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Abstract

The particle swarm optimization (PSO) algorithm was applied to reconstructing
three-dimensional positions of dust particles from images taken during dusty plasma
experiments in microgravity conditions. It was compared to the ‘Shake the Box’
(STB) algorithm, which is a state-of-the-art algorithm for three-dimensional single
particle position reconstruction. The PSO and STB algorithms were tested on
artificial particle sets with realistic-looking images. On average, the PSO algorithm
found a moderately higher fraction of particles than the STB algorithm. On the
other hand, STB returned a somewhat lower fraction of ghost particles. STB has
a significantly faster runtime compared to PSO, though PSO is still practical to
use. The conclusion is that, as the current versions of the algorithms are, the PSO
algorithm is the better choice for finding a higher number of the particle positions,
and the STB algorithm is the better choice for returning fewer ghost particles and
for faster runtime.

Using the PSO algorithm, data from dusty plasma experiments in parabolic
flight campaigns were analyzed. Three-dimensional positions of individual particles
were reconstructed, and dust strings were observed. The one-dimensional pair
correlation function was calculated for the string-containing regions, and based
on the pair correlation function the interparticle distance in the strings was
estimated to be (250 ± 40) µm. The mean interparticle distance was found to
remain approximately constant in time over the frame range of the analyzed
data, corresponding to 2.5 seconds. The effective Debye length of the plasma
was calculated to be λD = 276 µm for a subsonic ion stream with Mach number
M = 0.75.

Various forces on a dust particle in a string in the dilute midplane region
of the plasma chamber were estimated. The neutral drag force was estimated
to be |Fn| = 3.023 · 10−14 N. The longitudinal ion drag force was estimated to
be |Fi,long| = 1.765 · 10−12 N for M = 0.75. The longitudinal ion drag force is
concluded to be the main driver of the initial acceleration of the dust particles in
the dilute region. The transverse ion drag force and the longitudinal electrostatic
repulsive force from adjacent dust particles in a string were estimated for a dust
particle in a string. These forces were found to be in the order of 10−13 N for a
displacement of s = 0.1d in the transverse and longitudinal directions, respectively.
The electrostatic force is proposed as a possible second contributing force for
the stability of interparticle spacing in dust strings, in addition to the already
established transverse ion drag force.
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1 INTRODUCTION

1 Introduction

It is believed that the ordinary matter in the observable universe (that is, matter, excluding
the theorized dark matter) at this point in time contains at least 99% plasma [57]. This claim
seems reasonable when considering that the Sun, which mainly consists of plasma, comprises
99.8% of the mass of our solar system [3], as well as the fact that both the Sun and our solar
system are average compared to other stars and solar systems [3, 55]. A plasma is an ionized
gas 1, meaning a gas where some fraction of the gas molecules has been ionized, so that there
are free electrons and ions present in the gas. The gas can be ionized for example by high
temperatures, strong electric fields or photoionization [64, p. 29]. The moving free charges
influence each other through electromagnetic forces. The motion and properties of a gas can
be described using fluid mechanics and thermal physics [86, 73], and the electromagnetic
interactions caused by the free charges are governed by Maxwell’s equations [32]. Both of
these domains of physics go together to construct a physical theory of plasmas [22].

A dusty plasma, also known as a complex plasma, is a plasma with dust particles in it
[57]. Dust particles are small objects of solid matter that can be composed of a wide range
of materials [64, 82]. The size of the dust particles in interstellar clouds is typically between
10 nm and 10 µm in diameter [57, p. 2], and in laboratory experiments, e.g. studying dusty
plasma crystallization, the dust particle diameters are usually in the range between 1 and
10 µm [57, p. 3], though also nanometer particles are studied in experiments [26]. Real-life
examples of dusty plasmas include planetary rings, noctilucent clouds and comet tails [57, 82].
Another example is the plasma processing techniques used in the manufacturing of microchips,
where the removal of dust particles in the plasma discharge is what is of importance, since
dust particles can accumulate on the etched structures and cause malfunctioning in the chips
[57].

Because the electrons in the plasma move faster than the ions due to their comparably low
mass, on average more electrons than ions hit the dust particles per unit time. This results in
a net negative charge on the dust particles, provided that the collection currents of electrons
and ions is the dominant dust charging mechanism, which most often is the case [57]. This
leads to an electrostatic repulsion between the dust particles. The free charges also lead to
the formation of electrostatic sheaths around charged objects, including dust particles and
electrodes, which shield the surrounding plasma from the electrostatic forces of those charged
objects [64]. Phenomena that can be observed in dusty plasma systems include dust crystals
[88, 43], Yukawa balls [49], dust density waves [12], modified ion acoustic waves [57], dust
voids [31] and string formation [11, 44].

In order to study phenomena in dusty plasmas in detail, it is necessary to perform
experiments and collect data, often in the form of images of the dust particles. The three-
dimensional positions of the dust particles must be determined from these images through
computational methods. A newly developed method for determining particle positions in three
dimensions is a stereoscopic method that is based on the particle swarm optimization (PSO)
algorithm. This particle detection method was developed and programmed by Michael Himpel
of the University of Greifswald, and in this project I have further developed and optimized
this method. After the development and optimization of the PSO method was completed, it
was compared to a currently used position determination algorithm for three dimensions, the
‘Shake the Box’ (STB) algorithm [71, 35].

Using the newly developed PSO-based method for particle detection, I have analyzed images
taken during previously performed microgravity dusty plasma experiments on parabolic flights.

1For a proper definition of a plasma there are a few more nuances that need to be considered. A more
formal definition is presented in section 2.
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1 INTRODUCTION

I have studied the phenomenon of string formation, which is a phenomenon in dusty plasmas
that can be observed under certain physical conditions in microgravity [11, 47]. Particle
strings in microgravity dusty plasmas have been studied or observed before, but mostly in two
dimensions [11, 47]. Dust strings in three dimensions has received some, but not very much,
attention [35, 48], due to limited diagnostics for three-dimensional position reconstruction
in the past. The investigations performed in this thesis provide better understanding of the
three-dimensional picture of dust strings in complex plasmas.
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2 THEORY

2 Theory

This section contains the most important relevant theory of plasmas and dusty plasmas. The
theory introduced here will lay the groundwork for better understanding the experimental
setup, which is presented in section 3, and the observations and results from the parabolic
flight experiments, presented in section 5.

First, some of the fundamentals of plasma physics will be introduced. After a short discussion
of the concepts of electrostatic shielding and quasi-neutrality, a more rigorous definition of a
plasma will be given in section 2.1.5. Then, dust particles will be introduced into the plasma,
and some of the basic theory of dusty plasmas will be presented, along with some notable
phenomena that can be observed in dusty plasmas. Further, the current knowledge in the
literature on dust strings will be reviewed, and the pair correlation function is presented as
a tool for studying dust strings. Lastly, the mathematical model of the PSO algorithm is
presented, along with a pseudocode for its implementation.

A note on word use: It is worth explaining the usage of the term plasma discharge. It is a
term that refers to the plasma itself, usually within some confined space such as a plasma
chamber, which often comes up in textbooks and scientific articles on plasma physics. Initially,
the term ‘gas discharge’ originated in relation to an invention from 1745 called the Leyden jar,
a high-voltage capacitor, sounded like a gun shot whenever it produced a spark (an electric
discharge) in air [64]. The word ‘discharge’ has since become a word for the plasma itself, the
link being that electric sparks are essentially ‘made out of’ plasma in the sense that the light
from the sparks comes from the de-excitation of gas atoms that were excited or ionized due to
the high voltage. While an exact definition of the term was hard to find despite its common
use in the literature, it seems to be used simply as a more concrete term for referring to a
plasma in a confined space as an ‘object’ instead of using the slightly more ambiguous word
‘plasma’. As an example, let us say that there are two boxes, both of them containing the
same amount of the same identical plasma. Then one could say that there are two discharges,
but you probably would not say that there are ‘two plasmas’, since that could imply that the
boxes contain two different kinds of plasmas (two plasmas with different plasma parameter
values).

2.1 Introduction to plasma physics

2.1.1 Ionization of gas molecules

A plasma is an ionized or partially ionized gas (only a fraction of the gas molecules need to
be ionized for it to be called a plasma), so it is useful to have an understanding of how the
ionization of gas atoms or molecules can occur. Ionization occurs when an electron is ejected
from or collected into an orbital around an atom or molecule [20]. In general, electronegative
plasmas (plasmas with mainly negative ions rather than positive ions) can exist [74], but
electropositive plasmas (plasmas with mainly positive ions) are much more common and more
studied [64], and it is the type of plasma relevant for this thesis. So, the focus here will be on
conventional electropositive plasmas, where the ionization occurs by releasing electrons from
their orbitals around the gas molecules.

The question to answer, then, is how the ejection of electrons can occur. There are several
ways this can happen. When an electron is bound to an atom, it is located in a potential well
[29]. In order to eject an electron from its potential well (orbital), energy is required [10]. This
energy can be from e.g. collisions (kinetic energy), thermal energy in the gas molecules, or the
energy of individual photons (photoelectric emission) [82]. In the experiments relevant for this
thesis, the ionization of the gas in the plasma chamber is caused mainly by field ionization
from an rapidly alternating (radiofrequency) applied electric field. Each released electron will
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2.1 Introduction to plasma physics 2 THEORY

then be accelerated and can collide with another gas molecule and release an electron from
that one, and so on, giving an initial exponential growth of new electron-ion pairs until an
equilibrium density of free electrons and ions is reached [64, p. 326]. In addition, the externally
applied voltage alters the potential well of an electron, resulting in less energy being required
to eject the electron from its orbital 2 [25, 79], which in turn leads to a higher ionization rate.

2.1.2 Electrostatic shielding

Electrostatic shielding, also known as electrostatic screening, Debye shielding or simply shielding
or screening, is the phenomenon in which free charges will rearrange themselves to counteract
an electric field set up by a charged object [22, 64, 17, 67]. Since the free charges also all have
their own electric fields, the surroundings are effectively shielded from the electric field caused
by the central charged particle. Electrostatic shielding can also be understood from Gauss’
law,

ΦE ≡
∮
S

E · da =
qencl,S

ε0
, (2.1)

which states that the total electric flux ΦE coming from particles within a certain closed
surface S in space is proportional to the net charge qencl,S of the particles within the volume
enclosed by S [32]. As the free charges move closer to the charged object, the net charge
around the object decreases since charges of opposite sign are accelerated toward the object,
and charges of equal sign are accelerated away from the object. From Gauss’ law we see that
the electric field in the volume surrounding the charged object will therefore be closer to zero
as well, so the surroundings are shielded from the electric field. Electrostatic shielding is a
general phenomenon, and the charged objects that are screened by the plasma environment
can for example be a small rock, a spaceship, or, most relevant for this thesis, dust particles.

The Debye length of a particle species s in a plasma, λD,s, is defined as the distance it
takes for the electric potential φ from a charged object to decrease by a factor of e due to
the electrostatic screening performed by the species s, where e is Euler’s number [18]. In
mathematical terms, φ(r = r0 + λD) ≡ φ(r = r0)/e, where r0 is an arbitrary reference point
outside of the charged object. This definition aims to provide a concrete length scale for
the distance at which the electrostatic influence of a charged object in a plasma is, to an
approximation, negligible. The mathematical expression for the screening length of a species s
is

λD,s ≡

√
ε0kBTs
ns0q2

s

, (2.2)

where ε0 is the vacuum permittivity, kB is the Boltzmann constant, Ts is the average tem-
perature of the species s, ns0 is the number density of s infinitely far away from the charged
particle, and qs is the charge of the species s [22, 64]. The species s can for example be
electrons or ions. Both a higher density ns0 and a higher charge qs give a shorter screening
length, since either a higher availability of charges to come closer to the charged particle or a
stronger charge on each individual free charge will boost the screening effect of that species.

2More precisely, less energy is required to eject an electron in one direction, towards the positive electrode.
In the other direction, toward the negative electrode, more energy will be required to eject the electron. The
applied voltage decreases the potential well on one side and increases the potential well on the other side,
due to one electrode having a net positive charge and the other electrode having a net negative charge. Still,
because all the free electrons will be accelerated toward the positive electrode at all times (whichever of the
electrodes is currently positive), a larger fraction of electrons will collide with gas molecules in the ‘weakened’
direction of the potential wells, resulting in an increased ionization rate per electron-molecule collision. In an
alternating voltage, the direction of the asymmetry of the potential wells alternates with it. [25, 79]
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2.1 Introduction to plasma physics 2 THEORY

The temperature increases the screening length since it is basically the average kinetic energy
of the s-particles, so a higher temperature means that the particles will also move away from
the charged particle due to their kinetic energy. The effective Debye length, or the linearized
Debye length [64, p. 38], of a plasma environment containing multiple species is defined as [57,
p. 59]

1

λ2
D,eff

≡
∑
s

1

λ2
D,s

. (2.3)

From eq. 2.3 we see that for each additional species s that contributes to the sum, the effective
Debye length λD,eff decreases. This is reasonable, since the more free charges that are available
for screening per unit volume within the plasma, the less volume (distance) will be required
for screening to be achieved.

Streaming ions. It is possible for the ions to have a non-zero drift velocity ui (the average
velocity of all ions) in the plasma, a situation also known as streaming ions [57]. One can have
subsonic or supersonic ion streams, where the sonic speed, also known as acoustic speed or
sound speed, of ions in the case of Te � Ti is [67]

Cs =

√
kBTe

mi
. (2.4)

An ion drift velocity of ui = Cs is equivalent to Mach 1, or Mach number M = 1. In the case
of streaming ions, the ions become less able to screen charged objects in the plasma. This is
because the ions have a momentum which must be cancelled in order to settle into a shielding
position around the charged object, and a certain number of ions (depending on the ion drift
speed) will simply move past the object due to their momentum. For this reason, eq. (2.3)
will often not give a realistic screening length in a plasma that contains streaming ions. An
expression for the characteristic screening length in a plasma containing streaming ions is
given by Ludwig et al. (2012) [54], as

λs = λD,e

(
kBTi + ηmiu

2
i

kBTe + kBTi +miu2
i

)1/2

, (2.5)

where λD,e is the electron Debye length given by eq. (2.2), mi is the ion mass, ui is the ion
drift velocity and η is a fitting parameter. Ludwig et al. found that η = 1.27 produced a better
fit with the screening lengths obtained from PIC simulations for Mach numbers 0 ≤M . 2
when compared to the expression for the effective screening length used by Hutchinson [42, 57],
which, for reference, was

λs =

(
λ2

D,e

1 + 2kBTe/(miv2
s )

+ a2

)1/2

, (2.6)

where vs = (u2
i + v2

th,i)
1/2.

Note that the Debye length for a charged species only gives the (approximate) shielding
length for an inserted charged object without any externally applied electric potential. If a
voltage is applied, the shielding length will either increase or decrease depending on the applied
potential (more precisely, the direction of the electric field caused by the applied potential)
[57].
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2.1 Introduction to plasma physics 2 THEORY

Electrostatic sheaths. An electrostatic sheath, or simply sheath, is a region of higher
positive 3 charge density around (initially uncharged) objects or surfaces that are exposed
directly to the plasma that arises as a consequence of electrostatic shielding [22]. The reason
for why electrostatic sheaths arise in a plasma, and why they have a net positive charge density,
will be explained here.

Since the electron mass is less than one is several thousands compared to the mass of an
ion, each unit of kinetic energy that an electron receives will translate into a much greater
speed compared to if an ion received the same amount of kinetic energy [19]. For this reason,
electrons usually have a much higher thermal velocity than ions. This results in an initially
higher collision rate of electrons onto an object in the plasma compared to the collision rate of
ions onto the object. The collision rates of the charged particles onto the object are equivalent
to electric currents, so there will initially be a higher electron current Ie onto the object
compared to the ion current Ii. This results in a negative potential φobj on the object. As the
electron and ion currents continue to charge the object, the potential becomes more negative,
which in turn increases the repulsive force on the electrons and the attractive force on the ions
with respect to the object. This influences the electron and ion currents, so the currents can
therefore be expressed as Ie = Ie(φobj) and Ii = Ii(φobj).

At some point, the potential reaches an equilibrium where the ion and electron currents become
equal in magnitude, and the total current becomes zero. The potential at which the currents
sum to zero is defined as the floating potential, φfl, so we have Ie(φfl) + Ii(φfl) ≡ 0 [64, p. 169].
In a region close to the object, the ion number density ni will be higher than the electron
number density ne due to the relatively larger degree of electron depletion, as well as the
object’s attraction of positive charges, and this region is what is defined as the sheath. The
thickness of a sheath can be estimated e.g. using the Child-Langmuir law (in the case of
a collisionless sheath in low pressures) [50, 62]. The sheath thickness of an object with no
applied voltage has a thickness in the order of a few Debye lengths [22, p. 270].

Sheaths form on the surfaces of walls as well as around objects. Though the sheath region
around a wall (or any other object) has a more positive charge density compared to the bulk
plasma, it will still act as a barrier for negative species in the plasma, such as free electrons or
negatively charged dust particles. The surrounding positive ions in the sheath shield the bulk
plasma from the negative potential of the wall, but they do not completely cancel it, and they
do not result in a net positive potential in the sheath. The potential is most negative close
to the walls, and the least negative in the bulk of the plasma [22]. This results in a positive
gradient in the electric potential from the wall toward the bulk plasma, which equivalently
gives rise to a non-zero electric field in the sheath region, directed toward the wall, due to the
general electrostatic equation

E(r) = −∇φ(r), (2.7)

where r = (x, y, z) is a position in space, φ is the electric potential and E is the electric field
[32]. This electric field is what repels the negative species from the walls in e.g. a plasma
chamber.

Coulomb interaction between particles in a plasma: The Debye-Hückel potential
As mentioned previously, because of the shielding of charged particles in the plasma, the
electric potential around charged particles are diminished exponentially. The Debye-Hückel
potential, also known as the screened Coulomb potential or the Yukawa potential, is the electric

3The sheath layer can also have a surplus negative charge density, in the case that the object has a positive
potential bias [40]. For objects without electric potential bias however, which is the case for most objects (dust
particles, walls, etc.), the sheath will be a layer containing a greater density of positive ions.

7



2.1 Introduction to plasma physics 2 THEORY

potential around a point particle or outside of a charged spherical object (such as a dust
particle) that takes into account the shielding of the plasma. The Debye-Hückel potential
produced by a charged object in a plasma is given by the following expression:

φDH(r) =
Q

4πε0r
exp

(
− r

λD

)
, (2.8)

where Q is the charge of the object, r is the distance from the center of the object and λD is
the effective Debye length of the plasma [57].

An important implication that follows from electrostatic shielding will be discussed, namely
quasi-neutrality.

2.1.3 Quasi-neutrality

The electrostatic shielding of individual charged particles or objects in a plasma also has an
effect on the large-scale plasma. If we use a dust particle as an example of a charged object
in the plasma, a distance r � λD from the dust particle the electric potential caused by it
will be cancelled out by the surrounding plasma due to electrostatic shielding. In fact, any
charge disturbances or deviations from equal ion and electron densities will be cancelled over
spatial scales longer than the Debye length [64, p. 38]. This is why it is said that a plasma
has a tendency to become quasi-neutral, meaning electrically neutral on average over large
spatial scales (spatial scales much larger than the Debye length), but not electrically neutral
on small spatial scales (spatial scales equal to the Debye length or less) [7].

2.1.4 Plasma frequency

If a displacement from a uniform distribution of ions and electrons occurs in the plasma,
restoring electric forces will arise between the free charges in the plasma. Due to inertia, free
charges that are accelerated by these electric forces will overshoot the equilibrium positions,
which leads to the displacement appearing again, and therefore also the corresponding restoring
forces of the free charges back towards the equilibrium positions [22, p. 78] [64, p. 39]. This
leads to an oscillatory movement of the free charges in the plasma. Each species in the plasma
has a characteristic response time or frequency of this oscillation, and this frequency is named
the plasma frequency. The plasma frequency of a species s is given by

ωps =

√
ns0q2

s

ε0ms
, (2.9)

where qs is the charge of a particle of species s, ms is the mass of a particle of species s and
ns0 is the background number density of s [14]. The units of ωps are radians per second. The
symbol fps ≡ ωps/(2π) is usually used for expressing the plasma frequency in units revolutions
per second, or hertz (Hz). Different plasma frequencies for different species is equivalent to
different timescales for the different species. A higher plasma frequency is equivalent to a
faster response time and therefore events happening at shorter timescales, and vice versa.

As will be calculated in the following example, when comparing the plasma frequencies
of electrons, ions and typical dust particles, electrons have a much higher plasma frequency
than ions, and ions have a much higher plasma frequency than dust particles. Equivalently,
phenomena involving dust particles happen much slower than the movements of ions and
electrons, and phenomena involving ions happen much slower than the movements of electrons.

8



2.1 Introduction to plasma physics 2 THEORY

Example: Plasma frequency values for different species in a plasma

Plasma parameter values from the radiofrequency dusty plasma system studied in [35] are
used here. Electron and ion number densities: ne0 = ni0 = 1015 m−3. Electron mass:
me = 9.11 · 10−31 kg. Ion mass (argon atoms): mi = 39.95u ≈ 6.63 · 10−26 kg [34]. Electron
and ion charges: q2

i = q2
e = e2. Dust particle number density: nd0 = 1011 m−3. Assuming

that the dust grains are spherical grains of melamine formaldehyde, with mass density
ρd = 1.5 g/cm3 = 1500 kg/m3 [44] and radius a = 5 µm, the mass of a dust grain will be
md = ρd · 4

3πa
3 ≈ 7.85 · 10−13 kg. Dust charge: qd = 7000e. Using these values and eq. (2.9),

the plasma frequencies for electrons, ions and dust particles, respectively, are the following:

• ωpe = 1.78 · 109 rad/s ⇔ fpe = 283 · 106 s−1 = 283 MHz,

• ωpi = 6.60 · 106 rad/s ⇔ fpi = 1.05 · 106 s−1 = 1.05 MHz,

• ωpd = 537 rad/s ⇔ fpd = 85.5 Hz.

Relative to the ion plasma frequency we see that this is equivalent to ωpe ≈ 270ωpi and
ωpd ≈ 8 · 10−5ωpi, so we have ωpe � ωpi � ωpd.

2.1.5 A more formal definition of a plasma

We have now established all the necessary concepts to construct a more formal definition of a
plasma. As stated previously, a plasma is an ionized or partially ionized gas. In addition to
this, the more formal definition of a plasma also contains the following requirements [6, 22]:

• The physical size of the ionized gas is much larger than the Debye screening length.

• The ionized gas is quasi-neutral.

• The collision frequency between charged particles (electrons and ions) and neutrals
(neutral gas atoms/molecules) is small compared to their respective plasma frequencies.

Some more elaboration on these points follows. The physical size of the plasma must be much
larger than the Debye screening length for two reasons: 1) It allows for quasi-neutrality, which
by definition is electrical neutrality over spatial scales much larger than the Debye length,
and 2) it makes the interactions in the bulk of the plasma more important than the boundary
effects that can occur at the edges of the plasma [6].

The requirement of quasi-neutrality implies that there must be enough free charged particles
in the ionized gas so that a charged object that is placed inside the gas will be shielded. This
means that the total number density of charged particles in the gas, n, must be sufficiently
high. More specifically, the number of particles ND within a ‘Debye sphere’ must be large. A
Debye sphere is the volume of a sphere with radius equal to the Debye length λD,

ND =
4

3
πλ3

Dn, (2.10)

and one of the formal requirements to have proper shielding is that this number must be much
greater than 1. ND is sometimes referred to as the plasma parameter [22].

The requirement for the collision frequency between charged particles and neutrals compared
to the plasma frequencies makes sure that plasma as a state of matter is noticeably influenced
by electromagnetic forces. If the charged particles in an ionized gas undergo too frequent
collision with neutral gas atoms, the motion of the charges are not mainly governed by
electromagnetic forces, but by the forces of ordinary fluid dynamics. An example of an ionized
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gas that is not considered a plasma for this exact reason is the weakly ionized gas that comes
out of the exhaust of a running jet engine [22, p. 11].

Averaging over the various species in the plasma, if f is the typical frequency of plasma
oscillations and τ is the average time between collision between charged particles and neutrals,
then the average number of plasma oscillations between each charge-neutral collision is fτ . A
quantitative requirement we can choose for defining a plasma is fτ > 1 or fτ � 1, that is,
that the charged species are on average able oscillate multiple times between each collision
with a neutral [22, p. 11].

If all of the above conditions are met for an ionized gas, then it is called a plasma.

2.2 Radiofrequency plasmas

A radiofrequency (RF) plasma is a plasma that is created by placing a gas (e.g. argon gas)
between two electrodes that are producing an alternating voltage that is alternating with a
frequency in the radiofrequency range [21]. In other words, the gas inside the plasma chamber
will be exposed to a rapidly alternating electric field, which is the mechanism that drives
the ionization of the gas in an RF plasma, as explained in section 2.1.1. The plasma in the
experiments analyzed in this thesis is an RF plasma with frequency fRF = 13.56 MHz, which is
a much used alternating voltage frequency in RF plasma experiments for the past few decades
[35, 11, 57, 76, 64].

The reason for having the voltage alternate with a frequency in the radiofrequency range
is that this frequency range can 4 oscillate significantly faster than the plasma frequencies of
the ions or other more massive species, while still oscillating slower than the electron plasma
frequencies [21]. Forces and waves involving ions or dust particles experience only negligible
accelerations from the alternating voltage. However, the electrons will be able to follow the
varying electrode potential due to their high plasma frequency [69]. This claim is supported
by comparing the RF plasma frequencies calculated in the example in section 2.1.4 with the
RF voltage: fpe = 283 MHz� fRF = 13.56 MHz� fpi = 1.05 MHz� fpd. As the electrons
are accelerated by the alternating electric field between the electrodes, they can collide with
neutral gas atoms and ionize them, as described in section 2.1.1.

RF sheaths: Though the sheaths around the electrodes expand and contract with the
alternating RF voltage, each electrode still has an average sheath region with a net positive
charge density [78]. As previously mentioned, for typical RF plasmas the RF frequency is
too high for the ions to respond to the alternating voltage but low enough so that electrons
will respond. The details of the dynamics of RF sheaths requires kinetic theory or particle
simulations. The results from such simulations show that the sheath thickness around electrode
1 expands at the same rate as the sheath thickness around electrode 2 shrinks, and vice versa
when the alternating voltage switches direction, keeping the bulk plasma at a constant width
oscillating back and forth between the two electrodes [64, p. 339]. Each of the electrodes’
sheath edges oscillates sinusoidally around an equilibrium thickness, which is the time-averaged
RF sheath thickness. Similarly to the regular electrostatic sheaths discussed in section 2.1.2,
the time-averaged RF sheaths exert confining forces to keep negatively charged species in the
bulk plasma, including negatively charged dust particles, away from the electrodes.

4Depending on the specific value of the alternation frequency and on the plasma frequencies of the different
species in the plasma. The radiofrequency range is (roughly) defined to be between 3 kHz and 300 GHz [9].
However, usually the frequencies that are used in RF plasmas are in the megahertz range [21].
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2.3 Dusty plasmas

When dust particles are added to a plasma environment, they will become charged due to
collection of free charges in the plasma [57]. This makes the dust particles and the plasma
environment interact through electromagnetic forces, giving rise to phenomena unique to dusty
plasma systems, some of which will be discussed below. In this subsection, some of the basic
theory of dusty plasmas will be presented, including the charging of dust particles and various
forces that act on the dust particles in the plasma. Magnetic fields in dusty plasmas and ion
wakefields will also be discussed.

2.3.1 Charging of dust particles

From the discussions in section 2.1.2, objects in a plasma will on average accumulate a negative
charge due to the higher electron speed compared to the ion speed, and this is true for dust
particles as well. Here, the charging of dust particles will be discussed in some more detail.

A simple model for particle charging, namely the ‘orbital motion limit’ (OML) model, will be
presented. The OML model models the charging of a dust particle as the current of electrons
and the current of ions onto the dust particle, and it assumes that the electrons and ions
move from infinitely far away toward the dust particle on a collisionless path, each charge
only affected by the electrostatic interaction between itself and the dust particle [57]. It is
also assumed that the velocity distribution of the charges is given by an isotropic Maxwellian
distribution function. Note that the OML assumptions more or less break down in real plasma
discharges: The paths of the charges are not without collisions, and the velocity distribution
is realistically more complex than an ideal isotropic Maxwellian. However, the model serves
as a rough approximation for what charge we can expect dust particles to have, especially in
many laboratory experiments where the currents from incoming electrons and ions are the
main charging mechanisms.

An outline of the derivation of the equilibrium dust charge will be presented here. Many of
the mathematical details of the derivation of the dust charge will be skipped here; more details
can be found in Melzer (2019) [57]. The collisionlessness assumed in OML gives conservation
of angular momentum between the incoming charges and the dust particle. There is also
conservation of total energy for the charged particles (kinetic energy + electric potential
energy). From this, the collection cross-sections of the electrons and ions can be obtained:

σc,i = · · · = πa2

(
1− 2eφp

miv2
i,0

)
(ions) (2.11)

σc,e = · · · = πa2

(
1 +

2eφp
mev2

e,0

)
(electrons). (2.12)

Since the (average) dust particle is negatively charged, it also has a negative electric potential,
φp < 0, compared to the surroundings infinitely far away (plasma potential), which we define
here as zero potential. Since the potential around the dust particle is negative, we see from eqs.
(2.11) and (2.12) that the ion collection cross sections will be larger than the dust particle
cross section a, and the electron cross section is less than the dust particle cross section. This
is because of the electric force; the positively charged ions will be attracted to the negatively
charged dust particle, so ions that are just outside of collision course will be accelerated
toward the dust particle and collide with it, and similarly some electrons just within collision
course with the dust particle will be accelerated away and avoid collision. We also see that for
both ions and electrons, the greater speed they have the smaller the second term is, so for
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fast-moving ions/electrons the electrostatic potential of the dust particle does not affect the
collection onto the dust particle as much.

The expressions for the collection cross sections are used for finding the ion and electron
currents to the dust particle. The infinitesimal contribution to the current of a charged species
s (either ions or electrons) dIs from an infinitesimal velocity range (the speed of those charged
particles) between vs and vs + dvs, is given by

dIs = σc,s(vs) djs = ±nsevsf(vs) dvs, (2.13)

where the plus sign is for ions with charge +1e and the minus sign is for electrons (charge
−e). The function f(vs) is the velocity distribution function, which gives the weighting of how
much each velocity vs contributes to the current dIs. We will assume that this distribution
function is an isotropic Maxwellian [57], which has the following form:

fM(vs) = 4πv2
s

(
ms

2πkBTs

3/2
)

exp

(
−

1
2msv

2
s

kBTs

)
, (2.14)

where we have
∫∞

0
fM(vs) dvs = 1. We can observe in the expression that f(v → 0) = f(v →

∞) = 0, meaning that very slow or very fast particles are unlikely.

The full current is then the sum of the contributions from all of the infinitesimal velocity
intervals, which is the following integral:

Is =

∫
dIs =

∫ ∞
0

±nsevsfM(vs) dvs. (2.15)

Calculating the currents for the ions and for the electrons, the results are the following:

Ii = · · · = πa2nie

√
8kBTi

πmi

(
1−

eφ
p

kBTi

)
, (2.16)

Ie = · · · = −πa2nee

√
8kBTe

πme
exp

(
eφ

p

kBTe

)
. (2.17)

Now we are in a position to determine the dust particle charge. The dust particle charge
will be defined as the charge it will have when it has reached an equilibrium in the incoming
currents. Mathematically speaking, this is when the sum of the ion and electron currents is
zero, and the electric potential of the dust particle for that circumstance is, by definition, the
floating potential φfl. By solving the equation Ii(φp) + Ie(φp) = 0 for the potential, the floating
potential is obtained. The equation for the floating potential can be solved numerically [57].
To give an example (retrieved from [57, p. 18]): If we have the parameter values a = 4.7 µm,
ni = ne = 109 cm−3, Te = 3 eV and Ti = 0.03 eV, the floating potential is φfl ≈ −5 V. A
rule-of-thumb approximation for laboratory plasmas with Te � Ti is that

φfl = −αkBTe/e (2.18)

where α is a number between 2 and 2.5 that depends on the species of the plasma gas and the
temperature ratio between the electrons and ions, Te/Ti. For example, for an argon gas with
Te/Ti = 100 we have α = 2.414 [57].

Finding the floating potential of a dust particle allows us to find an estimate for the charge
of the dust particle. By modelling the dust particle as a spherical capacitor, the charge on the
dust particle is given by

Qd = Cφfl. (2.19)
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In a plasma environment with shielding length λD, the capacitance of a sphere is

C = 4πε0a

(
1 +

a

λD

)
, (2.20)

which usually reduces to C = 4πε0a (the vacuum case) in the case of a� λD [57], which is
the case in the experiments relevant for this thesis [35]. Using eqs. (2.19) and (2.20) and the
rule-of-thumb expression for φfl, the final result for the equilibrium dust charge is

Qd = −(1400aµmTe,eV)e, (2.21)

where aµm is the radius of the particle expressed as the number of micrometers, and Te,eV is
the electron temperature expressed as the number of electron volts [57].

It bears repeating that the expression in eq. (2.21) is based on the OML case with the
assumptions of collisionless particle paths and ideal isotropic Maxwellian velocity distributions,
so it is only an approximation. With that in mind, here is an explicit example: For a dust
particle with radius a = 5µm in a plasma with electron temperature Te = 4 eV (these values
are in the realistic range, see [11]), this model predicts a dust charge of Qd = −28 000e.

2.3.2 Forces on the dust particles

In this subsection the most important forces acting on dust particles as well as their strengths
under different physical conditions will be reviewed. The sum of these forces on any given dust
particle at a given point in time and space will determine its acceleration, and therefore its
movement. Therefore, knowledge about the forces acting on the dust particles gives important
information for understanding the dynamics of the observed dust particles.

Gravity

The gravitational force on a dust particle is given by

Fg = mdg =
4

3
πa3ρdg (2.22)

for a spherical dust particle with radius a and mass density ρd [57, 17]. Since the gravitational
force is dependent on the volume of the grain dust, it is one of the dominating forces for
micrometer-radius dust particles when a gravitational acceleration is present, and it becomes
negligible for nanometer-sized particles.

Microgravity conditions are conditions where the net acceleration vector due to gravity,
g, in the relevant frame of reference is approximately zero. This can be for instance in outer
space far away from stars and planets, where there actually is no gravitational acceleration
(or, it is negligible). The other way to achieve microgravity is for the reference system to
accelerate in a manner that is equivalent to a free fall in the gravitational field without air drag.
Drop towers, parabolic flights and the International Space Station (ISS) are examples where
this type of microgravity is achieved. On the ISS there is currently an ongoing zero-gravity
dusty plasma experiment [80, 47]. The experiments that were analyzed in this thesis were
microgravity experiments performed on parabolic flight airplanes. On parabolic flights, the
pilots of the airplane steer the plane to follow the path of a parabola, which is the equivalent
of a free fall without air drag close to the surface of a planet, to achieve microgravity inside
the airplane [1].

During parabolic flights experiments, there is usually some residual acceleration due to slight
deviations from parabolic trajectories. For this reason, an initial inspection of the acceleration
data is done in order to make sure that the data that is analyzed has a sufficiently good
microgravity quality [53] (see also section 5.2).
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Electric field forces

The electric field force or electrostatic force is perhaps the most notable of the forces acting
on a dust grain in a plasma. The charged dust particles will experience an electric force if
there is an electric field present. Electric fields can come from other charged dust particles, or
they can be externally applied electric fields from electrodes. Although the surrounding ions
in the plasma will shield the plasma from the electric field coming from the dust particle from
the free charged particles in the surrounding plasma, if there exists an external electric field at
the location of the dust particle then the dust particle will be accelerated by the electric field
with the same force as if there was no surrounding plasma [33]. The electrostatic force on a
dust particle with charge Qd in an electric field E is given by [24, 17]

Fes = QdE. (2.23)

This equation assumes a uniform plasma, meaning that the ion and electron densities are
equal everywhere in the system. The electric field E = E(r, t) is the sum of all contributing
electric fields present at the position r at the time t, which can for example be the electric
field from a sheath region or from surrounding dust particles.

Although the electrostatic shielding by the free electrons and ions will diminish any external
electric field imposed by e.g. an electrode, there will still be an electric field in the sheath
region near the electrode which confines the dust particles to the bulk plasma, as mentioned
in section 2.1.2.

The electrostatic force between dust particles, which is a repulsive force since the dust
particles will typically be negatively charged, is the main force that creates the crystal patterns
that can be observed in certain physical circumstances (along with some confining forces
such as gravity and/or externally applied electric fields) [57]. For spherical dust particles,
the electrostatic interaction force can be calculated by using the Debye-Hückel potential φDH

(eq. (2.8)). From eq. (2.7), along with the general identity

Fes = qE (2.24)

for the electrostatic force on an object in an electric field E, the Coulomb force acted on object
1 by object 2 (spherical, charged objects) with a distance r ≡ |r1 − r2| between them is

Fes(r1, r2) = Q1E(r1, r2, Q2)

= −Q1∇φDH(r,Q2)

= −Q1∇
(

Q2

4πε0r
exp

(
− r

λD

))
...

Fes(r1, r2) =
Q1Q2

4πε0r

(
1

r
+

1

λD

)
exp

(
− r

λD

)
er, (2.25)

where er ≡ (r1 − r2)/r is the unit vector in the radial direction for the distance between the
two objects in spherical coordinates.

In some cases, the electric field E can be such that it causes non-uniform plasma densities.
If E is an ambipolar field, or if the dust particle is in the pre-sheath region of an electrode
or a wall, then the plasma densities will be non-uniform [17]. For a non-uniform plasma the
Debye length can be different at different points in space, meaning that the gradient of the
shielding length, ∇λD, can be non-zero. This non-uniformity sets up another electric force,
called the polarization force, which is given by
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Fpol = − Q2
d

8πε0

∇λD

(λD + a)2
, (2.26)

which is always in the direction of decreasing shielding length [33, 57]. The total electric force
is then

FE = Fes + Fpol. (2.27)

The relevant shielding length λD can be closer to the ion shielding length λD,i or the electron
shielding length λD,e depending on the ion drift velocity ui, as seen in eq. (2.5).

Neutral drag force

Another force that can act on the dust particles is the neutral drag force, which is a friction
force caused by collisions between dust particles and neutral gas atoms and molecules in the
plasma environment. The force comes from the momentum transfer to the dust particles from
these collisions [57, 17].

A general drag force is given by the equation

Fdrag =
dN

dt
∆p = ∆p nσvrel, (2.28)

where dN is the number of particles interacting with the dust particle during an infinitesimal
time dt, σ is the cross sectional area of interaction with the dust particle, n is the number
density of the species causing the drag force, ∆p is the average momentum transfer in a
collision with the dust particle, and vrel is the average relative velocity between the dust
particle and the species causing the drag force [57, p. 35].

The neutral drag force was derived by Epstein in 1924 [28]. An expression for the neutral drag
force can, based on eq. (2.28), be shown [57, 17] to be

Fn = −δ 4

3
πa2mnvth,nnnvd. (2.29)

Here, the cross section σ is simply the cross sectional area πa2 of the dust particle, since the
neutrals are free of charge and therefore experience no electric force from the dust particle.
The parameter δ, sometimes called the (Epstein) friction coefficient, takes into account how
the neutrals are reflected from the surface of the dust particle. For dust particles that are
plastic microspheres made of melamine formaldehyde (MF), which are used in the experiments
relevant for this thesis, a value of δ = 1.44 has been found [45].

A second expression for the neutral drag force derived by Epstein is in the form of a friction
force,

Fn = −mdβvd, (2.30)

with

β ≡ δ 8

π

p

aρdvth,n
, (2.31)

where ρd is the mass density of the material that the spherical dust particle is made of, δ is
the same Epstein friction coefficient as above and p is the gas pressure. Make sure not to
confuse the usage of the symbol p; it is the symbol used to represent both momentum and
pressure in different contexts.
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It turns out that eq. (2.31) uses the assumption of an ideal gas for the neutrals, that is,
p = nnkBTn. I encountered this fact when calculating the neutral drag force with eq. (2.29)
using the assumption of an ideal gas for the neutrals, and then using eq. (2.30), and ending up
with identical answers. In the references that I read, I could not find an explicit mention of this
assumption in the Epstein neutral drag equations. For this reason, a proof of the underlying
ideal gas assumption in eq. (2.30) is included in appendix B. The ideal gas assumption for the
neutrals is discussed briefly in section 5.5.

The momentum transfer ∆p in a collision with neutrals is in the order of mnvth,n, where
mn is the mass of a neutral particle and vth,n is the (mean) thermal velocity of the neutral
species. The mean thermal velocity, or simply thermal velocity 5, for a species s in a gas in
three dimensions is defined as the mean value of the speed distribution [64, p. 75] [57],

vth,s ≡
∫ ∞

0

fM(vs) vs dvs = · · · =
√

8kBTs
πms

, (2.32)

where fM(vs) is the Maxwellian velocity distribution as shown in eq. (2.14), Ts is the temper-
ature of s and ms is the mass of a particle of species s.

Ion drag force

The ion drag force is the force caused by momentum transfer between the dust particle and
ions streaming into or past the dust particle [57, p. 35]. The momentum transfer between an
ion and a dust particle can come from a direct physical collision or from the Coulomb force
between them.

If there exists a stream of ions in the plasma discharge, then the influence of the ion drag force
on the dust particles can be prominent. The ion drag force together with the electrostatic force
is the main force balance that establishes voids inside radiofrequency dusty plasma discharges
[31].

The force resulting from the collection of ions due to direct ion collisions is called the
collection force, Fc, and the force resulting from deflected ions is called the orbit force, Fo.
The ion drag force on a dust particle can then be written as

Fi = Fc + Fo. (2.33)

There are several models for the ion drag force. A model that can be used to give a
qualitative estimate of the ion drag force is the Barnes model [13]. The Barnes model uses
the assumption that the collection force comes from the same ions that contribute to the
charging of the dust grain. Combining the expression for the OML ion collection cross section
in eq. (2.11) with the expression for the general drag force in eq. (2.28), the collection force is
obtained:

Fc = πa2mivsniui

(
1− 2eφfl

miv2
s

)
, (2.34)

where mi is the ion mass, ni is the ion number density, ui is the ion drift velocity, φfl is
the floating potential of the dust particle, and vs is a kind of ‘mean velocity’ defined as
vs ≡ (u2

i + v2
th,i)

1/2, with ui ≡ |ui| and the thermal ion velocity vth,i [57].

5Not to be confused with another ‘version’ of the thermal velocity, where the thermal velocity is defined
as the most probable speed, vth,s =

√
2kBTs/ms, which corresponds to the peak of the isotropic Maxwellian

distribution [72].
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The orbit force comes, as mentioned, from the ions that are deflected by the Coulomb
interaction but do not collide directly with the dust grain. The cross section of Coulomb
interactions for finite sized dust particles can be calculated to be [13]

σ = 4πb2π/2 ln

(
λ2

D + b2π/2

b2c + b2π/2

)
, (2.35)

where λD is the screening length of the plasma, bc is the impact parameter for direct collisions
of ions onto the dust particle, and bπ/2 is the impact parameter for π/2 = 90◦ deflections of
ions around the dust particle [57],

bπ/2 =
Qde

4πε0miv2
s

=
aeφfl

miv2
s

, (2.36)

where the second equation comes from using the capacitor model for the dust charge, contained
in eqs. (2.19) and (2.20). This cross section excludes all ions at impact parameters b < bc,
because these correspond to direct collisions that are already accounted for in Fc. By
substituting the Coulomb interaction cross section in eq. (2.35) into the general drag force
(eq. (2.28)), the orbit force is obtained:

Fo = 2π
a2e2φ2

fl

miv3
s

niui ln

(
λ2

D + b2π/2

b2c + b2π/2

)
. (2.37)

We can see that both the collection force and the orbit force scale with a2, so the total ion
drag force, which is the sum of the two, also scales with a2.

An example of a more sophisticated model of the ion drag force is the Hutchinson/Khrapak
model [42, 57]. This model takes into account the ions that stream past the dust particle
outside of the Debye sphere. In addition, the Hutchinson/Khrapak model uses eq. (2.6) for the
effective Debye length, which interpolates between the linearized Debye length λD (eq. (2.3))
and the Debye length of the electrons, λD,e, where the interpolation depends on the ion drift
speed.

The effective screening length used in the Hutchinson/Khrapak model has a different expression
than the screening length in eq. (2.5), but they both have the same purpose, which is to correct
the screening length when ions have a drift velocity. As mentioned in section 2.1.2, Ludwig et
al. found that eq. (2.5), agreed better with simulations than eq. (2.6) for the ion drift Mach
numbers between 0 and 2, which encompasses the relevant ion streams for the plasma analyzed
in this thesis. For this reason, the screening length in eq. (2.5) will be used for our estimates
for the ion drag force, and it seems reasonable that using this screening length will provide
a more accurate ion drag force when using the Barnes model compared to using the Barnes
model with the linearized Debye length or the electron Debye length.

Thermophoretic force

The thermophoretic force is a force on the dust particles that exists when there is a temperature
gradient in the neutral gas. This force is directed toward the colder area. A basic, but not
complete, explanation of this force is that the dust particle experiences on average a greater
momentum transfer per unit time from the collisions with the neutrals on the hot side compared
to the cold side since the hotter neutrals by definition have a higher (thermal) velocity. An
analytical expression for the thermophoretic force, derived from kinetic theory [83], is

Fth = −32

15

a2κn

vth,n
∇Tn, (2.38)
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where a is the dust particle radius, κn is the thermal conductivity of the neutral gas, vth,n is
the thermal velocity of the neutral gas and ∇Tn is the temperature gradient of the neutral gas
[17, 57].

2.3.3 Magnetic fields

The effects of magnetic fields on the dust particles are not important in this thesis. However,
they are mentioned here for completeness’ sake. It is estimated that a very strong magnetic
field of at least ∼ 5 T is required to noticeably affect the dust particle dynamics of individual
sub-micrometer dust particles [16]. This is because of the relatively low charge-to-mass ratio of
the dust particles compared to ions or electrons. Ions are magnetized at B ∼ 1 T and electrons
are magnetized at a few milliteslas. It is worth noting that at a few milliteslas there can be
observed a slow rotation of the dust cloud as a whole [16].

2.3.4 Dust voids in RF plasmas

In dusty RF plasmas in microgravity conditions, under certain conditions a region free of dust
particles, called a void, can be observed [31, 41, 57]. The void is located in the middle of the
discharge and has a complete absence of dust particles and a sharp boundary [31]. Examples
of voids can be seen e.g. in figures 2.2 and 3.2. In a typical dusty plasma chamber of size
in the order of 10 cm in each spatial dimension, a typical void will have a size in the order
of several centimeters, which is a substantial fraction of the chamber [11]. For dust voids
to occur, the dust cloud must be extended in all three spatial dimensions. In ground based
laboratory experiments, the dust cloud is often compressed, because of the gravitational force,
into a sheet that hovers above an electrode due to electrostatic repulsion. Dust clouds can
be extended in three dimensions when the force of gravity is negligible, which is either in
microgravity situations or for nanometer-sized dust particles. Alternatively, the gravitational
force can be counteracted by the thermophoretic force by heating up the lower electrode [57,
p. 45].

The basic mechanism that creates the dust void is a force balance between an outward
directed ion drag force and an inward directed electric force [31]. The outward directed ion
drag force comes from an enhanced ionization rate at some location inside the discharge [31].
For higher pressures and higher RF power, there can be an outward thermophoretic force
of the same order of magnitude as the outward ion drag force [30]. For lower pressure and
lower RF power (which are the conditions relevant for this thesis), the thermophoretic force is
negligible compared to the ion drag force, in which case the main outward force creating the
void will be the ion drag force.

These forces can be understood through the following explanation of how a void develops from
scratch, which is based on the discussion in Goree et al. (1999) [31]:
Starting out, it is assumed that the dust particles are uniformly distributed throughout the
box or chamber containing the dusty plasma. In the uniform situation, the ionization rate will
be more or less equal everywhere in the bulk plasma, because the electron number density
will be more or less equal everywhere, and the electrons cause the ionization. Then, at some
point in time, a spontaneous fluctuation in the dust number density will happen somewhere in
the chamber. This opens up a small area where the dust density is lower, and therefore fewer
electrons will be absorbed by dust particles in that area, giving rise to a slightly higher density
of free electrons. This local increase of electron density gives a local increase in the ionization
rate, which in turn increases the ion density there. In the area of increased ion density, the
ions will repel each other and move outwards. This creates the outward ion drag force on the
surrounding dust particles, which further expands the area where the dust density is lower,
resulting in a small void.
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The increased volume of the dust-free region gives a larger space with lower dust density,
further increasing the ionization rate and the outward ion drag force. However, the increased
positive ion density inside the void also sets up an inward electrostatic force on the dust
particles since the dust particles are negatively charged. At some point the growth of the
void saturates due to the growth of the inward electrostatic force. If the ionization rate is
approximately constant in time, which is the case for many dusty plasma experiments, then
the void will reach a stable equilibrium size [31].

The ion drag force will only be strong enough to create a void if the ionization rate in the
plasma is high enough [41]. Additionally, the dust particle size must exceed a critical size in
order for the ion drag force to overpower the electrostatic inward pull.

As mentioned in section 2.2, the time-averaged sheath regions around the electrodes have
a net negative electric potential compared to the center of the discharge. Therefore, in the
sheath regions the negatively charged dust particles will be repelled from the electrodes and
confined to the bulk plasma, and ions will be attracted toward the electrodes. This can also
affect the shape of the void.

2.3.5 Wakefield potentials and ion focuses

If a stream of ions is present in a dusty plasma discharge, the ion trajectories will be affected
when passing the negatively charged dust particles. The ion trajectories are bent and converge
into an area of higher ion concentration downstream of the dust particle which is called an ion
focus or ion wake [57, 64, 51, 84]. The focus region of increased ion density sets up an electric
force on other dust particles which can be described using two different models: a macroscopic
wakefield model or a microscopic particle model [57, 64].

The wakefield model considers the structure of the electric potential surrounding the dust
particle in the ion flow. The region behind the dust particle where the ion focus is present
will have a positive electric potential relative to its surroundings, which sets up an electric
field that will attract nearby negatively charged dust particles [60]. This enhanced electric
potential or electric field in the wake of the upstream particle is what is referred to as the
wakefield. Wakefields are found both in subsonic and supersonic ion flows [57, p. 65].

The ion focus model considers the trajectories of all of the individual ions streaming past
the dust particle, which collectively form the downstream ion focus. The ions undergo a
momentum exchange with any nearby dust particles due to the attractive electrostatic force,
and the increased ion density in the ion focus results in that the negatively charged dust
particles will experience a net attraction toward the ion focus. In the ion focus model, the
attractive force on dust particles in the downstream region is essentially an ion drag force
since it is due to the momentum transfer from the ions flowing through the focus [52].

The wakefield model and the ion focus model both describe the same phenomenon of an
attractive force downstream of a dust particle in an ion flow. An illustration of these forces
can be seen in figure 2.1. The attractive force on the downstream dust particle arises as a
consequence of the presence of an upstream particle in the ion flow. This force is, however,
not reciprocal with respect to the upstream particle; the upstream particle is not subjected to
an equal but oppositely directed force. This is because the attractive force is due to the ions
in (or rather, passing through) the ion focus, so it is the ions that receive the reciprocal forces
from the downstream dust particle.
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Figure 2.1: A cartoon illustrating a downstream dust particle being attracted toward the ion
focus of an upstream dust particle in an ion flow. The force ~F is the sum of the ion drag and
wakefield forces arising due to the ions flowing through the ion focus.

Ludwig et al. (2012) [54] showed with particle-in-cell simulations that for a dust grain with
a potential of φp = φfl = −2.0 V and an electron-ion temperature ratio of Te/Ti = 100, the
position of the first (positive) peak of the wakefield was located at one electron Debye length
λD,e downstream from the dust particle for an ion drift speed of M = 0.5, with a potential
value of 0.2 V at the peak. For higher ion drift speeds, between M = 0.75 and M = 1.5, the
magnitude of the wakefield potential peaks increased, and the peak locations were pushed
further downstream, to 1.1 - 1.7 λD,e.

The ion drag force from the ions passing through the focus in subsonic ion flows, and
specifically its role in the alignment of dust particles, has been studied by Piel (2011) [66].
Piel showed that the transverse ion drag force is the major component in the transverse or
horizontal restoring force that results in the alignment of dust particles due to the ion stream.
An estimate for the transverse restoring ion drag force was provided:

Fi,tr ≈ 2
Q2

d

4πε0d2

s

d
, (2.39)

where Qd is the dust charge, d is the distance between two dust grains in the string, and s� d
is a small displacement distance from the equilibrium position of the downstream grain.

2.4 String formation

In certain dusty plasma experiments, strings of dust particles, also known as lanes or chains,
can be observed [11, 35, 57]. Some examples of different kinds of dust strings that can occur in
dusty plasmas are: Particle lanes in binary complex plasmas [44], strings in electrorheological
plasmas [47], strings in three-dimensional dust clusters levitated by the thermophoretic force
[48], and strings observed in microgravity RF plasmas [11, 35].

A particle string will here be defined as a set of particles that form an approximately
straight line in three dimensions and contains a minimum of three particles. The dust strings
observed in the experiments in this thesis also have approximately equidistant particles within
a string. Another attribute of a string is that its constituent particles should be at least weakly
bound to their relative positions in the string, so that the string is to a certain degree stable
over some finite time interval. The string can still at some point break or dissolve, split into
two strings, or merge with another string, however.
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Figure 2.2 shows particle strings highlighted in one of the images taken during a parabolic
flight experiment, in a low-pressure RF plasma. It is, however, important to note that what
appears to be a particle string in a 2D image is not necessarily a connected string in three
dimensions. This is because the particles can be at different depths with respect to the camera
viewing angle, so two particles that appear to be short distance from each other in a 2D image
can in actuality be quite far away from each other when taking depth into account. An actual
three-dimensional string, on the other hand, will always look like a string when projected
onto a 2D image, with the exception of when the string is perfectly aligned with the viewing
direction, in which case the string will appear as a dense cluster of particles or a single particle
in the image. But, in general, if strings are seen in a 2D image then it can be a string in three
dimensions as well. For this reason, it is essential to use 3D diagnostics when studying dust
strings in a three-dimensional dust cloud. A visual comparison between strings in two and
three dimensions can be seen in section 5.3.1 (figure 5.11).
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Figure 2.2: String formation of dust particles in an RF discharge in microgravity at low
pressure. Top: A raw image of the dust cloud. Bottom: Same as the top image, but with
some of the particle strings highlighted with red lines.

The main forces behind the string formation phenomenon is believed to be a combination of
the transverse components of the ion drag force and the wakefield attraction force, as discussed
in section 2.3.5 and illustrated in figure 2.1 [66, 11]. Both of these forces are the result of an
ion flow and the electrostatic lensing effect of a negatively charged dust particle on the ion
flow. The wakefield attraction downstream of a dust particle in a stream of ions can attract
another dust particle into this ion focus. Then, another ion focus can be created behind that
particle, attracting another dust particle to the new ion focus, and so on, which can result in
the formation of longer particle strings. However, the string formation phenomenon is not
fully understood, and detailed knowledge of how various forces or physical parameters affect
things such as the shape, stability and interparticle distances of the strings is still lacking.
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Dust particle charges in a string: Determining the charges on dust grains in the wakes
downstream of other grains in an ion flow is a complex physical problem. For this reason,
researchers have performed simulations in order to gain insight into the charging dynamics of
such systems [61, 60, 15].

Miloch and Block (2012) [60] performed PIC simulations in order to investigate the dust
particle charge at sonic ion speeds (Mach numbers between 1 and 1.5). They simulated five
particle strings, with a length of three particles each, placed next to each other in such a way
that the strings were aligned with the ion stream. The strings were separated by a distance of
1λD,e, and the distance between the particles in each string was 1.1λD,e. They investigated
the charge on each of the three particles in one of the strings. The dust particles were fixed
at stationary positions. Investigating the charge on each of the three particles in one of the
strings for ion drift speed M = 1, they found that relative to the charge Q1 on the first particle
in the string (the particle furthest upstream), the second particle in the string had a charge of
Q2 ≈ 0.4Q1, and the third particle in the string had a charge of Q3 ≈ 0.7Q1.

Another set of simulations performed by Block and Miloch (2015) [15] of a similar 5 string
setup also including subsonic ion flows showed a smaller difference in charge between the
particles in the string for lower ion drift speeds. At M = 0 (no ion flow) the particles had
equal charge, and at M = 0.5 the charge distribution was Q2 ≈ 0.67Q1 and Q3 ≈ 0.90Q1.

They state that the relatively smaller degree of decharging in the third particle compared to
the second particle is a consequence of the decharging of the second grain. The decharging of
the second grain weakens its lensing ability, so that the third grain will receive a smaller influx
of ions and will therefore be decharged to a lesser degree. The conclusion was that the charge
distribution of the dust particles in a string can be different for the different particles in the
string, and that the charge variation can be non-monotonous for consecutive grains. Note that
these simulations did not consider electric fields or collisions with neutrals.

Due to the different charges on the different dust grains in a particle string, it can also be
expected that the potential of the ion focus further downstream will be different at different
points in the string, and therefore also that the aligning forces on the downstream dust particles
will have different magnitudes at different points.

Circumstances where dust strings have been observed: Arp et al. (2012) observed
particle strings in a microgravity RF plasma with a subsonic ion flow during parabolic flight
experiments [11]. The experiments were performed in the IMPF-K2 plasma chamber, as
discussed in section 3.1, as well as in the IMPF-K chamber, the predecessor of IMPF-K2
[65]. The only difference between the IMPF-K and the IMPF-K2 chambers is their electrode
configuration. The IMPF-K chamber has its electrodes segmented into concentric rings such
that the voltages are produced by two different RF power generators, and therefore two
different peak-to-peak voltages can be used on the electrode segments [65]. The plasma was
based on an argon gas.

In the IMPF-K2 chamber, with dust particles with diameter 2a = 9.55 µm, pressure 50 Pa,
and RF peak-to-peak voltage amplitude Vpp = 50 V, strings were observed in the midplane
region, at a similar location relative to the void compared to the strings seen in figure 2.2.
A second experiment with the IMPF-K2 chamber with 2a = 9.55µm, argon pressure 30 Pa,
peak-to-peak amplitude 45 V resulted in no string formation, and also no notable dilution in
the midplane region. In the experiment performed using the IMPF-K chamber, the experiment
parameters were 2a = 6.8 µm, argon pressure 15 Pa, peak-to-peak amplitude Vpp = 70 V in
the center electrode and Vpp = 50 V in the outer ring electrode. This resulted in a very dilute
midplane region, with some particle strings present.

Himpel et al. (2018) performed microgravity dusty plasma experiments on parabolic flights

23



2.4 String formation 2 THEORY

using the IMPF-K2 chamber [35]. For particles of diameter 2a = 7.01 µm, argon pressures
between 15 and 30 Pa, peak-to-peak voltage between 70 and 100 V and RF power between 3
and 3.5 W, particle strings were observed in the dilute midplane region of the chamber.

2.4.1 The pair correlation function

For analyzing structures in dusty plasma experiments, often the pair correlation function
g(r), also known as the radial distribution function, is used. It is a function that gives the
distribution of the particles as a function of the distance r of a reference point, providing
information about how many particles can be found at different distances from either a specified
reference point or from other particles. Alternatively, it be described as the probability that
there exists a particle at a distance r from a chosen reference particle [57, p. 87].

The pair correlation function can be used as a quantitative measure of string formation by
calculating g(r) in the direction parallel to the observed strings, which will also be discussed
in the following paragraphs. Since strings consist of several approximately equally spaced
particles, g(r) calculated along one dimension should show equally spaced peaks if strings
are present. This is demonstrated in section 5.3.2. Pair correlation functions in two and
three dimensions can for example be used as indicators of lattice structures in two and three
dimensions, respectively [57, 77, 68].

The pair correlation function for a set of particles in a volume is calculated by going outward
radially in a stepwise manner and counting the number of particles in each discrete distance
interval of some width ∆r. Essentially, this results in a histogram with data bins of width
∆r. Then, the number of particles in each distance interval is normalized by dividing by the
volume corresponding to that distance interval or search space. For a radial, three-dimensional
distance search, the volume of a distance interval at some distance r corresponds to a spherical
shell of radius r with a thickness equal to ∆r. In addition to normalizing with respect to the
size of the search spaces, g(r) is also normalized by dividing by the total number of registered
distances. In the three-dimensional case, the normalization involves dividing the number of
particles Ni found in each increment volume ∆Vi ≡ Vi+1 − Vi = 4

3π(r3
i+1 − r3

i ) in space (the
volume difference of the spheres at ri+1 and ri) by ∆Vi, giving the particle density in each
increment. The implementation of the pair correlation function in three dimensions is shown
in algorithm 1.

It is possible to calculate g(r) for distances in two dimensions or one dimension by projecting
the 3D positions onto a chosen plane or a chosen axis, respectively. In the case of two
dimensions, the normalization divisors would be the area differences between concentric circles,
∆Ai ≡ Ai+1 − Ai = π(r2

i+1 − r2
i ). In the one-dimensional case, no spatial normalization is

required because the size of the search space does not increase as r increases in one dimension;
the search space is equal for all distances, ∆ri ≡ ri+1 − ri = ∆r = constant.

It is useful to establish how we can expect g(r) to look like ‘normally’, meaning when
there is no particular structure in the collection of particles. Figure 2.3 shows pair correlation
functions for a uniformly distributed set of particles. Figure 2.3a shows the radial (3D) pair
correlation function calculated with respect to one point, the center position of the volume,
rather than including all distances between all particles. This is done in order to mimic g(r)
for an infinitely extending system. The particles at the edges of the box will have nearby
particles at one side (inside the box), but no particles at the other side (outside the box). This
reduces the total number of particles within a certain distance range for particles closer to
the edges as r increases, which in turn reduces g(r). By calculating g(r) with respect to the
center point only, we see approximately how g(r) should look like for a uniformly distributed
and infinitely extending set of particles up to a certain value of r, determined by the size of
the box. In this case, the box is a cube of dimensions 8 mm × 8 mm × 8 mm centered at the
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Algorithm 1: The pair correlation function in three dimensions.

1 rMax ← a value entered by the user
2 binWidth ← a value entered by the user
3 distances ← an empty array
4 counter ← 1
5 for j = 1 : nParticles do
6 rj ← position of particle j
7 for k = 1 : nParticles do
8 rk ← position of particle k
9 if k 6= j then

10 distances(counter)← |rk − rj |
11 counter ← counter + 1

12 N distances ← length(distances)
13 binEdges ← 0 : binWidth : rMax /* MATLAB syntax

14 N ← histcounts(distances, binEdges) /* Built-in MATLAB function

/* Normalization in three dimensions (MATLAB syntax): */

15 rMaxSphere ← (4/3)*π*(rMaxˆ3) /* volume of a sphere with radius rMax

16 edgeSpheres ← (4/3)*π*(binEdges(:).ˆ3) /* sphere volumes for radii equal to

the bin edges

17 gr ← (N./N distances) ./ ((edgeSpheres(2 : end) - edgeSpheres(1 : end-1)) /
rMaxSphere) /* the normalized pair correlation function

/* Plot g(r): */

18 xValues ← the midpoints between the values of binEdges
19 plot(xValues, gr)
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origin, so at a radial distance of r = 4 mm the sides of the box will have been reached. This is
why g(r) is seen to decrease for r > 4 mm.

Because the particle positions were generated with a uniform random distribution, the particle
density is on average equal in all parts of space. Figure 2.3a shows that g(r) has a lot of
variation between r = 0 and r ≈ 0.8, and then it starts to converge towards a constant g(r) = 1
as r increases. A constant value of g(r) as r →∞ is exactly what we expect in a uniformly
distributed set of particles since the average particle density does not vary in space. The
initial spikes and variations in g(r) can be explained by the discrete implementation of the
pair correlation function: The search volumes (spherical shells with a set thickness) are small
for small r, and g(r) is normalized by dividing on these volumes. The number of Ni found
inside each incremental search volume is a whole number, so if Ni is equal to 1 or 2 and the
search volume has a numerical value of much less than 1, then g(r) will have a spike at that
value of r. This can make g(r) prone to having large spikes for small r.

Figure 2.3c shows the radial g(r) for the same set of uniformly distributed particles, but now
for all distances between all particles inside the cubical box. This plot shows that g(r) starts
decreasing immediately as the distance increases. This is due to the fact that no particles are
found outside of the box, in combination with the fact that the normalization divisor (the
volumes of the spherical shells) increases as r increases. For these reasons, g(r) decreases to
zero for all finite systems.

An observation that can be made is that the plot in figure 2.3c is smoother and less erratic
compared to the plot in figure 2.3a. This is because there are a lot more registered distances in
2.3c than in 2.3a, since 2.3a only looks at the distances distances to all particles with respect
to one point, and 2.3c looks at the distances to all particles with respect to all other particles.
So, if there are Np particles in total, there will be ∼ Np registered distances in 2.3a and ∼ N2

p

registered distances in 2.3c.

Figure 2.3b shows a one-dimensional g(r) for the same uniformly distributed particle set as
above, with respect to one point, the origin. The one-dimensional version gives the distribution
of distances along one axis with a specified, but arbitrary, direction ~d. The axis that was
chosen in this case was the y-axis, using ~d = [0, 1, 0]. Note that in this case r is not the radial
distance to a particle in three dimensions, but the distance to a particle along the y-axis. As
expected for a uniform particle distribution, we see that g(r) fluctuates around a constant
value, in this case ≈ 0.0125, until it reaches the end of the box at r = 4 mm. At that point
g(r) decreases instantly to zero because it is the end of the cubical box; for |y| > 4 mm there
are no more particles to be found.

The plot in figure 2.3d shows the one-dimensional pair correlation function along the y-axis,
as in figure 2.3b, but where all distances between all particles are counted, as in figure 2.3c.
Similar to the three-dimensional situation, when including all distances between all particles,
g(r) starts decreasing immediately with increasing r. Again, this is because now also the
particles closer to the edges contribute to g(r). So one edge, beyond which there are no
particles, will be reached at r < 4 mm for these particles.

In section 5.3.2, g(r) is calculated for a single string and for regions containing strings that
are observed in experiments.

2.5 Particle swarm optimization

In this thesis, the particle swarm optimization (PSO) algorithm is applied to determining
the positions of the dust particles from the images taking during the experiments. The PSO
algorithm is a computational method for solving optimization problems [46, 63]. In this
subsection, an explanation of the PSO algorithm will be presented along with the mathematics
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Figure 2.3: Pair correlation functions g(r) for a randomly generated set of 10 240 positions
with a uniform random distribution in a 8 mm × 8 mm × 8 mm box.
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defining the algorithm. How the PSO algorithm is applied to finding dust particle positions is
shown in section 4.1.

The PSO algorithm is in part inspired by swarm behavior in nature, such as in bird flocks
or schools of fish [27, 75]. The term ‘particle’ in ‘particle swarm optimization’ refers to a
candidate for the solution of the optimization problem at hand. The PSO particles are not
the physical dust particles which are the physical subjects of this thesis. These two usages of
the term ‘particle’ refer to two completely unrelated things, and the reader should be careful
not to mix up the two meanings.

The algorithm is designed such that each particle has memory in the sense that the particle
stores its own best position in the search space, where the ‘best position’ is the position where
the function value is the most close to the optimal value, according to the relevant optimization
problem. In addition to this, the global best solution, which is the best solution among all
particles, is stored and updated each iteration. These terms are described in more detail in
section 2.5.1. At the end of the algorithm, the best global position is returned as the solution
of the optimization problem.

2.5.1 Mathematical model of PSO

Here, the mathematical definition of the PSO algorithm is presented. Similar descriptions can
be found e.g. in references [85] and [46]. Consider a cost function f : X ⊂ Rn → R. This is a
function of n variables that we want to find the global minimum of. Let the total number
of particles in the swarm be Nswarm. Each particle moves through a specified search space
X 3 ~xi(t) as the algorithm iterates, where i ∈ {1, 2, . . . , Nswarm} is the particle number and
~xi(t) is the position of particle number i in the search space at timestep t. The search space is
the collection of points in which the particles will search for the global minimum of f . The
‘time’ t = 0, 1, 2, . . . is here a dimensionless number.

At every iteration (timestep) of the algorithm, the position ~xi and velocity ~vi of the particle is
updated. The velocity ~vi ∈ X is a direction in the same space as the position ~xi, and it serves
the same purpose as ‘velocity’ as it is used in physics, where the velocity of an object gives
approximately the position at the next timestep, though in this algorithm there is no actual
dimension of time, only iteration numbers.

The updated position ~xi(t+ 1) is defined as

~xi(t+ 1) ≡ ~xi(t) + ~vi(t+ 1). (2.40)

The mathematical expression for the change in position at a given timestep, which defines the
PSO algorithm, is

~vi(t+ 1) = w~vi(t) + cP [~pi(t)− ~xi(t)] + cG[~g(t)− ~xi(t)], (2.41)

where w, cP, cG ∈ R. The coefficient w is the called the ‘inertia coefficient’ and cP, cG are
‘acceleration coefficients’ that may or may not be different from each other. The coefficient cP
weights how much the personal best position ~pi affects the velocity ~vi, and cG weights how
much the global best position ~gi affects ~vi. The vector w~vi(t) is called the ‘inertia component’
of ~vi(t+ 1), cP [~pi(t)− ~xi(t)] is called the ‘cognitive component’, and cG[~g(t)− ~xi(t)] is called
the ‘social component’ [81]. Figure 2.4 shows an illustration of how the position at the next
timestep ~xi(t+ 1) is calculated from the current position ~xi(t).
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Figure 2.4: A vector illustration of how the updated position ~xi(t+ 1) is calculated in the PSO
algorithm in each iteration. The particle changes its position according to both an ‘inertia
component’ (along the current velocity ~vi(t)), a ‘cognitive component’ (toward its personal
best position ~pi(t)) and a ‘social component’ (toward the global best position ~g(t)). Based
on the weights w, cP and cG, the velocity ~vi(t) is calculated from the personal best position
~pi(t) and the global best position ~g(t) relative to the current position ~xi(t). The vectors with
dotted lines are scaled (weighted) versions of the vectors of the same colors with dashed lines,
and ~vi(t+ 1) is the sum of these weighted vectors.

Concrete examples of values of the weighting parameters are given in section 4.2.3.

Pseudocode for the general PSO algorithm: Algorithm 2 shows the basic steps of the
PSO algorithm for solving the optimization problem of finding the global minimum of a cost
function with n dimensions, based on the mathematical definition in eqs. (2.40) and (2.41).
In this implementation, vectors with n elements of uniformly distributed random numbers
between 0 and 1, generated by a function rand(n), are multiplied element-wise with with the
cognitive and social components. The symbol � is used to signify element-wise multiplication
for vectors or matrices (arrays), also known as the Hadamard product [59].
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Algorithm 2: Particle swarm optimization: Finds the global minimum solution
of a cost function.

Input: A cost function f(x1, x2, . . . , xn), number of variables n
Output: The global minimum position xmin of the cost function f
/* Main PSO loop: */

1 for it = 1 : maxIt do
2 for i = 1 : swarmSize do
3 v← wv + c1 · rand(n)� (xPB − x) + c2 · rand(n)� (xGB − x)
4 x← x + v
5 cost← f(x)
6 if cost < pBestCost then
7 pBestCost ← cost
8 xPB ← x
9 if cost < gBestCost then

10 gBestCost ← cost
11 xGB ← x

12 w ← wdamp · w
13 return xGB

3 Experimental setup

The experiments that provided the data analyzed in this thesis were done in microgravity
conditions during parabolic flights. The data analyzed in this thesis was collected during a
flight campaign organized by the German Space Agency at DLR and hosted by Novespace
in 2018. The dusty plasma experiments were performed by scientists from the University of
Greifswald and the University of Oslo. The setup of these experiments are presented and
explained in this section.

3.1 The IMPF-K2 plasma chamber

The plasma chamber used to produce the dusty plasma is called IMPF-K2. Descriptions of this
plasma chamber can also be found in [35], [11], and [12]. A sketch of the IMPF-K2 chamber is
shown in figure 3.1. The chamber is filled with an argon gas, which is ionized by applying
an alternating voltage between two disk-shaped electrodes with diameter 80 mm, resulting in
a so-called capacitively coupled plasma. The gap between the two electrodes is 30 mm. The
alternating frequency of the voltage between the electrodes is 13.56 MHz and typically has a
peak-to-peak voltage between 45 and 100 V [11, 35]. The electrodes in the IMPF-K2 chamber
apply the same voltage everywhere on the surfaces of each electrode, and the two electrodes
are operating in push-pull mode, meaning that the applied voltages of the two electrodes are
phase-shifted by 180◦ with respect to each other. The pressure of the argon gas is typically 15
to 50 Pa.

Particles are injected into the plasma chamber during a parabolic flight using electromagnetic-
ally driven dispensers. The particles are illuminated by a laser sheet that is created by using a
laser and a cylindrical lens. The dust particles used in this experiment were spherical particles
of melamine formaldehyde (MF), a type of plastic resin [2]. Two species of dust were injected
into the plasma chamber during the experiment; one species of pure MF with a diameter of
7.01 µm, and a second species of MF particles that were dyed with Rhodamine-B (RhB) with
a diameter of 6.38 µm. Rhodamine-B is a fluorescent dye that can be used to trace selected
dust particles [38]. An approximately equal number of pure MF particles and RhB particles
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Figure 3.1: Sketch of the IMPF-K2 dusty plasma chamber (side view). When dust particles
are injected into the chamber, they are illuminated by the laser sheet. The ‘field of view’
region is the region imaged by the cameras. Based on [11] and [58].

were injected into the plasma chamber. Figure 3.2 shows images of a large part of the dust
cloud taken during the same flight parabola as the one that is analyzed in this thesis. The
images are taken with two additional cameras, where one camera captures all particles (both
species), and the other camera captures only the fluorescent RhB particles.

Because the outward directed ion drag force scaling as a2 (see eqs. (2.34) and (2.37)), and
the inward directed electric field force which is responsible for the void boundary formation
scales linearly with a (see eqs. (2.21) and (2.23)), the larger 7.01 µm particles will be pushed
further out than the smaller 6.38 µm particles. Therefore, the particles in the field of view of
the images analyzed in this thesis are almost exclusively the slightly smaller RhB-coated MF
particles with diameter 6.38 µm.

On the parabolic flights, around 20 seconds of microgravity conditions are realized during
each parabola, and around 30 parabolas are performed each flight day during a parabolic
flight campaign [35]. The dynamics of the dust particles are sensitive to even small amounts
of residual acceleration, so usually only a few seconds of data from each parabola is usable for
detailed analysis.

3.2 Stereoscopic imaging

In the parabolic flight experiments, four cameras were used to image the IMPF-K2 chamber, for
the purpose of determining particle positions in three dimensions using stereoscopic imaging, or
stereoscopy. The cameras used in these experiments had a frame rate of 200 frames per second
(FPS). Stereoscopy is one of several different methods for reconstructing particle positions in
three dimensions [57], and it is the method that was used for the work in this thesis. It is a
method based on the principle that visual input from multiple different viewing angles gives
depth of vision [56]. It is realized by taking images simultaneously using multiple cameras
from different angles, and then using geometric optics to find the 3D position of the dust
particles.

Using two cameras is sufficient to determine the three-dimensional position of an object
[39], but since there are thousands of particles inside the chamber, some particles can be
occluded by other particles in multiple cameras. Having more cameras allows for detection of
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(a) Both species

(b) Fluorescent particles only

Figure 3.2
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several more of these particles that would otherwise be hidden by occlusion.

Each camera is calibrated by the help of a reference image or calibration image in order
accurately determine the so-called projection matrix of each camera [37]. The projection
matrices are required for both of the stereoscopy-based algorithms that are described in section
4, the STB algorithm and the PSO algorithm. The mathematical details of the optics of
stereoscopic imaging, including the projection matrices, can be found in [57, p. 181] and [37].
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4 Methods

To allow for a detailed study of the structures and physics of a dusty plasma system, the
three-dimensional positions of the dust particles must be determined. The particle positions
are found by the use of image analysis tools developed for this purpose.

In this section I will explain the two aforementioned methods for determining particle
positions in three dimensions from images: the ‘Shake the box’ algorithm and the particle
swarm optimization algorithm applied to dust particle detection. In addition, the process that
was used for optimizing the PSO algorithm will be described.

4.1 Determining the particle positions in three dimensions

When an image of the collection of particles is taken, the computer is not automatically
able to distinguish between a particle and the background. The image is simply a two-
dimensional array containing numbers that represent color intensities. However, the computer
can perform mathematical operations on arrays, including element-wise addition, subtraction,
multiplication and division. Subtraction is especially useful for comparing two images. Using
methods that will be explained below, positions of particles in 2D images can be determined.
This, in conjunction with the optics of stereoscopic imaging, can then be used to determine
3D positions of particles. In this subsection, the ‘Shake the Box’ algorithm and the particle
swarm optimization algorithm applied to dust particle detection are described.

4.1.1 The ‘Shake the Box’ algorithm

The ‘Shake the Box’ (STB) algorithm is one of the current established algorithms for determ-
ining dust particle positions in three dimensions [39, 35]. The STB algorithm is an iterative
reconstruction algorithm which is based on predicting the next position of the particles based
on their trajectories, which reduces the search space of the algorithm and therefore saves a
significant amount of computing time [70, 71] [57, p. 187]. A set of initial particle trajectories
is required to initialize the STB algorithm, so another algorithm has to be used in order to get
these initial trajectories. One method that has been used for this purpose is the ‘Iterative
Particle Reconstruction’ (IPR) method [70]. IPR searches the entire reconstruction volume
in each iteration and therefore it has a longer computation time compared to STB, which in
each iteration only searches a small targeted sub-volume.

Based on the provided initial trajectories, the STB algorithm ‘guesses’ a 3D position for the
particle inside this smaller search volume. Then, one small synthetic image is created for each
camera angle, where each image contains one particle, corresponding to the guessed 3D position.
The 2D positions in the images corresponding to the guessed 3D position are determined by
using the projection matrices of the respective cameras. These synthetic sub-images are then
subtracted from the corresponding sections in the input images, and the resulting difference
images can be used to quantify how well the guessed 3D position matches the position of a
real particle.

The small volume that STB searches is what is called the ‘box’, and it is ‘shaked’ (slightly
moved) iteratively until a sufficiently good match between synthetic images and real images is
found, hence the name ‘Shake the Box’ [70]. More details on the STB algorithm can be found
in [70, 71, 57].

4.1.2 The particle swarm optimization algorithm

While the details of the inner workings of the PSO algorithm were explained in section 2.5,
here, the application of PSO in the context of dust particle position detection will be detailed.
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The PSO program/script that runs the PSO algorithm is written in MATLAB. The built-
in MATLAB function particleswarm is used for performing the actual particle swarm
optimization [4]. The various parameters that are used in the PSO program are described in
more detail in section 4.2.3.

The main idea behind the usage of PSO for dust particle position detection is that the
determination of dust particle positions can be turned into an optimization problem. A
three-dimensional position, ~r = (x, y, z), is the input that we want to be optimized to match
a 3D position of a dust particle observed in the images. Using the projection matrices, ~r
will correspond to a 2D position ~r2D,i in each camera, where i is the camera number. PSO
requires a cost function to minimize, and in our case this cost function will be named the
residual function, or simply the residual 6. The residual between two images I sub and I art

is defined in the following manner:

diff = I_sub-I_art; % Difference between real image and artificial image

diff(diff<0) = 0; % Discard negative values

residual = (sum(diff(:))-sum(I_sub(:)))/sum(I_art(:));

where I art is a small artificial image containing one artificially generated dust particle at the
image position ~r2D,i and I sub is a sub-image of the same size copied from the corresponding
position in the real image. Typically a 4× 4 pixel sub-image of I art and I sub have been
used in this project. From this expression we see that if I art = I sub, meaning that we have
a perfect match, then the residual equals −1. If there is no particle in the sub-image of the real
image at the guessed position then we will have I sub = 0 (an array of zeros, excluding image
noise), which leaves the diff array with only zeroes after all negative values are set to zero,
resulting in a residual of 0. Initial testing that I did using two artificial particles in two separate
images showed that the residual between the two images had a monotonous decrease toward
−1 as the two particle positions converged toward each other. The optimization problem is
thus to get the residual as low as possible. The above definition is for one image, or one camera
angle. Using N cameras, the total residual corresponding to one three-dimensional position ~r
is the sum of the residuals of the images corresponding to the different camera angles. In our
case we use N = 4 cameras, so a perfect match would correspond to a total residual of −4.

After each time particleswarm finds a particle position, the program subtracts the found
particle from the images of all camera angles (by setting, I sub = I sub− I art), essentially
deleting the found particle from the images in order to avoid detecting the same particle
position multiple times.

The PSO program divides the reconstruction volume into voxels. The volume of the voxels
can be specified by the user. Typically the entire volume is divided into anywhere between
ten to a few hundred voxels, but in any case the program loops through all voxels so that the
entire reconstruction volume is searched.

Each time the particleswarm function is called, it can find at most one 3D dust particle
position. This is because it searches for one optimal 3D position with regard to minimizing the
residual cost function. For this reason, the total number of times particleswarm is called (the
number of iterations) should be greater than the (estimated) number of dust particles. This
total number of iterations is spread out equally across all voxels. For example, with a voxel
volume of 2 mm3 and a dust particle number density of 20 mm−3, the number of iterations
of particleswarm in each voxel should be greater than 2 mm3 · 20 mm−3 = 40 in order to
make sure that dust particles are not missed. Each returned position by the particleswarm

function is stored in an array. The PSO program continues to call the particleswarm function

6The definition of the residual function was developed by Michael Himpel.
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until all of the voxels have been searched for the specified number of iterations. At the end,
all of the found particle positions are returned by the program.

4.2 Optimization of the PSO parameters

In order to determine how well the PSO algorithm can work for the purpose of finding particle
positions in three dimensions, the ideal values of the various parameters used in the program
should be found. This subsection goes through the process of how the PSO algorithm has
been optimized, including a description of the benchmarking process that was used in order to
find more ideal values for the various parameters.

In order to test the accuracy of the PSO algorithm, it is necessary to have the ground truth
positions of the particles, and also synthetic images based on these positions are also required.
Then, the PSO algorithm is run on these images, and it returns a set of found positions. The
accuracy of these positions can then be checked by comparing with the ground truth positions.
In this benchmarking process, a candidate position returned by PSO is accepted as accurate if
it is closer than 50 µm to one of the ground truth particles. From this acceptance or accuracy
condition, some performance parameters have been defined [71]:

• The fraction of ground truth particles that are found accurately by at least one of the
candidate positions: foundFraction.
foundFraction = 0 means that no particles were accurately found, and foundFraction =
1 means that all particles were found.

• The fraction of candidate positions that were not accurately close to any of the ground
truth positions (also known as ghost particles): ghostFraction.
ghostFraction = 0 means that none of the candidate particles were inaccurate, and
ghostFraction = 1 means that all of the candidate particles were inaccurate.

• The total runtime of the PSO program: runTime.

The ideal values of these performance parameters would be foundFraction = 1 and ghostFraction =
0. Both of these results parameters are important for the accuracy of the found positions. If
the results have a high value of foundFraction but also a high value of ghostFraction, the
program has found many particles but also many wrong positions. Similarly, if the results
have a low ghost fraction but also a low found fraction, the returned positions will be accurate,
but a lot of particles will be missing.

The runtime of the algorithm should of course ideally be as low as possible. However, as long
as the runtime is not unreasonably long, it can be a good idea to prioritize the accuracy of the
algorithm in order to get the most accurate representation of the dust particle system, and
therefore also a higher quality analysis of the physics of the system.

4.2.1 Creating synthetic images for benchmarking

The synthetic images that were used for benchmarking were created with a MATLAB script
that was developed as a part of this thesis. The main steps of the script are explained below.

The process of creating the synthetic particle sets has two main steps: 1) Generate the
particle positions inside the specified volume, and 2) generate synthetic images for each camera
angle based on the particle positions.

The particle positions were generated using a uniform random distribution, so each particle is
assigned a random position inside the specified reconstruction volume (with volume V ). The
particle number density ρN in the box is specified in the script, which then calculates the total
number of particles by multiplying the particle number density with the reconstruction volume,
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rounded off to the nearest whole number: N = round(ρNV ). One restriction was added to the
randomly generated particle positions: Each new position is only accepted if it is at minimum a
specified distance minParticleDistance away from its nearest neighbor. The distance to its
nearest neighbor is found with the built-in MATLAB function knnsearch. For the synthetic
particle sets used in this project, values between minParticleDistance = 0.050 mm = 50 µm
and minParticleDistance = 100 µm have been used. This is to emulate the realistic situation
that dust particles are not arbitrarily close to each other due to electrostatic repulsion between
the particles. A randomly generated position that does not fulfill this requirement is discarded,
and a new random position is generated, until it lands on a position where the nearest neighbor
is sufficiently far away. At the end of this process the program has produced an N × 3 array,
containing the three-dimensional positions of N particles inside the reconstruction volume.

With the particle positions obtained, the synthetic images are created by projecting the
positions onto 2D images using the projection matrices 7 for the different camera viewing angles
[87]. As in the experiments, we use four cameras for the synthetic images. The reconstruction
volumes and the projection matrices used for the synthetic particle sets in this project have
been slightly different from the ones used in the real experiments. For each camera, particles
are added one at a time. Using the projection matrix for the current camera, each position is
projected onto the plane of the camera viewing angle, resulting in a 2D image containing all
of the particles. The images are in black and white, with the background being black and the
particles being white. Each particle is added to the images as a white dot of exponentially
decaying intensity from the center of the particle,

Iparticle(x, y) = Ic exp

(
− (x− xc)2 + (y − yc)2

w

)
, (4.1)

where (x, y) is a position in the 2D image, (xc, yc) is the particle center position in the image,
Ic is the intensity at the particle center position, and w is the width of the particle (although
the particle border is continuous and not discrete). The intensity of any position/pixel in the
image can range between 0, which is completely black, and 1, which is completely white.

In the real images, there is some noise in the images; the background is not completely
black, but has a slight tint of dark gray. Therefore, in order to make the images more realistic,
some noise is added to the synthetic images. The noise is generated by adding a small random
intensity to each pixel. The random distribution of the noise is a Gaussian distribution, with
a specified mean noise intensity and standard deviation, capped between specified lower and
upper boundaries. The values for the mean intensity and standard deviation of the noise were
determined by trial and error by generating new particle sets and comparing them with the
real images until a realistic-looking image noise level was achieved.

The first version of the synthetic images initially used a constant value of Ic for all particles
in the images for all four cameras. This version of the synthetic images was used for the
majority of the benchmarking of the PSO algorithm. An example of such a synthetic image is
shown in figure 4.1b. A second version of the image-generating script was created at a later
point in time, which provides more realistic-looking particles in the synthetic images. One of
these images is shown in figure 4.1c. For comparison, a real image taken during one of the
experiments can be seen in figure 4.1a. In the more realistic synthetic images, the particle
width w was reduced, and the particle intensities were also reduced. In addition, the intensity
of each particle was randomly generated with a Gaussian distribution, in a similar manner as
with the image noise, in order to emulate the brightness variation of the particles in the real
images. As with the image noise parameters, the values for the mean intensity and standard
deviation that gave the most realistic-looking particles were determined by trial and error by

7The projection matrices used throughout this project were provided by Michael Himpel.
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generating new particle sets until realistic-looking particles and images were achieved. The
realistic-looking synthetic images allow us to get a more accurate idea of the performance of
a particle reconstruction algorithm with regard to accuracy. It also enables us to generate
images from real-image analysis in order to visually get a rough idea of the accuracy of the
particle reconstruction. Such a comparison is shown in section 5.2 (figure 5.8).

4.2.2 The benchmarking process

The process of benchmarking and optimizing the parameters of the PSO algorithm for
accuracy and runtime is done by running the algorithm for multiple specified parameter
values in a systematic way. The goal is to get foundFraction as high as possible and to get
ghostFraction and runTime as low as possible. The parameter values that accomplish a
higher accuracy and/or a faster runtime will be considered as the ideal values.

However, given that there were seven main parameters that were included in the benchmarking,
and the number of values for each parameter, and that each run took on average around 1.25
hours for the synthetic particle sets, a ballpark estimate of the total runtime of this N-tuple
for-loop is roughly 5000 years. So instead of doing that, I benchmarked parameters one or
two at a time, pairing parameters together that to the best of my judgement considerably
affected each other in terms of the resulting accuracy and/or runtime of the algorithm. The
consequence of this method is that the optimization most likely will not be perfect, but it was
still able provide significant improvements in terms of both accuracy and runtime (see section
5.1).

After each completed run of PSO, the results parameters for the current parameter value(s)
are calculated/registered (foundFraction, ghostFraction and runTime). These results are
saved in a .mat file. Each results file contains the relevant parameter value(s) in its file name.
After this script has finished, another script goes through all of these files and imports the
results so that the accuracy and runtime can be plotted against the parameter values, revealing
the most optimal parameter values with respect to accuracy and runtime. After each parameter
was optimized, the PSO program was updated to use the discovered optimal parameter values.
This process was repeated for each of the PSO parameters until all parameters had been
optimized.

4.2.3 PSO parameters

This subsection contains a list of the PSO parameters that were optimized, along with
explanations for how their values affect the algorithm. For the parameters that go into the
built-in particleswarm MATLAB function, descriptions of the parameters can also be found
on the MathWorks® website, as well as more information about PSO in a MATLAB context:
[4, 5].

SelfAdjustmentWeight: The SelfAdjustmentWeight parameter is the weighting of how
much the PSO algorithm will adjust each PSO particle toward its current personal best
position in the next iteration. It is the same as the coefficient cP in eq. 2.41. Default value:
SelfAdjustmentWeight = 1.49.

SocialAdjustmentWeight: The SocialAdjustmentWeight parameter is the weighting of
how much the PSO algorithm will adjust each PSO particle toward the current global best
position among all PSO particles in the next iteration. It is the same as the coefficient cG in
eq. 2.41. Default value: SocialAdjustmentWeight = 1.49.
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(a) A real image

(b) A synthetic image, version 1 (c) A synthetic image, version 2

Figure 4.1: Comparison between synthetic and real images. The blue squares highlight a
70× 70 pixel area in each image.
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FunctionTolerance and MaxStallIterations: These two parameters together define a
stopping criterion. If the relative change in the best function value from one iteration
to the next is less than FunctionTolerance, the algorithm considers this to be ‘stalling’.
If the best function value changes with less than FunctionTolerance in each iteration for
MaxStallIterations iterations (or in other words, if the algorithm stalls for MaxStallIterations
iterations), the particleswarm function stops. Default values: FunctionTolerance = 10−6

and MaxStallIterations = 20.

MaxIterations: This parameter defines a stopping criterion. If the number of iterations in the
PSO algorithm reaches MaxIterations, the iterations stop. Default value: MaxIterations =
200× (number of variables) = 600 in the case of three unknown variables (the three spatial
coordinates of a dust particle).

SwarmSize: The number of particles in the PSO ‘swarm’. Note that the PSO particles
are not the physical dust particles, as mentioned in section 2.5. A larger swarm size gives
more individual searching particles, which gives a higher possibility that the particleswarm

function will more reliably successfully find a dust particle in the allotted number of iterations.
Default value: SwarmSize = 50.

iterationMultiplier (Cit): The iteration multiplier parameter Cit determines the number
of times Nit the particleswarm function will be run on each voxel in the reconstruction
volume. This number is given by Nit = ceil(CitρNVvox), where ρN is the average particle
number density in the box and Vvox is the volume of the cubical voxels in the reconstruction
volume. Note that the ‘iterations’ here are not the same iterations that were mentioned
regarding the parameters FunctionTolerance, MaxStallIterations and MaxIterations.
Those iterations were the number of low-level iterations performed inside the particleswarm

function. In this context, the word ‘iterations’ refers to the number of times particleswarm

itself is called. The particleswarm function can find at most one particle position each time
it is called, which is why it must be called multiple times.

The reason why the number of iterations Nit is not set directly is because it is most practical
to scale the iterations with the particle number density, regardless of the total volume or the
voxel volume. If for example the voxel volume is increased, then the number of particles inside
each voxel will increase correspondingly, which in turn makes it necessary to increase the
number of iterations in order to find all of the particles inside each voxel. The above formula
for Nit takes care of these issues by controlling the number of iterations on each voxel through
the iteration multiplier Cit. Cit must be ≥ 1 in order for it to be possible to find all particles
in the reconstruction volume, and realistically it should be a bit higher (e.g. Cit ≥ 1.4) in
order to compensate for the fact that some voxels will contain more particles than others due
to the random distribution of the dust particles, as well as the possibility that particleswarm
may sometimes fail to find a particle position. When the real dust particle number density is
not exactly known, as is the case for real images, an estimate for the particle number density
must be made.

Note that increasing the number of iterations directly increases the total runtime of the PSO
algorithm program as well, so Cit should only be as large as is necessary.

residualLimit: This parameter deals with the ‘residual’, which was described in section
4.1.2, but it is briefly recapped here. The residual is essentially the difference between a
synthetically generated particle at a guessed position and the real image at that position.
For each of the camera angles, a residual between 0 (zero match) and −1 (perfect match) is
obtained. Summing up those for all Ncams cameras, we get a total residual between 0 (zero
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match) and −Ncams (perfect match). In our case we have Ncams = 4, so a residual of −4
represents a perfect match for a 3D position. Since a residual of −4 is basically impossible
given the random fluctuations of dust particle intensities in real images, residualLimit is
employed as the threshold value for which residual values are accepted as a successfully found
particle position. If residualLimit = 0, every single position suggested by PSO, including
the completely wrong ones, will be accepted. If residualLimit = −4, most likely not a single
suggested particle position will be accepted. An appropriate balance seems to be found for
residualLimit values somewhere in the range between −2.4 and −3.0.

voxelVolume: The volume of one of the cubic voxels that make up the reconstruction volume.
Some voxels may be rectangular instead of cubical in order to not unnecessarily search outside
of the reconstruction volume, but the cubic voxels are the ones with the largest volume. The
voxels of a reconstruction volume are illustrated for two different voxel volumes in figure 4.2.
The PSO program searches each voxel in turn, one at a time. It is not immediately clear
whether a large voxel volume or a small voxel volume is better for accuracy or runtime, which is
why the benchmarking of this parameter is necessary. Default value: voxelVolume = 1 mm3.

4.3 PSO: Personal contributions

Before moving on to the results section, I would like to establish which parts of the program was
already developed when I started the work on this project, and which parts I have developed.

The core of the code of the PSO program was written by Michael Himpel (University of
Greifswald). This includes, but is not limited to, the following:

• Implementing the mathematics behind stereoscopic optics, including the creation of the
projection matrices.

• Created the function that translates a voxel in 3D space to the corresponding regions in
the images of the four different cameras.

• Created the definition of the ‘residual’ cost function.

• Created the function PSO findParticle(), which uses the built-in MATLAB function
particleswarm() to find the global minimum of the residual function within a given
voxel of the reconstruction volume, and then returning a three-dimensional candidate
position. optimize the given a set of positions to find them best suiting the recorded
images.

• In general, created the foundational framework of the code and a working program
for detecting three-dimensional particle positions using the PSO algorithm. There are
many more functions and scripts that were not mentioned here that make up the initial
framework of the PSO program.

My contributions and further developments include the following:

• Implementing the residualLimit criterion, which sets a requirement for the maximal
allowed value of the residual cost function for the corresponding returned position to be
accepted by the PSO program.

• Applied the MATLAB function knnsearch() to determining the distance of a particle
in the returned set of positions to the closest ground truth particle (using synthetic
particle sets).
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(a) voxelVolume = 1 mm3

(b) voxelVolume = 10 mm3

Figure 4.2: The voxels of a reconstruction volume illustrated for voxelVolume = 1 mm3 and
voxelVolume = 10 mm3. The reconstruction volume is equal to 4 mm × 7 mm × 8 mm =
224 mm3. The red dots are particles from a computer-generated particle set.
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• Introduced the errorLimit parameter, which specifies how large of an error distance
is allowed from a returned position to the closest ground truth position for it to be
considered as an accurate position. Using this parameter, I implemented the accuracy
results parameters, namely foundFraction and ghostFraction.

• Implemented automatic calculation of a suitable number of particleswarm() iterations
in the PSO program depending on the number of voxels that the reconstruction volume
is divided into. The iterationMultiplier or Cit parameter, which is the scaling factor
that determines the number of iterations based on the voxel volume, was introduced for
this purpose.

• Implemented the support of rectangular voxels, which made sure that the entire re-
construction volume was covered, and that the voxels did not overextend beyond the
reconstruction volume, which was the case for most reconstruction volumes when using
only cubic voxels.

• Implemented ‘shaking’ of the voxels, where each voxel is systematically displaced slightly
in a spatial direction in each iteration. This was done in order to find any undetected
particles along the edges of the voxels. Additionally, I wrote a function that draws the
generated voxels, as demonstrated in figure 4.2, for the purpose of visualizing the voxel
sizes.

• Wrote the scripts that created the synthetic particle sets, as described in section 4.2.
Randomly generated particle positions were projected onto the 2D images corresponding
to the four camera angles by using pre-existing code and the projection matrices.

• As an additional required step for benchmarking the STB algorithm, I simulated simple
particle trajectories for the artificial particle sets, since STB requires initial trajectories.
The trajectories were based on a simple constant acceleration term for each particle and
an additional inverse square repulsive force for particles that were close to each other.
Each particle was assigned a random 3D position and velocity within specified borders,
attempting to mimic the speeds observed in the real images. The trajectories were not
created to be realistic in the physical sense, just realistic enough that the STB tracking
could detect the trajectories, without making it too easy for the tracking algorithm (e.g.
using only constant velocities).

• Created the benchmarking scripts as described in section 4.2, along with the ‘infrastruc-
ture’ that was required for it, including folder structures, results file names for different
parameter values, value reading from specific results files for different parameters, etc.
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5 Results and discussion

This section contains the results of the benchmarking process for the PSO parameters, as well
as its application for reconstruction of dust particle positions from real data and the analysis
of the obtained positions.

The optimal parameter values are determined and presented, and the finalized version of PSO
is then tested against the STB algorithm on a realistic artificial particle set in section 5.1.
In section 5.2, the PSO algorithm is used to obtain the three-dimensional particle positions
from images taken during the parabolic flight experiments performed during a flight campaign
organized by DLR in 2018.

The reconstructed dust particle positions will then be analyzed. Pair correlation functions
will be calculated first for a single isolated string, and then for string-containing regions in
the plasma chamber in section 5.3. Various forces on a dust particle in a string in the dilute
region will be estimated in section 5.5. Before calculating the forces, estimates for the different
required plasma parameters are calculated in section 5.4. The forces acting on a dust particle
in a string with constant velocity will be considered and discussed.

5.1 PSO benchmarking

The benchmarking results (accurateFraction, ghostFraction and runtime) for the different
parameters are shown in plots in this subsection. The mean values and standard deviations of
the results for each of the parameter values, as well as the results from the individual runs, are
indicated. Each of the parameter values were run on ten slightly different randomly generated
synthetic particle sets. The number of particles inside the reconstruction volume in these
particle sets ranges between 2240 and 4032.

For each parameter or pair of parameters, optimal parameter value choices will be suggested in
three categories: Highest accuracy (prioritizing a higher accuracy, potentially higher runtime),
faster runtime (prioritizing a faster runtime, potentially lower accuracy) and balanced settings
(a balance between accuracy and speed). The settings that were used for the analysis of the
real images from the experiments in this project were high accuracy settings and balanced
settings.

SocialAdjustmentWeight and SelfAdjustmentWeight: Benchmarking results are shown
in figure 5.1. SocialAdjustmentWeight and SelfAdjustmentWeight were benchmarked
together in order to see how the results were affected by higher/lower emphasis on the swarm
particles going toward the global best solution (SocialAdjustmentWeight) vs. higher/lower
emphasis on the swarm particles going toward their personal best solutions (SelfAdjustmentWeight).
The results do not show a very big difference for the different chosen parameter values, though
the fraction of ghost particles is slightly lower for SocialAdjustmentWeight = 1.3 compared
to the other values. Although the difference in runtime is miniscule, the runtime seems to have
been a few minutes shorter for SelfAdjustmentWeight = 1.3 compared to the other values.

• Recommended settings: SocialAdjustmentWeight = 1.3 and
SelfAdjustmentWeight = 1.3.

FunctionTolerance and MaxIterations: Benchmarking results are shown in figure 5.2.
Here, the default value MaxStallIterations = 20 was used. The most notable results here
are for the runtime, which shows a clear dependence on FunctionTolerance. The smaller
FunctionTolerance is, the more iterations are required until the MaxStallIteration counter
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Figure 5.1: Benchmarking results for the SocialAdjustmentWeight and
SelfAdjustmentWeight parameters in the PSO algorithm. The benchmarking is per-
formed on 10 slightly different synthetic particle sets. The smaller dots represent the results
from the individual particle sets, the larger dots represent the average results of all sets, and
the error bars show one standard deviation of uncertainty around each average value.
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starts, which means that more total iterations and therefore more time will be required for
the particleswarm function to finish each time it is called.

There can be seen a slightly higher accuracy for smaller values of FunctionTolerance compared
to the larger values. The results do not show a notable dependence between the two parameters
in the chosen parameter value ranges. A possible reason for this is that the particleswarm

function might find the solution many iterations before MaxIterations is reached for these
values of MaxIterations.

• High accuracy settings: FunctionTolerance = 10−7 and
MaxIterations = 500.

• Faster runtime settings: FunctionTolerance = 10−3 and
MaxIterations = 400.

• Balanced settings: FunctionTolerance = 10−6 and
MaxIterations = 400.

MaxStallIterations: Benchmarking results are shown in figure 5.3. Here, the default value
FunctionTolerance = 10−6 was used. The value of MaxStallIterations is seen to signific-
antly affect both accuracy and runtime. The values of foundFraction and ghostFraction

reach a limit around MaxStallIterations = 13, where the accuracy improves no more with
increasing MaxStallIterations. The runtime is seen to continue increasing with increasing
MaxStallIterations. These results are reasonable, since a larger number of iterations at the
end of the algorithm, even after the position is accurately found, will increase the runtime
of each call of the particleswarm function. Furthermore, if the iterations terminate too
soon, the particleswarm function may not have come sufficiently close to the correct particle
position to be accepted as an accurately found particle. This means that that candidate
position will be counted as a ghost particle instead of an accurately found particle, resulting
in a higher ghostFraction and a lower foundFraction.

• High accuracy settings: MaxStallIterations = 20.

• Faster runtime settings: MaxStallIterations = 8.

• Balanced settings: MaxStallIterations = 13.

SwarmSize and iterationMultiplier (Cit): The SwarmSize and iteration multiplier
parameters have been optimized together because if the PSO program performs few iterations
of the particleswarm function, then the swarm size must be larger in order to thoroughly
search the entire volume of the current voxel and find all of the particles there (or as many as
possible). In the same way, if the program performs many iterations of the particleswarm

function, then a smaller swarm size can be sufficient in order to search the volume thoroughly,
and a larger swarm size would be unnecessarily time-consuming.

The benchmarking results are shown in figure 5.4. It is seen that the interdependence
between the iteration number and the swarm size comes the most into play for the accur-
acy for SwarmSize = 30, where the value of Cit is seen to affect the foundFraction and
ghostFraction results the most. Regardless, the highest accuracies are seen for higher values
of SwarmSize. The runtime grows in a linear fashion with SwarmSize, and is further increased
with higher values of Cit.

• High accuracy settings: SwarmSize = 90 and Cit = 2.0.
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Figure 5.2: Benchmarking results for the FunctionTolerance and MaxIterations parameters
in the PSO algorithm. The benchmarking is performed on 10 slightly different synthetic
particle sets. The smaller dots represent the results from the individual particle sets, the larger
dots represent the average results of all sets, and the error bars show one standard deviation
of uncertainty around each average value.

47



5.1 PSO benchmarking 5 RESULTS AND DISCUSSION

100 101

MaxStallIterations

0.6

0.7

0.8

0.9

1

fo
un

dF
ra

ct
io

n

foundFraction vs. MaxStallIterations

100 101 102

MaxStallIterations

0

0.05

0.1

0.15

0.2

0.25

gh
os

tF
ra

ct
io

n

ghostFraction vs. MaxStallIterations

100 101 102

MaxStallIterations

0

50

100

150

ru
nt

im
e 

(m
in

ut
es

)

Runtime vs. MaxStallIterations

Figure 5.3: Benchmarking results for the MaxStallIterations parameter in the PSO al-
gorithm, for values of MaxStallIterations between 1 and 80. Note that the x-axis is
logarithmic. The benchmarking is performed on 10 slightly different synthetic particle sets.
The smaller dots represent the results from the individual particle sets, the larger dots represent
the average results of all sets, and the error bars show one standard deviation of uncertainty
around each average value.
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• Faster runtime settings: SwarmSize = 40 and Cit = 1.4.

• Balanced settings: SwarmSize = 90 and Cit = 1.4.

residualLimit: The benchmarking results are shown in figure 5.5. The results for
foundFraction is highest for residualLimit values closer to −2, dropping as the value
moves toward −3.6. The ghostFraction results decrease between residualLimit = −2 and
residualLimit = −3. These are the expected results from the discussions of this parameter
in section 4.2.3.

The increase in ghost fraction for residualLimit ≥ −3.4 is unexpected. It could possibly
be an artefact from the fact that very few positions are accepted for more negative values
of residualLimit. Regardless, these values of residualLimit are not really useful for dust
particle detection of real data because of the low foundFraction results at these values.

There can also be seen a slightly higher runtime for residualLimit closer to −3.6 compared
to values closer to −2. The reason for this is unknown, but the dependence is small. Choosing
the value for residualLimit doesn’t have much to do with the runtime of the PSO program,
but rather it has to do with how many ghost particles the user wants to allow in the returned
set of positions.

• Higher detection threshold settings (lower foundFraction and lower
ghostFraction): residualLimit = −3.0.

• Lower detection threshold settings (higher foundFraction and higher
ghostFraction): residualLimit = −2.5.

• Balanced settings: residualLimit = −2.8.

voxelVolume: The benchmarking results are shown in figure 5.6. Note that for some values
of voxelVolume, the program threw an error and did not run. The reason for why this
happened is not known, but it seems to be an issue only for certain values.

The highest average foundFraction results are at voxelVolume = 2.5 and 3. However, this
average is based on only three particle sets each rather than ten, possibly due to errors for these
values of voxelVolume. The lowest values for ghostFraction are at voxelVolume = 8 and
10, along with high foundFraction results. These values of voxelVolume ran successfully for
all ten particle sets. The default value voxelVolume = 1 shows relatively high foundFraction

results and reasonably low ghostFraction results, and is perhaps the safest choice with regards
to avoiding voxel-related errors. The runtime does not seem to have a notable dependence on
voxel volume, other than a couple of anomalous slightly higher runtimes for voxelVolume = 4
and 5.

It is likely that the ideal choice of the voxel volume depends on the total volume and/or the
particle number density inside the total volume. This should be accounted for when using
the PSO program on a particle set or reconstruction volume that is very different in size or
particle density compared to the reconstruction volume used here. The reconstruction volume
used for these artificial particle sets is 4 mm× 7 mm× 8 mm = 224 mm3, and the particle
number density is between 10 and 18 particles per cubic millimeter.

• Recommended settings: voxelVolume = 1 (safe choice), or voxelVolume = 8 or
voxelVolume = 10 (possibly slightly lower ghostFraction).
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Figure 5.4: Benchmarking results for the SwarmSize and iteration multiplier (C it) parameters
in the PSO algorithm. The benchmarking is performed on 10 slightly different synthetic
particle sets. The smaller dots represent the results from the individual particle sets, the larger
dots represent the average results of all sets, and the error bars show one standard deviation
of uncertainty around each average value.
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Figure 5.5: Benchmarking results for the residualLimit parameter in the PSO algorithm.
Note that the x-axis is inverted. The benchmarking is performed on 10 slightly different
synthetic particle sets. The smaller dots represent the results from the individual particle sets,
the larger dots represent the average results of all sets, and the error bars show one standard
deviation of uncertainty around each average value.
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Figure 5.6: Benchmarking results for the voxelVolume parameter in the PSO algorithm. Note
that the x-axis is logarithmic. The unit along the x-axis is mm3. The benchmarking is
performed on 10 slightly different synthetic particle sets. The smaller dots represent the results
from the individual particle sets, the larger dots represent the average results of all sets, and
the error bars show one standard deviation of uncertainty around each average value. Note
that for some values of voxelVolume, the program threw an error for some of the particle sets,
so not all values of voxelVolume have 10 points of results data.
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5.1.1 Summary: Optimal PSO parameter values

As mentioned previously, the suggested parameter values are not necessarily the most optimal
set of parameters, because of the runtime limitations which prevent the testing of all combin-
ations of all parameter values. The suggested parameters found here are the most optimal
parameter values based on the benchmarking that was done.

High accuracy settings:
SocialAdjustmentWeight = 1.3
SelfAdjustmentWeight = 1.3
FunctionTolerance = 10−7

MaxIterations = 500
MaxStallIterations = 20
SwarmSize = 90
iterationMultiplier = 2.0
residualLimit = −2.8 *
voxelVolume = 1 **

Faster runtime settings:
SocialAdjustmentWeight = 1.3
SelfAdjustmentWeight = 1.3
FunctionTolerance = 10−3

MaxIterations = 400
MaxStallIterations = 8
SwarmSize = 40
iterationMultiplier = 1.4
residualLimit = −2.8 *
voxelVolume = 1 **

Balanced settings:
SocialAdjustmentWeight = 1.3
SelfAdjustmentWeight = 1.3
FunctionTolerance = 10−6

MaxIterations = 400
MaxStallIterations = 13
SwarmSize = 90
iterationMultiplier = 1.4
residualLimit = −2.8 *
voxelVolume = 1 **

* Alternatively: Use residualLimit = −3.0 or residualLimit = −2.5. See the
‘residualLimit’ paragraph in the first part of section 5.1.

** Alternatively: Use voxelVolume = 8 or voxelVolume = 10. See the ‘voxelVolume’
paragraph in the first part of section 5.1.
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5.1.2 Final results: PSO vs. STB

In order to test and compare the accuracies of the PSO algorithm and the STB algorithm, an
artificial particle set including particle trajectories over 20 frames was created. The artificial
images were similar to the ones in figure 4.1c. Frames 1-10 were set aside as initial trajectories
to initialize the STB algorithm; the PSO algorithm does not require initial trajectories. Frames
11-20 were analyzed by the PSO and STB algorithms. For this test, the ‘error limit’, which is
the limit for what counts as an accurate particle position or a ghost particle position, was
decreased from 50 µm to 30 µm.

For the STB algorithm, the mean results of these frames were foundFraction = 0.508 and
ghostFraction = 0.089. The ghost fraction result for frame 11 was as low as 0.040, for frame
12 it was 0.063, and it increased until the ghost fraction reached around 0.10 (peak value
0.113).

The very low ghost fraction for the first frames is likely due to STB being supplied with perfect
initial trajectories for frames 1-10. When analyzing real images, STB would require a separate
algorithm, such as IPR (see section 4.1.1), in order to get the required initial trajectories. The
initial trajectories obtained this way will not be perfect, which will reduce the accuracy of
STB, depending on the quality of the initial trajectories. The main consequence of poor initial
trajectories for STB seems to be a reduction in foundFraction rather than ghostFraction,
since STB in general does a good job of filtering out ghost particles.

For PSO, the average accuracy results for the analyzed frames were foundFraction = 0.621
and ghostFraction = 0.193. The results were close to equal for all of the analyzed frames.

From these results we see that PSO has a higher fraction of found particles and a higher
fraction of ghost particles than STB, so it is able to find more particles than STB, but it returns
more ghost particles as well. Since the PSO algorithm does not require initial trajectories,
the accuracy performance of PSO will most likely not be reduced as much as STB when
comparing the accuracy of the results for synthetic particle sets and real particle sets. Based on
these considerations, PSO is deemed to be a reasonable choice for analyzing the experimental
dataset.

5.2 Particle position reconstruction for real images

With the optimized parameter values, the PSO algorithm is run on the real images from the
parabolic flight experiments.

The acceleration data for the parabola during which the data analyzed in this thesis
was collected is shown in figure 5.7. In the data analysis, frame numbers spanning over a
range of just over 500 frames from the middle of the parabola, frames 2000 to 2504, were
analyzed. At the frame rate of 200 FPS this corresponds to about 2.5 seconds of data. The
exact synchronization between the time axis in figure 5.7 and the frame numbers could not be
obtained. However, it was possible to make a rough estimate of the positions of the chosen
frame range on the time axis based on when the parabola started and when particles began to
appear weightless, along with the frame rate of the cameras. It was estimated that the 2.5
seconds of analyzed data lie roughly somewhere in the range between 9 and 13 seconds on the
time axis in figure 5.7, with some room for error. In this time range, |az| stays below 0.01g,
|ax| stays below 0.015g and |ay| is negligible. The maximum residual acceleration magnitude
in the analyzed data is then |amax| ≡ amax = (a2

x + a2
y + a2

z)
1/2 ≈ 0.018g = 0.177 m/s2. The

force corresponding to this acceleration will be considered in section 5.5.
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Figure 5.7: Acceleration data for the parabola during which the data analyzed in this thesis
was collected. Top: Full cycle of the parabola, including the upward acceleration before
and after the parabola. Bottom: Zoomed-in region containing only the acceleration data
collected during the parabola. The acceleration a is plotted in units of g = 9.81 m/s2. a = 1g
corresponds to the gravitational acceleration at Earth’s surface and a ≈ 0g corresponds to
microgravity. The altitude of the airplane is also indicated in the plot (black curve).

Note that the x, y and z-axes when speaking of the acceleration data (the frame of the
airplane) are defined differently from the coordinate axes used for the coordinate system of the
reconstructed particle positions. We can distinguish these coordinate systems by unit vectors
x̂A, ŷA, ẑA for the ‘airplane coordinates’, and x̂C, ŷC, ẑC for the ‘plasma chamber coordinates’
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(the coordinates for the reconstructed particle positions). In the airplane coordinates, the
positive z-direction ẑA is defined to be the opposite direction of the gravitational pull g toward
Earth. The laser sheet in the plasma chamber which illuminates the observed dust particles is
a vertically extending plane in the airplane coordinates which extends in the directions x̂A

and ẑA. Comparing these directions with the coordinate system used for the reconstructed
particles, we have ŷC = ẑA, x̂C = x̂A and ẑC = ŷA.

A comparison between the PSO reconstruction results and the original image can be seen
in figure 5.8. Features such as the void, the dilute region in the midplane region and strings
are seen in both images. Note that the particles in the reconstructed image have random
intensities, as described in section 4.2.1.

Since ground truth positions are not available for real data, we cannot determine the
accuracy of the returned positions directly, but the tests on realistic-looking artificial particle
sets gave accuracy values of foundFraction between 0.60 and 0.65, and ghostFraction of
around 0.20. Because of the similarities between the artificial images and the real images, as
seen in figure 4.1, the accuracy of the returned positions for the real images is likely to be in
the same ranges.

In the following subsections, the positions returned by PSO from processing the real images
from the experiments will be used to analyze the system of dust particles, with special emphasis
on dust strings.
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(a) Original, real image

(b) Reconstructed image based on the particle positions returned by PSO

Figure 5.8: Comparison between the synthetic image based on the reconstruction done by
PSO (b) and the original image (a). The red rectangles highlight the overlapping regions in
the two images where the PSO reconstruction has been performed.
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Figure 5.9: Three-dimensional particle reconstruction of frame 2150 from the experiment data,
performed by the PSO algorithm. The green rectangle highlights the dilute midplane region
of the plasma chamber.

5.3 String formation

The positions found by the PSO algorithm in one of the analyzed frames is shown in figure
5.9. The dilute region, where the strings are located, are highlighted. It bears repeating that
the set of reconstructed particle positions is not completely accurate compared to the real
positions. Some particles will be missing, and some of the suggested positions will be slightly
displaced from their actual positions. However, the reconstruction is deemed to be sufficiently
accurate for the purpose of studying the observed string structures.

5.3.1 Particle strings in three dimensions

As mentioned in section 2.4, a string of particles seen in a two-dimensional image is not
necessarily a string in three dimensions. This is demonstrated in figures 5.10 and 5.11. Figure
5.10 shows highlights of two groups of particles that look like particle strings when viewed
from above. Seen from the side, in figure 5.10b, the particle group between x ≈ −3 mm
and x ≈ −1 mm is seen to be a largely disconnected set of particles with much variation in
the z-components of their positions. The particle group between x ≈ 0 mm and x ≈ 2 mm,
on the other hand, is revealed to contain several three-dimensional strings, separated in the
z-direction, along with some other separate particles. The strings at z ≈ −1 mm, z ≈ −0.5 mm
and z ≈ 0 mm are seen to consist of 4 particles, 3 particles and at least 4 particles, respectively.
This illustrates the necessity and usefulness of having the 3D positions of the dust particles
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(a)

(b)

Figure 5.10: Manually highlighted apparent particle strings when seen from a two-dimensional
view. Frame number: 2150. a) Top view (xy-plane). b) Side view (xz-plane).

for studying particle strings.

Figure 5.11 shows a handful of manually highlighted three-dimensional particle strings in
the dilute region in frame 2150. This is the same volume that is highlighted in figure 5.9. The
strings are viewed from different angles in order to show clearly that they are in fact strings in
three dimensions. The strings are directed mainly along the x-axis, with a slight slope in the
z-direction. When viewing the image sequence frame-by-frame, the dust particles, including
the strings, are observed to drift in the negative x-direction. The string directions are seen to
have slight variations in their y-components, but overall the directions show a symmetry about
the y-axis. The string directions, along with the dust velocity (see section 5.4), could imply
slight differences in the directions of the ion drift velocity at different points in the dilute
region if we assume that the particle alignment axis coincides with the ion stream direction.

The slight slope of the strings in the z-direction is somewhat unexpected. From figure 5.11b,
an estimate of the average angle of this slope is calculated to be 7.9◦. Similar slopes in the
z-direction were observed for the other analyzed frames as well. In the experimental setup of
the IMPF-K2 chamber, the laser is placed so that it illuminates a plane that passes through
the center of the plasma chamber. Though, a shift of the order of 0.5 to 1 mm cannot be fully
excluded. Since the three-dimensional center of the void is illuminated, we would expect to see
the same symmetry for the z-component of the string direction as is seen in the y-component
in figure 5.11a.

One possibility is that the laser was slightly shifted at some point before or during the flight
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of the experiment. In that case, assuming that the streaming ions from the center of the void
have approximately azimuthal (cylindrical) symmetry about the vertical axis (the ẑA = ŷC

axis), the cross section illuminated by the laser sheet would contain an ion stream that has a
slight bias toward either the positive or negative z-direction in the plasma chamber coordinates.
It could also be that the void had not settled in the exact center of the plasma chamber, which
also would end up illuminating a cross section of the dust cloud that does not pass through
the center of the void.

Additionally, the positions of the dust dispensers may have a slight influence on the initial dust
distribution. It is not very likely to be an effect of residual acceleration, since the acceleration
component in the y-direction of the aircraft frame, which is equivalent to the z-direction of
the plasma chamber frame, was negligibly low for the entirety of the parabola. However, the
possibility can not be entirely excluded.

One or several of these effects could be the reason for the observed slopes of the strings.

5.3.2 Pair correlation functions

The pair correlation function or radial distribution function g(r), as described in section 2.4,
has been calculated for the found 3D positions of the dust particles from images taken during
parabolic flight experiments performed in 2018. All of the pair correlation functions shown
this section are calculated for all distances between all particles, as in figures 2.3c and 2.3d in
section 2.4.

g(r) for a single string

A single isolated dust string among the found positions is shown in figure 5.12. It consists
of seven dust particles. The string was isolated by running a script that takes a set of found
positions and discards all particles that are outside of a specified volume.

The actual average distances to the first, second and third nearest neighbors in this particle
string was calculated using a simple script that sorted the particles in ascending x-values and
then calculated the three-dimensional distances between the different particles. These average
distances were 0.245 mm, 0.490 mm and 0.738 mm, respectively. This method will not work
well for an entire particle set with multiple strings and other particles present, but in the
simple case of one string it works, and it provides ground-truth values for the interparticle
distances to compare g(r) with.

Pair correlation functions in one and three dimensions have been calculated for the isolated
dust string and are shown in figure 5.13. Figure 5.13a shows a non-normalized version of
the radial (three-dimensional) pair correlation function. In the non-normalized version, the
y-axis of the plot simply shows the number of registered distances at each value of r. The
distance r is divided into data bins with a specified width binWidth. Additionally, a parameter
initialBinWidthIgnore specifies an initial data bin width that is to be skipped by g(r), that
is, no distances r < initialBinWidthIgnore will be counted by g(r).

The normalized version of the radial g(r) is shown in figure 5.13b. Due to the fact that
other particles are only found along one axis and in no other direction, the three-dimensional
normalization quickly decreases g(r) as r increases.

Figure 5.13c shows a one-dimensional g(r) which is calculated for the approximate direction of
the string. The string direction is found manually from the difference of the position vectors of
two particles in the string. In this case, the one-dimensional g(r) is exactly equal in its shape
to the un-normalized radial g(r) in figure 5.13a, but with a normalization for one dimension.
In actuality, in the one-dimensional g(r) some of the radial distance is ‘lost’ due to projecting
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(a)

(b)

(c)

Figure 5.11: Manually highlighted three-dimensional particle strings in the dilute region of the
plasma chamber. Frame number: 2150. a) Top view (xy-plane). b) Side view (xz-plane). c)
Perspective view at an angle from ‘behind’ the strings.
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Figure 5.12: An isolated particle string in the found positions obtained from the PSO algorithm.
The axis unit is millimeters.

distances onto the string direction axis, but in this case this projection did not affect g(r)
since the difference was too small to make any distances change bins.

Examining the shape of g(r) in figure 5.13a, it is seen that the first peak is located at
r = 0.290 mm, the second peak is at r = 0.530 mm, and the third peak is at r = 0.770 mm.
In this case, the second peak is actually distributed almost evenly between the two points
r = 0.450 mm with y = 2 registered distances and r = 0.530 mm with y = 3 registered
distances. The average of all these distances is r ≈ 0.498 mm, which is significantly closer to
the approximate ground truth value of r = 0.490 mm. The same thing is true for the first peak
as well, with y = 2 at r = 0.210 mm and y = 4 at r = 0.290 mm, giving a weighted average of
r ≈ 0.263 mm, which again is closer to the ground truth value of 0.245 mm.

This leads to some uncertainty in using the peaks in g(r) as indicators of the interparticle
distances within particle strings. In order to reduce this uncertainty as much as possible,
the two parameters binWidth and initialBinWidthIgnore should be adjusted so as to most
accurately match the real interparticle distances. The bin width should be small enough that
peaks and valleys of g(r) are captured, and also be wide enough to avoid a too high resolution,
which will result in a large number of peaks which can make features of the plot difficult to
interpret. The initialBinWidthIgnore parameter is used to shift all of the bins by a small
distance (less than one bin width) in order to find more pronounced peaks and valleys in g(r).
If the peaks are more well-defined it means that the peak positions are more likely to more
closely represent the actual interparticle distances in the string(s).

Finding values for binWidth and initialBinWidthIgnore that give more pronounced peaks
therefore helps to reduce the uncertainty of the interparticle distance. Still, even for a single
isolated string, the pair correlation functions in figure 5.13 demonstrate that g(r) is unlikely
to have perfectly pronounced peaks and valleys even for string-filled regions, because the
interparticle distance is not perfectly consistent, combined with the usage of discrete and
equally spaced data bins. Only two or in some cases three clearly distinguished peaks should
be expected to be seen in g(r) for regions containing strings with equal interparticle distance.
Since in practice only the first two peaks will likely be well-defined enough, only the first two
peaks will be considered in the estimate of the interparticle distance in particle strings.

Because the distance to the first and second particle in a particle string should be approx-
imately equal, an estimate for the interparticle distance in a string, d, that will be used here is
the average of the distance to the first peak and the distance between the first and second
peak, which is simply equal to half of the distance to the second peak:

d =
rpeak1 + (rpeak2 − rpeak1)

2
=
rpeak2

2
.
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Figure 5.13: The pair correlation function g(r) calculated for a single isolated dust string.
Two variants of g(r) were calculated: (a) and (b) are g(r) based on radial, three-dimensional
distance, where a) is without normalization and b) is with normalization. (c) is g(r) in one
dimension, along the direction of the strings. The bin width of the histograms used to calculate
g(r) was here 0.08 mm.
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Additionally, an approximate uncertainty of a half of one bin width wbin can be added, so
that d = rpeak2/2± wbin/2. Then, in this case g(r) yields

d =
0.530 mm

2
± 0.08 mm

2
= (0.265± 0.04) mm = (265± 40) µm, (5.1)

which agrees with the ground truth value of 0.245 mm = 245 µm within the specified uncertainty.

Regarding which version of g(r) to use: When studying string structures, which are one-
dimensional structures, the rapid decrease of the normalized three-dimensional g(r) as seen in
figure 5.13b is not a helpful feature. It makes the peaks in g(r), which are the indicators of
interparticle distances in the string, less pronounced. In addition, since dust strings extend
along a straight line (approximately), the information about the particle distribution in all
directions will mainly add a great deal of ‘noise’ that is likely to obscure any features in
g(r) that would reveal the presence of string structures. For these reasons, calculating g(r)
for one dimension, along the direction of the strings, is deemed to be the best option for
studying strings. Figure 5.13c serves as an example of g(r) for an ideal realistic case of a string
configuration.

g(r) for larger sets of found particles

With the above considerations in mind, a larger set of the found particles, with apparent string
structures present, have been analyzed using the pair correlation function.

Figure 5.14 shows one-dimensional pair correlation functions along with the different
regions they have been calculated for. The cylinders in the plots define the restriction volumes.
All particles inside a cylinder is counted toward g(r), and all other particles are not. The
line in the center of a cylinder defines the axis or direction along which the one-dimensional
g(r) is calculated. The cylinders used in the program are programmed in such a way that
they can have any placement and orientation in 3D space, which means that particle strings
along an arbitrary direction can be studied by specifying an appropriate direction for the
one-dimensional pair correlation function. Each cylinder is defined by a start point, a direction
vector, a length and a radius. Whether a particle is inside the cylinder or not is determined
by projecting their position vectors relative to the start point of the cylinder onto the center
line of the cylinder. This projection vector can be used to determine whether the position is
inside the confines of the cylinder both in terms of the length (displacement parallel to the
cylinder center line) and the radius (displacement orthogonal to the cylinder center line).

In order to better see indications of strings, a method that has been used here is to specify a
maximal distance in the plane orthogonal to the chosen direction along which g(r) is calculated,
maxOrthogonalDistance ≡ dmaxOrth. All registered distances projected onto this plane that
are greater than dmaxOrth are discarded. This method was also used by Himpel et al. (2018)
[35] for studying dust particle strings. They studied particle strings in a similar experimental
system as in this project, and they used dmaxOrth = 0.2 mm, which will also be used here.

Before continuing with the analysis and interpreting the results, there is one pitfall that should
be considered first, regarding the usage of dmaxOrth and the interpretation of peaks and valleys
in g(r). The main point I will make here is that it is important to not set the value of dmaxOrth

too small. Figure 5.15 shows the same pair correlation functions as in figure 5.14, but in
addition it has also calculated them using dmaxOrth = 0.8 mm. In this case this is equal to the
radii of the cylinders used as the restriction volumes which define which particles to include in
g(r), which essentially means that there are no restrictions on the orthogonal distances other
than the inherent restrictions of the cylinders themselves. In this figure it is seen that for
dmaxOrth = 0.2 mm, the pair correlation functions have a higher tendency to have a periodic
pattern of peaks and valleys compared to for dmaxOrth = 0.2 mm in all three regions, despite
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Figure 5.14: Comparison of g(r) for different regions in the reconstruction volume, highlighted
by cylinders. (a), (c) and (e) show PSO position reconstructions of frame 2150 in the image
sequence. (b), (d) and (f) show the pair correlation functions of frames 2150-2154, as well as
the average of these at each point. The cylinders all have a radius of 0.8 mm. The lines in the
middle of the cylinders define the direction g(r) is calculated along. The maximal orthogonal
distance to this direction is dmaxOrth = 0.2 mm. Note the different maximum values on the
y-axes in (b), (d) and (f).
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Figure 5.15: Comparision of one-dimensional pair correlation functions for different regions and
directions, as in figure 5.14, but here also for two different values of the maximum orthogonal
distance dmaxOrth. The graphs show the average g(r) of frames 2150-2154.

the fact that only one of the regions has notable string formation. This tendency was also
tested and confirmed with even smaller values of dmaxOrth. However, the pair correlation
function with decidedly the most pronounced peaks and valleys is g(r) for the dilute region
with dmaxOrth = 0.2 mm, which is the expected result. Figure 5.15 also demonstrates the
necessity of using the maximum orthogonal distance restriction, since g(r) for the dilute region
with dmaxOrth = 0.8 mm does not show peaks indicating interparticle distances despite the fact
that strings are present there.

This demonstrates that periodic peaks and valleys do not necessarily represent actual inter-
particle distances. Holding this assumption can lead to the wrong conclusion that strings are
present in a volume even when they are in fact not. However, if relatively pronounced peaks
and valleys are present then it can be an actual indicator of interparticle distances in the
strings in the selected volume. dmaxOrth = 0.2 mm seems to be an appropriate value to use for
the sets of positions analyzed in this project. In other experimental situations, if the number
density is very different from this situation, and therefore the mean length scales between
particles are smaller, then other values of dmaxOrth could be more suitable.

A time evolution of the pair correlation function between frames 2000 and 2504 is shown in
figure 5.16. Figure 5.16a shows the plots of g(r), where each graph is g(r) averaged over the
five frames indicated in the upper-right of the plot. Figure 5.16b shows the positions of the first
three peaks of g(r) as a function of time (frame number). Only the first three peaks are shown
in figure 5.16b because only the first two or in some cases three peaks in the different plots of
g(r) are pronounced enough to be considered as indications of string structures. The data bin
parameters that were used was binWidth = 0.08 mm and initialBinWidthIgnore = 0.06 mm.
The adjustment of the bin parameters were done manually by trial-and-error, so it is possible
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that other parameter values would give the most well-defined peaks, with slightly different
peak positions.

Peak no. 1 in g(r) in the dilute region is pronounced for all points in time, and the second peak
also remains quite pronounced. Figure 5.16b shows that the first peak remains at a constant
position in time of r = 0.260 mm, within one bin width. The second peak has a constant
position of r = 0.500 mm for all points in time except for frame 2100.

Using the estimate for the interparticle distance in the strings from eq. (5.1), along with an
uncertainty term of half of one bin width, the interparticle distance is estimated to be

d =
0.50 mm

2
± 0.08 mm

2
= (0.25± 0.04) mm = (250± 40) µm.

This is a relatively large uncertainty of 16%. However, it represents the maximum uncertainty
of the peak since the uncertainty spans the whole bin width (half of the bin in each direction).
Since the bin width and the initialBinWidthIgnore parameter were adjusted to find the
most pronounced peaks, there is some reason to believe that the result of 250 µm is somewhat
closer than 40 µm to the real average interparticle distance in the observed strings.

The distance between r = 0 and the first peak is approximately equal to the distance between
the first peak and the second peak. For this reason, the peaks can be interpreted as interparticle
distances in particle strings. We can then conclude that the interparticle distance in the strings
in the dilute region have an approximate interparticle distance of d = (250± 40) µm, and that
the interparticle distance stays approximately constant for the time between frames 2000 and
2500, which is equivalent to 2.5 seconds in real time.
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Figure 5.16: Time evolution of g(r) in the dilute region. g(r) is averaged over five frames every
50 frames between frames 2000 and 2504, giving 11 points in time. For each point in time,
the restriction volume/cylinder (see figure 5.14e) is adapted to the current frame in order to
only cover the dilute region. Each average g(r) is plotted in (a). The corresponding first three
peak locations in each g(r) are plotted in (b). The bin width used when calculating g(r) was
0.08 mm.
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5.4 Values of plasma parameters

In order to calculate the forces acting on dust particles in the discharge, the values of various
plasma parameters are required. In this subsection, the relevant plasma parameters and their
values will be presented. The parameters that required to be calculated were calculated in
MATLAB scripts that I developed as part of the work in this thesis.

Experiment parameter values: In the experiment, the pressure p and the RF power P
of the plasma chamber are adjustable parameters. The parameters during the experiment
analyzed in this thesis were p = 30 Pa and P = 3.5 W.

Distance between dust particles in a string: For the interparticle distance in a dust
string, the estimate based on the pair correlation functions in figure 5.16 will be used, which
was d = (250± 40) µm. For simplicity, the uncertainty term will be dropped and a value of
250 µm will be used in the force calculations.

Dust particle velocity: In the dilute midplane region, as highlighted in figure 5.9, the
dust particles are drifting in the negative x-direction. By stringing together the frames in
the image series from the experiment into a video clip using a video editing software [8], the
general movement of the dust particles could be studied in time. By visual inspection it was
observed that a significant fraction of the dust particles in the middle of the dilute region
moved with approximately constant velocity.

Then, looking at the reconstructed three-dimensional positions from the PSO algorithm for
the corresponding frames, a particle in a string with a typical velocity compared to the other
particles in the vicinity in the dilute region was singled out, and its position was manually
tracked over 5 frames. The velocity of the dust particle was estimated by taking the vector
difference of the particle position at the final frame rfinal and the position at the first frame
rfirst and then dividing by the time ∆t spanned between the two images. With a camera frame
rate of 200 FPS, the time between each frame is (1/200) s = 0.005 s = 5 ms. In the case of 5
frames, there are 4 timesteps between them, so ∆t = 0.02 s. The velocity was found to be

vd = [−2.338,−0.859, 0.635] · 10−3 m/s = [−2.338,−0.859, 0.635] mm/s,

which corresponds to a speed of vd = |vd| = 0.00257 m/s = 2.57 mm/s. The direction of this
velocity estimate matches the chosen string direction (as seen in figure 5.14e) quite well.

This gives only a rough approximation for the typical dust velocity in a string. However, the
dust velocity is required for calculating the neutral drag force, so it will enable us to get an
order of magnitude estimate of the neutral drag.

Additionally, the dust velocities were estimated for two particles at the beginning of the
dense region. These velocities were found to be v1 = [−0.349,−1.005,−0.940] mm/s, which
corresponds to a speed of v1 = 1.42 mm/s, and v2 = [−0.3135,−0.4644,−1.0607] mm/s, which
corresponds to a speed of v2 = 1.20 mm/s, respectively. Thus, these dust particles are on
average slower than the estimated particle speed in the dilute region by roughly a factor of
0.5, and their velocity directions have relatively larger y- and z-components. The change in
velocity direction of the particles entering the dense region happens because they are entering
the slowly rotating vortex cycle of the dust cloud. This observed change in velocity will be
discussed in section 5.5.

Dust particle mass and ion mass: The mass of a spherical MF dust particle of diameter
2a = 6.38 µm is md = ρMF · 4

3πr
3
d ≈ 2.04 · 10−13 kg.

The ion species for these experiments is argon gas atoms. As was mentioned in section 2.1.4,
the mass of an argon atom is mAr = 39.95u ≈ 6.63 · 10−26 kg = mi. Technically, the argon
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mass has one electron mass subtracted from it, but the electron mass is me = 5.486 · 10−4u =
9.109 · 10−31 kg, which is a negligible loss compared to the mass of the argon atom.

Electron and ion temperatures: The values for the ion and electron temperatures are
unknown for the exact physical parameters of this experiment. Himpel et al. (2018) used
values from a SIGLO2D simulation for the electron and ion temperatures, and these values
were Te = 3 eV and Ti = 0.03 eV, giving a temperature ratio of Te/Ti = 100 [35]. Since the
experimental setup of those experiments used the IMPF-K2 chamber with low pressure and
low power, I will use these values for the electron and ion temperatures. These values were also
used in simulations by Piel (2011) when testing his particle alignment model due to ion drag
forces in RF plasmas with subsonic ion flows [66], so these temperatures are not uncommon
for RF dusty plasma experiments.

What is meant by expressing a temperature T in electron volts, which is a unit of energy, is
that it is the temperature that is equivalent to an energy of kBT . In kelvin, the electron and
ion temperatures are Te = (3 eV)/kB = 34814 K and Ti = 348.14 K.

Electron and ion number densities: The electrion and ion number densities, ne and ni,
also have unknown values that cannot be easily calculated. By similar reasoning as for the
electron and ion temperatures, I will use the values of ne and ni that were used by Himpel et
al. (2018), which were ne = ni = 1015 m−3 [35]. This value for ni was also used by Piel (2011),
while the electron number density was not specified [66].

Floating potential of dust particles: For the floating potential of the dust particles, the
‘rule-of-thumb’ expression in eq. (2.18) for a temperature ratio of Te/Ti = 100 will be used.
With Te = 3 eV = 34814 K, the resulting floating potential is

φfl = −2.414 kBTe/e = −7.242 V.

Dust charge: The dust particle charges are estimated by the approximate formula for
the dust charge given in eq. (2.21). With a particle diameter of 2a = 6.38 µm and electron
temperature Te = 3 eV, an estimate of the dust charge is calculated to be

Qd = −(1400aµmTe,eV)e = −13 398 e = −2.147 · 10−15 C.

Ion thermal velocity: Based on the ion mass mi = 6.63 · 10−26 kg and the ion temperature
Ti = 0.03 eV = 348.14 K, the thermal velocity of the ions is calculated using eq. (2.32) to be

vth,i =

√
8kBTi
πmi

= 429.5 m/s.

Ion acoustic speed: The ion acousting speed is calculated using eq. (2.4). With electron
temperature Te = 3 eV and mi = 39.95u, the ion acoustic speed is

Cs =

√
kBTe

mi
= 2692 m/s.

Effective Debye length of streaming ions, and ion drift velocity: The effective
screening length of the plasma has been estimated using eq. (2.5), which takes streaming ions
into account. The drift speed ui of the ions is unknown. For this reason, the Debye length has
been calculated for ion stream velocities ranging between M = 0 and M = 2, where M is the
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Mach number of the ion speed and M = 1 represents ui = Cs, the ion acoustic speed. The
resulting screening lengths are shown in figure 5.17.

Some example values from this plot is λD = 100 µm at M = 0.2, λD = 200 µm at M ≈ 0.5 and
λD = 300 µm at M ≈ 0.85. The Debye length converges toward the electron Debye length as
M → 2, which, using eq. (2.2), is calculated to be 407 µm.

Himpel et al. (2018) calculated an estimated screening length in the dilute region of a similar
setup using the IMPF-K2 to be λD = 300 µm [35]. They also calculated the interparticle
distance in the dilute region of the plasma discharge, which was also observed to contain
strings, to be d ≈ 240 µm. The ion drift speed was not specified in that case, but is likely to be
subsonic, since Arp et al. (2012) observed subsonic flows in low-pressure, low-power plasmas
using the IMPF-K2, which is the same setup as in the experiments in this thesis and in [35].
Furthermore, the analyzed region of the dust cloud is far from the sheath edge of the walls
and electrodes where ions are being accelerated towards the wall to reach Bohm velocity, so
the claim of a subsonic ion flow is reasonable [67]. The experimental parameters in this thesis
is not identical to the ones in Himpel et al., so the Debye length in our case is not necessarily
equal to the Debye length found for that experiment.

The ratio between the interparticle distance and the Debye length in Himpel et al. was
d/λD = 240 µm/300 µm = 0.8. If the same ratio should be the case for the experiment analyzed
in this thesis as well, the Debye length would be λD = d/0.8 = 250 µm/0.8 = 312.5 µm. This
Debye length is seen to occur for M ≈ 0.9 in figure 5.17. Whether there is an exact connection
between the effective Debye length and the interparticle distance in a dust string in an ion
flow or not is unknown, so determining the ion flow velocity this way is questionable. Though,
it is not entirely unreasonable that a downstream dust particle might prefer to align itself at a
downstream position where the electric field from the upstream dust particle is sufficiently
shielded. This could be for 0.8 Debye lengths, or slightly less than one Debye length. Since
the experiment analyzed here and the experiment analyzed by Himpel et al. are quite similar,
this makes it more likely that the ion drift speed is between M = 0.5 and M = 1, which are
equivalent of effective Debye lengths between λD ≈ 200 µm and λD ≈ 325 µm, rather than
M < 0.5, which corresponds to effective Debye lengths λD . 200 µm.

Neutral temperature: The temperature of the neutrals will be assumed to be Tn = 300 K,
which is around room temperature. The plasma chamber containing the gas is kept at room
temperature during the experiments, and additionally it is not far off from the ion temperature
Ti ≈ 348 K.

Neutral thermal velocity: Using the neutral mass mn = mAr = 39.95u and the neutral
temperature Tn = 300 K, the thermal velocity of the neutrals is calculated using eq. (2.32):

vth,n =

√
8kBTi
πmi

= 398.7 m/s,

which is comparable to the thermal velocity of the ions.

Neutral number density: The neutral number density is the number density of neutral
(non-ionized) argon atoms in the plasma. The number density is used for calculating the neutral
drag force. As shown in appendix B, the Epstein formulas for the neutral drag force, which are
commonly used formulas for calculating neutral drag forces in dusty plasma contexts [57, 17],
have the ideal gas assumption for neutrals, p = nnkBTn, built-in. Using this justification, the
neutral number density is calculated using the ideal gas law. With p = 30 Pa and Tn = 300 K,
the neutral number density is found to be

nn =
p

kBTn
= 7.243 · 1021 m−3.
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Figure 5.17: The effective screening length of an argon plasma containing streaming ions
for different ion drift speeds ui, based on eq. (2.5). Plasma parameter values: Te = 3 eV,
Ti = 0.03 eV, mi = mAr = 39.95u, ne = ni = 1015 m−3. Ion acoustic speed: Cs = 2.69·103 m/s.

Dust particle number density: The number density of the dust particles in a specific
region of the plasma chamber is estimated by dividing the number of particles in the selection,
Nsel, by the volume Vsel that the particles in the selection spans. The volume Vsel of a
three-dimensional rectangular selection of particles is determined in a script by inputting
a selection of particles and setting the corners of the selection volume to be the maximum
and minimum values of the x-, y- and z-coordinates among the selected particles, and then
multiplying the side lengths together.

Due to the values of the fraction of found particles (foundFraction) and the fraction of
ghost particles (ghostFraction) from the testing of the PSO algorithm on realistic particle
sets, the number density obtained from the calculation based on the returned positions from
the PSO algorithm will naturally also be slightly inaccurate compared to the real value of the
number density. A correction to the calculated number density based on the positions returned
by the PSO algorithm can be performed by using estimates for the accuracy parameters
foundFraction and ghostFraction. Rename these parameters as foundFraction ≡ f and
ghostFraction ≡ g. If we first assume that the values of f and g are known exactly, the
correction comes from the following relation:

nPSO ·
(1− g)

f
= nGT, (5.2)

where nPSO ≡ NPSO/V is the number density of the returned PSO positions (total number of
returned PSO positions, NPSO, divided by the reconstruction volume V ) and nGT ≡ NGT/V
is the number density of the ground truth positions (total number of ground truth positions,
NGT, divided by the reconstruction volume V ). A proof of eq. (5.2) can be found in appendix
A. For the real data set, f and g are not known, and therefore the results from the test
performed in section 5.1.2 on the realistic artificial particle set will be used as estimates for
the accuracy parameter values for the real images.
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The correction in eq. (5.2) was tested on the PSO results for an artificial particle set
(similar to figure 4.1c). The ground truth particle density in the entire reconstruction volume
was 4480, and the volume was V = 224 mm3, giving a ground truth particle number density
of nGT = 20 mm−3. 3620 particles were returned by PSO, leading to a particle density of
nPSO = 15.0 mm−3. Using the correction, with g = 0.19 and f = 0.62, the estimate for
the ground truth number density was nGT,est = nPSO · (1 − g)/f = 19.6 mm−3, which is
significantly closer to the ground truth number density of nGT = 20 mm−3.

This correction is based on the assumption that the PSO found fraction and ghost fraction
for the real images are the same as for the artificial particle sets. When running PSO on
artificial particle sets and images that are designed to look as similar as possible to the real
images (with respect to particle width, particle intensity, random intensity fluctuations, image
noise and particle number density), the ghost fraction and found fraction in the results from the
artificial particle set will likely be quite similar to the results when analyzing real images, where
ground truth positions are not available. Still, there is most likely at least some discrepancy
between the PSO accuracy for the real images compared to the artificial images, which should
be taken into consideration.

An additional correction that was made was to multiply the selected volume Vsel by a
factor C which is slightly larger than 1 if the selected volume is smaller than the entire
volume V (which is true in all cases except for when all particles are selected). This correction
was done with the purpose of increasing the accuracy of the calculated number density for
smaller selections of particles, since any empty space between the selected particles and the
nearest neighbours to the selected volume is not taken into account. This makes the selected
volume somewhat too small, resulting in the calculated number density being slightly too high,
especially for smaller selection volumes. The correction factor C is not large; its maximum
value is C = Cmax = 1.05 for Vselected � Vtotal, and it decreases linearly until Vselected = Vtotal,
where C = Cmin = 1. This value of Cmax was chosen by calculating the number density
using this correction for multiple different selection volumes for different values of Cmax, and
Cmax = 1.05 gave good corrections for a wide range of selection volumes.

Since the correction factor C is calculated based on a very simple linear model, it might not
give the best corrections to the number density for all volume selections. However, it was
shown through testing to be an improvement over the number density calculated without this
correction.

Using these corrections, the number density of dust particles has been calculated for the
returned PSO positions from analyzing the real images. The dust number density in frame
2150 of the dataset was calculated to be nd = 2.7 · 1010 m−3. This is within an order of
magnitude of the approximate number density of the estimated value of nd ≈ 1011 m−3 in [35],
where the experimental setup was similar to the experiments in this thesis.

5.5 Estimates for forces on dust particles in a string

Using the estimates for the physical parameters calculated in the preceding subsection, the
various forces on dust particles in a string, as presented in section 2.3.2, will now be estimated.

Longitudinal ion drag force: The ion drag force on a dust particle in a subsonic ion flow
is calculated using the Barnes model, eqs. (2.34) and (2.37). In the context of a dust string
this can be called a longitudinal ion drag force in the sense that it acts along the direction of
the dust string, which here will be assumed to be aligned with the ion drift velocity.

Since the exact ion drift speed is unknown, the ion drag is calculated for ion drift speeds
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Figure 5.18: Longitudinal ion drag force for subsonic ion drift velocities, calculated using the
Barnes model. This force acts in the longitudinal direction with respect to the axis of the
string direction. The force in the graph represents the magnitude of the ion drag force vector,
where the force vector has the same direction as the ion drift velocity.

between M = 0.1 and 1. The results are shown in figure 5.18. The ion drag force is seen
to have a magnitude in the order of 10−12 N = 1 pN. It is seen that the orbit force is the
dominant contributor to the ion drag force compared to collection force, which is relatively
weak for subsonic ion drift velocities. This is the expected result for the Barnes model of the
ion drag for a subsonic ion stream [57, p. 37]. At large ion drift speeds ui � Cs, the collection
force becomes dominant and the orbit force becomes negligible.

Neutral drag force: The neutral drag force on a dust particle was calculated using both
eq. (2.29) and eq. (2.30). As previously mentioned, the neutral number density nn, which is
required in eq. (2.29), was estimated with the ideal gas law for the neutrals.

Using eq. (2.29) with δ = 1.44, 2a = 6.38 µm, mn = 39.95u, vth,n = 398.7 m/s, nn =
7.243 · 1021 m−3 and vd = [−2.338,−0.859, 0.635] · 10−3 m/s, the neutral drag force was
calculated to be

|Fn| =
∣∣∣∣−δ 4

3
πa2mnvth,nnnvd

∣∣∣∣ = 3.023 · 10−14 N.

Using eq. (2.30) with ρd = 1500 kg/m
−3

and p = 30 Pa, the exact same result was obtained.
This force is directed in the direction opposite of the dust velocity, so the force along the string
axis is Fn = −3.023 · 10−14 N, where the positive direction is defined to be equal to the dust
velocity direction. For dust particles in a string, since the dust velocity most often coincides
with the string direction in the dilute region (and therefore also with the direction of the ion
stream), the neutral drag force acts as a resistance force to the the movement of the individual
particles, and to the movement of the string as a unit, along the string axis.

As discussed in section 2.3.2 and appendix B, the ideal gas law for the neutral gas,
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p = nnkBTn, is inherent in eq. (2.30). This is not an immediately obvious assumption to make
since a plasma is not an ideal gas, because a plasma is very much interacting with itself. It
might be a reasonable assumption since the neutrals aren’t affected by electromagnetic forces
and because they are by a large margin the dominant species in the gas.

If it turns out, for other experimental situations for dusty plasmas, that the neutral number
density is different than the ideal gas case, then I would argue that eq. (2.29) is likely to give a
more accurate neutral drag force, since it does not contain inherent assumptions about the
neutral number density. Regardless, eq. (2.30) is a commonly used version of the neutral drag
force in dusty plasmas [57], and has been used for the force analysis of similar experimental
setups, also with the IMPF-K2 plasma chamber [36], so I consider the ideal gas assumption
for the neutral number density to be an acceptable approximation in this case.

Electrostatic repulsion between particles in a string: Based on the estimate of the
dust charge Qd, the estimate of the effective Debye length of the plasma, and the interparticle
distance from the pair correlation functions, an estimate for the electrostatic repulsive force
between dust particles can be calculated by using eq. (2.25).

Figure 5.19 shows the electrostatic force on a dust particle that is located in a dust string
between two other equally charged dust particles with Qd = −13 398 e. The three particles
are all situated along one axis. The axis direction is arbitrary, and has here been set to be
the x-axis. The two fixed particles are located at ±d, where d = 250 µm is the estimated
interparticle distance in the string. An ion stream is imagined to flow in the positive x-direction,
so that the dust grain at x = −d can be referred to as the upstream particle and the dust
grain at x = +d can be referred to as the downstream particle. Since all three particles are
assumed to be located on a straight line, the force Fx is effectively a one-dimensional force.
Fx > 0 corresponds to a force in the positive x-direction, and vice versa.

It is seen that the repulsive forces act as a restoring force on the middle dust particle toward
an equilibrium point situated at the midpoint between the two fixed dust particles at x = 0,
where the sum of the repulsive forces is Fx = 0. The force is seen to range from Fx = 0
at the equilibrium point, and it increases to Fx ∼ 10−13 N at |x| ≈ 10 µm, Fx ∼ 10−12 N at
|x| ≈ 100 µm, Fx ∼ 10−11 N at |x| ≈ 200 µm, and keeps increasing as the middle particle
gets closer to either of the other two particles. It is seen that this force exceeds that of the
neutral drag force, |Fn| ∼ 10−14 N, even for small displacements, and exceeds the ion drag in
magnitude for |x| & 100 µm. The magnitude of the electrostatic force from one of the other
two dust particles at the equilibrium point is |Fx| ≈ 5 ·10−13. This means that the electrostatic
repulsive force exerts a relatively strong force on a dust particle in a string from each particle
when it comes to magnitude, though the net force is zero for equal dust charges. The fact
that the force is relatively strong and that there is an equilibrium in the midpoint between
the particles suggests that this force could be a contributing force that creates consistent
interparticle distances in a string, which is observed for many of the strings in the dilute region.
Though, the reason for why there is a consistent interparticle distance must include other
forces in addition to the electrostatic repulsive force, since there must be attractive forces
involved that keeps the particles somewhat fixed in the longitudinal direction relative to each
other. This is what the ion drag forces and the wakefield force are theorized to do.

As mentioned in section 2.4, simulations performed by Miloch et al. (2012) [60] led to
the conclusion that the charge distribution in a string is likely to be unequal for the different
dust particles, and that the change is non-monotonous (the charge does not increase/decrease
monotonously for each subsequent dust particle in the string). This means that assuming
an equal dust charge on all particles in a string is not entirely realistic, and this would in
turn affect the electrostatic forces between particles in a string and also shift the longitudinal
equilibrium points. Dust strings consisting of 4 or more particles were not studied in their
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Figure 5.19: The electrostatic forces on a dust particle with an upstream particle and a
downstream particle. The ions are assumed to flow in the positive x-direction, so that the
fixed particle at x = −d is the upstream particle and the particle at x = +d is the downstream
particle, where d = 250 µm is the interparticle distance of the string. The charge on each
dust particle is Qd = −13 398 e. (a) The electrostatic forces of the upstream and downstream
particle between x = −0.8d = −200 µm and x = +0.8d = 200 µm. The force direction is
defined so that Fx > 0 acts in the positive x-direction. The dark blue squares at x = ±250 µm
represent the upstream and downstream dust particles. (b) Same forces as calculated in (a),
but with the the absolute value of the net force plotted on a log scale and the x-axis extending
out to x = ±(d − 2a), where a = 6.38 µm is the radii of the dust particles. These are the
points where the middle dust particle touches the the upstream or downstream particle.
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Figure 5.20: Estimates for the magnitude of the transverse or horizontal restoring ion drag
force in subsonic ion flows at different displacements s from the equilibrium point s = 0
situated on the dust string axis. The force acts toward the string axis. The interparticle
distance used in these calculations is d = 250 µm. Calculated from the ion drag model by Piel
(2011) [66].

simulations, and has to my knowledge not been studied by other researchers, so detailed
knowledge about the charge distribution in longer strings is unknown.

Thermophoretic force: For the low RF power and low pressure conditions in the IMPF-K2
chamber in this experiment, the temperature gradient in the plasma chamber is negligible [36,
p. 70] [30]. So, in this analysis, the thermophoretic force will be neglected.

Fth ≈ 0.

Transverse restoring ion drag force: Estimates for the transverse restoring ion drag
force toward the axis of the dust string were calculated using eq. (2.39) from Piel (2011) [66].
The values used were Qd = −13 398 e and d = 250 µm. The results are shown in figure 5.20.
The distance s is the displacement from the string axis, and d is the interparticle distance of
the string. The equation is only valid for displacements s� d, so only values up to s = 0.3d
have been included in the plot.

The equation for the transverse restoring force in eq. (2.39) assumes equal dust charge on the
upstream particle and the downstream particle. As discussed in section 2.4, the dust charge
on the different particles in the string are not equal for the particles in the string due to
decharging in the ion focus regions, so the transverse restoring force estimate based on eq.
(2.39) will most likely be slightly inaccurate compared to the real values.

Residual acceleration force: Based on the maximum magnitude of the residual acceleration
of the analyzed data, which was amax = 0.018g = 0.177 m/s2, along with the mass of a dust
particle, the magnitude of the equivalent force of the residual acceleration is calculated to be
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Facc,max = mdamax = 3.60 · 10−14 N.

5.5.1 Sum of forces and comparison between forces

Using the estimates of the forces acting on a dust particle in a string, I will now consider the
sum of the forces on such a dust particle. I will study the case of a dust particle with constant
velocity based on the previously mentioned observation that a considerable amount of the
dust particles in the middle part of the dilute region, including entire strings in some cases,
have approximately constant velocity. There are some remaining forces that are unknown,
namely the wakefield force, the electric field force and the electric polarization force. The
electric field force is unknown because the electric field in the dilute region is unknown, and
the polarization force is unknown because the gradient of the effective shielding length is
unknown. Investigating the case of a stable (non-accelerating) string can give insight into the
magnitude of the remaining unknown forces.

Using the assumption of zero acceleration, Newton’s second law gives the following:

ΣF = Facc + FE + Fn + Fdrag,i + Fw + Fth = 0.

Facc is equivalent force due to the residual acceleration during the parabolic flight experiment.
FE = Fes,part + Fes,E + Fpol is the sum of the electric field forces, where Fes,part is the
electrostatic forces from the electric fields of other dust particles, Fes,E is the electric force
due to other electric fields in the chamber and Fpol is the electric polarization force. Fn is the
neutral drag force, Fdrag,i = Fi,long + Fi,tr is the total ion drag force, which is the sum of the
longitudinal and the transverse ion drag components, Fw is the wakefield force and Fth is the
thermophoretic force.

As previously mentioned, the thermophoretic force is negligible in this experiment, Fth ≈ 0.
We will consider the case of a stable dust string, so the assumption will be made that the dust
particle is positioned with no displacement from the string axis, which gives zero transverse
ion drag force, Fi,tr ≈ 0. If we make the assumption that the dust charges in the string are
equal, the interparticle electrostatic forces from the upstream and downstream particle will
cancel each other out, so that Fes,part = 0.

While the residual acceleration force Facc can have some non-negligible influence on the
dust dynamics with a maximal magnitude of 3.610−14 N in the analyzed image sequence, the
main usage of the reconstructed positions has been to calculate the pair correlation function
and to estimate the dust velocity. The dust velocity is only used in the calculation of the
neutral drag force, whose magnitude depends linearly on the dust velocity. If the dust velocity
was estimated wrong by a factor of 2, this would be equivalent to the neutral drag force being
estimated wrong with a factor of 2 as well. This would still lead to a neutral drag force that
is between one and two orders of magnitude weaker than the ion drag force, meaning that
it would still be a relatively weak force. The pair correlation function is not affected to a
large degree by small movements of the frame as a whole, since it only takes the relative
positions between particles into account. The other forces are calculated based on estimations
of the various physical parameters of the plasma, and are not based directly on the analysis
of positions or trajectories. For these reasons, Facc will be neglected in the following force
analysis.

The remaining terms in Newton’s second law are only in the longitudinal direction, along
the strings, so the force equation becomes one-dimensional. The remaining terms are:
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Fes,E + Fpol + Fn + Fi,long + Fw = 0

m
Fes,E + Fpol + Fw = −(Fi,long + Fn).

The magnitude of the ion drag force only becomes relatively small at M . 0.15. If
M < 0.15 then the effective Debye length is λD . 75 µm, which is much smaller than the
effective Debye length of the similar, though not equal, experimental conditions of Himpel et
al. (2018), who found an effective Debye length of λD ≈ 300 µm. As previously discussed, it is
more likely that the ion drift speed is between M = 0.5 and M = 1. For these ranges of the
ion drift speed, the ion drag force will have a magnitude in the order of 10−12 N. As a concrete
example, for M = 0.75 the ion drag force is Fi,long = 1.765 · 10−12 N. The neutral drag force
was estimated to be Fn = −3.023 · 10−14 N. Then, Fi,long + Fn = 1.735 · 10−12 N. This gives

Fes,E + Fpol + Fw = −1.735 · 10−12 N.

The sum of the electric field force, the polarization force and the wakefield force must then
provide the resistive force of magnitude 1.735 · 10−12 N in the direction opposite of the string
movement and ion flow, otherwise, the particles would be accelerated toward the wall.

Because the total electric field is unknown in the dilute region, it is possible that an electric
field force accelerates the ion stream in such a way that the ion drift speed gets a spatial
dependence, meaning that ∇ui 6= 0. In that case, the effective Debye length for streaming
ions in eq. (2.5) will also have a non-zero gradient since it is dependent on ui. This would give
rise to the electric polarization force, as in eq. (2.26). An acceleration of the ion stream would
also change the longitudinal ion drag force since it depends on the ion drift velocity. More
detailed knowledge about the electric fields and the ion drift velocity would be required in
order to gain more detailed knowledge about which forces contribute the most to the resistive
force acting on the dust particles in the dilute region.

As mentioned in section 2.3.5, Ludwig et al. (2012) [54] showed in simulations that for
a dust floating potential of φfl = −2.0 V and an ion drift speed of M = 0.75, the peak of
the ion focus was located at 1.1λD,e. In our case, the floating potential was estimated to be
−7.242 V, which is quite a bit higher. The electron Debye length is 407 µm for our plasma, so
using this assumption, the first wakefield peak (with a positive potential) should be located
at approximately 448 µm downstream from the first dust particle. If the first peak is found
at 448 µm, then it is actually closer to the second downstream particle in the string than the
first downstream particle, for the found typical interparticle distance of 250 µm. This does not
support wakefield attraction as the main force responsible for the transverse alignment of dust
particles, because then we would expect the first wakefield peak to coincide more closely with
the position of the first downstream dust particle in the string. To what extent the floating
potential affected the position of the peak was not studied by Ludwig et al., so this wakefield
position might not be accurate for our case. It is possible that the actual location of the
first wakefield peak is closer to the first downstream particle in the string. The interparticle
distance does, however, match closely with the effective Debye length for streaming ions at
certain ion velocities. In our case, at M = 0.75, the effective Debye length is 276 µm.

An alternative explanation for the opposing force on the dust particles in the dilute region
is that the electric field force in actuality comes from the combined effect of the cloud of
dust particles just outside of the dilute region. In a simplified picture, if we follow a particle
P1 in the dilute region that approaches the dense region, it will experience an electrostatic
interaction with the first particle in the dense region it encounters, P2. P1 will then experience
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an acceleration opposite to its velocity and be slowed down, and P2 will be accelerated further
into the dense region. P2 will then experience resistive forces by the other particles in the
dense region that impede further movement into the dense region. P1 will essentially be met
with the inertia of more particles the closer to the dense region it gets. This way, the dust
cloud could act like a large electrostatic ‘cushion’ for the incoming dust particles or strings
from the dilute region.

These dynamics are easier to see when viewing the video of the image series where one can
visually track single dust particles. It is apparent in the experiment videos that there are
relatively slowly moving vortices in the dense regions of the dust cloud. Particles that start out
in the dilute region, sometimes in strings, are accelerated by (most likely) the ion drag force,
and eventually they enter and merge into the denser regions of the dust cloud. Meanwhile,
some of the particles from the dense regions enter the dilute region due to the vortex rotation
of the dust cloud. Such a cycle makes it so that there will always be particles present in the
dense region at the end of the dilute region, and the particles in the dense dust cloud could
potentially be among the main contributors in the electric field force term Fes,E to provide a
force balance in the dilute region. The velocities of two dust particles in the beginning of the
dense region were calculated in section 5.4 to have approximately half the speed of the dust
particles in the dilute region. The velocity of the majority of the particles in the dense cloud
do not decrease to zero due to the vortex movement of the dust cloud.

In addition, the de-acceleration of the dust particles and strings in the middle of the dilute
region could also be in part because of a reduction in the longitudinal ion drag force due to
deflection of ions in the ion stream, which is one of the main features in the ion drag model by
Piel (2011) [66], in the beginning of the dilute region. If a significant fraction of the ions in
the ion stream is deflected in various directions, it would decrease the incoming flux of ions
on subsequent particles in the string and therefore reduce the longitudinal ion drag force on
the downstream particles. Such a diffusion of the ion stream could explain why strings often
appear less pronounced the further into the dust cloud they are.
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6 Conclusions

In this thesis, the PSO algorithm has been applied as a new method for reconstructing the dust
particle positions from the data images using stereoscopy. It has been optimized through a
systematic benchmarking process using artificial particle sets and images, and then it has been
compared to one of the current state-of-the-art algorithms for particle position reconstruction,
the STB algorithm. Through testing on an artificial particle set with realistic-looking images,
it was found that the PSO algorithm was able to accurately find a slightly higher number of the
ground truth positions, but it also returned a somewhat higher fraction of ghost particles. With
regards to runtime, STB is significantly faster than the PSO algorithm. If initial trajectories
are obtained, the STB algorithm can process a set of 10 frames in less than 30 minutes. For
the PSO algorithm, one frame can take 2-4 hours on a laptop computer. However, due to the
necessity of having initial trajectories to run the STB algorithm, which needs to be obtained
from a separate algorithm, when analyzing real images the STB algorithm will likely see a
reduction in accuracy. The PSO algorithm does not have this problem since it does not require
initial trajectories. Overall, it is demonstrated that PSO is a viable method for detection of
dust particles with a stereoscopic setup when compared to other algorithms currently used for
this purpose.

The PSO algorithm was then used to analyze real data from microgravity dusty plasma
experiments performed on parabolic flights. Three-dimensional string formation of dust
particles was observed in the dilute midplane region of the plasma chamber. The directions of
the strings were mainly in the x-direction in the coordinate system of the plasma chamber.
The y-components of the string directions had some variation between the different strings, but
was on average zero. The strings were observed to have a slight slope of approximately 7.9◦ in
the z-direction, which was contrary to expectations. The string directions were expected to be
symmetric in the z-component as well. Suggested causes for these slopes include that the laser
sheet was not illuminating the exact center of the void, or due to residual acceleration. The
dust particles in the dilute region, including the dust strings, drifted outward along the x-axis
before at some point reaching the denser regions of the dust cloud, where string formation
was observed to be less prominent.

By calculating the pair correlation function g(r) in the dilute region, where strings were
observed, an interparticle distance of d = (250± 40) µm was found. The interparticle distance
was found to be constant in time in the analyzed frame range, which was equivalent to a time
of 2.5 seconds. The effective Debye length was calculated for the plasma when taking the ion
drift speed into account for ion flow Mach numbers M between 0 and 2, and a Debye length
of 276 µm was found for the case of M = 0.75. This coincides quite closely with the estimated
interparticle distance in the strings. The ion drift speed is not known, though it is argued
that it is likely to be subsonic for this experimental setup [66], and more specifically between
M = 0.5 and M = 1.

Lastly, various forces acting on a dust particle in a string were calculated. The longitudinal
forces that were considered were the longitudinal ion drag force, the neutral drag force, the ion
wakefield force, the electric polarization force, the electrostatic force between dust particles
and the electrostatic force due to other remaining electric fields (the ‘electric field force’). The
transverse force that was considered was the transverse ion drag force.

For a dust particle located in between two other dust particles in a string, the electrostatic force
between particles naturally cancelled each other out at the midpoint between the dust particles
when assuming that the dust charges were equal. At a displacement of x = 0.1d = 25 µm
in the longitudinal direction, the net electrostatic force was in the order of 10−13 N toward
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the equilibrium point x = 0. The transverse restoring ion drag force was also calculated to
be in the order of 10−13 N for a displacement of s = 0.1d in the transverse direction. The
electrostatic repulsive force between particles in a string could be an important contributing
force for establishing consistent interparticle spacing within particle strings, in addition to the
transverse alignment caused by the transverse ion drag force. However, previous simulations
have shown that dust particles in a string could have different charges due to decharging
in the downstream ion focus regions [15], which would affect the electrostatic force between
dust particles. For this reason, we cannot say with certainty to what extent the electrostatic
repulsion brings stability to the interparticle distances in a string.

The neutral drag force is most likely not one of the main forces that contribute to the dynamics
of the dust particles. It does provide a small force of |Fn| ∼ 10−14 N that opposes the movement
of dust particles, but it is not significant compared to the longitudinal ion drag force at ion
flow speeds M > 0.2. The longitudinal ion drag force was calculated to have a magnitude of
|Fi,long| ∼ 10−12 N for ion flow Mach number M = 0.75. It is concluded that the ion drag force
is the main driver of the longitudinal drift of the dust particles and strings in the dilute region.

The case of a dust particle in a string with constant velocity, or zero acceleration, was
considered. Due to Newton’s second law, the remaining forces, namely the ion wakefield force,
the electric polarization force the electric field force, must together provide the resistive forces.
Though the ion wakefield force could not directly be calculated, the calculated interparticle
distance in a dust string was compared to an estimated location of the first peak of the ion
wakefield, based on information found in the literature. The interparticle distance and the
position of the first wakefield peak did not coincide in this case. It would be expected for the
first downstream particle to coincide quite closely with the first positive peak of the wakefield
if the wakefield force was responsible for the alignment of dust particles. However, the floating
potential of the dust particles used in the relevant study was φfl = −2.0 V, and the estimated
floating potential of the dust particles in this thesis was φfl ≈ −7.2 V. For this reason, the
estimated position of the first peak could be erroneous, and therefore the importance of the ion
wakefield force for string formation remains inconclusive. It is suggested that the remaining
forces that cause the de-acceleration of the dust particles in the dilute region could be a
combination of the reduction of the longitudinal ion drag force due to upstream particles
in the dilute region deflecting the ions in the ion stream, and the accumulated electrostatic
resistive forces from the dust particles in the dense region of the dust cloud.
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7 Outlook

In this section some future work is suggested, based on the work that was done in this thesis.

The Hough transform: A possibility for automatic detection of strings in three dimensions
is to use the three-dimensional Hough transform. One of the simplest usages of the Hough
transform is to detect lines in two-dimensional images, and a generalization for three dimensions
exists as well [23].

Trajectory filter for PSO: After the found positions are retrieved from the PSO algorithm,
using a particle trajectory filter on the set of found positions can help to eliminate ghost
particles. This can be done for example using similar methods as used in the STB algorithm.
The residualLimit parameter can then be set to a value slightly closer to 0, which will result
in more candidate particles being accepted by PSO, including both more accurate particles
and more ghost particles. By applying a trajectory filter, many of the extra ghost particles can
be filtered away, thus keeping the high fraction of discovered particle positions but reducing
the fraction of ghost particles. Note that the trajectory filtering algorithm should be able to
handle 7000 or more found particles per frame, since it seems that at least this many particles
are present in the plasma chamber, at least for experiments similar to the one analyzed in this
thesis.

Full benchmarking of STB: When benchmarking the accuracy of the STB algorithm, I
used the ground truth trajectories of the first 10 frames as initial trajectories for STB. A more
realistic approach would be to obtain the initial tracks from running a separate algorithm,
such as IPR, on the 10 first frames, as one would do for real images. This would give more
realistic accuracy results for STB compared to when using perfect initial trajectories.
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A PROOF OF NUMBER DENSITY CORRECTION FACTOR

A Proof of number density correction factor

A proof for eq. (5.2) is presented here. Let V be the total volume of the space containing
the particles. Let NGT be the real (ground truth) total number of particles. Let NPSO be the
total number of positions returned by the PSO algorithm. Let Nacc be the number of accurate
positions returned by the PSO algorithm, and let Nghost be the number of ghost particles
returned by the PSO algorithm. We have

NPSO = Nacc +Nghost. (A.1)

The number densities for the ground truth positions and the PSO-returned positions are
defined as

nGT ≡ NGT/V, and (A.2)

nPSO ≡ NPSO/V, (A.3)

respectively.

The ghost fraction is defined as ghostFraction ≡ Nghost/NPSO, and the found fraction is
defined as foundFraction ≡ Nacc/NGT. In addition, we can define the accurate fraction as
accurateFraction ≡ 1− ghostFraction. The accurate fraction is the fraction of accurate
positions in the positions returned by PSO. We then have the following definitions:

foundFraction ≡ Nacc/NGT, (A.4)

ghostFraction ≡ Nghost/NPSO, (A.5)

accurateFraction ≡ Nacc/NPSO. (A.6)

Rewrite the accuracy parameters as foundFraction ≡ f , ghostFraction ≡ g and
accurateFraction ≡ a.

Statement A.1.

nPSO ·
(1− g)

f
= nGT

Proof.

nPSO ·
(1− g)

f
=
NPSO

V
· a
f

=
NPSO

V

Nacc/NPSO

Nacc/NGT

=
���NPSO

V
�

��NaccNGT

���Nacc���NPSO

=
NGT

V
= nGT
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B PROOF OF IDEAL GAS RELATIONSHIP FOR NEUTRALS IN THE EPSTEIN
NEUTRAL DRAG FORMULA

B Proof of ideal gas relationship for neutrals in the Ep-
stein neutral drag formula

We have two expressions for the neutral drag force, from eqs. (2.29) and (2.30):

Fn1 = −δ 4

3
πa2mnvth,nnnvd

and

Fn2 = −mdβvd = −mdδ
8

π

p

aρdvth,n
vd.

We will assume that these two formulas give the same force, that is, that Fn1 = Fn2.

The following expressions will be useful: The thermal velocity is vtn,n =
√

8kBTs/(πms)
(from eq. (2.32)). The volume of a dust particle is Vd = (4/3)πa3. The mass of a dust particle
is md = ρdVd.

Statement B.1. If Fn1 = Fn2, then the ideal gas law holds for the neutrals, p = nnkBTn.

Proof.

Fn1 = Fn2

−δ 4

3
πa2mnvth,nnnvd = −mdδ

8

π

p

aρdvth,n
vd

m

−�δ
4

3
πa2mnvth,nnn = −md�δ

8

π

p

aρdvth,n

ρd
4

3
πa3mnnn = md

8

π

p

v2
th,n

ρdVd��mnnn = md
�8

�π

p�π��mn

�8kBTn

��mdnn =��md
p

kBTn

p = nnkBTn
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