.9 for N = M = 4 and in figure 4.10 for N =M = 6.

We observe that in the former case, there is no difference between
the correlation-based SMAL and the random approaches. This is reason-
able because we recall from figure 4.3 that all three patterns (and their
average) yield the same results.

When N = M = 6, the gain is larger, but no more than 2 dB at the
target BER of 10−4.

High-level correlation r=0.90

In the case of r = 0.90, we show the performance gains of correlation-
based SMAL over random pattern selection in figure 4.11 for N = M = 4
and in figure 4.12 for N = M = 6.

1This is verified in a close-up shown in figure A.3.
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Figure 4.9: BER results for random pattern and correlation-based SMAL
(pattern p3 chosen), N = M = 4, r = 0.29
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Figure 4.10: BER results for random pattern and correlation-based SMAL
(pattern p4 chosen), N = M = 6, r = 0.29
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Figure 4.11: BER results for random pattern and correlation-based SMAL
(pattern p1 chosen), N =M = 4, r = 0.90

In general, we observe a greater gain here, although the overall per-
formance has deteriorated due to increased correlation.

For N = M = 4, pattern p1 is chosen and the gain at BER = 10−3 is
between 4 and 5 dB. We expect similar results at the target BER of 10−4.

When N = M = 6, the correlation-based SMAL transmits with the
pattern p5 and while it is hard to evaluate any gain properly at such high
BER, we observe that the best pattern is a lot better than the average, and
also with a steeper curve down towards lower BER-results.

4.3.8 Comparison between the instantaneous and the correlation-
based SMAL

From the previous sections on instantaneous and correlation-based SMAL,
we have developed models and studied the performance gains of two
ways to decide which is the best transmit pattern. Now is the time to
compare the schemes, and we recall the performance/complexity tradeoff
discussed in section 4.3.3. We expect the instantaneous SMAL to out-
perform the correlation-based version, but at the cost of increased com-
plexity and channel bandwidth being occupied to feedback channel state
information to the transmitter.

Low-level correlation, r=0.29
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Figure 4.12: BER results for random pattern and correlation-based SMAL
(pattern p5 chosen), N = M = 6, r = 0.90

In figures 4.16 (for N = M = 4) and 4.16 (for N = M = 6), we observe
that the instantaneous SMAL is clearly better than the correlation-based
version for both sets of antennas. Both for N = M = 4 and N = M = 6
the gain of using the instantaneous approach is approximately 2 dB at
the target BER 10−4.

High-level correlation, r=0.90

When the level of correlated fading is high, there is not much gain to
achieve from using the instantaneous SMAL. This is seen from figure
4.15 for M = N = 4 and figure 4.16 for M = N = 6.

In fact, the performance curves for r = 0.90 are identical; the best
pattern over time (chosen by the correlation-based SMAL) has the same
BER-development as the instantaneous approach. For M = N = 4, we
recall from figure 4.5 that the three patterns have very different per-
formance.

For the case whenM = N = 6, the reference curves in figure A.2 show
that it is not only the chosen pattern p5 that has a low BER. A few other
curves lie quite close to the one for p5, and using the corresponding
patterns will also yield good performance, if not as good as with pattern
p5.

We conclude that there is no gain in using the instantaneous SMAL
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Figure 4.13: BER results for instantaneous SMAL and correlation-based
SMAL (pattern p3 chosen), N =M = 4, r = 0.29
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Figure 4.14: BER results for instantaneous SMAL and correlation-based
SMAL (pattern p4 chosen), N =M = 6, r = 0.29
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Figure 4.15: BER results for instantaneous SMAL and correlation-based
SMAL (pattern p1 chosen), N = M = 4, r = 0.90
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Figure 4.16: BER results for instantaneous SMAL and correlation-based
SMAL (pattern p5 chosen), N = M = 6, r = 0.90
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in the case of heavily correlated fading channels. Then, computational
capacity is better spent elsewhere than on keeping track of instantan-
eous channel state information. With knowledge of long-term correla-
tion statistics, equal performance gain over the random pattern selection
is achieved by choosing the best pattern over time.
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Chapter 5

Conclusion

MIMO systems are used to increase both the capacity and the quality
of wireless communication. Various algorithms presented here describe
different ways in which to exploit the spatial dimension offered. These
MIMO algorithms are often defined as belonging to one of two categor-
ies; either diversity-oriented transmission through space-time coding or
spatial multiplexing.

In MIMO diversity schemes the multiple antennas are used to combat
Rayleigh fading, in order to increase the quality as measured by the BER.
Spatial multiplexing transmits independent sub-streams of data on each
antenna, thereby increasing the data rate in a direct way.

So far, these approaches have been considered as competing, and
we are only beginning to understand the trade-offs between them. We
know that diversity schemes yield diminishing returns when the number
of antennas is increased, and that spatial multiplexing with a simple
receiver lags in performance due to a lack of diversity. Through plots
of BER performance, we have confirmed this knowledge, which calls for
simultaneous use of both approaches on the same array.

Furthermore, we have also seen that the two approaches react dif-
ferently to correlated fading, in which case the BER performance of spa-
tial multiplexing breaks down more abruptly than that of the diversity
schemes. Because the level of correlated fading is assumed to differ
between antenna pairs in a practical array, this also calls for a specific
solution to combine multiplexing and diversity scheme over the transmit
array.

We address this call by presenting the SMAL scheme, which combines
Alamouti STC and SM in space, essentially by multiplexing independent
blocks of Alamouti space-time coded symbols.

SMAL is developed in two versions, both for the case when instantan-
eous channel state information is known at the transmitter and the case
when only long-term correlation statistics are available. The common
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idea of both is to transmit using the best of a number of antenna assign-
ment patterns, each representing a different mapping of the Alamouti
blocks to the antennas.

We have shown that both versions offer significant performance im-
provements over an approach that picks a random antenna assignment
pattern.

The instantaneously optimised SMAL chooses the best transmit pat-
tern for every new channel realisation. This approach is shown to be
especially useful for low levels of correlated fading. Given a neighbour-
ing correlation level of r = 0.29 and N =M = 4, the instantaneous SMAL
achieves a performance gain of 2 dB over the random pattern selection
at a target BER of 10−4. In the case of N = M = 4, the gain is found to be
over 3 dB.

When correlation is strong, the correlation-based SMAL works just as
well as the instantaneous approach, and their BER performance-curves
are very similar. The reason is that long-term correlation statistics dom-
inates over short-term variations.

For our tested levels of correlated fading, r = 0.29 and r = 0.90,
the statistical SMAL-version has been shown to select the best transmit
pattern. For r = 0.90 and a BER-level of 10−3 the gain of the correlation-
based SMAL over the random pattern selection is almost 5 dB for N =
M = 4, and we expect a similar result at the target BER of 10−4. The
improvement is substantial also for a system with N =M = 6.

We conclude that our proposed combination of SM and STC, the
SMAL scheme, offers substantial gain when transmission is done using
the best spatial pattern, either instantaneous or over time. This is partic-
ularly interesting under conditions of heavy correlation, when the pat-
tern optimisation offers ample gain based on long-term statistics alone.

5.1 Open problems

One obvious extension to the proposed SMAL is to develop a systematic
way of optimising the scheme. As the number of antennas increases, so
does the number of possible patterns, and it becomes too computation-
ally complex to find the best by investigating all of them. By being able
to determine which patterns are worth examination and which are not,
we could reduce the complexity substantially.

Another idea would be to to generalise the scheme, and optimise with
respect to the transmit data rate as well as the antenna assignment pat-
terns. Based on either instantaneous or statistical channel knowledge,
such a generalisation could find the best combination of schemes (pure
SM, a combination of SM and SMAL or others) and the best antenna map-
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ping. This involves an obvious increase in complexity, which must be
evaluated against the achievable gain.
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Appendix A

Miscellaneous

A.1 SMAL channel matrices, N = 6

H̃(p1) =
[

h1 h2 h3 h4 h5 h6

h∗2 −h∗1 h∗4 −h∗3 h∗6 −h∗5

]

H̃(p2) =
[

h1 h2 h3 h5 h4 h6

h∗2 −h∗1 h∗5 −h∗3 h∗6 −h∗4

]

H̃(p3) =
[

h1 h2 h3 h6 h4 h5

h∗2 −h∗1 h∗6 −h∗3 h∗5 −h∗4

]

H̃(p4) =
[

h1 h3 h2 h5 h4 h6

h∗3 −h∗1 h∗5 −h∗2 h∗6 −h∗4

]

H̃(p5) =
[

h1 h3 h2 h6 h4 h5

h∗3 −h∗1 h∗6 −h∗2 h∗5 −h∗4

]

H̃(p6) =
[

h1 h4 h2 h5 h3 h6

h∗4 −h∗1 h∗5 −h∗2 h∗6 −h∗3

]

H̃(p7) =
[

h1 h4 h2 h6 h3 h5

h∗4 −h∗1 h∗6 −h∗2 h∗5 −h∗3

]

H̃(p8) =
[

h1 h5 h2 h6 h3 h4

h∗5 −h∗1 h∗6 −h∗2 h∗4 −h∗3

]

H̃(p9) =
[

h1 h6 h2 h3 h4 h5

h∗6 −h∗1 h∗3 −h∗2 h∗5 −h∗4

]

H̃(p10) =
[

h1 h6 h2 h4 h3 h5

h∗6 −h∗1 h∗4 −h∗2 h∗5 −h∗3

]

H̃(p11) =
[

h1 h6 h2 h5 h3 h4

h∗6 −h∗1 h∗5 −h∗2 h∗4 −h∗3

]
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A.2 The expected value of H̃(pk)H̃H(pk)

We develop the expectation of H̃(pk)H̃H(pk), as an extended result be-
longing to section 4.3.6. We show that this result is not dependent on
the choice of antenna assignment pattern, which makes it useless as a
building block to develop a criterion for pattern selection.

H̃(pk)H̃(pk)H =(Ir1HI(p1
k)+ Ir2H∗I(p2

k)G)(Ir1HI(p1
k)+ Ir2H∗I(p2

k)G)
H

=(Ir1HI(p1
k)+ Ir2H∗I(p2

k)G)(I(p
1
k)
THH ITr1 +GT I(p2

k)
THT ITr2)

=Ir1HI(p1
k)I(p

1
k)
THH ITr1 + Ir1HI(p1

k)G
T I(p2

k)
THT ITr2+

Ir2H∗I(p2
k)GI(p1

k)
THH ITr1 + Ir2H∗I(p2

k)GGT I(p2
k)
THT ITr2

I(p1
k)I(p

1
k)
T =I(p2

k)I(p
2
k)
T = I, G = GT , GGT = I

H̃(pk)H̃(pk)H =Ir1HHH ITr1 + Ir1HI(p1
k)GI(p2

k)
THT ITr2+

Ir2H∗I(p2
k)GI(p1

k)
THH ITr1 + Ir2H∗HT ITr2

Substituting H = √
RrH0

√
Rt and using that

√
Rt and

√
Rr are real, sym-

metric matrices, yields

H̃(pk)H̃(pk)H = Ir1
√

RrH0RtH
H
0

√
Rr I

T
r1+

Ir1
√

RrH0
√

RtI(p1
k)GI(p2

k)
T√RtH

T
0

√
Rr I

T
r2+

Ir2
√

RrH
∗
0

√
RtI(p2

k)GI(p1
k)
T√RtH

H
0

√
Rr I

T
r1+

Ir2
√

RrH
∗
0 RtH

T
0

√
Rr I

T
r2

For simplicity, we define the deterministic product
√

RtI(p1
k)I(p

2
k)
T√Rt

as the deterministic matrix Ck, and rewrites the expression.

Ck =
√

RtI(p1
k)I(p

2
k)
T√Rt

H̃(pk)H̃(pk)H = Ir1
√

RrH0RtH
H
0

√
Rr I

T
r1 + Ir1

√
RrH0CkH

T
0

√
Rr I

T
r2+

Ir2
√

RrH
∗
0 CTkHH0

√
Rr I

T
r1 + Ir2

√
RrH

∗
0 RtH

T
0

√
Rr I

T
r2

To study the expected value of H̃(pk)H̃(pk)H , we remember that the
expectation of a sum equals the sum of each part’s expectation. By also
moving out all deterministic parts, the expected value may be written as
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E
(
H̃(pk)H̃(pk)H

) =Ir1
√

Rr E
(
H0RtH

H
0

) √
Rr I

T
r1+

Ir1
√

Rr E
(
H0
√

RtI(p1
k)GI(p2

k)
T√RtH

T
0

) √
Rr I

T
r2+

Ir2
√

Rr E
(
H∗0

√
RtI(p2

k)GI(p1
k)
T√RtH

H
0

) √
Rr I

T
r1+

Ir2
√

Rr E
(
H∗0 RtH

T
0

) √
Rr I

T
r2

(A.1)

We know that H0RtH
H
0 = (H∗0 RtH

T
0 )T and I(p1

k)GI(p2
k)
T = (I(p2

k)GI(p1
k)
T )T .

E
(
H̃(pk)H̃(pk)H

) =Ir1
√

Rr E
(
H0RtH

H
0

) √
Rr I

T
r1+

Ir1
√

Rr E
(
H0CkH

T
0

) √
Rr I

T
r2+

Ir2
√

Rr E
(
H∗0 CTkHH0

) √
Rr I

T
r1+

Ir2
√

Rr E
(
(H0RtH

H
0 )
)T √

Rr I
T
r2

(A.2)

First, we concentrate on the first and last of the four terms, and find
the expected value

E
(
H0RtH

H
0

)
(A.3)

where a certain coefficient in themth row and nth column of the M ×M
matrix is given by

E
( N∑

k=1

hmk
( N∑

l=1

rklh∗ln
)) =

N∑

k=1

N∑

l=1

rkl E
(
hmkh∗ln

)
(A.4)

Recalling the results stated in equation (4.30), makes it clear that the
only non-zero sums will appear when m = n, i.e. along the diagonal. In
these sums, only the N terms when l = k will contribute, so the result is
that the expected value in the first term of E(H̃(pk)H̃(pk)H) is given by

E(H0RtH
H
0 ) =

N∑

k=1

rkk · I = NI. (A.5)

where I is the identity matrix. This result also holds for the expectation
in the fourth term, because

E(H∗0 RtH
T
0 ) =

(
E(H0RtH

H
0 )
T) = (E(H0RtH

H
0 )
)T = NI. (A.6)

Next, we move our attention to the more complicated second and
third terms; E(H0CkH

T
0 ) and E(H∗0 CTkHH0 ). We attempt to develop the

expected value of H0CkH
T
0 first. The coefficients in themth row and nth

column of E(H0CkH
T
0 ) may be written as the sum

97



E
( N∑

k=1

hkm
( N∑

l=1

cklhln
)) =

N∑

k=1

N∑

l=1

cklE
(
hkmhln

)
(A.7)

The coefficients ckl of Ck are taken out of the equation because they
are deterministic, assuming a pattern has been chosen. By recalling the
results stated in equation (4.30) once more, it is clear that the expecta-
tion in the above equation is always zero, for all values of k, l,m and n.
That result is also valid when the coefficients of H0 are complex conjug-
ated (as for E(H∗0 CTkHH0 )). If Ck =

√
RtI(p1

k)I(p
2
k)
T√Rt is substituted back

into the equation, the second and third terms of equation (A.1) are now
given by

E
(
H0
√

RtI(p1
k)I(p

2
k)
T√RtH

T
0

) = E(H∗0
√

RtI(p2
k)GI(p1

k)
T√RtH

H
0

) = 0
(A.8)

With the results from the above (A.6) and (A.8), the expected value of
H̃(pk)H̃(pk)H from equation (A.1), is simplified and now given by

E(H̃(pk)H̃(pk)H) = Ir1
√

RrNI
√

Rr Ir1 + 0+ 0+ Ir2
√

RrNI
√

Rr I
T
r2

= N
(
Ir1Rr I

T
r1 + Ir2Rr I

T
r2

)
,

(A.9)

a result that is not dependent on the particular pattern chosen, as both
Ir1, Ir2 and Rr are deterministic with respect to that.

A.3 Extra performance plots for the SMAL scheme

A.3.1 BER-results of fixed patterns over time, N = M = 6

In the plots in figures A.1 and A.2, all patterns are shown for the case
of N = M = 6, for the two chosen levels of correlation r = 0.29 and
r = 0.90. These plots are bases for the N = M = 6 plots shown in
section 4.3.

A.3.2 Best pattern for correlation-based SMAL, N = M = 6 and
r = 0.90

Figure A.3 shows that the pattern chosen by the correlation-based SMAL
at a correlation level between neighbouring elements of r = 0.90 is p5.
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Figure A.1: Fixed patterns, one curve for each, N = M = 6, r = 0.29.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

#bits=500004, #channels=1000, N=6, M=6, SMAL, qpsk, r=9.04e−01

SNR

B
E

R

, p1
, p2
, p3
, p4
, p5
, p6
, p7
, p8
, p9
, p10
, p11

Figure A.2: Fixed patterns, one curve for each, N = M = 6, r = 0.90.
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Appendix B

List of acronyms and
mathematical notations

B.1 List of acronyms

BLAST Bell Labs Space-Time

LOS Line of Sight

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MD MIMO diversity

MRC Maximum Ratio Combining

N-LOS Non Line of Sight

SIMO Single-Input Multiple-Output

SISO Single-Input Single-Output

SM Spatial Multiplexing

SMAL Spatial Multiplexing of ALamouti

STBC Space-time block code

STC Space-time code
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SVA The Singular Vector Approach

SVD Singular Value Decomposition

B.2 Mathematical notations and list of symbols

Notation

a,a,A notations for a scalar, a vector (boldface)
and a matrix (capital boldface)

ak the kth element of the vector a.

Akl the element in the intersection between
the kth row and the lth column of the matrix A.

U,Σ,V factors of a singular value decomposition of
the matrix A, A = UΣVH

a∗,a∗,A∗ the conjugate of the complex scalar a,
vector a or matrix A

aH ,AH the conjugate transpose of the complex
vector a or matrix A

aT ,AT the transpose of the vector or matrix A

A−1 the inverse of the square matrix A

A# the pseudo-inverse of the matrix A

‖a‖2 the length/norm of the vector A, either

complex: ‖A‖2 =
√
AHA =

√
a∗1a1 + . . .+ a∗nan

or

real: ‖A‖2 =
√
ATA =

√
a2

1 + . . .+ a2
n .

E(x) = µx the mean or expected value of a random
variable x

E(|x|2) = σ 2
x the variance of a random variable x
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σx the standard deviation of a random variable x

List of common symbols

N number of transmit antennas
M number of receive antennas
s, s,S symbol (scalar, vector, matrix)
y,y,Y received symbol (scalar, vector, matrix)
h,h,H channel coefficient (scalar, vector, matrix)
v,v,V noise symbol (scalar, vector, matrix)
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Appendix C

Matlab simulations, background
and code

C.1 An overview of the simulation framework

This section presents the practical part of my thesis, which has been the
writing and testing of a simulator. The simulator is built to investig-
ate how different transmit/receive algorithms and multiple antennas on
both sides can improve the bit-error rate for given values of the signal-
to-noise ratio.

The simulator is developed and tested for all the algorithms de-
scribed in section 3.1 and the new SMAL scheme, presented in chapter
4. The simulator is written in Matlab, and all the function files are found
under C.2.

Regardless of what algorithm is used to transmit/receive the inform-
ation, the main logical structure is the same. This basis is shown in
listing C.1. Only the essential function calls are included, and, in these
calls, only vital parameters are shown. Hence, the figure does not repro-
duce exactly what happens in my simulation, but rather gives a general
overview.

Listing C.1: Overview of the program� �
% i n i t i a l i s e variables
% N,M #transmit and # receive antennas
% maxChannelIndex #independent channels per SNR
% n #b i t s transmitted per channel
% minSNR,maxSNR, deltaSNR defines the x−axis

SNR = minSNR: deltaSNR :maxSNR;
ber = zeros ( length (SNR ) , 1 ) ;
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for SNRindex = 1 : length (SNR)

errors = 0 ;
% variance of noise , given by current SNR
var_n = 1/ (power(10 , SNR( k ) / 1 0 ) ) ;

for j = 1 : maxChannelIndex

% H: channel matrix , poss ib ly correlated
H = channel_generator (N,M) ;

% b : n random bi t s
b = bitgenerator (n ) ;

% s : b i t s combined into symbols
s = modulator (b ) ;

% simulate transmission with algorithm ABC
% s_hat : array of received symbols
s_hat = transceiver_ABC ( s ,H, var_n ) ;

% b_hat : symbols of s_hat s l i c ed back to b i t s
b_hat = s l i ce r ( s_hat ) ;

% errors : # b i t errors between b and b_hat
errors = errors + BER_calculation (b , b_hat ) ;

end ;

ber ( SNRindex , 1 ) = errors / (maxChannelIndex∗n ) ;

end ;

% plot the BER−values ( y−axis ) for a l l SNR−values ( x−axis )
� �
As seen from the pseudocode, we start out by defining necessary vari-

ables, such as the number of antennas and the interval of SNR-values we
want to simulate for. For every SNR-value in dB, we determine the vari-
ance of the noise through the relation in (2.33). The channel coefficients
of H are random, complex numbers, so to ensure that their statistical
characteristics appear, we realize a large number of channels; typically
maxChannelIndex = 1000.

In section 2.1.3, the channel was defined as quasi-static, which is
modelled in the simulator by keeping it constant during transmission of
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n bits at the time. The bits are generated by the function bitgener-
ator.m, which returns an array of length n. In modulator.m the bits are
modulated into complex symbols and returned in the array s, which is
n/ log2(M) long. M is the number of points in the constellation of the
chosen modulation method, as described in section 2.1.1.

Given the symbol array s, the variance of the noise var_n (earlier
denoted σ 2

n) and the channel matrix H, we call upon a transmit function
to simulate wireless transmission using a certain pre-decided algorithm.
The simulation framework contains a separate m-file for each of the al-
gorithms that are implemented, and the choice of scheme is made before
running the program.

The transceiver-function builds the noise matrix N and the symbol
matrix S, as described by the corresponding transmit scheme, see the
algorithm presentations in section 3.1. Next, it simulates transmission
over the channel, given in general by equation 2.35. After reception, the
chosen transmit algorithm describes how to retrieve an approximation
of the original signal array, using knowledge of the channel, and this is
what is returned to the main-function in the array s_hat.

In slicer.m, the approximated symbol values are sliced to bits, after
which ber_computation.m computes the number of errors between the
original and the estimated bit arrays. For every SNR-value, the sum of
all the errors is normalized by the product of the number of channels
and the number of bits, yielding the bit-error rate (BER). A plot of the
BER-values on the y-axis versus the SNR-values on the x-axis illustrates
the result of a simulation, and such plots will be seen in the next section.

One point to be made about the simulations is that they are quite
time-consuming, at least if we desire to run it employing several anten-
nas, efficient algorithms or for high SNR-values, so as to produce very
low BER-results. The reason is that when errors are less likely to occur
(low BER), we need more iterations to produce properly averaged data,
which obviously takes more time. A reasonable rule-of-thumb is that the
number of bits n should approximate

1
BERexp

100

where BERexp is the lowest BER-value we expect. To help reduce the
time spent waiting for simulations to finish, the program is also adjus-
ted to be run in parallell on several computers, one for each SNR-value.
However, whether the simulations are run serially or in parallell is of no
consequence to the results.
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C.2 Matlab functions

function [ tx , rx , min_SNR , max_SNR, delta_SNR , . . .
distance , maxChannelIndex , c , d , exp_BER , . . .
lambda , combocase ] = parameters ;

% PARAMETERS Sett ing the parameters of a simulation
% PARAMETERS returns the value of important parameters
% to a main−function

% number of transmit and receive antennas
tx = 4 ;
rx = 4 ;

% SNR−values over which to run the simulation
min_SNR = 0 ;
max_SNR = 30;
delta_SNR = 2 ;

% wavelength lambda , corresponding to the
% frequency 2 GHz ( in use in 3G)
lambda = 1.5∗10^(−1);

% distance between antenna elements , measured in
% wavelengths lambda and in meters , respect ive ly
distance_coef = 1.0∗10^(−1);
distance = lambda∗distance_coef ;

% number of channel rea l i sa t ions to average over
maxChannelIndex = 1000;

% modulation scheme ; QPSK ( 2 ) or 16QAM ( 3 )
c = 2 ;

% choice of transmit scheme :
% divers i ty , transmit/ receive MRC or SVA (0 )
% spat ia l multiplexing (1 )
% the alamouti scheme (2xM case ) (2 )
% the SMAL scheme (3 )
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d = 3 ;

% expected BER i s used to determine the number of b i t s
% to be sent for channel real isat ion , see num_bits .m
exp_BER = 10^(−4);

% combocase , determines case of combining for SMAL
% for tx =4 : combocase = [ 1 , 3 ] , tx =6 : combocase = [1 ,11]
% combocase = −1 = > instantaneous adaptive se lec t ion
% combocase = 0 => random se lec t ion of a pattern
combocase = 0 ;
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%
% main : in charge of running the BER−simulations , non−paral le l
%
% tx : number of tranmitter antennas
% rx : number of receiver antennas
%

clear a l l ;
format short e ;

t_star t = clock ;

par = 0 ; % not run in paral le l
num_SNR = −1; % irrelevant , only useful when run in paral le l

[ values_per_SNR , errors , SNR , total , maxChannelIndex , . . .
tx , rx , c , d , distance , lambda , Rt , Rr , avg_sing_val , . . .
combocase , descr ] = main_common( par , num_SNR) ;

min_SNR = SNR ( 1 ) ;
max_SNR = SNR( length (SNR ) ) ;
delta_SNR = (max_SNR−min_SNR ) / ( length (SNR)−1);

db_impr = 10∗log10 ( avg_sing_val ) ;
disp ( db_impr ) ;

t_end = etime ( clock , t _s tar t ) ;
t_end = t_end / ( (max_SNR−min_SNR)/ delta_SNR + 1 ) ;

% plot
fi lnavn = sprintf ( ’ data_%s_%d_%d_%d_%d_%d_%d . mat ’ , descr , total , . . .

maxChannelIndex ,max_SNR , delta_SNR , tx , rx ) ;

save ( filnavn , ’SNR ’ , ’ values_per_SNR ’ , ’ errors ’ , ’min_SNR ’ , . . .
’max_SNR ’ , ’ delta_SNR ’ , ’ tota l ’ , ’maxChannelIndex ’ , ’ tx ’ , . . .
’ rx ’ , ’ c ’ , ’d ’ , ’ distance ’ , ’ lambda ’ , ’ Rt ’ , ’Rr ’ , ’db_impr ’ , . . .
’ t_end ’ , ’ par ’ , ’combocase ’ ) ;
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function main_parallel l (num_SNR)

%
% main_parallel : runs the BER−simulations for a
% given SNR−value
%
% tx : number of tranmitter antennas
% rx : number of receiver antennas
%
% 0 <= num_SNR <= N−1

format short e ;

t_star t = clock ;

% set t ing the random seed to something different ,
% ensuring random numbers on a l l computers
num = sum(100∗clock ) ;
rand ( ’ state ’ , num) ;
randn ( ’ state ’ , num) ;

par = 1 ; % run in paral le l

[ values_per_SNR , errors , SNR , total , maxChannelIndex , . . .
tx , rx , c , d , distance , lambda , Rt , Rr , avg_sing_val , . . .
combocase , descr ] = main_common( par , num_SNR) ;

min_SNR = SNR( 1 ) ;
max_SNR = SNR( length (SNR ) ) ;
delta_SNR = (max_SNR−min_SNR ) / ( length (SNR)−1);

t_end = etime ( clock , t _s tar t ) ;

% plot
numFile = num_SNR;
value_curr_SNR = values_per_SNR ;
fi lnavn = sprintf ( ’comb_%s_%d_%d_%d_%d_%d_%d_%d .mat ’ , . . .

descr , total , maxChannelIndex ,max_SNR , . . .
delta_SNR , tx , rx , numFile ) ;

save ( filnavn , ’ value_curr_SNR ’ , ’ errors ’ , ’min_SNR ’ , . . .
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’max_SNR ’ , ’ delta_SNR ’ , ’ tota l ’ , ’maxChannelIndex ’ , . . .
’ tx ’ , ’ rx ’ , ’ c ’ , ’d ’ , ’ distance ’ , ’ lambda ’ , ’ Rt ’ , ’Rr ’ , . . .
’ avg_sing_val ’ , ’ t_end ’ , ’combocase ’ ) ;
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function [ values_per_SNR_ , errors , SNR , total , maxChannelIndex , tx , rx , . . .
c , d , distance , lambda , Rt , Rr , avg_sing_val , combocase , descr ] = . . .

main_common( par , num_SNR) ;

%
% Runs the main loops of the program , as shown in the pseudocode
%

% run the parameters routine , defining and i n i t i a l i z i n g important variables
[ tx , rx , min_SNR , max_SNR, delta_SNR , distance , maxChannelIndex , . . .
c , d , exp_BER , lambda , combocase ] = parameters ;

SNR = min_SNR : delta_SNR :max_SNR;

i f par == 0
startIndexSNR = 1 ;
maxIndexSNR = length (SNR ) ;

else
startIndexSNR = num_SNR+1;
maxIndexSNR = startIndexSNR ;

end ;

% default value for normalizing the channel matrix ; to be used when
% computing singular values
tx_sing = tx ;
C_albl = 0 ;

% decide on function (−name) to use for transceiving data
i f d == 0

i f tx == 1
fname = sprintf ( ’ transceiver_RxMRC ’ ) ;
funcdescr = sprintf ( ’RxMRC ’ ) ;

else i f rx == 1
fname = sprintf ( ’ transceiver_TxMRC ’ ) ;
funcdescr = sprintf ( ’TxMRC’ ) ;

else
fname = sprintf ( ’ transceiver_SVA ’ ) ;
funcdescr = sprintf ( ’SVA ’ ) ;

end ;
else i f d == 1

fname = sprintf ( ’ transceiver_BLAST ’ ) ;
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funcdescr = sprintf ( ’BLAST ’ ) ;
else i f d == 2

fname = sprintf ( ’ transceiver_ALAMOUTI ’ ) ;
funcdescr = sprintf ( ’ALAM’ ) ;
i f tx ~= 2

disp ( ’OBS : Fe i l ! Alamouti fungerer kun med 2 transmit antennas . ’ ) ;
end ;

else i f d == 3

H_manip = zeros(2∗rx , tx ) ;

i f combocase == −1
% simulation should choose antenna pattern based on channel
% real izat ions , so may change

mod_dist = eucldist_modulation ( c ) ;
% finding a l l poss ib le permutations of combinations
allperms = permutation_matrix ( tx ) ;

stats = zeros ( size ( allperms , 1 ) , 1 ) ;
t1_index = zeros (1 , tx ) ;
t2_index = zeros (1 , tx ) ;

fname = sprintf ( ’ transceiver_SMAL ’ ) ;
funcdescr = sprintf ( ’SMAL%s ’ , ’ adapt ’ ) ;

else i f combocase == 0
% simulation should choose a random pattern
fname = sprintf ( ’ transceiver_SMAL ’ ) ;
funcdescr = sprintf ( ’SMAL%s ’ , ’ rand ’ ) ;

% finding a l l poss ib le permutations of combinations
allperms = permutation_matrix ( tx ) ;

t1_index = zeros (1 , tx ) ;
t2_index = zeros (1 , tx ) ;

else
fname = sprintf ( ’ transceiver_SMAL ’ ) ;
funcdescr = sprintf ( ’SMAL%d ’ ,combocase ) ;

C_albl = get_pattern ( combocase , tx ) ;
end ;

end ;
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print_dist = distance /lambda ;
corrdescr = sprintf ( ’ %.02e ’ , pr int_dist ) ;

i f c == 1
moddescr = sprintf ( ’bpsk ’ ) ;

else i f c == 2
moddescr = sprintf ( ’qpsk ’ ) ;

else i f c == 3
moddescr = sprintf ( ’16qam ’ ) ;

end ;

descr = sprintf ( ’%s_%s_%s ’ , funcdescr , corrdescr , moddescr ) ;
disp ( descr ) ;

[ Rt , Rr ] = correlation ( tx , rx , lambda , distance ) ;

% compute the number of b i t s we wi l l generate every time ,
% and how many we’ l l send each time in inner for−loop , to avoid
% s ta l l ing because matlab needs to swap
[n ,numTimes] = num_bits ( c , rx , tx , d , exp_BER , maxChannelIndex)
tota l = n∗numTimes

% Array to be plot ted at the end of the simulation
i f par == 0

values_per_SNR = zeros (1 , length (SNR ) ) ;
errors = zeros (1 , length (SNR ) ) ;

else
values_per_SNR = zeros ( 1 , 1 ) ;
errors = zeros ( 1 , 1 ) ;

end ;

% arrays keeping the bi ts , both original and computed
b = zeros (1 ,n ) ;
b_hat = zeros (1 ,n ) ;

%determining length of symbol array , based on coding parameter c
l = length_symbolarray ( c , length (b ) ) ;

% arrays keeping the symbols , both original and computed
l _arr = 1 : l ;
s = zeros (1 , l ) ;
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s_hat = zeros (1 , l ) ;

var_n = 0 ;
sing_vals = 0 ;

for k = startIndexSNR : maxIndexSNR

% compute the variance ( var_n ) of the noise ,
% given by the input argument snr , so that

var_n = 1/ (power(10 , SNR( k ) / 1 0 ) ) ;
errors_all_channels = 0 ;

for j = 1 : maxChannelIndex

% generate the channel
H = channel_generator ( tx , rx , c , Rt , Rr ) ;

i f d == 3 & combocase == −1
[ C_albl , index ] = get_pattern_inst (H, H_manip , . . .

allperms , . . .
mod_dist ) ;

stats ( index , 1 ) = stats ( index , 1 ) + 1 ;
else i f d == 3 & combocase == 0

[ C_albl , index ] = get_pattern_rand ( tx , rx , allperms ) ;
end ;

% compute and sum singular values
sing_vals = sing_vals+sing_val (H ∗ (1/ sqrt ( tx_sing ) ) ) ^ 2 ;

% extra loop , to l im i t swapping of memory
for q=1:numTimes

% generate the s ignals for transmission
b = bitgenerator (n ) ;

% modulate s ignals using scheme in c
s = modulator ( c , b , l _arr ) ;

% simulate transmission , feval ( ) i s s l i g h t l y slower
% than i f−tes t s , but more elegant .
s_hat = feval ( fname , rx , tx , s ,H, var_n , l , C_albl ) ;

116



% convert back to b i t s
b_hat = s l i ce r ( s_hat , c ,n ) ;

% compute BER and store in array
errors_all_channels = errors_all_channels + . . .

BER_calculation (b , b_hat ) ;
end ;

end ;

% errors_all_channels , average over a l l values
ber_percent = errors_all_channels / (maxChannelIndex∗tota l ) ;

i f par == 0
values_per_SNR (k ) = ber_percent ;
errors (k ) = errors_all_channels ;

else
values_per_SNR = ber_percent ;
errors = errors_all_channels ;

end ;

disp (SNR(k ) ) ;

end ;

i f d == 3 & combocase == −1
for l c =1:size ( stats , 1 )

stat=sprintf ( ’%s : %8d ’ ,num2str ( allperms ( lc , : ) ) , stats ( l c ) ) ;
disp ( stat ) ;

end ;
%size ( allperms )
%sum( s tats )

end ;
i f par == 0

avg_sing_val = sing_vals / (maxIndexSNR∗maxChannelIndex ) ;
else

avg_sing_val = sing_vals /maxChannelIndex;
end ;

values_per_SNR_ = values_per_SNR ;
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function b = bitgenerator (n )
%
% BITGENERATOR Generates random bit−values
% BITGENERATOR(n ) Generates n random bi t s and returns
% them in array b
%

% generate n uniformly distr ibuted random numbers between 0 and 1

% round them off to 0 and 1 , poss ible to view them as b i t s
b = round ( rand (1 ,n ) ) ;
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function s = modulator ( c , b , l _arr )
%
% Generates n random bi t s and returns them in array b
%
% Maps the b i t s in array b to complex symbols ,
% using the coding scheme c ( e i ther QPSK, 16QAM or binary ) .
% The resu l t i s returned in the nx2 matrix s , n i s equal
% to the length of the bi t−array b and the two parts
% ( real and imaginary ) are stored in separate coloumns .
%
%
%

switch c
case 1
s = b ;

case 2
s = modulator_qpsk (b , l_arr ) ;

case 3
s = modulator_16qam (b , l_arr ) ;

otherwise
disp ( ’ Inval id coding scheme . ’ ) ;

end ;
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function s = modulator_qpsk (b , l_arr )
%
% qpsk : Maps b i t s to complex symbols ,
% using the modulating scheme QPSK
%
% The values in array b ( the b i t s ) i s f i r s t
% mapped and stored in b1 as fol lows :
% 0 i s mapped to −1 and 1 i s mapped to 1
%
% Then log2 (M) entr ies from b i s mapped to a
% complex symbol (M = 4 , so 2 b i t s gives one symbol ) ,
% in the fol lowing way:
% m( k ) = b1(2∗k−1) + b1(2∗k)∗ i ;
%
%
%

b1 = 2∗b − 1;

s = ( b1(2∗ l_arr −1) + b1(2∗ l _arr )∗ i ) / sqrt ( 2 ) ;
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function s = modulator_16qam (b , l_arr )
%
% Maps b i t s to complex symbols , using the modulating scheme 16−QAM
%

M = 16;
bitsPerSymbol = log2 (M) ;

% 0000 : 1+ i
% 0001 : 1+3 i
% 0010 : 3+ i
% 0011 : 3+3 i

% 0100 : 1− i
% 0101 : 1−3 i
% 0110 : 3− i
% 0111 : 3−3 i

% 1000 : −1+ i
% 1001 : −1+3 i
% 1010 : −3+ i
% 1011 : −3+3 i

% 1100 : −1− i
% 1101 : −1−3 i
% 1110 : −3− i
% 1111 : −3−3 i

% Algorithm : Reorganize bitsPerSymbol b i t s at the time by
% switching b i t s number 2 and 3 . Then the f i r s t two b i t s
% and the las t two b i t s are both interpreted as fol lows :
% 0 1 : 3d
% 0 0 : d
% 10 : − d
% 11 : −3d

l = length ( l _arr ) ;

bit_mat = zeros ( l , bitsPerSymbol ) ;

b = b . ’ ;
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bit_mat = 2∗[−(b ( bitsPerSymbol∗( l_arr −1 ) + 1 ) ) , . . .
b ( bitsPerSymbol∗( l_arr −1 ) + 3 ) , . . .
−(b ( bitsPerSymbol∗( l_arr − 1 ) + 2 ) ) , . . .
b ( bitsPerSymbol∗( l_arr −1 ) + 4 ) ] + repmat ( [1 ,1 ,1 ,1 ] , l , 1 ) ;

s_ = bit_mat ( : , 1 ) .∗ bit_mat ( : , 2 ) + bit_mat ( : , 3 ) .∗ bit_mat ( : ,4 )∗ i ;

% Skalere , skal dele åp roten av average power , som er
% (summen av power for a l l e symboler fra 1 t i l 16)^(1/2)

avg_pow = 10;
s = ( s_ .∗(1/ sqrt ( avg_pow ) ) ) . ’ ;
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function [ Rt , Rr ] = correlation ( tx , rx , lambda , distance ) ;

%
% CORRELATION( tx , rx , lambda , distance ) returns the correlat ion
% matrices
%
% lambda i s the carrier wave−length
% distance i s the inter−element antenna distance
%

i f distance /lambda > 100 % regner over 100 som Inf
Rt = eye ( tx , tx ) ;
Rr = eye ( rx , rx ) ;

else

Rt=zeros ( tx , tx ) ;
Rr=zeros ( rx , rx ) ;

Posit ions_tx = 0 : distance : distance∗(tx−1);
Positions_rx = 0 : distance : distance∗(rx−1);

%generate correlat ion matrices

%%%%TX correlat ion matrix%%%%%%%%%%%%%%%%%%%%%%%

for k=1: tx

for l =1: tx

Rt (k , l )=bessel(0 ,2∗pi∗(Posit ions_tx (k)−Positions_tx ( l ) ) / lambda ) ;

end ;
end ;

%%%%RX correlat ion matrix%%%%%%%%%%%%%%%%%%%%%%%

for k=1: rx

for l =1: rx

Rr (k , l )=bessel(0 ,2∗pi∗(Positions_rx (k)−Positions_rx ( l ) ) / lambda ) ;

end ;
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end ;

end ;

124



function H = channel_generator ( tx , rx , c , Rt , Rr )
%
% CHANNEL_GENERATOR channel matrix
% CHANNEL_GENERATOR( tx , rx , c , Rt , Rr ) returns the correlated
% channel matrix
%
% c i s the choice of modulation scheme ( c=1 i s binary )

i f c == 1
H0 = randn ( rx , tx ) ;

else
H0 = ( randn ( rx , tx ) + randn ( rx , tx)∗ i ) / sqrt ( 2 ) ;

end ;

H = sqrtm ( Rr)∗H0∗sqrtm ( Rt ) ;
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function s_hat = transceiver_ALAMOUTI ( rx , tx , s ,H, var_n , l , C_albl )
%
% transceiver : Models a sending and receiving over a channel ,
% using the Alamouti scheme .
%
% rx : the number of transmitter antennas
% tx : the number of transmitter antennas
% s : signal to be sent
% h : channel matrix
% snr : Signal−to−Noise−Ratio

% H: rx∗tx
% s : l∗1 , l er antal l symboler som skal sendes
% y : rx∗l
% s_hat : 1∗ l
% wt : tx∗1 og wr : rx∗1

% using alamouti direct ly , we have [ y1 y3 ; y2 y4 ] ,
% where y1 and y3 are
% received at Rx1 − in time s l o t 1 and 2 ,
% and y2 and y4 are received at
% Rx2 .
% With the manipulated H used here , what we get
% i s rather y_ = [ y1;−y3∗;y2;−y4∗ ] , because we
% manipulate H and not the symbols . This i s
% corrected by using the same manipulated H−matrix
% to invert the system .
% y = H_ti lde ∗ s_mat + n ;
% s_hat = ( H_tilde ’∗y ) / div_norm ;
% know that we need to normalize with
% ( abs (h11)+abs (h12)+abs (h21)+abs (h22 ) )
% = > same as
% sum(sum( H_tilde ’∗H_ti lde ) ) / 2 = trace ( H_tilde ’∗H_ti lde )/2

% generating noise
n = ( randn ( rx∗2, l /2 ) + randn ( rx∗2, l /2)∗ i )∗sqrt ( var_n /2 ) ;
s_mat = reshape ( s , tx , l /2 ) ;

% scaling the channel matrix H, to maintain to ta l power equal 1 , although
% sending on tx transmit antennas
H = H.∗(1/sqrt ( tx ) ) ;
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% manipulating H into the right form
H_t2 = [ conj (H( : , 2 ) ) − conj (H( : , 1 ) ) ] ;
H_tilde = [H; H_t2 ] ;

div_norm = sum(sum(H.∗conj (H ) ) ) ;
s_hat = ( H_tilde ’ ∗ ( H_tilde∗s_mat + n ) ) / div_norm ;
s_hat = reshape ( s_hat ,1 , l ) ;

%Normal ALAMOUTI s tc
% s_coded = zeros (2 , l ) ;
% s_coded ( : , 1 : 2 : l −1) = s_mat ;
% s_coded (1 ,2 :2 : l ) = − conj ( s_mat ( 2 , : ) ) ;
% s_coded (2 ,2 :2 : l ) = conj ( s_mat ( 1 , : ) ) ;
% n = reshape (n , rx , l ) ;
% y=H∗s_coded + n ;
% factor = repmat ( [1 −1] , rx , 1 ) ; % know tx = 2
% s_hat = (H’∗y ( : , 1 : 2 : l −1) + ( factor .∗ f l i p l r (H) ) . ’∗ conj ( y ( : , 2 : 2 : l ) ) ) / . . .
% div_norm ;
% s_hat = reshape ( s_hat ,1 , l ) ;
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function s_hat = transceiver_BLAST ( rx , tx , s ,H, var_n , l , C_albl )
%
% transceiver : Models a sending and receiving over a channel .
% INDEPENDENT DATA ON ALL TRANSMIT ANTENNAS
%
% rx : the number of transmitter antennas
% tx : the number of transmitter antennas
% s : signal to be sent
% h : channel matrix
% snr : Signal−to−Noise−Ratio
%
%

% H : rx∗tx
% s : l∗1 , l er antal l symboler som skal sendes
% y : rx∗l
% s_hat : 1∗ l

num_transmits = floor ( l / tx ) ;

% generate random noise , s ta t . d i f ferent for every signal
n = ( randn ( rx , num_transmits ) + . . .

randn ( rx , num_transmits)∗ i )∗sqrt ( var_n /2 ) ;

% scaling the channel matrix h , to maintain to ta l
% power equal 1 , although sending on tx transmit antennas
H = H.∗(1/sqrt ( tx ) ) ;

% vektormetode
s_mat = reshape ( s , tx , num_transmits ) ; % tx∗num_transmits
y_mat = H∗s_mat + n ; % rx∗num_transmits

s_hat = pinv (H)∗y_mat ; % tx∗num_transmits
s_hat = reshape ( s_hat , 1 , l ) ;
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function s_hat = transceiver_RxMRC ( rx , tx , s ,H, var_n , l , C_albl )
%
% transceiver : Models a sending and receiving over a channel .
%
% rx : the number of receiver antennas
% tx : the number of transmitter antennas
% s : signal to be sent
% h : channel matrix
% snr : Signal−to−Noise−Ratio
%

% generate random noise , multiplying with sqrt ( var_n /2 ) to ensure
% 1 ) f i r s t that variance == 1 for the whole complex noise symbol
% by factor sqrt ( 1 / 2 ) , and then manipulating i t to
% 2 ) variance == var_n by factor sqrt ( var_n ) , the standard
% deviation .

% OBS sum( abs ( power (h , 2 ) ) ) = = h∗h ’ = h∗transpose ( conj (h ) )

n = ( randn ( rx , l ) + randn ( rx , l )∗ i )∗( sqrt ( var_n / 2 ) ) ;

s_hat = sqrt (H’∗H)∗s + (H’ / ( sqrt (H’∗H)) )∗n ;
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function s_hat = transceiver_TxMRC ( rx , tx , s ,H, var_n , l , C_albl )
%
% transceiver : Models a sending and receiving over a channel .
%
% rx : the number of transmitter antennas
% s : signal to be sent
% h : channel matrix
% snr : Signal−to−Noise−Ratio
%
%

% h : rx∗tx = 1∗ tx
% s : l∗1 , l er antal l symboler som skal sendes
% y : rx∗l
% s_hat : 1∗ l

% generate random noise , s ta t . d i f ferent for every signal
% naming the noise matrix y , for reuse of variables
% generated for every symbol to be sent
n = ( randn (1 , l ) + randn (1 , l )∗ i )∗sqrt ( var_n /2 ) ;

% No need to scale the channel matrix , automatically
% done when weighting symbols on transmit antennas

% simulate sending over the channel , received signal i s
% y = H∗w. ’∗ s + n ,
% where
% w. ’ = H’ / sqrt (H ∗ H’ )
% the weight array the s ignals are multipl ied by
% before transmit

% The demand i s that |w| ^ 2 = ( sqrt (w∗w’ ) ) ^ 2 = = 1 ;

wt = H’/ sqrt (H ∗ H’ ) ;

% what actually happens
%sw = wt∗s ;
%s_hat = H∗sw + n ;

% to save operations
wH = H∗wt ; % a scalar
s_hat = (wH ∗ s ) + n ;
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function s_hat = transceiver_SVA ( rx , tx , s ,H, var_n , l , C_albl )
%
% transceiver : Models a sending and receiving over a channel .
%
% rx : the number of transmitter antennas
% tx : the number of transmitter antennas
% s : signal to be sent
% H: channel matrix
% snr : Signal−to−Noise−Ratio

% H: rx∗tx
% s : l∗1 , l er antal l symboler som skal sendes
% y : rx∗l
% s_hat : 1∗ l
% wt : tx∗1 og wr : rx∗1

%H = (1/ sqrt ( tx ))∗H;

% Generating the transmit and receive weights
[U, S ,V] = svd (H) ;

% These vectors are normalized by the svd
wt = V( : , 1 ) ;
wr = conj (U ( : , 1 ) ) ;

% generate random noise , s ta t . d i f ferent for every signal
% naming the noise matrix y , for reuse of variables
n = ( randn ( rx , l ) + randn ( rx , l )∗ i )∗sqrt ( var_n /2 ) ;

% the normalization i s done to get s_hat values as
% close to s values as possible , but th i s i s not
% crucial for the s l i c e r ( without norm . , the
% symbols are jus t even further apart ) .
symb_fact = wr . ’ ∗ H ∗ wt ;
s_hat = ( symb_fact ∗ s + wr . ’ ∗ n ) ;
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function s_hat = transceiver_SMAL ( rx , tx , s ,H, var_n , l , C_albl )
%
% transceiver : Models a sending and receiving over a channel ,
% using a combination of the Alamouti STC and SM schemes .
%
% rx : the number of transmitter antennas
% tx : the number of transmitter antennas
% s : signal to be sent
% H: channel matrix
% snr : Signal−to−Noise−Ratio

% H: rx∗tx
% s : l∗1 , l er antal l symboler som skal sendes
% y : rx∗l
% s_hat : 1∗ l
% wt : tx∗1 og wr : rx∗1

% because of alamouti on 2 and 2 antennas
eff_spat ia l_d ivers i ty = tx /2;
num_transmits = l / eff_spat ia l_d ivers i ty ;

s_mat = reshape ( s , tx , l / tx ) ;

% scaling the channel matrix H, to maintain
% to ta l power equal 1 , although
% sending on tx transmit antennas
H = H.∗(1/sqrt ( tx ) ) ;

H_manip = zeros(2∗rx , tx ) ;

t1_index = C_albl { 1 } ;
t2_index = C_albl { 2 } ;
t2_len = length ( t2_index ) ;

% manipulating H into the right form
H_manip(1:2:2∗rx−1 , : ) = H( : , t1_index ) ;

H_manip(2:2:2∗rx , 1 : 2 : tx−1) = −conj (H( : , t2_index ( 1 : 2 : t2_len −1 ) ) ) ;
H_manip(2:2:2∗rx , 2 : 2 : tx ) = conj (H( : , t2_index ( 2 : 2 : t2_len ) ) ) ;

% generating noise that f i t s in s ize with the product H_manip∗s_mat
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n = ( randn(2∗rx , num_transmits / 2 ) + . . .
randn(2∗rx , num_transmits/2)∗ i )∗sqrt ( var_n /2 ) ;

y = H_manip ∗ s_mat + n ;
s_hat = pinv (H_manip)∗y ;

s_hat = reshape ( s_hat ,1 , l ) ;
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function b_hat = s l i ce r ( s_hat , c ,n )
%
% s l i c e r : Maps the values in s_hat to b i t s using MRC
% returns bi tvalues in b_hat
%
%

switch c
case 1
b_hat = sl icer_binary ( s_hat ) ;

case 2
b_hat = slicer_qpsk ( s_hat ) ;

case 3
b_hat = slicer_16qam ( s_hat ) ;

otherwise
disp ( ’ Inval id coding scheme . ’ ) ;

end ;
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function b_hat = slicer_qpsk ( s_hat , n )
%
% Takes the received symbols in s_hat and
% makes the decis ions on what b i t s they are ,
% s l i c e s them back to bitform and returns them
% in b_hat .
%
%

n_len = length ( s_hat )∗2;
b_hat_tmp = zeros (1 , n_len ) ;

u=1 :2 : ( n_len−1);

b_hat_tmp (u ) = real ( s_hat (1 , cei l (u / 2 ) ) ) ;
b_hat_tmp (u+1) = imag ( s_hat (1 , cei l (u / 2 ) ) ) ;

b_hat_tmp = b_hat_tmp ./ abs ( b_hat_tmp ) ;

b_hat = b_hat_tmp + abs ( ( b_hat_tmp−1)/2);
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function b_hat = slicer_16qam ( s_hat )
%
% Takes the received symbols in s_hat and makes the decis ions on
% what b i t s they are , s l i c e s them back to bitform and returns them
% in b_hat .
%
%

% Algorithm : Reorganize bitsPerSymbol b i t s at the time by
% switching b i t s number 2 and 3 . Then the f i r s t two b i t s
% and the las t two b i t s are both interpreted as fol lows :
% 0 1 : 3d
% 0 0 : d
% 10 : − d
% 11 : −3d

% That means ( going the other way)
% Know that 3 was normalized to .98487 , and 1 to .3162
% .98487 : 3 => 01
% −.98487 : −3 => 11
% .3162 : 1 => 00
% −.3162 : −1 = > 10

% Trick : S p l i t in real and imaginary parts , take sign ,
% and then round off , giving the fol lowing mapping :
% 0 : 0
% 1 : 1
% + : 0
% − : 1

M = 16;
bitsPerSymbol = log2 (M) ;
b_len = length ( s_hat ) ∗ bitsPerSymbol ;

tmp_real_sign = − .5∗(sign ( real ( s_hat ) )−1) ;
tmp_imag_sign = − .5∗(sign ( imag ( s_hat ) )−1) ;

abs_all = [ abs ( real ( s_hat ) ) abs ( imag ( s_hat ) ) ] ;
div_point = abs (mean( abs_all ) ) ;

% finding what side of the "mean value "
% ( in separate dimensions ) each point i s
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tmp_real = sign ( abs ( real ( s_hat ))−div_point ) ;
tmp_imag = sign ( abs ( imag ( s_hat ))−div_point ) ;

tmp_real = ( tmp_real+1)/2;
tmp_imag = ( tmp_imag+1)/2;

b_hat = zeros (1 , b_len ) ;
b_arr = 1 : bitsPerSymbol : b_len−(bitsPerSymbol−1);

b_hat (1 , b_arr ) = tmp_real_sign ;
b_hat (1 , b_arr +1)= tmp_imag_sign ;
b_hat (1 , b_arr +2)= tmp_real ;
b_hat (1 , b_arr +3)= tmp_imag;

b_hat = round ( b_hat . / ( b_hat + 0 . 0 0 1 ) ) ;
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function ber = BER_calculation (b , b_hat )
%
% BER_CALCULATION Calculates the BER for each transmission
% BER_CALCULATION( b , b_hat ) returns the number of dif ferences
% between the bi t−values in b and b_hat . The original b i t s
% are contained in b and b_hat holds recovered b i t s at the
% receive side .
%

% the b i t error rate ( BER ) i s the percentage of b i t s in error ,
% usually expressed as ten to a negative power . For example ,
% BER = 10^(−6) means that 1 out of 1 ,000 ,000 b i t s i s
% erroneously determined .

diff = b − b_hat ;

ber = sum( abs ( diff ) ) ;
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function allperms = permutation_matrix ( tx )

%
% cal l ing on permutate to generate a l l permutations ,
% returns them in permutation_matrix
%

antenna_array = 1 : tx ;

alam_pairsize = 2 ;
num_alamblocks = tx/alam_pairsize ;

pairs = nchoosek ( 1 : tx , 2 ) ;
num_pairs = size ( pairs , 1 ) ;

res=permutate ( antenna_array , pairs ) ;

[u , v ] = find ( res ( : , tx ) = = 0 ) ;
res (u , : ) = [ ] ;

allperms = res ;
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function patterns = permutate ( antenna_array , poss_pairs )

%
% generates a l l poss ib le patterns for SMAL given
% a l l permutations of two numbers between 1 and tx
%

curr_tx = length ( antenna_array ) ;
num_sp_comb = curr_tx − 1;
sp_combs_index = antenna_array (1 ,2 : curr_tx ) ;

sp_combs = [ antenna_array (1)∗ones (num_sp_comb , 1 ) . . .
sp_combs_index ’ ] ;

i f curr_tx == 2
num_patterns = 1 ;

else i f curr_tx == 4
num_patterns = 3 ;

else i f curr_tx == 6
num_patterns = 11;

else i f curr_tx == 8
num_patterns = 58;

else i f curr_tx == 10
num_patterns = 100;

end ;

patterns = zeros ( num_patterns , curr_tx ) ;

% cut−off
i f num_patterns == 1 & size ( poss_pairs ,1 ) ~= 0

patterns = poss_pairs ( 1 , : ) ;
else i f num_patterns == 1 & size ( poss_pairs ,1 ) == 0

patterns = [ ] ;
else

next_antenna_array = zeros (1 , curr_tx−2);
next_tx = curr_tx − 2;
num_next_poss_pairs = fac tor i a l ( next_tx ) / . . .

( f ac tor i a l ( next_tx−2)∗fac tor i a l ( 2 ) ) ;
next_poss_pairs = zeros ( num_next_poss_pairs , 2 ) ;

counter = 1 ;
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for sp = 1 :num_sp_comb

% finding the current s tar t pair
curr_sp = sp_combs ( sp , : ) ;

% finding the rest , poss ib le pairing pairs
ind_pairs = find ( ( curr_sp (1 ,1)~= poss_pairs ( : , 1 ) ) & . . .

( curr_sp (1 ,2)~= poss_pairs ( : , 1 ) ) & . . .
( curr_sp (1 ,1)~= poss_pairs ( : , 2 ) ) & . . .
( curr_sp (1 ,2)~= poss_pairs ( : , 2 ) ) ) ;

%( inv_curr_sp (1 ,1)~= poss_pairs ( : , 1 ) ) & . . .
%( inv_curr_sp (1 ,2)~= poss_pairs ( : , 2 ) ) ) ;

next_poss_pairs = poss_pairs ( ind_pairs , : ) ;

% finding the antennas allowed to appear in
% these next poss ible pairs
ind_array = find ( curr_sp (1 ,1)~= antenna_array ( 1 , : ) . . .

& curr_sp (1 ,2)~= antenna_array ( 1 , : ) ) ;
next_antenna_array = antenna_array ( ind_array ) ;

ret_patterns = permutate ( next_antenna_array , next_poss_pairs ) ;

% must f i t the returned patterns with the current
% start−pair curr_sp
i f size ( ret_patterns ,1 ) ~= 0

curr_ind_pat = size ( ret_patterns , 1 ) ∗ ( counter − 1) + 1 ;

patterns ( curr_ind_pat : curr_ind_pat+size ( ret_patterns , 1 ) −1 , : ) = . . .
[ repmat ( curr_sp , size ( ret_patterns , 1 ) , 1 ) ret_patterns ] ;

counter = counter +1 ;

% finding the inverse of that s tar t pair ,
% to remove i t from the group , but only i f
% the s tar t pair was used , i . e . not cut off with
% no pattern
l as t_ tx = antenna_array ( curr_tx ) ;
% finding the right type of s tar t pair , expressed by 1?
sp_type = curr_sp − curr_sp ( 1 ) + 1 ;

inv_curr_sp = f l i p l r ( [ l as t_ tx last_ tx ] − sp_type + [ 1 1 ] ) ;
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[ invind_pairs , c ,d ] = intersect ( inv_curr_sp , poss_pairs , ’ rows ’ ) ;

% removing th i s pair , know i t i s at most 1 appereance
i f size ( invind_pairs ,1 ) ~= 0

poss_pairs (d , : ) = [ ] ;
end ;

end ;

end ;

end ;
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function C_albl = get_pattern ( combocase , tx )

%
% GET_PATTERN( combocase , tx ) returns the requested pattern
% for a given tx , used with SMAL
%

t1_index = zeros (1 , tx ) ;
t2_index = zeros (1 , tx ) ;

% combocases4 = [ 1 2 3 4 ; 1 3 2 4 ; 1 4 2 3 ] ;
% combocases6 = [ 1 2 3 4 5 6 ; 1 2 3 5 4 6 ;
% 1 2 3 6 4 5 ; 1 3 2 5 4 6 ;
% 1 3 2 6 4 5 ; 1 4 2 5 3 6 ;
% 1 4 2 6 3 5 ; 1 5 2 6 3 4 ;
% 1 6 2 3 4 5 ; 1 6 2 4 3 5 ;
% 1 6 2 5 3 4 ] ;

% finding a l l transmission patterns for a given tx
al l_patterns = permutation_matrix ( tx ) ;

t1_index = al l_patterns ( combocase , : ) ;

t2_index (1 ,1 :2 : tx−1) = t1_index (1 ,2 :2 : tx ) ;
t2_index (1 ,2 :2 : tx ) = t1_index (1 ,1 :2 : tx−1);

C_albl = { t1_index t2_index } ;
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function [ C_albl , index ] = get_pattern_inst (H, H_manip , . . .
allperms , mod_dist )

% SMAL : finds the best assignment pattern for transmission
% under the current channel ( knows the instantaneous channel )

tx = size (H, 2 ) ;
rx = size (H, 1 ) ;
H = H.∗(1/ tx ) ;

num_patterns = size ( allperms , 1 ) ;
min_distance = zeros ( num_patterns , 1 ) ;
alam_pairsize = 2 ;

for counter =1:num_patterns

t1_index = allperms ( counter , : ) ;

t2_index = zeros ( size ( t1_index ) ) ;
t2_index (1 ,1 :2 : tx−1) = t1_index (1 ,2 :2 : tx ) ;
t2_index (1 ,2 :2 : tx ) = t1_index (1 ,1 :2 : tx−1);

H_manip(1:2:2∗rx−1 , : ) = H( : , t1_index ) ;

t2_len = length ( t2_index ) ;
H_manip(2:2:2∗rx , 1 : 2 : tx−1) = −conj (H( : , t2_index ( 1 : 2 : t2_len −1 ) ) ) ;
H_manip(2:2:2∗rx , 2 : 2 : tx ) = conj (H( : , t2_index ( 2 : 2 : t2_len ) ) ) ;

% checking bound
sing_vals = svd (H_manip ) ;
% sing_vals (min( tx ,2∗rx ) ) i s the smallest singular value
min_distance ( counter ) = sqrt ( sing_vals (min( tx ,2∗rx))^2∗mod_dist^2) ;

end ;

[ max_dist , index]=max( min_distance ) ;

t1_index = allperms ( index , : ) ;
t2_index (1 ,1 :2 : tx−1) = t1_index (1 ,2 :2 : tx ) ;
t2_index (1 ,2 :2 : tx ) = t1_index (1 ,1 :2 : tx−1);

C_albl = { t1_index t2_index } ;
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function [ C_albl , index ] = get_pattern_rand ( tx , rx , allperms )

% finds a random assignment pattern for transmission
% under the current channel . Used for comparison with SMAL

num_patterns = size ( allperms , 1 ) ;

% choose the pattern f i r s t in random
% permutation of a l l patterns

permutation = randperm ( num_patterns ) ;
pattern = permutation ( 1 ) ;
t1_index = allperms ( pattern , : ) ;
t2_index = zeros ( size ( t1_index ) ) ;
t2_index (1 ,1 :2 : tx−1) = t1_index (1 ,2 :2 : tx ) ;
t2_index (1 ,2 :2 : tx ) = t1_index (1 ,1 :2 : tx−1);

index = pattern ;
C_albl = { t1_index t2_index } ;
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function mod_dist = eucldist_modulation ( c )

%
% EUCL_DIST ( c ) returns the euclidean distance of the
% modulation scheme given by c
%

i f c == 1
mod_dist = 2 ; % bpsk

else i f c == 2
mod_dist = sqrt ( 2 ) ; % qpsk or 4QAM

else i f c == 3
mod_dist = 1/ sqrt ( 5 ) ;

end ;
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function [ n ,numTimes] = num_bits ( c , rx , tx , d , exp_BER , maxChannelIndex)
%
% Computes the number of b i t s to be generated for each new
% channel matrix

eachTime = 500000; % to avoid swapping
tota l = round ( ( ( 1 / exp_BER)∗100)) ;

i f c == 1
M = 2 ;

else i f c == 2
M = 4 ;

else i f c == 3
M = 16;

else
disp ( ’Hmmm’ ) ;

end ;

bitsPerSymbol = log2 (M) ;

% diffSymbolsPerRound i s how many di f ferent symbols
% are sent at once
i f d == 0

diffSymbolsPerRound = 1 ;
else i f d == 1

diffSymbolsPerRound = tx ;
else i f d == 2

diffSymbolsPerRound = 2 ; % average 1
else i f d == 3

diffSymbolsPerRound = tx ; % average 1
end ;

eachTime = round ( eachTime /( bitsPerSymbol ∗ diffSymbolsPerRound ) ) ∗ . . .
( bitsPerSymbol∗diffSymbolsPerRound ) ;

i f bitsPerSymbol∗tx > tota l & d == 1
disp ( ’Problems , need more bits . ’ ) ;

end ;

i f floor ( tota l /eachTime ) == 0
numTimes = 1 ;
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n = round ( tota l / ( bitsPerSymbol ∗ diffSymbolsPerRound ) ) ∗ . . .
( bitsPerSymbol∗diffSymbolsPerRound ) ;

else
numTimes = floor ( tota l /eachTime ) ;
n = eachTime ;

end ;
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