
UNIVERSITY OF OSLO
Department of Informatics

Comparison of GMF
and Graphiti based
on experiences from
the development of
the PREDIQT tool

Master thesis

Ivar Refsdal

1st November 2011

Comparison of GMF and Graphiti based on
experiences from the development of the

PREDIQT tool

Ivar Refsdal

1st November 2011

ii

Abstract

Creating graphical editors can be a difficult undertaking. A graphical editor
specialized at a well defined domain will likely be of good value for the end
user, as such a tool should support the domain in a more direct way than
a general purpose editor would, enabling, among other things, the user to
avoid simple mistakes.

This thesis evaluates two frameworks aimed at the creation of graphical
editors, namely GMF and Graphiti. GMF is considered a mature technol-
ogy, whereas Graphiti is currently in its incubation phase. Both technolo-
gies use GEF, Draw2d and Eclipse in general as underlying technologies.

While GMF is fairly well documented, little is written about GMF
as compared to Graphiti. Furthermore neither has been evaluated with
respect to tree-based methods using value propagation.

The main hypothesis is that GMF will outperform Graphiti with respect
to the following criteria:

• Applicability for supporting tree-based methods using value propaga-
tion.

• Development time.

• Maintainability.

• Customizability.

• Various criteria set forth in Myers et al.

This is discussed based on the experiences made during the development
of two editors, reviewing related work, as well as a survey where users try
both editors.

While the two first criteria were found to be true, the three latter were
found to be in favor of Graphiti. Both tools were equally favored by users.
Related work was generally found to confirm the findings of this thesis.

More research should be done to further strengthen or weaken this
thesis’ findings. As Spray, the model driven approach targeting Graphiti,
becomes more mature, it seems well fit and a natural comparison for GMF.

iii

iv

Acknowledgments

I would like to thank my supervisor Ketil Stølen and my co-supervisors Aida
Omerovic and Fredrik Seehusen for their helpful comments and guidance
throughout the writing of this thesis. This work would not have been the
same without them.

I would also like to thank my family, girlfriend and friends for keeping
me motivated.

Any remaining errors are of course my own.

– Ivar Refsdal, 1st November 2011.

v

vi

Contents

1 Introduction 1

2 Background 3
2.1 Requirements gathering . 3
2.2 Software quality . 4
2.3 Selecting a technology . 5

2.3.1 Evaluating Open Source Software 5
2.4 Code maintainability . 6

2.4.1 Modifiability . 7
2.4.1.1 Design patterns 7

2.4.2 Understandability . 8
2.4.3 Measures of complexity 8

2.5 Conclusion . 9

3 Problem statement and research method 11
3.1 Why Eclipse, GMF and Graphiti 11
3.2 The problem domain . 12
3.3 Main hypotheses and goal . 12
3.4 Research method . 13

4 State-of-the-Art 15
4.1 Underlying technology . 15

4.1.1 Eclipse Modeling Framework 16
4.1.1.1 Java implementation of the model 17
4.1.1.2 Adapters . 17

4.1.2 Draw2d . 17
4.1.3 Zest . 19
4.1.4 Graphical Editing Framework (GEF) 19

4.2 Graphical Modeling Framework (GMF) 20
4.3 EuGENia . 21
4.4 Graphiti . 22

5 Requirements for the tool 23
5.1 Overview of PREDIQT . 23
5.2 Requirements for the PREDIQT tool 24

5.2.1 Overall requirements . 25
5.2.2 Functional requirements 25
5.2.3 Data requirements . 26

vii

5.2.4 Technical environment requirements 26
5.2.5 Non-functional requirements 26

6 Implementation of the tools 27
6.1 Shared model and code . 27

7 Evaluation 31
7.1 Evaluation of applicability for supporting tree-based methods 31

7.1.1 Conclusion . 38
7.2 Survey of tools . 38

7.2.1 Background of students 38
7.2.2 Creation of DV . 38
7.2.3 Time used . 38
7.2.4 Favorite tool . 40
7.2.5 Feedback during survey 42
7.2.6 Conclusion . 43

7.3 Evaluation of development time 43
7.3.1 Graphiti . 43
7.3.2 GMF . 44
7.3.3 Actual development time spent on GMF and Graphiti . 44
7.3.4 Conclusion . 45

7.4 Evaluation of maintainability . 45
7.4.1 Code size . 46
7.4.2 Dependencies . 46

7.4.2.1 Discussion . 48
7.4.3 Making a change to the editors 48

7.4.3.1 Disable linking of a node to itself 48
7.4.3.2 Enabling direct editing 49

7.4.4 Structuredness . 50
7.4.5 Conclusion . 52

7.5 Evaluation of customizability . 52
7.5.1 GMF . 52
7.5.2 Graphiti . 53
7.5.3 Practical experiences . 54
7.5.4 Conclusion . 55

7.6 Evaluation of criteria set forth in Myers et al 55
7.6.1 Specificity . 55
7.6.2 Threshold and ceiling . 55
7.6.3 Predictability . 55
7.6.4 Path of least resistance 56
7.6.5 Conclusion . 56

7.7 Related work . 56
7.7.1 Lack of complex editing operations 57
7.7.2 Migrating from XML/UML to Xtext/GMF 57
7.7.3 Difficult to use GMF . 58
7.7.4 What does GMF say about itself? 59
7.7.5 Conclusion . 60

viii

8 Conclusion 61
8.1 Further work and suggested improvements 62

Bibliography 63

A Additional lessons learned 69
A.1 Faster programming feedback cycle: Learn OSGi 69

A.1.1 Problem . 69
A.1.2 Solution . 69

A.2 Simple traceability: Git . 71
A.2.1 Problem . 71
A.2.2 Solution . 71

A.3 Suggested prerequisite learning for GMF and Graphiti inter-
nals . 71
A.3.1 Problem . 71
A.3.2 Solution . 71

B Survey 73
B.1 Setup . 73
B.2 Survey information as given to users 73

C Installation and source code of editors 77
C.1 Shared environment . 77
C.2 Installation of editors . 77
C.3 Source code of editors . 78

D PREDIQT case study 79
D.1 Target modeling . 80

D.1.1 Characterize the target and the objectives 80
D.1.2 Create quality models . 81
D.1.3 Map design models . 82
D.1.4 Create dependency views 83

D.2 Verification of prediction models 83
D.3 Application of prediction models 83

D.3.1 Specify a change . 83
D.3.2 Apply the change on prediction models 84
D.3.3 Within the scope of models? 84
D.3.4 Quality prediction . 84

D.4 A new change? If Yes, go to step 3 84
D.5 Other experiences . 85

D.5.1 Conclusion . 85
D.6 Quality models . 86

D.6.1 Design models - Original system 86
D.6.2 Design models - New system 89
D.6.3 Dependency views . 95

ix

x

List of Figures

4.1 High level structure of Eclipse. 15
4.2 Structure of the Eclipse platform. 16
4.3 Structure of GEF. 18
4.4 Overview of the GMF development process. 21

6.1 Screenshot of the GMF-based tool. 29
6.2 Screenshot of the Graphiti-based tool. 30

7.1 How easy it was to create the DV the first time. 39
7.2 Time used to solve the exercises using GMF, then Graphiti. . . 40
7.3 Time used to solve the exercises using Graphiti, then GMF. . . 41
7.4 Favorite tool. 41
7.5 GEF architecture. 50
7.6 Graphiti architecture. 51

A.1 OSGi console . 70

B.1 Dependency tree that should be created. 74

xi

xii

List of Tables

2.1 ISO/IEC 9126 software quality characteristics. 4

7.1 Overview of the evaluation of the two editors with respect to
the requirements. 37

7.2 Actual development time. 45
7.3 Code size by package. 46
7.4 Code size by tool. 47
7.5 Imports used by the two tools. 47
7.6 Nested cyclomatic complexity. 52

xiii

xiv

Chapter 1

Introduction

Creating graphical editors can be a daunting task. As argued in [31], the
choice of user interface framework will strongly influence the programmer’s
productivity. Once development has begun, it is generally hard to switch to
a different underlying technology. The importance of the choice taken is
further fortified by the fact the that 80-90% of a system’s lifetime costs are
spent on maintenance ([36, 6]). Thus an early bad decision with respect to
choosing a graphical framework will likely haunt the project and be difficult
to alleviate.

Currently the Eclipse Modeling Framework (EMF) [43] is actively used
and well proved for specifying the domain model for widely differing areas.
However, less work has been done on the use of EMF as the domain
model for concrete visual syntax editors. Currently the main projects
targeted towards this is the Graphical Modeling Framework (GMF) [18]
and Graphiti.

Researchers working on a specialized topic will typically spend a large
amount of time working with domain-specific data. However, the tool
used may not be particularly well fit for their domain. This is the case
for the PREDIQT method [33] and surely also many other methods. A
domain-specific tool would be more appropriate and time saving for the
researcher. This thesis will limit itself to deal with tree-based value
propagation methods.

How applicable are GMF and Graphiti for creating editors that support
these types of methods? What are the pros and cons of each technology?
This is the topic of this thesis, and the findings of this study are largely
based on the experiences gathered from implementing a prototype of a
PREDIQT tool in both GMF and Graphiti.

In chapter 2 an introduction on software with respect to evaluation,
quality and requirements gathering will be given. This is necessary
knowledge for later chapters. Chapter 3 will explain the problem domain
further and present the main hypotheses, i.e. what this thesis intends to
examine, as well as how this examination will be done.

Chapter 4 will present GMF, Graphiti and their underlying technologies
further. In chapter 5 a brief introduction to PREDIQT and the requirements
for the tool will be given. This will serve as a backdrop for evaluating the

1

tools. Chapter 6 will briefly explain the implementation of the tools.
In chapter 7 the comparison of GMF and Graphiti will be done according

to the plan presented in chapter 3. This is the major bulk of the thesis, and
will thus build on most of the preceding sections.

Finally, in chapter 8, the conclusion of the thesis will be summarized
and future work suggested.

2

Chapter 2

Background

In order to create and evaluate a tool, as is much of the basis of this thesis,
one needs to have a reasonable understanding of several things:

• How to gather requirements for a tool.

• The method that is to be supported, namely PREDIQT. It will be
briefly explained in chapter 5.

• What software quality is.

• Considerations to be made when selecting a technology.

• Strategies for ensuring maintainability, e.g. design patterns.

The three latter points are somewhat interrelated, but they are treated
separately here. In the evaluation in chapter 7 , however, a mixed subset
will be used.

2.1 Requirements gathering

While most people have an intuitive understanding about what a require-
ment is, it is appropriate with a definition:

“A requirement is a statement about an intended product that specifies
what it should do or how it should perform.” [41]. Furthermore
requirements are typically divided into functional and non-functional
requirements, whereas the former says something about “what the system
should do” and the latter says “what constraints there are on the system and
its development”.

Requirements gathering is, in an ideal world, a sequential process
consisting of three steps:

1. Gathering data.

2. Analysis and interpretation of the data.

3. Extraction of requirements.

3

Characteristic Sub-characteristics
Functionality Suitability, accuracy, interoperability, security, functional-

ity compliance.
Reliability Maturity, fault tolerance, recoverability, reliability compli-

ance.
Usability Understandability, learnability, operability, attractiveness,

usability compliance.
Efficiency Time behavior, resource utilization, efficiency compliance.
Maintainability Analyzability, changeability, stability, testability, maintain-

ability compliance.
Portability Adaptability, installability, replaceability, coexistence,

portability compliance.

Table 2.1: ISO/IEC 9126 software quality characteristics. From [22].

In practice though, it is not always so straight forward, i.e. the process
is typically more interleaved. Analysis of data may for example lead to or
require gathering of more data. Furthermore these steps seeks to achieve
two central goals:

• Identifying the users’ needs.

• Developing a stable set of requirements.

The former aim is sought through learning about the users, their work
and the context of that work. The latter aim is sought by extracting
requirements from the needs by analyzing and interpreting them.

As fixing problems after a product delivery is much more costly than
fixing them early in the requirements or design process, see e.g. [29],
requirements gathering is a crucial step to do as good as possible.

2.2 Software quality

Quality, according to ISO 8402, is “the totality of characteristics of
an entity that bear on its ability to satisfy stated and implied needs.”
[22] decomposes quality into six quality characteristics which is further
decomposed into sub-characteristics. These are given in table 2.1. The six
main characteristics are described briefly below1:

• Functionality is the totality of essential functions of any product or
service. These functions should be either present or not, i.e. they are
not present to some degree.

• Reliability is the capability of the system to maintain its service under
defined conditions for defined periods of time. For example one
aspect may be how well the system is able to withstand a component
failure. For this thesis it is more relevant to consider the ability to
avoid or withstand invalid data.

1Paraphrased from http://www.sqa.net/iso9126.html, retrieved 8th February 2011.

4

http://www.sqa.net/iso9126.html

• Usability only exists to a certain degree and refers to how easy it is to
use a given function. Learnability, how easy it is to learn a system, is
a major sub characteristic of usability.

• Efficiency is concerned with the system resources used when provid-
ing the required functionality, e.g. memory and disk space.

• Maintainability is the ability to identify and fix a fault within
a software component. It is affected by code complexity and
modularization. Maintainability will be treated further later in this
chapter.

• Portability refers to how well the software can adopt to a change in
its environment or with its requirements.

2.3 Selecting a technology

Deciding on a technology is important. One may distinguish between Open
Source Software (OSS) and commercial software, typically represented by
the Commercial Off-The-Shelf category of software. As this project has no
spending budget and no expected revenue, it will only concern itself with
the former.

OSS may have benefits such as lower purchasing costs, availability
of high quality products, adherence to open standards and no vendor
dependency [44]. While there is no universally accepted definition of
OSS,[16] outlines three of the main criteria for determining whether a
particular software is open source, as given by the Open Source Initiative2:

• It should be possible to distribute the software freely.

• The source code should be available.

• One should have the right to create derived works through modifica-
tion.

These criteria will be required to be fulfilled before existing prospective
software should be considered.

2.3.1 Evaluating Open Source Software

How can an OSS’ quality be evaluated? Extensive literature exists on
methods and challenges in assessing OSS, see e.g. [26, 38, 45] among
others. Some of these methods are partially based on ISO standards such
as [22] which was presented in section 2.2. As time is an important factor
in this project, a method that is more automatic is preferable over one that
requires more manual work.

However, these methods are general purpose, and as argued earlier,
usability is particularly important for the new tool and should thus be given

2http://www.opensource.org/

5

http://www.opensource.org/

special emphasis. To a considerable degree usability is concerned with
user interfaces, and thus a more specific evaluation strategy with respect
to user interfaces is favorable. This is in accordance with the findings of
[19]. [31] lists five recurrent themes which are important for determining
if a user interface framework is successful, four of which are interesting for
this document and described below. Four more general themes are added
from other sources.

1. The tool or framework should address a specific part of user inter-
faces.

2. Threshold and ceiling. By threshold it is meant how easy a tool is
to learn. Ceiling means how much can be done within that tool,
without resorting to modify underlying code, calling lower level APIs,
etc. A given tool will typically score high or low in both threshold and
ceiling, while what is optimal is low threshold and high ceiling.

3. Predictability: Tools that use automatic techniques, for example code
generation, sometimes behave unpredictably. This has not been well
received by programmers.

4. Path of least resistance: Tools shape what kinds of user interfaces can
be created, and a successful tool should help the developer towards
doing the right things, and away from doing the wrong things.

5. Structure: According to [10] deep hierarchies are more error prone
than shallow ones. However, by the same argument, high-level
languages should be more error prone to use than a low-level
language, which generally isn’t the case, so this argument may not
always apply if the hierarchies are mature, well tested or completely
hides the underlying layer.

6. Complexity: A number of metrics exists for measuring software
complexity. Some of these are treated later in this chapter. There
seems to be disagreement whether to take lines of code as a measure
of complexity, see e.g. [50, 14] for differing views.

7. Lessons learned: Researchers often write down the lessons they
learned after completing a project, and in the context of framework
usage this surely should give an impression of the framework’s
applicability.

8. Maturity: If one seeks create a well working tool, it is generally an
advantage if the framework or existing application one builds upon is
mature. Choosing technology that is not mature is a common cause
of software projects failures.

2.4 Code maintainability

While usability for the end user is of course important, it is also obviously
important that a program is maintainable for current and future develop-

6

ers. As argued earlier and seems widely accepted in the literature, software
maintenance stands for the major part of software project costs.

What exactly is meant by maintainability? [27] defines it as “the ease
with which a software system can be corrected when errors or deficiencies
occur, and can be expanded or contracted to satisfy new requirements.”
Three sub criteria should be met if a system should be called maintainable:
The system should be testable, understandable and modifiable. This thesis
will particularly focus on the two latter.

[27] gives the following definition of understandability: “Understand-
ability is defined as the ease with which we can understand the function of
a program and how it achieves this function by reading the program source
code and its associated documentation.” If a framework has a very high
learning curve and thus an application using this framework may be hard
to maintain, this should surely affect the decision of whether to use this
particular framework.

Modifiability is defined as “the ease with which a program can be
changed” [27]. One central sub criteria for modifiability is modularity and
structuredness.

An introduction to these criteria follows.

2.4.1 Modifiability

In order to make programs modular and well structured, one should apply
object-oriented techniques as well as design patterns. In order to achieve
good object-oriented design, [17] suggests the following:

• Design to interfaces.

• Favor composition over inheritance.

• Find what varies and encapsulate it.

These suggestions are also applicable to, as well as found in, design
patterns. The reader is assumed to be reasonably familiar with the object-
oriented techniques and the subject will not be treated further. However,
it will be noted when these principles are applied later. A few of the most
common design patterns are presented below. The cited works should be
consulted for additional patterns.

2.4.1.1 Design patterns

The idea of design patterns originates from [2], where a design pattern, as
applied to architecture, is described as “Each pattern describes a problem
that occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice.” An
alternative, more succinct definition, from the same book, is that “patterns
are solutions to problem in a context.”

7

Design patterns was later applied to computer science in [17], which
remains the classical reference. The idea is the same as in architecture: To
provide a reasonably standard solution to a recurring problem of a certain
type. A number of other books also describes design patterns, see e.g. [40].

In the text that follows a brief description of important patterns and
strategies to make code maintainable is given. The reader is referred to the
above works for a more extensive explanation.

• Facade pattern. “Provide a unified interface to a set of interfaces in
a subsystem. Facade defines a higher-level interface that makes the
subsystem easier to use.” [17]

• Adapter pattern. “Convert the interface of a class into another
interface that the client expect. Adapter lets classes work together
that could not otherwise because of incompatible interfaces.” [17]

• Observer pattern. “Define a one-to-many dependency between
objects so that when one object changes state, all its dependents are
notified and updated automatically.” [17]

• Factory pattern. “Provide an interface for creating families
of related or dependent objects without specifying their concrete
classes.” [17]

2.4.2 Understandability

[27] elaborates further on the criteria for what makes a program under-
standable:

• A program should be concise, meaning that every program instruction
should be reachable.

• A program should be consistent, meaning that it is written in a
consistent style and a consistent design approach.

Program complexity is also obviously related to understandability: A
complex program will arguably be hard to understand. That said, there are
many metrics for measuring program complexity, many of which are not
merely subjective measures. An introduction to this follows.

2.4.3 Measures of complexity

[20] remains a classical reference to object-oriented complexity metrics.
Many open source programs targeting measurement of complexity cites
this book and the metrics presented. Particularly interesting for this thesis
is overall complexity.

Lines of code is probably the most simple metric, yet says something
about how large and thus likely complex a system will be.

Efferent coupling describes the number of types of external packages
that are used inside the package being measured. Thus one can get an idea
of how much one needs to know about external projects.

8

Cyclomatic complexity is a measure of how many distinct paths there
are within a method. Thus it is computed by looking at conditional
expressions. This can also be summarized for all methods.

Depth of inheritance hierarchy is a measure of how deep the inheri-
tance hierarchy is. The depth of e.g. java.lang.Object is one. Any subclass
will have a depth of its superclass plus one.

2.5 Conclusion

This chapter has briefly visited topics such as requirements gathering,
software quality with respect to user interfaces and maintainability. While
some of these topics are somewhat interrelated, an introduction have
nevertheless been given.

9

10

Chapter 3

Problem statement and
research method

This section will further explore the needs of which was briefly described in
chapter 1 and which this thesis intends to alleviate.

There exists a fair number of tree-based prediction methods, of which
PREDIQT is one. These usually share common properties such as value
propagation through the tree and each node typically have a fixed number
of attributes. In addition a leaf node may serve a slightly different purpose
than an interior node. An analyst may also choose to manually override
one or more of the values being propagated. All of these characteristics
applies to PREDIQT, and likely also to many other prediction methods.
Furthermore tree-based methods using value propagation will necessarily
be a super-set of tree-based prediction methods. Thus eventual findings
will likely apply to these methods also.

A fair amount of time will typically be spent using these methods and
therefore good tooling support is important. However, there is no special
tool support for methods such as PREDIQT. Furthermore, tool creation and
creation of graphical user interface applications in particular, as shown in
section 2.3.1, can be a time consuming task.

Which technology should be used for creating this particular type of
tool? In the ideal world there would be enough time to evaluate all
prospective technologies. Unfortunately this is not possible. While it is not
certain how large the sum of all major graphical user interface frameworks
would be, it is fair to say it would be close to impossible to do a thorough
evaluation of each one. Instead this thesis will limit itself to focusing on
GMF and Graphiti, which is part of the Eclipse world. The reasoning behind
this follows.

3.1 Why Eclipse, GMF and Graphiti

Surely Eclipse, GMF and Graphiti all have their disadvantages; this will be
the focus of later sections. In this section the focus is on why they were
chosen as opposed to other technologies.

11

Why was the Eclipse platform chosen? The Eclipse platform enjoys
reasonably widespread popularity in academia, e.g. a search for “Eclipse”
and “Netbeans” yields 4000 and 350 results each in the ACM digital library.
IntelliJ, the third largest Java IDE, gives even fewer results. This statement
should also hold true with respect to modeling and EMF. Furthermore the
Eclipse foundation has its own lawyers taking care of legal issues, and so all
source code should have a clean intellectual history. In addition to this, the
Eclipse Public License, under which Eclipse software is typically licensed, is
liberal, allowing creation of for-money closed-source derivative works and
so forth. These are the main reasons the Eclipse platform was chosen.

Within the Eclipse world EMF has reached widespread popularity. For
this thesis’ purposes EMF seems like the obvious choice for modeling
the PREDIQT domain. It is mature, well documented and widely used.
There does not appear to the author any other more well fit technologies.
However, with respect to the creation of graphical editors, only two
mainstream frameworks use EMF as the model, namely GMF and Graphiti.
Thus, the particular focus on GMF and Graphiti arises naturally as there
are not many alternatives when one restricts oneself to Eclipse and EMF.
As will be shown later, both GMF and Graphiti uses the same underlying
technology, making them well suited for comparison.

3.2 The problem domain

Now that the scope has been narrowed to GMF and Graphiti, what exactly
constitutes the problem domain? Both are intended to be used for the
creation of graphical editors. Though GMF has been actively developed
since 2005, there are not too many evaluations available of GMF and its
respective components. Not a single evaluation exists with respect to using
GMF as a tooling technology for supporting tree-based methods in general
or tree-based prediction methods in particular. Furthermore there is only a
single comparison of GMF and Graphiti1. Given that they are the two main
competing technologies within their particular domain, this is not a very
good situation.

In order to make the choice easier for future programmers on deciding
which frameworks to use when developing an editor for a tree-based
method, more evaluations on this particular subject should be held. This
thesis’ goal is to reduce this lack of information. In the following sections
how this will be attempted to be examined, is presented.

3.3 Main hypotheses and goal

As argued in the preceding text, there is a need for an evaluation of
GMF with respect to supporting tree-based prediction methods, as well
as comparing it to what is achievable in Graphiti. In order to confirm

1As of 30th October 2011.

12

or disprove GMF as the right technology, as opposed to Graphiti, for
supporting these methods, the following hypotheses are presented:

Hypothesis 1. GMF is a more appropriate technology for creating tools
that support tree-based methods using value propagation than Graphiti
is.

Hypothesis 2. Using GMF will shorten initial development time com-
pared to using Graphiti.

Hypothesis 3. The resulting tool created by GMF is easier to maintain
than a tool made with Graphiti.

Hypothesis 4. The resulting tool created by GMF is easier to customize
than a tool made with Graphiti.

Hypothesis 5. GMF will perform better with respect to the criteria
outlined in [31] as compared to Graphiti.

3.4 Research method

Now that the main hypotheses have been presented, how does one go
about for proving or disproving them? According to [28], one should seek
research evidence that maximizes three properties:

• Generality: That the results are valid across populations.

• Precision: That the measurements are precise.

• Realism: That the evaluation is held in environments similar to that
of reality.

As stated earlier, this thesis will use the implementation of two tools,
one in GMF and one in Graphiti, as the primary underlying evidence for
testing the hypotheses. The dual implementation is classified as a field
experiment according to the research methods presented in [28] and the
factor manipulated is the underlying framework. While field experiments
scores high on realism, they score low on generalization and moderate with
respect to precision. However, as the PREDIQT method necessarily shares
many common traits with other methods, the results should yield some
general knowledge as well.

After the initial implementations, the two resulting tools can be used to
argue about the hypotheses. This will be done in several ways:

• Evaluate to what degree the frameworks differ with respect to the
given requirements of the tool. This is well suited for answering
hypothesis 1.

• Hypothesis 4 and 3 will be argued for based on the experiences
made during the implementation. This will be a logical argument.
Additional supporting evidence can come from reviewing the source
code produced with respect to the information given in section 2, i.e.
quality, complexity and so forth.

13

• The general experiences from the implementations will be used to
answer hypothesis 2 and 5.

• Reviewing related work will be done as this can give an indication of
whether valuable lessons has been made before that are applicable for
this thesis. This will concern mostly GMF-related papers as there are
yet to be a paper describing Graphiti2.

2As of 30th October 2011.

14

Chapter 4

State-of-the-Art

This section will describe the state of the art, namely GMF and Graphiti. As
argued in [39], graphical editors require customization to a considerable
degree. The implication of this may be that one also needs to have
an understanding of the underlying layers of GMF and Graphiti. These
underlying layers include:

• EMF: The Eclipse Modeling Framework.

• Draw2d: A basic drawing system built on top of SWT.

• Zest: A simple framework for viewing graphs built on top of Draw2d.

• Graphical Editing Framework (GEF): A graphical editing framework
primarily based on Draw2d.

An introduction to these components follows. Afterward GMF and Graphiti
will be explained.

4.1 Underlying technology

The Eclipse platform provides an infrastructure for defining and using so-
called extension points. Essentially this is to say that new components may
extend existing components. This is part of the Open Services Gateway
initiative (OSGi), of which Equinox, an Eclipse project, is the reference
implementation. The goal of OSGi is to bring modularity to the Java
platform.

An extension point need not know about the existence of those
extending it. As an example, the tools developed in this thesis will plug into
various Eclipse platform extension points. It would be very cumbersome if
the platform itself would need modification for this.

Java Development Tools
Platform

Figure 4.1: High level structure of Eclipse.

15

UI
Workbench

JFace
SWT

Core
Workspace

Runtime

Figure 4.2: Structure of the Eclipse platform.

The workspace manages one or more top-level projects. These projects
maps to files and folders in the underlying file system.

The runtime manages handling of plug-ins such as discovery, loading
and unloading. This is done by Equinox, an OSGi framework implementa-
tion. Given that the plug-in is configured correctly, Equinox should resolve
dependencies correctly. Considerable burden is thus taken away from the
developer with respect to dependency issues. See e.g. [49] for details.

SWT is an abbreviation for the Standard Widget Toolkit, which is
designed to provide portable access to underlying operating system’s user
interface facilities.

JFace provides a set of convenience helper classes built on top of SWT
which helps to solve common UI problems. It also implements the model-
view-controller paradigm.

The workbench is sometimes called the Eclipse Platform UI. For the end
user, it consists of views and editors. For the developer one has to create
editors and views with respect to how the workbench operates.

For more details on Eclipse, see [8].

4.1.1 Eclipse Modeling Framework

EMF [43] brings modeling to and for Eclipse. The models are defined using
the Ecore model. A number of features are provided by EMF working on or
as a part of Ecore objects:

• A reflective API giving generic access to attributes of the model.

• Persistence.

• Notification and adapters.

• Comparing.

• Searching.

• Copying.

• Editor generation.

The Ecore model can be used to generate a generator model, which in turn
will generate various parts of code such as the Java implementation of the
model, EMF.Edit, EMF.Editor as well as a basic test setup.

16

4.1.1.1 Java implementation of the model

EMF will generate interfaces mirroring the model, as well as implementa-
tion classes implementing those interfaces. This is in accordance with the
advice from [17]. Furthermore, this pattern allows Java to support multiple
inheritance. All these generated interfaces will extend EObject, which in
turn will extend Notifier. The latter interface provides the adapter design
pattern. In EMF terminology the adapter pattern is roughly equivalent to
a combination of both adapter and observer pattern in [17]. The EObject
interface provides operations such as retrieving the contents of the object
and various reflective methods providing generic access.

4.1.1.2 Adapters

Adapters are used for listening for changes to an object and also for
extending the behavior of an object.

One example of behavior extension is item providers. Item providers,
as the name suggests, provide functions on behalf of items (objects). For
our case the objects will be instances of the EMF model. Item providers
provide:

• Content and label functions. This can be used e.g. in a tree view in
Eclipse.

• Property sources. This can be used in the property view of Eclipse.

• Command factory.

• Forwards change notifications from EMF objects. This is convenient
so that a developer can merely use an extended behavior of an object
and yet pretend it is the real object itself. Thus the developer only
needs to deal with a single object rather than two.

A large part of this functionality is contained in general base classes,
so the generated subclasses only implement a small portion of this and the
rest is handled generically. As stated above, this functionality can be used
by for example a TreeViewer or PropertySheet class.

The above mentioned item providers are generated by the EMF.Edit
component. It creates UI-independent classes providing the above men-
tioned functions. The EMF.Editor component on the other hand gener-
ates UI-dependent code which essentially wraps the code generated by
EMF.Edit. This becomes a kind of double delegation pattern which is a
little complex. However, if one needs to supports additional back ends,
for example a web-application, it should be possible to write a different
EMF.Editor-like back end and the reuse the possibly customized code in
EMF.Edit.

4.1.2 Draw2d

Draw2d is generally the lowest layer of the frameworks one needs to
concern oneself with with respect to GEF. See figure 4.3 for an overview

17

Component Important concepts

GEF

Requests
Edit policies
Commands

Tools
Edit domain

Edit parts

Zest
Content providers
Layout algorithms

Draw2d

Event dispatcher
Lightweight system

Update manager
Layout managers

Figures

SWT
Painting
Canvas

Shell
Operating system

Figure 4.3: Structure of GEF.

of the layers. Much of the text that follows on the various layers is based on
[37].

As the name suggests, the primary task of Draw2d is to handle two
dimensional drawing. Draw2d is built upon SWT and is considered
lightweight in the sense that Draw2d objects are not tied to an operating
system resource, in contrast to SWT objects, and thus some less burden
is put on the programmer. In addition to drawing, Draw2d also provides
listening to events such as focus, keyboard and mouse events.

The top level element of a Draw2d system will typically be a so-called
LightWeightSystem. It’s job is to handle event dispatching, updating
of figures as well as acting as a container of all figures. This is done
through delegation to specialized classes, whereas the latter is a special root
figure class. All figures contained by the root figure must implement the
IFigure interface, which contains methods for translating between different
coordinate system (relative and absolute), adding of child figures, painting,
event handling, setting a layout manager, size of the figure, colors and so on.
Aside from the obvious types of figures, such as a rectangle or an ellipse, a
figure may also be a connection, a layer or a pane. It is helpful to have
several layers, i.e. typically there will be one layer for connections and one
for nodes. This is useful for example when one wants to route connections
to have the shortest path without overlapping nodes.

When using GEF, one needs to understand Draw2d primarily with
respect to concrete figures such as nodes. Event handling, layers and so
on are taken care of by the higher-level frameworks.

18

4.1.3 Zest

Zest is a framework built on top of Draw2d. Some parts of Zest is also built
on JFace.

It’s main contributions are providing more advanced layout algorithms,
as well as delegating graph creation to so-called content providers. The
provided layout algorithms include a directed graph, grid, tree, spring,
radial as well a composite layout algorithm.

The content providers provides a skeleton for creating a nodes and
connections for the graph based on what type of data is stored in the
domain model, i.e. if the model contains data that represents relationships,
nodes and possibly nested content. Thus it should be relatively easy to
create graphical views for differing domain models. Zest also provides
various style providers for customizing the look and content of nodes and
connections.

All in all Zest makes for a much quicker way to create Draw2d graphs.
However, it comes at a cost: It is more difficult to customize the connections
and figures, and one also gives up considerable control to the framework.
In addition there is not any editing capabilities.

4.1.4 Graphical Editing Framework (GEF)

Formally the GEF feature is actually consisting of three components: GEF,
Zest and Draw2d. This thesis will refer to the GEF component as simply
GEF.

GEF is built upon Draw2d, SWT and JFace among others. It provides
more flexibility and customization for showing nodes and interacting with
and editing models. This is done with the help of the model-view-controller
(MVC) paradigm, which is a well-proved technique.

MVC has three components: Model, View and Controller. The model is
responsible for the actual business domain, i.e. what is actually persisted
across sections. The view is only concerned with display of certain figures
and labels. The controller binds the model and the view all together
by listening to changes in the model and updating, creating or removing
views correspondingly. Arranging things this way, the model should be
completely separate from both the view and the controller. This allows for
multiple editors for the same model, as well as enabling a clear separation
of concerns.

However, GEF goes further than just plain MVC. According to [48] the
architecture of GEF is closer to the Presentation-Abstraction-Control, see
[7] for a description of this pattern. GEF introduces several other concepts
such as an edit part factory, an edit domain, edit policies, requests, tools
and commands. Additionally different terminology is used. MVC’s view is
a figure, while controller is called an edit part.

The edit part factory simply creates editparts, GEF’s equivalent of
controllers for MVC, based on the context, i.e. the owner editpart, as well
as the model. This is done using the factory pattern as described in 2.4.1.1.

19

Requests are high-level operations that contain all the information that
is needed to make an application change.

Commands represents a change in the application state that can
possibly be undone. It is also possible to chain together several commands.
Commands are put on the command stack, effectively giving the application
a history.

Multiple edit policies can be associated with each edit part. An edit
policy can contribute editing behavior to an edit part in several ways.
Edit policies creates commands in response to requests. They also handle
feedback and forwarding or delegation if needed.

The edit domain is the state of the GEF application. It has a command
stack for recording the history of what actions the user has taken, so that
these can be undone and redone. Furthermore it has one or more edit
part viewers, e.g. the main view, and an active tool that determines what
happens when the user interacts with the diagram.

As an example, when a user hovers a figure with the mouse, the
LightWeightSystem will delegate the hovering to the viewer, which in turn
will delegate it to the edit domain, then to the active tool. The active tool will
then create a request and send it to the edit part, which will consult its edit
policies, of which at least one should return a command. Visual feedback
may also be performed. Note that while the command has been created, it
has not been executed. Execution, e.g. triggered by a mouse click, follows
roughly the same path, i.e. from LightWeightSystem to the edit domain, to
the active tool which has saved the command. The tool then gets the current
command stack, and uses this for executing the command.

While GEF adds some complexity, it should allow for code reuse,
particularly for large projects, as well as being extensible.

4.2 Graphical Modeling Framework (GMF)

GMF [18] is a collection of three components:

• The GMF Tooling provides a model-driven approach to generating
graphical editors.

• The GMF Runtime provides common features such as printing,
export as well as actions. It also provides a bridge between GEF and
EMF commands.

• The GMF Notation provides a standard notation for storing the
diagram information separately from the semantic information.

An overview is presented in figure 4.4. Version 2.3.0 of GMF was used
in this thesis.

As a tool developer, the GMF Tooling is of most interest to us. It consists
of several models, namely the graphical definition model, the tooling
definition model, the mapping model as well as the generator model.

The graphical definition model defines what the visual elements of
the editor should look like. This model has a strong resemblance to

20

the classes available in GEF and Draw2d. The tooling definition model
defines what tools should be available in the palette. Neither of these
are directly concerned with the actual business domain. The mapping
model is what connects the business domain model with the two former
models. This is to say that the mapping model defines the mapping between
the actual business domain and the graphical definition model and the
tooling definition. From this mapping model the generator model can be
generated. This model will reference the other models, as well as giving
the user options to define certain generation settings such as output folder,
whether to generate a RCP application or not, and so on.

Figure 4.4: Overview of the GMF development process.

4.3 EuGENia

On top of GMF a tool called EuGENia[24] also exits. This produces a
reasonable default of all the GMF Tooling models based on an annotated
Ecore model. The generation of the defaults can be customized using the
various Epsilon languages. This tool was used in this thesis to generate the
GMF models. In short EuGENia can help the tool developer to jump start
the development of a GMF-based editor.

21

4.4 Graphiti

Graphiti is a framework for creating graphical diagram editors. The
framework itself does not do any code-generation and is written in plain
Java. Currently this project is in incubation phase. During the writing of
this thesis, a different project, Spray, using code generation and targeting
the Graphiti framework, was released, but it remains in a fairly early phase.

Graphiti takes a different approach than both GMF and GEF. Instead
of requiring the user to use the Model-View-Controller paradigm, it
introduces so-called features. These encompass concepts that are all
present in MVC:

• Creation, deletion and changing of business model elements.

• Creation, deletion and updating of visual elements.

As Graphiti internals builds on GEF, it also provides similar concepts to
GEF, but again they are provided uniformly through features. In fact edit
policies, requests and commands are invisible to the user of Graphiti. Upon
entering features that are supposed to make changes to state, a transaction
recorder will typically be added to the resource tree so that one does not
need to use commands manually. The developer generally does not need
to deal with the state of the editor. The tools may be overridden, but
reasonable defaults are present.

There are two flavors of Graphiti, one pattern-based flavor that
supposedly will alleviate some of the repetitive tasks. However this flavor
is completely undocumented as of this writing1. Therefore the plain flavor
has been used, more precisely Graphiti version 0.7.0.

In conclusion Graphiti provides an easy entrance to creating graphical
editors through a simple and contained API.

113th September 2011

22

Chapter 5

Requirements for the tool

In the following sections the requirements for the new tool will be
established. These will form a foundation for how the tool will be
developed, as well enabling the specification of sub-goals that are to be
reached after a given amount of time. That is to say it can make the tool
development process more structured. The requirements were gathered
using the principles described in section 2. For full details of how this
was done, see the appendix, section D. A brief overview of PREDIQT, the
method the tool should support, follows.

5.1 Overview of PREDIQT

PREDIQT [33] is a method for predicting the effect of architectural
design changes on quality of a system. The notion of system quality can
typically be based on [23]. The total quality is decomposed into several
quality attributes, such as availability, scalability, and security. There
is also typically an “other attributes”, which is used to achieve model
completeness.

The PREDIQT process involves the following steps and sub-steps:

1. Target modeling.

1.1. Characterize the target and the objectives.

1.2. Create quality models.

1.3. Map design models.

1.4. Create dependency views.

2. Verification of prediction models.

3. Application of prediction models.

4. A new change? If Yes, go to step 3.

In step 1, target modeling, it is assumed that the specifications and
design models of the system are made available to the analysis team.

23

In step 1.1, a high level characterization of the target system is done,
as well as defining the scope and objectives of the prediction analysis. The
degree of expected design changes are also characterized.

In step 1.2 quality models are created. The total quality is decomposed
into system specific quality attributes and their sub-characteristics. Again,
this may be based on an ISO-standard such as ISO/IEC 12207.

In step 1.3 the design models found in step 1 will be customized. Only
their relevant parts are selected for further use, and a mapping between the
low- and high-level design models are also made.

In step 1.4 the dependency views are created. First a conceptual model
with the following properties is created:

1. Classes represent elements from the underlying design and quality
models.

2. Relations shows the ownership.

3. Class attributes represent the dependencies, interactions and proper-
ties.

The result will be a tree-formed class diagram, which will then be used to
instantiate a generic dependency view (DV). Then, for each top level quality
attribute defined in the quality models, a quality attribute specific DV is
created, based on the generic DV. This attribute specific DV will have the
form of a weighted dependency tree (WDT). The arcs in the tree will have
an estimated impact (EI) attribute, which specifies how much impact the
following child will have on the current node. The EIs of a node should
always sum to 1. The leaf nodes in the WDT will specify the actual "degree
of Quality attribute or characteristic Fulfillment" (QCF). The interior nodes’
QCF will simply be a result of it’s children’s QCF and the EI and thus it will
not be specified by any user. It is this DV the tool should primarily support.

The reader is referred to the section D in the appendix, as well as the
quoted papers, for further information on PREDIQT.

5.2 Requirements for the PREDIQT tool

The following sections will give specific requirements for the new PREDIQT
tool. The new tool, as noted elsewhere, is supposed to replace the Excel
spreadsheet tool that is currently being used.

First, before going on to define objectives and requirements, a definition
of who the stakeholders are is appropriate. For this tool, the stakeholders
is defined to be the analyst, the viewer and the software owner. The
analyst is the primary user of the tool, i.e. the person applying the
PREDIQT method. The viewer is a person viewing the data that the
analyst is presenting, typically in a group meeting setting. Given that the
PREDIQT method may be performed on a software owned by a specific
person or company, the software owner will also be a stakeholder with
some particular interests. All of the following requirements are deduced
from these stakeholders’ point of view.

24

5.2.1 Overall requirements

Requirement 1. The new tool should fully replace the functionality
currently needed for DVs that is supported by the Excel spreadsheet tool.

Requirement 2. The new tool should fully support the propagation in
DVs and calculation methods.

Requirement 3. The new tool should be easy to learn and use for an
analyst.

Requirement 4. The new tool’s presentation of data should be easy to
understand for a viewer.

With these overall requirements given, it should be reasonably easy
whether to accept a requirement or not: One may ask the question if this
requirement improves one or several of the overall requirements. If the
answer is yes, then the requirement should be included.

5.2.2 Functional requirements

Requirement 5. The new tool should support a main view and a small
outline view for easy navigation and presentation of the DVs. Both views
should support panning.

Requirement 6. The new tool should support manual and automatic
layout of nodes.

Requirement 7. Creating the dependency view tree structure should be
simple.

Requirement 8. Removal, insertion and direct editing of nodes should
be easy for an inexperienced user.

Requirement 9. The editor should support copy, cut and paste.

Requirement 10. Hiding of nodes should be supported. More specifi-
cally all the children of a parent node should be possible to hide. Entire
subtrees should also be possible to hide into separated canvases.

Requirement 11. Searching for a node by it’s name should be supported.

Requirement 12. The text and data should always be easy to read.

The latter requirement implies the following requirements:

Requirement 13. Zooming of the main view should be supported.

The latter requirement may enhance presentation of the data.

Requirement 14. The tool should support resource change tracking.

If a model is changed in a different tab, it should also be updated,
possibly marked as changed or similar in the PREDIQT tool.

25

5.2.3 Data requirements

Requirement 15. The data should be persisted on the analyst’s com-
puter.

Requirement 16. In a given dependency view, the new tool should verify
that for all non-leaf nodes, the node’s children EIs should sum to 1.0.

Requirement 17. For all leaf nodes, the QCF value should be verified to
be 0 ≤ x ≤ 1 where x is the QCF value.

The two latter requirements both naturally follows from the PREDIQT
method as described in its respective papers.

Requirement 18. The QCF value of internal nodes should be possible to
override.

5.2.4 Technical environment requirements

Requirement 19. The tool should support traceability with respect to
imported models.

5.2.5 Non-functional requirements

Requirement 20. It should run on all major operating systems, i.e.
Windows, Mac OS X and at least one mainstream Linux variant.

Requirement 21. The new tool should be free of cost.

26

Chapter 6

Implementation of the tools

This chapter will detail some of the implementation aspects, first giving an
overview of the shared code and then further explaining the differences.

6.1 Shared model and code

The business domain was modelled in the Emfatic language, which is a
textual language for representing Ecore models.

The model is included below, showing the relative simplicity of the
PREDIQT business domain.

@namespace(uri="prediqt", prefix="prediqt")
@gmf(f="b")
package prediqt;

@gmf.diagram(rcp="false")
class Project {

val PNode[*] nodes;
val PArc[*] arcs;

}

@gmf.node(label="name,qcf", border.width="1",
label.pattern="name={0} qcf={1}", label.icon="false")
class PNode {

attr String name;
attr EBigDecimal qcf;
attr EBigDecimal qcfOverride;
attr Boolean useQcfOverride;

ref PArc[*]#target incoming;
ref PArc[*]#source outgoing;

}

@gmf.link(label="impact", source="source", target="target",
target.decoration="arrow")

27

class PArc {
attr EBigDecimal impact;
ref PNode#outgoing source;
ref PNode#incoming target;

}

While this model describes the general data requirements of PREDIQT,
it does not impose any special limits on the data, such as avoiding cycles. It
also does not describe the value propagation.

As explained in chapter 5, PREDIQT has certain requirements for value
propagation. This was implemented in the generated model code, using
plain Java. As long as the value propagation is done, exactly how it is done
is not of great importance as long as it would be reasonably self contained,
as was the case here. Thus the value propagation was shared among both
the GMF-based tool as well as the Graphiti-based tool.

The Graphiti-based tool was handwritten by the author using plain
Java. In order to reuse the generator EMF.Editor package for property
sheets, the extension point for editors were overridden.

The GMF-based tool on the other hand was generated using the above
Emfatic textual model. There were done some modifications to this
generated code. These are with marked @generated NOT in the source
code.

See appendix C.3 for instructions on where to obtain the source code of
both tools.

28

Figure 6.1: Screenshot of the GMF-based tool.

29

Figure 6.2: Screenshot of the Graphiti-based tool.

30

Chapter 7

Evaluation

This section will present the evaluation as outlined in section 3.4.

7.1 Evaluation of applicability for supporting
tree-based methods

This section will describe to what degree the various requirements are
accomplished. Each requirement is evaluated with respect to the two
editors. The basis of the evaluation was gathered in the following ways:

• Manually running and testing the two editors separately.

• Reading the official documentation and source code of the two
frameworks.

• Drawing from experiences from the development of the two editors.

Rather than manual testing, a better solution would have been to use the
SWTBot-tool.

Some of the requirements are rather subjective and these will be treated
in a survey.

Requirement 1. The new tool should fully replace the functionality
currently needed for DVs that is supported by the Excel spreadsheet tool.

Both editors. Since this requirement is more or less a form of overall
requirement, it is hard to argue for. However, as will be clear from the
following text, there are several things that would likely be easier in Excel.
This is valid for both tools. That said, it seems that the GMF-based editor
overall supports more features than the Graphiti-based editor.

Requirement 2. The new tool should fully support the propagation in
DVs and calculation methods.

Both editors. PREDIQT interval support is missing for both editors.
The reason for this is two-fold: The author simply did not have enough
time. The current business model does not support intervals. However,
neither GMF nor Graphiti supports what would have been a natural concept

31

here: Switching between an interval mode and normal mode. The mode
would then affect figures, property sheets and of course value propagation.
While it is of course possible to hand code this, it is not easily supported in
neither GMF nor Graphiti.

Having separate editors would also have been a possible choice. This
would mean one had four editors, GMF-based and Graphiti-based with
interval and normal mode. However there was also not enough time for
investigating this approach.

While the author is the principal person to blame since not much of an
attempt has been made with respect to interval support, both frameworks
have large potential for improvement in this field.

Otherwise the support for propagation and calculation methods should
be complete. As explained in section 6, both editors share code and this
includes the propagation and calculation methods.

Requirement 3. The new tool should be easy to learn and use for an
analyst. This is evaluated in chapter 7.2 and both tools were found to be
equal.

Requirement 4. The new tool’s presentation of data should be easy to
understand for a viewer. This is evaluated in chapter 7.2 and both tools
were found to be equal.

Requirement 5. The new tool should support a main view and a small
outline view for easy navigation and presentation of the DVs. Both views
should support panning.

Both editors. Both editors have an outline view. This is called a
miniature view in Graphiti. For both editors there is also support for
panning in several ways:

• Using the outline view.

• Holding down space while using the selection tool.

• Pressing ctrl+shift and one of the arrow keys.

It is common to have a “hand” or similar tool to achieve this purpose,
but it is not present in either tool. Neither GMF nor Graphiti supports this
out of the box.

In conclusion it seems fair to say that while panning is supported, but
there is room for improvement for both editors.

Requirement 6. The new tool should support manual and automatic
layout of nodes.

GMF-based editor. In the GMF-based editor manual and automatic
layout of nodes is given in the generated code. However, the automatic
layout was not entirely as good as desired, so it needed some small changes.
Furthermore only one layout method is supported.

32

Graphiti-based editor. Automatic layout support is lacking in
Graphiti and is not supported directly. However, recipes exists for this,
and it was easy to add this support to the Graphiti-based editor.

Conclusion. Both editors supports manual layout out of the box.
Adding automatic layout needed some more work for both editors. The
resulting layout support is deemed to be equal for both editors.

Requirement 7. Creating the dependency view tree structure should be
simple. It seems reasonable simple, but a survey is more appropriate for
testing to what degree this is the case or not. This is evaluated in chapter
7.2 and both tools were found to be equal.

Requirement 8. Removal, insertion and direct editing of nodes should
be easy for an inexperienced user.

Both editors. Removal and insertion are equally well supported in
both editors.

GMF-based editor. Editing, however, is a different story. Due to
the fact that the model used BigDecimal as the datatype QCF and
estimated impact, the code generated by GMF simply failed. Conversely,
the generated code in EMF.Editor worked, so it was still possible to set the
values in the property sheet. The fact that EMF.Editor is able to generate
proper code for this also makes for the case that this may be supported in
GMF in future versions. It is of course possible to fix this in the generated
code, but finding the right place was difficult and time consuming.

Graphiti-based editor. In the Graphiti-based editor one had to
implement so-called direct editing features, once again in plain Java.
Validation was also possible inside the direct editing feature. This was
simple.

Conclusion. In conclusion Graphiti provided the easiest way to
provide direct editing.

Requirement 9. The editor should support copy, cut and paste.
GMF-based editor. Supports duplication of nodes in the generated

code. This allows one to essentially copy and paste within a single diagram
in one operation. One cannot choose where to put the copied element, i.e.
one must drag it after duplication if one wants a different position. A copy of
the business object is done. Enabling copy and paste has attracted several
recipes1 as well as a number of newsgroup posts, so it seems like a hard
problem in GMF.

Graphiti-based editor. Graphiti supports copy and paste through
features. This gives the developer some flexibility with respect to copying
the business object or not, while keeping the learning required low. As
of September 25th of 2011, pasting relative to the mouse pointer is not
supported. See bug number 3395252. Pasting relative to the copy

1For example http://esalagea.wordpress.com/2011/04/13/lets-solve-once-for-all-the-
gmf-copy-paste-problem-and-then-forget-about-it/, retrieved September 25th 2011.

2https://bugs.eclipse.org/bugs/show_bug.cgi?id=339525

33

http://esalagea.wordpress.com/2011/04/13/lets-solve-once-for-all-the-gmf-copy-paste-problem-and-then-forget-about-it/
http://esalagea.wordpress.com/2011/04/13/lets-solve-once-for-all-the-gmf-copy-paste-problem-and-then-forget-about-it/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=339525

is supported though, so the functionality is similar to that of GMF as
described earlier.

The Graphiti-based editor implemented copying business objects. This
was not behaving entirely as expected initially. Furthermore copying
between two diagrams behaved slightly unpredictably. See bug number
3588183 for more information. These problems seems similar to those of
GMF.

Conclusion. Both approaches seems somewhat flawed. GMF seems
slightly more flawed as it does not support copying between editors.
Graphiti provides the lowest learning curve.

Requirement 10. Hiding of nodes should be supported. More
specifically all the children of a parent node should be possible to hide.
Entire subtrees should also be possible to hide into separated canvases.

GMF-based editor. The two first parts of this requirements have been
created, but there was a problem in deploying the functionality into the
release version of the tool. Furthermore bug 3518244 were also found. It
took considerable amounts of time to find the right place to modify in order
to support this feature. The last part is not supported in this editor, but
with some effort it should be possible in a GMF-based editor.

Graphiti-based editor. The two first parts of this requirements
are not supported. The official Graphiti documentation says that
setVisible(boolean) method in PictogramElement is re-
served for future use. Thus it would arguably be hard to support this.

Graphiti is supposed to offer a drill-down feature. This is the same as
using separate canvases for the nodes. However, this functionality was not
entirely behaving as expected. The editors were marked dirty upon a non-
changing update. The color of the text became blue for unknown reasons.

Conclusion. The drill-down feature of Graphiti looks promising, but
needs more polishing. The author spent considerable time on the GMF
feature, and found the solution to work well. In conclusion GMF stands as
offering the best solution.

Requirement 11. Searching for a node by it’s name should be supported.
GMF-based editor. No support is generated for this to the best of the

author’s knowledge. That said, it would likely be possible to support this.
However, as usual with GMF, finding the right place and learning the right
way to do it would likely take a considerable amount of time.

Graphiti-based editor. Graphiti has no search feature. However,
if implemented by the framework, it would likely be easy to use. The
framework developer would do the hard work once, essentially providing
a simple entry into the appropriate Eclipse mechanisms for the framework
user.

Conclusion. Neither framework supports this out of the box.
Graphiti would likely provide a simple solution to this if it was supported.

3https://bugs.eclipse.org/bugs/show_bug.cgi?id=358818
4https://bugs.eclipse.org/bugs/show_bug.cgi?id=351824

34

https://bugs.eclipse.org/bugs/show_bug.cgi?id=358818
https://bugs.eclipse.org/bugs/show_bug.cgi?id=351824

Conversely, while it is surely possible to achieve this by modifying the
generated code in GMF, it would likely be a difficult task. In conclusion
the frameworks are deemed equal.

Requirement 12. The text and data should always be easy to read.
Both editors. Given that zooming is supported, this requirement

should at least be considered partially supported.
GMF-based editor. The user of the tool can change typical properties

such as font color and size, background color and so on. This is supported
for the entire canvas as well as per node. Therefore it seems reasonable
to consider this requirement achieved. This is supported by the GMF
Runtime.

Graphiti-based editor. For the Graphiti-based editor changing of
such properties is currently not directly supported. However, Graphiti
offers the concept of styles. One style is associated with certain colors, font
properties and so on. Several nodes will then share a single style. This
allows for a more standardized look and feel.

Conclusion. Graphiti seems to offer a more structured solution to
choosing different visual properties on the cost of requiring more work for
the programmer. This appears to the author as the best solution in a more
professional setting. GMF offers more individual customization as well as
global customization while requiring no additional effort. A merge of these
properties would be the best and thus there is room for improvements in
both tools. As GMF offers considerably more in the generated code and
GMF Runtime, it is deemed the best solution.

Requirement 13. Zooming of the main view should be supported.
Both editors. Both editors supports this.

Requirement 15. The data should be persisted on the analyst’s
computer.

GMF-based editor. The data is persisted in the XMI format. This is
done out of the box by GMF.

Graphiti-based editor. The data is also persisted in the XMI format,
but this is not offered out of the box by Graphiti, so it is likely to be more
error prone.

Conclusion. The GMF-based editor is deemed to have the most robust
solution.

Requirement 16. In a given dependency view, the new tool should verify
that for all non-leaf nodes, the node’s children EIs should sum to 1.0.

GMF-based editor. While this is supported, one needs to manually
select “Edit → Validate” in the menu to trigger this functionality. One needs
to change the generated code in order to trigger the validation upon save or
similar. These errors also appear in the “Problem View” of Eclipse, so it is
easy to see if there is an error in the diagram.

It also appears that many different kind of validations can be integrated
into a GMF-based editor. Examples include OCL as well as what was used

35

in this particular editor, the Epsilon Validation Language. This should in
other words scale well in a more enterprise setting. On the other hand, this
increases the learning curve required.

Graphiti-based editor. A kind of validation in supported in Graphiti.
This provided through something called decorators. The node will simply
be marked visually if a validation fails. No error will appear in the “Problem
View” of Eclipse, and there does not appear to be any attempt to integrate
with other technologies such as OCL. This seems fine for small projects,
but may be problematic for more enterprise cases. Validation is triggered
without any special interaction from the user.

Conclusion. Graphiti offers a low learning curve, but with fewer
features. The GMF-based editor offers the best functionality, but at the
cost of requiring more learning for the programmer.

Requirement 17. For all leaf nodes, the QCF value should be verified to
be 0 ≤ x ≤ 1 where x is the QCF value.

Both editors. The same argument applies here as to the evaluation
of the previous requirement, and thus the GMF-based editor is deemed the
best.

Requirement 18. The QCF value of internal nodes should be possible to
override.

Both editors. Both editors supports this through the EMF.Editor.
One simply needs to choose “Use Qcf Override” in the properties view, and
then setting a value for the qcf override property.

GMF-based editor. It is fairly hard to change the behavior of the
generated editor. This also includes changing how properties are set and
thus this is deemed a somewhat error-prone process.

Graphiti-based editor. As has been argued already, direct editing of
properties in Graphiti is pleasantly simple. Thus, it would be quite simple to
implement a direct editing feature supporting conditional writes depending
on if the node had children or not.

Conclusion. Including more proper support for QCF override through
direct editing would arguably be simpler in Graphiti.

Requirement 14. The tool should support resource change tracking.
Both editors. Both editors supports resource change tracking. GMF

gives this in the generated code, while Graphiti provides this through
update features. Upon a resource change the GMF approach is to simply
update the canvas without notifying the user. Thus the user will have to
discover the modification on his own. Conversely, in the Graphiti approach,
the editor will be marked as dirty upon a update, so the user will know what
has been changed. The change can also be undone. This is not possible in
the GMF approach.

Conclusion. Graphiti provides the best solution for resource change
tracking.

36

Requirement 19. The tool should support traceability with respect to
imported models. There is currently no support for traceability or import
of other models.

Requirement 20. It should run on all major operating systems, i.e.
Windows, Mac OS X and at least one mainstream Linux variant.

Both editors. While initial tests are in favor of this requirement, no
extensive testing has been done across platforms for neither editor.

For GMF though, it also supports RCP generation. Graphiti has no
particular such support and currently relies on the Eclipse IDE.

Conclusion. As GMF offers RCP generation, albeit with fewer features
than the Eclipse IDE-targeted generation, it is deemed as the best solution.

Requirement 21. The new tool should be free of cost. This is the case for
both tools.

Requirement Best solution
1 Replaces Excel-tool -
2 Propagation of values Equal
3 Learnability Equal
4 Easy to understand Equal
5 Outline Equal
6 Layout Equal
7 Simple creation Equal
8 Editing Graphiti
9 Copy and paste Graphiti
10 Hiding of nodes GMF
11 Search None
12 Easy to read GMF
13 Zooming Equal
15 Persistence GMF
16 Validation EI GMF
17 Validation QCF GMF
18 QCF override Graphiti
14 Resource change tracking Graphiti
19 Traceability None
20 Major OSes support GMF
21 Free of cost Equal
Total GMF: 6, Graphiti: 4

Table 7.1: Overview of the evaluation of the two editors with respect to the
requirements.

37

7.1.1 Conclusion

As can be seen from table 7.1, the GMF-based editor provides the most
amount of features. Is this representative? The simple answer is yes, this
is in accordance with the author’s experience. Thus it is also fair to say that
hypothesis 1 holds, albeit not to a very large degree.

However, as will be argued in later sections, changing the generated
GMF editor is quite difficult. This is generally not the case with the
Graphiti-based editor. That said, from a user perspective the GMF-based
editor simply has the most and best features.

7.2 Survey of tools

A survey was held letting primarily IT students test the two tools. The
survey is presented in appendix B. For the various tasks, the student was
asked to rate how difficult it was to accomplish on a scale from one to six,
where one was “very easy” and six was “very difficult”.

Half of the students tested the GMF-based tool first and then the
Graphiti-based tool. The other half did this in the opposite order. See the
appendix for more details. Some of the key findings is presented in the text
that follows.

7.2.1 Background of students

The students were asked to rate their own skill in using Eclipse. Unfortu-
nately, this was not a good indicator of their performance. Experienced
master students with extensive work experience rated their own skill in
Eclipse as completely unskilled. A better indicator would likely have been
number of years studying computer science plus number of years working.
Nevertheless, the combined rating of both groups were actually identical.

7.2.2 Creation of DV

The main task of the survey was to create the dependency view. In figure 7.1
the results from creating the DV with the first tool is given. One can see that
the GMF-based tool was generally found more easy to use. Unfortunately
though the perception of “easiness” is subjective. People who were more
critical of one tool tended also to be more critical toward the other tool.
Nevertheless though, one can see that for both tools few people actually
found them difficult, that is to say giving the rating five, to use. The same
conclusion holds with respect to the overall learnability. Therefore it seems
fair to conclude that both tools are fairly easy to use.

7.2.3 Time used

The time used to solve the tasks was also measured. This is given in figure
7.2 and 7.3. All participants showed improvement with respect to the time
used. Again the Graphiti-based tool has the longest time used for the

38

GraphitiGMF

1

2

3

4

5

6

5

2

44

22 22

4

2 2

1

E
as

in
es

s

Figure 7.1: How easy it was to create the DV the first time. X-axis: One bar
represents one person. Thus this diagram describes 12 different students.
Y-axis: “1” means “very easy” and “6” means “very difficult”. One can
see that those who used Graphiti as the first editor found it slightly more
difficult than the group who used GMF first.

39

First time Second time

6

8

10

12

14

16

15

9

10

6

10

8

10

7

10

8

9

6

N
u

m
be

r
of

m
in

u
te

s

Figure 7.2: Time used to solve the exercises using GMF, then Graphiti.
One bar with one specific color represents one person, thus six persons are
described in this diagram. In the left area of the diagram the first time is
described. In the right area of the diagram the second time is described.
Each person has the same color in both the first and the second time. Thus
the person who spent 15 minutes on the first editor, then spent 9 minutes
on the second editor.

first time users. For the Graphiti-based tool as the second time used, it
was the fastest. Thus it seems that this naturally depends heavily on the
participants. For example the persons who used 20 and 17 minutes on the
first tool were simply not the best computer users. It seems fair to conclude
that the tools are reasonably equal with respect to time usage required and
that there is a short learning curve. One walk-through seems enough to
reduce the required amount of time with a few minutes.

7.2.4 Favorite tool

The last question asked in the survey was to ask the participant to name a
favorite tool, that is which editor she/he would prefer in the future. The
results of this is given in figure 7.4. It was also possible to not have any
favorite, though no participant chose this. One can see that the Graphiti-
based tool was marginally more popular.

40

First time Second time

6

8

10

12

14

16

18

20
20

11

13

8

13

99

7

11

10

17

11

N
u

m
be

r
of

m
in

u
te

s

Figure 7.3: Time used to solve the exercises using Graphiti, then GMF. See
figure 7.2 for an explanation.

First time Second time Total

2

4

6

2

3

5

3

4

7

N
u

m
be

r
of

p
ar

ti
ci

p
an

ts

GMF Graphiti

Figure 7.4: Favorite tool.

41

7.2.5 Feedback during survey

What was equally interesting as the survey itself, was the feedback from the
participants during the testing of the tools. It can be summarized as the
following:

1. All participants liked the layout of the nodes of the Graphiti-based
editor better.

2. Most participants seemed to agree that good documentation was
essential in order to perform these tasks.

3. Most participants appreciated the automatic validation of the
Graphiti-based editor.

4. Many found the lack of direct editing capabilities in both editors
annoying. It seemed very natural to use this for most participants.

5. Many participants made the mistake of linking a node to itself. This
was due to lack of experience.

6. Many participants had problems spotting the warning icons of the
Graphiti-based editor. Conversely, for GMF, this was not a problem.

7. Several participants found the validation of GMF to be a little
confusing. Most of them tried to right-click the canvas.

8. Several participants were annoyed that the Node tool was deselected
upon node creation in Graphiti.

9. Several participants had problems with activating the direct editing
capabilities of the Graphiti-based editor that did exist.

10. Some participants liked the arcs of the GMF-based editor better due
to the larger font.

11. Some participants had problems with undo in both GMF and
Graphiti.

12. Some of the participants liked the grid and ruler helpers of the
Graphiti-based tool.

13. Some participants preferred the colors of the GMF-based editor,
whereas other preferred the colors of the Graphiti-based editor.

14. Some participants tried to use drag-and-drop in the GMF-based
editor. It does not work.

15. Three participants found GMF to be slightly quicker than Graphiti.

16. Only one participant discovered and used the mouse-over create arc
feature of the GMF-editor. None complained about this feature,
finding it confusing or similar.

42

17. One participant asked if there were any key-bindings.5

18. One participant suggested column numbers for the property sheet in
order to make the instructions more clear.

This was quite interesting feedback as most of it the author had not
thought of. And most of this should likely be relevant for future work on
the tools. From the points above 4 and 5 are fixed and described in chapter
7.4.3.

7.2.6 Conclusion

Both tools were roughly equally popular. The characteristics of the
participant seems to determine how much time was needed to solve the
various tasks. All participants showed improvement over subsequent usage
of a similar tool. The layout and automatic validation of the Graphiti-based
tool was appreciated. The choice of colors were more of an individual
preference. In conclusion it seems fair to say that both tools performed
acceptable and roughly equal with respect to requirement 3, 7 and 4. As
outlined in 7.2.5 there is room for improvement in both tools.

7.3 Evaluation of development time

As argued in [6] and numerous other papers, the main share of a systems
lifetime costs will be spent on doing maintenance. This aspect, i.e.
maintenance, will be covered in section 7.4. In this section the focus will
be on the time spent creating an initial tool, i.e. the initial development
time. This is to say that the tool should be working reasonably well, though
it is not expected to be perfect. GMF and Graphiti differs considerably with
respect to the initial development time, though in different ways.

7.3.1 Graphiti

Graphiti has a very flat learning curve. The various aspects of an editor is
laid out for the programmer in a very uniform way, through the feature
provider as well the tool behavior provider. Internally Graphiti maps
and dispatches between these uniform interfaces and the arguably more
complex GEF mechanisms.

This seems all very nice at first, but as one implements a tool, a pattern
of repetition occurs. This pattern of repetition is present in the official
Graphiti documentation as well. Particularly manually searching for views
one created in different features seems like an error-prone process. In
the MVC paradigm one would simply store the reference of the particular
view in the controller. This can partly be alleviated by giving the views
properties, something which is available in the current release of Graphiti.
However, this remains essentially a quick fix, not an elegant solution.

5This was an Emacs user.

43

In conclusion, for Graphiti, the larger a business domain gets, the more
time one needs to spend on the initial development of the graphical editor.
Some features are dependent on other features, making the introduction of
changes an error-prone process.

7.3.2 GMF

GMF, as stated in [24], on the other hand, has a very steep learning curve,
of which EuGENia is sought to alleviate. While EuGENia does a good job in
producing reasonable defaults for the various GMF Tooling models, this
generation also needs customization. For this task one is left with the
various Epsilon languages. While these are not too hard to accomplish
basic tasks with, these languages lack proper tool support including such
things as auto completion, debugging facilities and so on, making them
require some effort to use. While developing the tool, bugs specific to
the EuGENia tooling were also discovered6, rendering some of the needed
customizations impossible. Essentially, if one wants to continue using
EuGENia not only as a starting point, but also in further development, one
needs to double the effort, i.e. understanding both the GMF Tooling models
as well as the usage of the Epsilon languages to modify them.

Furthermore, there are many common options missing in the GMF
Tooling models. This should be evident from the sheer number of
newsgroup posts discussing modifications of the generated code. One
simple example of this is setting the font color. It is currently not supported
by the models. Thus, also in the initial development, one is usually left with
the need to modify the generated code. If one is not highly familiar with the
code generation facilities of GMF or the architecture of GEF, this will likely
be a time-consuming task, as experienced both by the author and [39].

For producing a reasonable initial tool, GMF still do provide a fairly
decent option. Coupled with EuGENia, one will have a fairly good graphical
editor running in a short time. The additional effort one is required to make
as the domain model grows is very small compared to Graphiti. Similarly,
if one needs to support a new domain, the effort required will be smaller.

7.3.3 Actual development time spent on GMF and Graphiti

The creation of the GMF-based editor was not carefully logged. However,
a rough estimate is taken to be that the development took around 3-4
weeks7 for producing an initial editor. It should be noted that the author
at this time had little experience with Eclipse, GEF, Draw2d and so on.
Furthermore no attempt at a separate learning phase was done.

Roughly one man week was spent on learning the Graphiti framework
from a user perspective. Additionally, roughly another week was spent on
learning about JFace, EMF, EMF.Edit and EMF.Editor due to the lack of
integration with the latter component in Graphiti. This work is considered

6Verified by Dimitrios S. Kolovos, co-author of EuGENia.
7A week is here considered 37.5 working hours.

44

the preparation for the development. At this point the author also had
experience with GEF, Draw2d, parts of the Eclipse architecture and similar
things, which, while helpful knowledge, is not included as Graphiti-specific
knowledge. The development of the tool itself took roughly a half week.

Tooling framework Learning phase Development phase Total time
GMF - 3-4 weeks 3-4 weeks

Graphiti 2 weeks 0.5 week 2.5 weeks

Table 7.2: Actual development time.

As the background knowledge of the author was quite different when
developing each tool, i.e. much stronger when creating the Graphiti-
based tool, it seems fair to say that a more realistic estimate of the GMF
development time, e.g. had one created the tools in the opposite orders,
would be substantially less, possibly as much as two weeks.

7.3.4 Conclusion

As has been argued in the preceding sections, the initial development time
will depend heavily on the size of the domain model. The smaller it is,
the more sense it would make to use Graphiti. Conversely, the larger the
domain model is, the more sense it would make to use GMF. Also, if one
is expected to produce editors for many domains, using GMF or possibly
a different model driven approach would likely be the best choice with
respect to initial development time.

However, Graphiti is currently in incubation phase and this unfortu-
nately still shows. As explained in section 7.1, Graphiti still lacks some of
the features present in GMF. Thus, even for the small domain model of
PREDIQT, developing a Graphiti-based editor still took considerable time,
albeit a little less than the GMF-based editor. The latter fact has much
to owe to the fact that the author had more experience when creating the
Graphiti-based editor. Thus it seems fair to say that GMF still stands as the
quickest way to create a reasonably capable graphical editor. Hypothesis 2
is thus found to be true.

7.4 Evaluation of maintainability

As has been argued before, and seems widely accepted in the literature,
software maintenance stands for the bulk of software project costs.
Therefore, although this project has not undergone much maintenance,
an attempt at will be made at evaluating to what degree each editor is
maintainable.

As explained in chapter 2.4, a maintainable system should be easy to
correct upon the discovery of errors or deficiencies. Furthermore a system
that is maintainable must also be understandable, which concerns issues

45

such as complexity, dependencies and structuredness. These are related
concepts, but will be treated separately in the following text.

7.4.1 Code size

Complexity, though with some caveats, can be measured in terms of lines of
code according to [34]. The code size of the various packages are shown in
table 7.3. Given that GMF is about six to seven times larger than Graphiti,
it should be fair to say that GMF is far more complex than Graphiti.
Additionally, a user of GMF will typically need to know GEF and Draw2d as
well, so the gap widens. The advanced user of GMF may also wish to look
into the code generation (xpt files). Conversely, as a user of Graphiti, the
author did not need to know either GEF, Draw2d or any code generation
techniques.

Looking at the different tools and their respective code base sizes in
figure 7.4, the same pattern holds. The generated GMF tool is far bigger.
It should be noted that the tools are not identical, as shown in section 7.1.
Despite this, in terms of less complexity, Graphiti seems to be the clear
winner here.

Would a hand-written GEF-based editor be smaller than a generated
GMF-based editor? Most likely. But would it be as small as a Graphiti-
based one? This does not appear to be the case. The author implemented
a small GEF-based editor, and the code base quickly grew bigger than that
of the Graphiti-based editor even though it had very few features. That it
takes a relatively large effort, and therefore also, to a certain degree, a large
code base when creating a GEF-based editor, is also clear from the book
Graphical Editing Framework[37] (author’s emphasis): Actual editing of a
model is left as a part of the last chapter of the book. With a framework that
is focused on editing, this seems rather weak. Based on this it seems fairly
safe to say that just about any GEF-based editor, generated or not, would
be larger and more complex than a Graphiti-based equivalent.

Package prefix Total number of classes Total lines of code
org.eclipse.draw2d 288 52427
org.eclipse.zest 92 18180
org.eclipse.gef 327 58971
org.eclipse.graphiti 637 99306
org.eclipse.gmf 3176 655271
org.eclipse.gmf .xpt files 315 46531

Table 7.3: Code size by package. All lines are counted (code, blank lines,
comments, etc.).

7.4.2 Dependencies

The fact that the learning curve is so steep for GMF has been repeated
several times already. This is related to dependencies or efferent coupling,

46

Tool Total number of classes Total lines of code
GMF RCP tool 84 13711
GMF Eclipse-based tool 78 12949
Graphiti Eclipse-based tool 18 1381

Table 7.4: Code size by tool. All lines are counted (code, blank lines,
comments, etc.).

as one should have an idea of the technologies that the project uses. One
way to estimate the amount of dependencies is to look at the import
statements used in the top of each Java file. If one groups the imports by
xxx.xxx.xxx, one can get an idea of how many different packages one needs
to be familiar with if one wants to maintain the application. One can also
look at the number of unique imports to get an idea of how much of that
package one needs to have knowledge of. This is given in figure 7.5. While
this is very similar to efferent coupling, it gives a more detailed picture.

Package Number of files Percentage of files Unique imports
Graphiti GMF Graphiti GMF Graphiti GMF

org.eclipse.core 3 41 17.6 % 52.6 % 5 30
org.eclipse.draw2d 0 8 0.0 % 10.3 % 0 20
org.eclipse.emf 5 51 29.4 % 65.4 % 7 48
org.eclipse.gef 1 25 5.9 % 32.1 % 1 26
org.eclipse.gmf 0 61 0.0 % 78.2 % 0 153
org.eclipse.graphiti 16 0 94.1 % 0.0 % 66 0
org.eclipse.jface 1 31 5.9 % 39.7 % 5 41
org.eclipse.osgi 0 8 0.0 % 10.3 % 0 1
org.eclipse.swt 0 22 0.0 % 28.2 % 0 15
org.eclipse.ui 2 27 11.8 % 34.6 % 2 41
org.osgi.framework 1 1 5.9 % 1.3 % 2 1

Table 7.5: Imports used by the two tools. GMF and Graphiti should be read
GMF-based editor and Graphiti-based editor.

From the figure one can see “Number of files”, meaning the number
of files which import at least one class from the given package. The
“Percentage of files” gives the relative amount of files which imports the
given package. This gives an idea of how widespread the use of the given
package is. The last column, “Unique imports”, gives how many unique
imports there are from this specific package. This gives an idea of how much
one must know or how dependent the editor is on that particular package.
The last column is the most interesting measurement.

47

7.4.2.1 Discussion

For the GMF-based editor one can see that it would be a good idea to master
a number of things:

• org.eclipse.core.[commands,expressions,resources,runtime]

• org.eclipse.draw2d

• org.eclipse.emf

• org.eclipse.gef

• org.eclipse.gmf.(runtime.[common,diagram,draw2d,emf,gef,notation])

• org.eclipse.jface

• org.eclipse.swt

• org.eclipse.ui

This requires, obviously, considerable effort.
For the Graphiti-based editor the picture is different. The number of

unique imports if fairly negligible. The editor is by far primarily dependent
on the Graphiti framework. The reason the Graphiti-based editor has
dependencies to org.eclipse.jface and org.eclipse.ui is that the property
sheet functionality needed to be changed. This is likely to be fixed in newer
versions of Graphiti.

The measurements were also done on a slightly larger Graphiti-based
editor, namely org.eclipse.graphiti.examples.tutorial, and the results were
clear: There were fewer dependencies to outside projects, though they had
grown slightly. Additionally a dependency analysis was done using CodePro
AnalytiX8 which gave roughly the same result. Measuring efferent coupling
gave 25 for the Graphiti-based editor, and 101 for the GMF-based one.

In conclusion it is fair to say that the GMF-based editor has several
magnitudes more dependencies than the Graphiti-based editor.

7.4.3 Making a change to the editors

In order to test the maintainability of the two editors, the author decided to
try to fix some of the faults reported by the testers of the tools as described
in chapter 7.2.5.

7.4.3.1 Disable linking of a node to itself

For both frameworks, the author had no directly relevant experience in
doing such a modification.

In Graphiti, the author was familiar with the create feature that is
responsible for creation of business domain objects. Thus this seemed like

8http://code.google.com/javadevtools/codepro/doc/index.html retrieved 18th Septem-
ber 2011.

48

a reasonable place to look. And indeed it was. It was simple to change the
canCreate method to disallow linking of a node to itself.

For GMF-based editor, while the author had a reasonably good
understanding of the GEF architecture, it was more uncertain exactly where
to look for this feature. The author’s first guess was that it would need
to be done where visual feedback was performed. The problem was that
it was not immediately clear exactly where this was. However, looking at
the files, the author found the PArcCreateCommand class, and this had a
canExecute method. Modifying this was just as simple as modifying the
canCreate method.

Doing both changes took roughly the same amount of time. However,
finding the right place to do the change in GMF was done more by chance
than in Graphiti. In conclusion Graphiti is found to be somewhat easier.

7.4.3.2 Enabling direct editing

For both frameworks, the author had some relevant experience in doing
such a modification. For Graphiti, the author had already implemented a
direct edit feature. For GMF, the author had also fixed a broken direct edit
feature earlier.

For Graphiti, again it was quite easy to add direct editing. It is well
described in the official documentation and one can also provide feedback
if the entered text is correct or not. Fixing the direct editing took about ten
minutes.

For GMF it was a different situation. Despite the fact that direct editing
was enabled in the generated code, it simply failed and gave no error
messages. Neither of [37, 8] explain direct editing to any useful degree,
but due to similar experiences with similar problems earlier, the author
had some ideas about where to look. After some debugging, it was clear
that the transaction for setting the attributes failed. This was because
the creation of modification commands produced an invalid SetCommand.
The quick and obvious fix was to change this code. However, that would
rather merely patch the code for exactly this particular context. After some
further exploration, the right place was found: getValidNewValue in the
AbstractParser class. This method was then post-fixed with “Gen” and
then a fixed method was coded supporting the BigDecimal class. There
also appeared to be possible to provide an error message here, though the
author did not get this working. It took about three hours to find the right
place and do the necessary changes.

In the author’s opinion this is fairly representative of Graphiti and GMF.
While it was a rather easy to make change in Graphiti, it was also specifically
tied to that specific attribute of the business domain. That said, it would
obviously be possible to make something generic for Graphiti as well.

For GMF it was quite difficult to find the right place to apply the fix.
However, at the same time it is not tied to any specific attribute. Thus for
all new attributes using this particular data type, it will be supported.

Overall though, it seems fair to say that the simplicity as well as the
feedback mechanisms of Graphiti trumps the genericity of GMF.

49

7.4.4 Structuredness

The structure of GEF is fairly complex, and GEF was named the most
complex software framework in [3] of five graphical editor frameworks
compared9. The architecture is depicted in figure 7.5. The user of GEF, and
consequently GMF, needs to understand and use all of these concepts. For
the author particularly requests, commands, edit policies and the command
stack were difficult to understand.

As explained earlier Graphiti has a very simple API. Its architecture
is depicted in figure 7.6. The developer needs to concern himself with
the diagram type provider, the feature provider and the many features.
Instead of using edit policies, requests, commands and explicitly managing
a command stack, one simply uses features. This structure is much easier
to understand.

Figure 7.5: GEF architecture. From [37].

While the above argument should be reasonable, how can one measure
this more precisely? According to [27] the most central aspect of structured

9GMF nor Graphiti included.

50

Figure 7.6: Graphiti architecture. From Eclipse help.

programming involves “reducing the number of program paths by imposing
a simple program control structure.”10 This sounds similar to cyclomatic
complexity as described in chapter 2.4.3. The Graphiti-based editor has
an average cyclomatic complexity of 2.28, while the GMF-based editor has
an average of 2.30. However, this was measured per method, and thus
delegation from class to class or method to method were not taken into
account. Thus the author decided to simply place a breakpoint at the
former methods that were changed in chapter 7.4.3 and then manually look
upwards the stack and note which methods were called before the relevant
method was called. The cyclomatic complexity of those methods was then
summarized. The following breakpoints were set for both editors:

1. canExecute and canCreate.

2. The actual create / execute methods.

3. The place where the parsing of the BigDecimal took place.

The following restrictions were set for looking up the stack: Only code
from the editors plug-ins should be considered. Code possible to override
in the plug-in, i.e. if a subclass of an external package is used, should not
be considered. Thus this will only concern itself with code that actually is
defined in the editor’s plug-in. This should likely be somewhat in favor of
GMF as it depends more strongly on superclasses that are not generated.
For this reason, the stack depth is also given. The top of the stack was
considered reached once the top most stack frame from a class of the plug-
in was reached. Thus this will also include the inherited code from external
packages. The results are presented in table 7.6.

10Other aspects are mentioned, but seems not very relevant for the Java programming
language.

51

One can see that the cyclomatic complexity of the GMF-based editor
is higher. The results are based on rather few measurements, but
are in accordance with the experiences of the author. However, more
measurements would have been useful to verify this. The GMF-based editor
will simply have much more nested code and a complex structure. Looking
at the stack depth gives the same conclusion.

Method description Graphiti GMF
Can create arc? 4 (2) 20 (21)

Create arc 5 (2) 2 (3)
Parse BigDecimal 5 (1) 16 (6)

Table 7.6: Nested cyclomatic complexity. Stack depth given in parenthesis.

In conclusion the structure of Graphiti seems much easier to use and
understand. It also fulfills the criteria set forth in [27] about structured
programming to a higher degree than GMF does.

7.4.5 Conclusion

The Graphiti-based editor appears to do better than the GMF-based editor
with respect to code size, fewer dependencies and also a simpler structure.
It was also easier, quicker and relied less on mere chance to make changes
in the Graphiti-based editor. Thus it should be fair to say that hypothesis 3
is not true.

7.5 Evaluation of customizability

In the following text customizability will be defined to be “the ease with
which a program can be modified according to individual requirements.”11

GMF and Graphiti differs considerably with respect to customizability. For
a graphical editor, the obvious focus of customizability is the visual aspect,
and this will also be the focus in the following text. An overview is first
given, then a report of the practical experiences of customization is given.
Finally a conclusion is given.

7.5.1 GMF

GMF generates GEF code, which, as has been argued earlier, is of
considerable complexity. The approach, compared to Graphiti, is a very
different one. One is expected to customize the generated code in one way
or another. This can be done in a number of ways:

1. Change the emfatic model.

2. Change the graphical definition and mapping model.

11Definition based on [27].

52

3. Override the xpt files.

4. Directly editing the generated code.

5. Using extension points.

6. Changing a factory implementation.

So one actually has six possible places to do the modification. All of these
approaches have their disadvantages.

1: Changing the emfatic model is simple, yet it relies on merely
annotations and thus could be error prone. In addition there is a fairly
low ceiling of what can be customized.

2: In the author’s experience, changing the graphical definition and
mapping model was rather tedious work. The editors for these models were
tree based and not well received by the author. It was somewhat hard to
see what was available. Visually parsing examples of models were difficult.
In the author’s opinion a textual syntax would be preferable. If one does
choose to change the graphical definition model and one wants to keep
using the emfatic model, one additionally needs to use some Epsilon-based
transformation to apply the change. These are loosely typed languages and
the editor does not offer any guidance like auto completion or similar things
available for the Java language in Eclipse.

3: While the author has only moderate experience with respect to this
point, some thoughts are nevertheless presented. To the best of the author’s
knowledge there does not exist any way to trace back the generated code
to the xpt templates. This makes it somewhat difficult to find the correct
places to do the modifications. Furthermore one also needs to understand
the models of the various GMF tooling elements. Partly this is difficult due
to the fact that the editors for these models uses human readable names,
and the xpt files does not. Modifying the xpt files requires somewhat more
work than modifying the generated code, but it should also be more clear
from a glance which code is modified.

4: The author edited the generated code several places. The problem
with this method is that it can be somewhat difficult to see where the code
was edited in retrospect. For a novice programmer wanting an overview
of the code, it may not be intuitive what code was actually changed. This
would have been easier had GMF used the generation gap pattern12.

5 and 6: This merely offers a method for moving the modified code out
of the generated package.

7.5.2 Graphiti

Graphiti strives towards completely separating the underlying internals of
GEF and Draw2d from the interface one uses. Thus, according to the official
documentation, one should only think of GEF and Draw2d as an underlying
rendering engine, something that one should not concern oneself with,

12http://heikobehrens.net/2009/04/23/generation-gap-pattern/, retrieved 31th Octo-
ber 2011.

53

http://heikobehrens.net/2009/04/23/generation-gap-pattern/

making it possible to be replaced with a different technology such as
Flash13. Thus one is actively discouraged from changing the underlying
internals of Graphiti. This is to say that in general it should not be or is not
possible to override internal behavior through extension points or similar
mechanisms.

As Graphiti is merely based on GEF and hides the underlying technol-
ogy as much as possible, it is hard to argue that it, theoretically, can offer
more customization than GMF and GEF does. This is also evident from
the current state of the project: More features do exist in GMF and GEF,
and moreover some features, such as layout algorithms, are currently dep-
recated in Graphiti because they rely solely on GEF.

That said however, unlike GMF, there is only one place to customize the
Graphiti-based editor: In the Java files. While repetition may be an issue,
doing customization is quite simple.

7.5.3 Practical experiences

For customizing the visual representation of nodes the author encountered
no problems with using the Graphiti, whereas the generation models of
GMF were not adequate:

• It was difficult to display multiple attributes using EuGENia.

• One could not seemingly show methods, only attributes.

• This required a special printf-like format string.

• The resulting nodes did not look very good. This impression was also
confirmed in the survey of the tools.

• One would need fairly good knowledge of GEF layouts in order to fix
some of the visual aspects.

• When displaying multiple attributes were accomplished, direct edit-
ing failed, see chapter 7.4.3.2 for more details.

• One needed to deal with multiple models, both the mapping and
graphical definition model.

• The editors used to edit the models were basic tree-editor models.
These were rather cumbersome to use. A textual approach would be
preferable to the author as well as probably many programmers.

Consider how this was done in Graphiti: One simply used plain Java,
creating the view models fairly straightforward and setting attributes of the
views with plain Java code as well. This was simply much easier.

13In practice though, currently only one rendering engine exists14.

54

7.5.4 Conclusion

In conclusion it seems fair to say that Graphiti will provide the most
customizability, particularly for the novice developer, and thus hypothesis
4 is not found to be true.

7.6 Evaluation of criteria set forth in Myers et al

As outlined in 2.3.1, [31] lists several recurring themes that are central to
determine if a user interface framework will be successful or not. These will
be evaluated with respect to GMF and Graphiti in the following text.

7.6.1 Specificity

Graphiti is primarily concerned with what happens or is possible to do on
the canvas, not so much with anything else. GMF on the other hand seems
to have a more wider focus, both in terms of features, but also in terms of
leaving the developer with more choice with respect to how the editor can
be architected. This will likely benefit the expert developer.

In conclusion it is hard to name a winner. For a simple and small editor,
Graphiti would likely be offering the most specific solution, whereas on a
more complex editor, requiring a property sheet, navigator and so on, GMF
would likely have the most specific solution.

7.6.2 Threshold and ceiling

As has been argued earlier in this chapter, there are big differences here.
As a quick recap, Graphiti is the clear winner in terms of low threshold.
However, this is at the cost of a medium high ceiling.

GMF has a high threshold and also a very high ceiling. The complexities
of SWT, Draw2d, GEF and Eclipse RCP are not hidden away, given the
developer a high ceiling, but also high threshold.

As with the previous theme, for smaller systems Graphiti would likely
be the best solution, whereas for a very large editor, where high threshold
would not be considered a problem, GMF would likely provide a better
solution. Again it is hard to name a clear winner.

7.6.3 Predictability

What does Myers mean when he talks of predictability? To quote
the article: “Tools which use automatic techniques that are sometimes
unpredictable have been poorly received by programmers. (. . .) In
fact, because heuristics are often involved [in automatic and model-based
techniques], the connection between specification and final result can be
quite difficult to understand and control.”

As Graphiti does not use any generative techniques, it is hard to argue
that it is anything but predictable with respect to the context given above.

55

GMF is relevant as it uses code generation. Does Myers criticism apply
to GMF? In the experience of the author the simple answer is no. The code
generation is done straight forward using an imperative style generation
language. It simply does not behave unpredictably.

Thus, once again, there is no clear winner in terms of this particular
kind of predictability.

7.6.4 Path of least resistance

[31] gives the following elaboration on this theme: “Tools influence the
kinds of user interfaces that can be created. Successful tools use this to
their advantage, leading implementers toward doing the right things, and
away from doing the wrong things.”

Currently GMF offers more features and thus leads the developer in a
good direction more of the time. What about resistance? GMF does not
try to hide away any complexities, so there is considerable resistance if one
wants to modify what has been generated.

Graphiti on the other hand has less features, but essentially wraps sev-
eral existing features of the underlying frameworks in an easily accessible
manner. Seen from this perspective, Graphiti is more or less a big facade
pattern.

Documentation is also important and the same pattern also emerges
here. GMF has more documentation, but it is scattered over the official
help, several wiki pages aiming at the same topic and one book. One is
usually left searching for a specific recipe if one is not an expert user. In a
sense, it can be overwhelming and one is not sure where to look.

This is not the case with Graphiti. More or less all documentation is in
the official help, nicely organized. This is very helpful for novices.

Given the above reasoning, the author finds Graphiti the best with
respect to the path of least resistance.

7.6.5 Conclusion

For predictability there is no clear winner. Both frameworks are deemed
equal. For specificity and threshold and ceiling it depends on the context.
A larger and more complex editor will likely be more fit for GMF, and
conversely a smaller and less complex editor will be more fit for Graphiti.
For path of least resistance Graphiti is deemed the best largely due to the
fact that its features are simple and very well documented. Thus hypothesis
5 is not found to be true, albeit not to a very large degree.

7.7 Related work

To the best of the authors knowledge, there is only a single other
comparison of Graphiti and GMF, namely [1]. The comparison was given
at EclipseCon 2011 and its conclusions are in accordance with this thesis:

56

Which framework to use depends on the context. GMF takes more time to
learn and use, but offers more features and flexibility than Graphiti.

Spray, the model driven approach to Graphiti, will have its first
presentation at EclipseCon Europe November 3rd 201115, a few days after
this thesis should have been delivered. The first version of Spray was
released during the writing on this thesis, but currently is in a early stage
and lacks much documentation and tutorials.

A number of other papers give some criticism towards GMF, but neither
seems completely comparable for the context of this thesis. Nevertheless,
they are summarized below.

7.7.1 Lack of complex editing operations

[11] states that “The disadvantage of the Eclipse approach to visual editor
generation based on EMF/GEF and the GMF project, is that the underlying
meta-model (i.e. the EMF model) mainly defines the visual language
alphabet. Therefore it may be the case that an editor based on this
model allows the editing of diagrams which are not valid in the VL
[Visual Language].” The goal of this paper was offering more complex
editor operations through the introduction of a new tooling environment
called TIGER. This theme is also explored in [47]. For this thesis’ scope
though, the editor operations given by both GMF and Graphiti were largely
sufficient. There was also not encountered any problems with invalid
diagrams.

7.7.2 Migrating from XML/UML to Xtext/GMF

[13] presents a practitioner report of migrating a large modeling environ-
ment from XML/UML to Xtext/GMF. There is not any direct criticism of
GMF here.

It is however noted that “An interesting aspect of this approach
[migrating to a textual syntax] is that it eliminates the need to have the GMF
editor cover the complete semantic model. The user can always switch to
the textual syntax if the GMF editor does not (yet) support a certain syntax.
This is interesting since the effort of implementation per concept (meta-
element) is much lower for Xtext than it is for GMF.” (author’s emphasis).
It is not clear from the context if this meta-element is a part of the GMF-
models or plain code. If it is the former, it seems reasonable it would
require more effort in Graphiti. Spray is created using text and has a textual
syntax, so it is quite possible that it would require less effort in Spray.

Among the authors and participants in [13] report is employees of
itemis. This company is heavily involved in a number of Eclipse projects,
employing several full-time Eclipse committers, so it should not be very
surprising that the project were successful. Some mild praise of GMF is
also given: “Compared to the UML tool the GMF editors are much less
cluttered since they only provide the UI elements that are actually needed

15http://www.eclipsecon.org/europe2011/sessions/spraying-natural-way-create-
graphiti, retrieved 5th October 2011.

57

http://www.eclipsecon.org/europe2011/sessions/spraying-natural-way-create-graphiti
http://www.eclipsecon.org/europe2011/sessions/spraying-natural-way-create-graphiti

by the domain-specific language.” This would also hold for any Graphiti-
based editor also.

Some of the main people behind Spray is also from itemis, so this
at least should indicate that Graphiti can be used as at least a back end
in large projects in the future. Curiously, this is what Karsten Thoms,
head developer of Spray and employed at itemis, wrote about GMF in a
newsgroup post: “But we want to provide easier [than the GMF tooling],
[a] DSL based tooling. If you have used GMF tooling you know how
difficult it is to use, and becomes almost unusable for larger editors. The
GMF runtime is OK, but the tooling is bad and almost dead.”16 Additional
evidence that something of a switch from GMF to Graphiti/Spray is
happening is that two of the committers on gmftools, both of itemis, are
now committers on the Spray project. The gmftools tools project had its last
commit in October 2010, whereas Spray is actively developed. For gmftools
this may simply indicate that the project is mature and does not need
updates. However, it also reflects that at least itemis is putting considerable
effort behind Spray.

7.7.3 Difficult to use GMF

By “use” it is here meant not only initial creation of the first editor, but also
the customization of the generated editors. This will also be clear from the
quoted papers.

That GMF is difficult to use is stated in [46]: “. . . our experiments
revealed that GMF is quite complex, and not as user friendly as we had like
it to be. (. . .) So refining the intermediate models can be painstaking and
requires a good knowledge of the underlying meta-models of GMF. (. . .)
When the user diverts from the GMF standard DSL specifications (non-
default solution), the user has to hand-code what he really wants.” This is
accordance with this thesis’ experiences as well.

[5] states that “GMF illustrates its ability to generate the code of
powerful tools, but the resulting tools remain stereotyped and cannot be
easily personalized.” Exactly what is meant by personalized is not too clear,
but this seems to be similar of what this thesis refers to as customizability.

While [39] does not explicitly state that GMF is hard to use, it does state
that “It was not uncommon to spend days to search for the right place to
edit, only to change a couple of lines here and there.” So it seems fair to
conclude that it deems GMF as difficult to use.

In [12] it is stated that “(. . .) we also faced challenges such as the high
level of expertise required to develop a good enough language and tool, the
shortcomings of the tools in providing support for modeling at different
abstraction levels, and the difficulties in updating the modeling tool with
changes in the metamodel.” Again, GMF is deemed difficult to use.

[4] states that “(. . .) customization [in Eclipse GMF and Microsoft DSL
Tools] is still a challenging task.”

16http://groups.google.com/group/spray-dev/msg/a54db1650b8b9ecd, retrieved 7th
October 2011.

58

http://groups.google.com/group/spray-dev/msg/a54db1650b8b9ecd

While generally positive towards GMF and MDSD, [25] states that
the development effort of creating a GMF-based editor is “medium to
high (depending on the degree of customizations).” So it seems that
customization requires considerable development effort.

In [35] two groups of students are set to create a graphical editor with
the help of GMF and Microsoft DSL tools. While GMF is deemed the best
framework for this task, only 12% of the students found GMF easy to use.

Yet more evidence of the difficulties of GMF is found in [30]: “(. . .) if we
used e.g. GMF to generate code as far as possible, GEF apprentices without
deeper knowledge of the mechanisms in GEF would surely struggle when
laying hand on the generated code to extend it with complex features.”

Also telling of the complexities of GMF is found in [9], which builds ad-
ditional functionality working with GMF, but nevertheless states that: “The
existing GMF infrastructure is obviously rather complicated: it consists of
a number of metamodels, libraries, generators, model transformations of
industrial scale.” If expert GMF-users, who it should be fair to label the per-
sons involved in creating extensions to GMF, also find GMF hard, it should
hardly be surprising that novice programmers find GMF hard as well.

This section will conclude with the remarks of [24]: “It is widely
accepted that implementing a visual editor using the built-in GMF facilities
is a particularly complex and error-prone task and requires a steep learning
curve.”

7.7.4 What does GMF say about itself?

Continuing on the trend of the latter section, it is interesting to see what
GMF says about itself. This is to say what GMF committers or presenters of
GMF have to say about it.

The author looked through the presentations given at the Eclipse
conferences from 2008 to 2011 as given by the GMF wiki17. The selling
points of GMF are typically high quality code generation, a good runtime
and so forth. This is fine, but is it a selling point that GMF is easy to use?
Not generally.

Of the various EclipseCon presentations on GMF, only [15] makes the
explicit statement that “it was quick and easy” to generate the diagram
editor. However, the fact that the code was customized was a separate
point, so that it was “quick and easy” to generate the diagram editor, seems
not to include the customization. Interestingly Markus Voelter was one of
the authors of this presentation. Voelter has written books such as [42] and
a number of other books on patterns and thus should obviously be regarded
as an expert on MDE and similar topics. A year after the presentation was
given, in 2009, he wrote that “GMF is still awful [sic]” in a blog post18. So,
it seems that even the experts are having trouble with GMF. In this blog

17http://wiki.eclipse.org/Graphical_Modeling_Framework/Documentation#Presentations,
retrieved 8th October 2011.

18http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.html, retrieved 8th Octo-
ber 2011.

59

http://wiki.eclipse.org/Graphical_Modeling_Framework/Documentation#Presentations
http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.html

post he also suggests the creation of a textual language for the creation of
graphical editors. This is obviously exactly the aim of Spray.

7.7.5 Conclusion

Several papers have criticized GMF for not offering some particular feature
that would make a part of the developers’ life easier. These typically
propose some new abstraction on top of or as an addition to GMF, or a new
tooling environment as a replacement of GMF. For this thesis’ tool scope,
the features offered by GMF were generally sufficient, and thus only a few
papers of this type are cited.

That GMF shortens initial development time compared to manual
implementation seems also to be widely accepted.

What has been a recurring theme of this thesis though is the complexity
of GMF and GEF with respect to customization. This also seems in
accordance with the papers quoted in section 7.7.3. As argued earlier, that
GMF is easy to use is not a selling point and even some experts find it hard.

What relevance does this have to Graphiti? Would the author expect
to find numerous papers noting the complexities of Graphiti in the coming
years? Certainly not. While the author is not familiar with the pattern flavor
of Graphiti, the plain flavor certainly seems easy to understand.

In conclusion, for GMF, it seems to be widely accepted that initial
development time will be short, the generated code will be of high quality,
further development and customization is generally difficult yet required
and thus maintainability will also be somewhat difficult.

60

Chapter 8

Conclusion

This thesis has evaluated the GMF and Graphiti frameworks primarily
based on the experiences from the development of two editors supporting
the PREDIQT method.

Which framework is better, GMF or Graphiti? As argued throughout
this thesis, it depends, both on the expertise of the programmer and the size
of the domain model. For the end user, GMF currently offers more features
than Graphiti does. Thus hypothesis 1 was found to be true, though not to a
very large degree. If development with Graphiti continues, this is expected
even out in the future.

For the programmer, GMF offers a quick initial editor with many
features. The larger the domain model is, the more time can be saved
using GMF as compared to Graphiti. Thus GMF will be the best choice
with respect to initial development time and thus hypothesis 2 was found
to be true.

With respect to maintainability, Graphiti is the clear winner. Its
architecture is very much simpler than the editor generated by GMF. Thus
hypotheses 3 was found not to be true.

For customization, Graphiti is also found to be the best solution. This,
however, is a less clear finding. As this tool is primarily a diagramming
tool, the focus of customization is on visual aspects of the diagram. This
was, indeed, quite easy in Graphiti compared to GMF. Thus hypotheses 4
was found not to be true. For what is external to the diagram, however,
GMF is expected to offer the most choice, though requiring the developer
to learn the various parts of Eclipse RCP.

For the criteria set forth in [31], the frameworks are equal on most
criteria. However, in the author’s opinion, Graphiti offers less resistance
with its simple architecture and well written and clear documentation.
Thus hypothesis 5 was found not to be true.

In section 7.7 related work was reviewed. While currently very little is
written about Graphiti, many studies have been conducted with respect to
GMF. The author’s findings in this thesis were, in general, confirmed. The
statements above about the various aspects of GMF were similar to that of
the reviewed papers.

In conclusion, as has been argued in the preceding text, Graphiti

61

appears to have somewhat more benefits, particularly if one does not mind
the extra initial development time. Thus, for the average programmer and a
domain model that is not very large, the author recommends Graphiti over
GMF if one is interested in attaining maintainability, customizability and a
reasonably low learning curve.

8.1 Further work and suggested improvements

More evaluations of GMF and Graphiti should be done to further
strengthen or weaken this thesis’ findings. As Spray becomes more mature,
it seems like a natural candidate for comparison with GMF.

For supporting value propagation and tree calculation methods in
general, it would be interesting to see if Xcore, the textual syntax for Ecore
models incorporating the Xbase language, could make such things more
concise. A separate DSL could also be an option.

For the author, the feeling of being “lost” inside the code generated by
GMF and simply searching for recipes to a specific problem was a somewhat
frustrating experience. Based on the talks the author has had with various
students taking the “INF5120 - Model Based System Development”1 course,
this feeling is by no means unique for the author. Incremental development
using Graphiti one felt more productive. It would be interesting to see more
research in this field.

The complexity metrics used in this thesis were somewhat lacking.
These were usually calculated statically and only considered a method or
class at a time. Thus a project that is split up into many files and methods
would perform well on many metrics. For measuring the overall complexity
of a project, it would be interesting to see metrics taking into account the
runtime structure of the project.

For GMF, it would be good to have an overview of what prerequisite
knowledge one should have before starting to create a GMF-based editor.
This should include which topics one should learn, how long it would
approximately take to learn this as well as which resources one should use.
An attempt at this is given in appendix A. This would enable developers to
make a more realistic judgment if using GMF is a good idea or not.

Similarly, for Graphiti users, hitting the ceiling of what is possible inside
Graphiti might be a problem. Documentation on the internals of Graphiti
would then be very helpful. In a similar spirit to the suggestions above, a
guide of what one should learn would be helpful.

1http://www.uio.no/studier/emner/matnat/ifi/INF5120/index-eng.xml, retrieved 24th
October 2011.

62

http://www.uio.no/studier/emner/matnat/ifi/INF5120/index-eng.xml

Bibliography

[1] Koen Aers. Graphiti and gmf compared: Revisiting the graph editor.
In EclipseCon 2011, Santa Clara, California, march 2011.

[2] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A
Pattern Language: Towns, Buildings, Construction (Cess Center for
Environmental). Oxford University Press, 1977.

[3] Daniel Amyot, Hanna Farah, and Jean-François Roy. Evaluation of
development tools for domain-specific modeling languages. In System
Analysis and Modeling: Language Profiles, volume 4320, pages 183–
197. Springer Berlin / Heidelberg, 2006.

[4] Turhan Özgür. Comparison of microsoft dsl tools and eclipse
modeling frameworks for domain-specific modeling in the context of
the model-driven development. Master’s thesis, Belkinge Institute of
Technology, Ronneby, 2007.

[5] Olivier Beaudoux, Arnaud Blouin, and Jean-Marc Jézéquel. Using
model driven engineering technologies for building authoring appli-
cations. In Proceedings of the 10th ACM symposium on Document
engineering, DocEng ’10, pages 279–282. ACM, 2010.

[6] Frederick P. Brooks. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition (2nd Edition). Addison-Wesley
Professional, 1995.

[7] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, and Michael Stal. Pattern-Oriented Software Architec-
ture Volume 1: A System of Patterns. Wiley, 1996.

[8] Eric Clayberg and Dan Rubel. Eclipse Plug-ins (3rd Edition).
Addison-Wesley Professional, 2008.

[9] Davide Di Ruscio, Ralf Lämmel, and Alfonso Pierantonio. Automated
co-evolution of gmf editor models. In Software Language Engineer-
ing, volume 6563 of Lecture Notes in Computer Science, pages 143–
162. Springer Berlin / Heidelberg, 2011.

[10] Tore Dybå, Barbara A. Kitchenham, and Magne Jorgensen. Evidence-
based software engineering for practitioners. IEEE Softw., 22:58–65,
2005.

63

[11] Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and Gabriele
Taentzer. Generation of visual editors as eclipse plug-ins. In Proceed-
ings of the 20th IEEE/ACM international Conference on Automated
software engineering, ASE ’05, pages 134–143. ACM, 2005.

[12] Andy Evans, Miguel Fernández, and Parastoo Mohagheghi. Experi-
ences of developing a network modeling tool using the eclipse environ-
ment. In Model Driven Architecture - Foundations and Applications,
volume 5562 of Lecture Notes in Computer Science, pages 301–312.
Springer Berlin / Heidelberg, 2009.

[13] Moritz Eysholdt and Johannes Rupprecht. Migrating a large model-
ing environment from xml/uml to xtext/gmf. In Proceedings of the
ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, SPLASH
’10, pages 97–104. ACM, 2010.

[14] N.E. Fenton and M. Neil. A critique of software defect prediction
models. Software Engineering, IEEE Transactions on, 25(5):675 –
689, sep/oct 1999.

[15] Tatiana Fesenko, Radomil Dvorak, Bernd Kolb, and Markus Voelter.
Using gmf and m2m for model-driven development. In EclipseCon
2008, 2008.

[16] C. Gacek and B. Arief. The many meanings of open source. Software,
IEEE, 21(1):34 – 40, 2004.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[18] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. Addison-Wesley Professional, 2009.

[19] Oyvind Hauge, Thomas Osterlie, Carl-Fredrik Sorensen, and Marinela
Gerea. An empirical study on selection of open source software -
preliminary results. In Proceedings of the 2009 ICSE Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and
Development, FLOSS ’09, pages 42–47, Washington, DC, USA, 2009.
IEEE Computer Society.

[20] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity. Prentice Hall, 1995.

[21] ISO/IEC. ISO/IEC 17799. Information technology – Code of practice
for information security management. ISO/IEC, 2000.

[22] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[23] ISO/IEC. ISO/IEC 12207. Information technology – Software life
cycle processes. ISO/IEC, 2002.

64

[24] D.S. Kolovos, L.M. Rose, R.F. Paige, and F.A.C. Polack. Raising the
level of abstraction in the development of gmf-based graphical model
editors. In Modeling in Software Engineering, 2009. MISE ’09. ICSE
Workshop on, pages 13 –19, may 2009.

[25] Klaus Krogmann and Steffen Becker. A case study on model-driven
and conventional software development: The palladio editor. In
Software Engineering (Workshops), volume 106 of LNI, pages 169–
176. GI, 2007.

[26] Luigi Lavazza, Sandro Morasca, Davide Taibi, and Davide Tosi.
Predicting oss trustworthiness on the basis of elementary code
assessment. In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement,
ESEM ’10, pages 36:1–36:4, New York, NY, USA, 2010. ACM.

[27] James Martin. Software Maintenance: The Problem and Its Solution.
Prentice Hall, 1983.

[28] Joseph Edward McGrath. Groups: Interaction and Performance.
Prentice-Hall, Inc., 1984.

[29] Nancy R. Mead and Ted Stehney. Security quality requirements
engineering (square) methodology. SIGSOFT Softw. Eng. Notes,
30:1–7, 2005.

[30] Tony Modica, Enrico Biermann, and Claudia Ermel. An eclipse
framework for rapid development of rich-featured gef editors based
on emf models. In GI Jahrestagung, pages 2972–2985, 2009.

[31] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and
future of user interface software tools. ACM Trans. Comput.-Hum.
Interact., 7:3–28, 2000.

[32] Aida Omerovic, Anette Andresen, Håvard Grindheim, Per Myrseth,
Atle Refsdal, Ketil Stølen, and Jon Ølnes. A feasibility study in model
based prediction of impact of changes on system quality. Technical
Report A13339, SINTEF ICT Norway, 2010.

[33] Aida Omerovic, Anette Andresen, Håvard Grindheim, Per Myrseth,
Atle Refsdal, Ketil Stølen, and Jon Ølnes. Idea: A feasibility study
in model based prediction of impact of changes on system quality.
In Engineering Secure Software and Systems, volume 5965 of
Lecture Notes in Computer Science, pages 231–240. Springer Berlin /
Heidelberg, 2010.

[34] Andy Oram and Greg Wilson. Making Software: What Really Works,
and Why We Believe It. O’Reilly Media, 2010.

[35] Vicente Pelechano, Manoli Albert, Javier Muñoz, and Carlos Cetina.
Building tools for model driven development. comparing microsoft dsl
tools and eclipse modeling plug-ins. In DSDM’06, pages –1–1, 2006.

65

[36] Shari Lawrence Pfleeger and Joanne M. Atlee. Software Engineering:
Theory and Practice (4th Edition). Prentice Hall, 2009.

[37] Dan Rubel, Jaime Wren, and Eric Clayberg. The Eclipse Graphical
Editing Framework (GEF) (Eclipse Series). Addison-Wesley Profes-
sional, 2011.

[38] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioan-
nis Stamelos. The sqo-oss quality model: Measurement based open
source software evaluation. In Open Source Development, Commu-
nities and Quality, volume 275 of IFIP International Federation for
Information Processing, pages 237–248. Springer Boston, 2008.

[39] Fredrik Seehusen and Ketil Stølen. An evaluation of the graphical
modeling framework (gmf) based on the development of the coras
tool. In Theory and Practice of Model Transformations, volume 6707,
pages 152–166. Springer Berlin / Heidelberg, 2011.

[40] Alan Shalloway and James Trott. Design Patterns Explained:
A New Perspective on Object-Oriented Design. Addison-Wesley
Professional, 2001.

[41] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design:
Beyond Human-Computer Interaction. Wiley, 2007.

[42] Thomas Stahl and Markus Voelter. Model-Driven Software Develop-
ment: Technology, Engineering, Management. Wiley, 2006.

[43] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley
Professional, 2008.

[44] Klaas-Jan Stol and Muhammad Ali Babar. Challenges in using open
source software in product development: a review of the literature. In
Proceedings of the 3rd International Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development,
FLOSS ’10, pages 17–22, New York, NY, USA, 2010. ACM.

[45] Davide Taibi, Luigi Lavazza, and Sandro Morasca. Openbqr: a frame-
work for the assessment of oss. In Open Source Development, Adop-
tion and Innovation, volume 234 of IFIP International Federation for
Information Processing, pages 173–186. Springer Boston, 2007.

[46] S. Temate, L. Broto, A. Tchana, and D. Hagimont. A high level
approach for generating model’s graphical editors. In Information
Technology: New Generations (ITNG), 2011 Eighth International
Conference on, pages 743 –749, april 2011.

[47] Rayner Ron Vintervoll. Modeling editing behavior for editors of
graphical languages. Master’s thesis, The University of Oslo, Oslo,
2010.

66

[48] Jens von Pilgrim and Kristian Duske. Gef3d: a framework for
two-, two-and-a-half-, and three-dimensional graphical editors. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 95–104. ACM, 2008.

[49] Craig Walls. Modular Java: Creating Flexible Applications with Osgi
and Spring (Pragmatic Programmers). Pragmatic Bookshelf, 2009.

[50] M.V. Zelkowitz and D.R. Wallace. Experimental models for validating
technology. Computer, 31(5):23 –31, 1998.

67

68

Appendix A

Additional lessons learned

In the spirit of [50], this chapter will describe some of the lessons learned
while writing this thesis that are not directly relevant to the topic of this
thesis. Thus it is put in the appendix. Nevertheless it should be useful
as a guide for students wanting to explore the same topics as this thesis.
In other words the mistakes of the author need not be repeated. Simply
put this chapter will outline how one should go about learning skills useful
for GMF and Graphiti. It will be presented in chronological order: What
one should learn first will be described first. The student is assumed to be
reasonably familiar with Java.

A.1 Faster programming feedback cycle: Learn
OSGi

A.1.1 Problem

One of the things that made development hard, was the long feedback
time. Particularly before one has a certain knowledge of a framework it
is beneficial with a short feedback time between editing a file and seeing
the results. The author typically left-clicked the project, selected “Run As”
and then “Eclipse Application”. The newly launched Eclipse instance will
be called the testing instance, whereas the one which was used to launch
will be called the development instance. The issue here is not the use of
the mouse, but the long start up time of the testing instance. While the
development instance will do some hot code swapping, this only goes so
far. With a larger change of the code, one needs to shut down the testing
instance one ran and restart it again. For small changes, which is typical in
the learning phase of a framework, this makes development quite slow.

A.1.2 Solution

Eclipse is based on OSGi and Equinox. As described earlier, OSGi should
bring modularity to the Java platform. So it should be possible to simply
refresh the project one is working on. And indeed it is possible, however

69

the author has yet to see this described explicitly in the context of Eclipse
in any tutorial or book.

The following should be done in the testing instance of Eclipse:

1. Select “Window” → “Show View” → “Other. . . ”.

2. Select “Console” and press “OK”.

3. In the right corner of the console view, click the icon which has “Open
Console” as tool tip text.

4. Select “Host OSGi Console”. The console should now display
“osgi>”.

5. Type “ss yourbundlename” to find your bundle.

6. Type “refresh bundleid” where bundleid is the numeric id
from the results of the previous command.

7. The bundle should now be reloaded.

See figure A.1 for a screenshot.

Figure A.1: OSGi console

Exactly which files are used for this refresh? Does the development
instance package JARs on the fly? No. Doing “diag bundleid” in
the testing instance will show that the bundle is located in exactly the same
folder as in the development instance. Thus no JARs are packaged.

While this may seem like a trivial thing, it does speed up development
speed considerably. The reader is referred to [49] for an introduction to
OSGi.

70

A.2 Simple traceability: Git

A.2.1 Problem

For model driven software engineering, that is GMF in this case, another
obstacle to productivity is not knowing where the models and their
attributes ends up being in the generated code. Looking through the xpt
files is rather tedious work, particularly because the model attributes have
human readable names in the generated editors. Thus one needs to map
the human readable names back to the actual attribute names if one seeks
to understand the xpt files.

A.2.2 Solution

While also a rather trivial solution, one possibility is to use git. Initially one
should first do the following in the folder of the generated code:

$ git init
$ git add .
$ git commit -m "initial commit"

This commits the initial code to a local repository. Then the style of
development cycle looks like the following:

1. Change some attribute in the models.

2. Re-generate the code.

3. Use “git diff” to see what was actually changed.

The author found this method quite useful when exploring the Spray
samples and could easily discover that some of the attributes of the models
were not (yet) used in the code generation. This method were also useful
when experimenting with the Emfatic model. This technique has the
advantage of working with any generation techniques, but obviously does
not provide a reverse mapping from generated code to models.

A.3 Suggested prerequisite learning for GMF
and Graphiti internals

A.3.1 Problem

Going straight at GMF development was not very simple. One typically
ends up just browsing code and searching forums looking for a specific
recipe. The same would likely apply to dealing with the Graphiti internals.

A.3.2 Solution

• If one is not familiar with the classic software patterns, one should
read [17] or a similar book.

71

• Learn basic OSGi usage as stated above. Recommended book: [49].

• Walk through at least up to chapter 9 in [8].

• Walk through all of [37]. For the parts on GEF architecture, consult
[7] as this provides a much simpler explanation of some of patterns
present in GEF.

• Walk through some of [43]. Particularly chapter 3, 11 and 16 are
important. Again one should consult [7] for a more clear explanation
of some patterns.

After this one should have a good chance of understanding GMF and
Graphiti internals.

72

Appendix B

Survey

B.1 Setup

The partcipant should be a reasonable competent person with respect to
computer usage. The tasks should be done on the author’s computer where
the two tools are already installed, thus the participant should not need to
do any downloading or installing. Each participant should use both editors
to perform the tasks given. However, half of the participants should use the
GMF-based editor first, and then the Graphiti-based editor. For the other
half the exact opposite applies. By letting each participant use both tools,
the background of the each participant will not favor any particular tool. If
a participant was stuck at a certain task, the author intervened and aided
the participant.

The questionnaire that the users should answer is presented in the
following text.

B.2 Survey information as given to users

All of the rating should answered in a scale 1 to 6, where the numbers
represents the following:

1. Very easy.

2. Easy.

3. Somewhat easy.

4. Somewhat difficult.

5. Difficult.

6. Very difficult.

1. Rate your own skill in using Eclipse where 1 is highly skilled
and 6 is completely unskilled.

2. Create a new diagram file.

73

2.1. Instructions for editor number one:

2.1.1. Click “File” → “New” → “Other”.

2.1.2. Type “Prediqt” in the search field.

2.1.3. Choose “Prediqt Diagram”.

2.1.4. Click “Next” then “Finish”.

2.2. Instructions for editor number two:

2.2.1. Click “File” → “New” → “Other”.

2.2.2. Type “Graphiti” in the search field.

2.2.3. Choose “Graphiti Diagram”. Click “Next”.

2.2.4. Select “prediqt” as the diagram type.

2.2.5. Click “Next” then “Finish”.

2.2.6. Close the opened file.

2.2.7. Right-click the newly created file and select “Open with” →
“Prediqt editor”.

2.3. How would you rate this task?

3. Create a dependency tree in the diagram identical to the one
in figure B.1.

Figure B.1: Dependency tree that should be created.

3.1. Instructions for both editors:

3.1.1. Create the node and the arcs using the tools located to the
right of the canvas.

3.1.2. Edit the name and qcf attribute through the property sheet
located below of the canvas.

3.2. How would you rate this task?

74

4. Validate the tree.

4.1. Instructions for editor one:

4.1.1. Click the canvas, then select “Edit” → “Validate”.

4.2. Instructions for editor two:

4.2.1. Validation should happend automatically.

4.3. Assert that there were no errors detected. If this is not the case,
please note the errors.

4.4. Introduce an error in the tree, such as changing the impact of an
arc.

4.5. Re-validate and assert that the error is detected.

4.6. Fix the error manually.

4.7. How would you rate this task?

5. Select the “Mid1” node, choose to use qcf override with the
value of 0.5.

5.1. Instructions for both editors:

5.1.1. Set the “use qcf override” to “true” in the prop-
erty sheet.

5.1.2. Set “qcf override” to “0.5”.

5.2. How would you rate this task?

6. Overall.

6.1. How would you rate the degree to which the tool is easy to learn
and use?

6.2. Which editor would you prefer to use in the future?

6.3. If you found something to be particularly good or bad, please
describe it here.

75

76

Appendix C

Installation and source
code of editors

C.1 Shared environment

Eclipse Indigo MDT is available for download at
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr1

The editors are available for download at
http://code.google.com/a/eclipselabs.org/p/prediqt-editors/downloads/list

C.2 Installation of editors

1. Go to http://code.google.com/a/eclipselabs.org/p/prediqt-editors/downloads/listand
download the prediqt_editors.zip file.

2. Open your installation of Eclipse Indigo MDT.

3. Go to the workbench.

4. Select “Help”, then “Install New Software” from the menu.

5. Select “Add...”, then “Archive” and locate prediqt_editors.zip. Press
“OK”.

6. Select the editor(s) you want to install from the Prediqt category, e.g.
“PREDIQT GMF-based editor” and then click “Next”.

7. Follow the instructions until the software is installed.

8. Choose to restart Eclipse when asked.

For instructions on how to use the editors, the reader is referred to the
instructions in appendix B.2.

77

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr1{}
http://code.google.com/a/eclipselabs.org/p/prediqt-editors/downloads/list{}
http://code.google.com/a/eclipselabs.org/p/prediqt-editors/downloads/list{}

C.3 Source code of editors

The source code of the editors are available for download at
http://code.google.com/a/eclipselabs.org/p/prediqt-editors/downloads/list
Download prediqt_sources.zip. This archive can be imported into Eclipse
using the following steps:

1. Right click the package explorer, select “Import. . . ”.

2. Select “Existing Projects into Workspace”. Click “Next”.

3. Locate prediqt_sources.zip. Select the desired projects.

4. Click “Finish”.

78

http://code.google.com/a/eclipselabs.org/p/prediqt-editors/downloads/list{}

Appendix D

PREDIQT case study

To understand the PREDIQT-method from a more practical point of view,
a case study was held. ICUSystem, a system which is developed in the
course INF5150 at University of Oslo every autumn, was used as the target
system. This system was reasonably small, reasonably well understood by
the various parties involved in the case study and thus deemed fit as a target
system. The year the author took the course, the system was specified at
only a design level, i.e. there was no actual running code.

Originally the ICUSystem was used so that a user may retrieve a nearest
“hot position” such as a coffee shop or bus stop. This was done without a
central server.

ICUSystem was then, at a design level, changed to support namely that,
a central server. With these changes, users could also ask for permission to
retrieve each other’s hot position, e.g. for a meeting point. The original and
new system were specified using UML models such as sequence diagrams,
composite structures and use cases.

The following sections describe the PREDIQT method and process as
applied to the ICUSystem, with changes made as outlined above. First
though, the overall steps of PREDIQT are repeated as an easy reference.

1. Target modeling.

1.1. Characterize the target and the objectives.

1.2. Create quality models.

1.3. Map design models.

1.4. Create dependency views.

2. Verification of prediction models.

2.1. Evaluation of models.

2.2. Fitting of prediction models.

2.3. Approval of the final prediction models.

3. Application of prediction models.

3.1. Specify a change.

79

3.2. Apply the change on prediction models.

3.3. Within the scope of models?

3.4. Quality prediction.

4. A new change? If Yes, go to step 3.

D.1 Target modeling

The first overall step in the PREDIQT method, is target modeling, where
one characterizes the system. As in the industrial PREDIQT-case [32],
while the ICUSystem is obviously much simpler, there was a lack of precise
design models for the system. These were created in collaboration with
fellow student M. Køller, and are included in the appendix, section D.6.1.

D.1.1 Characterize the target and the objectives

The system boundaries for the ICUSystem was defined as follows:

• The stakeholder was defined to be the end user.

• The functionality covered was set to be the whole system, with
exception of the basic infrastructure.

• The communication between buddies is realized through SMS mes-
sages.

– Should be safe for us to assume this will not fail, i.e. we assume
the infrastructure is reliable.

– The analysis will therefore only focus on the client side.

• External functionality/applications on the smartphone such as GPS
and Maps are only briefly described.

• The system runs on Android smartphones.

• The maximum number of users is thought to be 50.

Furthermore the system context, that is who is using the system as well
as the operational environment, was defined as the following:

• The users of the system is thought to primarily be used by the average
IT-person, in other words a typical IT-student.

• The system is thought to be running on the Android platform, which
is based on Java.

• The system is thought to be used on a weekly or daily basis.

• The system is used by a user by opening the ICU-application on
his/her smartphone. The application may also be opened by the
system on the reception of an SMS.

80

• It is used when a friend wants to see or meet another friend, e.g. for
taking a coffee break, establish a common meeting point or similar
activities.

The system life time was set to be five years. The extent, i.e. nature and
rate, of design changes expected, was set to the following:

• Larger changes are expected.

• Possible changes include:

– Moving the “Archive” component to a central location.

– Letting users add and share new Archive entries.

– Supporting buddy groups.

– Integrating with other services.

• The changes are expected to occur on a six month basis.

While these expectations may not be the most realistic for this particular
system, in a sense they are needed to mandate the usage of PREDIQT. If the
changes were expected to be small and frequent, it would not make sense
to apply the PREDIQT method. Regardless though, the goal here is to learn
the PREDIQT method, and thus these descriptions, realistic or not, should
suffice for learning purposes.

D.1.2 Create quality models

The next step in the PREDIQT process is to create the quality models. This
was done primarily based on [22], which details software quality, and [21],
which details information security. The following definitions, i.e. where
quotes are used, are taken from or based on these standards.

During a meeting with supervisor K. Stølen and co-supervisor A.
Omerovic, it was decided that the focus should be on security, particularly
with respect to confidentiality and integrity, both of which are explained in
the the aforementioned standards.

For this case study, security will be the quality attribute or quality
characteristic. These words are used interchangeably in the referred
papers. The quality characteristics will always be at the root node in the
dependency views. In a larger case study, one would normally have other
quality characteristics as well.

As given in [21], security is characterized as the preservation of
confidentiality, integrity and availability. As described earlier, it was
decided to focus on the two former. These sub-characteristics are defined
as:

• Confidentiality: “Ensuring that information is accessible only to those
authorized to have access.”

The interpretation of this with respect to the ICUSystem is straight
forward and will not be explained further.

81

• Integrity: “Safeguarding the accuracy and completeness of informa-
tion and processing methods.”

For the ICUSystem, accuracy is the degree to which the GPS
positions, the hot position’s calculation methods and data stored by
the system are accurate at the sufficient detail level.

Completeness, for the ICUSystem, is the degree to which the data
received and stored by the system, as well as the methods operating
on data, is complete.

PREDIQT requires the quality characteristics to be measurable, other-
wise none of the quality characteristic fulfillment (QCF) would be meaning-
ful. The following measurement methods are given:

• Confidentiality: Can be calculated as 1 - (number of unauthorized
accesses / total number of accesses).

• Integrity

– Accuracy: Can be measured as 1 - (number of inaccurate items
found in review / total number of items requiring accuracy as
specified in the system requirements).

– Completeness: Can be measured as 1 - (the number of incom-
plete items found in review / total number of items reviewed
which require, implicitly or explicitly, completeness).

In both cases “items” is defined to be data and methods.

This all leads up to the security rating, i.e. what precisely is meant by
“security”:

• Security rating: 0.75∗x +0.25∗ (0.5∗ y +0.5∗ z)

Where:

• x = Confidentiality rating.

• y = Integrity’s accuracy rating.

• z = Integrity’s completeness rating.

The rationale for this is that confidentiality is more important than integrity
(roughly three times) for the system. With respect to integrity, accuracy
and completeness are equally important. This security rating allows us to
interpret the QCF value of the top level node in the dependency view.

D.1.3 Map design models

This step, where a subset of the design models may be chosen as well as
establishing mappings between different levels of design models, is more
applicable in a larger setting, and thus this step was not taken further in the
ICUSystem case.

82

D.1.4 Create dependency views

In this step, the dependency views are created. One of the requirements for
a dependency view, is to have a quality characteristic as the top level node.

The dependency view is created by deducing the sub-characteristics
and leaf nodes. This is done partially based on the design and quality
models. However, it is also a creative process where domain experts are
involved1. In other words, the dependency views are not a direct mapping
or modification of quality models, design models, indicators or sub-
characteristics in any “same input, same output”-algorithmic sense. The
overall goal of this process is to cover the quality characteristic completely.
For that purpose, in order to ensure model completeness, an “other” node
is also typically added.

Furthermore, the indicators serves as helpers or guidelines for estimat-
ing the QCF of leaf nodes. As the leaf nodes’ QCF will be propagated to
the top level quality characteristic, they will ultimately determine, together
with the estimated impact values, the QCF of the top level quality charac-
teristic. This top level value will be interpreted based on the rating, and
therefore also the leaf nodes’ estimation must be based on the rating as
well, otherwise the numbers would not make particularly much sense.

In the end the dependency view were created based on the available
dependency views from the PREDIQT industrial case, the design and
quality models developed earlier, as well as the author acting as a domain
expert.

D.2 Verification of prediction models

This step, and it’s sub-steps, involves a verification of the prediction models
where statistical methods are applied to verify whether the prediction
models are suitable for further use or not. As this case study is reasonably
small and for learning purposes only, it was not deemed necessary. This
however does not seriously weaken the overall understanding as it does
not heavily involve new models, methods or similar that are of particular
relevance to the PREDIQT method itself.

D.3 Application of prediction models

Application of prediction models is the last major step of the PREDIQT
method where the actual changes are applied to the prediction models.

D.3.1 Specify a change

The following changes were specified:

• Moving the database to a central location.

1Personal communication with co-supervisor A. Omerovic.

83

• The addition of the register functionality.

• The getHotpos message now takes a username as a parameter.

D.3.2 Apply the change on prediction models

The changes had the following effects on the design models:

• The composite structure changed. The database component was
added.

• Sequence diagrams were added specifying new services.

For more details, see the appendix, section D.6.1.
The affected DV parameters were thought to be:

1. Redundancy.

2. External backup.

3. Data encryption.

4. Illegal/incorrect events.

5. User events.

6. Firewall.

D.3.3 Within the scope of models?

The applied changes were thought to be within the scope of the models,
i.e. the dependency view was able to represent the quality of the systems
without further changes.

D.3.4 Quality prediction

The quality prediction itself was done within Excel as this is what the
current PREDIQT method uses. The net result was a worsening of the
security characteristic after applying the changes. More specifically the
degree of data encryption and logging of illegal/incorrect events was
thought to be worsened. The quality of the redundancy and external
backup nodes was thought to be improved. The full details are given in
the appendix, section D.6.1.

D.4 A new change? If Yes, go to step 3

As this was a reasonably small system, all the changes were simulated at
once, thus there was no need for this step.

84

D.5 Other experiences

The Papyrus tool, an Eclipse based UML editor, was used for many of the
design models. While mainly achieving what is was supposed to do, it was
not the most pleasant user experience. It was hard to create some UML
models properly, and the tool seemed at times to work in counter intuitive
ways. This may of course change in later versions, or perhaps the setup
used was incorrect. TopCased, another Eclipse-based tool supporting UML
models, was better received.

Either way though, it could have been helpful to have a textual syntax for
precise specification of e.g. sequence diagrams. Depending on the syntax, it
may or may not impose some restrictions on what is specifiable. If the end
user does not find the graphical editor to be sufficient or lacking in some
ways, a textual syntax may be an alternative if it is reasonably intuitive.
A textual syntax may also be useful for specifying exactly what was done
or used in a precise, yet human readable way. This may be practical for
textual exchanges over email or for using as a listing in technical reports.
This should be considered for PREDIQT as well and will be explored further
in later sections.

D.5.1 Conclusion

PREDIQT proved to have a reasonable amount of subtleties that the author
had not understood well from only reading the technical reports. The
overall process of the PREDIQT method is also more well understood after
having performed this case study. As a background for tool creation, this
case study has been useful and should particularly serve well with respect
to defining requirements for the new tool.

85

D.6 Quality models

D.6.1 Design models - Original system

86

87

88

D.6.2 Design models - New system

89

90

91

92

93

94

D.6.3 Dependency views

95

	Introduction
	Background
	Requirements gathering
	Software quality
	Selecting a technology
	Evaluating Open Source Software

	Code maintainability
	Modifiability
	Design patterns

	Understandability
	Measures of complexity

	Conclusion

	Problem statement and research method
	Why Eclipse, GMF and Graphiti
	The problem domain
	Main hypotheses and goal
	Research method

	State-of-the-Art
	Underlying technology
	Eclipse Modeling Framework
	Java implementation of the model
	Adapters

	Draw2d
	Zest
	Graphical Editing Framework (GEF)

	Graphical Modeling Framework (GMF)
	EuGENia
	Graphiti

	Requirements for the tool
	Overview of PREDIQT
	Requirements for the PREDIQT tool
	Overall requirements
	Functional requirements
	Data requirements
	Technical environment requirements
	Non-functional requirements

	Implementation of the tools
	Shared model and code

	Evaluation
	Evaluation of applicability for supporting tree-based methods
	Conclusion

	Survey of tools
	Background of students
	Creation of DV
	Time used
	Favorite tool
	Feedback during survey
	Conclusion

	Evaluation of development time
	Graphiti
	GMF
	Actual development time spent on GMF and Graphiti
	Conclusion

	Evaluation of maintainability
	Code size
	Dependencies
	Discussion

	Making a change to the editors
	Disable linking of a node to itself
	Enabling direct editing

	Structuredness
	Conclusion

	Evaluation of customizability
	GMF
	Graphiti
	Practical experiences
	Conclusion

	Evaluation of criteria set forth in Myers et al
	Specificity
	Threshold and ceiling
	Predictability
	Path of least resistance
	Conclusion

	Related work
	Lack of complex editing operations
	Migrating from XML/UML to Xtext/GMF
	Difficult to use GMF
	What does GMF say about itself?
	Conclusion

	Conclusion
	Further work and suggested improvements

	Bibliography
	Additional lessons learned
	Faster programming feedback cycle: Learn OSGi
	Problem
	Solution

	Simple traceability: Git
	Problem
	Solution

	Suggested prerequisite learning for GMF and Graphiti internals
	Problem
	Solution

	Survey
	Setup
	Survey information as given to users

	Installation and source code of editors
	Shared environment
	Installation of editors
	Source code of editors

	PREDIQT case study
	Target modeling
	Characterize the target and the objectives
	Create quality models
	Map design models
	Create dependency views

	Verification of prediction models
	Application of prediction models
	Specify a change
	Apply the change on prediction models
	Within the scope of models?
	Quality prediction

	A new change? If Yes, go to step 3
	Other experiences
	Conclusion

	Quality models
	Design models - Original system
	Design models - New system
	Dependency views

