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Abstract

Computer aided geometric design is the design of geometric shapes, such as curves and sur-
faces, by using computer technology. The applications range from product design and com-
puter aided manufacturing to virtual worlds and computer games. Some of the most common
representations of curves and surfaces for this purpose are polynomial patches of Bézier type
and piecewise polynomials on B-spline form.

Real world models are sometimes represented by discrete data, scattered points or polyg-
onal meshes. This thesis considers the use of expo-rational B-splines, a blending type spline
construction where the coefficients are local functions that are blended together by infinitely
smooth basis functions, as an alternative for the representation of discrete and continuous
data. Various applied modeling and reconstruction problems are investigated.

A generalization of Bernstein factor matrices, suitable for computation of multivariate
Bernstein polynomials, is presented. Results regarding the structure of the factors are given,
and the factorization is related to mixed directional derivatives of a B-form, and to the de
Casteljau algorithm for evaluating curves and surfaces on Bernstein-Bézier form.

Knot insertion is a fundamental operation for splines. It is used to express a spline in a
more refined or flexible way without changing the shape of the spline. A knot insertion rule
for ERBS curves, where new local functions are computed according to the inserted knot, is
presented.
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1 Background

1.1 A brief history of interpolation

The history of interpolation can be traced back to ancient times. Astronomers in Uruk and
Babylon used cuneiform tablets for calendar computations as early as the last three centuries
BC [91]. Not only linear interpolation, but more complex schemes with higher order inter-
polation formulae were most likely developed [94]. The Indian astronomer-mathematician
Brahmagupta proposed a method for interpolation, which is a special case of the more gen-
eral Newton-Stirling interpolation formula, around 628AD. He later described a more gen-
eral method for interpolation of unequal interval data [64]. Parabolic interpolation schemes
are also found in Arabic and Persian sources from the 11th and 15th century [72], possibly
influenced by the work of Indian origin [64].

Interpolation theory was developed in the western world after a great revolution in sci-
entific thinking and, apparently, totally unaware of the important work conducted much ear-
lier in other parts of the world [91]. The developments in astronomy and physics, initiated
by Copernicus, continued by Kepler and Galileo and culminating with Newton’s theories,
were of particular importance for further achievements in mathematics towards what is now
known as “classical” interpolation theory (until the beginning of the 20th century) [91].

The general formula for finite differences dealing with equidistant data, usually referred
to as the Gregory-Newton formula [124], was first written down in 1670 by Gregory and
then by Newton in his celebrated Principia, which appeared in 1687. Describing its use
other than stating the importance is beyond the scope of this summary, however, we find
it appropriate to note that the well-known Taylor series was obtained as a corollary to this
formula [75]. Besides, a formula used by the Chinese astronomer Liù Zhuó, who is said to
be the first person to use second-order interpolation formulae for computing the positions
of the sun and the moon around 600AD, can be re-written in modern algebraic notation so
that it equals its first three terms [91].

Newton’s formula on divided differences [124] is on the other hand applicable to data at
arbitrary intervals. It can be regarded as the most general of all interpolation formulae since
variations of it was further studied by many others, including Stirling, Gauss, Waring, Euler,
Lagrange, Bessel, Laplace, and Everett, whose formulae easily can be derived from it [91].

There were two parallel developments within interpolation theory during the first half of
the 20th century which seem to be of special importance to the subsequent era of digital com-
puters. They are both related to E.T. Whittaker’s cardinal function [123]. It is represented

3



by the Newton-Gauss formula of an infinite number of equidistant values:

C (x) =
∞
∑

r=−∞

ar sin
�π

w (x − a− r w)
	

π
w (x − a− r w)

,

which takes the values ar at the points a + r w while possessing the remarkable proper-
ties of having no singularities and that “when C (x) is analyzed into periodic constituents
by Fourier’s integral-theorem, all constituents of period less than 2w are absent” [126].
One development began when J.M. Whittaker described a relation between the cardinal se-
ries and the truncated Fourier integral representation of a function in the case of conver-
gence [125, 126]. This in turn lead to Shannon’s sampling theorem [117, 118], which states
that a bandlimited function is completely determined by its samples, and describes how to
reconstruct the function from its samples.

The other development emerged from practical applications of classical polynomial inter-
polation, which implied using only the first few of infinitely many terms since it is computa-
tionally difficult to consider all or even many of the known function values when computing
an interpolated value. Fixing the number of terms resulted in partitioning of the polynomi-
als. A composite piecewise interpolant will in general not be continuously differentiable at
the transition points. The need for smoother interpolants had triggered the development of
so-called osculatory interpolation techniques in the late 1800s [114]. Several types of piece-
wise, differentiable polynomials had appeared (see [114] and the references therein) before
Schoenberg [110, 111] described how smooth curves can be obtained by using mechanical
splines. Then in the same work he introduced the notation of a mathematical spline and the
definition of a spline curve represented by a series of the cardinal type:

F (x) =
∞
∑

n=−∞
ynMk(x − n, t ),

whose basic functions, which he defined as the inverse Fourier integral

Mk(x) =
1

2π

∫ ∞

u=−∞

�

2sin
� u

2

�

u

�k

e i u x d u,

are the so-called B-splines1 [31, 112]. The spline representation was introduced in [110, 111]
for equidistant data (without knots). The abstract for [20] had been available since 1947,
but, for some reason, the article was not published before it appeared in [20]. In there, the
“fundamental spline functions” associated with a set of arbitrarily spaced knots were defined
and presented by using divided differences in terms of ω(x) = (x − x0) · · · (x − xn):

Mn(x; x0, · · · , xn) =
n
∑

v=0

n(xv − x)n−1
+

ω′(xv)
.

Shannon’s paper was recognized within the fields of communication engineering, nu-
merical signal processing and analysis applications, to mention a few (see e.g. [91] for ref-

1Schoenberg seems to have used the name “B-splines” in his work since [112].
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erences). The spline theory was developed further within mono- and multivariate interpo-
lation and approximation theory, among other fields of mathematics, resulting in several
books [33, 35, 113, 76] on the topic. Following the advent of digital computers, splines had
a major impact on geometric modeling and computer aided geometric design (CAGD) [51]
and computer graphics [53].

1.2 Geometric modeling

A collection of mathematical methods which are used mainly to describe the shape of ob-
jects or to express some physical process in terms of geometry constitutes the discipline of
geometric modeling. The collection includes solid modeling, algebraic- and computational
geometry, and CAGD.

Designing of curves and surfaces is fundamental to the construction of a wide range of
products, ranging from tableware and bottles to car bodies, ship hulls and wings of airplanes,
just to mention a few. Moreover, they are important components in models representing
parts of the real world, such as geological features, terrain or other physical phenomena, as
well as objects in virtual worlds.

Computer aided manufacturing (CAM) is the process of machining of 3D shapes out of
blocks of wood or steel. The exploration of the use of parametric curves and surfaces from
differential geometry [44] in computer aided design (CAD) can be viewed as the origin [51]
of CAGD. CAGD is traditionally about the approximation and representation of curves and
surfaces for computer processing [5].

Product design problems were dealt with prior to the introduction of computers by means
of descriptive geometry stored as physical templates. Most product design is nowadays per-
formed with the aid of computer software where the geometry is stored as mathematical
models. The transition from classical descriptions of geometry, such as models or drawing
boards, to computer models is usually referred to as “digitizing”, i.e. sampled into a point set
which is interpolated or approximated by a mathematical model. According to [5], as a rule
of thumb, this CAD philosophy can be associated with Steven A. Coons [16] whereas using
CAD for conceptual styling is very much thanks to Pierre Bézier.

Bézier curves [105, 51] are based on Bernstein polynomials [1, 29] and were developed
independently by Paul de Faget de Casteljau around 1959 [36] and Bézier around 1962 [84, 2].
Both were working on CAD systems at French car companies; Bézier at Rénault and de
Casteljau at Citroën.

Ferguson from the American airplane manufacturer Boeing Co. was the first to introduce
piecewise polynomial curves, or parametric spline curves, into CAGD in 1963 [57]. It is
worth noting that Gordon and de Boor were studying similar curves at General Motors
around the same time, but they were used mainly for interpolation purposes and not in free
form design [5]. As noted in section 1.1, the B-splines initiated by de Boor [31, 32] and
others were at this time mainly studied within the aspects of approximation theory. Then
one major leap was taken when Gordon and Riesenfeld [63] showed the remarkable fact that
B-spline curves are the generalization of Bézier curves.

Bivariate polynomial surfaces are usually described either as rectangular tensor products
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or in terms of barycentric coordinates with respect to a triangular domain. Ferguson [57]
and de Casteljau [36] were among the first to use tensor product surfaces [33, 51] in CAGD.
In essence, with tensor product surfaces, one curve is swept through space and possibly de-
formed by moving its control points along another curve. Tensor product surfaces of Bézier
and B-spline type have remained among the most popular surface representations since they
were introduced. Their shape is controlled by adjusting coefficients in a net of control points.
Bézier surfaces are sometimes referred to as patches [51]. Complex surfaces can be composed
from a number of adjacent Bézier patches where the continuity between patches is depend-
ing on the continuity of the corresponding control nets. B-spline surfaces are associated with
knot vectors in both parametric directions. They are piecewise continuous of nature, thus,
large control nets can be used without increasing the order of the basis functions.

De Casteljau [36] was the first to consider the triangular polynomial patches, which are
now known as Bézier triangles [51], in 1959 [5]. Triangular patches are, similar to tensor
products, also a generalization of curves. They have been studied as piecewise surfaces over
regular and arbitrary triangulations [51]. We refer to [50] for a survey of triangular Bézier
patches. A mathematical assessment of spline spaces over triangulations can be found in [76].

Triangular and rectangular surface patches are both common in CAGD, however, the
latter seems to be more often encountered [53] despite that triangular patches are better
suited to describe complex geometries [51]. Some modeling software applications support
both types of patches [53]. Geometric continuity between patches of different types has been
studied in the literature, see e.g. [51, 105] and the references therein. Conversion between
tensor product and triangular Bézier patches is addressed in [105].

The topologies of triangular and rectangular surface patches are limited of nature. Many
shapes are too complex to model using only such images of parts of the plane. A simple
example from [51] is the sphere. It is not possible to construct it without introducing degen-
erate patches while using a C 1 map of a part of the plane. There exists several methods that
are suited for representation of surfaces with arbitrary topology. We mention surface patches
with more than four sides [88, 89], subdivision techniques including Doo-Sabin surfaces [46],
Catmull-Clark surfaces [12], Loop subdivision [87] and Hermite subdivision [17, 18], and
the (local) refinement methods hierarchical B-splines [60], T-splines [115], PHT-splines [42]
and LR B-splines [45].

Some of the early CAD systems were based on conic sections and others on quadric
surfaces. A need for compatible formats and exchange of data between CAD systems led
to a standardization of data formats [53]. The rational extension of nonuniform B-splines,
nonuniform rational B-splines (NURBS), can be viewed as the projection of a surface in a
projective space into an affine space, where the control polygon consists of homogeneous
points with associated weights [51]. NURBS are today integral parts of the initial graphics
exchange specification (IGES) and standard for the exchange of product model data (STEP)
industry standards used in CAD. It is worth mentioning that the benefits of local refinement
by knot insertion [4, 14], which leads to a non-uniform knot vector, probably encouraged
the transition from uniform towards non-uniform spline models [15].

Expo-rational B-splines (ERBS) were introduced to CAGD in [77] as a compound spline
function with C∞-smooth expo-rational basis functions associated with a knot vector. The
purpose was not to replace traditional B-splines or NURBS but rather to complement them.
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The main difference between ERBS and polynomial B-splines is that the coefficients are local
functions instead of ordinary coefficients. Some key features of ERBS are the special Her-
mite interpolation property, which facilitates approximation of geometric objects, and the
minimal local support of the basis functions which is similar to linear polynomial B-splines.
Furthermore, ERBS facilitate flexible and intuitive “geometric editing” possibilities and dy-
namic shapes by simple affine transformations of local functions. A short overview of ERBS
is provided in section 1.4.

The scope of this section is limited to methods relevant for this dissertation. We refer
to [5, 15, 51, 52, 53, 105] for a more detailed overview of geometric modeling and CAGD,
including topics not covered here.

1.3 Algorithms for polynomials on Bernstein form

The Bernstein polynomials [1] of degree d , defined as

bi ,d (t ) =
�

d
i

�

t i (1− t )d−i , i = 0, . . . , d ,

enjoy a number of important properties, including that they are linearly independent and
symmetric, they have roots at 0 and 1 only, they form a partition of unity and that they are
positive in (0,1). Furthermore, they satisfy the recursion formula

bi ,d (t ) = t bi−1,d−1(t )+ (1− t )bi ,d−1(t ),

where b−1,d−1 = bd ,d−1 = 0 and b0,0 = 1.
Every polynomial curve c(t ) of degree ≤ d has a unique Bézier representation of degree

d which can be written in Bernstein form as follows:

c(t ) =
d
∑

i=0

ci bi ,d (t ), (1.1)

where (ci )
d
i=0 are its d + 1 control points and bi ,d (t ) are the Bernstein basis polynomials.

One of the most common ways to evaluate parametric Bézier curves and surfaces is by
using de Casteljau’s corner cutting algorithm [36]. By repeatedly applying the recursion
formula for Bernstein polynomials to (1.1) for bi ,d (t ), and letting ci ,0 = ci , one obtains

c(t ) =
d
∑

i=0

ci ,0bi ,d (t ) =
d−1
∑

i=0

ci ,1bi ,d−1(t ) = · · ·=
0
∑

i=0

ci ,d bi ,0(t ) = c0,d ,

where the points given by
ci ,k = (1− t )ci ,k−1+ tci+1,k−1

are the intermediate points of the de Casteljau algorithm.
The i th B-spline of degree d associated with the knots (ti , . . . , ti+d+1) can be expressed
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using the de Boor-Cox recursion formula [19, 31]:

M (t ; ti , . . . , ti+d+1) =Mi ,d (t ) =
t − ti

ti+d − ti

Mi ,d−1(t )+
ti+1+d − t

ti+1+d − ti+1

Mi+1,d−1(t ), (1.2)

where the recursion terminates when

M (t ; ti , ti+1) =Mi ,0(t ) =
¨

1, if ti ≤ t < ti+1,

0, otherwise.

Let (ti )
n+d+1
i=0 be a knot vector and the linear combination

s(t ) =
n−1
∑

i=0

ci Mi ,d (t ) (1.3)

be a spline curve associated with the n control points (ci )
n−1
i=0 . Due to the local support

property of the B-splines, for t ∈ [tµ, tµ+1), (1.3) can be written as

s(t ) =
µ
∑

i=µ−d

ci Mi ,d (t ),

thus, s(t ) can be evaluated by using only the d + 1 control points (ci)
µ
i=µ−d . Setting ci ,0 = ci

and applying (1.2) yields

s(t ) =
µ
∑

i=µ−d

ci ,0Mi ,d (t ) =
µ
∑

i=µ−d+1

ci ,1Mi ,d−1(t ) = · · ·=
µ
∑

i=µ

ci ,d Mi ,0(t ) = cµ,d ,

where ci ,r are given by the affine combinations

ci ,r = (1−α)ci−1,r−1+αci ,r−1,

where
α= αi ,d−r =

t − ti

ti+d+1−r − ti

.

The discovery of the recurrence relations for B-splines by de Boor [31] in the US and
Cox [19] in England pointed at a numerically stable way to evaluate B-splines. The existing
methods at that time were based on divided differences and were numerically unstable [19].
The recursive de Boor-Cox algorithm is related to de Casteljau’s algorithm. It provides fast
and numerically stable computation of B-spline curves and surfaces [15]. We note here what
was shown later in [55, 56, 54]; polynomials on Bernstein form is numerically more stable
than the monomial form.

Based on the need for increased design flexibility, Lane and Riesenfeld [83] provided meth-
ods based on subdivision for Bézier curves and uniform B-splines. Attempts to extend Lane-
Riesenfeld subdivision to B-splines with non-uniformly spaced knots resulted in two algo-
rithms for knot vector refinement; Böhm’s method [4] for inserting one knot at a time and
the Oslo algorithms [14] for inserting a set of knots in parallel. Böhm’s method is addressed
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briefly in chapter 4. We mention here that the Oslo algorithms are based on the theory of
discrete B-splines [14, 61].

1.4 Expo-rational B-splines

Expo-rational B-splines origin from research conducted since the year 2003 [77]. They were
presented for the first time in [37] and published in [80, 81, 39]. Since then, several new
types of splines derived from ERBS have emerged, including generalized expo-rational B-
splines (GERBS) [38], and, most recently, logistic expo-rational B-splines (LERBS) [40, 129].
Together they constitute a family of blending-type spline constructions.

ERBS is the fundament of this dissertation. It is a blending-type spline construction
where local functions at the knots are blended together by infinitely smooth basis functions.
An ERBS function f (t ) is defined in [77] by

f (t ) =
n
∑

k=1

`k(t )Bk(t ), t ∈ (t1, nn], (1.4)

where `k(t ) are scalar-, vector-, or point-valued local functions defined on (tk−1, tk+1), t =
{tk}n+1

k=0 is an increasing knot vector, and the basis function

Bk(t ) =











Sk−1

∫ t
tk−1
ϕk−1(s)d s , tk−1 < t ≤ tk ,

Sk

∫ tk+1

t
ϕk(s)d s , tk < t < tk+1,

0, otherwise,
(1.5)

with the ERBS scaling factor defined as

Sk =
1

∫ tk+1

tk
ϕ(s)d s

, when tk < tk+1,

and

ϕ(t ) = exp

�

−γk

|t − �(1−µk)tk +µk tk+1

� |2σk

�

(t − tk)(tk+1− t )βk
�αk

�

, (1.6)

where αk > 0, βk > 0, γk > 0, 0 ≤ µk ≤ 1, and σk ≥ 0, for k = 1, . . . , n, are the intrinsic
parameters of the ERBS. Throughout the thesis we shall consider the default values of the
intrinsic parameters, αk = βk = γk = σk = 1, µk =

1
2 , as described in [39], unless specified

otherwise. This leaves us with a simpler version of (1.6):

ϕ(t ) = exp



−
�

t − tk+tk+1
2

�2

(t − tk)(tk+1− t )



 . (1.7)

A plot of the ERBS basis defined in (1.7), using the default set of intrinsic parameters, and its
first derivative is provided in Figure 1.1.

The five basic properties of the univariate basis function Bk(t ) outlined in [81] are as
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Figure 1.1: The ERBS basis function defined in (1.5) and its first derivative are shown as
a solid and a dotted line, respectively, using default values of the intrinsic parameters, and
where tk−1 = 0, tk = 1 and tk+1 = 2.

follows:

1. Bk(t )
�

> 0, if tk−1 < t < tk+1

= 0, otherwise
for k = 1, . . . , n.

2.
∑n

k=1 Bk(t ) = 1, i.e. Bk(t )+Bk+1(t ) = 1 for tk < t ≤ tk+1.

3. Bk(tk) = 1 if tk−1 < tk ,and limt→tk+
Bk(t ) = 1 if tk−1 = tk , k = 1, . . . , n.

4. D j Bk(ti ) = 0 for j = 1,2, . . . , i = 1, . . . , n, and k = 1, . . . , n.

5. Bk(t ) is C∞ on (tk−1, tk+1).

One consequence of the ERBS minimal support property is that only two functions are
blended together in every knot interval (i.e. between two knots). The following formula
describes how blending of two functions is performed in a knot interval of (1.4) by applying
the basic property 2:

f (t ) = Bk(t )`k(t )+Bk+1(t )`k+1(t )
= (1−Bk+1(t ))`k(t )+Bk+1(t )`k+1(t )
= `k(t )+Bk+1(t )(`k+1(t )− `k(t )),

(1.8)

where B(t ) is a blending function (B-function).
The ERBS construction possesses a Hermite interpolation property which follows from

property 4 above, namely that D j Bk(tk) = 0, if k = 1, . . . , n and j = 1,2, . . . . A brief
summary of the Hermite interpolation property described in [77, theorem 2.4] is as follows.
For the general ERBS d -dimensional vector function

f (t ) =
n
∑

k=1

ck ◦ωk(t )Bk(t ),
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then
D j f (tk) = δ

j
k D j ck ◦ωk(tk), (1.9)

for j = 0,1,2, . . . and k = 1, . . . , n, where ωk(t ) maps a segment (tk−1, tk+1) in the “global”
domain of the ERBS function onto the domain of a local function, and δk is the global/local
“scaling” factor. The transfinite Hermite interpolation property provides that an ERBS func-
tion interpolates the values and all existing derivatives of its local functions in their respective
knots.

Blending functions

A B-function [78, 79] is a function designed for blending which possesses the following set of
properties:

1. B : I → I (I = [0,1]⊂R).
2. B(0) = 0.

3. B(1) = 1.

4. B ′(t )≥ 0, t ∈ I .

5. B(t )+B(1− t ) = 1, t ∈ I .

The last property is optional and specifies point symmetry around the point (0.5,0.5).
B-functions can take many shapes, including trigonometric, polynomial, rational and

expo-rational. One example of a smooth B-function is using the scalable subset [77] of the
ERBS basis mapped to the interval [0,1]:

B(t ) = Sd

∫ t

0
ϕ(s)d s , t ∈ [0,1],

where

ϕ(t ) = exp



−
�

t − 1
2

�2

t (1− t )





and

Sd =
�∫ 1

0
ϕ(t )d t

�−1

.

Another example, which belongs to the family of GERBS [38], is the LERBS presented
in [129]:

B(t ) =
1

1+ exp
�

1
t − 1

1−t

� .

The linear function
B(t ) = t

is perhaps the simplest one which meets the criteria of a blending function, as outlined above.
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The ERBS blending construction was adapted to an adjusted recursive definition of the
B-spline in [78] by considering a B-function and using (1.8). By adding blending functions
to the recursive definition of the B-spline, provided in (1.2), we obtain the general B-spline
presented in [79]:

Bi ,d (t ) = B ◦ωi ,d (t )Bi ,d−1(t )+ (1−B ◦ωi+1,d (t ))Bi+1,d−1(t ), (1.10)

where B is a B-function, ωi ,d (t ) =
t−ti

ti+d−ti
,

B j ,0(t ) =
�

1; if ti ≤ t < ti+1,
0; otherwise,

and, in the case of ERBS, the degree d = 1. Thus, an alternative way to express (1.4) is

f (t ) =
n
∑

k=1

`k(t )B1,k(t ), t ∈ (t1, nn],

where B1,k(t ) is as defined in (1.10). This specific form of generalization of the ERBS blending
construction appeared during the period of this research project. It is a key component in
the rendering method proposed in [7] which is included in chapter 7 of this dissertation.

1.5 Objectives and overview

The purpose of the present work is to provide some methods and ideas for practical use of
ERBS in CAGD. The work is based on the framework introduced in [77], and the GMlib [82]
C++ software library which was extended with an ERBS evaluator and an implementation
of the ERBS blending construction for parametric curves and surfaces.

Dreamworld [95] is a research project under the Verdikt program by the Research Council
of Norway where the computer game manufacturer Funcom and Narvik University College
are stakeholders. Some of the key research and development (R&D) challenges defined in
the project include digital distribution of large data sets, optimizing graphics for low-end
hardware and online clients, and compression and streaming of large amounts of data. This
implies representing detailed and realistic models of synthetic and real terrain, with special
details, together with other objects which may be flexible or interactive. Some of the research
included in this dissertation has been performed as a partial fulfillment of the contribution
from Narvik University College (NUC) to the Dreamworld project.

The main goal of the scientific work was to apply interpolation and smoothing techniques
from the ERBS blending construction for use in representation and visualization of geometry.
The underlying data used in the experiments were provided by various sources from discrete
and continuous origin.

The author has opted for grouping the research topics presented in this thesis into two
parts. One part is addressing modeling and representation of data in terms of ERBS. The
methods and constructions included there can serve as building blocks for the the other
part, whose topics are evaluation and visualization, which covers methods for rendering and
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presentation of the so-defined data.
There follows a brief description of the individual objectives and the main contributions

of this dissertation. More details are accessible in parts II and III of this thesis.

1.5.1 Modeling and representation

1. Interpolation and approximation. B-splines are typically used to represent discrete or
continuous data [51, 105, 33, 53]. The process of determining appropriate knot vectors (and
control polygons) to obtain a satisfying approximation has been studied thoroughly in the
literature [66, 67, 90, 49, 59]. At present, it is still an active research area (see e.g. [58, 108, 10,
74, 73]). There is probably no single “best” parameterization since the methods depend on
the data [53]. As mentioned in section 1.4, with ERBS type splines, the coefficients, which
can be scalar-, point- or vector-valued functions, such as parametric curves or surfaces, are
interpolated at their associated knots. One consequence of the ERBS Hermite interpolation
property [77, theorem 2.4] (see (1.9)) is that an ERBS function interpolates positions and all
existing derivatives of the local functions at their associated knots.

Using ERBS to represent data involves finding knot vectors, which are interpolation
points, and to determine local functions of some type. A method for fitting discrete data
with generalized expo-rational B-splines by determining interpolation knots and generating
GERBS local curves, in this case as truncated Taylor polynomials, by partitioning the para-
metric space and solving a least-squares fitting problem is presented in chapter 3. Based on
those results, fitting of discrete data using a tensor product GERBS surface, where derivatives
for GERBS local Bézier surface patches are obtained from the discrete data by finite differ-
ences, is explored in chapter 5. Furthermore, a method to partition the parametric space by
feature point detection based on tools from differential geometry is proposed in chapter 5.

The blending construction presented in chapter 6 interpolates vertex positions of a trian-
gulated network. It can be considered as an alternative to global methods for fitting a tensor
product surface (of “any” type, including Bézier and NURBS,) to a triangulation. Data fitting
via this method may provide less data smoothing than e.g. least squares approximation due to
the interpolation properties and the localness within a ?2-neighborhood of the triangulation.

2. Smoothness of the spline approximation. There is a tradeoff between accuracy and
computational cost (how much data to store and the approximation error) of a spline repre-
sentation of a discrete data set [91, 35, 113]. Constraining the spline approximation to satisfy
some criteria of measure, such as approximation error, can be in order. Certain feature points
can be important to interpolate or approximate with higher precision, while near other areas
of the data, which are less important, lower precision may be acceptable.

Flexibility by varying the number of interpolation knots, finding appropriate interpo-
lation points (points of special importance or interest), and setting the polynomial degree
and influence of the local functions are investigated in chapters 3 and 5. Local functions with
adjustable degree are obtained by varying the multiplicity of the Taylor expansion of polyno-
mials in chapter 3 and by varying the number of derivatives obtained from the discrete data
in chapter 5. Local refinement techniques such as knot insertion, which is addressed in chap-
ter 4, can be considered for improved control in this setting through explicit placement of
interpolation points.
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The construction in chapter 6 provides an ERBS blending approximation of a triangulated
surface. Approximation with the proposed method yields flexible smoothness properties
over the triangle edges. Smoothness is addressed using two different blending functions. One
of them is blending a smooth component together with the triangle edges and is C 0 over the
edges. The other one provides C 1 smoothness over the edges under the penalty of pulling
the spline surface approximation away from the edges. The results are presented as visual
examples.

3. Interactivity. Being able to interact with, or edit, a model is a fundamental feature in
many geometric modeling applications [51, 53, 15]. Knot insertion [4, 14] has undoubtedly
played an important role [5, 34] in establishing B-splines and NURBS among the most signif-
icant representations for CAGD [51]. A consequence of the ERBS blending construction and
its minimal support property is that the refined ERBS representation, after inserting a new
knot, under the constraint of not changing any of the existing local functions, is on rational
form. A proof of this is provided in chapter 4. For practical use, when the local functions are
parametric curves or surfaces, it is sometimes required that the new local function associated
with the inserted knot should be of the same kind as the existing local functions. A few
strategies to generate the new local function are presented and benchmarked in chapter 4.

In contrast to (classic) B-splines and NURBS, whose coefficients are points, it makes
sense to apply scaling or rotation to ERBS coefficients due to the “geometric editing”- and
dynamic shape possibilities by simple affine transformations of the local functions [77]. Spe-
cial points of interest can for instance be used to indicate areas where editing is appropriate.
Thus, applying strategies for placing the initial interpolation knots and determining suitable
local functions can have impact on the interactivity properties of ERBS constructions. The
findings in chapters 3 and 5 can be relevant for this purpose.

4. Tensor-product models. One of the most common representations of a surface in terms
of blending type splines is by tensor products [53]. In the case of discrete input data, approx-
imated using any kind of spline, there is a need to determine the knot vectors. ERBS-type
tensor product spline surfaces interpolate their associated local surface patches at their inter-
polation knots. This is different with classic B-splines where the coefficients are a net of
control points which are not necessarily interpolation points. A method for constructing a
tensor product ERBS surface from a discrete equidistant point set, or height map, is described
in chapter 5. The interpolation knots are determined by feature point detection in terms of
curvature sign changes using a method extended from the ones presented in chapter 3, and
derivatives for the local surface patches are approximated using finite differences.

5. Triangle-based models. Scattered points and polygonal meshes are often encountered
in geometric data representations [53]. Triangulated surfaces, such as Delaunay triangula-
tions [41, 68, 30], are commonly used to represent surface data, in particular terrain models
and objects in virtual worlds. The triangulated irregular network (TIN) [103, 104] is one
example of a digital data structure, or digital terrain model (DTM), which is used to repre-
sent surfaces in geographic information systems (GIS). Chapter 6 proposes an ERBS blending
construction, based on triangulated surface input data, constituting a surface representation
which can be smooth over the input triangle edges while interpolating the vertex positions.

14



ERBS surface patches are constructed to cover two triangles sharing one common edge. Up to
three surface patches may cover a triangle. They are blended together by the method, which
is local within a ?2-neighborhood of every TIN node. The construction in chapter 6 is one
example of how a triangulated model can be represented as a blending construction which
can be evaluated everywhere on its domain.

6. Mapping and relation between triangle-based models and tensor-product models.
As noted in section 1.2, the tensor product NURBS surface constitutes one of the most
common representations of geometric shapes in CAD software applications. Utilizing ERBS
for interactive editing and dynamic shaping of such existing representations will require some
sort of data interchange. Converting a tensor product NURBS surface to a tensor product
ERBS representation can be done by constructing appropriate ERBS local surface patches
from the NURBS. We note here that the vice versa conversion from ERBS to NURBS yields
an approximation, which typically would involve a data fitting procedure. One of the reasons
is the fundamental difference in smoothness properties. As an example, it is possible to
represent singularities and sharp edges by using a tensor product ERBS construction, thanks
to its vanishing derivatives at the knots and the transfinite Hermite interpolation properties.
It can be difficult to obtain equivalent shapes with NURBS while maintaining the smoothness
properties, at least without applying some type of refinement or subdivision techniques.

Discrete data points can be obtained, for instance by sampling a geometric model or by
measuring parts of the real world, imposing constraints on the subsequent interpolation.
Triangulations are sometimes used to induce a topology to scattered point data. Edges in
triangulations can be regarded as lines between adjacent vertices, and, often as one of the
constraints. However, straight line triangle edges may not follow the curvature of the under-
lying geometry. The construction in chapter 6 can be used to approximate the shape of the
underlying geometry over edges in triangulations. Parametric tensor product grids can then
be obtained by triangulating scattered data (samples) and applying the method as described
in chapter 6. Furthermore, the method may be applicable to a wider class of object in Eu-
clidean space, including embeddings of (partitioned) Riemannian manifolds, via triangulating
in the parametric domain.

1.5.2 Evaluation and visualization

7. Tessellation. Tessellations is a well-researched and fundamental problem in mathematics
as well as computer graphics [109]. In this work we consider tessellation from the computer
graphics- and rendering point of view, as the process of converting scattered points to (solid)
surfaces built up by polygon primitives, rather than developing new methods for tessellation.
One recent development is the introduction of hardware tessellation in modern graphics pro-
cessing units (GPUs), where the specific hardware implementations are vendor-dependent.
Hardware tessellation has been made available to developers since the Microsoft® DirectX®

(DirectX) 11 [92] and open graphics library (OpenGL) 4.0 [116] application programming
interfaces (APIs). In the following, we shall use the OpenGL nomenclature to describe the
hardware tessellation shaders.

A method for rendering of blending type splines by exploiting the tessellation features
available in recent GPU hardware are proposed in chapter 7. The concept provides guide-
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lines for data representation in terms of splines on the form of (1.10). Strategies for imple-
mentation of an efficient evaluator for visualization using tessellation evaluation shaders are
suggested, where ERBS coefficients associated with a knot vector can be represented on the
GPU by using tessellation control patches. The discretization is left to the fixed-function
tessellator shader step, where the amount of tessellation can be controlled. The tessellator
generates sample points and induces a topology, whereas the placement of vertices in some
Euclidean space are computed by the tessellation evaluation shader.

8. Pre-evaluation techniques. Pre-evaluation of basis functions connected to tessellations
can be useful for speeding up the computations. Bernstein polynomials [1] are commonly
used as basis functions in spline constructions [35, 76] and to represent curves and surfaces
on Bézier form [51, 105]. Bézier curves and surfaces have in turn been used as local functions
within ERBS blending constructions [77]. Evaluators for those are implemented as a part of
the GMlib software library [82].

Bernstein polynomials of arbitrary degree and number of variables, represented on matrix
form by factorization, are proposed and explored in chapter 8. The multivariate Bernstein
factor matrices are defined recursively by using barycentric coordinates and exploiting a de-
composition of the matrices into submatrices. Furthermore, in chapter 8, the relevance of
the matrix factorization to the de Casteljau algorithm is addressed. This construction can
be considered as a part of a specific application in connection with the rendering method
proposed in chapter 7.

9. GPU utilization. The rendering method described in chapter 7 (see section 1.5.2 above)
is based on using the GPU. In contrast to fixed-function rendering methods, where the geom-
etry representation is sampled into a mesh of vertices and edges, using the central processing
unit (CPU), which then needs to be “pushed” to the GPU memory for visualization, the
concepts proposed in chapter 7 enables the spline construction to be preserved up to the
point where it is discretized by the GPU hardware.

The GPU is composed of several streaming multiprocessors, or vector processing units.
They process chunks of data in parallel in a single instructions multiple data (SIMD) fash-
ion [109]. Each streaming multiprocessor typically has many cores. The total number of
cores in modern GPUs can be several thousand. This makes them suitable for parallel com-
putations, which are not limited to graphics purposes. General-purpose GPU (GPGPU) is
available through different APIs, notably open computing language (OpenCL) [70] and com-
pute unified device architecture (CUDA) [98]. The numerical benchmark experiments de-
scribed in chapter 10 are performed on a GPU-based implementation of the discrete wavelet
transform (DWT) by using the OpenCL 2.0 C language specification [93].

10. Rendering performance and data transmission. Strategies for increasing the render-
ing performance of a rendering system can be in order, depending on where the bottlenecks
reside. Methods for image compression are applicable to captures of the rasterized frame
buffer. They can be applied to reduce the required bandwith for transmission in “low-end”
hardware, and streaming- or web-based applications, especially when the rendering is per-
formed remotely and then transferred in a sequence of images to a client for display. Com-
pression or data reduction can be applied to the geometry representation (before tessellation)
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in cases where CPU-based representation and evaluation of splines is considered. Further-
more, compression or data reduction can be applied to local functions in case of GPU-based
representation, such as, for example, the one proposed in chapter 7. This can in both cases
reduce the necessary bandwidth for data transmission between CPU and GPU memory.

Chapter 9 considers controlling compression in a JPEG-like set-up by adjusting the shape
of the basis function via setting a shape parameter and constructing custom quantization ta-
bles based on histograms obtained from a relatively large set of images. The results show
increased compression performance against approximation error, when compared to a joint
photographic experts group ( JPEG) reference, while preserving the perceived change in
structural information. For this purpose two signal fidelity measures, peak signal-to-noise
ratio (PSNR) and mean structural similarity (MSSIM), respectively, are provided to compare
the results.

A benchmark study of a custom method for thresholding of discrete wavelet coefficients
for a selection of wavelet bases applied to smooth- and semi-smooth test functions, with and
without singularities, are presented in chapter 10. The results indicate that which wavelet
that performs best according to selected criteria is depending on the signal’s smoothness
properties. Furthermore, the performance can increase for signals with varying smoothness
properties by partitioning the global signal and selecting the best performing wavelet individ-
ually for each local partition. Discretized samples of ERBS, which can be used to represent
data with smooth parts and isolated singularities due to its intrinsic partitioning, via select-
ing the interpolation knots with associated local coefficients, are especially well suited for this
method.

1.6 Organization of the thesis

This dissertation is prepared as a collection of articles which resulted from cooperative work
with colleagues in the research group Simulations at Narvik University College.

Chapter 1 covers an overview of relevant interpolation techniques and geometric model-
ing from a historical perspective, and a brief description of ERBS, followed by an outline of
the research objectives, which ties together the individual research papers. Chapter 2 presents
a list of published results, enumerates the individual contributions of the research papers and
provides some remarks and notes for future work.

While chapters 1 and 2 constitutes part I of this thesis, parts II and III present the the
included scientific work. Research related to approximation, fitting, refinement and repre-
sentation of data constitutes part II, whereas part III covers research related to evaluation,
rendering and presentation of data.

Some details and figures, which were omitted from the associated research papers due to
page limitation policies of the publishers, are included as appendices.
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2 Summary of related results

2.1 List of relevant published research results

The main contribution of this dissertation is based on reprints of a set of scientific papers. In
this section follows a list of articles authored or co-authored by the author of the thesis:

1. J. Bratlie, R. Dalmo, and P. Zanaty. Fitting of discrete data with GERBS. In Lirkov
et al. [86], pages 569–576

2. R. Dalmo. Local refinement of ERBS curves. In Pasheva and Venkov [100], pages
204–211

3. R. Dalmo and J. Bratlie. Data approximation using a blending type spline construction.
In Pasheva and Venkov [101], pages 147–152

4. R. Dalmo, J. Bratlie, B. Bang, and A. Lakså. Smooth spline blending surface approxima-
tion over a triangulated irregular network. International Journal of Applied Mathematics,
27(1):109–119, 2014

5. J. Bratlie, R. Dalmo, and B. Bang. Evaluation of smooth spline blending surfaces using
GPU. In J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure,
and L. L. Schumaker, editors, Curves and surfaces. 8th International Conference, volume
9213 of Lecture Notes in Computer Science, pages 60–69. Springer, 2015

6. R. Dalmo. Matrix factorization of multivariate Bernstein polynomials. International
Journal of Pure and Applied Mathematics, 103(4):749–780, 2015

7. R. Dalmo, J. Bratlie, and P. Zanaty. Image compression using an adjustable basis func-
tion. Mathematics in Engineering, Science and Aerospace, 6(1):25–34, 2015

8. R. Dalmo, J. Bratlie, and B. Bang. Performance of a wavelet shrinking method. In
Dimov et al. [43], pages 262–270

The articles 1 to 8 above have been selected for inclusion in this dissertation. They can be
found in chapters 3 to 10 in the same order as outlined above. In addition, the following
list of articles, which are authored or co-authored by the author of the thesis, have appeared
during the period of the Ph.D. project:

9. R. Dalmo and J. Bratlie. Discrete wavelet compression of ERBS. In Lirkov et al. [86],
pages 577–584
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10. J. Bratlie and R. Dalmo. Motion capture data represented using a blending type spline
construction. In Pasheva and Venkov [101], pages 153–157

11. R. Dalmo, J. Bratlie, and P. Zanaty. Image processing with LERBS. In Sivasundaram
[119], pages 271–278

12. A. Pedersen, R. Dalmo, and J. Bratlie. Modeling terminal ballistics using blending-type
spline surfaces. In Sivasundaram [119], pages 796–803

13. B. Haavardsholm, J. Bratlie, and R. Dalmo. Surface deformation over flexible joints
using spline blending techniques. In Sivasundaram [119], pages 377–383

14. J. Bratlie, R. Dalmo, and B. Bang. Wavelet compression of spline coefficients. In Dimov
et al. [43], pages 246–253

The author has opted for omitting the articles 9–14 as chapters of this dissertation in order
to maintain a strong focus on the objectives outlined in section 1.5.

2.2 List of contributions

This section iterates over the contributions from the individual research papers. The presen-
tation of the papers in chapters 3 to 10 follows the same order as the enumeration in sec-
tion 2.1.

2.2.1 Modeling and representation

Chapter 3: Fitting of discrete data with GERBS

1. A few strategies to determine interpolation knots, generate GERBS local curves by
partitioning of the parametric space and solving a least-squares problem for fitting of
discrete data were proposed and benchmarked. The purpose was to represent a discrete
data set using GERBS type splines with fewer coefficients than the number of data
points in the original data.

2. Some feature-based partitioning methods were proposed and compared to uniform par-
titioning in connection with least squares fitting of the local functions. The method
was applied to samples of a smooth signal and of oscillating irregular input data for
comparison.

(a) Feature-based partitioning was able to meet the performance of uniformly dis-
tributed interpolation knots when applied to a smooth signal.

(b) Feature-based partitioning was found to outperform uniform partitioning for os-
cillating irregular input data.

3. It was noted that the least squares fitting of the individual local functions, in contrast
to a “global” fitting problem, can be computed in parallel, as a consequence of the
intrinsic minimal support property of the GERBS construction. A similar argument
was claimed for the feature detection computations.
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Chapter 4: Local refinement of ERBS curves

4. Inserting a new knot into the knot vector of an existing ERBS curve, under the restric-
tion of not allowing to change any of the existing local curves, was proven to yield a
rational local curve associated with the new knot. Furthermore, how to map the pa-
rameter value within the new knot intervals to [0,1] and how to re-parameterize the
affected existing local curves to the new refined knot vector was explored. An analysis
of whether the ERBS Hermite interpolation property holds after knot insertion was
performed and confirmed.

5. The local functions can be polynomial curves in practical applications, thus, adding
one on rational form may not be appropriate. A few strategies to approximate the local
curve associated with the new knot were proposed and benchmarked for a parametric
test curve. The measures of deviations were provided using four different metrics. The
errors were found to be restricted within the support interval of the new local curve.

Chapter 5: Data approximation using a blending type spline construction

6. A method for fitting of a tensor product GERBS surface to equidistant discrete point
data and generating interpolation knot vectors by detecting feature points in terms of
curvature sign changes was proposed. Approximation of derivatives from the discrete
data by finite differences, for use in feature point detection and construction of local
surface patches, was proposed.

7. An example was provided where the method was applied to a 2D height map surface.
Local Bézier surface patches were constructed for the test case by using Hermite inter-
polation of the discrete data at the determined feature points. An error measure of the
construction was provided.

8. The primary purpose was to provide a smooth, flexible and evaluable spline represen-
tation obtained from discrete data. Suggestions for application areas were tessellations
and data reduction.

Chapter 6: Smooth spline blending surface approximation over a triangulated irreg-

ular network

9. A construction for blending of ERBS surface patches covering pairs of neighboring
triangles in a triangulated irregular network was proposed and explored. The four
local surface patches for each ERBS patch were constructed as bi-linear Bézier surfaces
by interpolating a TIN node position and obtaining directional derivatives from the
triangle edges.

10. The purpose was to obtain a surface approximation which was smooth over the triangle
edges while interpolating the positions of the TIN nodes. Two functions for blending
together overlapping ERBS patches were proposed:

(a) Blending using a modified version of the ERBS triangles.
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(b) Blending based on angle ratios in the triangles.

The main difference between the two blending functions was related to the distribution
of patch weights over edges in the underlying triangulation.

11. The blending construction was applied to a synthetic triangular network. The effects of
the two blending methods were compared by providing visual examples of tessellations
sampled from the constructions.

2.2.2 Evaluation and visualization

Chapter 7: Evaluation of smooth spline blending surfaces using GPU

12. A method for evaluation and rendering of smooth blending type spline constructions,
over regular and irregular knot nets, based on the recently introduced tessellation
shaders available in graphics hardware was proposed.

13. The concept was based on three recent contributions to the ERBS research:

(a) GERBS blending functions formulated as a special case of an adjusted recursive
definition of the B-splines. This formulation was used to propose how an evaluator
could be implemented by utilizing the tessellation shader steps.

(b) C∞-smooth B-functions of LERBS type by using elementary functions, where no
integration step was required, was considered implemented on the GPU.

(c) A recently introduced ERBS construction on irregular grids, supporting regular-,
T- and star joints, was considered and used in the definitions of grid components
of the rendering method.

14. The following grid components were defined:

(a) Render lattice to describe a grid structure based on the net of spline knots.

(b) Render locus to describe loci in the render lattice, closely related to the spline knots
and the regular-, T- and star points defined in the above mentioned irregular grid
construction.

(c) Render block to describe lines or faces in a render lattice. This concept was related
to the description of patch primitives of the tessellation shader.

15. A visual example of a blending type spline surface based on quadratic render blocks
with regular render loci was provided.

16. Some strategies for implementations of the proposed concepts were presented and dis-
cussed.
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Chapter 8: Matrix factorization of multivariate Bernstein polynomials

17. Multivariate Bernstein polynomials of arbitrary degree on matrix form by factorization
were presented and explored. A definition of the Bernstein factor matrix based on the
recurrence relation for Bernstein polynomials was provided.

18. An alternative, recursive definition of the Bernstein factor matrix based on a particular
decomposition of the matrices into submatrices was introduced. A matrix notation for
a set of Bernstein polynomials was proposed, and it was shown that the factor matrices
yield a factorization of the Bernstein polynomials.

19. Some properties of the factorization, including symmetry, commutativity, and differ-
entiability of the factor matrices, were investigated.

20. The relevance of the matrix factorization to de Casteljau’s corner cutting algorithm
was addressed. One notable result was the observation that inverting the order of steps
of a part of the factorization provides a new, matrix-based, algebraic representation of a
multivariate generalization of the de Boor-Cox recursion formula (specialized in Bézier
form).

21. A set of representative examples were provided; including a geometric interpretation
of the de Casteljau algorithm by matrix factorization, and the representation of a mul-
tivariate surface and its directional derivatives in Bézier form by factor matrices.

Chapter 9: Image compression using an adjustable basis function

22. A custom transform related to the discrete cosine transform (DCT) using an adjustable
LERBS basis function was proposed. The purpose was to explore image processing
with the flexibility provided by setting the shape parameter.

23. Histograms of the distribution of coefficients were computed by applying the custom
transform to a collection of images. Quantization tables for specific settings of the
shape parameter were generated from the entropy values for the corresponding his-
tograms.

24. The effect of setting the shape parameter of the basis function and using the proposed
quantization tables when applied to image compression was investigated. The results
were compared to a standard DCT transform with JPEG type quantization. Perfor-
mance measures for three reference pictures were provided using two different metrics
to measure errors:

(a) PSNR to measure the signal’s fidelity without considering its content.
(b) MSSIM as a picture metric where the data is treated as the visual information it

contains.

The benchmark test indicated better PSNR against compression factor for the custom
method than for the reference DCT with JPEG quantization. The performance differ-
ence between the two transforms seemed to be much smaller when measured using the
MSSIM.
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Chapter 10: Performance of a wavelet shrinking method

25. A strategy for wavelet shrinkage based on partitioning of signals with varying smooth-
ness properties was introduced. The motivation was to investigate this strategy for
compression of discretized geometry, such as parametric curves and surfaces, where
varying smoothness measures and singularities can occur.

26. Wavelet shrinkage by Lorentz curve thresholding was benchmarked for a selection of
wavelets applied to four test functions with different smoothness measures and com-
pared to the performance on a “global” signal composed by joining together the four
test functions. The benchmarked criteria were to specify the accepted error measure
and to specify the desired compression rates. The main results were:

(a) The number of wavelet coefficients which could be discarded while meeting the cri-
teria was found to depend on the signal’s characteristics and the choice of wavelet.
The best performing wavelet according to the selected criteria was found to be
different for the selected types of signals.

(b) Higher compression rates and less error, respectively, was achieved for the individ-
ual partitions than for the composite “global” function.

A notable increase in PSNR against compression ratio was shown for the “global”
signal by transforming the four test functions separately, using their respective “best”
performing wavelets, and applying individual shrinking of their coefficients. The com-
pressed signal was generated by joining together the compressed individual partitions.
This was summarized as follows:

(c) Better performance of wavelet shrinkage was possible for signals with varying
smoothness properties and isolated singularities by using the partitioning-based
approach than using one type of wavelet for the complete signal.

2.3 Remarks and notes for future work

Here we provide our remarks and some topics and ideas for future work based on the results
presented in this dissertation.

1. The papers [21, 23, 24, 25, 27] have been presented by the author of this thesis at the
conferences corresponding to the conference proceedings which they have appeared in.

2. A new family of basis functions under the umbrella of GERBS have emerged during
the period of the research project. The C∞-smooth logistic ERBS were introduced
in [40, 129] as a promising alternative to ERBS by featuring simple explicit compu-
tation without requiring an integration step. The ERBS proper has been used in the
experiments described in this dissertation unless specified otherwise.
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3. The capability of a compression system is sometimes characterized in the literature in
terms of compression ratio defined as

cr =
source coder input size
source coder output size

.

This definition is somewhat ambiguous [3] and is depending on the specific compres-
sion method and data type it is employed for. As an example, bits/pixel is a common
measure of the size for still pictures and video frames [3].

The measure of compression in chapter 3 is denoting the size of the compressed signal,
relative to the size of the original uncompressed signal, in percent. Thus, as an example,
a measure of 10% means that the size of the compressed signal is 10% of the size of the
original signal.

Compression in chapter 9 has been measured by considering the relative difference
in size of the original uncompressed image file and the compressed image file. Real
compression including the lossless “packing” step has been performed. As an example,
a compression factor of 10 indicates that the size of the compressed signal is 10 times
less than the original uncompressed signal.

In chapter 10 “compression” is a measure of the number of discarded wavelet coeffi-
cients relative to the total number of wavelet coefficients (including the scaling coeffi-
cients).

4. Mean squared error (MSE), PSNR [13] and structural similarity (SSIM) [120, 122] are
examples of image quality measures [121]. SSIM aims to be correlated with quality
perception of the human visual system (HVS) [122]. However, the SSIM index has
faced some criticism, notably by Dosselmann and Yang, who found statistical evidence
of a link between the SSIM and MSE in [47] and established a formal connection be-
tween the two in [48]. Furthermore, Horé and Ziou presented an analytic relationship
between SSIM and PSNR in [69] and performed a series of tests in order to better un-
derstand their performance and differences. They concluded that the PSNR and the
SSIM quality measures mainly differ on their degree of sensitivity to image degrada-
tions. Winkler and Mohandas regarded SSIM as an engineering approach, based on
extraction and analysis of certain features in the image, and stated in [127] that such
metrics do not necessarily disregard human vision, but image content and distortion
analysis is the concept rather than fundamental vision modeling.

5. GPU hardware has evolved remarkably since the advent of smartphones and tablets.
Shader processors are not only available in traditional computers. They can be found
in products that were considered “low-end” until recently. The method presented
in chapter 7 has been relying on the tessellation shaders which are at present only
available in the main OpenGL standard. They have not (yet) been included in the
OpenGL|ES [85] or WebGL [71] APIs, which are applicable to embedded- and web-
based clients, respectively. However, hardware implementations of geometry- and tes-
sellation shaders for mobile devices have been introduced, see e.g. [97, 106, 96, 99, 107],
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and are accessible for developers through DirectX and the Android 5.0 API as an ex-
tension pack [62].

6. Algorithms for computing the Bernstein factor matrices and its derivatives, described
in chapter 8, have to be implemented. Different implementation strategies depending
on the application areas should be devised, benchmarked and compared. One idea
which should be investigated further is to utilize template metaprogramming to achieve
compile time code optimization.

7. The construction in chapter 8 can be used to provide multivariate local patches by
means of higher order simplices for use with the ERBS blending construction.

8. Attempting to change the step in the geometric interpretation of the de Casteljau algo-
rithm presented in chapter 8 such that it provides the linear combination of the rational
form of the Bernstein polynomials with weights would be interesting. Furthermore,
a conversion of the factorization theorem for Bézier curves to projective coordinates,
and trying to pass from the iterative procedure in Rn+1 to identification of a single
point as one element in a matrix describing the iterative process, are ideas which could
be explored further.

9. The rendering method proposed in chapter 7 should be further developed and imple-
mented for irregular grids.

10. Rendering of terrain by using hardware tessellation has been explored in previous
work, see e.g. [11, 128]. It would be interesting to compare some existing methods
with a spline-based representation and rendering approach, such as the one described
in chapter 7, applied to terrain models.

11. A comprehensive study of ERBS knot insertion and methods for generating local func-
tions, based on the findings provided in chapter 4, should be conducted in order to
provide strategies and alternatives for various applications.

12. Adaptive methods for partitioning of discretized ERBS-type spline spaces could be de-
veloped to facilitate the use of adjustable compression methods based on the findings
presented in chapter 10.

13. More sophisticated methods to determine quantization tables for the method proposed
in chapter 9 could be developed in order to improve the performance of the construc-
tion.
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3 Fitting of discrete data with GERBS

Jostein Bratlie, Rune Dalmo, and Peter Zanaty

This chapter is a reprint of [1]

Abstract — In this paper, we present a study of fitting discrete data with generalized
expo-rational B-splines (GERBS). We investigate different ways to determine in-
terpolation knots and generate GERBS local curves by partitioning the paramet-
ric space and solving a corresponding least-squares fitting problem. We apply our
technique to discrete evaluations of continuous synthetic benchmark functions
and compare the resulting GERBS to the original data with respect to errors and
performance.
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3.1 Introduction

In this work we investigate the properties of fitting generalized expo-rational B-splines, in-
troduced in [2], to regular discretized data. GERBS is a family of blending type spline con-
structions, where local functional coefficients are blended by GERBS basis functions. The
choice of basis functions and the local enrichment functions determines the local and hence
the global approximation properties of the resulting space.

One of the intrinsic properties of the GERBS bases are the minimal support of the basis
functions, which allows for a simple approximation technique; instead of storing the indi-
vidual data points, and then blending the corresponding local functions together, node by
node, we can choose the interpolation knots and the accompanying local functions freely,
depending on the data itself.

Using this, we investigate various techniques to partition the parametric space of the
GERBS across the discrete data by changing the interpolation knots and simultaneously ad-
justing the corresponding coefficient functions. In addition, we look at the performance of
the different constructions with respect to approximation.

Many papers have been published on the topic of data fitting, data reduction, compression
and smoothing with B-splines using various methods. We mention here the knot removal
technique presented by Lyche and Mørken in [5] and with a different approach by Eck and
Hadenfeld in [3], and the shape-preserving knot removal method by Schumaker and Stanley
in [8]. We also mention the work done by Saux and Daniel in [6, 7] on estimating criteria
for fitting and data reduction of polygonal curves using B-splines. We leave these topics for
now and focus on a few simple methods for constructing GERBS local functions.

In section 3.2 we start by giving a brief introduction to GERBS and its construction, as
well as the partitioning and fitting setup we use throughout the article. Then in section 3.3 we
describe the different partitioning algorithms and then follows the description of the fitting
method in section 3.4. Finally in section 3.5 we give some concluding remarks where we
discuss our findings and future work.

3.2 Preliminaries

3.2.1 GERBS basis functions

Consider a strictly increasing knot vector ~t = {tk}n+1
k=0, t0 < t1 < · · · < tn+1, n ∈N. The

definition of the j -th GERBS is defined in [2] as follows.

B j (t ) =







F j (t ), if t ∈ (t j−1, t j ],
1− F j+1(t ), if t ∈ (t j , t j+1),
0, if t ∈ (−∞, t j−1]∪ [t j+1,+∞),

j = 1, . . . , n,

where {Fi}n+1
i=1 is a system of cumulative distribution functions such that for Fi , i = 1, . . . , n,
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1. the right-hand limit Fi (ti−1+) = Fi (ti−1) = 0,

2. the left-hand limit Fi (ti−) = Fi (ti ) = 1,

3. Fi (t ) = 0 for t ∈ (−∞, ti−1],

4. Fi (t ) = 1 for t ∈ [ti ,+∞), and F (t ) is monotonously increasing, possibly discontinu-
ous, but left-continuous for t ∈ [ti−1, ti].

3.2.2 GERBS curves

Generalized expo-rational B-splines provide a blending type construction, where local func-
tions at each knot are blended together by sufficiently smooth basis functions

s(t ) =
n
∑

i=1

`i (t − ti )Bi (t ), (3.1)

where ~t = {tk}n+1
k=0 is a strictly increasing knot vector, and each basis function B j (t ) is sup-

ported on (t j−1, t j+1) while possessing a Dirac property B j (ti ) = δi j .
The local functions `i throughout this paper shall be Taylor expanding polynomials up

to a multiplicity µi

`i (t − ti ) =
µi
∑

j=0

ci , j
(t − ti )

j

j !
,

and the corresponding GERBS base Bi (t ) is required to have vanishing derivatives of order
up to, including, µi . For the rest of the paper we will use the expo-rational B-spline basis
described in [4] which is capable of transfinite Hermite interpolation, i.e. all of its derivatives
vanish at all knots.

The knots (~t ) and the multiplicities ( ~µ) together define a spline space, where the coeffi-
cients (~c ) have a natural meaning corresponding to a Hermite interpolation problem.

3.2.3 Partitioning and fitting

In digital systems we often have to deal with continuous (analogue) input data. The way
it is handled is that the analogue signal is converted to digital by sampling and quantizing
(digitizing) and the resulting raw digital data is being used instead of the original data. Often
it is a requirement to produce outputs which are either continuous or sampled at a higher
rate than that of the input data, this problem translates into interpolation/extrapolation or
approximation problems depending on the requirements.

In the current article, we are interested in comparing different strategies for representing
uniformly sampled uni-variate functions with the use of GERBS based approximation, see
Figure 3.1. The partitioning algorithms work on a sampled data of two benchmark functions,
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Sampler F [k] Partition ~t , ~µ

Fitting

Spline

~c

f (t ) s(t )

Figure 3.1: Block diagram showing how a continuous signal is discretized and represented as
a spline via partitioning and fitting of the data.

given by

f1(t ) =
�

ln(t + 1)
−t sin(2t + 1))

�

, t ∈ [0,1],

f2(t ) =
�

t
t sin( 1t )

�

, t ∈ [0.01,0.5],

and their task is to select the knot configuration and the corresponding local multiplicities of
the spline space.

Then a fitting algorithm obtains the coefficients to the spline representation, finally we
compare the resulting splines with both the original continuous benchmark functions f1(t ),
f2(t ) and their sampled discrete versions F1[k], F2[k] and discuss some properties of the
resulting transformations.

3.3 Partitioning algorithms

In order to fit a GERBS construction (see section 3.2.2) to discrete data, it is necessary to de-
cide where to place the interpolation knots (~t ) and to decide the corresponding multiplicities
( ~µ) of the local functions. This can be done in a number of different ways. We describe three
different algorithms for constructing local curves.

3.3.1 Uniform partitioning

As a starting point with uniform sampling we define a knot for each discrete data point in
F [k]. Next, the number of knots is reduced by selecting a subset of F in order to define the
spline space. We add as a note here that the data is assumed to be appropriate for selection.
(In some cases it is common to smooth the data before selecting to reduce errors or avoid
problems related to oscillation.) It is possible to increase the degree by selecting derivatives
for each knot. We illustrate uniform partitioning with three different examples:

1. Fixed sample rate

2. Specified number of knots

3. Parametric stride
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In the first case, the sample rate simply states how many knots to skip between the selected
knots. Hence, a sample rate of two selects every second knot, whereas a sample rate of 10
selects every 10th knot.

The number of knots in the second case defines the size of the resulting knot vector. This
implies a computation of the sampling rate depending on the number of elements in F .

We consider parametric stride, where we select knots equidistant in parametric space, in
the current article.

3.3.2 Curvature based partitioning

Moving away from uniform partitioning, we describe in brief a naive, curvature extrema
based partitioning approach. From the discrete function F [k], k = 1, . . . , M , we compute for
each interior knot ti , i = 2, . . . , M − 1 the radius of circumscribed circle of triangle R[i] =
Rc i r c4(F [i−1], F [i], F [i+1]). These values correspond to the curvature of the curve at the
corresponding interior points. Next, we select the extrema of these values as they, together
with the two endpoints constitute the points of interest (for more details on feature point
selection consult [9, 7]).

To be able to scale the method, the resulting set of feature points is processed further. Fea-
ture points that are too close are filtered out and new feature points are introduced uniformly
between feature points that were too far away.

3.3.3 Partitioning based on inflexion

We look at two different approaches based on relative angular changes in the discrete data set.
In both cases we consider the angle between the two vectors spanning a sample point. Where
we in the first approach consider the change in the angle by tracing the curve, we start by
sorting the angles into different buckets in the other.

Inline traced partitioning:

In the first variation we look at an approach where we consider the linear interpolation
between two neighboring data points to be a vector which provides a first derivative in one
point. Given ~a and ~b , two vectors, we use the dot product between vectors and the angular
difference, γ , of ~a and ~b

cos(γ ) =
< ~a, ~b >

|~a|
�

�

�

~b
�

�

�

(3.2)

Given the discrete data set F [k], and an empty set q to store the detected feature points.
Apply (3.2) to the vectors a = p1 − p0 and let b “run” along the curve, starting with b =
p2− p1, then b = p3− p2, and so on. By comparing the results of applying (3.2), whenever
the sign of the gradient of the resulting “curve” changes, we find a point of inflection on the
curve given by linear interpolation between points in p.
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Figure 3.2: Ten points and the linear interpolation in-between drawn as vectors. Left: The
ten sample points. Interior sample points sorted into three different buckets. Right: The
interior feature points kept after partitioning.

Bucket based partitioning:

The second approach is to do an angular difference based partitioning by segmenting knots
into buckets, each bucket corresponding to a range subset of possible angular differences
between the forward and the backward edge. From the discrete function F [k], k = 1, . . . , M−
1, we compute for each interior knot the angle between the two adjacent vectors, ~a and ~b ,
where a = F [k + 1]− F [k] and b = F [k + 2]− F [k + 1]. We sort the angles and divide the
knots into equal sized buckets, this can be seen in Figure 3.2. Next we run along the curve
selecting feature knots, where if following knots is belonging to the same bucket, only the
first is kept as a feature knot.

In addition to the found interior knots the end-point knots are also kept as feature knots.
Finally, the resulting set of feature points is processed further, feature points that are too close
are filtered out.

3.4 Fitting

Once the interpolation space is set up, by defining the knot vectors (~t ) and the multiplicities
( ~µ) the problem of finding the coefficients to best match the given discrete data set F [k], k =
{k1, k2, . . . , kM} of M points remains. For this purpose we will use the best L2 approximant,
given by the coefficient minimizing the mean squared errors

‖S − F ‖2 =
M
∑

i=1

|s(ki )− F [ki]|2,

the coefficients are obtained by the usual technique of solving least squares problems. We
restrict our investigation to cases where the fitting problem is not ill-posed.

Figure 3.3 shows the performance of the considered methods introduced in section 3.3.
The x-axis shows the percentage of the original data that is being used while the y-axis displays
the signal-to-noise ratio (SNR) measured in dB, defined as

SNR= 10 log10

� ‖F ‖2

‖F − S‖2

�

,

where F stands for the original discrete data and S represent the reconstructed data and ‖ · ‖2
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Figure 3.3: Error rates for the smooth (top) and oscillating (bottom) synthetic benchmarks.
The blue lines U0,U1,U2 represent the uniform algorithm, the orange lines C0,C1,C2, stand for
the curvature based refining method, while the purple lines I0,I1,I2, show the performance of
the bucketing algorithm based on angles. The lower indices correspond the applied uniform
multiplicity, µi in (3.1).
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stands for the square of the usual L2 norm.

3.5 Concluding remarks

Our technique is local, hence there is a small bandwidth in the resulting matrix in the least
squares fitting, which in turn gives a computational advantage over global methods, i.e. clas-
sical polynomial B-splines.

The computational complexity of each feature detection method is linear and readily
parallelizable, similarly since the splines are local the reconstruction and evaluation can also
be done parallel.

We note that there is a trade-off between smoothing and interpolation which can be ad-
justed depending on how confident we are in the data and the condition number of the
fitting. Furthermore, the smoothness of the resulting curve can be easily adjusted e.g. to
fulfill a smoothness criteria of the underlying physics of the discrete sample points.

The primary utilization is to reduce an original data set and use GERBS type splines to
represent the final data. From the two synthetic benchmarks we can conclude that the two
types of feature extraction coupled with the coloring or the refining extension allowed for a
construction of a series of tune-able spline spaces which performed at least as good as the least
squares fitting for smooth inputs and proved to be much more stable for oscillating irregular
input data.

3.5.1 Future work

Future work related to applications includes the extension of the current study to applica-
tions in cartography and animation data, including the adaptation of the presented ideas to
industry standard representations used there, i.e., Catmull-Rom splines in animations and
Bézier curves in cartography.

The locality of the method makes it a suitable candidate for streaming data, one particular
potential area of use can be in massive multiplayer online (MMO) games within the computer
games industry, where large amounts of data of similar structure has to be handled real time.
Transferring data over a limited bandwidth, especially for relatively large discrete data sets,
translates to simply transferring coefficients via the networks, since the coefficient alone are
enough to reconstruct data from a sender on the receiver’s end.

Finally, to put a last note for future work, we believe more sophisticated methods for
partitioning of the parametric space could enhance the results much further. It could be
interesting to apply well studied principles for data reduction, such as (shape-preserving)
knot removal or those based on features and criteria of the original data.
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4 Local refinement of ERBS curves

Rune Dalmo

This chapter is a reprint of [4]

Abstract — Expo-rational B-splines (ERBS) provide a blending type construction
where local functions at each knot are blended together by infinitely smooth
basis functions. In this work we consider some specific ERBS curves that are
approximations of parametric curves. We study local refinement to increase flex-
ibility by inserting local control curves at points of interest on the ERBS curve.

Inserting knots into an existing B-spline knot vector results in a new spline space
which contains the original spline space as a sub-space. In contrast to B-splines,
knot insertion with ERBS results in a rational local function. We investigate
methods to generate local curves of different brands. Using this, we blend extra
local curves with the original ERBS curve, by knot insertion, and compare the
differences with respect to geometric shape and approximation errors.
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4.1 Introduction

A number of different approaches to local refinement of B-splines has been explored in pre-
vious works. We mention here knot insertion, approached differently by Boehm [1] and
Cohen, Lyche and Riesenfeld [3], T-splines [12], LR-splines [7], subdivision of various kinds
(e.g. the recursive method by Catmull and Clark in [2]) and macro element spaces [11]. Most
of these techniques are applicable to ERBS[10, 6]. However, the ERBS blending construc-
tion, using local functions as coefficients, are different from the well-known B-spline type
blending construction. To the best of our knowledge, applying local refinement to ERBS has
not been studied in detail yet.

Since knot insertion seems to have played an important role for establishing B-splines and
NURBS as common tools in applications for CAGD, we will focus on this particular topic
in this preliminary study.

4.2 Preliminaries

4.2.1 Expo-rational B-splines

Let t = {tk}n+1
k=0 be a strictly increasing knot vector. The expo-rational B-spline associated

with tk−1, tk and tk+1 is defined in [10, 6]. We consider here the scalable subset, proposed in
[9], where the integrals are independent of the knot vector:

Bk(t ) =











Sk−1

∫ωk−1(t )
0

ψk−1(s)d s , tk−1 < t ≤ tk ,
Sk

∫ 1
ωk (t )

ψk(s)d s , tk < t < tk+1,

0, otherwise,

(4.1)

whereωk(t ) =
t−tk

tk+1−tk
, ψ(s) = e−β

|s−λ|(1+γ )α
(s(1−s)γ )α , and the scaling factor is Sk =

�

∫ 1
0
ψ(s)d s

�−1
, where

α > 0,β > 0,γ > 0,0 ≤ λ ≤ 1. The ERBS shares three of its five basic properties with the
linear B-spline; partition of unity, minimal support and that it interpolates its coefficient in
its central knot. In addition, all of its derivatives are zero in every knot, and it is C∞-smooth
on R.

We note here that the ERBS index number indicates the central knot, where it interpolates
its local function (the peak of the basis function), contrary to the B-spline index number
which indicates at which knot the B-spline “starts”.

An ERBS function f (t ) is a blending type construction where local functions are inter-
polated at each knot. It is defined on (t1, tn] by

f (t ) =
n
∑

k=1

`k(t )Bk(t ), t ∈ (t1, tn], (4.2)

where the local functions `k(t ), defined on (tk−1, tk+1), are scalar-, vector- or point-valued.
The ERBS Hermite interpolation properties (see Theorem 2.4 in [9]) states that an ERBS
function interpolates the values and all existing derivatives of its local functions in their
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associated knots.

4.2.2 Knot insertion

Knot insertion is the process of inserting new knots into an existing knot vector and compute
new coefficients for the splines which are non-zero in the affected knot intervals. This way
the new and finer spline space contains the original coarser spline space. We mention here
the Oslo algorithm [3] by Cohen, Lyche and Riesenfeld, which is appropriate when inserting
more than a few knots at a time, and provide Boehm’s method [1], to insert one knot at a
time, in the following lemma:

Lemma 4.1. (Boehm’s method). Let t̂= ( t̂ j )
n+d+1
j=1 be a given knot vector and let t= (ti )

n+d+2
i=1

be the knot vector obtained by inserting a knot z in t̂ in the interval [ t̂k , t̂k+1]. If

f =
n
∑

j=1

ĉ j B j ,d ,̂t(t ) =
n+1
∑

i=1

ci Bi ,d ,t(t ),

where B j ,d ,̂t(t ) is the jth B-spline of degree d on the knot vector t̂, defined as

B j ,d ,̂t =
t− t̂ j

t̂ j+d− t̂ j
B j ,d−1,̂t(t )+

t̂ j+d+1−t

t̂ j+d+1− t̂ j+1
B j+1,d−1,̂t(t ),

for all real numbers t, with

B j ,0,̂t(t ) =
�

1, if t̂ j ≤ t ≤ t̂ j+1;
0, ot he r wi s e ,

then (ci )
n+d+1
i=1 can be expressed in terms of (ĉ j )

n
j=1 through the formulas

ci =











ĉi , if 1≤ i ≤ k − d ;
z− t̂i

t̂i+d− t̂i
ĉi +

t̂i+d−z
t̂i+d− t̂i

ĉi−1, if k − d + 1≤ i ≤ k;

ĉi−1, if k + 1≤ i ≤ n+ 1.

For details on the topic of knot insertion we refer to [8].

4.3 Local refinement of ERBS curves

Given an existing ERBS curve, as defined in (4.2), where the local functions `k(t ) are vector-
valued curves. Suppose we generate extra local curves to increase the flexibility whilst shaping
the ERBS curve. The extra local curves can be blended with the original ERBS curve. We
discuss in brief the blending construction in (4.2) before we change the topic to knot inser-
tion.
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4.3.1 The ERBS blending construction

Let us consider (4.2) on the interval (tk , tk+1). It follows from the ERBS minimal support
property that the only non-zero ERBS on that interval are Bk(t ) and Bk+1(t ). But since
Bk(t ) + Bk+1(t ) = 1, due to the partition of unity property, Bk+1(t ) can be expressed as
1− Bk(t ). We can clearly see that the ERBS function is a blending of two local functions
inside the knot interval:

f (t ) = `k(t )Bk(t )+ `k+1(t ) (1−Bk(t ))
= `k+1(t )+

�

`k(t )− `k+1(t )
�

Bk(t ),
(4.3)

when tk < t < tk+1. By utilizing the fact that Bk(tk) = 1, we write

f (t ) =
�

`k(tk), if t = tk

`k+1(t )+
�

`k(t )− `k+1(t )
�

Bk(t ), if tk < t < tk+1
(4.4)

Deriving (4.4) at t = tk , k = 1, . . . , n yields the ERBS Hermite interpolation properties:

D j f (tk) =D j`k(tk), for k = 1, . . . , n and j = 0,1,2, . . . (4.5)

Formula (4.5) shows that at t = tk , k = 1, . . . , n, all derivatives of the ERBS curve are equal
to the respective derivatives of the local curve.

4.3.2 Knot insertion on ERBS curves

We mention briefly that the local curve for a new knot, inserted at an existing inner knot,
can be obtained by constructing a copy of the existing knot’s local curve. This is using the
property that ERBS curves interpolate their local curves in their central knots. We will not
discuss multiple knots further here, but focus on inserting new knots between existing knots.

Since each local curve `k(t ) is supported on (tk−1, tk+1) (see Figure 4.1), it follows that if
we modify `k(t ) to compensate for a new knot inserted in (tk , tk+1), the change will influence
the ERBS blending on the whole interval (tk−1, tk+1). It is not hard to imagine that such a
change would cause a chain reaction invoked by adjusting `k−1(t ), to compensate for the
change of `k(t ), which in turn triggers a need to adjust `k−2(t ), and so on. We therefore
apply the restriction of not changing any of the existing local curves in order to achieve local
refinement.

In the following theorem, constrained by the mentioned restriction, we use Boehm’s
method (see Lemma 4.1) to express the new local functions after knot insertion in terms of
the existing:

Theorem 4.1. (Knot insertion on ERBS) Let t̂ = ( t̂ j )
n+1
j=0 be a given knot vector and let t =

(ti )
i=n+2
i=0 be the knot vector obtained by inserting a knot z in t̂ in the interval ( t̂k , t̂k+1). If

f (t ) =
n
∑

j=1

ˆ̀
j (t )B j ,̂t(t ) =

n+1
∑

i=1

`i (t )Bi ,t(t ),
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tk−2 tk−1 tk tk+1 tk+2z

`k−1

`k

`k+1

`z

Figure 4.1: Support of the local curves (`i )
k+1
i=k−1 on the knot interval (tk−1, tk+1). Dashed

segments indicate those parts of the local curves `k and `k+1 which are not in use after
inserting the knot z, with associated local curve `z , between the knots tk and tk+1.

where B j ,̂t(t ) is the jth ERBS on the knot vector t̂, defined as in (4.1), then (`i (t ))
n+2
i=1 can be

expressed in terms of (ˆ̀ j (t ))
n+1
j=1 through the formulas

`i (t ) =



































ˆ̀
i (t ), if 1≤ i < k ,

ˆ̀
i (t ) ◦wk(t ) if i = k ,

ˆ̀
k(t )+ Fk ,̂t(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

if i = k + 1,
ˆ̀

i−1(t ) ◦wk+1(t ) if i = k + 2,
ˆ̀

i−1(t ), if k + 2< i ≤ n+ 1,

(4.6)

where

Fk ,̂t(t ) =

( B◦ω̂k (t )
B◦ωk (t )

if t̂k < t ≤ z,
B◦ω̂k (t )−B◦ωk+1(t )

1−B◦ωk+1(t )
if z < t < t̂k+1,

(4.7)

with B(t) equal to the first half of the ERBS basis, as defined in the first part of (4.1), on the interval
[0,1] and ω̂k(t ) =

t− t̂k

t̂k+1− t̂k
, ωk(t ) =

t− t̂k

z− t̂k
, ωk+1(t ) =

t−z
t̂k+1−z

are affine functions mapping the

parameter value t within the new knot intervals to [0,1], and the affine functions wk(t ) =
t− t̂k−1

z− t̂k−1

and wk+1(t ) =
t−z

t̂k+2−z
are re-parameterizing the local functions, ˆ̀

k(t ) and ˆ̀
k+1(t ) respectively, to

the new knot vector t.

Proof. We look at the first two and the last two formulas in (4.6). Observe that for j <= k we
have t̂ j = t j . For i < k it follows that `i (t ) = ˆ̀

i (t ). When i = k, `i (t ) = ˆ̀
i (t ) ◦wk(t ), since

ˆ̀
i (t ) must be re-parameterized to the domain ( t̂k−1, z) on the new knot vector t. Similarly,

we have ti = t̂i−1 for i > k+1. So `i (t ) = ˆ̀
i−1(t ) for such values of i , except when i = k+2,

then `i (t ) must be re-parameterized to the domain (z, t̂k+2), hence, `i (t ) = ˆ̀
i−1(t ) ◦wk+1(t ).

Next, we discuss the case when i = k + 1. As it can be seen in (4.3), the only non-zero
ERBS on the interval ( t̂k , t̂k+1) are Bk ,̂t and Bk+1,̂t. Using the symmetry property of the ERBS
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basis function we rephrase (4.3) to express the ERBS curve on the interval ( t̂k , t̂k+1):

f (t ) = ˆ̀
k(t )B ◦ (1− ω̂k(t ))+ ˆ̀

k+1(t )B ◦ ω̂k(t )

= ˆ̀
k(t )+B ◦ ω̂k(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
� (4.8)

After knot insertion, the interval ( t̂k , t̂k+1) is divided into two new intervals; ( t̂k , z) and
(z, t̂k+1). The ERBS function in (4.8) expressed on the new knot vector t is then

f (t ) =







ˆ̀
k(t )+B ◦ωk(t )

�

`z(t )− ˆ̀
k(t )

�

if t̂k < t ≤ z,

`z(t )+B ◦ωk+1(t )
�

ˆ̀
k+1(t )− `z(t )

�

if z < t < t̂k+1.
(4.9)

The local function `z(t ) associated with z is found by solving the equation where the left-
hand side (LHS) is given by (4.8) and (4.9) constitutes the right-hand side (RHS) (see sec-
tion A.1 for details on the computation):

`z(t ) =







ˆ̀
k(t )+

B◦ω̂k (t )
B◦ωk (t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

if t̂k < t ≤ z,

ˆ̀
k(t )+

B◦ω̂k (t )−B◦ωk+1(t )
1−B◦ωk+1(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

if z < t < t̂k+1.
(4.10)

A slight re-formulation of (4.10) and exploiting (4.7) leads to the middle formula in (4.6).

We observe (4.10) and conclude that the local function `z(t ), associated with the new
knot z, is represented through knot insertion in terms of the (original) local functions ˆ̀

k(t )
and ˆ̀

k+1(t ) and the rational function Fk ,̂t(t ). The rational form is different from the original
construction. Fk ,̂t(t ) is different in the intervals ( t̂k , z) and (z, t̂k+1).

We can see from Theorem 4.1 that ωk(z) = 1. The first part of (4.9) shows that f (z) =
`z(z). For reference, see the Hermite interpolation properties in (4.3) and (4.4). Since
lim
t→z+

ωk+1(t ) = 0, lim
t→z−

f (t ) = `z(t ). This shows that (4.7) is continuous on ( t̂k , t̂k+1).

Both ω̂k(t ) and ωk(t ) tend to zero as t approaches t̂k from above. But ω̂k(t ) tends to
zero faster than ωk(t ), since z < tk+1, hence,

lim
t→ t̂k

+
Fk ,̂t(t ) = lim

t→ t̂k
+

0
B◦ωk (t )

= 0.

On the other hand, when t is approaching t̂k+1 from below, both ω̂k(t ) and ωk+1(t ) tend to
one. But, since t̂k < z, ω̂k(t ) tends to one faster than ωk+1(t ). Thus,

lim
t→ t̂k+1

−
Fk ,̂t(t ) = lim

t→ t̂k+1
−

1−B◦ωk+1(t )
1−B◦ωk+1(t )

= 1.

A plot of Fk ,̂t(t ), as defined in (4.7), is provided in Figure 4.2.
Our final note here is that the observations on the limits of Fk ,̂t(t ) as t goes towards t̂k and

t̂k+1 shows that the middle formula in (4.6), on the form of (4.8), satisfies the ERBS Hermite
interpolation properties (4.5).
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Figure 4.2: A plot of Fk ,̂t(t ) in (4.7) with t̂k = 0, z = 0.5 and t̂k+1 = 1.

4.3.3 Approximation of local functions

As we have seen in the previous section, generating a local curve for a new knot inserted into
an existing knot vector has a solution which involves a rational function. In practical appli-
cations the local functions are usually polynomials, such as Bézier curves, Hermite curves or
circle arcs. It is therefore interesting to investigate methods to generate local curves of dif-
ferent brands and how well they approximate the original ERBS. We propose the following
strategies to generate local curves:

I Use a truncated Taylor expansion of the original ERBS curve in the new knot. This is,
due to the ERBS Hermite interpolation properties (see (4.3), (4.4) and (4.5)), equivalent
to evaluating the original ERBS curve given the new knot as its parametric value.

II Construct a new local curve, of the same brand as the existing local curves, which Her-
mite interpolates the value and all existing derivatives of the ERBS in the new knot.

III Construct a new local curve, of the same brand as the existing local curves, by per-
forming a least squares approximation of the local curve specified by the middle formula
in (4.6) of Theorem 4.1.

IV Adjust the coefficients of the local curve, obtained by any of the two previous methods,
to obtain a better geometric approximation of the global ERBS curve.

As an example we consider a closed parametric ERBS curve, which approximates a cir-
cle with radius r = 10 and parametric value t ∈ [0,2π), using four quadratic Bézier local
curves on the knot vector t= { 3π

2 , 0, π2 ,π, 3π
2 , 0}. Table 4.1 shows error measurements for the

different methods1 to generate local curves for the new knot z = 3.5.
1Plots of the parametric ERBS curve and its local Bézier curves before knot insertion and after knot in-

sertion, for the scenarios I, II, and II + IV, are provided in section B.1. These plots are an extension of the
published version of this article.
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I II II + IV III III + IV
L2( f − g ) 0.075 0.080 0.12 0.071 0.032
L∞( f − g ) 0.29 0.26 0.45 0.25 0.14
L2

G( f − g ) 0.049 0.046 0.0078 0.026 0.0069
L∞G ( f − g ) 0.22 0.17 0.033 0.097 0.032

Table 4.1: Error measurements for different kinds of local curves when inserting one new
knot on an ERBS approximation of a circle using four quadratic Bézier local curves.

We measure the deviation using norms presented in [9]; a max norm

L∞( f − g ) = max
t∈[t1,tn+1]

| f (t )− g (t )|,

to measure the guaranteed maximum deviation, and an L2 norm

L2( f − g ) =

√

√

√
1

tn+1− t1

∫ tn+1

t1

| f (t )− g (t )|2 d t ,

to investigate the “quadratic” mean deviation. These two norms take the parameterization
into consideration, thus, they are used to measure the “mathematical” deviation.

We use another error measure, proposed in [9], which only refers to the geometric shape
and not to the speed of the parameterization, using a non-symmetric version of the Hausdorff
distance, for measuring the result, using a geometric version of a metric related to a max
norm,

L∞G ( f − g ) = max
t∈[t1,tn+1]

| f (t )−Cg ( f (t ))|,

where Cg (p) refers to the closest point on a curve f from a point p. A metric related to the
L2 norm is constructed in [9] by the following:

L2
G( f − g ) =

√

√

√

√

√

∫ tn+1

t1
| f (t )−Cg ( f (t ))|2|D f (t )|d t

∫ tn+1

t1
|D f (t )|d t

.

The last method (IV) above is achieved here by a rather naïve, iterative algorithm which
translates or dilates the coefficients of the Bézier curve in small steps; first along the line which
passes through the first and the last coefficients, then along a line which passes through one of
the “inner” coefficients and its closest point on the first line, until it reaches a stop criterion
when the approximation error does not improve.

4.4 Concluding remarks

Local refinement of ERBS curves, in terms of knot insertion, constrained by not altering any
of the existing local curves, provides a rational function as the new coefficient.

We propose a few methods to approximate the local curves associated with the inserted
knots. This is of interest in applications where it is desirable to use a homogeneous set of
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local curves. The error is restricted within the support intervals of the new local curves.
Methods I and II shows nearly similar performance but the geometric shape of the global

curve is different in the two cases. We note a significant increase in geometric deviation with
method III. Invoking IV shows that it is possible to improve the global geometric approxima-
tion error by altering the new local curve. But, since it entails a change in the parameteriza-
tion speed, the mathematical deviation may increase. Furthermore, the refined ERBS curve
may not interpolate the original in the new knot.

As topics for future work we suggest investigating least squares approximation with re-
spect to the global approximation error, knot insertion on the generalized set of ERBS basis
functions (GERBS [5]), or even Sigmoid functions. It would also be interesting to investi-
gate convergence when the value of the inserted knot becomes arbitrarily close to an existing
knot.

A different approach for investigating local refinement in terms of knot insertion could
be to consider Taylor expansions of functions as local coefficients rather than the polynomial
functions considered here.

References

[1] W. Boehm. Inserting new knots into B-spline curves. Computer Aided Design,
12(4):199–201, 1980.

[2] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topologi-
cal meshes. Computer Aided Design, 10(6):350–355, 1978.

[3] E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision techniques
in Computer-Aided Geometric Design and computer graphics. Computer Graphics and
Image Processing, 14(2):87–111, 1980.

[4] R. Dalmo. Local refinement of ERBS curves. In V. Pasheva and G. Venkov, editors,
39th International conference applications of mathematics in engineering and economics
AMEE13, volume 1570 of AIP Conference Proceedings, pages 204–211. AIP Publishing,
2013.

[5] L. T. Dechevsky, B. Bang, and A. Lakså. Generalized expo-rational B-splines. Interna-
tional Journal of Pure and Applied Mathematics, 57(6):833–872, 2009.

[6] L. T. Dechevsky, A. Lakså, and B. Bang. Expo-rational B-splines. International Journal
of Pure and Applied Mathematics, 27(3):319–362, 2006.

[7] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines over locally refined box-
partitions. Computer Aided Geometric Design, 30(3):331 – 356, 2013.

[8] R. N. Goldman and T. Lyche. Knot Insertion and Deletion Algorithms for B-Spline Curves
and Surfaces. Geometric Design Publications. SIAM, 3600 University City Science Cen-
ter, Philadelphia, PA 19104-2688, 1993.

57



[9] A. Lakså. Basic properties of Expo-Rational B-splines and practical use in Computer Aided
Geometric Design. PhD thesis, University of Oslo, 2007. (Dr.philos.).

[10] A. Lakså, B. Bang, and L. T. Dechevsky. Exploring expo-rational B-splines for curves
and surfaces. In M. Dæhlen, K. Mørken, and L. L. Schumaker, editors, Mathematical
methods for Curves and Surfaces, pages 253–262. Nashboro Press, 2005.

[11] L. L. Schumaker and T. Sorokina. Smooth macro-elements on Powell-Sabin-12 splits.
Mathematics of Computation, 75(254):711–726, 2006.

[12] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs. In
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 477–484, New York, NY, USA,
2003. ACM.

58



5 Data approximation using a blending

type spline construction

Rune Dalmo and Jostein Bratlie

This chapter is a reprint of [2]

Abstract — Generalized expo-rational B-splines (GERBS) is a blending type spline
construction where local functions at each knot are blended together by C k -
smooth basis functions. One way of approximating discrete regular data using
GERBS is by partitioning the data set into subsets and fit a local function to each
subset. Partitioning and fitting strategies can be devised such that important or
interesting data points are interpolated in order to preserve certain features.

We present a method for fitting discrete data using a tensor product GERBS con-
struction. The method is based on detection of feature points using differential
geometry. Derivatives, which are necessary for feature point detection and used
to construct local surface patches, are approximated from the discrete data using
finite differences.
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5.1 Motivation and background

Discrete regular data is used to represent data in a variety of application areas, such as the
video-game industry or cartography systems, where they are used e.g. to represent surface
elevation data in terms of height maps.

Fitting of discrete curve data with generalized expo-rational B-splines (GERBS) [3] was
addressed in [1]. In that work several strategies for partitioning of the discrete data set was
proposed. Furthermore, examples of curve fitting based on least squares approximation were
provided.

In the present paper we investigate fitting of discrete surface data using spline blending
functions. We are interested in a spline representation, which is evaluable everywhere on its
domain, as a substitute for the discrete data. The methodology is based on expansion from
and synthesizing the discrete data utilizing constrained blending- and measure techniques. We
propose a two-step process of determining interpolation knots at selected points of interest
and choosing appropriate local functions as coefficients.

In the following sections we explain briefly the considered blending type spline construc-
tion followed by strategies for partitioning and data fitting. Then we present an example of
partitioning and fitting applied to a synthetic test data and provide our concluding remarks.

5.2 Blending type spline constructions

The blending functions of GERBS [7, 3] is presented in [6] as an adjusted recursive definition
of the B-spline associated with the knots (ti )

k+d
i=0 :

Bd ,k(t ) = B ◦ωd ,k(t )Bd−1,k(t )+ (1−B ◦ωd ,k+1(t ))Bd−1,k+1(t ),

where ωd ,i (t ) =
t−ti

ti+d−ti
, B0,i (t ) =

�

1; if ti ≤ t < ti+1,
0; otherwise,

and, in the case of GERBS, the

degree d = 1, and B is a C k -smooth blending function possessing the following set of proper-
ties:

1. B : I → I (I = [0,1]⊂R),
2. B(0) = 0,

3. B(1) = 1,

4. B ′(t )>= 0, t ∈ I .

5. B(t )+B(1− t ) = 1, t ∈ I .

The last property is optional and specifies point symmetry around the point (0.5,0.5), how-
ever, we assume this property in the present study.

B-functions come in a wide range of flavors including trigonometric, polynomial, rational
and expo-rational. The perhaps most simple example of a B-function is B(t ) = t . One
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Figure 5.1: The steps involved in partitioning and fitting of discrete data using a blending
type spline surface.

example of a C∞-smooth B-function, which belongs to the family of logistic expo-rational
B-splines (LERBS) presented in [8], is the following:

B(t ) =
1

1+ e(
1
t − 1

1−t )
.

The type of surfaces we consider here are tensor products. A tensor product B-function
spline surface is defined in [6, 5] as follows:

S(u, v) =
n
∑

i=1

m
∑

j=1

`i , j (u, v)B1,i (u)B1, j (v),

where `i , j (u, v) are local surface patches which are blended together by the C k -smooth basis
functions B . We note that using local surface patches as coefficients facilitates blending of
points (Bézier and B-spline surfaces), points and vectors (Hermite interpolation surfaces) or
even scalar- point- or vector valued functions (GERBS). Furthermore, we note the ERBS Her-
mite interpolation property [5] which states that ERBS type spline blending constructions
interpolate the position and all existing derivatives of the local functions at every knot.

5.3 Partitioning and data fitting

As outlined in [1], the process of fitting a blending type spline to discrete data can be done
in a sequence of a few steps, which are illustrated in Figure 5.1.

A fundamental part of parametric spline approximation in general is to determine appro-
priate knot vectors. In the case of GERBS, the knots are interpolation points. In order to fit
a GERBS construction to discrete data it is therefore necessary to decide where to place the
interpolation knots ( tu , tv ) and to decide the degree of the local surface patches. This can be
done in a number of different ways. We suggest exploiting the Hermite interpolation prop-
erty by placing local patches at points of interest, such as singularities, extrema or inflection
points.

In the present work we have chosen the four corners of the tensor product grid as ini-
tial interpolation points. Next, we proceed by finding inflection points as follows. From
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differential geometry [4] we have that the curvature of the curve α at t ∈ I is

k(t ) =
|α′ ∧α′′|
|α′|3 ,

where α : I →R3 is a regular parameterized curve, α′ = dα
d t and α′′ = d 2α

d t 2 . (This is obtained by
a re-parameterization of α(I ) by the arc length s = s(t ), measured from t0 ∈ I , where t = t (s)
is the inverse function of s ). In the case of a plane curve, α : I → R2, the numerator is the
wedge product (scalar value), which means that the curvature is signed. We use the curvature
sign changes to detect inflection points in both parametric directions u and v of the tensor
product surface. Finally we consolidate the corresponding parameter values together with
start- and end parameter values, or corners, and assemble two knot vectors tu and tv .

The method above utilizes first- and second derivatives of parametric lines to determine
the knot vectors. The common definition of the derivative of a function f at a point x is

f ′(x) = lim
h→∞

f (x + h)− f (x)
h

.

Since we are considering discrete data where h holds a fixed (non-zero) value instead of ap-
proaching zero, derivatives can be approximated using finite differences:

f ′(x) =
δh[ f ](x)

h
.

For this purpose we use the central differences given by

δh[ f ](x) = f (x + 1
2 h)− f (x − 1

2 h),

whose error is proportional to the square of the spacing:

δh[ f ](x)
h

− f ′(x) =O(h2).

It is appropriate to remark here that oscillating functions can yield zero derivative with cen-
tral differences. Furthermore, we note that derivatives on the boundaries can be approxi-
mated using higher order finite differences.

5.4 Results

In this section we provide an example of fitting a spline surface to a synthetic 2D height map
surface. The discrete height map F [k , l ] is obtained by sampling the function given by

F (x, y) = sin( 12 x)cos( y
5 ), x ∈ [0,30], y ∈ [0,30]

into a grid with M = 30×N = 30 equidistant points. In the example, partitioning of the
data set is based on inflection point detection, and the local patches for the spline surface are
constructed by Hermite interpolation of order six. A plot of the discrete point set F [k , l ]
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Figure 5.2: An example of a discrete height map surface obtained from sampling a bi-variate
periodic test function into a uniform regular grid with 30× 30 points.

Figure 5.3: A tessellation of a blending type spline surface is shown together with two local
surface patches in Bézier representation. The green spheres and lines outline the control
nets of the local patches. The small cubes on the spline surface indicate the positions of the
interpolation knots. The interpolation points of the local patches are the upper left corner
and the purple cube on the bottom boundary.
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is shown in Figure 5.2. Figure 5.3 shows a tessellation of the spline surface S(u, v) at a
relatively high resolution together with a couple of local surface patches. The mean squared
error (MSE) obtained by

MSE=
1

N M

N
∑

i=1

M
∑

j=1

(F [i , j ]− S(i , j ))2

is approximately equal to 1.079× 10−4 for the test case.

5.5 Concluding remarks

In this paper we have presented strategies for partitioning and fitting of discrete data using a
blending type spline construction. We assume that the discrete data have a smooth origin or
underlying smoothness properties. The methods are depending on the data, feature points
and the desired results; e.g. interpolation properties and order of approximation.

The spline construction is smooth and can be evaluated everywhere on the domain. This
is of interest in tessellation applications since the resolution of the tessellation can be specified
independent of the discrete data. One particular case is data reduction using the tessellation
shader steps of modern graphics processing units (GPUs). Traditionally, lots of polygon data
had to be “pushed” through the graphics pipeline for rendering. The alternative, facilitated
by the suggested approach, is to evaluate or generate data from control nets.

Local surface patches interpolate feature points and control the blending spline approx-
imation. One immediate consequence is that flexibility and control of the spline can be
achieved by specifying the degree of local patches, number of knots and layout of the knot
vectors.

When it comes to applications, the method is applicable to cases where replacing discrete
data with a construction which can be evaluated is desirable, such as, for example, tessellation
of surface data at arbitrary resolution. Furthermore, the partitioning and fitting strategies can
be parts in adaptive compression methods. The methods are applicable to other kinds of dis-
crete data than geometry, as considered here, thus, application within trend analysis or com-
bining geometry modeling with data generated from partial differential equations (PDEs) are
other possibilities. A far-going extension could be to utilize multiresolution analysis (MRA)
wavelets for partitioning.

We mention optimizing for numerical performance or approximation error as topics for
future work. We believe this would be relevant to developing adaptive strategies. As a final
note for future work we suggest extending the methods to non-regular grids.
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6 Smooth spline blending surface

approximation over a triangulated

irregular network

Rune Dalmo, Jostein Bratlie, Børre Bang, and Arne Lakså

This chapter is a reprint of [2]

Abstract — A triangulated irregular network (TIN) is a data structure commonly
used to represent a geometric surface in computer software systems, such as ge-
ographic information systems and terrain modeling systems. Expo-rational B-
splines (ERBS), a blending type spline construction in the family of generalized
expo-rational B-splines (GERBS), can be used to create an approximation surface
which interpolates the vertex positions of the TIN nodes. Utilizing the prop-
erties for local support of this blending spline construction, one can construct
an approximation surface which is local within the second neighbourhood with
respect to the infliction nodes of the underlying TIN. We present two variations
of blending functions used with the construction. The first one blends the TIN
edges with a smooth component, thus, the surface approximation is only C 0 over
the TIN edges. The second blending method provides a surface approximation
which is smooth over the TIN edges.
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6.1 Introduction

Various methods for approximation and interpolation to obtain visually nice, or smooth, sur-
faces have been explored to the present. We provide here a brief overview of some blending
methods applicable to arbitrary triangulations of non-regular data.

Triangular Bernstein-Bézier patches, described e.g. in [4], can be joined together in a
smooth way by constructing pairs of co-planar triangles. However, the conditions ensuring a
sufficient continuity across the common boundary lock triangles together and the construc-
tion becomes stiff. Besides, the number of co-planar triangles required grows with increasing
degree of continuity, making the construction less local.

Schumaker et al. explored methods in [13, 7] where they utilize spline functions on
macro-element spaces. Macro-elements of required smoothness are constructed on splits of
triangles. They are used to construct super-spline spaces with local, stable bases, to overcome
the above mentioned problems.

The parameterization method of Floater [5], although it is not a blending type method,
is applicable to smooth surface approximation of triangulations, notably using the shape-
preserving parameterization [5] or mean value coordinates [6].

Techniques based on radial basis functions, introduced by Broomhead and Lowe in the
neural network community [1], are now common tools for geometric data analysis. We
note here that triangular data structures, since they define connectivity between vertices, can
be used to determine constraints for radial basis functions. Thus, blending of radial basis
functions can be considered to construct smooth surface approximations over triangulations.

In this paper we describe, using expo-rational B-splines (ERBS) surfaces [9], blending over
a triangulation based on non-regular data. Our motivation is to generate a surface which is
smooth over the TIN edges and at the same time interpolates the vertex positions.

The following sections explain the kind of triangulations we consider, ERBS patches and
how they are constructed from pairs of triangles, how we approximate, do interpolation and
blend the results, followed by some examples.

6.2 Preliminaries

6.2.1 Triangulated Irregular Network

The triangulated irregular network (TIN), proposed and explored by Peucker et al. in a se-
ries of papers, notably [11, 12], is a digital terrain model (DTM) consisting of irregularly
distributed nodes and lines. It constitutes a network of non-overlapping triangles represent-
ing a tessellation of a surface, usually in Euclidean space R3. TINs are typically vector-based
representations of terrain data. They are commonly used in geographic information systems
(GIS). The TIN surface model is oriented to line features as well as points. Using triangles to
represent terrain facilitates a realistic representation if the spatial data units recognize natural
surface changes in slope, at peaks, pits, passes, ridge lines, saddle points and course lines or
discontinuities. Triangular facets can be created to meet these conditions by having their cor-
ners located at control points with exact known coordinates, and having triangle edges fall

68



p

Figure 6.1: A point p and its first neighborhood (points connected to this point through an
edge) in a TIN

along approximations of ridges. More information regarding terrain representation based on
TINs can be found in [10].

A part of a TIN is displayed in Figure 6.1. Due to the nature of TIN data we conclude
that it is possible to “see” the first neighborhood from any point in a TIN and measure the
distances along the edges. Using this it follows that an edge does not intersect the physical
terrain.

6.2.2 Expo-rational B-splines

Expo-rational B-splines, as defined in [9], provide a blending type construction where local
functions at each knot are blended together by C∞-smooth basis functions:

f (t ) =
n
∑

k=1

lk(t )Bk(t )

where t = {tk}k=n+1
k=0 is an increasing knot vector, and each basis function B j (t ) is C∞ on its

support (t j−1, t j+1) with Bk(tk) = 1, and D j Bk(tk) = 0 for j = 1,2, . . . .
In this paper we consider the scalable subset of the ERBS basis presented in [3] with the

default set of intrinsic parameters proposed by Lakså in [8]:

Bk(t ) =















Sk−1

∫ wk−1(t )
0

ψk−1(s)d s , tk−1 < t ≤ tk

Sk

∫ 1
wk (t )

ψk(s)d s , tk < t < tk+1

0, otherwise,

(6.1)

where wk(t ) =
t−tk

tk+1−tk
, ψ(t ) = e

−

�

t− 1
2

�2

t (1−t ) , and Sk =
�

∫ 1
0
ψk(t )d t

�−1
.

We have the following general formula for parametric tensor product surfaces using
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ERBS,

S(u, v) =
nu
∑

i=1

nv
∑

j=1

si j (u, v)Bi (u)B j (v), (6.2)

where si j (u, v), i = 1, . . . , nu , j = 1, . . . , nv are nu × nv local Bézier surface patches, and
Bi (u),B j (v) are the respective ERBS basis functions.

6.3 ERBS over a TIN

Given a TIN, ∆(x, y, z), which is a tessellation of a surface in R3 where the z axis represents
data, for instance physical terrain heights. We construct ERBS surface patches from pairs of
neighboring triangles by considering inner edges in the TIN structure. Each ERBS surface
patch L(u, v) is a differentiable map, L : ΩL ⊂ R2 → R3. Figure 6.2 illustrates an ERBS
surface patch construction, based on four bi-linear Bézier local surfaces, as defined in (6.2). Its
positions pi , i = 1, . . . , 4 and derivatives u1,u2,v1 and v2 are retrieved from the triangulation,
where p1,p2 and p3 are vertices in one triangle, and p1,p3 and p4 outline a neighbor triangle.
The dotted line between p1 and p3 constitutes the common edge shared by the two triangles.
The right part of Figure 6.2 illustrates an ERBS surface patch on a TIN.

Directional derivatives for the bi-linear Bézier local surface S(u, v) in position p1 are
defined as follows:

∂ S
∂ u
= p2−p1,

∂ S
∂ v
= p4−p1,

∂ 2S
∂ u∂ v

= (p3+p1)− (p4+p2).

(6.3)

Directional derivatives for the three remaining Bézier surfaces local to one ERBS surface
patch, one in each of the vertices p2, p3 and p4, are defined in a manner similar to (6.3).

A consequence of the ERBS Hermite interpolation properties explored in [8, theorem
2.4] is that the derivatives of an ERBS surface patch, in a given knot, are equal to all existing
derivatives of the Bézier local surface in that knot. It follows that each ERBS surface patch
interpolates TIN positions in four vertices: p1,p2,p3 and p4 in Figure 6.2.

6.4 Smooth surface construction

We define a parametric regular grid surface Θ(u, v), Θ : ΩΘ ⊂ R2 → R3, which covers the
triangulation ∆(x, y, z). The positions in R3 for the points pΘ(u, v) on the surface Θ are
computed as follows. First we find in which triangle t ∈∆ the point p∆ is inside, where p∆ is
a 2D projection of pΘ mapped to ∆ in Cartesian coordinates. Next, we evaluate each ERBS
surface patch Li in pLi

, where Li covers t and pLi
is pΘ mapped to Li in its local coordinates,

and blend the results. We denote the mapping from pΘ to pLi
by ωi (u, v).

The blending distribution is computed from the barycentric coordinates of the triangles.
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Figure 6.2: Left: A bi-linear ERBS surface patch L(u, v) constructed from vertices and edges
in two neighboring triangles. Right: An ERBS surface patch L(u, v) on a TIN ∆(x, y, z).
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Figure 6.3: Criteria for blending of bi-linear ERBS surface patches using homogeneous
barycentric coordinates u1, u2 and u3 (left) and angle ratios α

a ,
β
b and γ

g (right), respectively.

We present two blending functions, which are both invariant under affine maps, utilizing the
scalable subset of the ERBS basis function.

6.4.1 Blending using custom ERBS triangles

A set of ERBS basis functions in homogeneous barycentric coordinates is defined in [8] as

Bk ,i (u) =
B(ui )

∑k
j=1 B(u j )

for k > 1 and i = 1,2, . . . , k , (6.4)

and where B(ui ), i = 1,2, . . . , k is defined in (6.1). In the case of triangles, each B3,i (u)
evaluates to 1 in the vertex ui and 0 in the two other vertices. Everywhere else the value is
between 0 and 1.

ERBS surface patches can be blended using a slightly modified version of the ERBS trian-
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Figure 6.4: Modified ERBS triangles in homogeneous barycentric coordinates, rendered with
triangle strips. Left: One ERBS basis function B̂i (u). It evaluates to 0 in one vertex, 1

2 along
the opposing edge and between 0 and 1

2 elsewhere. Right: Three modified ERBS triangles
B̂i (u), i = 1,2,3 in homogeneous barycentric coordinates. The sum of the basis functions is
1 everywhere. For the sake of clarity we mention that the plots do not show parameter lines.

gle (6.4). Given a point u = (u1, u2, u3), in homogeneous barycentric coordinates, as shown
in the left part of Figure 6.3. Then

Θ(u, v) =
3
∑

i=1

B̂i (u) Li ◦ωi (u, v), (6.5)

where Li ◦ωi (u, v) is the ith ERBS surface patch evaluated in its local coordinates, and the
set of ERBS basis functions B̂i (u) is defined as

B̂i (u) =
B(1− ui )

∑3
j=1 B(1− u j )

, i = 1,2,3, (6.6)

where we clearly can see that
∑3

i=1 B̂i (u) = 1.

A plot of the modified ERBS triangle (6.6) is shown in Figure 6.4. It evaluates to 0 in one
vertex, is positive on the edges, is 1

2 along the opposing edge between the two other vertices
and is between 0 and 1

2 elsewhere. As a consequence, when it comes to blending of ERBS
surface patches on a specific edge, we conclude that one ERBS triangle is 1

2 and the two other
ERBS triangles sum up to 1

2 . Figure 6.4 illustrates this by showing three modified ERBS
triangles in homogeneous barycentric coordinates.

6.4.2 Blending using angle ratios in triangles

Given a point u= (u1, u2, u3), in homogeneous barycentric coordinates, as shown in the right
part of Figure 6.3. Then
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Θ(u, v) =
�

�

1−B
�α

a

��

L1 ◦ω1(u, v) +

B
�α

a

�

L2 ◦ω2(u, v)
�

�

1−B
�

γ
g

��

+
�

�

1−B
�

β
b

��

L1 ◦ω1(u, v) +

B
�

β
b

�

L3 ◦ω3(u, v)
�

B
�

γ
g

�

, (6.7)

where a, b , g ,α,β and γ are the angles in Figure 6.3, so that α,β and γ depend on u,
and B(u) is the ERBS basis function in (6.1) and Li ◦ωi (u, v) is the ith ERBS surface patch
evaluated in its local coordinates. By re-arranging (6.7) and using (6.5) we obtain

B̃1(u) =
�

1−B(αa )
�

�

1−B( γg )
�

+
�

1−B(βb )
�

B( γg ),

B̃2(u) = B(αa )
�

1−B( γg )
�

,

B̃3(u) = B(βb )B(
γ
g ).

(6.8)

It follows that
∑3

i=1 B̃i (u) = 1 since

3
∑

i=1

B̃i (u) = 1−B( γg )−B(αa )+B(αa )B(
γ
g )+B( γg )−B(βb )B(

γ
g )

+B(αa )−B(αa )B(
γ
g ) (6.9)

+B(βb )B(
γ
g )

= 1.

The left part of Figure 6.5 shows a plot of one of the basis functions in (6.8). It evaluates
to 0 along two edges and 1 along the third edge, but is 1 at one vertex only. Hence, there is a
“jump” between basis functions in the vertices.

Using this and investigating (6.7)-(6.9) we conclude that, in this case, one single ERBS
surface patch Li ◦ωi (u, v) (see Figure 6.2) will be evaluated on each edge. The right part
of Figure 6.5 shows a plot of the three basis functions in (6.8) in homogeneous barycentric
coordinates.

6.5 Concluding remarks

The method presented in this article is considered to be data-driven. We believe it makes
sense to use such methods in cases where we must rely on topology information to gener-
ate derivatives. The method is local within the second neighborhood of a TIN node as a
consequence of the ERBS surface patch construction.

Whether the construction provides smoothness in the vertices or on the edges depends on
the blending functions. The provided blending functions interpolate the position in every
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Figure 6.5: ERBS blending functions using angle ratios, in homogeneous barycentric coor-
dinates, rendered with triangle strips. Left: One angle ratio ERBS basis function B̃i (u). It
evaluates to 0 along two edges and 1 along one edge. Right: Three angle ratio ERBS basis
functions B̃i (u), i = 1,2,3. The sum of basis functions is 1 everywhere. On each edge, one
basis function evaluates to 1, whereas the two remaining basis functions evaluate to 0. For
the sake of clarity we mention that the plots do not show parameter lines.

vertex. First order directional derivatives, in a given vertex, exist but are not continuous
since the limits from the different ERBS surface patches do not converge towards the same.
We consider the construction to be C 0 in the vertices.

Blending using the original ERBS triangles proposed in [8] (see (6.4)) provides C 0 ap-
proximation over the edges, but is C∞-smooth in the vertices. In the case of modified ERBS
triangles, defined in (6.6), the resulting surface Θ(u, v) is C 0 in the vertices and across the
edges. However, when compared to the original TIN, the visual result is slightly improved
in terms of smoothness, since the ERBS surface patch which is smooth over the considered
edge is given the weight 1

2 . “Remains” of edges are still visible due to the jump in first order
directional derivatives between the two other patches.

The blending method based on angle ratios, described in (6.7), ensures that only one
ERBS surface patch, which is smooth over the considered edge, is evaluated on that edge.
Notably, the surface Θ(u, v) inherits smoothness properties from the ERBS surface patch
over an edge, as a consequence of the ERBS Hermite interpolation properties, since the
derivatives of (6.7) are 0 along the edges (6.8). As expected, the discontinuities in the first
order directional derivatives are not longer visible.

We note that there is a trade-off between approximation error and smoothness over edges.
The bi-linear Bézier local patches in (6.3) approximate the outer edges well, but pull the
surface away from the inner edge. In contrast to the angle ratio method of (6.7), which
considers only a single ERBS surface patch, the modified ERBS triangle method in (6.5)
and (6.6) approximates edges better since evaluations from outer patch edges are blended
in. Visual examples showing the difference between the two blending functions applied to a
synthetic TIN are provided in Figure 6.6.
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Figure 6.6: Regular grid approximations of a synthetic TIN using different blending methods.
TIN vertex positions are interpolated in both cases. The surfaces are C 0 in the vertices and
smooth outside vertices and edges. Top: Custom ERBS triangle blending functions are used.
The surface is C 0 across the edges, thus, traces of edges appear as discontinuities in first order
directional derivatives. Bottom: The surface is smooth over the edges as a consequence of
using the ERBS angle ratio blending functions.
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Another consequence of the ERBS Hermite interpolation properties is that the construc-
tion will work even for higher order derivatives than the bi-linear Bézier case considered here,
since all existing derivatives from the underlying local patches are propagated to the ERBS
surface patches. The method will still be local within the second neighborhood, given that
information regarding derivatives of higher order is provided with the TIN.
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7 Evaluation of smooth spline blending

surfaces using GPU

Jostein Bratlie, Rune Dalmo, and Børre Bang

This chapter is a reprint of [1]

Abstract — Recent development in several aspects of research on blending type spline
constructions has opened up new application areas. We propose a method for
evaluation and rendering of smooth blending type spline constructions using the
tessellation shader steps of modern graphics hardware. In this preliminary study
we focus on concepts and terminology rather than implementation details. Our
approach could lead to more efficient, dynamic and stable blending-type spline
based applications in fields such as interactive modeling, computer games and
more.
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7.1 Introduction

The purpose of this article is to introduce a concept for evaluation and rendering of smooth
blending type spline surfaces using features available in recent versions of modern render-
ing pipelines [10], most notably the OpenGL [11], maintained by the Khronos group, and
DirectX [9]. Since the year 2000, a family of blending-type spline constructions named expo-
rational B-splines (ERBS) [8] and, later, generalized expo-rational B-splines (GERBS) [3, 2]
has been introduced and explored by the R&D group Simulations at NUC. GERBS type
splines enjoy some properties, including Hermite interpolation at the knots [6] and minimal
support combined with C k -smooth basis functions, which makes them attractive to interac-
tive geometric modeling and smooth representations of parametric curves and surfaces.

Despite the flexibility of the construction, there is a price to pay, in particular with respect
to interactive geometric modeling, due to the cost of the spline basis function evaluator. The
performance is constrained by the following limitations:

1. Evaluation of the expo-rational basis function (ERB) requires an integration step.

2. The graphics rendering hardware is designed to support triangle constructions and
simple cases of classic splines on Bézier form, i.e. mapped to the interval [0,1].

The first issue was addressed by Zanaty in [13], where a relation between the ERBS basis
function and Sigmoidal functions was explored. The second issue is addressed in this article.

Recently, in [7], Lakså expressed generic blending functions, including GERBS, in terms
of classic B-splines. This is interesting since the rendering pipelines mentioned above were
designed to be used with ordinary B-splines.

In this work we consider tessellation techniques which are now standardized across ven-
dor specific application programming interfaces (APIs). Therefore, it is possible to adapt
and use such tessellation steps to obtain rendering methods applicable to B-spline type con-
structions. We seek to describe the relevant technology; blending-type splines and rendering
pipelines, as well as the concepts necessary for evaluation and rendering.

In the following sections we describe GERBS as an adjusted recursive definition of clas-
sic B-splines, similar to [7], followed by an overview of the relevant steps of the graphics
pipeline present in modern GPU hardware. Next, we introduce and define the critical com-
ponents of the proposed rendering- and evaluation method followed by a description of the
method itself. Finally, we give our concluding remarks, where we discuss some theoretical
performance results, and suggest topics for future work.

7.2 Spline blending functions

The blending functions of GERBS [8, 2] is presented in [7] as an adjusted recursive definition
of the B-spline associated with the knots (ti )

k+d
i=0 :

Bd ,k(t ) = B ◦ωd ,k(t )Bd−1,k(t )+ (1−B ◦ωd ,k+1(t ))Bd−1,k+1(t ), (7.1)
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Figure 7.1: Plots of a logistic ERB and its first derivative, as solid and dotted lines, respec-
tively.

where ωd ,i (t ) =
t−ti

ti+d−ti
, B0,i (t ) =

�

1; if ti ≤ t < ti+1,
0; otherwise,

and, in the case of GERBS, the

degree d = 1, and B is a C k -smooth blending function possessing the following set of proper-
ties:

1. B : I → I (I = [0,1]⊂R),
2. B(0) = 0,

3. B(1) = 1,

4. B ′(t )>= 0, t ∈ I .

5. B(t )+B(1− t ) = 1, t ∈ I .

The last property is optional and specifies point symmetry around the point (0.5,0.5), how-
ever, we assume this property in the present study.

B-functions come in a wide range of flavors including trigonometric, polynomial, rational
and expo-rational. The perhaps most simple example of a B-function is B(t ) = t . One
example of a C∞-smooth B-function, which belongs to the family of LERBS was presented
in [13] and can be expressed, as a logistic expo-rational B-function, as follows:

B(t ) =
1

1+ e(
1
t − 1

1−t )
. (7.2)

In contrast to the classic ERBS basis function, it follows from (7.2) that evaluation of this
particular B(t ) does not require an integration step. A plot of B(t ) in (7.2), where t ∈ [0,1],
is shown in Figure 7.1. An essential remark is that the exponential function is implemented
in GPU hardware.

A tensor product B-function spline surface is defined in [7, 6] as follows:

S(u, v) =
n
∑

i=1

m
∑

j=1

`i , j (u, v)B1,i (u)B1, j (v),
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Figure 7.2: The three tessellation shader steps shown as parts of the OpenGL and DirectX
rendering pipelines. The control- and evaluation shaders, using OpenGLs terminology,
which are illustrated as shaded gray boxes, are programmable. The primitive generator, or
tessellation step, is fixed.

where `i , j (u, v) are local surface patches which are blended together by the C k -smooth basis
functions B . We note that using local surface patches as coefficients facilitates blending of
points (Bézier and B-spline surfaces), points and vectors (Hermite interpolation surfaces) or
even scalar- point- or vector valued functions (GERBS). Furthermore, we note the ERBS Her-
mite interpolation property [6] which states that ERBS type spline blending constructions
interpolate the position and all existing derivatives of the local functions at every knot.

7.3 GPU Tessellation

The most recently added shader component in the GPU rendering pipeline is the tessellation
shader. It consists of three sub components, steps two through four, between the vertex
shader and the geometry shader, as shown in Figure 7.2.

The tessellation shader steps operate on a type of primitive called patch. The tessellation
patch primitive can be of three different types; isoline, triangle or quad.

The tessellation step is controlled through three different substeps; control, tessellation
and evaluation. The control and evaluation substeps are programmable while the tessellation
substep is hardware implementation specific. In the following we provide a brief description
of each substep of the tessellator.

I Control specifies which type of patch primitive to be considered and the amount of
tessellation applied to each patch. It provides control of tessellation inside the patch and
on the boundary of the patch independently.

II Tessellation, which is not programmable, only controllable, performs the actual tessel-
lation. It generates primitives. We can think of this step as where the topology of the
tessellation is induced.

III Evaluation determines the position of the new tessellated vertex. It is based on affine
transformations and performs in a manner similar to what the vertex shader does for
a vertex, when combined with a basic primitive, such as point, line, triangle-strip and
more.
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Figure 7.3: Three different types of render loci. From left to right: regular, T and star render
loci.

A vertex generated by the tessellation step has a normalized position within the tessella-
tion patch. This means that the evaluation step works on coordinates on the range [0,1] and,
in the case of triangle type patch primitives, barycentric coordinates.

By considering the blending construction in (7.1) we propose building an evaluator based
on the tessellation steps. Then, the tessellation patches of type line, triangle and quad, pro-
vided by the control step, take the roles as a render block on a blending type spline curve,
-triangle surface and -surface, respectively. As we shall see in the following section, this is one
layer in a hierarchical blending construction.

We conclude this section by mentioning briefly the roles of the two following steps. The
tessellator determines parameter values stating where in the parametric domain a blending
type curve or surface is to be evaluated. Finally, the tessellation evaluator is a shader imple-
mentation of a blending-type spline evaluator.

7.4 Render-lattice, -blocks and -loci

In [7] a concept for an ERBS-construction on irregular grids was presented. The concept
is to divide spline knot nets into regular and irregular grids, leaving us with three different
types of points at the knots; regular-, T- and star points, as shown in Figure 7.3. In [7] T- and
star-points are defined as follows:

• A T -point is defined as a grid (parameter) line ending in an orthogonal grid line.

• A Star-point is defined as a point where several grid lines meets in a non-orthogonal
way.

We propose the following descriptive names for a few of the grid components, when they
are used for a rendering purpose:

• Render lattice to describe a grid structure arising from the net of spline knots.

• Render locus to describe loci in the render lattice, closely related to spline knots and
regular-, T- and star-points.
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• Render block to describe each line or face in a render lattice, i.e. the subset of the lattice
that will be handled by a patch-type primitive.

The render block concept is closely connected to the description of the patch primitives
of the GPU hardware. This provides some basic properties shared by all render blocks:

1. The domain of a render block is a parametric domain.

2. The parameter variables take values in the range [0,1].

3. In order to meet the requirements associated with the ERBS Hermite interpolation
properties, the outer tessellation levels of two adjacent patch primitives must be the
same.

Below follows a set of definitions which describe the concepts behind the names intro-
duced above.

Definition 7.1. A render locus is an extension to the points defined in [7]. A render locus is
defined as a locus in a render lattice associated with a spline knot on a regular or irregular spline
net. A render locus can be one of three basic types, depending on the point type of the spline knot,
as described in [7]. The three types are regular, T and star.

Definition 7.2. A render block is an extension to the patch-type primitive of modern tessellation
based GPU architecture. The parametric domain of the render block is limited by the boundary
given by two, three or four render loci. The number of render loci is decided by the type of patch-
type primitive, which for line, triangle, or quadratic patch-type primitives are two, three or four,
respectively. A point in the domain of a line, triangle or quadratic render locus has a normalized
position ( (u), (u, v, w), (u, v), respectively) in the parametric domain Ω ∈ [0,1].

Definition 7.3. A render lattice is defined in such a way that it coincides with the spline knot
nets of the blending-type spline construction. Each locus on the render lattice is called a render
locus. In a valid render lattice, render loci is divided and partitioned such that the render lattice
consists of adjacently connected render blocks.

Examples of regular and irregular render lattices with quadratic render blocks are shown
in Figure 7.4. Throughout this article we shall consider regular render lattices with quadratic
render blocks and regular render loci. T- and star-type render loci are subjects for future
work.

7.4.1 Quadratic render block with regular render loci

A render block on a regular render lattice where all render loci are regular is defined in the
following way:

P (u, v) =
2
∑

i=1

2
∑

i=1

`i , j ◦ωi , j (u, v)B j (v)Bi (u) ,

where u, v ∈ [0,1] are parameters of the render block surface, and ωi , j (u, v) are “map-to-
local” functions mapping the parametric domain of the render block to the domain of the
local surface patch associated with the given render locus.
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Figure 7.4: Three different render lattices. A render block is highlighted in each render lattice
on the bottom row. The left column shows regular render loci. Regular and T-type render
loci are shown in the middle column, whereas the right column contains regular and star-type
render loci. The illustrations are provided to show the equivalence to the illustrations in [7,
Figure 4].
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Figure 7.5: The “Tower” surface: a blending spline tensor-product surface made up by 3× 3
knots with an associated local plane surface patches. The local surfaces in the corners are
locally rotated 90 degrees in the xy-plane and 45 degrees in xz-plane. The rendering lattice is
here made up by 3×3 render loci (one for each spline knot locus) and four render blocks. On
the left is a shaded version of the resulting surface, while on the right is a wireframe version
showing the tessellation of the four render blocks.

The parametric domain of the patch-type primitive is normalized and the knot interval
is always local, therefore, the “map-to-local” functions can be simplified from how they are
described in [6]. For each parametric direction, u, v, the local mapping function, shown here
for s , is defined as

ω(s) = γ +κ× s ,

where γ is the parametric offset of the local patch and κ is the scaling factor to the parametric
domain of the local patch.

Figure 7.5 shows an example of a blending spline made up of 3× 3 render loci, associated
with one local patch each, and rendered over a render lattice consisting of four render blocks.

7.4.2 Implementation strategies

The method proposed above provides a rendering strategy for “global” geometric objects
which are depending on evaluation of “local” geometry, possibly in several layers. When it
comes to implementation, several issues related to optimization and performance, including
the following, could be considered:

1. Evaluation of blending functions

2. Evaluation of local geometry

3. Data organization

4. Shader roles

88



In this article we shall not focus om implementation details, however, we find it appro-
priate to comment some of the above mentioned issues. Efficient evaluation of the original
ERB was one major issue which, after it was addressed in [13], lead to the idea behind this
article.

The second and third issues are tightly coupled. For this reason we prefer to see them in
connection. We propose two valid, but different, strategies here. The first is based on using
a general evaluation scheme of pre-sampled data. It is unnecessary to customize the shaders
for each type of local patch, such as, for example, a cap of a sphere vs. a Bézier patch, as each
local patch has to be pre-evaluated. One downside of this is that the pre-evaluated data must
be stored and managed, another is that the precision of the local surface data is given by the
resolution of the pre-sampling approximation step. On the positive side we note that, as a
consequence of pre-evaluation, the evaluation time of a local patch would not depend on the
patch type. Additionally, since the nature of the blending spline smoothly blends the local
geometry, the resolution of the data of the local patches does not need to be as high.

The second strategy for dealing with the second and third issues is using custom built
shaders for a given configuration of local render loci of a render block. We mention the
following drawbacks of this approach; on-the-fly evaluation of local patches could be more
expensive than a look-up in a pre-evaluated table. Furthermore, each shader on a render
block must be regenerated whenever there is a change in the configuration of its render loci.
Some major upsides with this approach are that it facilitates code modularization and the
possibility of pixel-accurate [12, 5] resolution. Code modularization is specific to individual
GPU architectures and APIs, but as an example, using OpenGL, one could divide each of the
tessellation evaluation shader parts (BS evaluator, B-function evaluator, local patch evaluator
and others) into shader objects and choose the appropriate ones when used.

The last issue is achieving efficiency by shader design. Using the features provided by the
tessellation shader it is possible to generate patch geometry on the fly by circumventing the
vertex shader altogether, providing only the coefficients of the local geometry to the shader.
The final geometry is generated by the tessellation shader and the local geometry only exists
as an evaluation result. A change in position, orientation or coefficient data of the local
geometry would directly cause deformation to the rendered geometry. This change would
not cause any additional computational costs as far as shader evaluation is concerned and a
stable framerate would be maintained. This literally means keeping the spline representation
all the way to the graphics hardware. Furthermore, it facilitates affine spatial transformations
of the spline coefficients before they are provided to the rendering pipeline.

7.5 Concluding remarks

We have introduced a method for smooth rendering of blending-type splines where stan-
dard features of the tessellation shader architecture are exploited. The presented work has
described a method for smooth rendering of blending spline constructions using tessellation
based GPU architecture. In addition, fundamental render block types and its terminology
has been proposed and described as well as strategies for implementation.

Some notable features of this method include, but are not limited to:
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• Predictable and constant rendering time (in the sense of modification of the spline
construction)

• The rendering method is local with respect to the render block

The method could be suitable for visualization in computer games or computer-generated
imagery (CGI). Furthermore, since modification of the underlying spline construction adds
little strain to the rendering method, it supports animation, simulations and interactivity,
with little computational overhead.

The rendering method preserves the geometry description and topology until it is dis-
cretized in the hardware. Independent of implementation, the sampling is performed by the
hardware instead of a defined procedure followed by pushing to the GPU.

Variable levels of detail (LODs) per render block could be achieved by using well known
methods for setting the inner tessellation levels through the control step of the tessellation
shader [12, 5]. The outer tessellation levels could be used to adjust and minimize artifacts
over the boundary between two adjacent render blocks. This is of interest when the blending
spline construction is used in application areas which results in large render patches, such as
terrain representation.

The facts that the rendering method is strictly local (limited to a render block), and that it
operates directly on the underlying spline construction, makes applications within interactive
geometric modeling and sculpting interesting topics for future work.

A preliminary implementation supporting rendering of regular tensor-product surface
render latices was created. The surfaces shown in Figure 7.5 were rendered using this prelimi-
nary implementation, which proves the concept. We propose focusing on efficient design for
render blocks containing T- and star-type render loci on irregular render lattices in the next
stages of research and development.

Inter-operable features between GPGPU specialized architecture APIs, such as OpenCL
or CUDA, and graphics architecture APIs, such as OpenGL or DirectX, are available. For
this reason, developing appropriate data structures and strategies for efficient data sharing
and communication, is desirable.

A more comprehensible study on the efficiency of the solution should be conducted, as
part of any specific implementation.
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8 Matrix factorization of multivariate

Bernstein polynomials

Rune Dalmo

This chapter is a reprint of [5]

Abstract — Ordinary univariate Bernstein polynomials can be represented in matrix
form using factor matrices. In this paper we present the definition and basic
properties of such factor matrices extended from the univariate case to the general
case of arbitrary number of variables by using barycentric coordinates in the
hyper-simplices of respective dimension. The main results in the paper are related
to the design of an iterative algorithm for fast convex computation of multivariate
Bernstein polynomials based on sparse-matrix factorization. In the process of
derivation of this algorithm, we investigate some properties of the factorization,
including symmetry, commutativity and differentiability of the factor matrices,
and address the relevance of this factorization to the de Casteljau algorithm for
evaluating curves and surfaces on Bézier form. A set of representative examples is
provided, including a geometric interpretation of the de Casteljau algorithm, and
representation by factor matrices of multivariate surfaces and their derivatives in
Bézier form. Another new result is the observation that inverting the order of
steps of a part of the new factorization algorithm provides a new, matrix-based,
algebraic representation of a multivariate generalization of a special case of the de
Boor-Cox computational algorithm.
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8.1 Introduction

Univariate Bernstein polynomials were introduced by Sergei Bernstein [1] in his proof of
the Weierstrass approximation theorem. They have been studied extensively in the literature
since then, see, e.g. [17], or a textbook on approximation theory, e.g., [7].

Bernstein polynomials consitute the basis of Bézier curves and surfaces [12], and they are
commonly used as basis functions in spline constructions [10, 20]. One way of represent-
ing Bernstein polynomials is by matrix form as factor matrices. Such matrices are related to
de Casteljau’s corner cutting algorithm [11]. The univariate case of Bernstein factor matri-
ces was addressed in [16], however, univariate Bernstein factor matrices seem to have been
exposed and used prior to that, see e.g. [3], where the de Casteljau algorithm is expressed
on matrix form, or the method presented in [15, algorithm 12]. In addition, we mention
that Tom Lyche and Knut Mørken have been using a slightly different matrix representation
of B-splines in their lecture notes [18] at the university of Oslo. A particularly attractive
property of the de Casteljau algorithm and its matrix-based version is the convexity of com-
putation, whereby the total accumulated error of computation stays within the convex hull
of the errors made in the process of the algorithm’s iterations.

The definition of ordinary Bernstein polynomials can be generalized with preservation of
the convexity-of-computation property by using barycentric coordinates, see e.g. [14, 19]. In
this paper we investigate symmetric and recursive properties of the factor matrices for higher
dimensions of the polynomials’ argument. Furthermore, we present an equivalent recursive
definition which facilitates the construction of Bernstein factor matrices for arbitrary dimen-
sions of the barycentric argument, and investigate some properties which follow from the
layout and construction of the matrices. We are interested in these findings mainly because
the factorization can be seen to correspond to the de Casteljau algorithm and to a special case
of the de Boor-Cox recursion formula for B-splines. Parts of the results, including an outline
of the recursive definition of the Bernstein factor matrices, were announced in [6].

The organization of the paper is, as follows. In section 8.1.1 we provide a brief descrip-
tion of Bernstein polynomials, the Bézier representation of polynomial curves, and univari-
ate Bernstein factor matrices. Section 8.1.2 is concerning some properties of the algebra of
square matrices. We generalize the factor matrices to the multivariate setting in section 8.2,
via first considering the case of R2, and then the d -variate case. Then in section 8.3 we ad-
dress the directional derivatives of Bernstein polynomials and Bernstein factor matrices in the
multivariate setting. Section 8.4 covers the relevance of the factorization to the de Casteljau
algorithm, followed by some examples of how the construction can be used. Proofs of some
of the lemmas and theorems are provided in section 8.5. Finally, in section 8.6, we give our
concluding remarks where we suggest some topics for future work.

8.1.1 Univariate Bernstein polynomials and curves on Bézier form

Computing the binomial expansion

1= (t +(1− t ))n =
n
∑

i=0

�

n
i

�

t i (1− t )n−i ,
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where t ∈R, leads to the Bernstein polynomials [1] of degree n,

B n
i (t ) =

�

n
i

�

t i (1− t )n−i , i = 0, . . . , n , (8.1)

which satisfy a number of important properties, including linear independence, symmetry,
roots at 0 and 1 only, partition of unity and positivity (i.e., convex partition of unity) in
(0,1). They can be expressed through the following (convex) recursion formula:

B n
i (t ) = tB n−1

i−1 (t )+ (1− t )B n−1
i (t ) , (8.2)

where B n−1
−1 = B n−1

n = 0 and B0
0 = 1.

Since the n+ 1 linearly independent Bernstein polynomials B n
i form a basis for all poly-

nomials of degree ≤ n, any polynomial curve c(t ) of degree ≤ n has a unique n-th degree
Bernstein-Bézier representation

c(t ) =
n
∑

i=0

ci B
n
i (t ), (8.3)

where the coefficients ci ∈ Rd , called Bézier points [19], are elements of an affine space, i.e.,
the elements of Rd are points with coordinates defined with respect to a frame, consisting
of origin with coordinates (0, . . . , 0

︸ ︷︷ ︸

d times

) and the canonical orthonormal basis with coordinates

(0, . . . , 0
︸ ︷︷ ︸

i−1 times

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i−1 times

). We note that the Bernstein-Bézier representation is sometimes referred

to as the B-form, as suggested by Carl de Boor in [9].

The curve in (8.3) can be evaluated using de Casteljau’s corner cutting algorithm [11] by
letting c0

i = ci and repeatedly applying the recursion formula for Bernstein polynomials in
(8.2):

c(t ) =
n
∑

i=0

c0
i B n

i (t ) =
n−1
∑

i=0

c1
i B n−1

i (t ) = · · ·=
0
∑

i=0

cn
i B0

i (t ) = cn
0 ,

where ck
i = (1− t )ck−1

i + tck−1
i+1 are intermediate points of de Casteljau’s algorithm. This

recursive convex linear interpolation between two points can be expressed in matrix form as
outlined in [16]. As an example, computing from right to left, for n = 3:

c(t ) =
�

1− t t
�

�

1− t t 0
0 1− t t

�





1− t t 0 0
0 1− t t 0
0 0 1− t t















c0

c1

c2

c3











. (8.4)

By consecutively multiplying the matrices in (8.4) from right to left, the dimension of the
vector on the RHS is reduced by 1 for each computation. The factor matrices are of dimen-
sion n× (n+1) given by their number of rows and columns respectively. It follows that (8.3)
can be rewritten as

c(t ) = T1(t )T2(t )T3(t )c, (8.5)

where c = (c0,c1,c2,c3)
T and the factor matrices are denoted by Tn(t ). As noted in [15],

95



computing the three matrices from the left results in a vector containing the four Bernstein
polynomials of degree three:

T1(t )T2(t )T3(t ) =
�

(1− t )3 3t (1− t )2 3t 2(1− t ) t 3
�

=
�

B3
0 (t ) B3

1 (t ) B3
2 (t ) B3

3 (t )
�

.

This method can be seen as a special case of the de Boor-Cox recursion formula [8, 4] for
B-splines, since B-splines are the proper generalization of Bézier curves [13].

The curve c(t ) can be evaluated by multiplying the vector of Bernstein polynomials to-
gether with the vector of coefficients c. We introduce the following matrix notation for the
set of Bernstein polynomials of degree n:

Bn(t ) = T1(t )T2(t ) · · ·Tn(t ). (8.6)

Thus, by applying (8.6) to (8.5), the cubic Bézier curve in (8.4) can be expressed as

c(t ) = B3(t )c.

The binomial in (8.4) can be expressed using barycentric coordinates simply by substitut-
ing 1− t with v and t with w, so that (v, w) is a barycentric coordinate with respect to a line
segment L =

�

l0 l1

� ⊂ R1, where v + w = 1. The first three matrices of (8.4) would then
become

T1T2T3 =
�

v w
�

�

v w 0
0 v w

�





v w 0 0
0 v w 0
0 0 v w



 . (8.7)

Prior to introducing multivariate Bernstein polynomials, we provide a brief description
of square matrices and some of their properties, which we shall use in some of the proofs and
examples in the sequel of this paper.

8.1.2 The algebra of square matrices

N -th order square matrices form a vector space with respect to the ordinary summation of
matrices and multiplication with a scalar [21, §93 (Example 1), §94]. Its dimension is N 2,
and one basis in it is provided by the canonical matrices Ei j = (δi kδ` j )

N
k ,`=1, i , j = 1, . . . ,N ,

where

δi j =

(

1, if i = j ,

0, otherwise,

is the Kronecker delta. For the linear span of the so-defined canonical basis we shall use the
notation E = EN×N = EN×N (F) where F denotes the field of scalars of the linear span and
where, in our case, we shall always consider only the case F = R (real scalars). It is well-
known, that when endowed with matrix multiplication, EN×N becomes a non-commutative
algebra [21, §93]. Since in the sequel we shall not be using all the properties of EN×N as an
algebra (for example, we shall not be discussing inverse elements in EN×N ), our choice here is
to provide a self-consistent presentation of only those of the properties of the algebra EN×N
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which are of relevance to this article through the next few lemmas.

Lemma 8.1. The dimension of the space EN×N is determined by the largest dimension of the
matrices involved in a given multiplication. For instance, let

AB=C,

where A, B and C are matrices with dimensions K × L, L×M and K ×M , respectively. Then
N =max{K , L, M}, and we can, for instance, express the matrix A as

EN×N =
N
∑

k=1

N
∑

l=1

ak l Ek l ,

where ak l are the entries in A, which we define to be zero if k > K or if l > L. The result is a
space EN×N which contains A as element of the linear span of Ei j for the first K values of i and the
first L values of j , i.e., corresponding to a K × L-rectangular submatrix situated in the upper left
corner of the N ×N square matrix. Entries from B and C can be obtained analogously.

Lemma 8.1 allows us to simplify the considerations for multiplication of several alge-
brae [21, §94 (item 2)], to a consideration within one single algebra EN×N of sufficiently high
order N [21, §93 (item 1)].

Lemma 8.2. The product of two basis matrices is

Ei j Ek` = δ j k Ei`, (8.8)

where i , j , k ,`= 1, . . . ,N .

Formula (8.8) is a concise form of the respective formula in [21, §93 (item 1)] and a
simplification of the respective formulae in [21, §94 (item 2)]. This will prove essential in the
proofs of our main results, because there (8.8) will be used iteratively.

Lemma 8.3. Let A= (ai j )
N ,N
i=1, j=1 ∈ EN×N , B= (bk l )

N ,N
k=1,l=1 ∈ EN×N , C= (cmn)

N ,N
m=1,n=1 ∈ EN×N

and D = (dpq)
N ,N
p=1,q=1 ∈ EN×N be four matrices. Then AB−CD is an element of EN×N , defined

by

AB−CD=
N
∑

α=1

N
∑

β=1

�

N
∑

λ=1

�

aαλbλβ− cαλdλβ
�

�

Eαβ. (8.9)

For the particular case when C= B, D=A in formula (8.9) we obtain the following:

Corollary 8.1. The commutator of A= (ai j )
N ,N
i=1, j=1 ∈ EN×N and B= (bk l )

N ,N
k=1,l=1 ∈ EN×N is an

element of EN×N , defined by

[A,B] =
N
∑

α=1

N
∑

β=1

�

N
∑

λ=1

�

aαλbλβ− aλβbαλ
�

�

Eαβ.
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8.2 Multivariate Bernstein polynomials

The symmetric properties of the Bernstein polynomials suggest that barycentric coordinates
are a natural choice to represent multivariate scenarios. We proceed by considering factor-
ization of the Bernstein polynomials in two variables expressed in barycentric coordinates
with respect to a triangle in R2. Then we shall generalize the resulting factor matrices to the
multivariate setting, with a recursive definition based on a particular decomposition of the
matrices into submatrices.

8.2.1 Bivariate Bernstein polynomials

Proceeding as in (8.1), we compute the trinomial expansion

1= (u + v +w)n =
∑

i , j ,k

�

n
i , j , k

�

u i v j wk , (8.10)

where i , j , k ≥ 0 and i + j + k = n. This leads to the Bernstein polynomials of degree n,

B n
i j k(u, v, w) =

�

n
i , j , k

�

u i v j wk , (8.11)

where (u, v, w) is the barycentric coordinate of a point p with respect to a triangle A =
(a0,a1,a2)⊂R2, (i , j , k) ∈ {0,1, . . . , n}3, and i+ j +k = n. We note that (u, v, w) represents a
local parameter with respect to A and p a global parameter, since p=Au= a0u + a1v + a2w,
with u + v +w = 1.

The recurrence relation for Bernstein polynomials associated with a triangle A ⊂ R2 in
homogeneous barycentric coordinates is defined (see e.g. [14, 19]) as

B n
i j k = uB n−1

i−1, j ,k + vB n−1
i , j−1,k +wB n−1

i , j ,k−1, (8.12)

where we consider expressions with negative subscripts to be zero. It is well known [14] that
the Bernstein polynomials

Bn
2 = {B n

i j k}i+ j+k=n (8.13)

form a basis for the space of polynomials of degree n. Thus, given any triangle A, every
polynomial p of degree n has a unique Bernstein-Bézier representation

p =
∑

i+ j+k=n

ci j kB n
i j k , (8.14)

where B n
i j k are the Bernstein polynomials associated with A.

In the sequel we shall assume a lexicographic order of the
�n+2

2

�

Bernstein polynomials, as
provided in (8.13) and (8.14), such that B n

r s t > B n
i j k when r > i , or if r = i , then s > j , or if

r = i and s = j , then t > k. As an example, the order of B n
i j k for i + j + k = n and n = 3 is
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the following:

B3
300 > B3

210 > B3
201 > B3

120 > B3
111 > B3

102 > B3
030 > B3

021 > B3
012 > B3

003.

We use the recurrence relation in (8.12) to define the triangular (bivariate) Bernstein
factor matrix in homogeneous barycentric coordinates, as follows:

Definition 8.1. The Bernstein factor matrix T2,n(u, v, w) is a
�n+1

2

�× �n+2
2

�

band-limited matrix
with three non-zero elements on each row. The columns of T2,n(u, v, w) correspond to the

�n+2
2

�

vectors of terms of the recurrence relation in (8.12) in lexicographic order, such that the non-zero
elements in every column are

1. positioned according to the lexicographic index numbers of the B n−1
i j k on the RHS, and

2. taking the values of their associated variables; u , v , or w .

It follows immediately from Definition 8.1 that the first three triangular (bivariate) factor
matrices in homogeneous barycentric coordinates are as follows:

T2,1 =
�

u v w
�

, (8.15)

T2,2 =





u v w 0 0 0
0 u 0 v w 0
0 0 u 0 v w



 , (8.16)

T2,3 =



















u v w 0 0 0 0 0 0 0
0 u 0 v w 0 0 0 0 0
0 0 u 0 v w 0 0 0 0
0 0 0 u 0 0 v w 0 0
0 0 0 0 u 0 0 v w 0
0 0 0 0 0 u 0 0 v w



















, (8.17)

where the horizontal and vertical lines are used to annotate sub-matrices, which we shall
describe later.

We find it appropriate to include the following lemma, which states that the proposed
factor matrices are a factorization of the set of Bernstein polynomials in three variables in
barycentric coordinates.

Lemma 8.4. The Bernstein factor matrices {T2,i}ni=1 factor the Bernstein polynomials Bn
2 :

T2,1T2,2 · · ·T2,n = Bn
2 . (8.18)

By investigating the matrices in (8.7) and (8.15)-(8.17) we observe that a specific Bernstein
factor matrix consists of four sub-matrices: The upper left sub-matrix is the factor matrix of
the same dimension but of one degree lower. The lower right sub-matrix is the factor matrix
of one dimension lower but of the same degree. The upper right sub-matrix is a zero matrix.
In the lower left sub-matrix the only non-zero elements are on the diagonal from one of the
entries on the top to the lower right element. We shall use the term right diagonal, since
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it can be seen as a main diagonal which is shifted as far as possible to the right in a square
matrix.

It turns out that this relation holds for arbitrary degree of the factor matrices. We, there-
fore, summarize the findings in the following lemma.

Lemma 8.5. The factor matrix T2,n(u, v, w), for degree n > 1, consists of four sub-matrices, such
that

T2,n(u, v, w) =
�

T2,n−1(u, v, w) 0
Tdiag

2,n (u) T1,n(v, w)

�

,

where Tdiag
2,n (u) is a matrix where the only non-zero elements are on the right diagonal and equal

to u .

8.2.2 The d -variate case, d = 2,3, . . .

Multivariate Bernstein polynomials over a d -dimensional simplex A⊂Rd are defined in [19]
as follows:

B n
i (u) =

�

n
i

�

ui =
�

n
i0, . . . , id

�

u i0
0 . . . u id

d , (8.19)

where i= (i0, . . . , id ) ∈ {0,1, . . . , n}d+1, |i|= i0+ · · ·+ id = n, u= (u0, . . . , ud ) is the barycentric
coordinate of a point p with respect to A, ui = (u i0

0 . . . u id
d ), and u0+ · · ·+ ud = 1. There are

�n+d
d

�

Bernstein polynomials of degree n. They form a basis for all d -variate polynomials
of total degree ≤ n, they form a partition of unity and are positive for u > 0, which is one
reason to consider Bernstein polynomials over the simplex A.

The following recurrence relation holds for the Bernstein polynomials in (8.19):

B n
i (u) = u0B n−1

i−e0
+ · · ·+ ud B n−1

i−ed
, (8.20)

where e0, . . . ,ed represents the columns of the (d+1)×(d+1) identity matrix, B0
0 = 1, B0

i = 0
if i has negative components, and |i− e j | = n − 1. We shall assume a lexicographic order of
the multivariate Bernstein polynomials, similar to the R2 case, based on the index numbers
i0, . . . , id . The Bernstein factor matrices for arbitrary number of variables are defined as
follows:

Definition 8.2. The Bernstein factor matrix Td ,n(u0, . . . , ud ) is a
�n+d−1

d

�× �n+d
d

�

band-limited
matrix with d non-zero elements on each row. The columns of Td ,n(u0, . . . , ud ) correspond to
the

�n+d
d

�

vectors of terms in the recurrence relation (8.20) in lexicographic order, such that the
non-zero elements in every column are

1. positioned according to the lexicographic index numbers of the B n−1
i−e j

on the RHS, and

2. taking the values of their associated variables; u0, u1, · · · , or ud .

We recall Lemma 8.5, which can be extended to the multivariate case. An outline of a
proof is to use the recurrence relation provided in (8.20) and Definition 8.2, which is similar
to the proof of Lemma 8.5. We use this to propose an alternative equivalent definition of
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the multivariate Bernstein factor matrices of arbitrary degree, based on recursion of the sub-
matrices, as summarized in the following theorem, which is a main result:

Theorem 8.1. The Bernstein factor matrix Td ,n(u) is a
�n+d−1

d

�×�n+d
d

�

band-limited matrix with
d + 1 nonzero elements on each row. The matrix is defined recursively as follows:

Td ,n(u0, . . . , ud ) =
�

Td ,n−1(u0, . . . , ud ) 0
Tdiag

d ,n (u0) Td−1,n(u1, . . . , ud )

�

, (8.21)

where d ≥ 0 is the dimension, n ≥ 1 is the degree, T0,q = (ud ) for q ≤ n, Tp,1 = (ud−p , . . . , ud )
for p ≤ d , and Tdiag

q ,n (ud−q) is a matrix where the only non-zero elements are on the right diagonal
and equal to ud−q .

In the following we will in some cases omit specifying the parameters of the matrix T
and its sub-matrices for simplification. We note that the sub-matrices in (8.21) are such that
Td ,n−1 is of size

�n+d−2
d

�× �n+d−1
d

�

, Td−1,n is
�n+d−2

d−1

�× �n+d−1
d−1

�

and Tdiag
d ,n is

�d+n−2
d

�× �n+d−1
d−1

�

.
The upper right sub-matrix is a

�d+n−2
d

�× �n+d−1
d−1

�

matrix where all the entries are zero.

Lemma 8.6. The entries in every row in Td ,n(u) are either 0, u0, . . . , or ud , such that each of the
elements u0, . . . , ud occurs once, in increasing order, with optional zeros in-between.

For the sake of clarity, we formalize that the proposed factor matrices are a factorization
of the set of Bernstein polynomials in d variables, similar to Lemma 8.4 for the R2 case, in
the following lemma.

Lemma 8.7. The Bernstein factor matrices {Td ,i}ni=1 factor the Bernstein polynomials Bn
d :

Td ,1Td ,2 · · ·Td ,n = Bn
d . (8.22)

We include the following lemma concerning a symmetry property of the Bernstein factor
matrices:

Lemma 8.8. Given the barycentric coordinates u= (u0, . . . , ud ) and z= (z0, . . . , zd ) with respect
to a d -dimensional simplex A. Then

Td ,k−1(z)Td ,k(u) = Td ,k−1(u)Td ,k(z). (8.23)

8.3 Directional derivatives

Let us consider the line given by
l (t ) = p+ tv,

where p = a0u0 + · · · + ad ud where u0 + · · · + ud = 1 is a point in Rd with barycentric
coordinates

u= (u0, u1, . . . , ud ), (8.24)
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and v= a0v0+ · · ·+ ad vd where v0+ · · ·+ vd = 0 is a vector with barycentric coordinates

v= (v0, v1, . . . , vd ), (8.25)

and a polynomial s(u) in Bernstein-Bézier form:

s(p) =
∑

|i|=n

ciB
n
i (u). (8.26)

Consider Rd+1 with Cartesian coordinates u0, u1, . . . , ud , a (d +1)-variate sufficiently smooth
function σ(u0, u1, . . . , ud ) and a unit vector inRd+1 with Cartesian coordinates (v0, v1, . . . , vd ):

d
∑

k=0

v2
k = 1. (8.27)

The 1-st directional derivative of σ at u0 = (u0
0 , u0

1 , . . . , u0
d ) ∈ Rd+1 in the direction of the

vector v= (v0, v1, . . . , vd ) satisfying (8.27) is, as habitual,

lim
t→0+

d
dt
σ(t ), (8.28)

where σ(t ) = σ(u0+ tv), t ∈ (0, t0), 0< t0 <∞.

Definition 8.3. The 1-st directional derivative of s(u) = s(u0, u1, . . . , ud ) at the point p =
(u0

0 , u0
1 , . . . , u0

d ) ∈ Rd in the direction of the vector v = (v0
0 , v0

1 , . . . , v0
d ) ∈ Rd where u0

k , v0
k ,

k = 0,1, . . . , d are barycentric coordinates in Rd satisfying (8.24) and (8.25), respectively, is
the directional derivative in Rd+1 in the particular case when u0 = p belongs to the affine man-
ifold (hyperplane in Rd+1)

�

(u0, u1, . . . , ud ) ∈Rd+1 :
∑d

k=0 uk = 1
	

and the directional vector v
belongs to the intersection of the unit sphere

�

(v0, v1, . . . , vd ) ∈Rd+1 :
∑d

k=0 v2
k = 1

	

and the d -
dimensional subspace (hyperplane in Rd+1)

�

(v0, v1, . . . , vd ) ∈Rd+1 :
∑d

k=0 v2
k = 0

	

.
Directional derivatives in barycentric coordinates of order higher than first are defined analo-

gously.

From the chain rule, using also the properties (8.24) and (8.25) of the barycentric coordi-
nates and Definition 8.3, we have that

Dv s(p) = v0Du0
s(p)+ · · ·+ vd Dud

s(p).

Partial derivatives of a Bernstein polynomial with respect to each of its parameters can be
obtained as

∂

∂ u j

B n
i = nB n−1

i−e j
,

where i is a multiindex, |i|= n, |i−e j |= n−1, and Bj = 0 if j has a negative component. This
gives rise to the following lemma, which can be found in a trivariate setting in [14]:

Lemma 8.9. For arbitrary i0+ · · ·+ id = n, the directional derivative of a Bernstein polynomial
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B n
i (p) in the direction of v is

DvB n
i (p) = n

�

v0B n−1
i−e0
(u)+ · · ·+ vd B n−1

i−ed
(u)
�

. (8.29)

Recall from Lemma 8.7 that

Bn
d (u) = Td ,1(u)Td ,2(u) · · ·Td ,n(u). (8.30)

This product of matrices can be differentiated by the same formulae as if the factors were
numbers. If T(u) is a matrix whose entries are functions of u, then the derivative in the
direction of v, DvT of T, is defined as the matrix obtained by differentiating each entry of T
with respect to v. The entries are obtained by differentiation of linear convex combinations,
which yields constants independent of u.

We formalize the definition of the derivative of the Bernstein factor matrix Td ,n(u):

Lemma 8.10. The derivative of a Bernstein factorial matrix in the direction of v= (v0, . . . , vd ),

DvTd ,n = Td ,n(v),

is a
�d+n−1

n−1

� × �d+n
n

�

band-limited matrix with d + 1 nonzero constant elements on each row
(independent of u).

We note here that the submatrix DvTdiag
d ,n is zero if v0 = 0, since the only non-zero elements

in Tdiag
d ,n are equal to v0. Furthermore, since Td−1,n(v) does not contain v0, the submatrix

DvTd−1,n is zero if v1 = · · ·= vd = 0, i.e. if Dv corresponds to the partial derivative Du0
.

The remainder of this section is partially based on an analogous treatment of univariate
B-splines on matrix form in [18], adjusted here to the setting of multivariate Bernstein poly-
nomials. The following well-known rule for differentiating a product of two matrices will be
used in order to find the derivative of the factorization.

Lemma 8.11. Let A and B be two matrices with compatible dimensions for the matrix product
AB and with entries that are functions of (u0, . . . , ud ). Then

D(AB) = (DA)B+A(DB).

By applying the rule from Lemma 8.11 to the product of (8.30), we get

DvBn
d (u) =

n
∑

k=1

Td ,1(u) · · ·Td ,k−1(u)DvTd ,kTd ,k+1(u) · · ·Td ,n(u). (8.31)

Formula (8.31) can be simplified by applying the following lemma:

Lemma 8.12. The matrices Td ,k−1 and Td ,k satisfy the relation

DvTd ,k−1Td ,k(u) = Td ,k−1(u)DvTd ,k , (8.32)
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for k ≥ 2, any u= (u0, . . . , ud ), uk ∈R, k = 0,1, . . . , d , and any given direction v= (v0, . . . , vd )
with

∑d
k=0 v2

k > 0.

The differentiation operator Dv in (8.31) can be shifted between the matrices by using
(8.32), and by making use of Lemma 8.10 we obtain

DvBn
d (u) = nTd ,1(u) · · ·Td ,n−1(u)DvTd ,n = nBn−1

d Td ,n(v). (8.33)

We are now ready to provide one of the main results, a theorem which states that the r -th
directional derivative of the set of Bernstein polynomials Bn

d can be obtained by differentiat-
ing r of the factor matrices.

Theorem 8.2. Given a set of Bernstein polynomials Bn
d (u) and the directions v1, . . . ,vr , for 1≤

r ≤ n. Then

Dv1
· · ·Dvr

Bn
d (u) =

n!
(n− r )!

Bn−r
d (u)Td ,n−r+1(v1) · · ·Td ,n(vr ). (8.34)

We recall from (8.26) that any d -variate polynomial of degree n has a Bernstein-Bézier
representation,

s(u) = Bn
d (u)c,

where c=
�

c0 · · · cd

�T . Next, we obtain the following via applying Theorem 8.2:

Corollary 8.2. Given a polynomial s(u) on Bernstein-Bézier form and the directions v1, . . . ,vr .
Then

Dv1
· · ·Dvr

s(p) =
n!

(n− r )!
Bn−r

d (u)Td ,n−r+1(v1) · · ·Td ,n(vr )c. (8.35)

8.4 Relevance to the de Casteljau algorithm

The Bernstein polynomials form a basis; thus, every d -variate polynomial s(u) has a Bernstein-
Bézier representation with respect to a reference simplex A:

s(u) =
∑

|i|=n

c0
i B n

i (u), (8.36)

which can be evaluated with de Casteljau’s algorithm by applying the recurrence relation in
(8.20). Similar to the case of curves, we obtain

s(u) =
∑

|i|=n−1

c1
i B n−1

i (u),

and, after n− 2 steps,
s(u) =

∑

|i|=0

cn
i B0

i (u) = c0...0,
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where ck
i = u0c

k−1
i+e0
+ · · ·+ ud ck−1

i+ed
, with |i| = n, . . . , 0, are intermediate coefficients. These

intermediate coefficients are polynomials of degree k.
The directional derivative of a polynomial in Bernstein-Bézier form is formulated, based

on a description in [19], as follows.

Lemma 8.13. The directional derivative of a d -variate polynomial s(u) on Bernstein-Bézier
form, at the point p in the direction of v, is given by

Dv s(p) = n
∑

j

djB
n−1
j (u),

where
dj = v0cj+e0

+ · · ·+ vd cj+ed

are the intermediate points resulting from the first step of the de Casteljau algorithm based on the
barycentric coordinates of v.

We observe that the coefficients of the first derivative of a polynomial on Bernstein-Bézier
form are as provided by Lemma 8.13 and verify that Dv s at the point p with barycentric
coordinates u can be evaluated using the de Casteljau algorithm by applying one step of the
algorithm using v and then n− 1 steps using u.

We abbreviate the intermediate points dj, using the notation from [19], by dj = ∆vcj.
Higher-order derivatives are obtained in the same way, e.g., an r -th directional derivative
Dv1
· · ·Dvr

s has the Bézier coefficients ∆v1
· · ·∆vr

cj, where |j|= n− r . The following result is
obtained by applying Lemma 8.13 repeatedly.

Lemma 8.14. Given the directions v1, . . . ,vr , for 1≤ r ≤ n. Then,

Dv1
· · ·Dvr

s(p) =
n!

(n− r )!

∑

j=n−r

d(r )j B n−r
j (u),

where d(r )j are the intermediate points obtained after performing r steps of the de Casteljau algo-
rithm using v1, . . . ,vr in this order.

One consequence of Lemma 8.14 is that Dv1
· · ·Dvr

s can be evaluated at the point p with
barycentric coordinates u by first applying r steps of the de Casteljau algorithm using v1 · · ·vr

in this order, and then by using u in the following n− r steps.
The forward difference operator ∆v commutes with the steps of the de Casteljau algo-

rithm [19] since the computation of affine combinations of affine combinations is commuta-
tive:

∑

i

αi

∑

j

β j pi j =
∑

j

β j

∑

i

αipi j .

Thus, an r -th directional derivative can also be obtained by first computing n − r steps of
the de Casteljau algorithm followed by r differentiation steps.

We obtain the following result; by using Theorem 8.1, Lemma 8.7, and (8.20), formula
(8.36) can be expressed in matrix form:
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Corollary 8.3. Any d -variate polynomial s(u) in Bernstein-Bézier form,

s(u) =
∑

|i|=n

c0
i B n

i (u),

can be expressed by using Bernstein factor matrices as:

s(u) = Td ,1(u)Td ,2(u) · · ·Td ,n(u)c, (8.37)

where c=
�

c0 · · · cd

�T . Computing the RHS in (8.37) from right to left corresponds to the steps
of the de Casteljau algorithm.

We note that computing only the matrices Td ,1 · · ·Td ,n, from left to right, yields a vector
containing the

�d+n
d

�

Bernstein polynomials of degree n in d +1 variables with respect to the
simplex A⊂Rd :

Bn
d (u) = Td ,1(u) · · ·Td ,n(u).

One important new observation here is that, in a manner similar to the case of curves, this
method can be seen to correspond to a special case of the de Boor-Cox recursion formula for
B-splines in a multivariate setting.

We conclude this section by recalling Corollary 8.2 and Lemma 8.14 to make another
important new observation: namely Corollary 8.3 is applicable also for computations of
directional derivatives.

8.4.1 Examples

The de Casteljau algorithm as an iterative procedure

The de Casteljau algorithm can be described as an iterative process by using projection and a
linear step. Let us recall the expression in (8.5) for a cubic parametric curve on Bézier form
by factorization using matrices, where in general for degree n we obtain:

c(t ) = T1(t )T2(t ) · · ·Tn(t )v0,

where v0 =
�

c0 · · · c0

�T =
�

c0
0 c0

1 · · · c0
n−1 c0

n

�T is a vector containing the coefficients,
or Bézier points, for the curve. Then we extend the matrices Tk(t ) for 1≤ k ≤ n, as described
in Lemma 8.1, to obtain a product of n square matrices of size (n+ 1)2, multiplied with v0.
After performing one step of the de Casteljau algorithm, which corresponds to multiplying
together the two rightmost factors in the product, we find

c(t ) = T1(t ) · · ·Tn−1(t )
︸ ︷︷ ︸

n-1 times matrices
of size (n+1)2

v1,
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where v1 =
�

c1
0(t ) c1

1(t ) · · · c1
n−1(t ) 0

�T . We investigate the difference between the two
steps by considering the difference between the vectors of coefficients:

v1− v0 =

















c1
0(t )− c0

0

c1
1(t )− c0

1
...

c1
n−1(t )− c0

n−1

0− c0
n

















= d1.

Recall that the intermediate points ck
i = (1− t )ck−1

i + tck−1
i+1 . Then the first n−1 entries in d1

are
c1

i (t )− c0
i = (1− t )c0

i + tc0
i+1− c0

i = t (c0
i+1− c0

i ).

It follows that the difference vector d1 can be decomposed into an orthogonal projection
from Rn+1 onto Rn, and a linear step:

d1 = p1+ l1,

where

p1 =

















0
0
...
0
−c0

n

















, and l1 = t

















c0
1− c0

0

c0
2− c0

1
...

c0
n − c0

n−1

0

















.

In general, we find that the k-th step of the iterative procedure, which yields

c(t ) = T1(t ) · · ·Tn−k(t )
︸ ︷︷ ︸

n-k times matrices
of size (n+1)2

vk ,

consists of a similar projection from Rn+2−k onto Rn+1−k and a linear step, such that

dk = vk − vk−1 = pk + lk ,

where

pk =



























0
...
0

−ck−1
n−k(t )
0
...
0



























, and lk = t























ck−1
1 (t )− ck−1

0 (t )
...

ck−1
n−k(t )− ck−1

n−k−1(t )
0
...
0























.

The process terminates when

c(t ) = vn =
�

cn
0 (t )

�

= cn
0 (t ).
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X

Y

Z

v0

b1

v1

b2

v2

Figure 8.1: An illustration of the steps of the de Casteljau algorithm by iteratively performing
a orthonormal projection followed by a linear step, for a parametric curve, with n = 2. The
initial coefficients, or points, are contained in the vector v0 ∈ R3. b1 is the orthogonal
projection of v0 onto R2 ⊂R3, v1 constitutes the vector of intermediate points after the first
step of the algorithm, and b2 is the orthogonal projection of v1 onto R1 ⊂R2. The final step
yields the vector v2 ∈ R1. It contains one point which constitutes the value of the curve at
the parameter value t .

Figure 8.1 shows how the vectors of coefficients are repeatedly projected onto a subspace
and translated by a linear step depending on t for the case of a parametric curve with n = 2.
The number of coefficients, or points, is reduced by one for each projection until one single
point remains.

In this example,Rn+1−k =Wk is a subset of the Euclidean spaceRn+2−k , and bk = vk−1+pk

is the orthogonal projection of vk−1 onto Wk . Then bk is the closest point in Wk to vk−1 in
the sense that ||vk−1−bk ||< ||vk−1− x|| for all x in Wk distinct from bk . It follows that bk is
the best approximation to vk−1 by elements of Wk .

We note that the space of square matrices used in the considered example is a complete
inner product space (i.e., a Hilbert space) with the Euclidean norm ||·||`2 . The method can be
generalized to uniformly convex Banach spaces with `p -norm, with 1 < p <∞, since there
will still exist a unique best approximation in such cases [7]. However, that will most likely
yield non-polynomial special functions, in general, but they may share some properties with
the polynomial case, where p = 2.

Representing a parametric surface

In this example we show how directional derivatives of a multivariate cubic Bézier represen-
tation of a parametric surface s(u) can be expressed in matrix form by factorization. First of
all, we consider the surface

s(u) = B3
d (u)c,

108



where B3
d (u) are the d -variate Bernstein polynomials of degree 3, and c are its Bézier coeffi-

cients. The derivative of s(u) at the point p in the direction of v0,

Dv0
s(p) =Dv0

B3
d (u)c,

can be expressed as a factorization of the Bernstein polynomials by matrices:

Dv0
s(p) =Dv0

[T1(u)T2(u)T3(u)]c,

which computes to

Dv0
s(p) =

�

Dv0
T1T2(u)T3(u)+T1(u)Dv0

T2T3(u)+T1(u)T2(u)Dv0
T3

�

c,

and by applying Lemma 8.12 we obtain

Dv0
s(p) = 3B2

d (u)Dv0
T3c.

We proceed by applying one more differentiation step, this time in the direction of v1:

Dv1
Dv0

s(p) =Dv1

�

3B2
d (u)Dv0

T3c
�

= 3Dv1
B2

d (u)Dv0
T3c,

which computes to

Dv1
Dv0

s(p) = 3
�

Dv1
T1T2(u)+T1(u)Dv1

T2

�

Dv0
T3c,

and by applying Lemma 8.12 again and re-ordering the terms we obtain

Dv1
Dv0

s(p) = 6B1
d (u)Dv1

T2Dv0
T3c.

With the use of Lemma 8.10 we write

Dv1
Dv0

s(p) = 6B1
d (u)T2(v1)T3(v0)c.

Commutativity of multiplication

We shall now look at how a special property of the multivariate Bernstein factor matrix
Td ,n(u) can be used to provide an alternative proof of Lemma 8.8 by using induction.

Let us recall from (8.23) that:

Td ,k−1(z)Td ,k(u) = Td ,k−1(u)Td ,k(z),

for d ≥ 0 and n ≥ 1.

Proof. The proof is based on induction, on the variables d and n, of (8.23) of the fully-
ordered (well-ordered) set of all (d , n). We equip N×N with the lexicographic order relation
≤ defined by (d , n)≤ (s , t ) if ( (d < s) or (d = s and n ≤ t ) ). This is a full-order relation on
N×N, which means that we may use the induction theorem. Details on full-ordered sets and
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induction can be found in [2]. We proceed as follows to prove a property P for all (d , n) in
N×N:

1. Show that P holds for (d , n) = (0,1).

2. Suppose that P holds for all elements of N×N which are less than some arbitrary
(d , n). Show that P holds for (d , n).

3. Conclude that P holds for all (d , n) in N×N by the induction theorem for the well-
ordered sets.

1. Using d = 0, n = 1 in (8.23) gives the following relation:

T0,1(u)T0,2(z) = T0,1(z)T0,2(u),

which yields
�

u
� �

z
�

=
�

z
� �

u
�

, (8.38)

and it follows that both the LHS and the RHS of (8.38) compute to u z, since the product of
two numbers commutes.

2. We want to prove P (d , n) using any (p, q)< (d , n). When applying (8.21) and its derivative
from the definitions above, the left-hand side of (8.23) becomes

�

Td ,n−1(u) 0
Tdiag

d ,n (u) Td−1,n(u)

��

Td ,n(z) 0
Tdiag

d ,n+1(z) Td−1,n+1(z)

�

,

which can be written as
�

Td ,n−1(u)Td ,n(z) 0
Tdiag

d ,n (u)Td ,n(z)+Td−1,n(u)T
diag
d ,n+1(z) Td−1,n(u)Td−1,n+1(z)

�

. (8.39)

A similar computation for the RHS of (8.23) yields
�

Td ,n−1(z)Td ,n(u) 0
Tdiag

d ,n (z)Td ,n(u)+Td−1,n(z)T
diag
d ,n+1(u) Td−1,n(z)Td−1,n+1(u)

�

. (8.40)

It follows that both the upper left and the lower right sub-matrices of (8.39) are equivalent to
the corresponding sub-matrices of (8.40) by definition of the induction step.

Next, we need to check that the lower left sub-matrices of (8.39) and (8.40) are equivalent:

Tdiag
d ,n (u)Td ,n(z)+Td−1,n(u)T

diag
d ,n+1(z) = Tdiag

d ,n (z)Td ,n(u)+Td−1,n(z)T
diag
d ,n+1(u). (8.41)

The non-zero elements of Tdiag
d ,n (u) and Tdiag

d ,n (z) are equal to u0 and v0, respectively. Thus, the
LHS of (8.41) becomes

u0

�

Tdiag
d ,n (z) Td−1,n(z)

�

+ z0

�

0 Td−1,n(u)
�

.
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Similarly, we obtain for the RHS of (8.41):

z0

�

Tdiag
d ,n (u) Td−1,n(u)

�

+ u0

�

0 Td−1,n(z)
�

.

Re-ordering the terms and inserting them into (8.41) yields
�

u0T
diag
d ,n (z) u0Td−1,n(z)+ z0Td−1,n(u)

�

=
�

z0T
diag
d ,n (u) u0Td−1,n(z)+ z0Td−1,n(u)

�

,

and it follows that LHS=RHS in (8.41), since Tdiag
d ,n (u) contains u0s and Tdiag

d ,n (z) contains v0s,
and since the product of two real scalars is commutative.

3. Finally, we conclude that (8.23) holds for all (d , n) in N×N provided d ≥ 0, n ≥ 1.

8.5 Proofs

This section contains proofs of some of the lemmas and theorems presented earlier in this
article.

Proof of Lemma 8.2

Proof. We consider the product
Ei j Ek` = Eαβ,

where the entries in Ei j are

cµν =

(

1, if µ= i , ν = j ,

0, otherwise,

and the elements of Ek` are

dλη =

(

1, if λ= k ,η= `,

0, otherwise.

Since
Ei j =

�

δiµδν j

�N ,N

µ=1,ν=1
,

and
Ek` =

�

δkλδη`
�N ,N

λ=1,η=1
,

the elements of Eαβ can be expressed as

eαβ =
N
∑

a=1

cαa daβ =
N
∑

a=1

δiαδa jδkaδβ`.

Fixing α= i and β= ` yields

eαβ =
N
∑

a=1

δa jδka,
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and for a = j and k = a we obtain

eαβ =
N
∑

a= j=k

1= 1.

Thus,
eαβ = δk jδiαδ`β,

which means that
ei` = δk j .

Finally, we obtain
Ei j Ek l = δk j Ei`,

and the result follows.

Proof of Lemma 8.3

Proof.

AB−CD=

 

N
∑

i=1

N
∑

j=1

ai j Ei j

!

�

N
∑

k=1

N
∑

`=1

bk`Ek`

�

−
�

N
∑

m=1

N
∑

n=1

cmn Emn

��

N
∑

p=1

N
∑

q=1

dpq Epq

�

,

where the RHS computes to

AB−CD=
∑

i

∑

j

∑

k

∑

`

ai j bk`Ei j Ek`−
∑

m

∑

n

∑

p

∑

q

cmn dpq Emn Epq .

By using the multiplier in (8.8) for Ei j Ek` and EmnEpq and re-ordering the sums we obtain

AB−CD=
∑

i

∑

j

∑

k

∑

`

ai j bk`δ j k Ei`−
∑

m

∑

n

∑

p

∑

q

cmndpqδn p Emq ,

where setting j = k =µ and n = p = ν yields

AB−CD=
∑

i

∑

`

�

∑

µ

aiµbµ`

�

Ei`−
∑

m

∑

q

�

∑

ν

cmνdνq

�

Emq .

Then we set i = α, `=β, m = α and q =β, and we get

AB−CD=
∑

α

∑

β

�

∑

µ

aαµbµβ

�

Eαβ−
∑

α

∑

β

�

∑

ν

cανdνβ

�

Eαβ

=
∑

α

∑

β

�

∑

µ

aαµbµβ−
∑

ν

cανdνβ

�

Eαβ.

Finally, we fix ν =µ= λ, and the result follows.
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Proof of Corollary 8.1

Proof. The result follows by setting C = B and D = A in Lemma 8.3 and re-ordering the
terms, since [A,B] =AB−BA.

Proof of Lemma 8.4

Proof. We use induction on the variable n of (8.18). It is trivial that T2,1 = B1
2 = (u, v, w).

Assuming that it holds for n = r − 1 and setting n = r in (8.18) yields

Br−1
2 T2,r = Br

2 .

But then the columns of T2,r must correspond to the variables u, v and w in the RHS of the
recurrence relation (8.12) for n = r , where the values u, v and w are indexed within every
column according to the position of the indexes of the B r−1

i j k in lexicographic order, which is
exactly T2,r by Definition 8.1. We conclude that (8.18) holds for arbitrary n by induction.

Proof of Lemma 8.5

Proof. The proof is based on using the recurrence relation (8.12) and Definition 8.1.
T2,n−1(u, v, w) corresponds by Definition 8.1 to the set of all

�n+1
2

�

RHS terms of B n−1
i j k in

(8.12) for i + j + k = n − 1. By Definition 8.1, a similar collection of terms from the first
�n+1

2

�

vectors obtained from (8.12), for B n
i j k , which corresponds to the elements where i > 0

since i + j + k = n, results in a matrix whose upper part contains T2,n−1(u, v, w) and its
lower part contains Tdiag

2,n (u). Here, the upper part consists of the first
�n

2

�

rows, whereas
the remaining

�n+1
2

�− �n
2

�

rows consitute the lower part. Similarly, collecting the remaining
�n+2

2

�− �n+1
2

�

vectors results in a matrix where the upper part is a zero matrix and the non-
zero elements in the lower part are either v or w, since i = 0, and they follow the layout of
T1,n(v, w).

Proof of Lemma 8.6

Proof. According to Definition 8.2, the columns in Td ,n(u) are arranged such that

1. The order of the columns are based on the lexicographic order of the permutations of
i for |i|= n, and

2. ui is placed on the (i− ei )-th row within the column, if 0≤ (i− ei )<
�d+n−1

d

�

.

The possible results of computing i− ei , for i = 0, . . . , d leads to the
�n+d−1

d

�

permutations
of j = ( j0, . . . , jd ), where |j| = n− 1. There are d + 1 possible ways to obtain the position jk ,
for k = 1, . . . ,

�n+d−1
d

�

in the lexicographic order of the values of j, by taking i− ei . Since the
values of i are ordered, the values of jk will appear in order such that the associated values of
ui are in the order u0, . . . , ud . Since jk corresponds to a row in Td ,n(u), the result follows.
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Proof of Lemma 8.7

Proof. We use use induction in the variable n of (8.22) for arbitrary degree d .
1. By setting n = 2 in the LHS of (8.22) and applying Theorem 8.1 we obtain

Td ,1Td ,2 =
�

u0 u1 · · · ud

�

�

Td ,1(u0, . . . , ud ) 0
Tdiag

d ,n (u0) T1,n(u1, . . . , ud )

�

,

which computes to
�

u2
0 2u1u0 2u2u0 · · · u2

1 2u2u1 · · · 2ud u1 u2
2 · · · u2

d

�

= B2
d ,

thus, (8.22) holds for n = 2.

2. Setting n = r in (8.22) gives
Td ,1Td ,2 · · ·Td ,r = Br

d . (8.42)

Assuming that Td ,1Td ,2 · · ·Td ,r−1 = Br−1
d , we obtain

Br−1
d Td ,r = Br

d . (8.43)

Using the recurrence formula in (8.20), formula (8.43) holds if, and only if, the columns of
Td ,n correspond to the variables u0, . . . , ud in the RHS of the recurrence relation in (8.20) for
n = r , where the values u0, . . . , ud are indexed within every column according to the position
of the indices of the associated B r−1

i−e j
in lexicographic order. But, this is true according to

Definition 8.2; hence, we conclude that (8.42) holds and that Td ,1Td ,2 · · ·Td ,n is a factorization
of the set of Bernstein polynomials Bn

d .

Proof of Lemma 8.8

Proof. Consider the following relation:

Td ,k−1(z)Td ,k(u)−Td ,k−1(u)Td ,k(z),

where u = (u0, . . . , ud ) and z = (z0, . . . , zd ) are barycentric coordinates with respect to a d -
dimensional simplex A. Using Lemma 8.3, this translates to

N
∑

α=1

N
∑

β=1

�

N
∑

λ=1

�

aαλbλβ− cαλdλβ
�

�

Eαβ, (8.44)

where aαλ, bλβ, cαλ and dλβ are elements of Td ,k−1(z), Td ,k(u), Td ,k−1(u) and Td ,k(z), respec-
tively. Next, we change the order of the sums to

N
∑

α=1

N
∑

λ=1

N
∑

β=1

�

aαλbλβ− dλβcαλ
�

Eαβ.
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Then the terms aαλbλβ are obtained in an order such that, for each row α, every entry in the λ-
th column of Td ,k−1(z) is multiplied with all entries on the λ-th row of Td ,k(u). Furthermore,
the order of the terms dλβcαλ yields that all entries on the λ-th row of Td ,k(z) are multiplied
with every entry in the λ-th column of Td ,k−1(u). We recall Lemma 8.6, and conclude that
for each α we obtain

∑

λ

∑

β

��

aαλbλβ
�

−
�

dλβcαλ
��

=[z0(u0+ · · ·+ ud )+ · · ·+ zd (u0+ · · ·+ ud )]

− [(z0+ · · ·+ zd )u0+ · · ·+(z0+ · · ·+ zd )ud ] ,

where the RHS can be re-arranged to

(z0+ · · ·+ zd )(u0+ · · ·+ ud )− (u0+ · · ·+ ud )(z0+ · · ·+ zd ),

which clearly is equal to zero since scalar multiplication is commutative. But then (8.44) is
equal to zero, since changing the order of the sums commutes. Finally, since two matrices A
and B commute if AB−BA= 0 (see Corollary 8.1), it follows that

Td ,k−1(z)Td ,k(u)−Td ,k−1(u)Td ,k(z) = 0.

Proof of Lemma 8.9

Proof. The barycentric coordinates of the point p+ tv are

(u0+ t v0, . . . , ud + t vd ).

Using this with (8.19) yields

B n
i (p+ tv) =

�

n
i

�

(u0+ t v0)
i0 · · · (ud + t vd )

id .

By differentiating with respect to t and evaluating at t = 0 we obtain

DvB n
i (p) =

�

n
i

�

�

i0u i0−1
0 v0u i1

1 · · · u id
d + u i0

0 i1u i1−1
1 v1 · · · u id

d + · · ·+ u i0
0 · · · u id−1

d−1id u id−1
d vd

�

,

where the RHS computes to (8.29).

Proof of Lemma 8.10

Proof. By applying the chain rule we obtain

DvTd ,n = v0Du0
Td ,n + · · ·+ vd Dud

Td ,n.

The RHS corresponds to setting Td ,n(v), and the result follows.
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Proof of Lemma 8.12

Proof. The result follows by differentiating both sides of (8.23) with respect to z in the direc-
tion of v.

Proof of Theorem 8.2

Proof. We differentiate (8.33) to find the second derivative. Since Dvk

�

Td ,n(v1)
�

= 0, we get

Dv2
Dv1

Bn
d (u) = nDv2

Bn−1
d (u)Td ,n(v1),

and by applying (8.33) to Dv2
Bn−1

d , we obtain

Dv2
Dv1

Bn
d (u) = n(n− 1)Bn−2

d (u)Td ,n−1(v2)Td ,n(v1).

Similarly, for the r -th derivative we find

Dvr
· · ·Dv1

Bn
d (u) =

n!
(n− r )!

Bn−r
d (u)Td ,n−r+1(vr ) · · ·Td ,n(v1).

Since, in addition, Bn−r
d (u) = Td ,1(u), · · · ,Td ,n−r (u) holds, and since it does not matter which

of the n matrices Td ,k is being differentiated (it only matters that we differentiate r of them),
due to the symmetry property of (8.32), we conclude that (8.34) is true.

Proof of Lemma 8.13

Proof. Since l (t ) is a line in the domain, it can be seen to correspond to a curve s ◦ l (t ) on a
given parametric object,

s ◦ l (t ) = s(p) =
∑

i

ciB
n
i (u).

Then the derivative of s(u) at the point p in the direction of v is given by its derivative with
respect to t at t = 0+:

Dv s(p) =
d
dt
(s ◦ l (t ))

�

�

�

�

t=0+

= v0
∂

∂ u0

s + · · ·+ vd
∂

∂ ud

s

= n
∑

j

djB
n−1
j (u).

8.6 Concluding remarks

We have proposed a matrix representation of multivariate Bernstein polynomials of arbi-
trary dimension by factorization. The factor matrix is defined recursively via a particular
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decomposition of the matrix into sub-matrices.
The multiplication of the factor matrices from right to left was shown to correspond

to the steps of the de Casteljau algorithm. A similar relation to the de Boor-Cox recursion
formula, specialized for Bézier representation, can be found by computing the matrices from
left to right, which yields a vector containing the Bernstein polynomials for the given degree
in the specified number of variables. These polynomials can then be multiplied together with
the associated vector of coefficients in order to evaluate the parametric object in question.

The matrix representation illustrates clearly one of the differences between the two meth-
ods; in the case of de Casteljau, every step yields intermediate points, whereas the interme-
diate values with the de Boor-Cox method are numbers. The total number of arithmetic
operations when multiplying the matrices from right to left (de Casteljau) are higher than in
the case of multiplication from left to right (de Boor-Cox), provided that the coefficients are
points in Rd , d > 1.

References

[1] S. Bernstein. Démonstration du théorème de Weierstrass fondée sur le calcul des prob-
abilités. Communications de la Société Mathématique de Kharkow. 2-ée série, 13(1):1–2,
1912.

[2] K. Ciesielski. Set Theory for the Working Mathematician. London Mathematical Society
Student Texts (Book 39). Cambridge University Press, Cambridge, UK, 1997.

[3] P. Costantini and C. Manni. Geometric construction of generalized cubic splines. Ren-
diconti di Matematica e delle sue Applicazioni, 26:327–338, 2006.

[4] M. G. Cox. The numerical evaluation of B-splines. J. Inst. Maths. Applics., 10:134–149,
1972.

[5] R. Dalmo. Matrix factorization of multivariate Bernstein polynomials. International
Journal of Pure and Applied Mathematics, 103(4):749–780, 2015.

[6] R. Dalmo, J. Bratlie, and A. Lakså. Recursive construction of Bernstein factor matrices,
2014. Communication at the Eight International Conference on Curves and Surfaces,
Paris, France.

[7] P. J. Davis. Interpolation and approximation. Dover, New York, 1975.

[8] C. de Boor. On calculating with B-splines. Journal of Approximation Theory, 6(1):50–62,
1972.

[9] C. de Boor. B-form basics. In G. E. Farin, editor, Geometric Modeling: Algorithms and
New Trends, pages 131–148, Philadelphia, 1987. SIAM.

[10] C. de Boor. A Practical Guide to Splines, volume 27 of Applied mathematical sciences.
Springer-Verlag, New York, revised edition, 2001.

117



[11] P. de Faget de Casteljau. Shape mathematics and CAD, volume 2 of Mathematics and
CAD. Kogan Page, 120 Pentonville Road, London, N1 9JN, English language edition,
1986.

[12] G. Farin. Curves and surfaces for CAGD: a practical guide. Computer Science and Scien-
tific Computing. Academic Press, San Diego, CA, USA, 4th edition, 1997.

[13] W. J. Gordon and R. Riesenfeld. B-spline curves and surfaces. In R. Barnhill and
R. Riesenfeld, editors, Computer Aided Geometric Design, pages 95–126. Academic Press,
New York, 1974.

[14] M.-J. Lai and L. L. Schumaker. Spline Functions on Triangulations, volume 110 of En-
cyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge
CB2 8RU, UK, 2007.

[15] A. Lakså. Basic properties of Expo-Rational B-splines and practical use in Computer Aided
Geometric Design. PhD thesis, University of Oslo, 2007. (Dr.philos.).

[16] A. Lakså. A method for sparse-matrix computation of B-spline curves and surfaces.
In I. Lirkov, S. Margenov, and J. Waśniewski, editors, Large-Scale Scientific Computing
2009, volume 5910 of Lecture Notes in Computer Science, pages 796–804. Springer, 2010.

[17] G. G. Lorentz. Bernstein Polynomials. AMS Chelsea Publishing, Providence, Rhode
Island, 2nd edition, 1986. Reprinted, 2012.

[18] T. Lyche and K. Mørken. Spline methods. Lecture notes at the University of Oslo
(Draft), 2011.

[19] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-spline Techniques. Mathematics
and visualization. Springer-Verlag, Berlin Heidelberg, 2002.

[20] L. L. Schumaker. Spline Functions. Cambridge University Press, Cambridge CB2 8RU,
UK, 3rd edition, 2007.

[21] B. L. van der Waerden. Algebra II. Springer-Verlag, Berlin Heidelberg New York, Fünfte
Auflage der Modernen Algebra edition, 1967.

118



9 Image compression using an

adjustable basis function

Rune Dalmo, Jostein Bratlie, and Peter Zanaty

This chapter is a reprint of [4]

Abstract — We investigate the performance of image compression using a custom
transform, related to the discrete cosine transform, where the shape of the wave-
form basis function can be adjusted via setting a shape parameter. A strategy for
generating quantization tables for various shapes of the basis function, including
the cosine function, is proposed. Two signal fidelity measures, peak signal-to-
noise ratio and mean structural similarity index, respectively, are computed for a
few selected photos to benchmark the results.
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9.1 Introduction

The discrete cosine transform (DCT) [1] is commonly used in a wide range of applica-
tions within image-, video- and audio compression, such as the JPEG image format, MPEG,
MJPEG, DV, Daala, Theora type video compression and AAC, Vorbis, WMA and Mp3 audio
compression.

Logistic expo-rational B-splines (LERBS) [19] is a recent sub-type of generalized expo-
rational B-splines (GERBS) [5]. In this article we introduce a family of LERBS-based wave
functions sharing some of the properties of the cosine function. In contrast to the cosine
function, when using the proposed LERBS-based construction, the shape of the waveform
basis function can be adjusted via setting a shape-parameter. We investigate the effect of the
shape-parameter when applied to image compression and compare the results with a DCT-
based JPEG-type encoding.

Peak signal-to-noise ratio (PSNR) [3], which is a logarithmic representation of mean
squared error (MSE), is perhaps the most widely recognized fidelity metric within the image-
and video processing community [18]. PSNR has only an approximate relationship with
the image quality perceived by human observers, and is completely ignorant to spatial rela-
tionship between pixels and the interpretation of images by the human visual system (HVS)
simply because it compares data byte-by-byte without considering what they actually rep-
resent [18]. The structural similarity (SSIM) [13, 15] is based on computing variance, co-
variance and mean within blocks of images to generate a distortion map. According to [18],
one can distinguish between data metrics, which are appropriate for measuring the signal’s
fidelity without considering its content, and picture metrics, where the data is treated as the
visual information it contains. For this reason we benchmark our results using both PSNR,
which can be regarded as a data metric, and SSIM, considered as a picture metric.

In the remaining sections we explain in brief the DCT and the kind of LERBS we con-
sider followed by a narrow description of the JPEG [12, 2] image format with emphasis on
quantization. Next we explain the experiment this paper is about, present our results, and
finally we give our concluding remarks.

9.2 Image transforms

In this section we will focus on the relevant components of JPEG. It is one of the most
common image formats and is being used by many vendors to store pictures from digital
cameras.

9.2.1 Discrete cosine transform

The DCT, introduced in [1], is a linear, invertible function f : RN → RN which expresses
a finite sequence of data points in terms of a sum of cosine functions oscillating at different
frequencies. In the two-dimensional case it is often represented as an invertible N ×N square
matrix. The DCT is related to the Fourier transform; it is similar to the discrete Fourier
transform (DFT) when using real numbers only.
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There are eight “standard” DCT variants of which four are common. The type-II DCT,
which transforms N real numbers x0, . . . , xN−1 into the N real numbers X0, . . . ,XN−1 accord-
ing to

Xk =
N−1
∑

n=0

xn cos
�

π
N

�

n+ 1
2

�

k
�

, where k = 0, . . . ,N − 1,

is the most common and is simply called “the DCT”. Its inverse, the type-III DCT, transforms
N real numbers x0, . . . , xN−1 into the N real numbers X0, . . . ,XN−1 according to

Xk =
1
2

x0+
N−1
∑

n=1

xn cos
�

π
N

�

k + 1
2

�

n
�

, where k = 0, . . . ,N − 1,

and is simply called “the iDCT”.
DCT-type encodings are typically used within application areas such as signal- and im-

age processing due to the strong “energy compaction”. This means that most of the signal
information is concentrated in a few low-frequency components, thus, they are present in
lossy compression of audio-, image- and video data. We note in addition that solving partial
differential equations (PDEs) by spectral methods is another application area.

9.2.2 Logistic expo-rational basis

The default logistic expo-rational basis function (LERB) was introduced in [6, 19] and is
defined as follows:

B(t ) =
1

1+ exp
�

2
(1+t ) − 2

(1−t )

� . (9.1)

In this work we introduce a “trigonometric” version of the LERB, derived from a version
of (9.1) mapped to the interval [0,1]:

B(t ) = tanh
�

α
�

1
t
− 1

1− t

��

. (9.2)

Formula (9.2) is designed to share some properties with the cosine function. The following
properties for the first half-period (i.e., mapped to [0,1]) of cos(πt ) are shared with B(t ) as
defined in (9.2):

• B(0) = 1

• B(1) =−1

• B( 12 ) = 0

• B(t ) is positive on the interval [0, 1
2 )

• B(t ) is negative on the interval ( 12 , 1]

• B(t ) is monotonically decreasing on the interval [0,1]
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Figure 9.1: Plots of one half-period of (9.2), where the dashed and dotted lines illustrate a few
values of the shape parameter α, are shown together with the cosine function mapped to the
same interval (solid line).

Image DCT Quantizer Entropy coder Data

Quantization tables Coding tables

Figure 9.2: Block diagram of a JPEG encoder. An input image is transformed by a DCT
step, then quantized and encoded in a compression step using fewer bits. Quantization- and
coding tables are stored together with the encoded data.

For simplicity we show the properties for the first half-period here. Similar sharing of proper-
ties between B(t ) and the cosine function follows for the second half-period due to symmetry.
A plot of the first half-period of B(t ), where the shape parameter α takes the values 0.1, 0.2,
0.4, 1.0 and 2.0, is shown in figure Figure 9.1 together with a plot of the function cos(πt ) for
reference.

9.2.3 Joint Photographic Experts Group

The JPEG image format [12, 2] provides lossy data compression where the amount of com-
pression loss can be controlled through a quality parameter. A block diagram of the JPEG
encoding step is shown in Figure 9.2. The pixels of an input image is transformed to the
frequency domain by a 2D DCT working on blocks of size 8× 8 pixels. Then the trans-
formed signal is quantized, where the loss occurs, before it is packed in a lossless step and
stored. Quantization- and coding tables are stored together with the encoded data. Thus,
the decoding process is simply an inverse process which takes the encoded data as input and
re-produces an approximation of the original image.
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 9.1: Standard JPEG luminance quantization table with quality factor 50.

9.3 Quantization

JPEG quantization is performed block-wise by applying the following function to each of
the DCT transformed blocks:

B j ,k = round
�

G j ,k

Q j ,k

�

for j = 0,1, . . . ,N − 1; k = 0,1, . . . ,N − 1, (9.3)

where N ×N is the block size, G is the unquantized DCT coefficients, Q is the quantization
matrix and B is the quantized DCT coefficients. It follows from (9.3) that larger values of Q
produce greater compression since the coefficients become small, or even zeros, and require
fewer bits to be stored. Furthermore, since the value for each pixel is divided by a table value
as an integer operation, decimals are thrown away, which leads to image quality loss. Higher
numbers correspond to lower quality image whereas lower numbers correspond to higher
quality image. The “best” images have tables of all ones which means no compression.

Most software applications, including the widely used free software library “libjpeg” by
the Independent JPEG Group (IJG) [8], use quantization tables as specified in [2, appendix
K]. The construction of these tables are based on psycho-visual experiments where a group
of people have responded to when the effects of various settings can be seen in images. We
note that this is somewhat related to what is known as Rose’s criterion [9]; that the SNR
needs to be better than around 5 for the human eye to reliably identify an object. The
IJG standard luminance quantization table is listed in Table 9.1. The JPEG quality setting
is simply a scaling of the numbers in the quantization tables. We note that many digital
cameras compute quantization tables on the fly when the image is being processed and that
some camera vendors have patents on quantization table construction.

9.4 Set-up of the experiment

The JPEG quantization tables are applicable to coefficients of the DCT. We replace the cosine
function with the LERB defined in (9.2), thus, it is necessary to generate custom tables to
meet the considered shapes of the LERB. For this purpose we use the benchmark data set
provided by the Uncompressed Colour Image Database (UCID) [10] (pronounced “use-it”).
The current version (v2) contains 1338 images.
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7.8758 4.8929 4.3133 4.0897 3.6322 3.3311 3.0317 2.8411
5.0400 4.3951 4.1513 4.0383 3.6805 3.3094 3.1354 2.9326
4.4159 4.2438 4.1520 3.7998 3.4620 3.0715 2.9731 2.8971
4.1739 4.1009 4.0513 3.7251 3.4449 3.1286 3.0658 2.9295
3.8889 3.8881 3.9116 3.7795 3.6793 3.1126 2.9421 2.8422
3.7094 3.8880 3.7726 3.5155 3.6822 3.1693 3.2196 2.6978
3.3184 3.7429 3.7172 3.6245 3.5663 3.6892 3.2651 2.6444
3.4164 3.6871 3.4591 3.5164 3.6689 3.5667 3.5849 3.2275

Table 9.2: 8-bit entropy table for the DC coefficients of α = 0.4 computed from the 1338
UCID images.

We proceed as follows to benchmark the LERB-based transform by considering gray-scale
images, which correspond to the luminance part of colour images. For a specific value of
the parameter α in (9.2) we transform all the UCID images, analyze the results and generate
histograms. Then we calculate entropy tables which we use to generate quantization matrices.
The values of the quantization tables can be scaled to vary the compression- and error rates.
Finally, we invoke the XZ utils [11] to perform lossless compression through a Lempel-Ziv-
Markov chain algorithm (LZMA).

Figures 9.3 to 9.5 show histograms for the DC- , first “horizontal”- and first “vertical”
coefficients, respectively.

An example of an 8-bit entropy table generated for the DC coefficients using the value
α = 0.4 is provided in Table 9.2. Such entropy tables are used to generate quantization
matrices by applying the formula

Q[i][ j ] = b − E[i][ j ], 0≤ i <N , 0≤ j <N ,

where N ×N is the block size, b is the number of bits, E is the entropy table and Q is the
resulting quantization matrix.

9.5 Results

Performance graphs for some test pictures selected from the Kodak Lossless True Color Im-
age Suite [7], which can be seen in Figure 9.6, are shown in Figure 9.7. Two commonly
used measures for image quality are plotted against a horizontal axis denoting compressed file
size relative to original file size. The vertical axes of the left graphs show PSNR measured in
dB:

PSNR= 10 log10

�

MAX2
I

MSE

�

,

where MAXI is the maximum possible pixel value of the image and MSE is the mean squared
error defined as

MSE=
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I (i , j )−K(i , j )]2 ,
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Figure 9.3: Histograms for the sum of DC coefficients for the 1338 UCID images using LERB
with α= 0.2 (left), α= 0.4 (middle) and α= 1.0 (right).
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Figure 9.4: Histograms for the sum of 01 coefficients for the 1338 UCID images using LERB
with α= 0.2 (left), α= 0.4 (middle) and α= 1.0 (right).

−120 −60 0 60 120
0

0.5

1

1.5

2

2.5
·105

−120 −60 0 60 120 −120 −60 0 60 120
0

0.5

1

1.5

2

2.5
·105

Figure 9.5: Histograms for the sum of 10 coefficients for the 1338 UCID images using LERB
with α= 0.2 (left), α= 0.4 (middle) and α= 1.0 (right).
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Figure 9.6: Test image “kodim8” (top) by photographer Alfons Rudolph, “kodim21” (mid-
dle) by photographer Alan Fink, and “kodim23” (bottom) by photographer Steve Kelly. The
top image shows several buildings with steep roofs in a Germanic town in Essligen, Germany,
including the Seifenfabrikation Alfred. It is a picture with details such as edges, contrast and
depth. The middle image shows a remote view of a lighthouse and dwelling on a rocky penin-
sula in Maine, USA. It is a picture with details combined with a soft background. The bottom
image shows a close-up of two brightly colored makaw birds with out of focus greenery in
the background taken at Maui, Hawaii, USA.
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Figure 9.7: Performance graphs for the “kodim8”, “kodim21” and “kodim23” test images
in Figure 9.6 are shown in the top-, middle- and bottom rows, respectively. The solid line
corresponds to a reference cosine transform with JPEG quantization whereas the LERB (with
α= 0.4) transform is shown as a dashed line.
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where I is the uncompressed m× n monochrome image and K is its compressed approxima-
tion. In the right graphs the vertical axes show the mean structural similarity (MSSIM) [15]
index, which is a method providing a single overall quality measure of the entire image, de-
fined as

MSSIM(X,Y) = 1
M

M
∑

j=1

SSIM(x j ,y j ),

where X and Y are the reference and distorted images, respectively, x j and y j are the image
content at the j th local window, M is the number of local windows of the image. SSIM is the
structural similarity index described in [15] based on the ideas introduced in [13]:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
, (9.4)

which considers image degradation as perceived change in structural information between
two windows x and y, of size 8× 8 in this case, with µx and µy as the average of x and y,
respectively, σ2

x and σ2
y the variance of x and y, σxy the covariance of x and y, C1 = (k1L)2

and C2 = (k2L)2 are variables to stabilize in the case of weak denominator, L the dynamic
range of the pixel-values, and k1 = 0.01, k2 = 0.03 (default values). The formula (9.4) is
applied on luma only. The resultant SSIM index decimal value is on the range [−1,1], where
the value 1 corresponds to two identical data sets. The local statistics µx , µy , σx , σy and
σxy are computed within a local 8× 8 square window which slides pixel-by-pixel over the
entire image. At each step, the local statistics and SSIM index are calculated within the local
window.

The first picture, “kodim8”, has many details and is sharp nearly everywhere while the
second one, “kodim21”, is a mixture between details and a soft background with a color
gradient. The third picture, “kodim23”, is a portrait of two parrots where the birds are in
focus against a blurry background.

9.6 Concluding remarks

Setting the shape parameter affects the coefficients of the discrete transform. We conclude by
investigating the histograms in Figures 9.4 and 9.5 that more compact distributions can be
achieved, thus, “better” quantization and higher compression rates is possible.

The performance graphs in Figure 9.7 indicate that our method provides higher compres-
sion rates against PSNR than the reference DCT using JPEG type quantization. However,
as mentioned in section 9.1, optimizing for the best PSNR does not necessarily provide the
most pleasing images. But the MSSIM graphs show that we are able to meet JPEG in terms
of perceived change in structural information.

We note that in contrast to the DCT, where the inverse transform is orthogonal, the
inverse LERB transform is not. For this reason we need to invert a small matrix. However,
in many applications, such matrices can be pre-evaluated to improve the performance.

Our method is applicable within image processing, including user guided compression,
or adaptive image processing methods where values of the parameter α can be computed to
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satisfy some criteria.
The information stored in a picture does not necessarily need to be photos. In future work

it could be interesting to experiment with other types of data since the adjustable waveform
basis provides improved flexibility over the cosine function.

In this first approach we have for simplicity computed the local statistics for the SSIM in-
dex within a local 8×8 square window moving over the image. Another note for future work
is to consider more recent or sophisticated methods, such as the circular-symmetric Gaussian
weighting functions for local statistics computations as described in [15], or proceeding from
the single scale implementation to multiple scales [17] or the wavelet domain [16]. More
information related to SSIM for signal fidelity measures can be found in [14].
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10 Performance of a Wavelet

Shrinking Method

Rune Dalmo, Jostein Bratlie, and Børre Bang

This chapter is a reprint of [1]

Abstract — A concept for shrinking of wavelet coefficients has been presented and
explored in a series of articles [5, 3, 4]. The theory and experiments so far sug-
gest a strategy where the shrinking adapts to local smoothness properties of the
original signal. From this strategy we employ partitioning of the global signal
and local shrinking under smoothness constraints. Furthermore, we benchmark
shrinking of local partitions’ wavelet coefficients utilizing a selection of wavelet
basis functions. Then we present and benchmark an adaptive partition-based
shrinking strategy where the best performing shrinkage is applied to individual
partitions, one at a time. Finally, we compare the local and global benchmark
results.
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10.1 Introduction

Shrinking of wavelet coefficients was first introduced by Donoho and Johnstone [6, 7] and
has been an active area of research since then. Wavelet shrinkage are most notably applied to
perform signal de-noising and within the quantification step of data compression.

Several strategies for thresholding- and non-thresholding type wavelet shrinkage of signals
that belong to the general scale of Besov spaces were addressed in [5]. Later, in [3, 4], adaptive
strategies based on composition of Lorentz-type thresholding and Besov-type non-threshold
shrinkage, suitable for spatially in-homogeneous signals which exhibit both smooth regions
and regions with (isolated) singularities, were introduced and explored.

Motivated by some typical characteristics of curves and surfaces in computer aided geo-
metric design (CAGD), notably that they can have smooth parts, singularities and varying
smoothness measures, and that they can be piecewise polynomials, we are interested in de-
veloping partition-based adaptive strategies for wavelet shrinkage.

In the following sections we describe the wavelet transform, coefficient shrinkage, com-
pression, the test data we use and how we apply wavelet compression. Finally we give our
concluding remarks where we comment on the results and suggest some topics for future
work.

10.2 Curve fitting by wavelet shrinkage

The wavelet transform [2] is a technique to represent any arbitrary function f as wavelets,
generated by scaling and translations from one single mother function ψ:

ψa,b (t ) = |a|−1/2ψ
� t − b

a

�

, (10.1)

where a and b are constants defining scaling and translation, respectively. It is required that
the mother function has mean zero:

∫

ψ(t )d t = 0,

which typically implies at least one oscillation of ψ(t ) across the t -axis. Following from the
dilations of a single function, compared with the mother function, low frequency wavelets
(a > 1) are wider in the t -direction, whereas high frequency wavelets (a < 1) are narrower.

For application within signal analysis, the parameters a and b in (10.1) are usually re-
stricted through discretization. A dilation step (a0 > 1) and a translation step (b0 6= 0) are
fixed, leading to the wavelets for j , k ∈Z:

ψ j k(t ) = a− j/2
0 ψ(a− j

0 t − k b0). (10.2)

The discrete wavelet transform (DWT), T , associated with the discrete wavelets in (10.2),
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maps functions f to sequences indexed by Z2:

(T f ) j k =<ψ j k , f >= a− j/2
0

∫

ψ(a− j
o t − k b0) f (t )d t .

Following the principle of decomposition, f can be reconstructed from its wavelet coeffi-
cients β j k =<ψ j k , f >:

f =
∑

j ,k

β j kψ j k(t ).

We address estimating f in the following non-parametric regression problem, as outlined
in [3], by using orthonormal wavelets:

Yi = f (Xi )+ εi , i = 1,2, . . . , n, (10.3)

where Xi are independent random variables uniformly distributed on [0,1]n. We assume n
independent identically distributed observations Zi , i = 1,2, . . . , n, with unknown density
f (x), x ∈Rn, and errors Eε1 = 0, Eε2

1 = δ
2.

As proposed in [3], let B s
pq(Rn) be the Besov space with metric indices p, q and smooth-

ness index s . For f ∈ B s
pq , 0< p ≤∞, 0< q ≤∞, n( 1

p − 1)+ < s < r,

f (x) =
∑

k∈Zd

α0kφ
[0]
0k (x)+

∞
∑

j=0

∑

k∈Zd

2d−1
∑

l=1

β[l ]j kψ
[l ]
j k (x), a.e . x ∈Rd (10.4)

holds, where α0k = 〈φ[0]0k , f 〉 and β j k[l ] = 〈ψ[l ]j k , f 〉. The empirical wavelet estimator f̂ (x) is
defined via:

f̂ (x) =
∑

k∈Zd

α̂0kφ
[0]
0k (x)+

∞
∑

j=0

∑

k∈Zd

2d−1
∑

l=1

β̂[l ]j kψ
[l ]
j k (x), a.e . x ∈Rd , (10.5)

where in this case of non-parametric regression as defined in (10.3):

α̂ j0k =
1
n

n
∑

i=1

φ[0]j0k(Xi )Yi , β̂[l ]j k =
1
n

n
∑

i=1

ψ[l ]j k (Xi )Yi .

We note here that the estimator f̂ can be obtained simply by replacing the coefficients in
(10.4) by their empirical version, however, this procedure is not as fast as the DWT.

10.2.1 Coefficient selection

Coefficient shrinkage can be obtained through the DWT in the following way:

1. Wavelet transform of the input data

2. Manipulation of the empirical wavelet coefficients

3. Inverse wavelet transform of the modified coefficients
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The second step is where the shrinking occurs by adjusting the empirical wavelet coefficients
towards zero. This manipulation usually depends on a classification of the coefficients where
the goal is to obtain noise reduction without loosing too much information about the sig-
nal itself. One such classification is the binary case where a coefficient is either noisy and
unimportant or relatively noise-free and important. Some sort of threshold on a measure
of regularity, or criterion, is required in order to distinguish between such classes. For this
purpose we will utilize the general Lorentz thresholding which was introduced in [5] and
further explored in [3, 4]. Utilizing the Sobolev-type embedding within the Besov-space scale:
Bσ
ηη ←- B s

p p if σ − 1
η = s − 1

p =: τ ∈ R and 0 < p ≤ η < ∞, the method is in brief, for
compactly supported f and ψ and assuming that j0 = 0 for any sample size n, as follows.

1. Consider all ( j , k) : supp(ψ j k)∩supp( f ) 6= ;. Denote the set of all such ( j , k) by I ( f ,ψ).

2. Consider the decreasing rearrangement {bν ν = 1, . . . , M} of the finite set {2 j (τ+1/2)}|β̂ j k |
: ( j , k) ∈ I ( f ,ψ). The wavelet estimator f ∗v is defined by

f ∗v (x) =
∑

k

α̂0kφ0k(x)+
[v−

ηp
η−p ]
∑

ν=1

β̂ jνkν
ψ jνkν
(x), x ∈R, (10.6)

where v is a smoothing factor.

3. Ensure uniqueness of f ∗v if the sequence {bν} is not strictly decreasing by removing
redundant terms that are equal to the limit b

[v−
ηp
η−p ]

.

The method outlined above is, according to [4], a far-going generalization of the concept
of Lorentz-curve thresholding based on computability of the Peetre K -functional between
Lebesgue spaces, in terms of non-increasing rearrangement of a measurable function, and
isometricity of Besov spaces to vector-valued sequence spaces of Lebesques type. The signif-
icance of every |β̂ j k | is being assessed with respect to its level j so that the most significant
features appear first and less significant details emerge only for sufficiently small ν. The crite-
rion for significance of the coefficients is the regularity assumption expressed in the value of
τ. Throughout this paper we shall fix τ to the boundary value τ =− 1

2 which corresponds to
the critical regularity ε=−2(η− p)(τ+ 1

2 ) = 0.

10.2.2 Wavelet compression

Compressing a wavelet-transformed signal is essentially a two-step process:

1. Quantify the wavelet coefficients

2. Code-word assignment for the quantified coefficients

Errors are introduced when wavelet coefficients are being manipulated, eg. through shrink-
age. We note that in order to achieve loss-less compression, that step has to be omitted.

The wavelet transformed and possibly quantified signal can be “packed” using error-free
compression of the coefficients β, for example by applying Huffman code [8] or run-length
encoding (RLE).
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We investigate compression in this case with respect to quantification only by counting
the relative number of coefficients which are discarded.

10.3 Wavelet shrinkage applied to a partitioned signal

In this preliminary experiment we benchmark the wavelet shrinking method, described
in section 10.2.1, on a synthetic test function F (x) : x ∈ [0,1] with four pre-determined
partitions which are re-parameterized to meet the intervals [0, 1

4), [
1
4 , 1

2 ), [
1
2 , 3

4) and [
3
4 , 1] of

F (x), respectively. The partitions are defined by the following “local” functions1:

I The “λ-tear”:
f1(x) = xλ+ exp

�

− x2

1−x2

�

, λ > 0, x ∈ [−0.2,1],

where x+ =max(x, 0) and we choose λ= 0.25.

II Double chirp:

f2(x) =
p

x exp
�

− x2

1−x2

�

sin (64πx(1− x)) , x ∈ [0,1].

III Sinusoidal density, for x ∈ [−3,2]:

f3(x) =
� 1

2 | sin x| for x ∈ [−2π/3,π/3],
0 elsewhere.

IV Triangle wave:
f4(x) =

�

�

�2
�

x −
�

x + 1
2

��
�

�

� , x ∈ [0,1].

Each partition is sampled into 1024 uniformly distributed samples in our benchmark tests.
10 levels of DWT are applied such that only two scaling coefficients α are present together
with 1022 wavelet coefficients β. We consider the following selection of wavelets:

1. Orthogonal Daubechies: d1, d2, d4, d8, d12, d16, d20

2. Bi-orthogonal: b1.1, b1.3, b1.5, b2.2, b2.4, b2.6, b2.8, b3.1, b3.3, b3.5, b3.7, b3.9, b4.4, b5.5, b6.8

3. Coiflets: c1, c2, c3, c4, c5

4. Symlets: s2, s3, s4, s6, s8, s10, s12, s14, s16, s18, s20

5. The discrete Meyer filter

and measure the signal-to-noise ratio (SNR) in dB, defined as

SNR= 10 log10

 

‖ F ‖2
2

‖ F − F̂ ‖2
2

!

,

1Plots of each of the functions defined in items I to IV above are provided in section B.2. These plots are an
extension of the published version of this article.
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Table 10.1: The best performing wavelets according to selected criteria on the individual
partitions and on the global signal. The first four criteria are maximum compression rate
while maintaining a SNR of 120dB, 100dB, 80dB and 60dB, respectively. The last criterion is
fixing the compression rate to 99% while obtaining maximum SNR. For each function, the
compression rates are provided in percent, and the SNR is shown in dB.

Partition
Criterion I II III IV Global function
120dB b.5.5 93% s.18 87% b.3.3 93% d.2 96% s.12 85%
100dB b.3.3 95% s.20 90% b.3.1 94% d.2 96.5% s.10 88%
80dB b.3.1 97% s.18 93% b.3.1 95% b.3.1 97.5% b.6.8 91%
60dB b.3.1 98% s.12 95% b.2.2 97% b.2.2 98.5% b.6.8 94%
99% b.3.1 45 dB s.12 21 dB b.2.8 28 dB b.2.2 55 dB s.16 22 dB

where F is the original signal, F̂ denotes the compressed (shrunk) signal and ‖ · ‖2
2 stands for

the square of the L2 norm. Compression is measured in terms of how many of the wavelet
coefficients β which are set to zero relative to the size of the signal. The scaling coefficients
α0k in (10.5) are not affected by the shrinking procedure.

It was noted in [3] that wavelets with relatively large support tend to oscillate near singu-
larities. This, combined with standard wavelet theory, leads us to the following conjectures:

Conjecture 10.1. The best performing wavelet, while shrinking according to some specified cri-
teria of measure, for different kind of signals, are not the same.

Conjecture 10.2. The wavelet shrinking performance for signals of varying smoothness or shape
can increase if the signal is partitioned and shrunk using the best wavelet for each partition.

Based on Conjectures 10.1 and 10.2 we propose the following method to compress and
uncompress the global partitioned signal:

1. Select for each partition the wavelet which performs best according to some criterion,
such as

a. SNR threshold value, or

b. performs best at high compression.

2. For each individual partition, perform DWT and apply coefficient shrinkage according
to

a. fixed SNR, or

b. fixed compression ratio.

3. Reconstruct the individual partitions and use them to compose the global signal.

10.4 Results

Table 10.1 shows the “best” wavelets for the four individual partitions as well as the global
composite function. The criteria used in the benchmark tests include measuring compression
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Figure 10.1: Performance charts for the best performing wavelets and the adaptive method,
for selected criteria as provided in Table 10.1, on the global composite test function F , are
shown. The Symlets s.12 and s.10 are those which provide highest compression ratio while
maintaining a SNR of 120dB and 100dB, respectively, while the bi-orthogonal wavelet b.6.8
performs best at 80dB and 60dB. The Symlet s.16 generates yields the highest SNR at 99%
compression. Charts for the adaptive method for fixed compression ratio based on selecting
the best performing wavelets for each partition, according to the same criteria, are shown as
well.

rates, where we select the wavelet providing the highest compression while maintaining SNR
of 120dB, 100dB, 80dB and 60dB, respectively. In addition, we include the wavelets providing
the best SNR at approximately 99% compression.

Figure 10.1 shows the performance on the global function of the best wavelets, as pre-
sented in Table 10.1, together with the performance of the adaptive strategy applied for fixed
compression ratio. The horizontal axis displays the compression rate while the vertical axis
shows the SNR measured in dB.

10.5 Concluding remarks

As expected in Conjecture 10.1, since the four partitions are of different nature, they have dif-
ferent “best performing” wavelets. The smooth Double chirp function benefits from symlet
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type wavelets with relatively long support. Relatively short bi-orthogonal wavelets perform
better on the Delta tear and the Sinusoidal density functions since they have one and two sin-
gularities, respectively, but are smooth otherwise. Very short filters seem to suit the Triangle
wave function well, which is no surprise, because it is linear and has one singularity. When
shrinking the global function without invoking the adaptive strategy, fairly long wavelet fil-
ters provide the best results.

We conclude that the experiments presented in this paper support both Conjectures 10.1
and 10.2. The performance of different wavelets is depending on the signal’s smoothness and
singularity properties. Thus, for signals with varying smoothness properties, the partitioning
based adaptive approach can provide better coefficient shrinking performance than when
using one wavelet type on the complete signal.

The adaptive method provides increased compression rates when compared to the non-
adaptive approach. Furthermore, it provides a significant increase in SNR for fixed com-
pression rates. When applied to the test function, even for 99% compression, the SNR is
increased by approximately 5dB.

The method is suitable for signals with varying smoothness properties, such as parametric
representations of curves and surfaces.

Wavelet transform and shrinking of individual partitions are candidates for parallel com-
putation since the partitions do not depend on each other.

As an anecdote, we note what is known as Rose’s criterion [9]; that the SNR needs to be
better than around 5 for the human eye to reliably identify an object.

10.5.1 Future work

First of all we suggest using the findings presented in this article to construct an adaptive
method. It would then be interesting to apply strategies for partitioning of the global signal.
Local feature detection, such as identifying singularities or extreme values of functions, could
be considered for this purpose.

For partitions containing isolated singularities, one possible improvement can be to in-
voke Besov type non-thresholding shrinkage as outlined in [3]. According to [5], this tends
to produce better fitting of signals near singularities under the penalty of undersmoothing
smooth regions. However, such undersmoothing could be compensated for in the partition-
ing process by selecting relatively small partitions near singularities.

The individual parts of the global signal could be classified by some smoothness measure,
which could be seen in connection with the value of the parameter τ in (10.6). Lorentz
type thresholding is performed here using a fixed value of τ = − 1

2 which is appropriate in
cases when the signal’s smoothness properties are unknown. We note that the method could
be improved by considering the qualitative differences between strategies for “less regular”
functions (τ < − 1

2 ) and “more regular” functions (τ > 1
2 ). Furthermore, this classification

could also be considered to determine the best type of wavelet for each partition, possibly
based on correlation.
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A Detailed Proofs

In this chapter we provide calculations which were omitted from the published versions of
the articles due to page limitation policies of the publication channels.

A.1 Proof of Theorem 4.1

Formula (4.10) is obtained by solving the equation where the left hand side is given by (4.8)
and the right hand side is (4.9) for `z(t ). There are two parts:

1. The case when t̂k < t ≤ z yields

ˆ̀
k(t )+B ◦ ω̂k(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

= ˆ̀
k(t )+B ◦ωk(t )

�

`z(t )− ˆ̀
k(t )

�

,

which can be simplifed to

B ◦ ω̂k(t )
�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

= B ◦ωk(t )
�

`z(t )− ˆ̀
k(t )

�

.

It follows that
B ◦ ω̂k(t )
B ◦ωk(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

= `z(t )− ˆ̀
k(t )

which can be re-arranged to the corresponding part of (4.10):

`z(t ) = ˆ̀
k(t )+

B ◦ ω̂k(t )
B ◦ωk(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

.

2. For z < t < t̂k+1, we have

ˆ̀
k(t )+B ◦ ω̂k(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

= `z(t )+B ◦ωk+1(t )
�

ˆ̀
k+1(t )− `z(t )

�

.

We re-arrange so that the terms containing `z(t ) appear on one side:

`z(t )−B ◦ωk+1(t )`z(t ) = ˆ̀
k(t )+B ◦ ω̂k(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

−B ◦ωk+1(t )ˆ̀k+1(t ),

The left hand side can be re-arranged:

`z(t )
�

1−B ◦ωk+1(t )
�

= ˆ̀
k(t )+B ◦ ω̂k(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

−B ◦ωk+1(t )ˆ̀k+1(t ),
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and it follows that

`z(t ) =
ˆ̀

k(t )+B ◦ ω̂k(t )
�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

−B ◦ωk+1(t )ˆ̀k+1(t )

1−B ◦ωk+1(t )
.

Re-arranging the terms yields

`z(t ) = ˆ̀
k(t )

1−B ◦ ω̂k(t )
1−B ◦ωk+1(t )

+ ˆ̀
k+1(t )

B ◦ ω̂k(t )−B ◦ωk+1(t )
1−B ◦ωk+1(t )

. (A.1)

By writing
ˆ̀

k(t )
1−B ◦ ω̂k(t )+B ◦ωk+1(t )−B ◦ωk+1(t )

1−B ◦ωk+1(t )

for the first term on the right hand side of (A.1) and re-arranging we obtain

`z(t ) = ˆ̀
k(t )+ ˆ̀

k(t )
−B ◦ ω̂k(t )+B ◦ωk+1(t )

1−B ◦ωk+1(t )

+ ˆ̀
k+1(t )

B ◦ ω̂k(t )−B ◦ωk+1(t )
1−B ◦ωk+1(t )

which can be written on the form of the corresponding part of (4.10):

`z(t ) = ˆ̀
k(t )+

B ◦ ω̂k(t )−B ◦ωk+1(t )
1−B ◦ωk+1(t )

�

ˆ̀
k+1(t )− ˆ̀

k(t )
�

.
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B Figures

Here we include some figures which were taken out of the previously published articles due
to space limitations.

B.1 The curves in section 4.3.3

Figure B.1 shows a plot of the ERBS curve (before knot insertion) and its local curves.The
new knot z = 3.5 is indicated on the curve with a green mark in Figure B.2. Furthermore,
Figure B.2 illustrates the new support of the existing local curves relative to the refined knot
vector. This corresponds to the cases when i = k and i = k + 2 in (4.6). Figures B.3 to B.6
are related to Table 4.1 as follows:

• Scenario I: corresponding curves are shown in Figure B.3.

• Scenario II: corresponding curves are shown in Figures B.4 and B.5.

• Scenario II+IV: corresponding curves are shown in Figure B.6.
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Figure B.1: An ERBS approximation (red) of a circle using four quadratic Bézier local curves.

Figure B.2: A new knot (green mark) inserted into an existing knot vector associated with
an ERBS approximation (red) of a circle. The new support intervals for the affected existing
local curves are illustrated. They can be seen by comparing them with the ones in Figure B.1.
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Figure B.3: ERBS approximation (red) of an existing ERBS curve (green) by knot insertion
using a sub-curve of the original ERBS curve as local curve associated with the new knot.

Figure B.4: ERBS approximation (red) of an existing ERBS curve (green) by knot insertion
using a Bézier curve obtained by Hermite interpolation of the original ERBS curve as local
curve associated with the new knot.
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Figure B.5: ERBS approximation (red) and its Bézier local curves, where the new local curve
is obtained by Hermite interpolation of the original ERBS curve.

Figure B.6: ERBS approximation (red) of an existing ERBS curve (green) by knot insertion
using a Bézier curve with adjusted coefficients as local curve associated with the new knot.
The difference is barely visible on the plot since the red curve efficiently covers the green
curve as a consequence of the relatively small approximation error.
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B.2 The functions in section 10.3

The functions I-IV were selected because they possess a diverse combination of smoothness
properties and singularities. They are shown in Figures B.7 to B.10 as follows:

I The “λ-tear”:
f1(x) = xλ+ exp

�

− x2

1−x2

�

, x ∈ [−0.2,1],

where x+ =max(x, 0), and λ= 0.25, is shown in Figure B.7.
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0.2
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0.6

x

f 1
(x
)

Figure B.7: The “λ-tear” is a continuous function with smooth regions and one singluarity.

II Double chirp:

f2(x) =
p

x exp
�

− x2

1−x2

�

sin (64πx(1− x)) , x ∈ [0,1],

is shown in Figure B.8.
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Figure B.8: The double chirp is a smooth function without singularities.
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III Sinusoidal density, for x ∈ [−3,2]:

f3(x) =
� 1

2 | sin x| for x ∈ [−2π/3,π/3],
0 elsewhere.

,

is shown in Figure B.9.
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Figure B.9: Sinusoidal density. A function with smooth parts, isolated singularities and
jumps.

IV Triangle wave:
f4(x) =

�

�

�2
�

x −
�

x + 1
2

��
�

�

� , x ∈ [0,1],

is shown in Figure B.10.
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Figure B.10: Triangle wave. A continuous piecewise linear function with one singularity.

150



List of Acronyms and Abbreviations

API Application programming interface

B-function Blending function

CAD Computer aided design
CAGD Computer aided geometric design
CAM Computer aided manufacturing
CGI Computer-generated imagery
CPU Central processing unit
CUDA Compute unified device architecture

DCT Discrete cosine transform
DFT Discrete Fourier transform
DirectX Microsoft® DirectX®

DTM Digital terrain model
DWT Discrete wavelet transform

ERB Expo-rational basis function
ERBS Expo-rational B-spline

GERBS Generalized expo-rational B-spline
GIS Geographic information system
GPGPU General-purpose GPU
GPU Graphics processing unit

HVS Human visual system

IGES Initial graphics exchange specification
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