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Abstract. Turing’s famous ‘machine’ model constitutes the first intu-
itively convincing framework for computing with real numbers. Kleene’s
computation schemes S1–S9 extend Turing’s approach and provide a
framework for computing with objects of any finite type. Various research
programs have been proposed in which higher-order objects, like func-
tions on the real numbers, are represented/coded as real numbers, so as
to make them amenable to the Turing framework. It is then a natural
question whether there is any significant difference between the Kleene
approach or the Turing-approach-via-codes. Continuous functions being
well-studied in this context, we study functions of bounded variation,
which have at most countably many points of discontinuity. A central
result is the Jordan decomposition theorem that a function of bounded
variation on [0, 1] equals the difference of two monotone functions. We
show that for this theorem and related results, the difference between the
Kleene approach and the Turing-approach-via-codes is huge, in that full
second-order arithmetic readily comes to the fore in Kleene’s approach,
in the guise of Kleene’s quantifier ∃3.

Keywords: Representations · Computability theory · Kleene S1–S9 ·
Bounded variation

1 Introduction: Jordan, Turing, and Kleene

In a nutshell, we study the computational properties of the Jordan decomposi-
tion theorem as in Theorem 1 and other results on functions of bounded variation,
establishing the huge differences between the Turing and Kleene approaches to
computability theory. For the rest of this section, we introduce the above itali-
cised notions and sketch the contents of this paper in more detail. All technical
notions are introduced in Sect. 2 while our main results are in Sect. 3.

First of all, Turing’s famous ‘machine’ model, introduced in [45], consti-
tutes the first intuitively convincing framework for computing with real numbers.
Kleene’s computation schemes S1–S9, introduced in [18] extend Turing’s frame-
work and provide a framework for computing with objects of any finite type. Now,
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various1 research programs have been proposed in which higher-order objects are
represented/coded as real numbers or similar second-order representations, so as
to make them amenable to the Turing framework. It is then a natural ques-
tion whether there is any significant difference2 between the Kleene approach
and the Turing-approach-via-codes. Continuous functions being well-studied (see
footnote 2) in this context, we investigate functions of bounded variation, which
have at most countably many points of discontinuity.

Secondly, the notion of bounded variation was first introduced by Jordan
around 1881 [17] yielding a generalisation of Dirichlet’s convergence theorems
for Fourier series. Indeed, Dirichlet’s convergence results are restricted to func-
tions that are continuous except at a finite number of points, while functions of
bounded variation can have (at most) countable many points of discontinuity, as
also shown by Jordan, namely in [17, p. 230]. The fundamental theorem about
functions of bounded variation is as follows and can be found in [17, p. 229].

Theorem 1 (Jordan decomposition theorem). A function f : [0, 1] → R of
bounded variation can be written as the difference of two non-decreasing functions
g, h : [0, 1] → R.

The computational properties of Theorem 1 have been studied extensively via
second-order representations, namely in e.g. [23,28,29,48]. The same holds for
constructive analysis by [5,7,14,39], involving different (but related) constructive
enrichments. Now, finite iterations of the Turing jump suffice to compute g, h
from Theorem 1 in terms of represented functions f of bounded variation by [23,
Cor. 10].

Thirdly, in light of the previous, it is a natural question what the compu-
tational properties of Theorem 1 are in Kleene’s framework. In particular, the
following question is central to this paper.

How hard is it to compute (S1-S9) from f : [0, 1] → R of bounded variation,
two monotone functions g, h such that f = g − h on [0, 1]?

A functional that can perform this computational task will be called a Jordan
realiser (see Definition 6). A related and natural computational task is as follows.

How hard is it to compute (S1-S9) from f : [0, 1] → R of bounded variation, the
supremum supx∈[0,1]f(x)?

1 Examples of such frameworks include: reverse mathematics [43,44], constructive
analysis ([2, I.13], [3]), predicative analysis [12], and computable analysis [47]. Note
that Bishop’s constructive analysis is not based on Turing computability directly,
but one of its ‘intended models’ is however (constructive) recursive mathematics, as
discussed in [8]. One aim of Feferman’s predicative analysis is to capture constructive
reasoning in the sense of Bishop.

2 The fan functional constitutes an early natural example of this difference: it has a
computable code but is not S1–S9 computable (but S1–S9 computable in Kleene’s
∃2 from Sect. 2.2). The fan functional computes a modulus of uniform continuity for
continuous functions on Cantor space; details may be found in [26].
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A functional that can perform this computational task will be called a sup-
realiser (see Definition 6). This task restricted to continuous functions is well-
studied, and rather weak by [21, Footnote 6]. In light of the above, the following
computational task is also natural:

How hard is it to compute S1−S9 from f : [0, 1] → R of bounded variation, a
sequence (xn)n∈N listing the points of discontinuity of f?

By way of a robustness result, we show that the above three tasks are the same
modulo Kleene’s ∃2 from Sect. 2.2. Moreover, we show that Jordan realisers
are hard to compute: no type two functional, in particular the functionals S2k
which decide Π1

k -formulas (see Sect. 2.2), can compute a Jordan realiser. We
also show that Jordan realisers are powerful : when combined with other natural
functionals, one can go all the way up to Kleene’s quantifier ∃3 which yields
full second-order arithmetic (see again Sect. 2.2 for the definition of ∃3). We
also study special cases of Jordan realisers, which connects to the computational
tasks associated to the uncountability of R.

Finally, our main results are obtained in Sect. 3 while some preliminary
notions, including some essential parts of Kleene’s higher-order computability
theory, can be found in Sect. 2.

2 Preliminaries

2.1 Kleene’s Higher-Order Computability Theory

We first make our notion of ‘computability’ precise as follows.

(I) We adopt ZFC, i.e. Zermelo-Fraenkel set theory with the Axiom of Choice,
as the official metatheory for all results, unless explicitly stated otherwise.

(II) We adopt Kleene’s notion of higher-order computation as given by his nine
clauses S1–S9 (see [26, Ch. 5] or [18]) as our official notion of ‘computable’.

We refer to [26] for a thorough overview of higher-order computability theory.
We do mention the distinction between ‘normal’ and ‘non-normal’ functionals
based on the following definition from [26, §5.4].

Definition 2. For n ≥ 2, a functional of type n is called normal if it computes
Kleene’s ∃n following S1–S9, and non-normal otherwise.

We only make use of ∃n for n = 2, 3, as defined in Sect. 2.2.
It is a historical fact that higher-order computability theory based on S1–

S9 has focused primarily on normal functionals (see [26, §5.4] for this opinion).
We have previously studied the computational properties of new non-normal
functionals, namely those that compute the objects claimed to exist by:

– the Heine-Borel and Vitali covering theorems [30,32,33],
– the Baire category theorem [35],
– local-global principles like Pincherle’s theorem [36],
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– the uncountability of R and the Bolzano-Weierstrass theorem for countable
sets in Cantor space [34,38],

– weak fragments of the Axiom of (countable) Choice [37].

In this paper, we continue this study for the Jordan decomposition theorem
and other basic properties of functions of bounded variation. Next, we introduce
some required higher-order notions in Sect. 2.2.

2.2 Some Higher-Order Notions

Some Higher-Order Functionals. We introduce a number of comprehension
functionals from the literature. We are dealing with conventional comprehension,
i.e. only parameters over N and N

N are allowed in formula classes like Π1
k and

related notions.
First of all, the functional3 ϕ as in (∃2) is clearly discontinuous at f = 11 . . . ;

in fact, (∃2) is equivalent to the existence of F : R → R such that F (x) = 1 if
x > 0, and 0 otherwise by [21, §3].

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n0)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Intuitively speaking, the functional ϕ from (∃2) can decide the truth of any
Σ0

1 -formula in its (Kleene) normal form. Related to (∃2), the functional μ2 in
(μ2) is also called Feferman’s μ [1], defined as follows:

(∃μ2)(∀f1)

⎡

⎣
(∃n0)(f(n) = 0) → [f(μ(f)) = 0 ∧ (∀i < μ(f))(f(i) 	= 0)]

∧
(∀n0)(f(n) 	= 0) → (μ(f) = 0)

⎤

⎦ . (1)

We have (∃2) ↔ (μ2) over a weak system by [20, Prop. 3.4 and Cor. 3.5]) while
μ2 is readily computed from ϕ2 in (∃2). The third-order functional from (∃2) is
called ‘Kleene’s quantifier ∃2’; we use the same convention for other functionals.

Secondly, S2 as in (S2) is called (see footnote 3) the Suslin functional [1,21]:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

Intuitively, the Suslin functional S2 can decide the truth of any Σ1
1 -formula in

its normal form. We similarly define the functional S2k which decides the truth
or falsity of Σ1

k-formulas (again in normal form). We note that the operators
νn from [10, p. 129] are essentially S2n strengthened to return a witness to the
Σ1

n-formula at hand. As suggested by its name, νk is the restriction of Hilbert-
Bernays’ ν from [15, p. 495] to Σ1

k-formulas. We sometimes use the special cases
S20 and S21 to denote the functionals ∃2 and S2.

Thirdly, second-order arithmetic is readily derived from (see footnote 3) the
following:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y ) = 0

]
. (∃3)

3 The notation ‘ϕ2 ≤2 1’ means that ϕ(f) ≤ 1 for all f ∈ N
N and guarantees unique-

ness. The same holds for S2, S2
k, and ∃3 below.
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The functional from (∃3) is also called ‘Kleene’s quantifier ∃3’. Hilbert-Bernays’
ν from [15, p. 495] trivially computes ∃3.

Finally, the functionals S2k are defined using the usual formula class Π1
k , i.e.

only allowing first- and second-order parameters. We have dubbed this the con-
ventional approach and the associated functionals are captured by the umbrella
term conventional comprehension. Comprehension involving third-order param-
eters has previously (only) been studied in [12,19], to the best of our knowledge.

Some Higher-Order Definitions. We introduce some required definitions.
First of all, a fruitful and faithful approach is the representation of sets

by characteristic functions (see e.g. [24,32,35,37,40–42]), well-known from e.g.
measure and probability theory. We shall use this approach, always assuming
∃2 to make sure open sets represented by countable unions of basic opens are
indeed sets in our sense.

Secondly, we now turn to countable sets. Of course, the notion of ‘countable
set’ can be formalised in various ways, as follows.

Definition 3 [Enumerable set]. A set A ⊂ R is enumerable if there is a sequence
(xn)n∈N such that (∀x ∈ R)(x ∈ A ↔ (∃n ∈ N)(x = xn)).

Definition 3 reflects the notion of ‘countable set’ from reverse mathematics [43,
V.4.2]. Our definition of ‘countable set’ is as follows.

Definition 4 [Countable set]. A set A ⊂ R is countable if there is Y : R → N

with
(∀x, y ∈ A)(Y (x) =0 Y (y) → x = y). (2)

The functional Y as in (2) is called injective on A or an injection on A. If
Y : R → N is also surjective, i.e. (∀n ∈ N)(∃x ∈ A)(Y (x) = n), we call A
strongly countable. In this case, Y is called bijective on A or a bijection on A.

The first part of Definition 4 is from Kunen’s set theory textbook [25, p. 63] and
the second part is taken from Hrbacek-Jech’s set theory textbook [16] (where the
term ‘countable’ is used instead of ‘strongly countable’). According to Veldman
[46, p. 292], Brouwer studies set theory based on injections in [9]. Hereinafter,
‘strongly countable’ and ‘countable’ shall exclusively refer to Definition 4.

3 Main Results

In this section, we shall obtain our main results as follows. Recall that a Jor-
dan realiser outputs the monotone functions claimed to exist by the Jordan
decomposition theorem as in Theorem 1.

– We introduce Jordan realisers and other functionals witnessing basic prop-
erties of functions of bounded variation; we show that three of these are
computationally equivalent (Sect. 3.1).

– We show that Jordan realisers are hard to compute based on results from [34]
(Sect. 3.2).



6 D. Normann and S. Sanders

– We show that Kleene’s ∃3 can be computed from ∃2, a Jordan realiser, and
a well-ordering of [0, 1] (Sect. 3.3).

– We show that Jordan realisers remain hard to compute even if we severely
restrict the output (Sect. 3.4).

3.1 Jordan Realisers and Equivalent Formulations

We introduce functionals witnessing basic properties of functions of bounded
variation, including the Jordan decomposition theorem (Theorem1). We show
that three of these are computationally equivalent given ∃2.

As noted above, we always assume ∃2 but specify the use when essential.
This means that we can use the concept of Kleene-computability over R or [0, 1]
without focusing on how these spaces are represented.

First of all, as to definitions, the total variation of a function f : [a, b] → R

is (nowadays) defined as follows:

V b
a (f) := supa≤x0<···<xn≤b

∑n
i=0 |f(xi) − f(xi+1)|. (3)

If this quantity exists and is finite, one says that f has bounded variation on
[a, b]. Now, the notion of bounded variation is defined in [28] without mentioning
the supremum in (3); this approach can also be found in [5,7,23]. Hence, we shall
hereafter distinguish between the following two notions. As it happens, Jordan
seems to use item (a) of Definition 5 in [17, pp. 228–229], providing further
motivation for the functionals introduced in Definition 6.

Definition 5 [Variations on variation]

a. The function f : [a, b] → R has bounded variation on [a, b] if there is k0 ∈ N

such that k0 ≥ ∑n
i=0 |f(xi) − f(xi+1)| for any partition a ≤ x0 < x1 < · · · <

xn−1 < xn ≤ b.
b. The function f : [a, b] → R has a variation on [a, b] if the supremum in (3)

exists and is finite.

We can now introduce the following notion of ‘realiser’ for the Jordan decompo-
sition theorem and related functionals.

Definition 6

– A Jordan realiser is a partial functional J of type 3 taking as input f :
[0, 1] → R of bounded variation (item (a) in Definition 5), and providing a
pair (g, h) of non-decreasing g, h : [0, 1] → R with f = g − h on [0, 1].

– A weak Jordan realiser is a partial functional Jw of type 3 taking as inputs a
function f : [0, 1] → R and its bounded variation V 1

0 (f) (item (b) in Defini-
tion 5), and providing a pair (g, h) of increasing functions g and h such that
f = g − h on [0, 1].

– A sup-realiser is a partial functional S of type 3 taking as input a function
f : [0, 1] → R which has bounded variation (item (a) in Definition 5), and
providing the supremum supx∈[0,1]f(x).
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– A continuity-realiser is a partial functional L of type 3 taking as input a
function f : [0, 1] → R which has bounded variation (item (a) in Definition 5),
and providing a sequence (xn)n∈N which lists all points of discontinuity of f
on [0, 1].

Next, we need the following lemma. The use of ∃2 is perhaps superfluous in light
of the constructive proof in [6], but the latter seems to make essential use of the
Axiom of (countable) Choice.

Lemma 7. There is a functional D, computable in ∃2, such that if f : [0, 1] → R

is increasing (decreasing), then D(f) enumerates all points of discontinuity of f
on [0, 1].

Proof. Let {qi}i∈N be an enumeration of Q ∩ [0, 1], let f : [0, 1] → R be mono-
tone, and define ai := f(qi). Let A be the set of pairs of rationals p < r such
that there is no i with p < ai < r. For (p, r) ∈ A, define

xp,r := sup{qi : ai ≤ p} = inf{qj : r ≤ aj}. (4)

It is easy to see that the reals in (4) are equal; indeed, the existence of a rational qi

between them, together with assuming that (p, r) ∈ A, leads to a contradiction.
Then all discontinuities of f will be among the elements xp,r for (p, r) ∈ A.

Clearly, i 
→ ai, A and (p, r) 
→ xp,r for (p, r) ∈ A are computable in f and ∃2.
This ends the proof. ��
Finally, we show that three ‘non-weak’ realisers from Definition 6 are in fact one
and the same, in part based on Lemma 7.

Theorem 8. Assuming ∃2, Jordan realisers, sup-realisers, and continuity realis-
ers are computationally equivalent.

Proof. We first show that a continuity realiser computes a sup-realiser. To this
end, let f be of bounded variation on [0, 1] and let L(f) = (xn)n∈N be a list of its
points of discontinuity. From L(f) we can find a list (yj)j∈N containing both the
points of discontinuity and all rational numbers in [0, 1]. Then we can compute

S(f) = sup{f(x) : x ∈ [0, 1]} = sup{f(yj) : j ∈ N}, (5)

since sup{f(yj) : j ∈ N} is computable from L(f), f , and ∃2.
Secondly, that a Jordan realiser computes a continuity realiser, assuming ∃2,

is immediate from Lemma 7. ��
Thirdly, we show that a sup-realiser S computes a Jordan realiser. To this

end, let a and b be such that 0 ≤ a < b ≤ 1 and define

S+
a,b(f) := sup

x∈[a,b]

f(x) and S−
a,b(f) := inf

x∈[a,b]
f(x). (6)

These functionals are clearly computable in S, for f : [0, 1] → R a function of
bounded variation. Now let Var(P, f) be the sum

∑n−1
i=0 |f(xi+1) − f(xi)| for a

partition P = {0 ≤ x0 < · · · < xn ≤ 1} of [0, 1], while Var+(P, f) is the sum of
all positive differences f(xi+1) − f(xi).
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Claim 9. To compute a Jordan realiser, it suffices to compute the following
number Δ(f) := supP Var+(P, f), where P varies over all partitions of [0, 1].

To prove Claim 9, we compute increasing functions f+ and f− such that f =
f+ − f−. Without loss of generality, we may assume that f(0) = 0, and by
symmetry it suffices to compute f+. We can define f+(0) = 0 and f+(x) = Δ(fx)
for x > 0, where fx(y) = f( y

x ). This ends the proof of Claim 9.
We now employ the functionals S+

a,b and S−
a,b from (6) as follows.

Definition 10. Let f be of bounded variation on [0, 1] and let n ∈ N. An n, f-
trail is a sequence k0, . . . , k2m−1 such that 0 ≤ k0 < . . . < k2m−1 < n and such
that when 0 ≤ j < m we have

S−
k2j
n ,

k2j+1
n

(f) < S+
k2j+1

n ,
k2j+1+1

n

(f).

Define the positive n-move M̄(n, f) as the maximal value of the sum

∑m−1
j=0

(
S+

k2j+1
n ,

k2j+1+1
n

(f) − S−
k2j
n ,

k2j+1
n

(f)
)
,

where the finite sequence k0, . . . , k2m−1 varies over all n, f -trails.

Claim 11. For each n ∈ N, we have that M̄(n, f) ≤ Δ(f).

To prove Claim 11, it suffices to show that M̄(n, f) ≤ Δ(f) + ε for each ε > 0.
Let k0, . . . , k2m−1 be an n, f -trail giving the value of M̄(n, f). For each j <

m, select xj ∈ [k2j+1
n ,

k2j+1+1
n

]
such that f(xk) > S+

k2j+1
n ,

k2j+1+1
n

(f) − ε
2m and

yj ∈ [k2j
n ,

k2j+1
n

]
such that f(yk) < S−

k2j
n ,

k2j+1
n

(f) + ε
2m . For any partition P

containing all points xj and yj we have that Var+(P, f) > M̄(n, f) − ε. As a
result, we obtain

M̄(n, f) < Var+(P, f) + ε ≤ Δ(f) + ε,

which ends the proof of Claim 11.

Claim 12. Let f be of bounded variation on [0, 1] and let P be a partition of
[0, 1]. Then there is n ∈ N such that Var+(P, f) ≤ M̄(n, f).

To prove Claim 12, fix P = {0 ≤ s0 < · · · < sm′ ≤ 1}. Without loss of generality,
we may assume that f(s0) < f(s1) > f(s2) < · · · < f(sm′), i.e. the values f(si)
alternate between going up and going down, so m′ is an odd number 2m−1. Let
n be such that each [ k

n , k+1
n ], for k < n, contains at most one si and each si is

contained in exactly one [ki

n , ki+1
n ]. Then k0, . . . , k2m−1 is an n, f -trail witnessing

that Var+(P, f) ≤ M̄(n, f). This ends the proof of Claim 12.
Finally, by the above three claims, we have Δ(f) = supn∈N M̄(n, f). Since

we can compute the latter from S and ∃2, the former is likewise computable. As
we can compute a Jordan realiser from Δ, the proof of Theorem8 is complete.
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In conclusion, as expected in light of (5), rather effective and pointwise
approximation results exist for functions of bounded variation at points of con-
tinuity (see e.g. [11, p. 261]). For points of discontinuity, it seems one only
approximates the average of the left and right limits, i.e. not the function value
itself.

3.2 Jordan Realisers and Countable Sets

We show that Jordan realisers are hard to compute by connecting them to com-
putability theoretic results pertaining to countable sets from [34]. Recall the
definitions from Sect. 2.2 pertaining to the latter notion.

Now, the most fundamental property of countable sets is that they can be
enumerated, i.e. listed as a sequence, as explicitly noted by e.g. Borel in [4] in
his early discussions of the Heine-Borel theorem. Next, we show that Jordan
realisers can indeed enumerate countable sets as in Definition 4.

Theorem 13. Together with ∃2, a Jordan realiser J can perform the following
computational procedures.

– Given a set A ⊂ [0, 1] and Y : [0, 1] → N injective on A, produce a sequence
(xn)n∈N listing exactly the elements of A.

– Given F : [0, 1] → [0, 1], A ⊂ [0, 1], and Y : [0, 1] → N injective on A, produce
supx∈A F (x).

Proof. We only need to establish the first item, as the second item readily follows
from the first one using ∃2. Let A ⊂ [0, 1] be countable, i.e. there is Y : [0, 1] → N

which is injective on A. Use ∃2 to define the function f : R → R defined as
follows:

f(x) :=

{
1

2Y (x)+1 x ∈ A

0 otherwise
. (7)

Following item (a) in Definition 5, the function f has bounded variation on [0, 1]
as any sum

∑n
i=0 |f(xi) − f(xi+1)| is at most

∑n
i=0

1
2i+1 for xi in [0, 1] and

i ≤ n + 1. Now let J (f) = (g, h) be such that f = g − h on [0, 1] and recall D
from Lemma 7. Use ∃2 to define the sequence (xn)n∈N as all the reals in D(g)
and D(h). Now consider the following formula for any x ∈ [0, 1]:

[
(∃n ∈ N)(x = xn) ∧ g(x) 	= h(x)

] ↔ x ∈ A. (8)

The forward direction in (8) is immediate as g(x) 	= h(x) for x ∈ [0, 1] implies
f(x) > 0, and hence x ∈ A by definition. For the reverse direction, fix x ∈ A and
note that 0 < f(x) = g(x) − h(x) by the definition of f in (7), i.e. g(x) 	= h(x)
holds. Moreover, in case (∀n ∈ N)(x 	= xn), then g and h are continuous at x,
by the definition of (xn)n∈N. Hence, f is continuous at x, which is only possible
if f(x) = 0, but the latter implies x 	∈ A, by (7), a contradiction. In this way,
we obtain (8) and we may enumerate A by removing from (xn)n∈N all elements
not in A, which can be done using ∃2. ��
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Secondly, weak Jordan realisers can enumerate strongly countable sets
(Definition 4).

Corollary 14. Together with ∃2, a weak Jordan realiser Jw can perform the
following computational procedures.

– Given a set A ⊂ [0, 1] and Y : [0, 1] → N bijective on A, produce a sequence
(xn)n∈N listing exactly the elements of A.

– Given F : [0, 1] → [0, 1], A ⊂ [0, 1], and Y : [0, 1] → N bijective on A,
produce supx∈A F (x).

Proof. Following item (b) in Definition 5, the function f in (7) has total variation
exactly 1 in case Y is additionally a bijection. ��
A weak Jordan realiser cannot compute a Jordan realiser; this remains true if
we combine the former with an arbitrary type 2 functional. Since the proof of
this claim is rather lengthy, we have omitted the former from this paper.

Thirdly, the functional ΩBW introduced and studied in [34, §4], performs the
computational procedure from the second item in Theorem13, leading to the
following corollary.

Corollary 15. Together with the Suslin functional S2, a Jordan realiser J com-
putes S22, i.e. a realiser for Π1

2 -CA0.

Proof. By [34, Theorem 4.6.(b)], ΩBW +S2 computes S22, while a Jordan realiser
J computes ΩBW by Theorem 13. ��
Finally, under the additional set-theoretic hypothesis V=L, the combination
ΩBW + S2 even computes ∃3 by [34, Theorem 4.6.(c)]. An obvious question is
whether a similar result can be obtained within ZFC, which is the topic of the
following section.

3.3 Computing Kleene’s ∃3 from Jordan Realisers

We show that Kleene’s quantifier ∃3 is computable in the combination of:

– Kleene’s quantifier ∃2,
– any Jordan realiser J (or: ΩBW from Sect. 3.2),
– a well-ordering ≺ of [0, 1].

We note that the third item exists by the Axiom of Choice. Assuming ≺ and �
are the irreflexive and reflexive versions of the same well-ordering of [0, 1], they
are computable in each other and ∃2.

Theorem 16. Let J be a Jordan realiser. Then ∃3 is Kleene-computable in J ,
≺, and ∃2.
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Proof. We actually prove a slightly stronger result. Let Ω be a partial functional
of type 3 such that Ω(X) terminates whenever X ⊂ R has at most one element,
and Ω(X) ∈ X whenever X contains exactly one element. One readily4 shows
that Ω is computationally equivalent to ΩBW, given ∃2. We now show that ∃3 is
computable in Ω, ≺, and ∃2.

We let x, y vary over [0, 1] and we fix h : [0, 1] → {0, 1}. We aim to compute
∃3(h) by deciding the truth of the formula (∃x ∈ [0, 1])(h(x) = 1). To this end,
consider the functionals E≺x and E�x defined as:

E≺x(h) = 1 ↔ (∃y ≺ x)(h(y) = 1) and E�x(h) = 1 ↔ (∃y � x)(h(y) = 1).

We shall show that these are computable in Ω, ≺, and ∃2, uniformly in x.
Note that E�x is trivially computable in E≺x, uniformly in x, so we settle for
computing E≺x(h). The argument will be by the recursion theorem, so we give
the algorithm for computing E≺x(h) using x, h, Ω and E≺y for y ≺ x. Now let
x and h be fixed and define hx as:

hx(y) :=

⎧
⎪⎨

⎪⎩

0 if x � y

h(y) if y ≺ x ∧ (∀z ≺ y)(h(z) = 0)
0 otherwise

,

where we use E≺y to decide whether the second case holds. Then hx is constant
zero if (∀y ≺ x)(h(y) = 0), and if not, hx takes the value 1 in exactly the least
point y ≺ x where h(y) = 1. Hence, we have

(∃y ≺ x)(h(y) = 1) ↔ [Ω(hx) ≺ x ∧ h(Ω(hx)) = 1].

We now apply the recursion theorem to find an index e ∈ N such that for all
x ∈ [0, 1] and h : [0, 1] → {0, 1} (and well-orderings �), we have

{e}(Ω, h, x,�) � E�x(h).

Then we use transfinite induction over � to prove that e ∈ N defines a total
functional doing what it is supposed to do. For readers not familiar with this
use of the recursion theorem, what we do is defining {e0}(d,Ω, h, x,�) as in the
construction, but replacing all uses of E�y(h′) by {d}(Ω, h′, y,�); we then use
the fact that there is an index e such that {e}(. . . ) � {e0}(e, . . . ), where ‘. . . ’
are the other parameters.

Having established the computability of each E≺x from x, we can use the
same trick to compute ∃3(h) as follows: construct from h a function h′ that
takes the value 1 in at most one place, namely the ≺-least x where h(x) = 1, in
case such exists. ��

4 To obtain an enumeration of A ⊂ [0, 1] given Y : [0, 1] → R injective on A, define
En := {x ∈ A : Y (x) = n} and define xn := Ω(En) in case the latter is in En, and
0 otherwise.
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Finally, we note that Kleene’s computation scheme S9 is essentially a ‘hard-
coded’ version of the recursion theorem for S1–S9, while S1–S8 merely define
(higher-order) primitive recursion. In this way, the recursion theorem is central to
S1–S9, although we have previously witnessed S1–S9 computations via primitive
recursive terms.

3.4 Jordan Realisers and the Uncountability of R

We show that a number of interesting functionals, including ‘heavily restricted’
Jordan realisers, are (still) quite hard to compute, based on the computational
properties of the uncountability of R pioneered in [34].

First of all, in more detail, Theorem8 implies that a Jordan realiser can enu-
merate all points of discontinuity of a function of bounded variation. It is then
a natural question whether Jordan realisers remain hard to compute if we only
require the output to be e.g. one point of continuity. By way of an answer, The-
orem 19 lists a number of interesting functionals -including the aforementioned
‘one-point’ Jordan realisers- that compute functionals witnessing the uncount-
ability of R. Functionals related to the uncountability of R are special in the
following sense, as was first studied in [34, §4].

By the previous, Jordan realisers have surprising properties and are a nice
addition to the pantheon of interesting non-normal functionals stemming from
ordinary mathematics (see [30–38] or Sect. 2.1 for other examples). It is then a
natural question what the weakest such functional is; a candidate is provided by
the uncountability of R, which can be formulated in various guises as follows.

– Cantor’s theorem: there is no surjection from N to R.
– NIN: there is no injection from [0, 1] to N.
– NBI: there is no bijection from [0, 1] to N.

Cantor’s theorem is provable in constructive and computable mathematics [3,43],
while there is even an efficient algorithm to compute from a sequence of reals,
a real not in that sequence [13]. As explored in [34], NIN and NBI are hard to
prove in terms of conventional comprehension. We will not study NBI in this
paper while Cantor’s theorem and NIN give rise to the following specifications.

Definition 17 [Realisers for the uncountability of R].

– A Cantor functional/realiser takes as input A ⊂ [0, 1] and Y : [0, 1] → N such
that Y is injective on A, and outputs x 	∈ A.

– A weak Cantor realiser takes as input A ⊂ [0, 1] and Y : [0, 1] → N such
that Y is bijective on A, and outputs x 	∈ A.

– A NIN-realiser takes as input Y : [0, 1] → N and outputs x, y ∈ [0, 1] with
x 	= y ∧ Y (x) = Y (y).

As explored in [34], NIN-realisers are among the weakest non-normal functionals
originating from ordinary mathematics we have studied. Moreover, one readily5

5 Let N be a NIN-realiser and let A ⊂ [0, 1] and Y : [0, 1] → N be such that Y is
injective on A. Define Z : [0, 1] → N as follows: Z(x) := Y (x) + 1 in case x ∈ A, and
0 otherwise. Clearly, N(Z)(1) �∈ A or N(Z)(2) �∈ A as required.
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proves that a NIN-realiser computes a Cantor realiser, while the latter are still
hard to compute as follows.

Theorem 18. No type 2 functional computes a weak Cantor realiser.

Proof. Fix some functional F 2 and assume wlog that F computes ∃2. Assume
there is a Cantor realiser C computable in F . Now let A be the set of reals
computable in F and define Y : [0, 1] → N as follows using Gandy selection
(see [26,37] for an introduction): for the first part, define Y (x) as an index for
computing x from F in case x ∈ A; we put Y (x) := 0 in case x 	∈ A. By
assumption, C(A, Y ) terminates as Y is injective on A. Since the restriction of
Y to A is partially computable in F , all oracle calls of the form ‘x ∈ A’ will
be answered with yes, since x then is computable in F . Hence, all oracle calls
for the value Y (x) can be answered computably in F . In this way, C(A, Y ) is
computable in F , which also follows from [34, Lemma 2.15]. Hence, C(A, Y ) ∈ A
by definition, a contradiction. The proof remains valid if we extend A to some
B ⊂ [0, 1] and extend Y to Z : [0, 1] → N bijective on B. ��
Secondly, it is readily proved (classically) that there is no continuous injection
from [0, 1] to Q, based on the intermediate value theorem. Now consider the
following, which expresses a very special case of the uncountability of R.

– NINBV: there is no injection from [0, 1] to Q that has bounded variation as in
item (a) in Definition 5.

One readily establishes the equivalence NIN ↔ NINBV over a weak system, follow-
ing the proof of Theorem19. By the latter and Theorem18, while NIN-realisers
are defined for all Y : [0, 1] → N, the restriction to functions of bounded varia-
tion, which only have countably many points of discontinuity, is (still) hard to
compute and intermediate between Cantor and NIN-realisers.

Thirdly, we have the following theorem where the functional L defined as

L(f)(s) :=
∫ +∞
0

e−stf(t) dt

is the Laplace transform of f : R → R. Since we restrict to functions of bounded
variation, we interpret L(f) as the limit of Riemann integrals, if the latter exists.
It is well-known that if L(f) and L(g) exists and are equal everywhere, f and
g are equal almost everywhere, inspiring the final -considerably weaker- item
in Theorem 19. In the below items, ‘bounded variation’ refers to item (a) of
Definition 5.

Theorem 19. Assuming ∃2, a Cantor realiser can be computed from a func-
tional performing any of the following tasks.

– For f : [0, 1] → Q which has bounded variation, find x, y ∈ [0, 1] such that
x 	= y and f(x) = f(y).

– For f : [0, 1] → R which has bounded variation, find a point of continuity in
[0, 1].
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– If f : [0, 1] → [0, 1] is Riemann integrable (or has bounded variation) with∫ 1

0
f(x) dx = 0, find y ∈ [0, 1] with f(y) = 0.

– If f, g : R → R satisfy the following:
• f, g have bounded variation on [0, a] for any a ∈ R

+,
• L(f) and L(g) exists and are equal on [0,+∞),

find x ∈ (0,∞) with f(x) = g(x).

Any NIN-realiser computes a functional as in the first item. Assuming ∃2, a
weak Cantor realiser can be computed from a functional performing any of the
above tasks restricted as in item (b) of Definition 5.

Proof. The penultimate sentence is immediate as Q and N are bijective. Now
fix some countable set A ⊂ [0, 1] and Y : [0, 1] → N injective on A. Consider
f : [0, 1] → R as in (7) and recall it has bounded variation. For the second item,
if x0 ∈ [0, 1] is a point of continuity of f , we must have f(x0) = 0 by continuity.
Then x0 	∈ A by definition, as required. For the first item, in case x 	= y and
f(x) = f(y), we must have x 	∈ A or y 	∈ A, in light of (7).

For the third item, consider f : [0, 1] → R as in (7); that
∫ 1

0
f(x) dx exists and

equals 0, follows from the usual ε-δ-definition of Riemann integrability. Indeed,
fix ε0 > 0 and find k0 ∈ N such that 1

2k0
< ε0. Let P be a partition x0 :=

0, x1, . . . , xn, xn+1 := 1 of [0, 1] with ti ∈ [xi, xi+1] for i ≤ n and with mesh
‖P‖ := maxi≤n(xi+1 − xi) at most 1

2k0
. Then the Riemann sum S(f, P ) :=∑

i≤n f(ti)(xi+1 − xi) satisfies

S(f, P ) ≤ 1
2k0

∑
i≤n f(ti) ≤ 1

2k0

∑
i≤n

1
2i+1 ≤ 1

2k0
,

as Y is injective on A and f is zero outside of A. Hence,
∫ 1

0
f(x) dx = 0 and any

y ∈ [0, 1] with f(y) = 0 yields y 	∈ A by (7).
For the final item, the tangent and arctangent functions provide bijections

between (0, 1) and R. Hence, we may work with A ⊂ R and Y : R → N injective
on A. We again consider f as in (7), now as an R → R-function. This function
f has bounded variation on any interval [0, a] for a > 0, in the same way as in
the proof of Theorem 13. Since e−z ≤ 1 for z ≥ 0, the previous paragraph yields∫ N

0
e−stf(t) dt = 0 for any N ∈ N, s ≥ 0, and hence L(f)(s) = 0 for all s ≥ 0.

For g : R → R the zero everywhere function, we trivially have L(g)(s) = 0 for
any s ≥ 0. Clearly, any x ∈ [0,+∞) such that f(x) = g(x) = 0 also satisfies
x 	∈ A, yielding a Cantor functional. The final sentence now follows in light of
(the proof of) Corollary 14. ��
We note that theorem also goes through if we formulate the second item using
the much weaker notions of quasi6 or cliquish (see footnote 6) continuity in at
least one point in [0, 1]. These notions are found in e.g. [22,27].

6 A function f : X → R is quasi-continuous (resp. cliquish) at x ∈ X if for any ε > 0
and any open neighbourhood U of x, there is a non-empty open ball G ⊂ U with
(∀y ∈ G)(|f(x) − f(y)| < ε) (resp. (∀y, z ∈ G)(|f(z) − f(y)| < ε)).
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