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ABSTRACT

Context. The magnetic Kelvin-Helmholtz instability (KHI) has been proposed as a means of generating magnetohydrodynamic tur-
bulence and encouraging wave energy dissipation in the solar corona, particularly within transversely oscillating loops.

Aims. Our goal is to determine whether the KHI encourages magnetic reconnection in oscillating flux tubes in the solar corona. This
will establish whether the instability enhances the dissipation rate of energy stored in the magnetic field.

Methods. We conducted a series of three-dimensional magnetohydrodynamic simulations of the KHI excited by an oscillating veloc-
ity shear. We investigated the effects of numerical resolution, field line length, and background currents on the growth rate of the KHI
and on the subsequent rate of magnetic reconnection.

Results. The KHI is able to trigger magnetic reconnection in all cases, with the highest rates occurring during the initial growth phase.
Reconnection is found to occur preferentially along the boundaries of Kelvin-Helmholtz vortices, where the shear in the velocity and
magnetic fields is greatest. The estimated rate of reconnection is found to be lowest in simulations where the KHI growth rate is
reduced. For example, this is the case for shorter field lines or due to shear in the background field.

Conclusions. In non-ideal regimes, the onset of the instability causes the local reconnection of magnetic field lines and enhances the
rate of coronal wave heating. However, we found that if the equilibrium magnetic field is sheared across the Kelvin-Helmholtz mixing
layer, the instability does not significantly enhance the rate of reconnection of the background field, despite the free energy associated

with the non-potential field.
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1. Introduction

Magnetic reconnection is a fundamental plasma process that can
cause significant energy release in the solar corona (see e.g.,
Priest 2000; Low 2003; Pontin 2012; Hesse & Cassak 2020). It
is likely to play a critical role in many physical phenomena in
the solar atmosphere, including flares (e.g., Moore et al. 2001),
coronal mass ejections (e.g., Antiochos et al. 1999), and small-
scale heating events that maintain the high temperatures of the
corona (e.g., Heyvaerts & Priest 1984; Longcope & Tarr 2015).
In this context, magnetohydrodynamic (MHD) turbulence,
and the associated reconnection, may be particularly impor-
tant for the coronal energy budget (e.g., Einaudi et al. 1996;
Hendrix & van Hoven 1996; Priest et al. 1998; Cranmer et al.
2007; Vlahos & Isliker 2019).

One potential driver of turbulent flows in the solar corona
is the non-linear evolution of MHD waves. In the years since
the TRACE mission identified oscillations in coronal struc-
tures (e.g., Aschwanden et al. 1999; Nakariakov et al. 1999),
many studies have established the prevalence of wave power
throughout the solar atmosphere (for example, see reviews
by Nakariakov & Verwichte 2005; Mathioudakis et al. 2013;
Liu & Ofman 2014; Wang 2016). These oscillations are inter-
esting in the context of the coronal heating problem, as
they may contain sufficient energy to balance expected losses
(e.g., MclIntosh et al. 2011). However, these measurements vary
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widely throughout the corona (see, for example, the review by
Van Doorsselaere et al. 2020) and, in addition, it remains unclear
whether wave energy can be dissipated on sufficiently short
timescales to contribute significantly to balancing the expected
coronal losses (Arregui 2015; Cargill et al. 2016).

On account of the large Reynolds numbers that are expected
for typical coronal conditions, in order to attain a reasonable
rate of dissipation, wave energy needs to be transferred to short
length scales. Throughout the history of coronal wave research, a
variety of plausible mechanisms have been proposed to achieve
this. These processes include phase mixing (Heyvaerts & Priest
1983) and resonant absorption (Ionson 1978). Alternatively,
MHD turbulence may form as a result of the non-linear inter-
action of counter-propagating wave modes (e.g., Hollweg 1986;
van Ballegooijen et al. 2011; Asgari-Targhi et al. 2013). In this
case, different wave modes can be associated with different
drivers at the two magnetic foot points of a closed structure
or by reflections of propagating waves due to density stratifica-
tion. Additionally, Magyar & Van Doorsselaere (2016) demon-
strate that the presence of transverse inhomogeneities in coro-
nal structures can also induce the development of turbulent-like
flows during oscillations.

An alternative process by which MHD waves can drive
turbulent flows is via the formation of the magnetic Kelvin-
Helmholtz instability (KHI) across a velocity shear layer. For
example, Browning & Priest (1984) presented an analytical
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investigation of the instability induced by phase mixing
Alfvén waves. More recently, many authors have studied the
development of this instability in numerical simulations of
oscillations in coronal structures (e.g., Terradas et al. 2008;
Antolin et al. 2014; Magyar et al. 2015; Karampelas et al. 2017,
Diaz-Suéarez & Soler 2021). During the decay of kink oscil-
lations, the processes of resonant absorption and phase mix-
ing can combine to induce a large velocity shear across the
boundary of magnetic flux tubes. Analytic treatments have
shown that in the case of standing waves in non-twisted coro-
nal loops, this shear is always unstable to the KHI at the
wave antinodes (Zaqarashvili et al. 2015). In this regime, mag-
netic twist can suppress the growth rate of the instability
(Soler et al. 2010; Howson et al. 2017a; Terradas et al. 2018;
Barbulescu et al. 2019). In addition, the development of the
instability in numerical simulations is also sensitive to spa-
tial resolution and (user-imposed) transport coefficients (e.g.,
Howson et al. 2017b).

Whilst detections of the KHI in the solar corona have been
reported (e.g., Foullon et al. 2011; Ofman & Thompson 2011),
direct observational evidence of the KHI excited by oscilla-
tions in the boundary of coronal loops remains limited. This
may be due to constraints associated with the resolving power
of contemporary telescopes and is not necessarily indicative
of the absence of this process. Indeed, Antolin et al. (2018),
showed that some features of observations of kink oscilla-
tions in spicules may be evidence of Kelvin-Helmholtz vortices.
Additionally, the apparent heating of plasma at the boundaries
of oscillating filaments Okamoto et al. (2015), Antolin et al.
(2015) is potentially evidence of the mixing of hot coronal and
cold prominence plasma as a result of the instability
(Hillier & Arregui 2019).

In terms of coronal wave heating, the energetic significance
of the KHI has been scrutinised in a number of numerical and
analytical studies. In simulations of continuously driven coro-
nal loops, several authors (e.g., Karampelas & Van Doorsselaere
2018; Karampelas et al. 2019; Guo et al. 2019a,b) find turbulent
flows develop throughout the loop cross section and energy is
dissipated throughout the volume of the flux tube. More recently,
Shi et al. (2021) presented a model that shows this heating mech-
anism is able to balance radiative losses for certain parame-
ters. This recent paper presents favourable conditions for wave
heating by considering a relatively low density loop (hence low
radiative losses) that is excited by continuous resonant foot point
driving.

Despite these positive results, it remains unclear whether
wave heating models are able to dissipate sufficient energy
in the corona in more general conditions. In particular, for
non-resonant driving in closed loops with low energy dissipa-
tion rates, the Poynting flux injected by single frequency sinu-
soidal wave drivers is often relatively low (e.g., Howson et al.
2019; Prokopyszyn et al. 2019). Furthermore, in the context of
the KHI, Hillier et al. (2020) used a simple mean-field model
(Hillier & Arregui 2019) to show that observed wave amplitudes
are typically insufficient to power coronal heating through turbu-
lent dissipation. Thus, if it is energetically relevant in the corona,
the KHI must extract energy from an alternative source. A key
goal of the current study is to evaluate the propensity for the
KHI to dissipate free energy in the background field, instead
of simply dissipating the energy in the perturbed component. In
this context, free energy is used to mean the difference between
the magnetic energy in the initial field and that associated with
the unique, potential field with the same boundary conditions. In
Sect. 2, we outline our model, in Sect. 3, we present our results
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and, in Sect. 4, we discuss the implications of our findings in the
context of coronal wave research.

2. Numerical method

For the simulations described within this article, we used
the Lare3d code (Arber et al. 2001). This numerical scheme
advances the full, resistive, three dimensional, MHD equations
in normalised form. The equations are given by

Le Vo, )
P =jxB-VP+ s, @
P = (V) + 1l + Qe 3)
%=(B-V)v—(V-v)B—VX(77V><B), @
P = 2gnT. s)

Here, p is the plasma density, v is the velocity, j is the current
density, B is the magnetic field, P is the gas pressure and € is
the specific internal energy. In these equations, the resistivity, n
and viscosity, v are included as non-ideal terms which dissipate
energy from the magnetic and velocity fields, respectively. In
the following results, both terms have a suppressive effect on the
growth rate of the instability by reducing the cross-field velocity
shear (Howson et al. 2017a). The viscosity is a sum of contribu-
tions from two small shock viscosity terms which are included
within all simulations to ensure numerical stability. Together,
these contribute a force, F\;s. on the right-hand side of the equa-
tion of motion (2) and a heating term, Qs to the energy equa-
tion (3). The exact nature of these terms are discussed in detail
in Arber (2018). Using the notation detailed in the referenced
manual, we have set viscl = 1072 and visc2 = 5 x 1072.

In the following, we have initially considered simulations
with zero explicit resistivity (7 = 0), so that any reconnection
is facilitated by numerical resistivity. In Sect. 3.6, we discuss the
effects of an explicit anomalous resistivity which is detailed later.
At this point, it is important to note that Lare3d does not force
energy conservation and thus, any numerical dissipation will not
contribute to plasma heating. In the simulations described here
(excluding the lower resolution cases presented in Sect. 3.2), the
effective (numerical) magnetic Reynolds number during the ini-
tial growth phase is approximately 10°. This is estimated based
on the development of currents in the simulations compared with
the same setup but with an explicit resistivity.

In numerical models of kink waves in coronal flux tubes (ref-
erences detailed in Sect. 1), an oscillating velocity shear in the
boundary of the magnetic structure becomes unstable to the KHI.
In this study, we model this with a very simple setup where both
the axial curvature and the cylindrical form of the loop have been
neglected. In Fig. 1, we show the geometry in relation to the KHI
forming in the boundary of an oscillating coronal loop. With this
geometry, we have simulated a plasma slab which approximates
the oscillatory behaviour in the boundary of a flux tube (lower
right hand panel in Fig. 1). The axial periodicity around the cir-
cumference of the flux tube is mimicked with the boundary con-
ditions described in Sect. 2.2.
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Fig. 1. Schematic of the Kelvin-Helmholtz instability forming in trans-
versely oscillating coronal loops. We also show the Cartesian geometry
considered in this article.
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Fig. 2. Transverse profiles of the initial density (blue) and initial tem-
perature (red).

2.1. Initial conditions

We initially considered a uniform, straight magnetic field of
strength 20 G (the effects of a non-potential field are described
in Sect. 3.4), embedded in a coronal plasma. For all simulations,
the numerical domain had dimensions of -4 Mm< x < 4 Mm,
—-2Mm< y < 2Mm and -I/2 < z < [/2. Here, [ is the
height of the numerical domain and, hence, the length of mag-
netic field lines (in the potential field cases). We initially select
! = 100 Mm and the effects of different loop lengths are consid-
ered in Sect. 3.3. The magnetic field was initially aligned with
the z-axis. We imposed a density profile, p as

p(x) = po {2 + tanh (1)} .
l

Here, pg = 1.67 x 107"2kgm™ and [y = 1Mm. This profile
is shown in Fig. 2 (blue curve). The temperature was defined
to give § = 0.04 and to ensure VP = 0 everywhere. The tem-
perature had a mean value of approximately 1.4 MK. The initial
temperature profile is shown in Fig. 2 (red curve). The effects of
gravity, thermal conduction and radiative losses were neglected
in these simulations.
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Fig. 3. Solid line: amplitude of the driving velocity as a function of y.
Dashed line: profile of v,(y) at the mid-plane of the domain when the
peak of the first wave front reaches this height.

2.2. Boundary conditions

In all of the following simulations, zero-gradient conditions were
imposed for all variables across the x boundaries and the y
boundaries were defined to be periodic. At the lower z boundary,
zero-gradient conditions were imposed for all variables except
the velocity field. On this boundary, the x and z components of
the velocity were set to 0 and transverse waves were excited
by imposing a velocity profile, v = v,§. This wave driver was
defined as

vy(y. 1) = vo sin (wr) {1 + Acos (%)} . )

Here vy ~ 7kms™! is the driver amplitude and the term inside
the braces is a factor which ensured that the excited waves
were mildly compressible. For the following simulations, we set
A = 0.2. The variation along the y axis that was induced by this
term allowed the Kelvin-Helmholtz instability to form. It fulfils
a similar role to random noise perturbations that are included
in many numerical simulations of instabilities (e.g., Baty et al.
2003; Zhang et al. 2009; Mostl et al. 2013; Hillier & Arregui
2019). We find that for twice the value of A, the instability devel-
ops at the same time and the form of the vortices that form are
very similar. The form of v, along the line x = z = OMm at
t = n/2w (time of maximum velocity) is shown in Fig. 3 (solid
line). The dashed line is discussed in Sect. 3.

In Eq. (7), w is the frequency of the imposed driver and was
defined as

vAf”, ®)

where vy is the initial (uniform) Alfvén speed on the plane
x = 0Mm. As a result, the frequency of the wave driver exactly
matches the natural Alfvén frequency of all field lines contained
on this plane. For [ = 100 Mm, Eq. (8) gives an angular fre-
quency of approximately 0.031 s~!. Finally, a perfectly reflecting
boundary was imposed at z = [/2 (upper boundary).

3. Results

We begin our analysis by considering the wave dynamics and the
development of the KHI in ideal, uniform field simulations with

A112, page 3 of 17



A&A 656, A112 (2021)

Z (Mm)
Z (Mm)

40 40
20 20
0 0F
-20 20
-40 -40
-III|III|III|III|
-2
X
7

-4 0 2 4 4 2 0 2 4
(Mm) X (Mm)
|
- 0 7 -35 0 35
v, (km/s) v, (km/s)

Fig. 4. Wave velocity on the y = O plane at = 70's (leff) and  ~ 500 s
(right).

! = 100 Mm. The imposed wave driver excites transverse waves
that propagate upwards in the domain. As the waves propagate,
they lose almost all of their compressible nature in the y direc-
tion as energy is transferred across field lines in the direction of
the wave polarisation. As a result, by the time the waves reach
the midplane, there is almost no variation of v, along the y direc-
tion (see dashed line Fig. 3). The very weak inhomogeneity that
remains is sufficient to act as a seed for the Kelvin-Helmholtz
instability. In addition to this effect, the cross-field gradient in the
Alfvén speed induces phase mixing (Heyvaerts & Priest 1983)
and encourages the formation of small scales in the velocity
field.

Upon reaching the z = zma.x boundary, the wave fronts
reflect and induce a counter-propagating mode. The upward and
downward propagating waves then proceed to constructively and
destructively interfere with each other for the remainder of the
simulations. For the field lines on x = 0, in the linear regime,
the matching of the driver frequency with the natural Alfvén fre-
quencies will induce the formation of a resonance. This will lead
to a large increase in the wave amplitude over the course of many
wave periods, producing a standing fundamental mode on this
plane.

In Fig. 4, we show the y component of the velocity in the
y = 0 plane at t+ = 70s (left) and 500s (right). The left hand
panel corresponds to a time before the wave front reaches the
upper z boundary and the right hand panel shows a time after sev-
eral wave reflections but prior to the development of the Kelvin-
Helmbholtz instability (see below). In the left hand panel, we see
the distortion of the propagating wave front which is character-
istic of phase mixing Alfvén waves. Large gradients form in the
perturbed velocity and magnetic fields close to x = 0, which will
(in non-ideal regimes) enhance the rate of viscous and Ohmic
heating, respectively. In the right hand panel of Fig. 4, we see the
growth of a high amplitude standing Alfvén wave on the plane
of resonant field lines (note the different colour bar ranges for
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the two panels). Phase mixing continues across this layer and
a large, oscillating velocity shear (dv,/dx) forms. In low dis-
sipation regimes, this velocity shear is unstable to the Kelvin-
Helmholtz instability.

The weak compressibility of the waves (associated with the
driver profile) ensures there is a small variation along the y direc-
tion of the simulation domain which acts as a seed for the for-
mation of the KHI. After approximately 5 wave driving periods,
characteristic vortices develop along the length of the resonant
magnetic field lines. These are readily seen by the disruption
caused to the initial density profile. In Fig. 5, we display horizon-
tal cuts of the density profile in the z = 0 plane at four stages dur-
ing the development of the instability. In less than the duration
of a wave period (which is approximately 200s), small pertur-
bations in the transverse density profile (a) and (b) develop into
the large vortices (c) that are characteristic of both the hydrody-
namic and magnetised forms of the instability.

Ultimately, these large vortices break down and a turbulent-
like regime develops (panel d of Fig. 5). By this stage, small
scales are also present in the velocity and magnetic fields and
as a result, the KHI will enhance the rate of wave energy dissi-
pation across the velocity shear layer. Since the amplitude of the
standing Alfvén waves (in terms of the velocity field) is largest at
the apex of field lines (z = 0), the Kelvin-Helmbholtz vortices are
largest here. However, the density vortices form along much of
the length of the field lines, with the exception of the wave nodes
at the upper and lower z boundaries. However, even at these loca-
tions, evidence of the instability can be seen in the perturbed
magnetic field. Since the small scales in the velocity field pre-
dominantly form at the antinode, viscous heating will dominate
in the z = 0 layer. Conversely, gradients in the magnetic field are
largest at the field line foot points and thus Ohmic heating will
dominate closer to both the driven and reflective z boundaries
(e.g., Van Doorsselaere et al. 2007; Karampelas et al. 2017).

3.1. Poynting flux

In order for MHD wave models to be interesting in the context of
the coronal heating problem, imposed wave drivers must inject
sufficient energy to balance a significant fraction of losses due
to thermal conduction and optically thin radiation, for example.
In ideal regimes which allow for the reflection of wave modes
at a closed upper boundary, a wave driver will not continuously
inject energy unless a field line is driven resonantly. Indeed, for
non-resonant field lines, a wave driver is as likely to remove
energy from a reflected wave front as it is to introduce new
energy to the domain. As such, significant wave energy can only
be introduced into a simulation domain if field lines are driven
resonantly (on the x = 0 plane in this case) or there is suffi-
cient dissipation such that the amplitude of a reflected wave is
noticeably smaller than the amplitude of the imposed driver. In
this paradigm, two aspects of the KHI are particularly interest-
ing. Firstly, as the density profile is deformed, the resonant layer
and the energy injection rate are modified, and secondly, in non-
ideal cases, the instability will enhance the rate of wave energy
dissipation.

In these simulations, the only energy injected into (or
removed from) the domain is associated with the Poynting flux
through the lower z boundary. Prior to any reflected waves reach-
ing the lower boundary, at a particular point, the time averaged
Poynting flux, S (y), can be expressed as

ExXB-%
S(y) = <¥> = vAp20Y), ©)
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Fig. 5. Evolution of the density profile at z = 0 Mm during the development of the Kelvin-Helmholtz instability in the / = 100 Mm, uniform field,
high resolution simulation. We show the profile at (a) r * 1000s, (b) t = 1045, (¢) t * 1090 and (d) t ~ 2900 s. We have restricted the x axis in

each panel to —2Mm < x < 2Mm.

where v4 = v4(x) is the local Alfvén speed, p = p(x) is the local
density and vy(y) is the maximum driver amplitude at a partic-
ular value of y (see Eq. (7)). We now define 7 to be the period
of the wave driver (also the period of the fundamental standing
mode on the x = 0 plane). As the largest value of the background
Alfvén speed is V2 larger than the speed on the x = 0 plane, the
first reflected wave reaches the driven boundary at t = 7/ V2.
Therefore, for t > 7/ \/Z reflected waves will be interacting with
the imposed driver and Eq. (9) is no longer valid. For the res-
onant field lines at x = 0, the instantaneous Poynting flux will
grow linearly in time until a non-linear regime is reached and
the natural frequency of the field lines detunes from the driver
frequency. This is often associated with the ponderomotive
force redistributing density along field lines, however, in these

simulations it is typically associated with the change of field line
length and modification of the density profile that are associated
with the formation of the KHI.

In Fig. 6, we show the cumulative Poynting flux injected
into the domain as the simulation progresses. As the invariance
in the y direction is destroyed during the development of the
KHI, we average out the effects of the Kelvin-Helmholtz vor-
tices by integrating along the y axis. This gives the Poynting
flux as a function of x and ¢. The black contour contains the
points that receive sufficient energy from the wave driver to bal-
ance expected losses in the Quiet Sun according to the estimates
detailed in Withbroe & Noyes (1977). We note that the Poynting
flux injected into the vast majority of the domain is not suffi-
cient to balance even this relatively low loss rate (compared to
requirements for typical active regions).
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receive sufficient energy to balance expected losses in a typical quiet
region of the solar corona.
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Fig. 7. Solid: cumulative Poynting flux injected through the lower z
boundary by the imposed wave driver averaged along y for various val-
ues of x. Dashed: estimated energy requirements in typical Quiet Sun
conditions. The losses shown by the red dashed line are delayed to show
that the mean Poynting flux for x = 0.3 Mm is sufficient to balance
expected Quiet Sun losses once the Kelvin-Helmholtz instability forms.
Conversely, the green dashed line shows that the mean Poynting flux for
x = 0.6 Mm is not sufficient even once the instability has developed.

For the purpose of clarity, in Fig. 7, we show the cumulative
Poynting flux through the lower z boundary for different values
of x. The solid black line (x = 0Mm) corresponds to the foot
points of the resonant field lines and coincides with the largest
average Poynting flux (see Fig. 6). We also include the expected
energy requirements for the Quiet Sun (dashed black line). Prior
to the formation of the KHI at # ~ 1000s, we see that the total
energy is increasing approximately quadratically as the instanta-
neous Poynting flux (time derivative of the solid line in Fig. 7) is
increasing linearly (due to the relatively low wave amplitudes).
Without the increase in Poynting flux due to the formation of an
MHD wave resonance, the injected energy would be below Quiet
Sun requirements everywhere in the domain (for ¢ < 450s the
gradient of the solid line is less than the gradient of the dashed
line). As such, for these simulations, very efficient wave dissi-
pation mechanisms (such that the energy release time scale was
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shorter than a wave period) would not be able to balance coro-
nal losses as they would prevent a resonance developing. Again,
we note that in all locations (even on resonant field lines), the
energy injection rate is much lower than that required to balance
expected losses in active regions (Withbroe & Noyes 1977).

Once the velocity shear across the resonant layer triggers the
onset of the KHI, the instantaneous Poynting flux decreases. In
the linear regime, and prior to the formation of the KHI, the
field lines contained in the x = 0 Mm plane are perfectly res-
onant. However, any change in field line length or in the local
Alfvén speed will detune the natural frequency of the field lines
from the frequency of the wave driver. When the KHI forms,
many field lines on this resonant layer will increase in length
and the local density (and hence Alfvén speed) will be modi-
fied. As such, the KHI reduces the rate of energy injection on
this layer. Despite this, significant energy injection (compara-
ble to Quiet Sun requirements) continues on this layer as the
change in field line length and mean density is relatively small.
We note that the decrease does not occur at the exact formation
time of the Kelvin-Helmbholtz vortices as it takes at least a quarter
of a wave period for the reflected waves to contain information
about the vortices forming at the apex of the magnetic field lines.
Indeed, from this point forward the short evolution timescales of
the turbulent-like flows (in comparison to the length of a wave
period) will ensure that the nature of the resonant layer cannot be
predicted using an instantaneous snapshot of the magnetic field
and density profiles.

In the linear regime, the rate of energy injection onto non-
resonant field lines will oscillate with a low frequency that
reflects the difference between the driver frequency and their
natural frequency. This can be seen in the blue line of Fig. 7
which shows the cumulative energy flux for the x = 3Mm
plane. We also see the start of this beating behaviour on the
x = 0.3Mm (solid red) and x = 0.6 Mm (solid green planes).
However, following the onset and growth of the KHI, there are
sufficiently many (possibly temporarily) resonant field lines to
substantially enhance the energy injected by the driver. In the
case of x = 0.3Mm, we see that following the onset of the
instability, the increase in energy injection is sufficient to bal-
ance Quiet Sun losses (compare solid and dashed red lines). For
the weaker distortion apparent at x = 0.6 Mm, on the other hand,
the increase in the averaged Poynting flux would not be suffi-
cient to be the only source of coronal heating (compare solid and
dashed green lines). Even with the large disruption of the reso-
nant layer, most of the computational domain (x| > 0.3 Mm) still
experiences low energy injection rates.

3.2. Numerical resolution

It has been well established that dissipative effects within numer-
ical simulations inhibit the growth rate of the Kelvin-Helmholtz
instability (e.g., Howson et al. 2017b). This is the case for both
user-imposed transport coefficients and for numerical dissipation
associated with the use of a finite difference scheme. As such,
the growth rate of the instability may be artificially inhibited in
many large scale MHD simulations of the solar corona. In this
section, we introduce the metrics used within this article whilst
examining the effects of numerical resolution in this Cartesian
geometry.

We consider three simulations with 64, 128 and 256 grid
points in the x direction (n,) and 32, 64 and 128 grid points in
the y direction (n,), respectively. We note that the total length of
the x axis is twice the length of the y axis, so, in each case the x
and y resolutions are identical. The z resolution is unchanged in
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Fig. 8. Growth rates of the KHI and small-scale formation for the numerical simulations considered within this article. We show the effects
of numerical resolution, field line length and the inclusion of a shear component in the background field for the first, second and third rows
respectively. The first column shows the growth rate of the instability (details in text). The second and third columns show the change in the mean
(solid lines, left hand axis) and the change in the maximum (dashed lines, right hand axis) of the current density and the vorticity, respectively. In

all cases, the change is calculated relative to the initial conditions.

each case. The highest resolution corresponds to the simulation
described in Sect. 3.1.

In order to evaluate the onset time and initial growth rate of
the instability in each case, we note that the initial disturbance
in the density profile is associated with a growth in |v,| at the
antinode of the standing wave. Prior to the onset of the insta-
bility, this component of the velocity is extremely small as the
driven wave is polarised in the y direction. However, this quan-
tity increases dramatically as the first Kelvin-Helmholtz vortices
form. In the top left hand panel of Fig. 8, we plot the time evo-
lution of the mean of this quantity averaged over the numerical
domain for the three different resolutions. Note, for all panels
in this figure, the time axis is shown as the number of peri-
ods of the wave driver (7). In each case, this quantity clearly
identifies the onset time of the instability at approximately 57.
The sharp increase in the mean of |v,| corresponds to the lin-
ear growth phase of the instability and, for clarity, we show a
zoomed in version of this growth phase, in the left hand panel of

Fig. 9. However, this growth is not sustained and breaks down
as the initial vortices collapse (see Fig. 5). As the KH-vortices
fold back on themselves, the magnitude of the x component of
the velocity decreases. Subsequently, as a turbulent-like regime
develops, later vortices are much smaller and thus velocities do
not attain the same maxima again. We note that both the for-
mation time and subsequent growth rate of the instability will be
suppressed by low numerical resolution (e.g., compare black and
blue curves).

The KHI is interesting in the context of coronal heating as
the formation of small scales in the magnetic and velocity fields
will enhance the rate of wave energy dissipation. We measure
the small scales in each of these fields using the current den-
sity, j, and vorticity, w, respectively. In the central and right-
hand columns of Fig. 8, we show the evolution of these quanti-
ties for each of the resolutions considered. As the initial currents
are non-zero in some of the following simulations, we consider
the change in the currents and vorticities, relative to the initial
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Fig. 9. Zoomed in versions of the left hand column of Fig. 8 showing the growth phase of the instability for different simulations.

conditions. In each case, solid lines represent the change in the
mean value and the dashed lines show the change in the max-
imum value obtained within the domain. In each plot, the left
hand axes correspond to the means and the right hand axes corre-
spond to the maxima. For clarity, we only show the two extreme
cases (e.g., for the top row n, = 64,256) for the maxima curves.
We consider the second and third rows of Fig. 8 in subsequent
sections.

For all variables, we see an increase prior to the formation of
the instability. This corresponds to the progression of classical
phase mixing (Heyvaerts & Priest 1983) due to the cross-field
gradient in the local Alfvén speed. The small scales that form
across the high amplitude wave at the resonant layer are partic-
ularly important and they provide the dominant contribution in
these curves. We note that before the KHI onset time, both the
current and vorticity plots are similar across resolutions, suggest-
ing that even in the low resolution n, = 64 case, the early wave
dynamics are well-resolved.

The onset of the instability is associated with a large increase
in the maximum currents and vorticities, particularly in the high
resolution simulation (dashed black lines). These small scales
form along the largest vortices where the greatest disruption to
the velocity field occurs. In non-ideal regimes, these small spa-
tial scales will be associated with high, but very localised and
temporally intermittent, energy dissipation. We see that the sizes
of the largest currents and vorticities are sensitive to the numer-
ical resolution. This is not surprising as finer grids allow larger
gradients to form. However, we also see greater growth rates in
high resolution simulations. Following the initial rise of the max-
imum current and vorticity, the development of a turbulent-like
regime (see panel d in Fig. 5), prohibits the continued existence
of such large gradients. Instead, the smaller vortices are less
energetic and small scales are more widely distributed through-
out the mixing plasma.

Despite the rapid increase in the largest currents and vor-
ticities during the early stages of the KHI, the mean values of
these variables show little or no increase during this time. In this
regime, where the KHI only develops in a relatively small pro-
portion of the domain, we do not see a large increase in heating
over most of the simulation volume. Indeed, the instability actu-
ally reduces these measures of small scales for ¢ > 67. Prior to
the formation of the instability, for all resolutions, the mean cur-
rent density and the mean vorticity are growing approximately
linearly. This is associated with the growth of the wave ampli-
tudes observed at the resonant layer. In non-ideal regimes, for
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t < 51, the location of energy dissipation will predominantly be
across the narrow sheet of large gradients at x = 0 Mm. Here, the
instability disrupts this resonant layer and the Kelvin-Helmholtz
vortices act to reduce the coherent gradients on this plane.

3.3. Field line length

In this section, we consider the effects of field line length on
the development of the magnetic KHI. We consider simulations
with [ € {20,40, 50, 80, 100} Mm. The / = 100 Mm is the first
simulation discussed in Sect. 3. In general, for finite field line
lengths, magnetic tension will act to suppress the growth rate of
the instability as the Kelvin-Helmholtz vortices distort the mag-
netic field. For shorter field line lengths, the same apex displace-
ment of a field line will produce a larger tension force. As such,
we should expect the KHI to be somewhat suppressed in shorter
coronal loops. In order to understand the instability for different
field line lengths in our numerical simulations, we begin by con-
sidering the factors that directly affect the onset and development
of the KHI (for example, the magnitude of the velocity shear and
the suppressive effects of magnetic tension). This discussion will
allow the instability and small-scale growth rates to be analysed
in more detail.

Many previous analytical studies (e.g., Roberts 1973;
Browning & Priest 1984; Soler et al. 2010; Hillier et al. 2019;
Barbulescu et al. 2019) have identified instability criteria for
non-steady flows in coronal plasmas. With this in mind, we can
compare our relatively complex setup, with a similar model that
permits an analytic treatment and considers density and oscilla-
tory velocity profiles which are uniform (but different) on each
side of a discontinuity. The profiles are given by

- ifx<0,
p(x)‘{ . ifx>0, (10
and a velocity profile v = (0, vy, 0) where
v_coswt ifx<0
(x) = To= 11
") {v+ coswt if x> 0. an

Here, p, - and v, _ are constants. This setup is unstable to the
KHI if

42 (ps+ p)V2

2
(Av)” > p_k)z,

, (12)
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where Av = v, —v_, v4 4 is the background Alfvén speed for x >
0 and k,; are the wave numbers of an assumed perturbation in
the y (parallel to wave polarisation) and z (parallel to background
magnetic field) directions, respectively (adapted from Eq. (39) in
Hillier et al. 2019).

Whilst this simplified set-up does not apply directly to the
continuous velocity shear considered in this article, it is able to
highlight some key criteria which are relevant for the growth
rates discussed below. In particular, the k, term is affected by
the field line length. As a simple comparison with our model, we
can take p, = 3p_, ky ' = yimax — Ymin (see driver in Eq. (7)) and
kz’l = 2[ as the wavelength is twice the height of the domain for
a fundamental standing mode. We can also define v4 ; using the
Alfvén speed at x = xpax. Under these assumptions, we immedi-
ately see that the instability criterion is easily reached for k, < k,
(i.e. for long field lines) and further, any velocity shear is unsta-
ble for infinitely long field lines (k, — 0).

In this simple comparison with our model, the correct form
for Av remains unclear and there are two important factors to
consider. Firstly, the continuous resonant driving of the x = 0
plane enhances the amplitude of the central field lines in com-
parison to the neighbouring field lines. As a result, the velocity
shear (~Av) increases as the simulation progresses. Secondly,
the continued phase mixing across the inhomogeneous layer
that occurs during the simulations creates large gradients in the
velocity field. This also effectively enhances the magnitude of
the shear (~Av). The effects of this second factor are considered
by Browning & Priest (1984).

Despite this complexity, we can constrain the effects of field
line length on Av as follows. The apex velocity of a resonantly
driven, linear, fundamental, standing Alfvén wave is given by
(e.g., Prokopyszyn 2021)

v(t) = vy (M’ + l)sin{a)(t— ! )}
2VA,0

where v, is the amplitude of the imposed driver (vq in this case)
and

13)

(14)

Note, m’ + 1 is the number of times the leading wave front
has passed the z = O plane (including after reflections). In the
upper panel of Fig. 10, we show the amplitude of the standing
wave observed at x = y = z = 0 Mm as a function of time for the
[ = 50 Mm (blue) and [ = 100 Mm (red) cases. The solid lines
show the velocities obtained in the numerical simulations and
the dashed lines show the predictions given by Eq. (13). Prior
to the formation of the KHI at # ~ 650 s (blue) and r ~ 1000 s
(red), the analytic prediction and numerical results match well.
We note that there are small deviations at times of maxima veloc-
ity which are associated with a lack of temporal resolution in the
output of the MHD simulations (not the simulation time step)
and weak viscous effects (both numerical and due to the user-
imposed shock viscosities). Following the onset of the instabil-
ity, however, the simulation velocity is much smaller than the
analytic formula because the resonance is disrupted.

Although the increase in wave amplitude is faster for the
shorter loop, if we normalise for the Alfvén travel time in each
case, the resonance growth occurs at the same rate. In other
words, after the same number of driving periods (r = 2//vap),
the wave amplitude is the same in both cases (prior to KHI
onset). Therefore, we do not expect this effect to modify the
instability onset time in terms of the number of wave periods
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Fig. 10. Upper: amplitudes of resonant wave for / = 50 Mm (blue) and
! = 100 Mm (red). Dashed lines show prediction from Eq. (13) and
solid lines are results from numerical simulations. Lower: cross-field
phase mixing profile for / = 50 Mm at r = 475 s (blue) and / = 100 Mm
(red) at t = 950 s (red). The thin black line corresponds to a simulation
with shear in the background field and is discussed in Sect. 3.4.

(although it will when measured in seconds) for field lines of
different lengths.

In addition to the magnitude of the velocity difference across
the resonant layer, the transverse scales in the velocity profile
are also critical for the growth rate of the instability. As we have
discussed, these are continuously modified by the progression
of phase mixing in the simulations. However, as the cross-field
gradient in the local Alfvén speed is unchanged between simu-
lations, if we again normalise for the driving period, we expect
phase mixing to be unchanged across simulations (prior to KHI
onset). In the lower panel of Fig. 10, we show the profile of v,
as a function of x after approximately 4 wave periods for the
[ = 50Mm (red) and / = 100 Mm (dashed blue) simulations.
Indeed, we see that the velocity profile, and thus, the cross-field
velocity shear are almost identical. The black line is discussed in
Sect. 3.4.

Therefore, as a function of 7, the velocity amplitude and
cross field shear are independent of field length prior to the
development of the KHI. As a result, any suitable proxy for Av
in (12) will not change between these simulations. Therefore,
due to the k2 = 1/4 term in (12), we expect the short field
line simulations to require a greater number of wave periods to
reach the threshold for instability. In the left hand panel of the
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Fig. 11. Density profile at z = 0 Mm for / = 20 Mm (left) and / = 50 Mm
cases. We show the profiles at = 580s (left) and t = 1450s (right),
respectively. We note that due to the different field line lengths, these
times both correspond to the same number of wave periods as panel d
in Fig. 5.

middle row in Fig. 8, we see that this is indeed the case. Using
the same proxy for onset time and initial growth rate as for the
numerical resolution study (see Sect. 3.2), we see that the KHI
onset is delayed by a number of wave periods for the shorter
field line cases. However, it is important to note, that due to the
shorter wave period, the KHI still occurs sooner in shorter field
line cases (when onset time is measured in seconds). Again, for
clarity, we show a zoomed in version of the linear growth phase
for the different cases, in the central panel of Fig. 9. As a result of
the different instability onset times, we expect any energy release
associated with the instability to occur earlier for shorter field
line simulations in non-ideal regimes.

As with the numerical resolution parameter space, in the cen-
tral and right-hand panel of the second row in Fig. 8, we show
the time evolution of the current density and vorticity for differ-
ent values of /. In all cases, prior to the onset of the instability,
there is very little difference in these quantities between sim-
ulations. Even though field aligned gradients are larger for the
shorter field line cases, the cross-field, phase mixing gradients
are so dominant that this has negligible effects on the magnitude
of j and w.

As the KHI leads to a decrease in the volume integrated cur-
rents and vorticities (potentially following a small initial increase
- as discussed above), the increased number of wave periods
before the instability is triggered for small values of /, means that
short field line simulations will sustain smaller scales in both B
and v for a time. As long as the KHI is delayed, the continued
existence of the resonance layer and the progression of phase
mixing will ensure that gradients increase further across the
x = 0Mm plane. Only once the instability induces a turbulent-
like regime in all cases do the currents and vorticities return to
similar values across simulations. As the maximum currents and
vorticities are larger for small values of /, in a non-ideal regime
we expect an enhancement in the maximum heating rate for
shorter field lines. This is simply an effect of the enhanced time
(in terms of wave periods) for which a coherent resonance exists.

In Fig. 11, we show the disruption of the cross-sectional den-
sity profile for the / = 20 Mm (left hand panel) and / = 50 Mm
(right hand panel) cases. In terms of the number of driving peri-
ods (approximately 14.57), both of these plots correspond to the
same time as panel d in Fig. 5. The instability is well devel-
oped in both cases. As a result of the increased magnetic tension
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forces, we see that the Kelvin-Helmholtz mixing layer is much
smaller for the shorter field line cases. As a result, observational
signatures of the KHI are likely to be more difficult to detect in
short coronal loops. Additionally, in non-ideal regimes, any sig-
nificant wave heating will occur over a much narrower region for
shorter field lines.

3.4. Non-potential background field

Although the KHI is able to enhance the rate of energy dissipa-
tion, the total amount of wave energy available may be insuf-
ficient to balance expected coronal losses, particularly within
active regions (for example, see Figs. 6 and 7). As we have seen,
the existence of wave resonances will significantly enhance the
amount of wave energy, however, it remains unclear whether
these are sufficiently widespread and long-lived to meaningfully
increase the energy injection rate. Despite this, even without suf-
ficient wave energy, the dynamic instabilities may remain rele-
vant in the context of the coronal heating problem as they may
facilitate the release of energy stored in the background mag-
netic field. In particular, the compressive flows associated with
the development of the KHI may trigger a faster rate of mag-
netic reconnection in the background field. In order to investi-
gate this potential mechanism, in this section we adapt the model
described above by including a shear in the background mag-
netic field. This provides an additional source of energy which
may enhance inferred heating rates.

In transversely oscillating coronal loops, the presence of
magnetic twist will modify the formation and subsequent growth
rate of the KHI (e.g., Howson et al. 2017a; Terradas et al. 2018)
and even relatively weak twist may stabilise the system over
the decay time of transverse loop oscillations (Barbulescu et al.
2019). For cylindrical coronal loops with a density enhancement,
magnetic twist is modelled using a field component that is per-
pendicular to both the loop axis and the density gradient (B,
in cylindrical geometry). In the Cartesian geometry considered
here, this will correspond to a non-zero B, term in the equilib-
rium field. In the following, we consider B, defined as

X

By(x) = aBj tanh (5) , (15)
where —1 < a@ < 1 is a parameter controlling the strength of
the magnetic shear and By = 20 G is the magnetic field strength
implemented in the uniform field simulations. We note that this
profile reduces to the earlier setup for @ = 0. The constant, ly,
controls the width of the magnetic shear region. In order to main-
tain constant magnetic pressure and thus an initial equilibrium
(there is no magnetic tension force in the background field), we
define B, as

B.(x) = ,/Bg - B2(x).

The inclusion of the shear component in the magnetic field intro-
duces currents in the background field. These currents are field
aligned and thus do not contribute any (initial) Lorentz force,
however, they can contribute to plasma heating in non-ideal
regimes. In order to investigate how this shear component in the
magnetic field affects the energetics of the instability, we con-
sider simulations with @ € {0.05,0.1,0.2}. These values corre-
spond to shear field strengths of 1, 2 and 4 G, respectively. The
transverse profiles of B, (solid black line), B; (dashed black line)
and the total field strength (dashed red line) for the @ = 0.2
case are shown in Fig. 12. In this figure, the left hand axis cor-
responds to the solid line and the right hand axis corresponds to

(16)
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Fig. 12. Transverse profiles of B, (solid black line), B, (dashed black
line) and the total field strength (dashed red line) for the o = 0.2 case.
Here, the solid line uses the left hand axis and the dashed lines use the
right hand axis.

the dashed lines. In this section we have implemented n, = 256
and / = 100 Mm.

Since the magnetic field strength is unchanged throughout
the domain, the local Alfvén speed profile remains the same as
in the previous cases. However, the inclusion of a B, term effec-
tively lengthens most of the field lines (not x = 0, where B, = 0)
and thus modifies the natural Alfvén frequencies. This, in turn,
affects the excited wave amplitudes (although not at x = 0, in
the linear regime). An additional consideration is that for the
imposed wave driver, the velocity field is no longer perpen-
dicular to the magnetic field. This results in a fraction of the
injected energy exciting a slow wave (see, for example, Fig. 10
in Fyfe et al. 2020). It is theoretically possible to impose a wave
driver that satisfies v - B = 0 everywhere on the lower z bound-
ary, however, this would require a precisely varying profile. This
would inevitably differ across simulations and hence we do not
consider this here.

At early times (prior to KHI formation), the cases with a
shear component in the field evolve in a similar fashion to the
potential field simulations. The phase mixing profile is modified
slightly due to the change in the profile of the natural Alfvén
frequency, however, the magnitude of the velocity shear across
the resonant layer is largely unchanged. In the lower panel of
Fig. 10, we compare the transverse profile of vy at t = 950's for
the @ = 0.2 case (thin black line) with the @ = 0 simulations dis-
cussed above. The only significant difference is seen at large |x|,
where the difference in field line frequencies between the simu-
lations is greatest. We note that close to x = 0 Mm, there is very
little difference in the transverse velocity shear.

With regards to the other components of the velocity field (v,
and v,), there are some differences between the simulations. The
tilting of the field for @ # 0 cases inclines the natural oscilla-
tion mode of the Alfvén wave out of the horizontal plane and is
thus associated with a velocity component in the z direction. A
component of v, also exists in the straight field case but this is a
non-linear effect associated with the ponderomotive force (e.g.,
Hollweg 1971; Tikhonchuk et al. 1995; Verwichte et al. 1999;
Prokopyszyn et al. 2019). Additionally, the inclusion of back-
ground currents excites velocities in the x direction, even in
the linear regime. The perturbed field has a component of B,
which interacts with j, in the background field to induce an

Y (Mm)
Y (Mm)

1.0 1.5 2.0 25 3.0
Density (o,)

Fig. 13. Density profile at z = 0 Mm for thex @ = 0.1 (left) and @ = 0.2
(right) cases at t ~ 2900 s.

x component of the Lorentz force (e.g., Howson et al. 2019).
Again, the straight field cases can induce x velocities (prior to
the formation of the KHI) but this is a non-linear effect caused
by phase mixing and the enhanced magnetic pressure on the
resonant layer (e.g., Nakariakov et al. 1997; Botha et al. 2000;
Thurgood & McLaughlin 2013). Despite these differences, for
the relatively weak magnetic twist here, wave dynamics are still
dominated by the v, and B), components of the perturbed fields.

Despite the minimal change in the velocity shear across the
resonant layer for the non-potential cases, we see that the sup-
pressive effect of magnetic twist (in cylindrical regimes) also
applies here. In Fig. 13, we show the density profile at r ~ 2900 s
for the @ = 0.1 (left) and @ = 0.2 (right) cases. In terms of the
number of wave periods (7), this is the same time as panel d
in Fig. 5 and both panels in Fig. 11. We see that increased
field shear (right hand panel) reduces the size of the Kelvin-
Helmholtz vortices and that both cases, show vortices with a
much smaller spatial extent than the straight field case (com-
pare with panel d in Fig. 5). Indeed in the @ = 0.2 case (where
|B,|/|B] is still relatively small), there is very little deformation
of the initial density profile.

The slower instability growth rate and the reduced disrup-
tion in the higher o cases allow the resonant layer at x = 0
to stay coherent for longer during the simulation runtime. This
allows larger wave amplitudes to form on the resonant field lines
in comparison to the straight field case, producing a greater
transverse velocity shear. Despite this enhanced shear, the KHI
growth rate remains suppressed (although not fully) for the non-
potential field cases throughout the numerical experiments. In
Fig. 14, we compare the magnitude of the horizontal velocity

field (/v2 + v?) on the z = 0 Mm plane for the @ = 0 (left hand

panel) and @ = 0.2 (right hand panel) cases at ¢t ~ 2900s. In
the left hand panel, we see that the largest velocities form on
the boundary of KHI vortices, driving the subsequent evolution
of the instability. In the right hand panel, on the other hand, the
Kelvin-Helmholtz vortices are much less apparent despite the
presence of a greater velocity shear. It is apparent that the clas-
sical phase mixing pattern (corresponding to coherrent vertical
banding in this topology), is disrupted for the straight field case
but remains evident in the right hand panel.

In the third row of Fig. 8, we quantify the instability growth
rates for the different field configurations and display the effects
on the formation of small scales in the magnetic and velocity
fields. In the left hand panel of the row, we show a proxy for
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the growth rate of the instability. In previous sections, we use
the mean of |v,|, however, this is no longer appropriate for the
sheared field as an x component in the velocity is directly excited
by sheared field (as described above). Therefore, we use the
maximum change in the plasma density throughout the numeri-
cal domain instead. This quantity is not perfect as the compres-
sive nature of the wave driver and non-linear effects do modify
the density profile even before the formation of the instabil-
ity. However, as the initial Alfvén wave is largely incompress-
ible and oscillates on planes of constant density, it still provides
clear identification of the time when the first vortices begin to
deform the density profile. In agreement with previous studies,
we see that the inclusion of shear in the background magnetic
field delays the onset of instability formation (by several wave
periods in some cases) and reduces the subsequent growth rate.
Once again, for clarity, we show a zoomed in version of the ini-
tial growth phase in the right hand panel of Fig. 9. In both ver-
sions of the plot, we see that the @ = 0.2 case (blue line), the
effects of the KHI are difficult to detect in this quantity, with the
most apparent signature being the breakdown in the oscillatory
pattern at ¢ ~ 87.

As there are currents present in the background magnetic
field (for @ # 0), to isolate the effects of the KHI, in the cen-
tral panel of the third row in Fig. 8, we display the change in the
mean (solid lines) and the change in the maximum (dashed lines)
currents. We see that increasing shear reduces the magnitude of
the Kelvin-Helmholtz currents that form. This is a little mislead-
ing as the sheared cases have significantly larger background
currents. Indeed, for the @ = 0.2 case, the increase in the mean
current only represents a 20% enhancement on top of the back-
ground. However, in these simulations, any Ohmic dissipation
associated with the KHI would be small in comparison to that
associated with the diffusion of the background field note that
this assumes a spatially and temporally uniform value of resis-
tivity, while in reality numerical dissipation will be enhanced in
the current layers associated with the KHI. Despite the inclusion
of background currents in the @ # 0 cases, the largest currents
(although highly localised) are observed in the @ = 0 simulation,
as a result of the most disruptive vortices.

In the lower right hand panel of Fig. 8, we show the evolution
of the mean and maximum vorticities. Unlike with the currents,
the largest values of both the means and the maxima occur in
the more sheared cases. Prior to the evolution of the instability,
the vorticity evolves in a very similar manner, as phase mixing
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is progressing in the same fashion across simulations. However,
this changes as the resonant layer of field lines is disrupted as
the KHI forms. The delayed onset of the instability in the higher
a cases allows for a greater increase in the wave amplitude on
the resonant x = 0 plane and a prolonged period of classical
phase mixing (Heyvaerts & Priest 1983). This permits enhanced
vorticities in the sheared cases in comparison to the @ = 0 sim-
ulation. As with the previous simulations, the mean vorticity
decreases during the growth of the instability. Conversely, we see
that the maximum initially increases, but note that this is highly
localised around the edges of the largest Kelvin-Helmholtz
vortices.

3.5. Magnetic reconnection

Due to the high magnetic Reynolds number expected in the
corona, magnetic field lines are approximately frozen into the
plasma. As such, as the KHI develops, field lines will be carried
with the vortices that are apparent in the density profile and the
velocity field. In particular, the disruptive flows associated with
the instability can create large misalignments between neigh-
bouring magnetic flux bundles, as shown by the sharp growth
in the peak current density. In the presence of a finite resistiv-
ity this may trigger magnetic reconnection. For potential fields,
this process can only release magnetic energy injected by the
wave driver. However, for non-potential fields it may trigger or
enhance the rate of reconnection of the background magnetic
field. In this section, we evaluate the rate of magnetic reconnec-
tion in each of the simulations described above.

Following the injection of energy by the driver (but before
instability onset) the plane x = 0 is both a magnetic shear
layer and velocity shear layer. The interplay of different insta-
bilities and associated energy release at such structures has
been examined in detail is studies by Einaudi & Rubini (1986),
Dahlburg et al. (1997). Indeed, Dahlburg et al. (1997) argue that
the magnetic shear fundamentally alters the nature of the KHI
by allowing magnetic reconnection to become important. As dis-
cussed by Wyper & Pontin (2013), quantifying and interpreting
reconnection in such a configuration is highly challenging, as
the KHI induces multiple localised reconnection processes in
current layers within the domain. In three-dimensional non-ideal
MHD, a necessary and sufficient condition for magnetic recon-
nection to occur is

E=fE||dS¢O,
1

where we have E; = njj and the integral is calculated along
magnetic field lines (e.g., Schindler et al. 1988). Within a par-
ticular non-ideal region, the maximum value of the integral in
Eq. (17) will give the rate of magnetic reconnection. When
multiple, distinct regions of non-zero Z exist, a more nuanced
approach to calculating the global reconnection rate is required.
Equation (21) in Wyper & Hesse (2015) gives the global recon-
nection rate in the presence of fragmented current regions as

|Emax| + Z|El.m. - Es.p.l-

This requires the identification of the integral at local maxima,
Elm.» and at distinct saddle points between maxima E, (see
Wyper & Hesse 2015, for more details). The summation is cal-
culated over local maxima. This quantifies the net rate of change
of flux connectivity with respect to the foot points at either ends
of our domain (z = +z,x). For the simulations described above,
since we have = 0, we can consider £ = 0. However, due

a7
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Fig. 15. Filled green contours: density profile at z = 0 Mm. The colour
table used for the density is the same as in Figs. 5, 11 and 13. Line
contours: value of Z (see Eq. (19)) for field lines embedded within
the Kelvin-Helmholtz mixing layer. The time shown is t = 1090s for
the straight field, high resolution, / = 100 Mm simulation. We have
normalised using the maximum value of Z* at this time. For clarity, we
have restricted the x axis in each panel to —1.2Mm < x < 1.2 Mm.

to the finite size of numerical grid cells, the effective n will be
non-zero and thus we can qualitatively investigate the numerical
reconnection rate using

== fj” ds.
1

Although the exact value of the numerical resistivity is
not known, we can compare approximate reconnection rates
between simulations (with the same numerical resolution) under
the assumption that the true reconnection rate is proportional to

E:nax| + Z'El*m - E‘:p|

A more thorough investigation is described in Sect. 3.6 using an
explicitly defined n, instead.

In Fig. 15, we begin by showing the value of Z* (unfilled
contours) overplotted on the density profile (filled green con-
tours) at ¢+ ~ 1090s for the @« = 0, n, = 256, [ = 100 Mm
simulation. In order to calculate the integral, 10* magnetic field
lines were traced from a grid on the lower z boundary with start
points, (x;,ys) satisfying -1 Mm< x; < 1 Mm and —-2Mm <
ys <2Mm. We note that the wave driver displaces the mag-
netic field and thus the same field lines are not traced through-
out the simulation. Instead, we simply select a sample of field
lines which are ultimately embedded in the Kelvin-Helmholtz
vortices.

In order to create Fig. 15, the location of each field line was
defined as its coordinate at z = O (simulation midplane). We see
that the largest values of the integral coincide with the bound-
aries of Kelvin-Helmholtz vortices where the velocity field is
shearing the magnetic field lines. Meanwhile, the value of the
integral is much smaller in the rest of the cross-section. In the

19)

(20)
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Fig. 16. Contours show the parallel component of the current integrated
over field lines traced from the lower z boundary. Any given location
corresponds to the position of the foot point of a magnetic field line.
The pink line shows a level equal to half of the maximum value of the
integral (0.5). Local maxima within the pink contour are identified with
black points and the loci of associated saddle points are indicated with
white points.

locations of large =", the velocity gradient, and hence the field
shearing, is maximal. As such, the global reconnection rate will
be dominated by small regions within the mixing layer.

Following the onset of the KHI, the spatial profile of =*
can be very noisy and thus many local maxima exist. In order
to use Eq. (20), we must then also locate each of the saddle
points linking these maxima. In Fig. 16, we depict the process
undertaken for estimating the instantaneous reconnection rate.
The contours show the value of 2% at + = 1750s in the case
n, = 256, 1 = 100Mm, @ = 0. Due to the large number of
local maxima, in order to illustrate the method, we only show
the peaks above a certain threshold (pink line). This is given by
half of the maximum value of the integral at this time. However,
in practice all of the local maxima and associated saddle points
are identified. In Fig. 16, the eight black dots show the locations
of local maxima within the distinct regions contained within the
pink contour. The seven white dots show the associated saddle
points. Thus to estimate the reconnection rate at this time, we
use the values of =* at these points (plus all other maxima and
saddle points omitted from the figure) in Eq. (20).

In Fig. 17, we show how this estimated reconnection rate
changes as a function of time (wave periods, 1) for different field
line lengths (left hand panel) and for different values of shear in
the background field (right hand panel). For clarity, we have not
included all simulation results and we have normalised all curves
by the maximum value in the / = 100, @ = 0 case. We note that
the two black curves correspond to the same simulation. In all
cases, we see that the reconnection rate rises dramatically at the
onset of the instability. As such, in terms of the number of wave
periods, this increase is delayed when the KHI forms later (for
shorter field lines and for a # 0).

In addition, we see that when the size of the Kelvin-
Helmbholtz vortices is reduced, we calculate a lower reconnection
rate. For example, the peaks of the blue curves (left; / = 40 Mm,
right « = 0.2) are much lower than the unsuppressed @ = 0
case (black curve). We note that in terms of the reconnection
rate, the free magnetic energy for the @ # 0 cases is not able to
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Fig. 18. Density of traced field line end points calculated using I" (see Eq. (21)) and normalised to the maximum value. This shows reconnection
of field lines across the resonant plane. Field lines were traced from x > 0 on the lower z boundary. We show the & = 0 case at t = Os (left hand
panel) and at t = 1090s (centre panel) and the @ = 0.2 case at t = 1740s (right hand panel). The white dashed line corresponds to the initial

position of the resonant plane.

fully compensate for the reduced instability growth rate. How-
ever, even though the density deformation is very small in the
a = 0.2 case (see right hand panel of Fig. 13), we do see that
the KHI significantly enhances the reconnection rate above the
level derived from the equilibrium field. As such, the KHI may
be energetically important even if it is difficult to observe in the
corona.

The reconnection can be tracked by following the connec-
tivity of field lines embedded within the Kelvin-Helmholtz vor-
tices. In Fig. 18, we show how the connectivity changes. To cre-
ate this plot, we traced 1.6 x 10° field lines from a set of foot
points on the lower boundary. In this case, we restricted the start
points to 0Mm < x; <1Mm and -2Mm < y; <2Mm. In par-
ticular, the x coordinates of the start points were all on one side
of the resonant layer. Initially, the x component of the magnetic
field is O and therefore (at the start of the simulations), the field
lines are each confined to a particular value of x (although the
value of y does change in the @ # 0 cases). The KHI causes
reconnection across the shear layer and thus, some field lines are
ultimately connected to points with x coordinates that are less
than 0. To show this, we display a measure of the density of
traced field line end points (see Eq. (21) below). This is calu-
clated by first computing all pairwise distances, dﬁ,y, between
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points (x,y) on the upper boundary and the end points, p. For
example, at every point on the upper boundary, we calculate all
the distances between this point and the traced field line end
points. We then calculate a variable, I' = ['(x, y), as

o\
I'= Zexp{ (7) }
P

where the summation is over the traced field lines and A is a
length scale set to be ten times the separation between neigh-
bouring field line start points (in order to generate a smooth mea-
sure). We display I" at # = 0 (left hand panel) and r = 1090 s (cen-
tral panel) for the @ = O case, and at t = 1740s for the @ = 0.2
case (right hand panel). The central and right hand panels corre-
spond to times when the instability is developing in their respec-
tive simulations. In each case, we have normalised by the max-
imum value of T as the relative size is unimportant. The dashed
white line shows the initial location of the resonant plane.

In the left hand panel, we see that initially the field lines do
not cross the resonant plane (B, = 0 everywhere). However, at
later times, once the instability has developed, field lines have
reconnected across the mixing layer, in both the @« = 0 and
a = 0.2 cases. This leads to an increase in field line density (of

2
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period. Right: volume integrated Ohmic heating rate. We show the @ = 0 (black) and @ = 0.1 (green) cases. For the central and right hand panels,

we have normalised by the maximum of the blue curve.

traced field lines) for x < 0 Mm and a corresponding decrease
in field line density for x > 0Mm. As the wave driver only
moves foot points in the y direction, and the velocity on the upper
boundary is forced to 0, any field lines that connect to x < 0 at
the upper boundary must have changed their connectivity. By
comparing the central and right hand panels, we can clearly see
the reduced size of the mixing layer. Field lines reconnect over
a much smaller distance for the sheared field case (right hand
panel).

3.6. Non-ideal regimes

Investigating the Kelvin-Helmholtz instability in an explicitly
non-ideal regime is difficult because of the suppressive effects
that dissipation has on the growth rate of the instability (e.g.,
Howson et al. 2017b). In this context, it is important to note that
we cannot accurately replicate the high Reynolds number coro-
nal conditions in 3D MHD simulations. As such, even the ideal
simulations discussed above will exhibit artificially low growth
rates. On account of these considerations, in this section we
investigate the effects of a local resistivity term (non-uniform in
space and time) that is triggered by high currents. By choosing a
suitable threshold for this critical current, we allow the instabil-
ity to form as above, before the resistivity is activated.

We consider the « = 0 and @ = 0.1 cases, as these allow
the same threshold current to be selected without significantly
impeding the initial growth of the instability in either case. We
selected a threshold of 5 x 107* Am™2 and a critical resistivity
cogresponding to a magnetic Reynolds number of approximately
10°.

In Fig. 19, we show a summary of the results of these two
simulations. For all plots, the black curve shows the @ = 0
case and the green curve shows the @ = 0.1 case. In the left
hand panel, we show the percentage of grid points in the domain
where the critical current is triggered. We note that for both sim-
ulations, the number of points remains small (<1%) at all times
and peaks during the steep growth phase of the instability. The
threshold is exceeded at a small number of points just before
the instability onset time in the @ = 0.1 case. The presence of
the background currents (together with phase mixing currents)
in the @ = 0.1 case means that the critical current threshold is
surpassed before the onset of the KHI in the sheared field simu-
lation. This is not the case for the @ = 0 simulation.

In the central panel of Fig. 19, we show the reconnection
rate for the two simulations as a function of wave periods. This
is calculated as described above, except we now use E| instead

of jj. In other words, unless a field line passes through a grid cell
where the critical resistivity is activated, the integral will be zero.
For this figure, we have normalised both curves by the maximum
of the green curve. As before, we see a sharp rise in the recon-
nection rate in both cases as the instability develops. However,
in contrast to the simulations described above, we see that the
sheared field simulation typically has a higher reconnection rate
than the @ = O case. This is simply due to the increased number
of grid points at which the critical resistivity is triggered. The
highly variable nature of these curves is caused by the localised
and intermittent activation of this resistivity due to formation and
decay of individual current sheets during the development of the
KHI.

Similarly, the volume integrated Ohmic heating rate (right
hand panel of Fig. 19), is larger for the non-potential field case.
Again, this can be attributed to the greater number of grid cells
at which the critical resistivity is activated. These results show
that it is possible to select a resistivity profile such that energy
release during the instability will be greater in sheared field cases
even though the KHI growth rate is lower. This result will be
physically relevant if the small scales that develop turbulent-like
flows that develop following the onset of the instability trigger a
regime with a higher rate of resistive dissipation.

4. Discussion and conclusions

In this article, we have presented the results of MHD simulations
investigating the formation of the magnetic Kelvin-Helmholtz
instability. Using a fixed frequency sinusoidal velocity driver,
we introduced shear Alfvén waves into a coronal model contain-
ing a cross field gradient in the local Alfvén speed. Following
a period of phase mixing and the growth of a resonant standing
wave, the transverse velocity shear became unstable. As a result,
small scales form in both the velocity and magnetic fields, which
will lead to enhanced viscous and Ohmic heating rates in non-
ideal regimes. Even for high (but finite) Reynolds numbers, the
field-aligned currents that form as a result of the instability will
be associated with magnetic reconnection. We see that the insta-
bility triggers reconnection in all cases and the calculated rate is
highest when the growth rate is largest.

In terms of magnetic reconnection, for the current setup,
the extra energy associated with a non-potential shear compo-
nent in the background field is not sufficient to compensate for
the low growth rate. For the simulations described here, both
the shear in the background field (for @ # 0) and the out-of-
phase waves (before the onset of the KHI) are associated with a
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gradient (0B, /0x) across the resonant field lines. Coincidentally,
at the instability onset time, the amplitude of the perturbed field
(on the resonant plane) is comparable to the size of the shear
component in the @ = 0.2 case. Furthermore, the width of the
background current layer (see Fig. 12) is similar to the width of
the phase mixing layer (see lower panel of Fig. 10). As such,
as the instability threshold is reached, the largest currents in the
non-potential case are approximately twice those in the poten-
tial field simulations (wave currents and background currents in
the @ = 0.2 case and just the wave currents in the @ = 0 case).
The disruptive KHI flows dynamically generate field line mis-
alignments over small length scales, and thus further enhance the
current density. As the potential field case develops much larger
Kelvin-Helmholtz vortices, field lines with a much greater initial
separation are forced together (more so than in the @ # 0 cases).
As aresult, even though the pre-instability gradients are smaller
for the @ = 0 simulation, the greater disruption that we see in
this case is more than sufficient to compensate. As such, this
ultimately produces a higher reconnection rate when the field is
not sheared.

In the sheared field cases, the background field varies over
a length scale comparable to the initial density profile. How-
ever, it would be possible to use a magnetic field which varies
over much smaller scales. An extreme example of this would
be a step-change in the shear component of field across the res-
onant layer (an infinite current). In such a regime, the Kelvin-
Helmbholtz vortices may struggle to form due to the shear and
the (zero) numerical resolution across the shear layer. However,
even a very small disturbance in this case may well trigger sig-
nificant reconnection (e.g., alongside the tearing instability). An
analytic treatment of such a model may yield interesting in a
future study.

We also note that the observed reconnection rate will scale
with imposed transport coefficients, e.g., magnetic diffusivity. In
more diffusive simulations the growth rate is reduced and the
KHI may be suppressed entirely (see Howson et al. 2017b, for an
investigation into this effect in coronal loops). In this case, plas-
mas with higher Reynolds numbers would allow the instability
to form sooner. This would mean that the amplitude of the reso-
nant wave and, thus, the pre-instability currents may be different.
With this in mind, the ratio between the background currents
(from the magnetic shear) and wave currents need not be con-
stant for different values of the resistivity. As such, the relation-
ship between the reconnection rates obtained in the unsheared
and sheared simulations may change too.

The true complexity of the coronal field remains unclear. As
such, we cannot say how much magnetic shear is required to
accurately represent coronal conditions. Indeed, it may be the
case that the results here are not directly applicable to other field
configurations. In particular, any field that does not suppress the
growth rate of the instability need not exhibit the lower recon-
nection rates seen in the sheared cases. It is important to note
that it is not specifically the free energy in the field that reduces
the growth rate, but rather the geometry of the field employed
here.

Despite this, if the corona is threaded by complex and intri-
cate current sheets, our @ = 0.2 case may be the most appropri-
ate of the simulations presented here. Although the instability
growth rate is reduced and the density profile deformation is
much less profound (and thus the instability would be difficult to
detect directly) in this simulation, the KHI does still enhance the
rate of reconnection beyond that apparent in the background field
(see Fig. 17). Therefore, it is possible that the KHI is relevant as
a trigger for local reconnection events which could potentially
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lead to more widespread energy release (e.g., due to an MHD
avalanche Hood et al. 2016; Reid et al. 2018).
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