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Abstract 

 

In this chapter, we review the computational approaches that have led to a new generation 

of vaccines in recent years. There are many alternative routes to develop vaccines based on 

the concept of reverse vaccinology. They all follow the same basic principles – mining 

available genome and proteome information for antigen candidates, and recombinantly 

expressing them for vaccine production. Some of the same principles have been used 

successfully for cancer therapy approaches. In this review, we focus on infectious diseases, 

describing the general workflow from bioinformatic predictions of antigens and epitopes 

down to examples where such predictions have been used successfully for vaccine 

development.  
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1. INTRODUCTION 



 

The successful removal of a pathogen from the human body by the adaptive immune system 

requires the recognition of the pathogen’s molecules as "foreign". Molecular patterns can be 

recognized by both branches of the mammalian immune system, innate immunity and 

adaptive immunity. The innate immune system recognizes widely conserved molecular 

features common to many pathogens (so called pathogen-associated molecular patterns), 

allowing this branch of the system to mount a rapid response to early signs of infection. The 

adaptive immune response is more specific, and the molecular patterns allowing the 

adaptive immune system to detect pathogens are called antigenic, or immunogenic. 

Furthermore, the site of the antigen to which the antigen-binding receptors actually bind is 

called the antigenic determinant or epitope. In most cases antigens possess several different 

epitopes; however, they can vary in immunogenicity, which leads to the phenomenon of so-

called immunodominant epitopes. 

 

The two branches of the immune system work on different principles. The innate immune 

system is inherited from the parents and is genetically fixed for life, while the adaptive 

branch is key to the recognition of new pathogenic structures. The adaptive immune system 

again is composed of two arms: the humoral and the cellular immune responses. These 

responses are mediated by two classes of lymphocytes, called B and T cells, respectively. B 

cells are able to express unique immunoglobulin receptors localized on the cell surface. 

These immunoglobulin receptors possess a variable antigen-binding site permitting 

vertebrates to specifically recognize and bind potentially billions of different epitopes. B cells 

are activated upon contact with an antigen, with or without the help of T-helper cells (see 

below). Protein antigens typically activate B cells directly (1). As soon as an antigen binds to 

the immunoglobulin receptor of a naïve B cell, the B-cell is stimulated to proliferate and 

differentiate into an antibody-producing plasma cell (effector cell) (2) with the sole task of 

amplifying a single type of specifically binding antibody that is able to bind its cognate 

antigen while circulating freely within the blood and lymph.  

 

As soon as an immunoglobulin binds to a pathogen, the activity of the pathogen is reduced 

and it is marked (opsonized) for elimination by cells of the innate immune system, 

neutrophils and macrophages, capable of phagocytosis and subsequent killing and 



degradation of the pathogen. Some B cells, however, differentiate into a different cell type, 

so-called memory B cells. In case of the same antigen entering the host again, these cells are 

promptly activated to accelerate a stronger, secondary immune response. Memory B cells 

have the ability to persist in the host for several years, thereby allowing a long-lasting 

protection (3). It is this memory of the immune system that is exploited when vaccines are 

used. 

 

The cellular immune response is mediated by a second type of equally important immune 

cells called T cells. T cells, like B cells, are stimulated to proliferate and differentiate into the 

mature state by specifically binding to antigens. However, antigen recognition by T cell 

receptors (TCRs) is only possible if the epitopes are presented as protein fragments on the 

surface of cells. The presentation of protein fragments requires distinct processing 

pathways, which include the partial degradation of proteins within host cells. Finally, after 

several enzymatic processing steps, some of the resulting fragments are displayed in the 

context of co-simulators on the cell surface by proteins of the major histocompatibility 

complex (MHC) (4). Upon activation, naïve T cells can develop into two major classes of 

effector cells. Each of them maintains the ability to bind the same MHC-peptide complexes 

that had led to their activation. Cytotoxic T cells (CTLs or CD8+ cells1) destroy nearby infected 

or malignant / transformed cells. T-helper cells (Th cells, or CD4+) are a decisive factor in the 

activation of various immune reactions of T-dependent B cells, CTLs, macrophages and 

dendritic cells. In analogy to B cells, subpopulations of both CD4+ as well as CD8+ cells are 

capable of differentiating into memory T cells similarly enabling long-term protection. MHC 

proteins are key to these processes. There are two classes of MHC proteins, named MHC 

Class I and Class II. While MHC Class I are found on the surface of all nucleated cells, MHC 

Class II are exclusively found on the surface of professional antigen presenting cells (APCs), 

                                                           

1  CD8 and CD4 are transmembrane glycoproteins. They function as co-receptors of T cell receptors on 

the surface of T cells. “CD” is an abbreviation for cluster of differentiation: a superscripted plus or minus sign 

indicates whether this type of cell actually does or does not express the specific receptor. CTLs do not possess a 

CD4 receptor, and are therefore unable to bind to the MHC II-peptide complex. In contrast, T-helper cells are 

unable to bind MHC I as they do not express CD8 receptors on their cell surfaces. 

 



which are part of the innate immune system, mainly dendritic cells, macrophages, and B 

cells. Both MHC classes have variable binding pockets which specifically bind previously 

processed peptides in an extended linear conformation with high affinity. In both cases, the 

loaded MHC receptors are subsequently translocated from the endoplasmic reticulum 

(where the loading takes place) to the cell surface of the APC, where these peptides are 

presented to bind TCRs (3). Nevertheless, there are important differences between these 

two classes, as explained in the following paragraphs.  

 

Reverse vaccinology  

 

Since the British physician Edward Jenner introduced his smallpox vaccine to the Western 

world in the late 18th century, classical vaccinology became one the most successful counter-

measures in the constant battle against infectious diseases. In many cases, governmental 

programs for exhaustive vaccination were able to push the number of new infections per 

year of previously prevalent diseases to almost zero (5). Prominent examples include the 

vaccination against smallpox that effectively eradicated the disease, and against polio, 

where incidence rates have dropped by more than 99 per cent since the late 1980s. Despite 

the ongoing success of classical vaccination strategies, a number of infectious diseases have 

remained recalcitrant to vaccine development, largely due to the inherent constraints of 

classical vaccine technology.  

Usually the vaccine administered is a biological suspension of either inactivated or killed 

cells, polysaccharide capsules or toxoids (6). However, in many cases it is challenging to 

prepare a potent vaccine against a specific pathogen. Non-culturable microorganisms, 

antigens which are not expressed in vitro, pathogens with antigenic determinants that can 

trigger detrimental autoimmune reactions, as well as extremely heterogeneous strains, are 

only a few of the severe difficulties classical vaccinologists are confronted with today.  

Recently, a new impetus was given to current vaccine research thanks to the growing 

number of available complete pathogen genomes. Based on the assumption that all 

(protein) antigens a pathogen can express at any time are encoded in its genome (and 

therefore available to the scientist without cultivation), the idea is to combine bioinformatics 



and biotechnology to identify protein candidates for vaccine development. As this approach 

begins with the genome sequence, in contrast to starting from an entire living 

microorganism, it is called “reverse vaccinology” (7, 8). The first projects based on this 

approach used genome information only to naïvely select surface-localized proteins as a 

pool of possible candidates for subsequent classical animal experiments. In their pioneering 

work for the development of a vaccine against Neisseria meningitidis B (MenB), R. Rappouli 

and colleagues collected the sequences of 570 surface-localized proteins, of which about 350 

could successfully be cloned and expressed in Escherichia coli. The purified proteins were 

then used to immunize mice, and the resulting sera were subjected to various 

immunoassays to test for the candidate protein's efficacy as a vaccine. The researchers 

found 28 proteins which showed consistently positive results in all immunoassays and were 

able to induce antibodies with bactericidal activity (9). Furthermore, five of these candidates 

were also highly conserved in the genome of distantly related strains. A subset of these 

candidates became the basis for the development of a vaccine called "4CMenB", which 

contains three recombinant protein antigens combined with outer membrane vesicles 

derived from the meningococcal strain NZ98/254 and has obtained market authorization for 

the European Union in January 2013 (Bexsero, Novartis International AG (10)). Reverse 

vaccinology has since developed enormously (11, 12), in particular by using increasingly 

sophisticated bioinformatic methods to mine the large quantities of information provided by 

pathogen genomes and proteomes. In addition, the complexity of the immune system and 

the vast amount of data generated from systematic characterization of the human genome 

and of immune cells along with clinical and epidemiological parameters have required the 

development of bioinformatics data structures, tools and algorithms to handle and analyze 

them efficiently (13). These tools have proved invaluable for reverse vaccinology.  

In this chapter, we review the computational approaches that have integrated this data, and 

that have led to new vaccines in recent years. We also briefly summarize the mode of action 

of antigens and vaccines, and how vaccines are able to provide long-term protection. We 

want to emphasize that there are many alternative routes to success in reverse vaccinology 

– thus, we focus on prominent examples of infectious diseases. We show the general 

workflow from bioinformatics predictions of antigens and epitopes down to examples where 

such predictions have been used for vaccines successfully.  

Software pipelines for Reverse Vaccinology 



An ideal protein vaccine candidate (PVC) has key attributes such as its accessibility by the 

host immune system. Identifying such proteins within a larger initial dataset, e.g. a bacterial 

proteome, is a recurring task in many reverse vaccinology workflows. Over the past fifteen 

years, several software pipelines have been designed specifically to automatize this process. 

Commonly, they integrate an array of tools for identifying and annotating features to the 

individual proteins. However, they differ in the way they exploit this information for collating 

an output subset of candidates. Filtering-based programs filter the proteins stepwise for 

those having desirable and lacking non-desirable features. Machine-learning (ML)-based 

programs, in contrast, have been trained a priori to correctly classify the input proteins into 

“candidates” and “non-candidates” based on the vector of their annotated features.  

Table 1 lists the most popular pipelines together with the feature annotation tools they 

employ. Regardless of the method, most of the pipelines focus on the same type of features 

and thus, show some overlap in the tools they employ. Usually, desirable features fall into 

four basic categories: (i) high conservation across all strains of the pathogen (ii) (predicted) 

subcellular localization outside the cell/envelope (surface exposure), (iii) functional 

characterization (including on domain level) as a virulence factor or as a protein involved in 

host-pathogen-interactions, and (iv) antigenicity/immunogenicity, i.e. one or more predicted 

epitope(s) of cellular immune receptor classes. Likewise, non-desirable features are: (i) high 

sequence similarity to human or commensal bacterial proteins (or of a model host system, 

due to possible autoimmunity effects), and (ii) the presence of transmembrane helices which 

hamper the protein’s purification and cloning. 

In 2019, Dalsass et al. (14) benchmarked 6 pipelines for their ability to find protein vaccine 

candidates within the proteomes of 11 bacterial species. Intriguingly, the authors described 

a large variance in the number of proteins each pipeline outputs as PVCs. In addition, despite 

the similarities in feature prediction described earlier, the predictions were largely in 

disagreement (with the exception NERVE and Vaxign which are nearly identical). Moreover, 

none of pipelines could recover more than 76% of a set of known protective bacterial 

antigens extracted from the Protegen database. The best performing pipeline, 

Bowman/Heinson, is an optimized ML-based approach, which extends the set of features 

and annotation tools to include predictions for surface exposure, proteasomal cleavage, and 

a range of post-translational modifications as the most impactful. This suggests that careful 



exploration of the feature space by increasing the number of features and annotation tools 

might help to increase the sensitivity. This approach is pursued by the more recently 

developed pipelines PanRV and especially by Vaxign-ML (module of Vaxign2) and ReVac. 

The benchmark results further underline how each pipeline’s performance depends on the 

input proteome and the feature annotation tools it employs. Filtering-based approaches rely 

on tool-specific, predetermined thresholds to accurately decide whether the desirable 

feature is present or is not. These thresholds, however, are rarely optimal for all inputs, i.e. 

they could be too strict for one species yet too permissive for another. Consequently, false-

negative and false-positive feature predictions could lead to accumulation of less suitable 

PVCs in the output. Hence, avoiding parametrization with predetermined thresholds is a 

promising approach pursued by ML-based pipelines. Unfortunately, these approaches are 

still limited by the diversity, quality, and quantity of available training data as both types, 

protective and non-protective antigens, ideally require rigorous in vivo testing. 

In conclusion, feature acumen paired with a conceptual understanding of the employed 

annotation tools is pivotal for choosing the appropriate pipeline in a new RV project. Only 

then troubleshooting problems and circumventing them by pipeline-independent analyses is 

possible. In the following paragraphs, we discuss the basic feature types as well as some of 

tools for their annotation. 

 

  Tools and attributes used to identify key protein features Undesirable protein features 

Pipeline Year Conserved 

(Pan 

genome 

analysis) 

Surface 

Localization 

Virulence 

Related 

Function 

Immunogenic 

Epitopes 

Other Host 

Protein 

Similarity 

Many 

TM-

helices 

Other 

NERVE 2006 

(15) 

 pSORTb SPAAN, 

BLASTp 

(vs. 

UniProt) 

  BLASTPp 

(vs. 

MHCPep 

(16))  

HMM

TOP 

 

VaxiJen 2007 

(17) 

    Physicochemi

cal properties 

   

Vaxign 2010 

(18) 

OrthoMCL pSORTb SPAAN Vaxitope (MHC 

I, MHC II) 

 OrthoMC

L 

HMM

TOP 

 

Jenner-

predict 

2013 

(19) 

BLASTp pSORTb PFAM IEDB (search)  BLASTp 

(vs. 

HMM

TOP 

 



human 

genome) 

Vacceed 2014 

(20)  

 WoLf PSORT, 

SignalP, 

TargetP, 

Phobius, 

TMHMM 

 IEDB (search)   Phobi

us, 

TMH

MM 

 

Bowma

n-

Heinson 

2017 

(21) 

 NetSurfP, 

NetAcet, 

TargetP, 

PSORTb, 

LipoP 

SPAAN GPS-CCD, 

GPS-ARM, 

Net Chop, 

CBTOPE (B cell), 

BepiPred (B 

cell) 

GPS-MBA 

(specific MHC II 

allele), 

PickPocket 

(MHC I), 

NetMHCPan 

(MHC I) 

Glycosylation, 

Phosphorylati

on, 

PUPylation, 

SUMOylation, 

S-

nitrosylation, 

Furin 

cleavage 

sites, 

Physicochemi

cal properties 

 HMM

TOP 

 

VacSol 2017 

(22) 

DEG PSORTb, 

CELLO2GO 

VFDB, 

Mvir 

CELLO2G

O 

ABCPred (B-

cell), 

Propred-I (MHC 

I), 

Propred (MHC 

II) 

 BLASTp 

(vs. 

human 

genome) 

HMM

TOP 

 

PanRV 2019 

(23) 

Roary, 

BLASTp, 

DEG 

 

PSORTb VFDB, 

COG, 

UniProt  

ABCPred (B-

cell), 

Propred1 (MHC 

I), 

Propred (MHC 

II), 

VaxiJen 

 BlastP 

(vs. 

human 

genome/

gut 

microbio

me) 

HMM

TOP 

Mol. 

weight 

ReVac 2019 

(24) 

PanOCT, 

OrthoMCL, 

LS-BSR, 

Custom 

orthology 

prediction 

LipoP, 

SignalP, 

PFAM, 

PSORTb, 

TMHMM 

GO, 

SPAAN 

IEDB (search), 

NetCTLpan 

(MHC I), 

IEDB-AR 

consensus 

prediction 

(MHC I/II), 

  TMH

MM 

IslandP

ath, 

SSR 

Finder 



IEDB-AR 

consensus 

prediction 

(linear B cell) 

Vaxign-

ML 

(Vaxign2

) 

2020 

(25) 

 PSORTb, 

SignalP, 

TMHMM 

SPAAN IEDB-AR (MHC I 

only) 

 

Compositiona

l and 

physicochemi

cal properties 

BlastP 

(vs. 

human/

mouse/pi

g 

genome) 

TMH

MM 

 

Table 1: Software pipelines for reverse vaccinology.  

 

 

 

Pan-genomic analysis  

 

Apart from being a valuable approach to investigating the characteristics of a specific 

phylogenetic clade, pan-genomic analysis is indispensable for identifying conserved target 

proteins within a set of genomes of pathogenic strains within a single clade. The term first 

coined by Tettelin (27) is defined as the entire genomic repertoire accessible to the clade 

studied. It encompasses two subsets: the “core genome” and the “dispensable” or 

“accessory genome”. While the former describes the intersection of genes (or open reading 

frames [ORFs)) shared by all strains of the clade, the latter comprises genes only found in 

subsets of strains. Such a classification is biologically meaningful as it allows us to 

differentiate between (core) genes considered essential for growth, and (accessory) genes 

encoding e.g. for supplementary pathways and functions which confer a selective advantage, 

such as antibiotic resistance or virulence genes that are limited to certain strains (28). 

Similarity between genes or proteins is usually determined by pairwise alignment. Particular 

thresholds are set for the percentage of sequence identity of the protein sequence over a 

percentage of pairwise aligned sequence length. However, depending on the phylogenetic 

resolution and the available quality and quantity of genomes it might be necessary to 

increase sensitivity. This can be done by incorporating additional methods such as orthology 

prediction (29), i.e. the prediction of genes among species or strains that originated by 

vertical descent from a single gene of their last common ancestor, as well as structural 

alignments. Relying solely on pairwise sequence alignments on the protein level, Tettelin 



(27) chose a minimum of 50% identity over 50% of the sequence lengths, while Hiller (30) 

chose 70% to identify similar proteins within strains of Streptoccocus agalacticae and S. 

pneumoniae, respectively. At such levels of overall identity scores, it can be assumed that 

the identified proteins have identical functions (and are true orthologues). For the purpose 

of identifying target proteins it is nonetheless beneficial to choose considerably higher 

threshold values to exclude false positives early on in the workflow. The potential loss of 

immunogenic sequences due to the high threshold values is relatively low, as at least locally, 

epitopes need to be very highly conserved to be effective. Given the high specificity of the 

immune system's receptors, this is a good trade-off for the reduction of the number of 

proteins to analyze in subsequent steps. 

 

To be even more conservative, some studies and pipelines (31) use databases to filter for so-

called essential genes, i.e. genes indispensable for the survival and successful reproduction 

of the organism. The rationale behind this is that these genes are part of the core genome, 

are typically constitutively expressed, and so slowly evolving that they are highly conserved 

across all the strains of a pathogen. However, there are several problems with this approach 

in the context of reverse vaccinology. On the one hand, genome-wide identification of 

essential genes is labor-intensive as it requires elaborate mutagenesis or knockdown 

experiments. Consequently, available experimental data is scarce. Even the most used 

database, DEG (32), comprises only 66 genome-wide experiments on bacteria, covering an 

even smaller number of different species. Moreover, most studies conduct the experiments 

with organisms suspended in standard nutritional medium. Gene essentiality, however, is 

highly context-dependent and significantly influenced by the particular genome or strain 

studied as well as the experimental settings like medium composition, and environmental 

and growth conditions. Simple mapping of a target pathogen’s gene set against a database 

of essential genes, therefore, could result in a considerable number of incorrectly classified 

genes and should be interpreted cautiously. 

 

 

 

 

Surface localization 



 

To perform their functions at their native subcellular localization (SCL), newly synthesized 

proteins must be sorted and transported to their respective subcellular compartments. The 

SCL of proteins not only provides important clues to their function in the cell but is also 

important for judging their potential as vaccine targets. Surface-localized proteins are 

typically the first molecular patterns of pathogens that are in contact with the host immune 

system, and are generally considered the best candidates for recombinant vaccines. 

Determining the SCL of proteins by experimental means, such as subcellular fractionation 

combined with mass spectrometry, is accurate but time-consuming and expensive (33). 

Bioinformatics methods are an increasingly comprehensive and reliable way to determine 

the SCL of proteins in large datasets, as they contain defined (and thus detectable) signals in 

their sequence.  

 

There are two basic types of prediction tools for subcellular localization. One predicts very 

specific sequence features such as signal peptides for the Sec, Tat, or lipoprotein pathways 

using TargetP, SignalP and related tools (34) or transmembrane segments (35). The other 

type predicts the exact localization of a protein by combining various localization-specific 

features (36, 37) or general features like amino acid composition (38), evolutionary 

information (39), structure conservation information (36), or gene ontology (40). The 

combination of different prediction tools in a pipeline increases the quality of the overall 

prediction significantly  and can reduce false positive and false negative results (41). Last but 

not least, limiting the huge amount of protein sequence data to only the interesting, surface-

localized vaccine candidates significantly reduces the workload for later immunogenicity 

prediction steps in the reverse vaccinology pipeline. Alternatively, experimental data such as 

proteomics approaches can be used to narrow down the number of candidates for further 

analysis (42).  

  

Immunoinformatics: the prediction of epitopes 

Ideal vaccine candidates are not only localized on the surface of the pathogen but will also 

contain multiple epitopes that elicit strong immune responses within the host organism. 

However, experimental identification of epitopes within a set of proteins is a very resource- 



and time-intensive task making a computer-aided, complementary approach especially 

attractive.  

 

While ‘reverse vaccinology’ describes the overall approach in opposition to classical - entirely 

wet-lab-based – vaccine development, a new branch of bioinformatics emerged around the 

same time, termed immunoinformatics or computational immunology – defined as the 

application of informatics techniques to molecules relevant to the immune system (43, 44).  

The ability to predict immunogenicity on the level of epitopes is a key tool for computer-

aided vaccine design. Numerous tools exist for such predictions, for both MHC I and MHC II, 

as well as B cell-mediated immunity. This chapter can only provide a crude overview of the 

different obstacles all prediction tools face and gives a brief overview of the general 

strategies they pursue. As for all bioinformatics tools, it is advisable to use multiple tools in 

parallel and to compare the results to minimize false positive and false negative predictions. 

In fact, recent publications have shown that combining prediction tools to produce a 

consensus-like output can achieve superior predictive performances (45, 46). 

 

MHC I and MHC II binding predictions 

 

Generally speaking, MHC I binds and presents epitopes which are derived from 

proteolytically degraded intracellular proteins (e.g. from intracellular pathogens) and are 8-

10 residues long. By contrast, MHC II epitopes are derived from extracellular sources (e.g. 

from extracellular pathogens), and are much longer on average (up to 25 residues (47)). 

Originally, it was thought that these peptide epitopes would be recognized at least in part by 

their secondary structure, but structural data suggest that they are presented mostly in an 

extended form. Early prediction tools working under the wrong assumption accordingly gave 

inconsistent results (6). Additionally, MHC I and MHC II bind peptides very differently: as the 

molecular structure of MHC II requires longer peptides, due to its “open” binding pocket, the 

residues extending the binding pocket on both sides contribute to the overall peptide 

binding affinity (47, 48). To address this finding, modern MHC II epitope prediction tools 

often identify a binding core, i.e. a shorter subsequence within the longer peptide sequences 

of the query, which is predicted to bind to the pocket. 

 



To use prediction tools efficiently for vaccine design, one has to consider that the human 

MHC molecules are encoded in a highly polymorphic locus called the human leukocyte 

antigen (HLA) locus on chromosome 6. There are profuse amounts of HLA alleles with 

different binding affinities to the same epitope sequence: more than ten thousand different 

human alleles have been identified and, to complicate things even further, within different 

populations, different alleles (i.e. variants) of the MHC genes are present in different ratios. 

 

Various online methods are available for the prediction of epitopes, ranging from sequence-

based to structure-based (using e.g. homology modelling or docking) methods. Table 2 

shows a selection of sequence-based bioinformatics tools used for MHC I or MHC II 

predictions, which have the advantage of speed over structure-based methods and are 

therefore more favorable for large-scale analysis of peptides. 

 

Authors Method Publication Output 

MHC I 

Bui et al. QM (49) IC50 (nM) 

Sidney et al. QM (50)  

Nielsen et al. ANN (51) IC50 (nM) 

Peters et al. QM (52) IC50 (nM) 

Kim et al. QM (53) IC50 (nM) 

Moutaftsi et al. QM (54) Percentile rank 

Nielsen et al. ANN, Pan-specific (55) IC50 (nM) 

Karosiene et al. ANN, Pan-specific (46) IC50 (nM) 

Zhang et al. QM (45) IC50 (nM) 

Rasmussen et al. ANN, Pan-specific (56) T1/2(h) and IC50 (nM) 

O’Donnell et al. ANN, Pan-specific (57) IC50 (nM) 

Bassani-Sternberg 
et al. 

Probabilistic Mixture Model (58) Binding Score 

Jurtz et al. ANN, Pan-specific (59) IC50 (nM) 

Singh et al. QM (60) Binding Score 

MHC II 

Bui et al. QM (49) IC50 (nM) 

Jensen et al. ANN, Pan-specific (61) IC50 (nM) 

Reynisson et al. ANN, Pan-specific (62) IC50 (nM) 

Sidney et al. QM (50) IC50 (nM) 

Singh et al. QM (63) Binding Score 

Nielsen et al. QM (64) IC50 (nM) 

Hoof et al. ANN, Pan-specific (65) IC50 (nM) 

Sturniolo et al. QM (38) IC50 (nM) 

Wang et al. ANN, QM (26) Probability 



Racle et al. Probabilistic Mixture Model (66) Binding Score 

Chen et al. DNN (67) Probability 

Liu et al. DNN (68) IC50 (nM) 

Table 2 Methods: QM: quantitative matrix-based methods (QM combine a matrix-based 

approach with a strategy to quantify the prediction scores), A/DNN: artificial/deep neural 

networks, T1/2(h): half-life of the antigen-MHC-I complex in hours at 37°C 

 

State-of-the-art sequence-based approaches attempt to predict the binding quality of a 

query sequence by abstracting from the sequence information of peptides with 

experimentally determined binding affinities. By doing so, they are able to generate models 

for each individual MHC variant. Matrix-based methods try to derive position-specific 

binding coefficients for each residue from a database of known binders of the same length. 

For the prediction, each position of a query sequence is evaluated individually, yielding a 

score of congruousness to its respective position in the abstract model of a binding 

sequence. To predict the binding quality of the complete query sequence, the final score is 

given as the sum of the scores of the individual positions. This approach can be modified by 

adding weights to certain positions (so-called anchor positions) to increase their impact on 

the final score. 

A second group of prediction tools relies on machine learning approaches or stochastic 

models like support vector machines, artificial neural networks or Hidden Markov models to 

predict the binding quality of a query sequence. Generally speaking, all of these approaches 

attempt to refine a model by adjusting internal parameters to the sequence information 

provided by a collection of known binders. Therefore, a set of known binders is used to train 

the model, i.e. to adjust internal parameters in such a way as to enable accurate prediction 

of binding quality based on empirical data (supervised learning). 

Some tools in both groups also include strategies to quantitatively predict the binding of a 

query sequence. By incorporating either position-specific affinity contributions (matrix-based 

approaches) or statistical regression analysis (machine learning approaches), the user can 

readily compare experimentally determined IC50 or Kd values with predicted ones. However, 

there are no pre-defined absolute threshold values clearly separating query sequences into 

either binders or non-binders. Rather, it is advisable to define cut-off values for each MHC 

allele individually (69) using percentile ranks.  



It is important to note that all the tools, regardless of approach, heavily rely on experimental 

data on the measured binding affinities of peptide sequences for a specific MHC variant. 

Therefore, the quality of the prediction is determined by how well the binding space of a 

particular MHC variant is explored by the available data. Unfortunately, for many alleles data 

are scarce; this has led to the development of pan-specific methods for MHC binding 

prediction. These use known MHC binders to known MHC alleles to infer binding for 

unknown pairs. Typically, such approaches are based on structural data where alleles with 

similar physico-chemical attributes in the binding-pocket are classed together using 

machine-learning approaches (70–72). 

In recent years, data from MHC ligand elution assays have emerged as a second source of 

training data for the development of MHC epitope predictors. Using high-throughput mass 

spectrometry, it is possible to detect large quantities of MHC ligands from a pool of 

extracted, surface presented epitopes, i.e. MHC ligands. In contrast to affinity values 

obtained from binding assay data, elution data does not provide a quantitative value to rank 

the epitopes relative to each other. Nevertheless, the large amount of data still helps to 

characterize binding motifs of different alleles and thereby increase the sensitivity of epitope 

prediction. In fact, recent developments such as NetMHC(II)pan 4.0 (59, 62), MARIA (67),  

MHCFlurry 2.0 (57) and MixMHC(2)Pred 2.0 (58, 66), all rely on a combination of binding 

assay and elution data for training, which has contributed to their significantly improved 

performance - especially in the more challenging prediction of MHC II epitopes - over former 

state-of-the-art tools. 

 

B cell epitope binding predictions 

B cell (or antibody) epitopes are 16 residues long on average but are not presented in the 

context of MHC molecules. Therefore, they are especially hard to predict as crystallographic 

studies have shown that B cell receptors (BCRs) are capable of binding discontinuous protein 

epitopes as well as specific peptide sequences. Epitopes are called discontinuous if they are 

composed of distant sequence segments which are brought into close proximity due to the 

protein's tertiary structure. Contemporary tools for identifying B cell epitopes can be divided 

into those relying solely on primary structure information and those additionally 



incorporating structural data. The first group of tools calculate a prediction by considering a 

set of descriptors such as the propensity for a sequence segment to form a continuous, 

linear secondary structure, physico-chemical attributes, surface-accessibility and amino acid 

composition (73). In general, these tools yield reasonable accuracy for continuous (linear) 

epitopes, but fall short when identifying discontinuous epitopes (74). To surmount this 

shortcoming, prediction calculations by the second group of tools include secondary 

structure information, calculated surface accessibilities and/ or protrusion indices, in 

addition to information about the protein's three-dimensional structure and the structure of 

known antigen-BCR complexes. Popular sequence-based tools are BepiPred (75) and 

BepiPred 2.0 (76), ABCpred (77), BEST (78), LBTope (79), and EpiDope (80). Commonly used 

structure-based tools are CBTOPE (81), ElliPro (82), Paratome (83), PEPOP (84), BEEPro (85) 

and DiscoTope 2.0 (74). It is even claimed that benchmarking has shown that the latter two 

tools are able to achieve high accuracy levels similar to MHC prediction tools (75). 

Many of the tools for MHC I, II and BCR epitope prediction offer web interfaces which allow 

thorough testing of their predictive powers before applying them in a larger scale. A very 

useful analytical resource is the Immune epitope database (IEDB), funded by the National 

Institute of Health (52). In addition to providing a database of binding epitopes and their 

affinities (where available, also including elution data), the IEDB furnishes a regularly 

updated compilation of self-developed and newly-implemented popular prediction tools 

accessible via a single intuitive web interface. 

 

Methods for using full length antigens (proteins) as vaccines 

 

All vaccines work in a similar way: by presenting foreign antigens to the immune system in 

order to activate a specific immune response. The aim of vaccination is usually to induce 

long-term protection through memory B cells (86). The composition of vaccines can be 

diverse. Traditional formulations include live attenuated vaccines, which are composed of 

live viruses or bacteria that have been weakened in the lab to lower virulence by long-term 

passaging or genetic engineering (deletions in genes required for virulence) but are still able 

to activate the immune system. They elicit a strong response that can result in lifelong 

immunity with a minimal number of doses. Despite their advantages, live attenuated 



vaccines can have many drawbacks. Potential problems include difficulties with storage and 

transportation, where inappropriate handling may cause loss of vaccine efficacy. In addition, 

there are cases where this type of vaccine cannot be used, e.g. when patients take anti-

infective drugs, or are immunocompromised for any reason. There is a risk that attenuated 

vaccines can revert to a fully virulent pathogen (e.g. oral poliovirus vaccine (87)). Last but not 

least, the attenuation process itself is lengthy and depends on random events out of the 

control of the researchers (examples: BCG tuberculosis vaccine, Yellow fever rotavirus 

vaccine) (88, 89). 

An alternative method is to inactivate the pathogens before use as a vaccine. This method is 

safer compared to the live attenuated vaccines, but is less potent in inducing immune 

responses. In short, such vaccines contain pathogens killed by heat or chemical treatment 

(i.e. formaldehyde). Risks related to such vaccines include errors in the inactivation. Because 

the inactivated pathogen does not reproduce in the host organism, there is a need for one or 

more “boosters”, i.e. administration of additional doses of the vaccine after defined 

intervals. (examples: Cholera vaccine, Hepatitis A vaccine, Rabies) (86). 

With better biochemical and immunological methods available, it has been possible to 

engineer vaccine formulations by only using active antigens (rather than complete 

pathogens). This is referred to as a subunit vaccine. It uses only specific parts of a pathogen 

to immunize against disease. The search for such components is typically focused on surface-

exposed or secreted antigens, which provide the best accessibility for antibodies and other 

immune mechanisms (86, 90). Using purified proteins as a vaccine component is a widely 

used technique today. With bioinformatics, it is possible to select ideal antigen candidates 

for subunit vaccines, which have many advantages over the “whole-pathogen” approaches 

(91). Subunit vaccine production is a safe process as it does not require the culturing of 

dangerous pathogens. The final product is also safer to use (92, 93): there is no infectious 

material, and thus no risk of the vaccine strain reverting to a harmful pathogen. In addition, 

it is possible to control all ingredients of the vaccine. Traditional vaccines induce very strong 

immunological responses with a very small dose; often this high response is not really 

necessary and does not always translate into later protection. In subunit vaccines, antigens 

are tested individually, and the kinds of responses they provide are known. Thus, it is in 

principle possible to customize vaccines for specific patient groups (for example 

immunocompromised patients or patients already suffering from an infectious disease) (88).  



Examples of protein subunit vaccines 

 

A vaccine against pertussis containing purified proteins was first created in 1981 in Japan by 

Sato and Sato, who purified the antigenic proteins by classical biochemical methods from 

cultures of the pathogen – with the obvious problems in biological safety and with upscaling 

of the procedure (94). Another example is the Hepatitis B vaccine which contains one of the 

proteins from the viral envelope – the Hepatitis B surface antigen (HBsAg). This was one of 

the first protein-based vaccines, and while at first the protein was obtained from natural 

human plasma, it was later successfully expressed recombinantly in yeast cells. Today, this is 

the production method of choice for human vaccines (Table 3) (95). Another example of a 

subunit vaccine on the market is the one against Bacillus anthracis. Although the 

components are still collected from pathogen cultures, which raises concerns about the 

safety of the procedure, the strength of the initial immune response and long-term efficacy 

are high (96).   

Some studies have included production of plasmid-derived antigens using attenuated, 

avirulent Bacillus strains. Expressing these proteins in a Bacillus strain ensures properly 

processed and folded protein. The product is then purified from fermentation cultures and 

adsorbed onto an aluminum adjuvant. Preclinical studies showed that the vaccine as such is 

safe, well-tolerated and can induce an immune reaction with long-term immunity. 

Researchers are also looking for new targets using of bioinformatics, now that the complete 

genome of the clinical strain is available (97, 98).  

Two new vaccines against Human papillomavirus (HPV) have been brought to the market 

recently – Cervarix and Gardasil (Silgard). Both contain proteins from the capsids of different 

virus strains – HPV16, 18 and HPV6, 11, 16, 18, respectively - and differ in the formulation of 

enhancers and adjuvants. In 2014, the US Food and Drug Administration approved another 

new HPV vaccine from Merck, Gardasil 9, which protects against 9 subtypes of the virus 

(HPV6, 11, 16, 18, 31, 33, 45, 52, and 58). These vaccines are all produced recombinantly 

using yeast cells (or insect cells for Cervarix) (99–101). 

 In ongoing Phase III clinical trials (NCT01563263), promising results have been 

obtained for a vaccine against Pseudomonas aeruginosa (IC43) (Table 4). This is an outer 

membrane protein-based vaccine containing an OprF/OprI fusion with a His tag. The product 

is expressed in E.coli from a plasmid. The vaccine gives good immune responses with and 



without an alum adjuvant (102–104). 

 

 No need to culture dangerous pathogens 

 Problems with toxic or oncogenic parts of the pathogen, or with antigens 
potentially causing allergies or auto-immune diseases, can be avoided 

 Proteins can be altered by adding different chemical groups to improve 
immunogenicity, stability or solubility 

 Quality of the final vaccine is higher and is more reproducible 

 Distribution and storage is improved (high stability e.g. in freeze-dried form) 

 No risk of reversion to a more virulent strain (in contrast to  live attenuated 
vaccines) 

 Using computational and bioinformatics methods potentially lowers the costs of 
initial research 

 Production methods are comparatively easy to scale up 

Table 3 Advantages of protein-based vaccines (92, 105). 

 

Methods for using predicted epitopes/peptides as vaccines 

 

Producing complete proteins in a stable form for vaccines or other purposes is not always 

straightforward. Many potential vaccine targets are membrane proteins, are otherwise 

insoluble, or are prone to degradation or aggregation. Short peptide epitopes taken from 

vaccine target proteins are a promising alternative, as they can still be efficiently recognized 

and displayed by either MHC I or MHC II. In some cases, reducing a subunit vaccine to a 

single epitope has the additional advantage of removing deleterious further epitopes; 

examples where this can be important are epitopes that can cause cross-reactivity leading to 

autoimmune responses.  

In principle, an unlimited number of defined peptide epitopes can be combined to create 

multi-epitope vaccines. To obtain such epitopes, both reverse vaccinology approaches based 

on bioinformatics predictions (see above), or more traditional techniques based on antisera 

can be used to fish for epitopes (88). One approach to using predicted peptide epitopes is to 

fuse them to a previously chosen protein scaffold as a carrier. This scaffold can itself play 

additional important roles in enhancing the immunological response, e.g. due to the 



presence of T-helper cell epitopes in its own sequence. A distinct advantage of this method 

is that multiple epitopes from different target proteins or even from diverse pathogen 

strains can be combined to obtain wider spectrum of protection (92). Production and 

handling can also be improved in the process as the scaffold can be chosen according to 

desired properties (water solubility, non-toxicity, stability at room temperature, etc.). 

 An example for using predicted epitopes conjugated to a carrier scaffold is an 

ongoing study using Aeromonas hydrophila epitopes from outer membrane proteins (OmpF, 

OmpC) with the heat-labile enterotoxin B (LTB) of Escherichia coli as a scaffold (106). LTB has 

been reported to be an efficient adjuvant capable of eliciting a strong immune response 

(73). In four out of five cases (five different fusions), the authors found that the recombinant 

fusion proteins induce antibody production. The antisera generated by this process were 

able to recognize the native proteins from which epitopes were taken. All epitopes in the 

study were predicted as B cell epitopes using bioinformatics approaches and tools as 

described above. 

There are also potential problems with using peptide-based epitopes as vaccines: removing 

an epitope from its native context risks losing immunogenic efficacy and as a result, general 

response to the vaccination (105). Examples for such context-dependent recognition by the 

immune system are the loss of secondary structure, or the fact that especially B cell antigens 

are known to be mostly (90%) discontinuous, non-linear antigens - they derive from different 

protein regions localized closely in space due to the three-dimensional structure. Such 

conformation-dependent recognition cannot always be achieved using only a linear 

peptide/epitope (107). Using suitable scaffold proteins for peptide epitopes can solve some 

of these problems, e.g. by adding sequences which will enhance binding and the stability of 

the peptide-MHC complex (108). Another option for optimization is to modify epitopes using 

-amino acids instead of natural ones, which can increase the binding affinity to MHC 

dramatically. Such recombinant epitopes maintain the properties of natural epitopes 

because the side chains of the amino acids are identical between the  and  type. 

However, the modification improves resistance to proteases as the epitopes do not have the 

same peptide backbone, so that the epitope is protected from digestion before it is loaded 

on the MHC. Even changing one amino acid to its  variant has dramatic effects on the 

overall stability of the peptide (109–111).  



Another, less well understood disadvantages of using subunit vaccines is that they can be 

less efficient in inducing long lasting immunity (112, 113). Peptide vaccines often lack T-

helper epitopes, especially when just a mix of peptides is used as a vaccine (114). To improve 

the response, vaccine formulations are modified with different immunostimulants 

(adjuvants) and also by conjugation of the peptides to carrier proteins which will enhance 

immunogenicity and immune system activation (88). The most common general adjuvant is 

an aluminum salt that can be found in many existing vaccines and is still used in new 

formulations in clinical trials and in pre-clinical phases (115). Many novel adjuvants are being 

tested currently, with the aim of finding adjuvants that are safe to use, can enhance the 

immune response of even of weakly binding peptides or proteins, and can play a direct role 

as a delivery system at the same time. Typically, these are different types of emulsions 

(water-in-oil and oil-in-water), e.g. MF59 which is composed of squalene (licensed for 

influenza vaccines in Europe), polymeric particles like PLA (polylactic acid) or PLGA 

( poly[lactide-co-glycolide] acid), liposomes (which can protect peptides from enzymatic 

digestion, keep the folded structure of antigen and elicit a high cellular immune response), 

virus-like particles (VLPs, self-assembling proteins which mimic the conformation of native 

viruses), inorganic nanoparticles, and carbon nanotubes (105, 116, 117). Other adjuvants 

include flagellin-based adjuvants, lipopolysaccharide, and other bacterial structures that co-

stimulate the immune system (91), as well as complete avirulent (and thus safe) living cells 

expressing the foreign antigen on the surface. Examples include the use of a type III 

secretion system) (118)) (119, 120), and the use of autodisplay systems based on type-V 

secretion systems (121, 122). As described above, in cases where the immunological 

memory is not lifelong, there is a need for additional “boosting” to increase and maintain 

the protectivity of a vaccine (123). 

  

The most recent developments in reverse vaccinology include personalized vaccines, which 

are aimed at specific patient groups or even individuals. This is particularly relevant for anti-

cancer vaccines, where the targets (cancer cells) are highly variable from patient to patient. 

As an example, GAPVAC, with a promising results from Phase I clinical trials (124), is a 

vaccine that uses patient-specific genes expressed in brain tumors and is based on peptides 

as well as cancer-specific mutations (125). A similar study is currently being performed using 

HEPAVAC, a patient-specific vaccine against liver cancer (126).  



Currently, no peptide-based vaccine is licensed for human use, but there are currently over 

400 clinical trials of peptide vaccines in progress (92, 127). A number of promising examples 

of peptide-based and other subunit vaccines are shown in Table.  

There is an obvious need for more basic research and clinical trials and especially for long-

term studies to demonstrate that reverse vaccinology approaches can yield vaccines that are 

potentially safer and at least as efficient as traditional vaccines. With increasing numbers of 

antibiotic-resistant bacteria, and with old and new viral diseases such as Ebola, Middle-East 

Respiratory Syndrome (MERS), most recently SARS-CoV-2, and others emerging or re-

emerging, tailored vaccines are promising solutions to the continuous problem of infectious 

diseases. The great potential of patient-specific vaccines, especially for use in cancer 

therapy, where traditional approaches cannot be used at all, has barely been tapped.     

 

 

 

 

 

 

 

 



Vaccine Target Notes Stage Active compound Ref 

Improvac boar taint Stimulation of the 

(pig) immune system 

to produce antibodies 

that ultimately block 

and reverse the 

accumulation of 

compounds 

responsible for boar 

taint. 

On 

market 

(animal 

use) 

synthetic incomplete 

analogue of 

gonadotropin-

releasing factor 

(GnRF) (without 

hormone activity) 

linked with carrier 

protein 

(128) 

Recombitec 

WNV 

West Nile virus Combination of 

existing canarypox 

vaccine (ALVAC) with 

genes expressing two 

proteins from West 

Nile virus 

On 

market 

(animal 

use) 

prM/E genes (129) 

Vacc-4x 

 

HIV Synthetic peptides 

targeting HIV protein 

p24 

Phase 

III 

Peptides with 

adjuvants 

(130) 

Vacc-C5 HIV Synthetic peptides 

targeting HIV 

glycoprotein gp120 

(C5) 

Phase 

II/III 

Peptides with 

adjuvants 

(130) 

RECOMBIVAX 

HB 

Hepatitis B 

virus 

Recombinantly 

produced HBsAg 

protein in yeast cells 

On 

market 

Protein with 

aluminum adjuvant 

(101) 

IC43 Pseudomonas 

aeruginosa 

Recombinant outer 

membrane protein-

based vaccine  

Phase 

II/III 

OprF/OprI hybrid 

vaccine with N-

terminal His tag 

(102, 

104, 

127) 

NDV-3 Candida sp.  Recombinant vaccine  Phase 

I/II 

agglutinin-like 

sequence 3 protein 

(Als3p) from Candida 

albicans with 

aluminum hydroxide 

adjuvant 

(131, 

132) 

SA4Ag Staphylococcus 

aureus 

Recombinant vaccine  

containing 2 different 

capsular 

polysaccharides and 2 

surface proteins  

Phase 

I/II 

Polysaccharides CP5 

and CP8; 

recombinant surface 

protein clumping 

factor A (rmClfA) and 

recombinant 

manganese 

transporter protein C 

(rP305A) 

(127, 

133) 



PreviThrax Bacillus 

anthracis 

Recombinant 

protective antigen 

protein  

Phase II purified recombinant 

protective antigen 

protein 

(134) 

Respiratory 

Syncytial Virus 

(RSV) Vaccine 

Respiratory 

Syncytial Virus 

(RSV) 

F glycoprotein 

produced 

recombinantly in 

insect cells with a 

recombinant 

baculovirus 

Phase II Purified recombinant 

RSV F oligomers 

(135) 

Cenv3 Hepatitis C Selected 3 peptides 

from 2 envelope 

proteins. Each was 

synthesized in 8 

multiple antigenic 

peptides (MAPs)  

Phase II 3 envelope peptides 

derived from 2 

envelope proteins E1 

and E2 

(127, 

136) 

NeuroVax Multiple 

Sclerosis 

Vaccine contains three 

peptides which 

correspond to 

potentially pathogenic 

TCR’s on T cells (which 

are over-expressed in 

90% of multiple 

sclerosis patients) 

Phase 

II/III 

3 TCR peptides in 

aqueous solution and 

IFA 

(137) 

IC41 Hepatitis C Vaccine contains 5 

peptides derived from 

hepatitis C virus 

genotype 1 core. 

There are 4 cytotoxic 

T lymphocyte (CTL) 

epitopes and 3 helper 

epitopes.  

Phase 

I/II 

5 synthetic peptides 

with Poly-L-arginine 

as adjuvant 

(127, 

138) 

Table 4. Selected list of ongoing clinical trials with subunit vaccines 
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