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Long-term patterns of phenotypic change are the cumulative results of tens
of thousands to millions of years of evolution. Yet, empirical and theoretical
studies of phenotypic selection are largely based on contemporary popu-
lations. The challenges in studying phenotypic evolution, in particular
trait–fitness associations in the deep past, are barriers to linking micro-
and macroevolution. Here, we capitalize on the unique opportunity offered
by a marine colonial organism commonly preserved in the fossil record to
investigate trait–fitness associations over 2 Myr. We use the density of
female polymorphs in colonies of Antartothoa tongima as a proxy for fecund-
ity, a fitness component, and investigate multivariate signals of trait–fitness
associations in six time intervals on the backdrop of Pleistocene climatic
shifts. We detect negative trait–fitness associations for feeding polymorph
(autozooid) sizes, positive associations for autozooid shape but no particular
relationship between fecundity and brood chamber size. In addition,
we demonstrate that long-term trait patterns are explained by palaeoclimate
(as approximated by @18O), and to a lesser extent by ecological interactions
(i.e. overgrowth competition and substrate crowding). Our analyses show
that macroevolutionary outcomes of trait evolution are not a simple
scaling-up from the trait–fitness associations.
1. Background
Trait–fitness associations, especially when couched in terms of selection gradi-
ents [1], are traditionally studied on contemporary timescales [2,3]. Selection
acts in concert with drift and constraints on changing ecological and environ-
mental landscapes to produce phenotypes. There is robust documentation
using wild, extant populations that directional phenotypic selection is strong
in general [4] and stabilizing selection less common than expected [5]. These
observations are puzzling [6] given the apparent long-term phenotypic stasis
inferred from the fossil record [7]. This mismatch between our understanding
based on microevolutionary studies of natural selection [4,5,8] and those attrib-
uted to macroevolutionary patterns of phenotypic change [7,9], must be bridged
by not only further theory development but also data that allow us to peer
directly into the deeper past. Such data can be provided by the fossil record [10].

Despite the potential of using the fossil record for studying phenotypes and
fitness [11,12], few studies based on fossil data frame their questions around
trait–fitness associations. Kurtén’s [13] pioneering cross-sectional population
study on Pleistocene cave bears compared age-at-mortality, a fitness component,
with teeth morphology. Van Valen [14] followed in a conceptually similar study
using Miocene horses, while others estimated relative fitness of morphotypes
from one ontogenetic stage to the next, over millions of years of the evolutionary
history of a group of crustaceans [15]. Using an exceptional study system, we
assess, for the first time, the association between a fitness component (fecundity)
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Figure 1. Scanning electron micrograph (SEM) of Antarctothoa tongima showing a typical section of a colony with examples of each polymorphic module outlined.
Measurements we made are marked on the stylized figures of the same polymorphs (i.e. individuals in a colony with distinct morphologies and functions). This
unregistered specimen from Nukumaru Limestone Formation is housed in the bryozoan palaeontological collection at the Natural History Museum London (NHMUK)
(SEM micrograph number pdt18631). Az, autozooid (i.e. feeding polymorph, outlined in orange); Ov, ovicell (i.e. globular structure which serves as a brood chamber
for a single larva). Female polymorphs including ovicells are outlined in blue, male polymorphs in green. L, length; W, width. (Online version in colour.)
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and phenotypic traits for fossil populations of a single species
in the deep past and ask if such associations are consistent
with macroevolutionary patterns of the same phenotypes.

Here, we capitalize on the polymorphic, colonial nature of a
metazoan group, namely cheilostome bryozoans, wherewe use
the average density of female polymorphswithin a genetic indi-
vidual to estimate fecundity, which we use to approximate a
component of fitness [16]. Our study system is theNewZealand
cheilostome bryozoan Antarctothoa tongima (Ryland & Gordon,
1977). Antartothoa tongima is the ideal candidate for studying
evolution on timescales of 104–106Myr because (i) key pheno-
typic traits are preserved and quantifiable from fossil colonies
(figure 1; electronic supplementary material, figure S1); (ii) it
has a rich fossil record spanning more than 2 Myr of turbulent
climate history [17–19]; (iii) it is closely related to Celleporella
hyalina, a species relatively well-studied in laboratory settings
[20–22] on which we can root our assumptions.

Specific predictions for trait–fitness associations for three
phenotypic traits, namely feeding polymorph (autozooid)
size, brood chamber (ovicell) size and autozooid shape are
as follows. Specifically, larger autozooid size has been found,
across disparate cheilostome species, to be a key factor in
increasing the probability of winning interspecific overgrowth
competitions in spatial combats with other cheilostomes
[18,23] (see electronic supplementary material, figure S2).
Overgrowth has the effect of covering exit points (orifices) of
feeding lophophores and hence cause partial to complete
death of the overgrown colony. Whereas there is no large-
scale trend in increasing autozooid size over the evolutionary
history of cheilostome bryozoans despite apparent advantages,
there is a tendency for ancestral species to give rise to descen-
dent species that have larger autozooid sizes in the same
lineage [24]. Hence, our naive prediction for A. tongima is that
there should be a positive trait–fitness association for autozooid
size. We also investigate the trait–fitness relationships of ovicell
size and the shape of autozooids (figure 1). Ovicell size is a
strong predictor of larval and ancestrula (the parent module
in a colony) sizes and hence of the survival chances of newly
recruited colonies [25]. We hypothesize a trade-off between
fecundity and ovicell size, while we did not, a priori, expect a
relationship between fecundity and autozooid shape. We also
expected all three traits to be relatively constant through
2 Myr, given the commonly observed phenotypic stasis in the
fossil record [7].

In addition to studying trait–fitness associations, we also
asked if each of the three traits and fecundity are detectably influ-
enced by observed overgrowth competition and substrate
crowding in our focal species, as such ecological interactions
are known to negatively impact cheilostome bryozoans [26,27],
and/or if palaeoclimatic conditions explain variation in these
trait data.

2. Methods
(a) Study system
Antarctothoa tongima of the family Hippothoidae, is a common
encruster of hard substrates [28], living todayoff the coast of north-
ern New Zealand. A pioneer species like others in the same family
[29], A. tongima has a known depth range of ca 0–200 m [30]. It is
commonly preserved in Pleistocene shellbeds cropping out near
Wanganui and Waipukurau in the North Island of New Zealand
[30]. In common with other hippothoids, A. tongima shows a
degree of sexual dimorphism unusual among cheilostomes:
within a colony, there is a complete separation between poly-
morphs having feeding and reproductive functions (figure 1;
electronic supplementary material, figure S1). Female and male
polymorphs have vestigial or rudimentary polypides lacking a
gut, and consequently do not contribute to feeding [20,31].

We studied 414 fossil colonies of A. tongima collected in
January 2014 and March 2017 from six Pleistocene formations of
the Wanganui Basin, corresponding to six time intervals dated
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from 2.29 to 0.30 Ma [32], with temporal durations ranging from
0.11 to 0.02 Myr (electronic supplementary material, table S1).
The Wanganui Basin is a proto back-arc basin filled by a cyclic
depositional sequence 2 km thick, spanning the last ca 2.5 Myr
with a well-established, high-resolution chronostratigraphy
[19,33,34]. To minimize environmental differences due to deposi-
tional factors, we targeted only shellbeds from transgressive
system tracts [17,35], i.e. deposits that accumulated during coastal
transgression. Note that the material we collected was not targeted
at A. tongima. All the substrates we studied were bivalve shells.

(b) Measurement of average fecundity and
phenotypic traits

Antarctothoa tongima colonies are fragile and easily flake off
the substrate, hence entire colonies are seldom preserved. We
sampled groups of well-preserved zooids by taking light
photographs using a ZEISS Stemi 508 stereoscope equipped
with an Axiocam 105 colour camera. Each of these photographs
is termed a ‘spot’ and is a spatially random sample of a single
colony (electronic supplementary material, figure S1 and tables
S1, S2). For each spot (ca 5 mm2), we measured the area occupied
by the colony and tabulated the number of autozooids (feeding
polymorphs), males and females. Average fecundity is the density
of females bearing ovicells per polymorph. Note that maximum
area to which this species grows is about 300 mm2 (DP Gordon
2020, personal communication) such that the minimum area we
have sampled is 1.6% (if we only sampled one spot for a given
colony).

The same images were used to measure the maximum length
and width of autozooids and ovicells, a proxy for offspring
(larval) size, using ImageJ2 [36]. Autozooids and ovicells were
selected for measurements only if they were undamaged, clearly
free from distortion due to the substrate or teratology, had well-
defined boundaries and were astogenetically mature. We were
able to make measurements for 311 distinct colonies (electronic sup-
plementary material, table S2), recognized by the geometry and
direction of growth. The median number of zooids measured per
distinct colony is 13, but we note that within-colony morphometric
variation can be captured by measurement of as few as three zooids
[24]. Figure 1 shows how these traits were measured. We assured
that the areas from which zooids and ovicells were measured
were not tilted with respect to the frontal plane. Autozooid and ovi-
cell sizes (i.e. areas) were estimated by multiplying maximum
length by maximum width. For ovicell size, area estimated using
the multiplication of length and width is highly correlated with
that of a circle estimated using the average of length and width
as radius (R2 = 0.988; electronic supplementary material, figure
S3), hence we only present results using the latter. For a subset of
colonies, autozooids and ovicells were measured three times by
the same person on different occasions to test the repeatability of
our measurements. These measures are highly accurate between
repeats (R2 > 0.97; electronic supplementary material, figure S4).
Both autozooid length and width predict autozooid area relatively
well (R2 = 0.587 and 0.719, respectively), but length and width pre-
dict each other poorly (R2 = 0.102; electronic supplementary
material, figure S5). Autozooid shape was obtained as maximum
length divided by maximum width.

(c) Estimating trait–fitness associations
We estimate a component of fitness as average fecundity of
colonies (which are equivalent to genetic individuals in solitary
organisms) in each of the six time intervals using counts of
gravid females polymorphs (i.e. zooid with brood chambers/
ovicells that hold embryos) per polymorph unless otherwise
stated. Note that the few female polymorphs not bearing ovicells
(mean = 5.9%, median = 0% of all measured colonies with females
observed) were not included in the analyses, as they have not con-
tributed to offspring by the time of death. Relative fitness is used as
the response variable, and the (predictor) traits we investigate (i.e.
autozooid area and shape and ovicell area) are natural logged. In
other words, we have structured our analyses as one would for
estimating multivariate selection gradients sensu Lande & Arnold
[1], although we refrain from directly interpreting the coefficients
as selection gradients as our data are time-averaged [37].

We analyse colony means of the three traits (i) in multivariate
analyses for the entire 2 Myr as a whole (N= 169, where no trait
data aremissing), and (ii) in univariate analyses in each time interval
where each trait is represented by more data (N= 230, 244, 230 for
autozooid area, ovicell area and autozooid shape, respectively).
We use binomial glms to model fecundity (number of ovicells
given the total number of polymorphs, presented in figures 3 to 5).
Alternatively, we also used a Poisson glm to model the number of
ovicells, but using the area on which these are observed as a covari-
ate (see electronic supplementary material, tables S6, S7 and figures
S12–S15). We also present linear models where we use the ratio of
ovicells to total number of polymorphs as the response variable
(see electronic supplementary material, tables S8, S9 and figures
S16–S19) because selection gradients were formally cast as such
[1]. Model diagnostics are presented in the R Markdown file.

We systematically explored the relationship between trait
means (time interval averages) and the strength of the association
in all the univariate trait–fitness associations we performed (see
above) because when plotting non-standardized trait values we
observed that some trait–fitness associations are weaker when
traits are smaller (e.g. figure 4).

(d) Characterizing trait variance and the effect of
time-averaging

To gain understanding of the trait variability within colonies
(i.e. variation in trait given the same underlying genotype = ‘plas-
ticity’), across colonies (variation due to genetic differences), and
across time intervals (variation due to longer term evolution),
we plotted the variances of the three traits for each colony, as
well as for colonies grouped by the time interval (electronic sup-
plementary material, figures S6–S9). As one might suspect that
lumping samples from a longer time interval might inflate trait
variance, we inspected the relationship between trait variance
and the duration of the given time interval (electronic supplemen-
tary material, figure S10). In addition, we compare the variances
of larger, but temporally constrained samples within a time inter-
val, to smaller but temporally more dispersed samples, from the
same time interval (electronic supplementary material, table S3).

(e) Response of phenotypic traits and fecundity to
overgrowth competition, crowding and
palaeoenvironment

We use simple linear models to study the relationship between
each of our three (normally distributed) logged traits with (i) the
number of observed inter-/intraspecific overgrowth competition
(electronic supplementary material, figure S2) already documen-
ted in previous publications [18,23,35] or collected for the
purpose of the current study, (ii) the total number of bryozoan
colonies observed on the same substrate (used as an estimate for
crowding as a stress factor that may affect fecundity and pheno-
typic traits), and (iii) the mean and standard deviation of the
@18O values in each time interval (data from [38]), which mostly
reflects seawater temperature, commonly used as a proxy for
environmental change and overall climate state (e.g. [7]).

We used a binomial glm to study the relationship between
fecundity (as a response variable), the three traits, overgrowth,
crowding and palaeoclimate (as predictor variables). In each
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Figure 2. Temporal changes for A. tongima colonies over 2 Myr. The six time intervals are plotted with medians, the boxed interquartile ranges and the span of the
data. (a) Plots the number of gravid females (ovicells) per polymorph, (b) autozooid and (c) ovicell area, which are both in natural log μm2; and (d ) autozooid
shape which is dimensionless, but also natural logged. The data (colony averages or values) are grey points on the boxplots, with scatter for visibility. Numbers
below the second row show the age ranges in million years of Nukumaru Limestone, Nukumaru Brown Sand, Lower Kai-iwi Shellbed, Upper Kai-iwi Shellbed,
Shakespeare Cliff Basal Sand Shellbed and Landguard Formation, respectively.
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case, models are compared using AIC. All analyses were run in
R. v. 3.6.1 [39].
3. Results
(a) Phenotypic traits and fecundity show substantial

variation within and across time intervals
The three focal traits, autozooid size (area approximated by
length times width), ovicell size (area approximated by πr2

where r is the average of ovicell length and width), and auto-
zooid shape (length divided by width, figure 1) for A. tongima
colonies vary within time intervals and through time, as does
fecundity, estimated by the number of gravid females (i.e.
females bearing ovicells) per polymorph (figure 2).

Within-colony trait variance is smaller than trait variance
at population level (i.e. within each formation) for all three
traits (electronic supplementary material, figure S6). Like-
wise, trait variance within each formation is smaller than
that for all formations combined (electronic supplementary
material, figures S7–S9). Although there is time-averaging
within each formation, we show that the variance of samples
(very short time windows in a formation) represented by
multiple colonies are not distinguishable from the variance
of time-averaged colonies (the time window of the whole
formation, see electronic supplementary material, table S3).

(b) Trait–fitness associations are relatively stable
through time

Using a data subset ofN= 169 colonies, with nomissing data for
anyof the three traits, the best AIC-rankedmultivariate binomial
generalized linear model (glm) of colony-level relative fitness
(electronic supplementary material, table S4), estimated as
fecundity, suggests a negative trait–fitness relationship for log
autozooid area, no relationship for log ovicell area and a positive
trait–fitness relationship for skinnier (i.e. relatively longer) auto-
zooids (figure 3; electronic supplementary material, table S5).
Byestimating these trait–fitness associations for the six time inter-
vals using a univariate binomial glm for each trait separately, we
found that the first relationship is negative in five of six time inter-
vals (N= 230; figure 4), the second has no detectable relationship
in five of six time intervals (N= 244; electronic supplementary
material, figure S11), and the third has a positive relationship in
four of six time intervals (N= 230; figure 5). These results are
robust to alternative approximations of fecundity and models
with different assumptions of response variable (relative fitness)
error distributions (see electronic supplementarymaterial, tables
S6–S9 and figures S12–S19 for linear and Poisson glm results).

We observed that the negative trait–fitness association for
autozooid area is absent when A. tongima is at its smallest in
our dataset (Nukumaru Limestone Formation 2.29–2.08 Ma;
figure 4). This association tends to be stronger when autozooid
areas are large, although there is no statistical correlationbetween
the strength of this association andaverage autozooid areas (elec-
tronic supplementarymaterial, figure S20). For completeness,we
also explored the correlation between the strength of the trait–
fitness relationship and themean of the traits involved for ovicell
area and autozooid shape, but found no correlation (electronic
supplementary material, figures S21–S28).
(c) @18O, but not overgrowth competition and
crowding, effects phenotypic traits and fecundity

The best (linear) model for autozooid area (electronic sup-
plementary material, table S10), while including overgrowth
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interactions (electronic supplementary material, figures S2,
S29), shows only a weak effect of crowding (i.e. total number
of bryozoan colonies observed on the same substrate), but a
clear indication that @18O, a proxy for palaeoclimate, has a
positive relationship with autozooid size where one unit
change in @18O is predicted to result in 0.213 ± 0.049 log units
of change in size (figure 6; electronic supplementary material,
table S11). The best linear model for ovicell area (electronic
supplementary material, table S12) indicates that variability
in @18O has a negative effect and intraspecific overgrowth
interactions have a positive effect (electronic supplementary
material, table S13). The best linear model for autozooid
shape (electronic supplementary material, table S14) features
overgrowth interactions and @18O both having estimated
small or highly uncertain effects (electronic supplementary
material, table S15). Fecundity is best explained using a
binomial glm excluding overgrowth interactions (electronic
supplementary material, table S16). However, this model
demonstrates a strong effect of @18O, where one unit change
in @18O increases the odds of ovicells by 0.397 ± 0.119 units
(electronic supplementary material, table S17).
4. Discussion
Fitness is a slippery yet crucial concept in evolutionary
biology [40], and one that undoubtedly, but rarely, benefits
from insights from the fossil record. The strength of this
work lies in the unique possibility of estimating fecundity, a
fitness component, in fossil colonies of A. tongima. Fecundity
was used to capture the dynamics of trait–fitness associations
for three traits in six time intervals spread over 2 Myr of
evolution of a colonial marine species, going beyond the tem-
poral constraints of studies of contemporary populations
spanning several decades [3,41]. In the following discussion,
we use the term ‘fit’ when interpreting results based on our
estimated fecundity proxy, but note that this interpretation
should be made cautiously (see also caveats section).

We demonstrated that the trait–fitness associations can be
relatively stable on geological timescales (figures 4 and 5),
enlightening results from short-term contemporary studies
[8,42]. Yet the resulting phenotypic change (figure 2b,d )
sometimes appears to contradict predictions based strictly
on trait–fitness associations. We have also shown substantial
change of our studied traits over time, contradicting the
apparent phenotypic stasis often observed in the fossil record.

Take the example of autozooid size, a heritable trait in chei-
lostome bryozoans [43]. Smaller autozooid size is associated
with higher fecundity (figure 3) in four of six observable snap-
shots in the history of A. tongima (figure 4), contrary to our
naive predictions. Why are colonies with smaller autozooids
fitter, in the sense that they can have more offspring at any
one time, judging by the density of ovicells? Smaller and con-
sequently more densely packed autozooids increase the
number of feeding organs (lophophores) to surface area [44].
More efficient feeding, in turn, speeds up the accumulation
of resources to allow for reproduction [45]. However, the
relationship between autozooid size and lophophore size/
number/efficiency has not yet been quantified as far as we
are aware. More importantly, smaller autozooid size enables
faster physiological sharing of resources among modules
within colonies [46,47]. However, despite higher fecundity
for colonies with smaller autozooid size, these sizes did not
systematically decline over evolutionary history (figure 2b).
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Instead, it is apparent that part of the temporal autozooid size
variation can be explained by changing palaeoclimatic con-
ditions (i.e. seawater temperature as approximated by @18O;
figure 6; electronic supplementary material, tables S10 and
S11), reminiscent of the simulation results from [7]. In fact, a
similar temporal pattern of autozooid size change is shown
by other cheilostome species in the Wanganui Basin over the
same time interval [18]. The multi-species, temporally con-
certed phenotypic pattern is likely in part driven by external
temperatures at the time the zooids were built, where lower
temperatures produce larger autozooids [48]. We hypo-
thesized that colonies with larger autozooids may also have
a fitness advantage as it has been observed that species with
larger autozooids are more likely to win, and hence survive,
overgrowth interactions [18]. However, no significant influ-
ence of overgrowth interactions on autozooid size was
detected for A. tongima (electronic supplementary material,
tables S11).

Colonies with skinnier autozooids also seem to be fitter
in general, although there is a reversal of this trait–fitness asso-
ciation in one of the time intervals (figure 5; electronic
supplementary material, figures S15 and S19). Skinnier auto-
zooids may accommodate polypids with relatively longer
tentacles, which may translate into more efficient feeding per
autozooid [49], and hence more resources for reproduction.
The shape trait is also positively influenced by the observed
number of intraspecific overgrowth interactions (electronic
supplementary material, tables S14 and S15), a result we did
not anticipate. Here, we might speculate that skinnier auto-
zooids are a reflection of higher growth rates especially when
meeting conspecifics to increase the chance of contact and
fusion between colonies [50]. This fusion (homosyndrome) can
increase survival and reproduction for the adjoined colonies
and occurs more often in poor competitors [51], such as
A. tongima [29].

Finally, the trade-off between ovicell (i.e. offspring) size
and number, commonly observed among solitary organisms
[52], was not detectable in our data for A. tongima (electronic
supplementarymaterial, figure S18). Intriguingly, intraspecific
interactions are associated with larger ovicell size, suggesting
that intraspecific interactions could contribute positively to
reproduction (electronic supplementary material, table S13).

As in all studies, we have caveats to consider. We have
assumed that samples from each formation are a fair represen-
tation of the populations that existed during those time
intervals. The six formations, while deposited in similar
environments [17,35], differ in temporal duration. However,
within-sample trait variances (representing a relatively short
amount of time) are not distinguishable from those resulting
from multiple samples (representing a greater amount of
time) within a formation (electronic supplementary material,
table S3). This low inflation of variance due to time-averaging
in the fossil record, also documented in other data [37,53],
gives us some confidence in assuming thatA. tongima samples
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from different formations are comparable. We based the
species identies of examined specimens only on their skeletal
features. While constrained by our fossil material, we note
that skeletal features, as experimentally shown in several
distantly related cheilostome species, correspond well with
genetically identified species [43]. We have also assumed
that the distinct colonies studied are genetically independent.
Yet, if they are preserved on the same substrate or within the
same sample, they may not be. However, it is known from
microsatellite studies of the closely related C. hyalina that
larvae settle randomly with respect to kin [54]. We used one
to several small random ‘spots’ of preserved colonies to
estimate morphological traits and fecundity (electronic sup-
plementary material, tables S1 and S2), but note that much
of the within-species variation is captured by only measuring
few zooids within few colonies [24]. We also assumed (see
electronic supplementary material, figures S7–S9) that we
have captured much of the 30–50% of trait variation that is
external to within-colony variation [55]. We used the density
of females bearing ovicells as a fitness component as
commonly done in cheilostome life-history studies [16]. How-
ever, assuming that ovicell density linearly translates to
successful offspringmay cause an overestimation of fecundity.
On the other hand, this proxy may also be an underestimate
as some cheilostome species can reuse their ovicells [56],
although ovicell recycling has never been demonstrated in
A. tongima. In some cheilostomes, females are spatially struc-
tured, such that random samples of colony sections may
be biased for estimates of average fecundity. However, in
Antarctothoa, the placement of female polymorphs are distrib-
uted haphazardly [57]. The number of overgrowth interactions
we observed in our data must be an underestimate, as parts of
colonies (and their competitors) can break-off their substrate
both before and after fossilization. Despite this, observed
overgrowth interactions should be random with respect to
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our three traits and fecundity. We used @18O values averaged
over the whole duration of each formation, while coarse, is the
best estimate we have for the palaeoenvironment. Phenotypic
plasticity [58] is present among the colonies but is smaller than
the variation that is seen across the samples (electronic
supplementary material, figures S6–S9). In addition, we
acknowledge that we have only estimated one component of
fitness as done in most studies based on natural populations
(see examples in [8]), namely fecundity, while lifetime fitness
is also dependent on survival and growth. Finally, any other
variables not explicitly considered because they cannot be con-
trolled for (e.g. colony growth rate, rate of fertilization) are
assumed not to be systematically varying across our temporal
comparisons and hence do not bias inferences we make on the
phenotypic traits investigated, a common practice in selection
studies in the wild [8].
Soc.B
288:20202047
5. Conclusion
We captured nuances in the dynamics of trait evolution
given changing environmental and ecological conditions over
geological timescales and corroborated the lack of phenotypic
stasis in the fossil record found in recent work [59]. While pre-
vious studies investigate life-history traits [60] and pioneered
quantitative genetics using fossil organisms [61,62], this is the
first attempt at quantifying trait–fitness associations and under-
standing how they align with long-term phenotypic evolution,
given the backdrop of climate change and ecological inter-
actions. Although ‘small is fit’ within bouts of time presented,
‘smaller and smaller’was not the resulting phenotypic pattern.
Rather, macroevolutionary outcomes are a complex interplay of
the constraints of physiological functions and the changing
biotic and abiotic environments. These results will open doors
to integrating insights from the fossil record with microevolu-
tionary theory to further bridge empirical and conceptual
gaps between micro- and macroevolution.
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