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GENERAL SUMMARY 
 

 

The overarching aim of this thesis has been to contribute to a better understanding of fatigue 

in the chronic phase after stroke. Although the acknowledgment of fatigue and the debilitating 

consequences associated with this condition has been on the rise for the last two decades, 

much is still unknown regarding underlying mechanisms. Moreover, treatment options are 

few and sparsely documented. Subtle cognitive impairments have been hypothesized to play a 

role in fatigue etiology, as have brain perturbations caused by the stroke lesion. Still, the 

literature is characterized by inconsistent findings, and further documentation of the detailed 

relationship between subjective fatigue, cognition, and neuronal underpinnings using sensitive 

measures is needed.  

 

In three separate empirical papers, the present thesis examines chronic phase post-stroke 

fatigue at different levels, using a mix of methods and novel approaches. Starting with the 

cognitive and behavioral correlates of fatigue, we performed a detailed examination of the 

relationship between self-reported, general, subjective fatigue and cognitive performance 

using a well-documented attentional paradigm. Subjective fatigue was associated with a 

slowing of responses throughout the duration of the 20 min task session, and the effect was 

most pronounced in the most cognitively demanding condition, suggesting that fatigue entails 

an increased vulnerability for performance deterioration when the attentional system is put 

under sustained pressure. The effect was not found for depression, suggesting that this type of 

sustained tasks may be particularly sensitive to fatigue. In an effort to pinpoint the specific 

mechanisms driving the observed differences in response times, we fitted a computational 

drift diffusion model to the response time data. Results suggested that the interaction between 

time on task and fatigue was best explained by the parameter comprising sensory encoding 

and motor responses.   

 



thus capturing not only the immediate damage caused by 

the stroke lesions but also distal effects.

but revealed associations between 

fatigue, depression and sleep quality. Together, the findings supports that chronic phase PSS 

is a complex condition that is not simply explained by lesion characteristics such as extent 

and distribution of structural brain disconnection.  

tDCS did not demonstrate 

beneficial effects on self-reports of fatigue or depression. Future studies should aim to 

generalize the findings to a broader spectrum of the stroke patient population, both in terms of 

stroke severity and functional outcome. 
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ANT Attention Network Test 

CCT Computerized Cognitive Training 

FSS Fatigue Severity Scale 

hDDM Hierarchical Drift Diffusion Model 

MRI Magnetic Resonance Imaging 

NIHSS National Institutes of Health Stroke Scale 

PHQ-9 Patient Health Questionnaire  

PSD Post-Stroke Depression 

PSF Post-Stroke Fatigue 

RT Response Time 

tDCS Transcranial Direct Current Stimulation 
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INTRODUCTION 

 
BACKGROUND 

Fatigue, the feeling of being overly tired, worn out, devoid of energy and aversive to effort, is 

familiar to most of us. In its healthy form, transient fatigue provides a protective reaction to 

stress and high energy consumption, guiding us towards rest and energy restoration. 

Simultaneously, fatigue constitutes a hallmark symptom in a range of medical conditions. 

Here, in its pathological form, fatigue can be excessive and persistent, unresponsive to rest, 

and negatively affecting life in many aspects (Annoni, Staub, Bogousslavsky, & Brioschi, 

2008). This is the type of fatigue commonly experienced after stroke, referred to as post-

stroke fatigue (PSF). Karl Gustafsen, a 77 years old stroke patient suffering from PSF, 

describes his experience with fatigue like this: 

 

“In the aftermath of the stroke, my greatest challenge seems to be this endless quantity of 

fatigue. It can be overpowering at times. Fatigue resulting from a stroke is recognized as a 

different species from normal fatigue. It’s not just the physical sort you feel after, say, a 

hard mountain climb, nor the mental weariness you might feel after a long day at work. 

Post-stroke fatigue is more like a double whammy, hitting you broadside both mentally and 

physically to produce a bone-tiredness that chases you at every turn and is impossible to 

escape from, except in brief intervals” (Gustafson, 2019, p. 23).  

 

Although fatigue is a fundamentally subjective experience, implying that we could find as 

many definitions of fatigue as there are sufferers, Gustafson’s account paints a vivid picture 

of fatigue from a first-hand perspective that resonates well with the commonly used 

descriptions of post-stroke fatigue in the literature. And it touches on a central aspect of 

post-stroke fatigue, namely that it separates from normal tiredness by being disproportionate 

to efforts and difficult to relieve: it can be triggered by seemingly trivial activities, creating 

unpredictable and frustrating conditions for rebuilding life after stroke.  

 

While recent years has offered an increased awareness of post-stroke fatigue in the clinic and 

a growing body of post-stroke fatigue research, our understanding of fatigue has not 

developed proportionally to efforts (Kuppuswamy, 2017). One of the major challenges in 



research on post-stroke fatigue may be attributable to the nature of the phenomenon itself - 

as an unspecific and subjective symptom with low diagnostic specificity and aberrant 

definitions, fatigue presents as a challenging object for empirical research (DeLuca, 2005). 

For the individual patient, fatigue can be particularly difficult to cope with due to the 

invisibleness of the difficulties, leading to concerns about the legitimacy of the experience 

and challenges with explaining their condition to others (Röding, Lindström, Malm, & 

Öhman, 2003). Attempts to treat or alleviate post-stroke fatigue has largely fallen short, and a 

recent Cochrane report concluded that we do not yet have sufficient empirical support for any 

treatment (Wu, Kutlubaev, et al., 2015). Yet, its significance to patients can hardly be 

understated. Around 40 percent of stroke patients listed fatigue as the worst, or one of the 

worst, symptoms after stroke (Ingles, Eskes, & Phillips, 1999), and stroke care surveys have 

identified fatigue, emotional and cognitive problems amongst the main unmet needs in stroke 

survivors in the chronic phase (McKevitt et al., 2010; Walsh, Galvin, Loughnane, Macey, & 

Horgan, 2015). 

  

The 

 professional, social or leisure activities. Taken together, this 

conveys a sense of urgency to the work of advancing the current understanding of post-stroke 

fatigue, its constituents and correlates, and identification of efficient preventive or treatment 

approaches.  

 

This thesis aims at contributing evidence to further our understanding of what post-stroke 

fatigue is and how it can be alleviated. Three papers are included, addressing fatigue in the 

chronic stroke phase at different levels: Paper I examines how fatigue manifests at the 

behavioral/cognitive level during a sustained attentional task, Paper II investigates the brain 

neurological substrate of fatigue and Paper III evaluates the effects of noninvasive brain 

stimulation combined with cognitive training on symptoms of fatigue and depression in a 

randomized controlled design. The thesis is organized in three main parts: 1) an introductory 



section, where key concepts, current knowledge and knowledge gaps are discussed in relation 

to the three papers comprising the thesis, 2) a section presenting the paper in terms of aims, 

hypotheses, methods and results, and 3) a discussion of the thesis’ contribution to the field, 

including methodological and ethical considerations, limitations, and future directions.  

 
STROKE AND FATIGUE IN A HISTORICAL CONTEXT 
 
Stroke is characterized by inadequate blood supply to the brain, causing brain cells to die 

from lack of oxygen and nutrients. It can be of ischemic or hemorrhagic origin, and represents 

a leading cause of deaths and disability worldwide (Donkor, 2018; Feigin, Norrving, & 

Mensah, 2017; Johnson et al., 2019). On a global scale, the population growth, increased life 

expectancy and increased prevalence of risk factors are likely to contribute to a rise in stroke 

prevalence (Di Carlo, 2009; Feigin et al., 2014; Feigin et al., 2016). Although recent years 

have offered major improvements in acute stroke care and survival rates (Lackland et al., 

2014; Walsh et al., 2015), stroke was among the main causes disability in 2013, accounting 

for 4.5 percent of Disability-Adjusted Life Years (DALYs) (Feigin et al., 2017). Adding to 

the clinical and human burden of stroke, the economic costs associated with treatment, 

rehabilitation and informal care are substantial (Di Carlo, 2009; Rajsic et al., 2019). For most 

stroke survivors, having a stroke constitutes a life changing experience, and depending on 

stroke severity, some may need life-long care. Persistent deficits after stroke can manifest in a 

multitude of domains, including cognitive, motoric, language/speech, emotional and sensory-

motoric functions (P. W. Duncan, Goldstein, Matchar, Divine, & Feussner, 1992; Hankey, 

Jamrozik, Broadhurst, Forbes, & Anderson, 2002; Leegaard, 1983). Among the long term 

consequences of stroke, post-stroke fatigue is among the most frequently reported (Walsh et 

al., 2015) and least understood (De Doncker, Dantzer, Ormstad, & Kuppuswamy, 2018). 

 

While fatigue in association with other neurological diseases such as multiple sclerosis and 

Parkinson’s disease has been widely recognized and extensively researched (de Groot, 

Phillips, & Eskes, 2003; Staub & Bogousslavsky, 2001a), the acknowledgement of post-

stroke fatigue as an independent and frequent stroke sequela is relatively new. PSF was not 

even mentioned in the 1996 first edition of the handbook “Stroke: A practical guideline to 

management” (DeLuca, 2005). Fatigue after stroke was first addressed in an academic setting 

by Leegaard (1983), within the framework of “diffuse cerebral symptoms” together with other 

emotional and cognitive symptoms such as reduced memory, impaired attention and 

emotional lability. In the following decades, post-stroke fatigue was little researched and 



generally considered to be a constituent of post-stroke depression (PSD) (Ponchel, Bombois, 

Bordet, & Hénon, 2015). As fatigue is a common symptom of depression, and the majority of 

depressed patients also experienced fatigue (P. N. Stein, Sliwinski, Gordon, & Hibbard, 

1996), this was the dominant view until converging evidence of cases of post-stroke fatigue 

frequently appearing independent of depression (Ingles et al., 1999). In the coming years, 

numerous observations of patients suffering from fatigue in the absence of depression or other 

significant impairments, sparked interest in post-stroke fatigue as a specific syndrome 

(Bogousslavsky, 2003; Ingles et al., 1999).     

 

EXTENT AND IMPLICATIONS 

 

Prevalence 

Despite a general consensus that post-stroke fatigue is prevalent in the stroke population, 

prevalence rates are highly variably, with estimates ranging from 35% to 92% (F. Duncan, 

Wu, & Mead, 2012). The discrepancies are explained in part by the lacking consensus on how 

to define fatigue, the use of different scales and different cut-off values, as well as 

heterogeneity in study designs and samples, where patients are assessed in different stages of 

recovery (Acciarresi, Bogousslavsky, & Paciaroni, 2014; Wu, Mead, Macleod, & Chalder, 

2015). Moreover, variation in stroke type, stroke severity, age of included stroke survivors 

and number of comorbidities may affect estimates of prevalence rates (Ponchel et al., 2015).  

 

Course of fatigue 

The relationship between fatigue severity and time since stroke is encumbered with 

uncertainty, with studies reporting both increasing (Schepers, Visser-Meily, Ketelaar, & 

Lindeman, 2006), decreasing (Christensen et al., 2008) and stable (van Eijsden, van de Port, 

Visser-Meily, & Kwakkel, 2012) levels of fatigue with time. Notably, a recent individual 

participant meta-analysis including >2000 stroke patients assessed with the Fatigue Severity 

Scale (FSS), suggested greater fatigue with increasing time since stroke (Toby B. Cumming et 

al., 2018). Summarizing five longitudinal studies, Wu, Mead, et al. (2015) revealed that two 

thirds of patients with fatigue at early assessments (within ~three months after stroke onset) 

also reported fatigue in the chronic phase, while between 12 to 58% of the patients not 

experiencing early fatigue, had developed fatigue in the chronic phase. These observations led 

Wu, Mead, et al. (2015) to suggest three different temporal courses of fatigue; persistent 

fatigue, recovered fatigue and late onset fatigue. 



 

Although early fatigue has been consistently identified as a predictor for late fatigue (Lerdal 

& Gay, 2013; Snaphaan, Van der Werf, & de Leeuw, 2011), the fact that fatigue can also 

initially emerge during the chronic phase suggests that there may be several etiologies and 

mediating factors following the acute stage (De Doncker et al., 2018). One conceptual model 

by Wu, Mead, et al. (2015) is in line with these observations, drawing a distinction between 

early and late fatigue. Here, they suggest that while early fatigue is predominantly determined 

by stroke lesion characteristics and biological factors associated with the stroke, late fatigue 

may be more strongly affected by behavioral and psychosocial factors, although residual 

neurological deficits and disability may perpetuate late post-stroke fatigue both directly and 

indirectly, through their effect on affective factors. However, studies have identified 

associations between stroke lesion characteristics and fatigue at 15 and 18 months post stroke 

onset (Snaphaan et al., 2011; Wai Kwong Tang et al., 2014), suggesting that stroke related 

brain perturbations may mediate fatigue in the chronic phase as well, although the 

mechanisms of such mediation are still largely unknown. I will elaborate on this subject in the 

section on PSF and lesion characteristics below.  

 

A related account of early versus late fatigue has implicated an acute immune response and 

the secretion of inflammatory cytokines in the genesis of early fatigue (Ormstad, Aass, 

Amthor, Lund-Sørensen, & Sandvik, 2011, 2012; Wen, Weymann, Wood, & Wang, 2018). 

While acute phase cytokines and other blood components predicted fatigue at 6 and 12 

months post stroke onset, no such associations were found for fatigue at 18 months since 

stroke (Ormstad et al., 2011), suggesting different pathways mediating early and late fatigue.  

 

Implications 

A growing body of research has related post-stroke fatigue to a range of negative outcomes. 

Fatigue after stroke can prevent social participation and rehabilitation adherence (Glader, 

Stegmayr, & Asplund, 2002; Nadarajah & Goh, 2015), and has been identified as an 

independent contributor to disability (Mandliya et al., 2016) as well as a predictor of 

increased mortality (Glader et al., 2002). The detrimental outcomes of persistent fatigue have 

also been demonstrated in a long term follow up study where fatigue and depression were 

identified as the major contributing factors to reduced quality of life in young stroke survivors 

(Naess, Waje-Andreassen, Thomassen, Nyland, & Myhr, 2006). On a related note, fatigue 

tends to be rated as a more severe symptom in patients with lower levels of physical or 



cognitive disability (Van Zandvoort, Kappelle, Algra, & De Haan, 1998), possibly reflecting 

that fatigue constitutes and becomes a more salient symptom in patients with overall better 

recovery and more subtle disabilities, or that otherwise well-recovered patients have higher 

expectancies of things to return to normal and face higher demands from the environment (de 

Groot et al., 2003; Staub & Bogousslavsky, 2001a).  

 

MEASUREMENT, DEFINITIONS AND MODELS 

Measurements 

A systematic review by G. Mead et al. (2007) identified no less than 52 fatigue scales applied 

in the literature, among which none were developed for post-stroke fatigue specifically. Based 

on an evaluation of measurement validity in relation to PSF, Mead et al. (2007) recommended 

the following four scales for post-stroke fatigue assessment: 

post-stroke fatigue 

 

The subjective nature of fatigue implies that the patient´s self-reported experience is the 

primary basis for definitions and measurement (De Doncker et al., 2018). Commonly applied 

definitions in the literature are “fatigue is a feeling of lack of energy, weariness, and aversion 

to effort” (G. Mead et al., 2007), and “decrease or loss of abilities associated with a 

heightened sensation of physical or mental strain, even without conspicuous effort, an 



overwhelming feeling of exhaustion, which leads to inability or difficulty to sustain even 

routine activities and which is commonly expressed verbally as a loss of drive” (Staub & 

Bogousslavsky, 2001a, p. 76). Other definitions found in the literature include: 

“A feeling of physical tiredness and lack of energy that is 
described as pathological, abnormal, excessive, chronic, 
persistent or problematic”  

(de Groot et al., 
2003) 

 
“A feeling of weariness, tiredness, and lack of energy that is 
pathologic and chronic»  
 

(Choi-Kwon & Kim, 
2011) 

“A subjective lack of physical and/or mental energy that is 
perceived by the individual or caregiver to interfere with usual 
and desired activities”  
(Commonly used definition of fatigue in multiple sclerosis) 
 

(Haselkorn, Balsdon 
Richer, & Fry 
Welch, 2005) 

“A subjective experience of extreme and persistent tiredness, 
weakness or exhaustion after stroke, which can present itself 
mentally, physically or both and is unrelated to previous exertion 
levels” 
 

(Zedlitz et al., 2012) 

“Over the past month, there has been at least a 2 week period 
when patient has experienced fatigue, a lack of energy, or an 
increased need to rest every day or nearly every day. And this 
fatigue has led to difficulty taking part in everyday activities” 
(Case definition for community-dwelling patients)  
 

(Lynch et al., 2007) 

 

Fatigue has also been defined from a more mechanistic perspective, proposing that 

“pathological fatigue is, thus, be best understood as an amplified sense of normal 

(physiological) fatigue that can be induced by changes in one or more variables regulating 

work output. Fatigue could develop during a disease because of dissociation between the 

level of internal input (motivational and limbic) and that of perceived exertion from applied 

effort” (Chaudhuri & Behan, 2004, p. 979).  

 

A recent theoretical development incorporates the acute immunological response with a 

mechanistic understanding of fatigue in the chronic stage (Kuppuswamy, Rothwell, & Ward, 

2015). The authors speculate that the early proinflammatory environment may depress motor 

cortex excitability, and that these changes are irreversible in some patients, possibly 



dependent on genotypes. The authors further suggest that such motor deficits coupled with 

alterations in sensory processing and poor sensory attenuation give rise to fatigue through an 

increase in “estimated action cost” or effort (De Doncker et al., 2018; Kuppuswamy et al., 

2015).  

 

personal factors, pre-stroke fatigue, stroke 

characteristics, biomarkers, and chronic diseases, while the component of experience also 

incorporates other concomitants of stroke, like depression, anxiety and sleep disturbance. 

Also according to the  framework, a model by Ormstad and Eilertsen (2015) 

propose that early fatigue is related to immune response and kynurenine pathway activation, 

but simultaneously emphasizes the importance of acknowledging fatigue in the late phase as a 

means of facilitating adaptive coping and thus decrease the risk of developing depression. 

Underscoring the complexity of post-stroke fatigue and the probability of numerous 

mechanisms in play, studies have identified sleep problems (Naess, Lunde, Brogger, & Waje-

Andreassen, 2012), anxiety (Toby B. Cumming et al., 2018; Wu, Barugh, Macleod, & Mead, 

2014), pain , various medications 

, lack of social support (K. M. Michael, Allen, & Macko, 2006), aphasia 

reduced physical function (Lerdal et al., 2011; 

Aarnes, Stubberud, & Lerdal, 2020) and depression (Ponchel et al., 2015; Wu et al., 2014) to 

be associated with fatigue. Yet, causality has been hard to establish, and for many of the 

mentioned factors, the existence of a bidirectional relationship is likely.  

 

As evident from the above definitions, post-stroke fatigue can manifest in the psychological 

and physical domains, and the notion of an increased weariness and sense of effort is central 

to several definitions. Regarding the mental aspect of the fatigue experience, there are several 

frameworks emphasizing the role of subtle cognitive deficits, particularly within attention and 

processing speed (Bushnik et al., 2015; Birgitta Johansson & Ronnback, 2014; Birgitta 

Johansson & Rönnbäck, 2012). The coping hypothesis (Van Zomeren, Brouwer, & Deelman, 

1984; Van Zomeren & Van den Burg, 1985) originally developed in relation to patients with 

traumatic brain injury, in brief proposes that subtle cognitive impairments require 



compensatory effort to maintain performance, which leads to the subjective feeling of fatigue. 

Evidence from imaging studies have provided some support to this framework by showing 

that, compared to healthy controls, individuals with TBI display increased brain network 

activity when performing attentional tasks (Kim et al., 2012; Kohl, Wylie, Genova, Hillary, & 

Deluca, 2009). Yet, the question of how or whether brain lesion characteristics in stroke relate 

to fatigue in the chronic phase, remains open. Below, I elaborate on the association between 

stroke lesions, cognitive deficits and fatigue.  

 

STROKE LESIONS AND FATIGUE 

Although the brain perturbations caused by the cerebral infarct is assumed to be a 

precipitating event in the development of post-stroke fatigue, the relationship between stroke 

lesion characteristics and fatigue etiology remains elusive (Paciaroni & Acciarresi, 2019). 

Observations of fatigue being more prevalent in the aftermath of minor strokes compared to 

transient ischemic attacks (TIA)(Naess et al., 2012; Winward, Sackley, Metha, & Rothwell, 

2009) suggest that the cerebral infarction is of importance. Moreover, fatigue after stroke is 

described as qualitatively different than normal tiredness or pre-stroke fatigue by stroke 

survivors (Flinn & Stube, 2010; Thomas, Gamlin, De Simoni, Mullis, & Mant, 2019), and the 

fact that fatigue is a hallmark symptom in a range of neurological diseases and acquired brain 

injuries, also speaks of a central origin (Chaudhuri & Behan, 2004).  

 

The findings on the relationship between fatigue and lesion characteristics are partly 

conflicting and largely inconclusive. One study identified basal ganglia infarcts as predictors 

of fatigue (Wai Kwong Tang et al., 2010), and caudate infarcts have been found to be more 

frequent in patients with fatigue (W. K. Tang et al., 2013). Moreover, Wai Kwong Tang et al. 

(2014) observed an increased risk of non-remitting post-stroke fatigue at 15 months post-

stroke in patients with subcortical white matter infarcts, whereas Snaphaan et al. (2011) found 

higher risk of fatigue at 15 months post-stroke in patients with infratentorial lesion. Regarding 

the latter, brain stem and thalamic strokes have been associated with post-stroke fatigue 

(Mutai, Furukawa, Houri, Suzuki, & Hanihara, 2017), as have basilar artery infarctions 

(Naess, Nyland, Thomassen, Aarseth, & Myhr, 2005). It has been hypothesized that 

disruptions to the reticular activation system and associated subtle attentional deficits may 

contribute to PSF (Staub & Bogousslavsky, 2001b) and that disconnection between insula and 

the anterior cingulate cortex or frontal lobe, caused by right insula damage, may cause 

impaired energy or drive (Manes, Paradiso, & Robinson, 1999). Yet, the clinical 



generalizability of these findings remains unclear, as several studies report no significant 

association between stroke location- or type, and fatigue (Appelros, 2006; Ingles et al., 1999; 

Kutlubaev et al., 2013; G. E. Mead et al., 2011; Ormstad et al., 2011; Radman et al., 2012; 

Schepers et al., 2006).  

 

The lack of consistency with regards to the brain correlates of post-stroke fatigue may be 

partly attributable to varying times of measurement and differences in how lesion 

characteristics are defined and specified. Moreover, although lesion-based localization studies 

have produced indispensable insights in the relationship between brain and behavior, there is 

an increasing awareness of its inherent limitations. One of the key concerns stems from the 

clinical observation that lesions in different locations can give rise to the same clinical 

diaschisis (where focal injury causes remote neurophysiological changes in distant regions) 

(Carrera & Tononi, 2014; von Monakow, 1914) and disconnection (Geschwind, 1974). 

Moreover, accumulating neuroimaging evidence suggest that many symptoms are related to 

complex brain networks in anatomically distant but interconnected regions (Lim & Kang, 

2015), and that lesions affecting densely connected hubs or white matter pathways may be 

associated with more severe symptoms (Fox, 2018), implying that even smaller lesions may 

have large implications if localized in such areas. Following this logic, certain clinical 

symptoms in the aftermath of stroke, such as fatigue, may be mediated not primarily by the 

localization or size of the focal lesion, but rather by the functional neuroanatomy of the 

implicated networks and degree of preserved network function (Bartolomeo & de Schotten, 

2016; de Schotten, Foulon, & Nachev, 2020; Lim & Kang, 2015).   

 

Methods including connectivity-based measures, capturing network perturbations beyond the 

focal lesion, may therefore provide both a theoretically and clinically relevant tool for 

studying associations between lesion impact and specific symptoms after stroke. Newer 

advances/developments now allow for indirect estimations of individual lesions’ effect on 

global brain connectivity (Foulon et al., 2018). Such lesion-network mapping approaches has 

been applied to the study of a variety of brain disorders (Darby, Joutsa, & Fox, 2019; 

Ferguson et al., 2019; van den Heuvel & Sporns, 2019), and recent work suggest improved 

predictive value with inclusion of implicated network projections (de Schotten et al., 2020; 

Griffis, Metcalf, Corbetta, & Shulman, 2019). Yet, this approach had not yet been applied to 

study post-stroke fatigue. In Paper II, we therefore investigate whether an indirectly estimated 



maps of structural disconnection add insight on the relationship between lesion-related brain 

disconnectivity and fatigue beyond what is detectable by conventional lesion measures.  

 

COGNITIVE IMPAIRMENTS AND FATIGUE 

Long-term cognitive impairments are frequent following stroke (Mahon et al., 2017; 

Schaapsmeerders et al., 2013) and have been hypothesized to contribute to fatigue after 

acquired brain injuries (Birgitta Johansson & Ronnback, 2014; Ponsford et al., 2012). 

Problems with attention and memory are common complaints in otherwise well-recovered 

patients with PSF (Birgitta Johansson & Rönnbäck, 2012; Koopman et al., 2009), and many 

report increased fatigue when engaging in tasks requiring mental effort, referred to as mental 

fatigue (Birgitta Johansson & Ronnback, 2014). Still, the accumulated evidence on 

associations between post-stroke fatigue and objective cognitive correlates is divergent.  

 

A recent review paper including 11 studies on post-stroke fatigue and cognition concluded 

that there are currently no convincing evidence of a significant association between global 

cognitive status and fatigue after stroke, but suggestive evidence of an association between 

attention, processing speed, memory and fatigue (Lagogianni, Thomas, & Lincoln, 2018), 

mirroring a previous review from Ponchel et al. (2015). Also, studies reporting no association 

between PSF and cognition tend to use rather coarse measures of general cognitive function, 

such as the Mini-Mental State Examination (MMSE; (Folstein, Folstein, & McHugh, 1975; 

Kutlubaev et al., 2013; van Eijsden et al., 2012), which may not be sufficiently sensitive to 

individual differences in less severe end of the clinical spectrum (Holtzer, Shuman, Mahoney, 

Lipton, & Verghese, 2010; Snaphaan et al., 2011).  

 

It has been speculated that cases of post-stroke fatigue may be associated with subtle 

attentional impairments that is not readily revealed by standard neuropsychological 

assessments (Bogousslavsky, 2003), and that tests putting stronger demands on processing 

speed and attentional function over time may be more appropriate for detecting mental fatigue 

and its cognitive correlates (Holtzer et al., 2010; Birgitta Johansson & Rönnbäck, 2012; 

Jonasson, Levin, Renfors, Strandberg, & Johansson, 2018). Moreover, assuming that a key 

clinical characteristic of mental/cognitive fatigue is “decreased performance during acute but 

sustained mental effort” (DeLuca, 2005), temporal analyses/monitoring of performance may 

provide information that is not revealed by sum scores.  

 



As revealed by a review on cognitive correlates (Lagogianni et al., 2018), the majority of 

significant correlations between self-reported fatigue and cognitive function were identified 

using mental fatigue sub-scales, and not general scales such as the FSS. Although the former 

may be more sensitive for the mental aspect of fatigue, it is plausible that reported 

correlations were higher because the items in mental fatigue scales also reflect subjective 

cognitive complaints rather than general fatigue (i.e.  

 

In Paper I we therefore investigated the association between subjective general fatigue, 

attentional function and mental fatigue as defined above (“decreased performance during 

sustained effort”) using the Attention Network Test (ANT; Fan, McCandliss, Sommer, Raz, & 

Posner, 2002). The ANT is a widely used experimental paradigm, combining a cued reaction 

time task (Posner, 1980) with a flanker task (Eriksen & Eriksen, 1974), allowing for parsing 

of attentional components. Moreover, because the tasks involves 288 trials and lasts for 20 

minutes, the effects of sustained effort can be evaluated. Furthering our understanding of the 

relationship between subjective fatigue, mental fatigability and attentional function is 

imperative, as these putatively connected constructs represent common obstacles to almost 

recovered stroke survivors hoping to return to previous activities and everyday life (Birgitta 

Johansson & Rönnbäck, 2012).  

 

HOW CAN POST-STROKE FATIGUE BE ALLEVIATED?   

Despite the growing acknowledgement of post-stroke fatigue as a distressing and prevalent 

problem after stroke, there is still uncertainty about how it can best be managed and 

alleviated. A randomized controlled trial demonstrated that a 12-week cognitive therapy 

intervention alleviated fatigue, with best effects being obtained when augmenting therapy 

with graded activity training (A. M. Zedlitz, Rietveld, Geurts, & Fasotti, 2012). However, the 

authors point to several study limitations such as lack of sham/control conditions, implying 

that the generalizability of the findings is uncertain. Mindfulness-based interventions have 

also shown some promise for alleviating fatigue in patients with MS and acquired brain 



injuries (B. Johansson, Bjuhr, & Rönnbäck, 2012; Ulrichsen et al., 2016). Still, a 2015 

Cochrane review comprising 12 intervention studies concluded that the evidence of the 

included treatments’ efficacy was insufficient (Wu, Kutlubaev, et al., 2015). Following this, a 

pilot RCT has demonstrated beneficial effects of cognitive behavioral therapy (CBT) 

compared to treatment as usual (Nguyen et al., 2019), and a phase II trial has shown 

promising effects of modafinil with regards to fatigue and quality of life (Bivard et al., 2017). 

Due to the putative association between post-stroke fatigue and specific cognitive deficits, 

cognitive rehabilitation has been put forward as potentially relevant intervention for this 

patient group (Aarnes et al., 2020). Recently, a clinical trial revealed evidence supporting 

beneficial effects of a single session of tDCS in mildly impaired stroke patients suffering from 

high fatigue (De Doncker, Ondobaka, & Kuppuswamy, 2021). Together with positive effects 

from tDCS fatigue studies in other patient populations, this may suggest that tDCS has 

potential to relieve post-stroke fatigue.  

tDCS 

The interest in non-invasive brain stimulation techniques has grown significantly in the past 

20 years (Fregni et al., 2015). tDCS represents one of the most frequently applied and 

extensively researched neuromodulatory techniques (Brunoni et al., 2012). It is typically 

administered via a battery-driven direct current stimulator with two electrodes (anodal and 

cathodal), whose location on the scalp is decided according to the brain functions of interest 

(Stagg & Nitsche, 2011). While the specific mechanisms by which tDCS modulate behavior 

are still unclear and reliable neurophysiological effects have been difficult to establish 

(Horvath, Forte, & Carter, 2015), the main mechanism of action is generally assumed to be 

altered cortical excitability induced by subthreshold modulation of neuronal membrane 

potential (Purpura & McMurtry, 1965; Woods et al., 2016). When coupled with relevant 

actions or tasks targeting the behavior one wish to modulate, altered cortical excitability may 

facilitate synaptic plasticity through LTP-like effects (Au et al., 2016; Woods et al., 2016). 

Due to its assumed neuromodulatory properties, tDCS has been evaluated as a therapeutic 

intervention in a range of disorders, including but not limited to, Alzheimer’s disease, chronic 

pain, depression and stroke recovery within motor and cognitive domains (Paulo Sergio 

Boggio et al., 2012; DaSilva et al., 2012; Lindenberg, Renga, Zhu, Nair, & Schlaug, 2010; L. 

Valiengo et al., 2016; L. C. L. Valiengo et al., 2017). There is evidence suggesting that tDCS 

can boost the effects of behavioral interventions like language treatment for aphasia 



(Fridriksson, Richardson, Baker, & Rorden, 2011) and cognitive training (Au et al., 2016; Jo 

et al., 2009; Martin, Liu, Alonzo, Green, & Loo, 2014), but the generalizability of such 

findings is unclear. Moreover, several studies have reported beneficial effects on fatigue after 

tDCS in patients with multiple sclerosis (Chalah et al., 2020; Charvet et al., 2018; Ferrucci et 

al., 2014), and the aforementioned study by De Doncker, Ondobaka, and Kuppuswamy 

(2020) found improvement of fatigue in stroke patients after a single session of anodal tDCS. 

While such preliminary findings are promising, it remains to be confirmed whether the 

fatigue-reducing effects of repeated tDCS seen in multiple sclerosis patients can be 

generalized to chronic stroke samples. This question is addressed in Paper III, where the 

effects of tDCS in combination with computerized cognitive training is evaluated with regards 

to self-reported symptoms of fatigue and depression.  

Computerized cognitive training  

Based on the general and emerging principle of the plastic brain, that is, the brain’s ability to 

change in response to experience, the number of studies attempting to restore or improve 

cognitive functions through systematic training has been growing rapidly (Shipstead, Redick, 

& Engle, 2012). CCT is one on several types of cognitive training, typically consisting of 

repeated, structured sessions of various computerized tasks. The basic assumption is that 

repeated practice of tasks targeting specific cognitive abilities can lead to improved cognitive 

functioning bearing real-life implications (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; 

Sternberg, 2008). The latter is typically the main goal, and is inherently relying on far-transfer 

effects, where improvement in performance on trained tasks will generalize to outcomes that 

are dissimilar to the trained tasks and ultimately every day functioning.    

   

The identification of working memory as a central component of the cognitive system with a 

close relationship to higher cognition has motivated the development of training programs 

specifically targeting working memory functioning, with the hypothesis that working memory 

improvement may generate broader cognitive benefits (Klingberg et al., 2005; Morrison & 

Chein, 2011; Shipstead et al., 2012). While early findings were highly encouraging, 

suggesting that a fixed number of practices could produce increases in fluid intelligence 

(Jaeggi et al., 2008) and decrease symptoms of ADHD (Klingberg et al., 2005), a growing 

number of subsequent studies have failed to replicate the initial, promising effects (Redick, 

2019). Specifically, the generalizability of practice effects beyond the specific training 

context (far-transfer effects) has been subject to much controversy and problematic to 



establish. Several meta-analyses conclude that training effects are predominantly found in 

near-transfer tasks (tasks that are similar to the trained tasks), while evidence in support of 

generalized far-transfer benefits is weak to non-existent (Melby-Lervåg, Redick, & Hulme, 

2016; Sala & Gobet, 2019). Yet, other meta-analyses have reported evidence for far transfer-

effects, albeit smaller than near-transfer effects (Karbach & Verhaeghen, 2014) or evidence of 

effects under specific circumstances and for certain patient groups (Hill et al., 2017; Weicker, 

Villringer, & Thöne-Otto, 2016).  
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Hence, the main objectives of Paper I was to characterize the relationship between 

subjectively reported fatigue and attentional function as measured by the ANT, and to 

investigate whether and how fatigue manifest in performance during sustained mental effort. 

The ANT was chosen as it is a widely used and well documented paradigm, enabling parsing 

of different attentional networks while simultaneously allowing for evaluating time-effects on 

performance. Based on previous literature on fatigue in other populations (Holtzer et al., 

2010; Pauletti et al., 2017), we hypothesized that subjective fatigue would be associated 

primarily with executive network efficiency, and that subjective fatigue would interact with 

time-on-task, resulting in reduced performance after sustained effort for patients with high 

fatigue. A second aim was to evaluate whether a computational approach using drift diffusion 

modeling (DDM) of the behavioral data could elaborate the understanding of the 

hypothesized relationship between subjective fatigue and sustained performance. DDMs 

applied to fast two-choice decision tasks provide estimates of the cognitive processes assumed 

to underlie observed behavior (Roger Ratcliff & McKoon, 2008). In an exploratory analysis, 

we fitted a hierarchical drift diffusion model to the ANT behavioral data, and tested for 

associations between model parameters and subjective fatigue. Due to the exploratory 

approach, no specific hypotheses were defined.  

 

  

 

 



 

PAPER II 

Brain perturbations caused by the stroke lesion are assumed to be precipitating events in post-

stroke fatigue etiology, but the specific predictive value of key lesion characteristics such as 

location and neuroanatomical distribution is still uncertain (De Doncker et al., 2018). The 

brain is increasingly conceptualized as a complex, highly interconnected network, implying 

that abrupt changes to key neural pathways can spark cascade effects by altering connectivity 

in remote cortical areas (Fox, 2018; Rehme & Grefkes, 2013). In this context, even small, 

focal lesions can cause connectome-wide perturbations if occuring in densely connected 

areas. Recent advances within neuroimaging have resulted in remarkable roadmaps of brains’ 

connectivity, collectively coined the brain connectome, and such templates derived from 

normative samples have enabled the indirect estimation of disconnection caused by individual 

lesions (Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut de Schotten, & Corbetta, 2020). 

In support of a (dis)connectivity approach, recent work suggest that lesions affecting large 

white matter pathways cause a greater number of symptoms (Corbetta et al., 2015), as do 

lesions affecting highly connected hubs (Warren et al., 2014). Such lesion-network mapping 

approach has been applied to the study of a variety of brain disorders (Darby et al., 2019; 

Ferguson et al., 2019; van den Heuvel & Sporns, 2019), and may provide a more sensitive 

measure to capture the brain perturbations associated with fatigue. 

 

In light of the considerable inconstancy in the existing research literature examining the 

relationship between lesion characteristics and fatigue, the main aim of this study was to 

investigate the added explanatory value of a structural disconnectivity approach compared to 

conventional lesion-symptom mapping. Because no previous studies have examined post-

stroke fatigue by a disconnectivity approach, we had an agnostic view regarding involvement 

of specific brain networks and conducted a whole-brain analysis. However, based on recent 

work suggesting improved predictive value with inclusion of network projections (de 

Schotten et al., 2020; Griffis et al., 2019), we hypothesized that the disconnectivity based 

approach would exhibit higher sensitivity to fatigue than conventional measures of lesion 

characteristics.  

 
 

 



PAPER III 

Despite a growing awareness of post-stroke fatigue in research and the clinic, few treatment 

options exist for fatigue. Simultaneously, fatigue and emotional distress rank high among 

patients’ reports of unmet needs in life after stroke, underscoring the importance of 

identifying effective treatments. There are studies suggesting that non-invasive brain 

stimulation techniques such as tDCS have may have the potential to alleviate fatigue and 

depression in other patient groups, but the acceptability and effects of repeated tDCS for post-

stroke fatigue in chronic stroke patients need to be further explored. Moreover, due to the 

assumed link between subtle cognitive impairments and mental fatigue, cognitive training 

may prove beneficial for patients with post-stroke fatigue. The aim of this study was to 

evaluate the added effect of tDCS combined with cognitive training with regards to alleviate 

fatigue and depression. 74 chronic stroke patients were included in a randomized sham-

controlled design, where tDCS or sham stimulation were administered simultaneously with 

computerized cognitive training. We hypothesized that patients receiving real stimulation 

would display larger reductions in fatigue and depression symptoms than patients receiving 

sham.  

 

In recognition of the strong association and clinical overlap between fatigue and depression, 

we used an exploratory network-approach to map the relationship between individual fatigue- 

and depression symptoms at baseline and across five time points. Repeated measures of 

symptom severity also provide relevant information on stability and fluctuations in individual 

symptoms over time. Due to the exploratory approach assumed, no specific hypotheses were 

formulated for the network analyses.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
RESEARCH QUESTIONS  

 
 

post-stroke fatigue 

 computerized cognitive training alleviate symptoms of fatigue and 

depression in chronic stroke patients? Is degree of fatigue associated with training gain and 

the probability of completing the intervention? How do individual symptoms of depression 

and fatigue fluctuate over time, and how do symptoms vary in terms of network centrality?  



MATERIAL AND METHODS 
 

 
DESIGN AND GENERAL SETTING 
 
This thesis is part of the StrokeMRI study (Beck et al., 2021; Dørum et al., 2020; Kolskaar et 

al., 2020; Richard, Petersen, et al., 2020; Sanders et al., 2021), a collaborative research project 

with an overarching goal to identify determinants of stroke rehabilitation and recovery as well 

as successful ageing and brain health. For this purpose, both healthy control participants and 

stroke patients were included. A central part of the project was to evaluate the clinical 

feasibility of combined tDCS and computerized cognitive training with regards to 

improvement of cognitive function in particular. In this respect, the assessment of tDCS’ 

effects on post-stroke fatigue and depression presented in Paper III should be regarded pre-

specified, but exploratory endpoints.   

 

PARTICIPANTS  
 

Healthy Control group  

Healthy control group participants were recruited through newspaper advertisements, word-

of-mouth and online social media. Of the 500 persons responding, approximately 400 persons 

were deemed eligible for inclusion after a telephone screening interview. A final sample of 

346 healthy controls completed a comprehensive test protocol, including a battery of 

cognitive assessments, self-reports of mental distress, multimodal MRI and blood sampling. 

General inclusion criteria were age > 18 with no known diagnoses of neurological or 

psychiatric disease, no previous strokes or other acquired brain injuries. Persons taking 

medications with significant effect on central nervous system functioning were also excluded. 

As with the stroke patients, MRI-contraindications were a criterion for exclusion.   

 
 
Patient Sample 

Stoke survivors in a chronic phase (Paper I – III) were recruited from the stroke unit at Oslo 

University hospital (OUS) and the Geriatric Department at Diakonhjemmet Hospital. Suitable 

participants were identified by the hospital staff, and invitation letters were sent to 

approximately 900 patients admitted with acute stroke between 2013-2016, of which 



approximately 250 responded to decline or to receive more information. Following an initial 

telephone screening, 77 patients were deemed eligible and scheduled for inclusion. Paper II 

included an additional subsample of 18 patients recruited within 14 days of hospital 

admittance. These patients participated in an affiliated stroke-MRI sub-study (not the RCT), 

and the data presented in Paper II were collected from follow-up tests conducted at minimum 

three months post stroke.  

 

We included patients aged 18 or older, with clinically documented stroke of ischemic or 

hemorrhagic etiology. Exclusion criteria included contraindications for MRI (i.e. metal 

implants, claustrophobia, pregnancy), other neurological conditions diagnosed prior to the 

stroke, severe mental illness and drug abuse.  

 
 
Table 1 presents sample descriptive information for each paper, while Figure 1 describes the 

study protocol for patients:  

 
Table 1  
 Paper I Paper II Paper III 

Patients (N) 53 84 74 baseline/ 54 

complete* 

Months since stroke  25 (6 – 45)  22 (3 – 45)  25 (6 – 45) 

Age, years (mean(SD))  69.0 (7.43)  65.8 (12.6)  69.1 (7.3) 

Age range,  years 47 - 81 24 – 87 47 - 81 

Males/Females (count)  38/15 60/24 40/14 

Healthy controls (count) NA 155 (age/sex-matched) NA 

Design Cross sectional Cross sectional RCT/Cross sectional 

*Table data reported on completing patients 

 
 
 
 
 
 
 
 
 
 
 



Fig. 1. Flow chart of study protocol and timeline from baseline to post-assessments.  

SELF-REPORT SCALES AND COGNITIVE ASSESSMENTS 

All self-report and cognitive data included in the present study were collected using validated 

and standardized neuropsychological tests and questionnaires. 



≥ 

≥ 5 (Kjeverud et al., 2020; Lerdal, Wahl, Rustoen, Hanestad, & Moum, 2005; 

Naess et al., 2012). 

 depression (Williams et al., 2005). 





Fig. 2. A schematic representation of the ANT cue and flanker conditions. Adapted from 

Paper I (Ulrichsen et al., 2020). 

 

Individual network scores were computed using the following definition based on median 

RTs:  

 



All participants were scanned on a 3T GE 750 Discovery MRI scanner at Oslo University 

Hospital. A 32-channel head coil was used, with paddings applied to minimize head motion.

The full protocol included structural (T1, FLAIR), functional (resting-state and task-based 

fMRI) and diffusion data. Only data from T1-weighted and FLAIR are presented in this 

thesis, used for lesion demarcation as presented in Paper II. T1-weighted images were 

acquired using a 3D IR-prepared FSPGR (BRAVO), with scan time 4:43 and the following 

parameter specifications:  TR: 8.16 ms; TE: 3.18 ms; TI: 450 ms; FA: 12°; voxel size: 

1 × 1 × 1 mm; slices: 188; FOV: 256 × 256, 188 sagittal slices. Corresponding parameters for 

FLAIR were TR: 8000 ms; TE: 127 ms, TI: 2240; voxel size: 1 × 1 × 1 mm).

Fig. 3. Adapted from Paper II. Heatmap displaying lesion overlap across stroke patients by 70 
slices (2 mm thickness) from z(voxel) = 1 to z = 70. 



Fig. 4. Adapted from Paper II. Individual lesions (blue) and associated disconnectome maps 
(yellow–red). Probability for disconnection ranges from 10 (yellow) to 100 (red). Patient A: 
right cerebral , Patient B: , Patient C: left and right 
cerebral cortex and white matter lesions.  



An in-house Matlab script was used to randomize participants into the experimental 

conditions (sham vs active), while ensuring balanced numbers of participants between the 

groups. Both patients and we who administered the stimulation were blinded to the 

experimental condition throughout the experiment, as well as during initial data analyses.  

 

Each session of stimulation lasted for 20 minutes (administered during the first 20 minutes of 

Cogmed training), whereof 120 seconds were ramp-up and 30 seconds fade-out. Sham 

stimulation was provided using the fade in – short stimulation – fade out approach  (Ambrus 

et al., 2012). The short stimulation following fade in/ramp-up lasted for 40 seconds, thus 

providing a tingling sensation, before fade out in accordance with factory settings. To 

minimize risks of adverse effects, active stimulation was set to 1 mA. We used a direct 

current stimulator (neuroConn DC plus, Germany) with 5x7 cm rubber pads to deliver the 

stimulation. Rubber pads were covered in high-conducting gel to keep impedance below 20 

kΩ. The anodal electrode was placed at the left dorsolateral prefrontal cortex (F3) and the 

cathodal electrode at right occipital/cerebellum (O2). As previously described, the 

intervention was created and conducted as a collaborative effort between different PhD 

projects, where the primary goal was to evaluate the potential effects of tDCS in combination 

with cognitive training on cognitive function.  

 

Decisions on study settings such as electrode placement was motivated first and foremost by 

previous literature on tDCS and cognition. Yet, there are several randomized controlled 

studies (Chalah, Riachi, et al., 2017; Charvet et al., 2018) and case reports (Ayache, 

Lefaucheur, & Chalah, 2017; Chalah, Lefaucheur, & Ayache, 2017) reporting beneficial 

fatigue effects of repeated anodal tDCS to the left DLPFC in MS patients. With regards to 

depression, the left DLPFC is a frequent target area for anodal tDCS (Bennabi & Haffen, 

2018; Paulo S. Boggio et al., 2008), and associations between depression after stroke and left 

DLPFC connectivity or damage (Egorova et al., 2017; Grajny et al., 2016) may suggest 

positive effects of stimulation to this region (Egorova et al., 2017). Together, these 



observations suggest a sufficient rationale for assessing the potential of fatigue- and 

depression effects of tDCS to this region in stroke patients.

using R version 4.0.3 (R core team, 2020).  

 

Paper I 

In line with previous reports (Chang, Pesce, Chiang, Kuo, & Fong, 2015; Westlye, Grydeland, 

Walhovd, & Fjell, 2011) times <200 milliseconds (2% of responses) were removed 



from analyses, assumed to reflect fast guesses. Participants with over 50% incorrect responses 

within the respective flanker conditions were discarded from analyses. This applied to one 

participant.  

 

Associations between RT, subjective fatigue and time on task  

To model the association between subjective fatigue (standardized FSS scores), time on task 

(trial number 1 – 288) and RT, we estimated linear mixed-effects models using the nlme 

package in R (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2007). 



Computational approaches such as 

the DDM have been applied to decompose data from fast two-choice decision tasks in a range 

of clinical disorders (White, Ratcliff, Vasey, & McKoon, 2010), providing a theoretical 

framework to understand cognitive processes and a psychometric tool to disentangle the 

specific processes hypothesized to underlie observed behavior. A significant advantage with 

the DDM is that it extracts more information from the behavioral data and both mean RT, RT 

distributions and accuracy are accounted for in the same model (Roger Ratcliff, Thapar, & 

McKoon, 2003). Briefly, the original model postulates four parameters (R. Ratcliff, 1978). 

drift rate (v): the rate or speed of information accumulation, assumed to reflect processing 

efficiency, non-decision time (t): a “non-cognitive” parameter, accounting for time needed to 

encode the stimulus and execute a response, decision threshold (a): reflecting the amount of 

evidence needed to make a decision, and the starting point (z), describing bias toward a 

response option (Roger Ratcliff & McKoon, 2008).  

 

 python toolbox HDDM (Wiecki, Sofer, & Frank, 

2013), 



Model fit was evaluated by comparing of deviance information criteria (DIC) values from 

respective models. The DIC provides an estimate of a model’s fit relative to other models, 

where lower values indicate better support (François & Laval, 2011). Additionally, for the 

models including individually estimated regressors, posterior predictive checks (PPC) were 

conducted to evaluate how the model succeeded in reproducing distributions from the 

observed data (Wiecki, 2016). For each parameters’ estimated posterior distribution, 500 

samples were randomly drawn from the estimated posterior distribution, and these simulated 

datasets were then compared with observed data, providing an estimate of fit and uncertainty 

in the model. Table 2, Paper I, provides an overview of different models tested and associated 

DIC values. The best model in terms of model fit and convergence allowed non-decision time 

to vary across warning cue conditions, and drift rate to vary between flanker conditions while 

keeping boundary separation constant.  

 

(FSS score of ≥/< 4, corresponding to commonly used clinical 

cutoff value (Nadarajah & Goh, 2015; Schepers et al., 2006), and b) the upper tertile of FSS 



scores contrasted with the lowest tertile, motivated by the possibility that more extreme scores 

might demonstrate increased sensitivity to brain correlates associated with fatigue.  

 

Two different procedures were used to control for depression: a) excluding patients fulfilling 

the criteria for clinical depression (≥ 10 on PHQ, n = 74 remaining), and b) including 

normalized PHQ-and FSS scores in the same model. 5000 permutations were performed for 

each contrast. Applying threshold free cluster enhancement (TFCE; Smith & Nichols, 2009) 

to correct for multiple testing, results were considered significant at p<.05. For transparency, 

we also plotted distributions of the uncorrected t-values from the main models, as shown in 

Supplementary Material, Paper II.  

 

Follow-up analyses were conducted in R, version 3.4.0 (R core team, 2020) to explore 

whether sensitivity could be increased by creating simple summary measures, and to quantify 

the evidence for an absent association if results were indicative of such. Simple disconnection 

measures were computed for each patient by a) calculating the mean voxel intensity across the 

total disconnectome map, and b) summarizing the number of voxels with a probability of 

disconnection larger than 50%.  

 

Using the BayesFactor package (Morey, Rouder, Jamil, & Morey, 2015) we then computed 

linear correlations between these disconnection measures, FSS and PHQ. We further tested 

for associations between fatigue and more clinical, stroke-related characteristics (lesion 

location, as defined in four categories – left/right hemisphere, both hemispheres or 

cerebellum/brain stem, TOAST classification of ischemic stroke, months since stroke onset, 

lesion volume (defined as number of voxels in the lesion mask), and stroke severity (NIHSS 

score at hospital discharge used as a proxy for clinical severity). We estimated linear models 

with FSS scores as dependent variable, while controlling for age, sex and depression scores. 

To allow for model comparison by Bayes Factor, clinical stroke variables were added 

subsequently, and the lmBF function was used to compute Bayes Factors for model 

comparison against the null (intercept only) model.  

 



(http://mc-stan.org/)

(Bürkner, 2017). Mixed models were estimated separately for FSS 

and PHQ, entering FSS or PHQ as dependent variables, and time (1-5), tDCS group (sham or 

active), tDCS group * time, sex and age as fixed factors, with participant as random factor. 

All variables were standardized prior to analysis. Models were run using 4 chains (8000 

iterations each), of which the first 4000 were discarded as burn-in. We applied normal priors 

with means of 0 and standard deviations of 1.  

 

Baseline group differences between completing (n=50) and withdrawing (n=19) patients were 

assessed by t-tests for independent samples. In post-hoc analyses testing for specific effects of 

fatigue on study adherence, 

≥ 5 ≥ 4 on FSS. Since 

both 5 and 4 are commonly used cutoff values in the literature, we chose to report both for 

transparency. 

 

Cogmed individual training gain was quantified following the approach by Kolskaar et al. 

(2020), estimating the effect of repeated training by running linear models with task 

performance as dependent variable, and session number as independent variable. The models 

were estimated separately for each Cogmed subtask, yielding one beta-estimate (slope) per 

task for each individual, reflecting individual performance change across sessions/time. 

Testing for multivariate outliers, we used the mvoutliers package in R and the aq.plot function 

(Filzmoser & Gschwandtner, 2018). The subtasks “hidden objects” and “digits” displayed a 

high number of outliers relative to the remaining tests and were discarded from further 

analyses. Association between fatigue and training gain were then assessed by estimating 

linear models for each task, using the estimated beta slope as dependent variable, and baseline 

FSS score, age and sex as independent variables. To test whether effects were specific for 

fatigue or common to depression, we re-ran the same models with PHQ as independent 

variable instead of FSS.  

 



As an additional test of baseline associations between fatigue/depression and measures of 

cognitive functions at baseline, we estimated Bayes factors for correlations between score on 

FSS or PHQ, neuropsychological test performance (MoCA, WASI, CVLT, Stroop), and a 

subjective measure of cognitive failures (CFQ).  

 

To get an estimate of the time-dependent variability of the individual FSS and PHQ items,  

we estimated the coefficient of variation value (CV) for each item on FSS and PHQ across 

time point 1 to 5, resulting in one CV value per item for each person. Because FSS and PHQ 

have different scale properties, direct comparisons of CV values across scales are not 

meaningful, but the CV value still offers relevant information about the relative variability of 

individual items within each scale.  

 

To explore the centrality of individual symptoms and symptom-level associations, we 

estimated networks based on Spearman’s rank order correlation matrixes using the qgraph 

package in R (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012). Two baseline 

(n = 74) networks were estimated: one with FSS sum score and individual PHQ items 

(investigating associations between specific depressive symptoms and general fatigue 

severity), and one with all individual items from both scales. The sum-FSS network was 

EBICglasso regularized (tuning parameter 0.15), while the all-item network was based on full 

correlations without regularization, because of stability issues due to the high number of 

parameters relative to sample size. PHQ item # 9 displayed a highly skewed distribution 

(mean = 0.08) and was thus discarded from all-item networks. All-item networks were then 

estimated for all time points (1-5) and plotted according to their loadings principal component 

analyses (PCA) component loadings, enabling visual comparison of network structure across 

time. In the temporal networks, only completing patients (n=50) were included. Of note, the 

low number of observations implies that this (PCA)-feature of node-placement should be 

regarded an exploratory means of visualizing the data, and does not allow for conclusions on 

dimensionality. Network stability was evaluated using case-dropping bootstrap in the bootnet 

package (Epskamp, Borsboom, & Fried, 2018). Stability was acceptable for the regularized 

network and good for the unregularized networks, but see methods and results section Paper 

III for details.  

 

To evaluate the relative centrality of the included nodes (items) in the network, we estimated 

strength centrality, which represents the sum of all edge weights directly connected to a 



particular node (Bringmann et al., 2019). Strength is thus a coarse, but stable, measure of 

centrality (Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016) and it the most commonly 

evaluated centrality measure in networks on psychological constructs (Malgaroli, Calderon, & 

Bonanno, 2021). To obtain an estimate of the individual nodes’ aggregated centrality across 

time, we followed the approach by Malgaroli et al. (2021), ranking each node (from 1-17) 

according to strength centrality at each time point, before calculating across-time mean of 

these temporal rankings. We used Spearman correlations to test whether item centrality (mean 

ranking across time) was associated with symptom severity (mean item score across time).  



Post-stroke fatigue is prevalent among stroke patients, but its mechanisms are poorly 

understood. Many patients with post-stroke fatigue experience cognitive difficulties, but 

studies aiming to identify cognitive correlates of post-stroke fatigue have been largely 

inconclusive.  

 

With the aim of characterizing the relationship between subjective fatigue and attentional 

function, we collected behavioral data using ANT and self-reported fatigue scores using FSS 

from 53 stroke patients. In order to evaluate the utility and added value of computational 

modeling for delineating specific underpinnings of RT distributions, we fitted a hierarchical 

drift diffusion model (hDDM) to the ANT data.  

 

Results revealed a relationship between fatigue and RT distributions. Specifically, there was a 

positive interaction between FSS score and elapsed time on RT. Group analyses suggested 

that patients without post-stroke fatigue increased speed during the course of the session, 

while patients with post-stroke fatigue did not. In line with the conventional analyses based 

on observed RT, the best fitting hDD model identified an interaction between elapsed time 

and fatigue on non-decision time, suggesting an increase in time needed for stimulus encoding 

and response execution rather than cognitive information processing and evidence 

accumulation.  

 



The results demonstrate the significance of considering the sustained nature of effort when 

defining the cognitive phenotype of post-stroke fatigue, intuitively indicating that the 

cognitive phenotype of fatigue entails an increased vulnerability to sustained effort, and 

suggest that the use of computational approaches offers a further characterization of specific 

processes underlying behavioral differences. 

Stroke patients commonly suffer from post-stroke fatigue. Despite a general consensus that 

brain perturbations constitute a precipitating event in the multifactorial etiology of post-stroke 

fatigue, the specific predictive value of conventional lesion characteristics such as size and 

localization remains unclear.  

 

The current study represents a novel approach to assess the neural correlates of post-stroke 

fatigue in chronic stroke patients. While previous research has focused primarily on lesion 

location or size, with mixed or inconclusive results, we targeted the extended structural 

network implicated by the lesion, and evaluated the added explanatory value of a structural 

disconnectivity approach with regards to the brain correlates of post-stroke fatigue.  

 

To this end, we estimated individual structural brain disconnectome maps in 84 stroke 

survivors in the chronic phase (≥3 months post stroke) using information about lesion location 

and normative white matter pathways obtained from 170 healthy individuals. Post-stroke 

fatigue was measured by the FSS. Voxel wise analyses using non-parametric permutation-

based inference were conducted on disconnectome maps to estimate regional effects of 

disconnectivity. Associations between post-stroke fatigue and global disconnectivity and 

clinical lesion characteristics were tested by linear models, and we estimated Bayes factor to 

quantify the evidence for the null and alternative hypotheses, respectively.  

 

The results revealed no significant associations between post-stroke fatigue and 

disconnectome measures or lesion characteristics, with moderate evidence in favor of the null 

hypothesis. These results suggest that symptoms of post-stroke fatigue among chronic stroke 

patients are not simply explained by lesion characteristics or the extent and distribution of 

structural brain disconnectome, and are discussed in light of methodological considerations. 



Fatigue and emotional distress rank high among self-reported unmet needs in stroke 

survivors. Currently, few treatment options exist for post stroke fatigue, a condition 

frequently associated with depression. Non-invasive brain stimulation techniques such as 

transcranial direct current stimulation (tDCS) have shown promise in alleviating fatigue and 

depression in other patient populations, but the acceptability and effects of repeated 

stimulation for chronic phase stroke survivors are not established.  

 

Here, we used a randomized sham-controlled design to evaluate the added effect of tDCS 

combined with computerized cognitive training to alleviate symptoms of fatigue and 

depression. 77 patients were enrolled at baseline (mean time since stroke = 26 months) and 54 

patients completed the intervention. Self-report measures of fatigue and depression were 

collected at five consecutive timepoints, spanning a period of two months.  

 

While fatigue and depression severity were reduced during the course of the intervention, 

Bayesian analyses provided evidence for no added effect of tDCS. Lower baseline symptoms 

of fatigue and depression were associated with higher improvement rate in select tasks, and 

study withdrawal was higher in patients with more severe fatigue and younger age. Time-

resolved analyses of individual symptoms by a network-approach suggested overall higher 

centrality of fatigue symptoms (except item 1 and 2) than depression symptoms.  

 

In conclusion, the results reveal no effect of tDCS on fatigue or depression, but support the 

notion of fatigue as a significant stroke sequela with possible implications for treatment 

adherence and response.   

 

 

 

 

 



 

Linking subjective fatigue, mental fatigability and attentional impairment by tracking 

sustained performance in the ANT  

An accurate characterization of the different aspects of fatigue may elaborate our 

understanding and inform selection and development of tailored treatments (Manjaly et al., 

2019). 





post-stroke fatigue (Kutlubaev et al., 2013; Naess & 

Nyland, 2013; Schepers et al., 2006; van Eijsden et al., 2012)

post-stroke fatigue 

 

Among the range of concomitant experiences associated with  post-stroke fatigue, depression 

is the most consistently reported (Ponchel et al., 2015; Wu et al., 2014). Despite the close 

association, it is now generally recognized that post-stroke fatigue can manifest independently 

of depression (Schepers et al., 2006; van der Werf, van den Broek, Anten, & Bleijenberg, 



2001). This is supported by the results we report in Paper III, where all patients scoring above 

the clinical cutoff for depression reported fatigue, while only a third of the patients 

experiencing moderate or severe fatigue reported depressive symptoms above cut off. It has 

been suggested that the overlapping symptoms together with the disparity of prevalence, may 

hint of both common origins as well as independent mediators of fatigue (De Doncker et al., 

2018). 

increased vulnerability to sustained effort in cognitively 

demanding attentional task. 

  

Studies addressing the relationship between post-stroke fatigue and depression across time 

have primarily assessed patients with longer time intervals (e.g. three or six months), using 

fatigue scale sum scores or binary diagnosis status as outcome measures (Douven et al., 2017; 

F. Duncan et al., 2015; Kjeverud et al., 2020). While sum scores provides relevant, clinical 

information about overall symptom load and prevalence, it does not offer insight into which 

symptoms are more pronounced or how specific symptoms covary. It is conceivable that 

certain depressive symptoms are more strongly related to fatigue severity, and similarly, that 

certain aspects of fatigue are more associated with overall depression.

Taken together, this supports the intuitive 

notion that a sole focus on total sum scores, attaching equal weight to all symptoms, may not 

convey the full picture when investigating the relationship between fatigue and depression.  

 



The network analyses framework offers a tool to move beyond these problems, 

conceptualizing diagnoses as interconnected networks of symptoms and their interactions 

(Boschloo et al., 2015; Malgaroli et al., 2021). Networks are increasingly used to address the 

heterogeneity of various conditions, while also probing etiological underpinnings (Borsboom 

& Cramer, 2013), as illustrated by the notion that highly influential symptoms and related 

edges may have a larger impact on disease trajectories and outcome (Hofmann et al., 2016). 

In addition, network approaches appear well suited to deal with comorbidities and 

overlapping clinical conditions, because rather than aiming to remove or disentangle 

nonspecific symptoms occurring in multiple diagnoses, such symptoms are conceptualized as 

important bridges that will affect other symptoms in the network if activated (Hofmann et al., 

2016). Thus, investigating repeated measures of post-stroke fatigue and depressive symptom 

associations by a network approach, may further inform hypotheses about the putative 

reciprocal relationship between the two conditions, with possible implications for treatment 

approach.  

 

On this backdrop, we investigated the relationship between repeated measures of self-reported 

individual symptoms of fatigue and depression using a network-based approach. Results are 

presented in Paper III, and suggested higher centrality of fatigue items then depression items 

(with exception of FSS item 1 and 2). As a means of visualizing change and stability in 

network structure and item associations across time, network nodes from the temporal 

networks were plotted according to their PCA loadings. It should be noted that the sample 

size is too small to allow for explicit interpretation of PCA results, so this analyses feature 

should be considered explorative. However, strength centrality measures for network 

estimated on full Spearman correlations demonstrated acceptable stability, and the centrality 

plots thus provide a reliable indication of centrality for the individual items.  

 

Overall, results suggested high centrality of FSS items relative to PHQ items. The item 

displaying highest ranked centrality across time was FSS item #9 (“

”). Although the applied design does not enable causal inference, 

the overall relative importance of fatigue items suggested by the network estimations may be 

seen as support to the hypothesis that fatigue after stroke exacerbates the risk of depression 

(Ormstad & Eilertsen, 2015). Following this line of interpretation, the high centrality of FSS 

item #9 may indicate that fatigue restraining social and professional activities is particularly 



stressful and predisposes for increases in respective symptoms. The relevance of this 

hypothesis could be evaluated in longitudinal studies designed to disentangle the causal 

relationship between symptoms. Provided that FSS item #9 has significant impact on the 

symptom network, interventions aimed at limiting the negative impact of fatigue on the social 

and professional domain could potentially alleviate both fatigue- and depressive symptoms.  

In addition, FSS item #9 was identified among the most stable items across time points (as 

reflected by low coefficient of variation value relative to other FSS items), possibly reflecting 

that the impact of fatigue in terms of social and professional obligations is a more stable trait 

than e.g. fatigue in relation to exercise.  

 

Structural disconnectivity mapping of post-stroke fatigue  

In Paper II, we adopted a novel approach to the study of the lesion-related neural 

underpinnings of fatigue in chronic stroke patients. Results from permutation testing revealed 

no association between fatigue and individual disconnectome maps, reflecting the structural, 

distal effects of focal lesions, nor between fatigue and binarized lesion maps, reflecting 

volume and location. Results from the same analyses conducted with PHQ scores mirrored 

results from the fatigue models, with no significant effects identified for depression. 

Moreover, results from linear models including conventional clinical stroke characteristics 

such as TOAST, lesion location (coarsely defined as either left/right hemisphere, both 

hemispheres or cerebellum/brainstem) or months since stroke did not support an association 

with fatigue or depression. Importantly, Bayesian comparisons of models with stroke 

characteristics (including global disconnectivity measures) versus null models revealed that 

all models with stroke characteristics provided moderate support of no lesion-related effects 

on fatigue and depression.  

 





Lastly and importantly, our approach did not allow for inference about functional 

(dis)connectivity. Aberrant functional connectivity has been implicated in fatigue in relation 

to TBI (Nordin et al., 2016; Ramage, Tate, New, Lewis, & Robin, 2019; Schönberger et al., 

2017) and multiple sclerosis (Høgestøl et al., 2019). Investigating whether the present results 

(no association revealed between subjective fatigue and structural brain connectivity) 

replicate with functional disconnectivity measures could thus be a relevant prospect for future 

studies. Moreover, 

functional connectivity measures could 

also be integrated with the approach applied in Paper I, to explore whether the fatigue-related 

differences in response time distributions (ANT-task) manifest in brain activation.  

tDCS combined with computerized cognitive training: No added effect of tDCS  

Results from the intervention study presented in Paper III revealed no added beneficial effect 

of repeated tDCS with regards to symptoms of fatigue or depression. Although sample size 

was moderate, the Bayes Factor evidence for the null hypothesis provided strong evidence 

(BF01 >10 ) for no tDCS effect (no interaction between time and experimental condition on 

symptom severity). These results thus contrast previously referred tDCS studies on patients 

with MS, reporting beneficial effects of tDCS stimulation on fatigue (Chalah et al., 2020; 

Charvet et al., 2018; Ferrucci et al., 2014), and the recent study on tDCS for fatigue in stroke 

patients (De Doncker, Ondobaka, et al., 2021).  



Saiote et al. (2014), reporting 

 
 





Stroke patients 

frequently take a range of medications, of which many can cause fatigue. Current data on 

medication use was based on self-report only, resulting in incomplete reports for several 

patients. In addition, the combination of a moderate sample size and individual medication 

plans with regards to type of medication dosage and regime implies that a meaningful 

synthesizing of medication protocols and associated statistical tests on these data would not 

be very reliable. Medication was therefore not included in the analyses. Paper II explicitly 

states that medication status constitutes an important possible confounder.  

 



Regarding the design and extent of the intervention, the applied setup with 

trainings and six stimulations does not allow for direct comparison with other studies 

using different protocols. There are currently little consensus in the literature on how to 

implement tDCS interventions in order to optimize effects (Marquez, van Vliet, McElduff, 

Lagopoulos, & Parsons, 2015), and on a general note concerning stroke rehabilitation, more 

(in terms of intensity or frequency) is not always better (Cassidy & Cramer, 2017). While 

some studies suggest increased effect of stimulation with higher amplitude or higher number 

of sessions (Charvet et al., 2018), we aimed to minimize the chances of adverse effects by 

limiting stimulation to 1 mA. Related to number of sessions, the choice of six tDCS sessions 

was partly motivated by feasibility concerns, as increasing the number of sessions would 

significantly prolong the study period and require substantially more resources in terms of 

research staff and effort from participants. A related concern was limiting the scope of the 

intervention to avoid patient drop-out because participation got too demanding or time 

consuming. Moreover, the current setup with 17 training sessions administered over 

approximately three weeks was also in part motivated by the fact that mean hospitalization 

time in Norwegian rehabilitation hospitals (spesialisthelsetjenesten) ranges between 8 and 22 

days, depending on the conditions’ complexity and institution (public vs private) (Myrli, 

2020). An intervention length of around three weeks might thus increase the 

applicability/transfer value to clinical practice.  

 

Measurement/operationalization of fatigue 

Lack of consistency in measurement and diagnostics of represents a major 

challenge in the field (Skogestad et al., 2019). 

The highly subjective nature of fatigue, and the fact that it is common to a range of illnesses 

and conditions while simultaneously constituting a normal reaction to stress and strain, 

implicates that it is difficult to operationalize and disentangle specific types of fatigue, 



included. Currently, the most frequently used measure of is 

the FSS, which is also the measure adopted in the present work. While the FSS has several 

previously described beneficial properties, whereof the widespread use of the scale is one of 

them, it is not developed for specifically. Moreover, FSS primarily taps 

into fatigue interference (six items concern fatigue interference, while the remaining three 

items concerns general fatigue severity), despite its common application as a one-dimensional 

measure of fatigue severity. This implies that there are several dimensions of the 

experience not being captured by the FSS, such as diurnal variations (Birgitta 

Johansson & Rönnbäck, 2012), recovery time and management strategies (Skogestad et al., 

2019), and it can thus be considered a rather coarse measure of a complex phenomenon. A 

recent review on measures used to quantify revealed low content overlap 

between the various scales (Skogestad et al., 2019), exacerbating challenges with 

generalizability and synthesizing of results across studies. As such, development of stroke-

specific fatigue measures and greater consensus on definitions and measurements appears an 

important step in developing the field further, and future studies could benefit from including 

a more detailed characterization of the fatigue experience.    

 

On a final note regarding the FSS, item #1 an #2 are sometimes disregarded in favor of an 

abbreviated version (FSS7), as studies have revealed reduced reliability and discriminative 

properties when including these specific items (A. Zedlitz et al., 2016) as well as impaired 

potential to detect change across time (Lerdal & Kottorp, 2011). While such observations 

correspond to the results presented in Paper III, where #1 and #2 were found to have overall 

low centrality as compared to the respective FSS items, the full FSS scale was nonetheless 

used in the papers comprising this thesis in an attempt to cover a more comprehensive part of 

the fatigue spectrum and comply with the most commonly used application. Moreover, the 

inclusion of other, domain-specific measures of fatigue such as e.g. the mental fatigue scale 

(MFS; Birgitta Johansson & Ronnback, 2014) could provide a richer description of the 

phenomenon, and reveal details of the relationship between fatigue and behavioral measures 

(such as the ANT) not detected by FSS. 

 

Lack of prospective registration 

Guidelines for preregistration of clinical trials were developed following the WHO’s Joint 



statement on public disclosure of results from clinical trials, and joined by the Research 

Council of Norway in 2017 (RCN, 2020). Preregistration is an important tool for reducing 

bias and facilitate transparency in clinical research involving human subjects, and most 

scientific journals now require trial ID for publication. When the StrokeMRI project was 

initiated in 2012-2013, preregistration was both intended and initialized, but due to practical 

circumstances the registration was unfortunately never completed. While the study is now 

retrospectively registered, preregistration prior to data collection should be a priority for 

future research as it fulfills a range of purposes and benefits both the research community and 

patients.  

The overarching aim of this thesis has been to contribute to a better understanding 

fatigue in the chronic phase after stroke
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Abstract
Post-stroke fatigue (PSF) is prevalent among stroke patients, but its mechanisms are 

poorly understood. Many patients with PSF experience cognitive difficulties, but 

studies aiming to identify cognitive correlates of PSF have been largely inconclusive. 

With the aim of characterizing the relationship between subjective fatigue and atten-

tional function, we collected behavioral data using the attention network test (ANT) 

and self-reported fatigue scores using the fatigue severity scale (FSS) from 53 stroke 

patients. In order to evaluate the utility and added value of computational modeling 

for delineating specific underpinnings of response time (RT) distributions, we fitted 

a hierarchical drift diffusion model (hDDM) to the ANT data. Results revealed a 

relationship between fatigue and RT distributions. Specifically, there was a positive 

interaction between FSS score and elapsed time on RT. Group analyses suggested 

that patients without PSF increased speed during the course of the session, while pa-

tients with PSF did not. In line with the conventional analyses based on observed RT, 

the best fitting hDD model identified an interaction between elapsed time and fatigue 

on non-decision time, suggesting an increase in time needed for stimulus encoding 

and response execution rather than cognitive information processing and evidence 

accumulation. These novel results demonstrate the significance of considering the 

sustained nature of effort when defining the cognitive phenotype of PSF, intuitively 

indicating that the cognitive phenotype of fatigue entails an increased vulnerability to 

sustained effort, and suggest that the use of computational approaches offers a further 

characterization of specific processes underlying behavioral differences.

Edited by Susan Rossell   
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1 |  INTRODUCTION

Post-stroke fatigue (PSF) is a common complaint among stroke 

survivors, with an estimated prevalence ranging between 25% 

and 85% (Cumming, Packer, Kramer, & English, 2016). The 

symptom burden is often pervasive and persistent (Duncan, 

Wu, & Mead,  2012; Schepers, Visser-Meily, Ketelaar, & 

Lindeman,  2006; van der Werf, van den Broek, Anten, & 

Bleijenberg, 2001) and associated with poorer outcome 

after rehabilitation, higher mortality (Michael, 2002; Naess, 

Lunde, Brogger, & Waje-Andreassen,  2012) and increased 

probability of institutionalization (Glader, Stegmayr, & 

Asplund,  2002). Post-stroke fatigue has been defined as a 

highly prioritized future research topic by stroke survivors, 

family members and healthcare professionals (Pollock, St 

George, Fenton, & Firkins, 2012).

Although a universally accepted definition is lacking 

(Deluca, 2005), PSF is generally conceptualized as the feel-

ing of debilitating tiredness and loss of energy (Stulemeijer, 

Fasotti, & Bleijenberg,  2005). Moreover, many patients 

suffering from PSF experience cognitive difficulties such 

as problems concentrating (Johansson & Rönnbäck,  2012; 

Koopman et  al.,  2009) and report increased fatigue when 

engaging in cognitively demanding activities over time, 

often referred to as mental or cognitive fatigue (Johansson 

& Ronnback,  2014). To date, identifying robust and ob-

jective cognitive correlates of PSF has proven difficult, 

and the literature has failed to confirm or refute an associ-

ation between self-reported fatigue and cognitive function 

(Lagogianni, Thomas, & Lincoln, 2018). However, this may 

partly be due to the use of multifactorial neuropsychologi-

cal tests, with varying or low cognitive specificity and which 

do not account for the temporal aspects during the course 

of a test session (Holtzer, Shuman, Mahoney, Lipton, & 

Verghese, 2010). In line with this, many of the studies failing 

to identify an association use rather general measures of cog-

nitive function such as the Mini-Mental State Examination 

(MMSE; (Folstein, Folstein, & McHugh, 1975); van Eijsden, 

van de Port, Visser-Meily, & Kwakkel, 2012; Kutlubaev 

et al., 2013) and a recent review on factors associated with 

PSF concluded that although the evidence does not support a 

link between general cognitive function and PSF, there may 

be an association between attentional functioning, processing 

speed and fatigue (Pihlaja, Uimonen, Mustanoja, Tatlisumak, 

& Poutiainen,  2014; Ponchel, Bombois, Bordet, & Hénon, 

2015).

With the assumption that a critical characteristic of cog-

nitive fatigue is the failure to maintain or sustain cognitive 

effort over time, monitoring performance over time should 

increase sensitivity to cognitive manifestations of fatigue 

(Holtzer et al., 2010) and would also be closer in line with 

the conceptual definition of cognitive fatigue as “decreased 

performance during acute but sustained mental effort” 

(Deluca,  2005). Accordingly, the attentional network task 

(ANT; (Fan, McCandliss, Sommer, Raz, & Posner,  2002)) 

appears to be appropriate for examining the relationship be-

tween self-reported fatigue and attentional function over time 

in stroke patients. ANT combines a flanker test (Eriksen & 

Eriksen, 1974), and a cued reaction time task (Posner, 1980) 

in a computerized behavioral paradigm requiring sustained 

attention over time. The full version lasts for about 20 min, 

where accuracy and response times (RT) are tracked over 

time in 288 trials with varying cognitive demands. The ANT 

allows for estimation of individual-level attention network 

scores such as the alerting, orienting and executive compo-

nents, defined as relative differences in average RTs between 

different flanker and cue conditions (Fan et al., 2002).

ANT has been applied in studies of fatigue and attention 

in other neurological patient groups, such as Parkinson's dis-

ease, where fatigue was associated with reduced efficiency 

in the executive attentional network (Pauletti et  al.,  2017) 

and chronic fatigue syndrome, associated with higher RT 

in the most cognitively demanding condition (Togo, Lange, 

Natelson, & Quigley, 2015).

Although representing a widely applied and valuable 

contribution to theories on attentional function, analytical 

approaches based on mean RTs are vulnerable to trade-

offs between speed and accuracy which are not accounted 

for in the model (Miller & Ulrich,  2013), and they do 

not provide information about which underlying mecha-

nisms give rise to observed RT differences. In contrast, 

computational approaches such as the drift diffusion 

models (DDM; (Ratcliff,  1978)) simultaneously model 

the full distribution of RTs and accuracies to estimate 

parameters reflecting specific theoretical cognitive con-

stituents of the decision process. DDMs are frequently 
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applied to simple and speeded decision-making tasks 

(Ratcliff & McKoon,  2008; Ratcliff, Smith, Brown, & 

McKoon, 2016), offering both a theoretical framework to 

understand basic cognitive processes, and a psychomet-

ric tool to translate behavioral data into subcomponents of 

cognitive processing (Ratcliff & McKoon, 2008). DDMs 

conceptualize decision-making as a noisy process where 

information is accumulated over time, continuing until a 

decision threshold is reached and a response is initiated 

(Ratcliff & McKoon,  2008). Four parameters are postu-

lated in the original model (Ratcliff, 1978): drift rate (v), 

describing the rate or the speed of information accumula-

tion, reflecting processing efficiency; non-decision time 

(t) representing time needed for stimulus encoding and 

response execution; decision boundary separation (a) in-

dicating how much evidence is needed before a decision is 

made; and the starting point (z), reflecting any bias toward 

one of the two responses (Ratcliff & McKoon, 2008). The 

parameters have been validated in various experimental 

paradigms (Lerche & Voss,  2017; Voss, Rothermund, & 

Voss, 2004).

Applying computational models such as the DDM in 

clinical research may allow for a dissection of specific cog-

nitive processes underlying observed group and individual 

differences in RT patterns. For example, assessing young 

and older subjects with a signal detection task, Ratcliff, 

Thapar, and McKoon (2001) found that the prolonged RTs 

often observed in older individuals were not explained by 

slower drift rates but rather longer non-decision times and 

higher decision thresholds, which provided a relevant ad-

justment to the long-held notion of a general slowing in cog-

nitive aging (Brinley, 1965; Salthouse, 1985). In the context 

of stroke patients and PSF, such computational approaches 

may provide a valuable, supplementary tool to expand our 

understanding of cognitive function beyond conventional 

methods of neuropsychological assessment and statistical 

analysis.

In sum, a large number of stroke patients suffer from PSF, 

and many experience cognitive difficulties and cognitive fa-

tigue. Attentional deficits may be particularly involved. The 

ANT paradigm allows us to determine whether and how 

subjective fatigue manifests cognitively during prolonged 

effort, and assess associations between subjective fatigue 

and efficiency of the attentional networks. With the aim of 

characterizing the relationship between subjective fatigue 

and attentional function, we collected behavioral data using 

the ANT and self-reported symptoms of fatigue using the fa-

tigue severity scale (FSS; (Krupp, LaRocca, Muir-Nash, & 

Steinberg, 1989) from 53 chronic stroke patients (>6 months 

since hospital admission). We hypothesized that self-reported 

symptoms of fatigue as measured by the fatigue severity scale 

(FSS; (Krupp et al., 1989) would interact with time on task, 

manifesting in an increase in RT for patients with high fatigue 

levels relative to patients with low levels of fatigue. Further, 

we expected to find a negative association between fatigue 

and executive network functioning, in line with previously 

mentioned literature. Main analyses were conducted with 

FSS score as a continuous predictor, and follow-up sensitivity 

analyses were conducted with PSF group (high/low PSF) as a 

factor predictor, or separately for patients with high/low PSF 

to assess manifestation of group differences. Lastly, evaluat-

ing whether DDM modeling can elaborate our understanding 

further by characterizing the specific cognitive processes un-

derlying observed differences in RT patterns, we performed 

an exploratory analysis where we fitted a hDDM to the ANT 

behavioral data and tested for associations between the model 

parameters (drift rate (v), non-decision time (t) and boundary 

separation (a)) and fatigue (FSS) score. To account for the 

temporal aspects of task performance, we specifically tested 

for interactions between FSS, trial number and performance. 

In line with our first hypothesis, we hypothesized that any 

associations between subjective fatigue and model param-

eters will interact with time, with increasing associations 

between fatigue and model parameters with more sustained 

performance.

2 |  MATERIALS AND METHODS

2.1 | Sample

Stroke patients who had been previously admitted with acute 

stroke to the Stroke Unit, Oslo University Hospital, or the 

Geriatric Department, Diakonhjemmet Hospital, between 

2013 and 2016, were invited by letter. Patients had to be in 

a chronic phase, defined as minimum 6 months post-stroke, 

with no other severe neurological, psychiatric or neurodevel-

opmental conditions. Among the approximately 900 invita-

tion letters, 250 patients responded to decline or obtain more 

information. Seventy-seven were interested and eligible for 

inclusion and provided informed consent. Nineteen of the 77 

patients withdrew during the course of the study and before 

the data for the current paper were collected. Four additional 

patients were excluded because of medical conditions. One 

patient was excluded due to behavioral criteria for the ANT 

(see below), resulting in a final sample of n  =  53 stroke 

patients.

Table  1 summarizes relevant demographic and clinical 

information of the patient group, and Figure 1 shows the age 

distribution. This work was part of an intervention study on 

cognitive rehabilitation after stroke with a double baseline, 

randomized controlled design (see (Kolskaar et al., 2019) for 

more details, including a description of overall study design). 

All data for the current study were collected from the baseline 

assessments prior to the intervention, starting 6–45 months 

after the acute stroke.
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Mini-Mental Status Examination scores < 24 may indi-

cate cognitive impairment and warrant further examination 

(Strobel & Engedal, 2008). One patient scored below 24, but 

further neuropsychological assessments done by a clinical 

psychologist indicated that cognitive function was sufficient 

for participation and that the inclusion criteria were not vio-

lated. The study was approved by the Regional Committee for 

Medical and Health Research Ethics, south-east Norway. All 

participants provided their written informed consent prior to 

inclusion.

2.2 | FSS

Fatigue was measured by the FSS (Krupp et  al.,  1989), 

which is a one-dimensional, 9-item self-report scale, and 

one of the most frequently used measures to assess fatigue 

after stroke and other neurological conditions (Cumming 

et al., 2016; Lerdal et al., 2009; Whitehead, 2009). The 

nine items are statements about impact of fatigue on dif-

ferent areas of daily life, and responses are given on a 

nine-point Likert scale reflecting degree of agreement 

(minimum mean score 1, maximum mean score 7). A re-

view of 22 fatigue measures concluded that FSS was 

among the three scales that demonstrated good psychomet-

ric properties, as well as sensitivity to change in fatigue 

over time (Whitehead, 2009). Figure 1 shows the distribu-

tion of mean FSS scores by sex. Average FSS score was 

3.53 (SD = 1.46), and 35% of the patients reported mean 

FSS > 4, which is a commonly adapted threshold for clini-

cal fatigue in stroke studies (Krupp et al., 1989; Schepers 

et al., 2006; Tang et al., 2010). Table S1 shows the mean 

scores per item for patients with- and without PSF accord-

ing to this cutoff value, offering a more detailed characteri-

zation of fatigue complaints in the sample. The PSF group 

scored significantly higher on all items.

2.3 | PHQ-9

Depressive symptoms were measured by the self-report scale 

Patient Health Questionnaire (PHQ-9; Spitzer, Kroenke, 

Williams, & Patient Health Questionnaire Primary Care 

Study, 1999). PHQ-9 consists of nine items based on the 

DSM-IV criteria for depression. These are scored 0–3, pro-

viding severity scores ranging from 0 to 27. Briefly, sum 

scores of 5, 10, 15 and 20 represent mild, moderate, moder-

ately severe and severe symptom levels. Average PHQ score 

in the patient sample was 4.79.

T A B L E  1  Sample characteristics

Current demographic and 
clinical information Mean SD Min Max

Age 69.00 7.43 47 81

Males/females (count) 38/15 – – –

Education in years 14.56 3.65 9 30

FSS 3.53 1.46 1.11 6.77

PHQ-9 4.79 3.61 1 14

MMSE 28.22 1.68 22 30

Stroke-related information

NIHSS at hospital 

discharge

1.14 1.23 0 6

Months since stroke 25.59 9.40 6.00 45.00

TOAST classification for 

ischemic strokea 

Large artery artherosclerosis (19)

Small vessel occlusion (18)

Cardioembolism (6)

Other known/not known (10)

Stroke location Right Hemisphere (20)

Left Hemisphere (18)

Brainstem/cerebellum (7)

Both Hemispheres (5)

Not specified (3)

aAll but one patient suffered ischemic stroke. 

F I G U R E  1  Distribution of mean FSS 

scores by gender and distribution of age by 

gender. Red line denotes the mean [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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2.4 | Attention network test

A conventional version of the ANT was applied, as previ-

ously described (Fan et al., 2002). In the ANT, accuracy and 

response times (RT) are tracked over time in trials with vary-

ing cognitive demands in a computerized paradigm. By com-

bining a flanker test (Eriksen & Eriksen, 1974), and a cued 

reaction time task (Posner, 1980), the ANT estimates network 

scores as relative differences in mean RTs between different 

flanker and cue conditions (Fan et al., 2002). Figure 2 depicts 

the details of the task.

Briefly, participants were instructed to direct their gaze at 

fixation cross that was presented with a duration of 400, 800, 

1,200 or 1,600 milliseconds. Immediately following the fix-

ation cross, one out of four cue conditions would appear for 

100 milliseconds; no cue, a center cue (temporal cue only), a 

double cue (temporal cue only), or a spatial cue (temporal and 

spatial cue), alerting the attention toward the stimulus about 

to appear. Then, five small arrows or lines were presented 

for 1,700 milliseconds, and the task was to, as quickly and 

correctly as possible, decide whether the middle arrow (target 

arrow) was pointed left or right. Participants responded by 

pressing the left or the right mouse button. The four flanker 

arrows/lines surrounding the middle, target arrow could point 

in either the same direction (congruent flankers) or the op-

posite (incongruent flankers) direction as the middle, target 

arrow, or they could simply be lines without direction, con-

stituting neutral flankers. The flanker arrows/lines represent 

the different stimulus conditions associated with different 

cognitive demands, where incongruent flankers typically re-

sult in the highest error rates and RTs (Westlye, Grydeland, 

Walhovd, & Fjell, 2010).

Starting with a practice run of 24 trials, the full test con-

sisted of 288 trials, divided into three rounds (96 trials per 

round), lasting about 20 min. Participants were instructed to 

take a short break between rounds. For setting up the experi-

ment and collecting responses, E-prime software (Psychology 

Software Tools, Pittsburg, PA) was applied.

2.5 | Statistical analyses

Statistical analyses were performed using R version 3.4.0 

(2017-04-21; R Core Team, 2017) and the python toolbox 

HDDM (Wiecki, Sofer, & Frank, 2013). Figures were pro-

duced using the ggplot2 package (Wickham, 2009).

2.5.1 | Outlier exclusion and data cleaning

Trials with RT < 200 ms, thought to reflect fast guesses, were 

removed from the analysis, in line with previous ANT re-

ports (Chang, Pesce, Chiang, Kuo, & Fong, 2015; Westlye 

et al., 2010). 2% of the responses were removed due to this 

criterion. Participants having more than 50% incorrect re-

sponses within any of the flanker conditions were discarded. 

One participant was removed due to this criterion.

2.5.2 | Associations between FSS, 
time and RT

In order to characterize the relationship between subjec-

tive fatigue (FSS_z), time (trial 1–288) and RT, we ap-

plied linear mixed-effects models using the lme function 

from the nlme package in R (Pinheiro, Bates, DebRoy, 

& Sarkar, 2013). Following the recommendations from 

Barr, Levy, Scheepers, and Tily (2013), we started with 

a maximal model, including by-subject random slopes for 

FSS_z  *  time at the subject level, in addition to random 

F I G U R E  2  A schematic representation 

of the ANT cue and flanker conditions
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intercepts, and all fixed effects or covariates of potential 

interest. These were z-normalized FSS scores × time, age, 

sex, flanker condition, stroke topography (left or right hem-

isphere, brainstem/cerebellum), lesion volume (defined 

by number of voxels affected), TOAST classification for 

stroke etiology (large artery artherosclerosis, small vessel 

occlusion, cardioembolism or “other known or unknown 

factors”), NIHSS scores and z-normalized PHQ scores. 

Non-converging models were dealt with by sequentially 

simplifying the fixed effect structure until reaching con-

vergence. The full model did not converge, and we dropped 

NIHSS, on the basis that the variability in NIHSS scores 

was small (mean = 11.4, median = 1, SD = 1.23), reflect-

ing the fairly highly functioning patient sample. Next, we 

removed TOAST classification of stroke etiology, due to 

a large number of cases in the “not specified/unknown” 

category, and then excluded PHQ scores because of high 

correlations with FSS.

The most complex converging model was specified as fol-

lows: lme (RT ~ FSS_z * time + age + sex + flanker + le-

sion volume + lesion location, random = 1 + FSS_z * time|id, 

data = data, method = “REML”). As a formal test of whether 

random slope effects were warranted, we used the ANOVA 

function in R to compare model fit between this model and 

a similar model without a random slope term, and results 

indicated that random slopes should be included. To further 

refine the model, we tested whether removing independent 

variables that did not provide predictive value improved 

model fit. Model fit improved marginally by removing lesion 

volume and lesion location. As an indication of FSS effect 

size, we compared the final model with a model that did not 

include FSS score. Model formulae and notes on model se-

lection are provided in Table S2.

Assessing whether PSF status (PSF defined by mean FSS 

score > 4, in line with common practice (Krupp et al., 1989; 

Schepers et al., 2006)) interacted with the effect of time/trial 

number, we reran the above-specified regression model with 

PSF status included in the model instead of FSS score as a 

continuous measure. Additionally, to test whether effects 

varied between flanker conditions, we estimated the full re-

gression model separately for each flanker condition. In these 

follow-up models, random slopes were not estimated in order 

to secure convergence. To explore whether the relationship 

between time, fatigue and performance manifested differently 

according to PSF status, we repeated the above-described 

within-flanker linear mixed-effects models within patients 

with PSF and patients without PSF.

Importantly, to test whether potential effects were specific 

for fatigue or could be explained by depressive symptoms, the 

full linear mixed-effects model was repeated with PHQ in-

stead of FSS, keeping all other model specifications constant.

In all analyses, the time variable refers to trial number 

(1–288).

2.5.3 | Associations between conventional 
ANT network scores and FSS

Based on a previous definition (Westlye et  al.,  2010), we 

computed the conventional ANT network scores orienting, 

alerting and executive control network based on median RTs:

To assess the association between estimated attentional 

networks and subjective fatigue, we ran a linear model for 

each attentional network and tested for main effects of FSS, 

covarying for age and sex. We then estimated change in net-

work efficiency over time (network slope) for each network 

and fitted this to a linear model adding FSS, age and sex as 

predictors to test for interactions between attentional net-

works, time and FSS. Network slopes were created in two 

steps: First, we ran linear models for each patient within each 

flanker and cue condition separately, predicting RT by trial 

number. Then, change in network efficiency/network slope 

was calculated for each patient by subtracting the betas from 

the first models in the same way as outlined above, that is:

Following the same procedure as in the RT models above, 

we reran the network analyses replacing FSS with PSF status 

as independent variable, to investigate whether attentional 

networks were differently affected by time dependent on PSF 

status.

As an additional test of potential associations between 

subjective fatigue and stroke-related variables, we estimated 

the correlations between FSS score, NIHSS score, lesion vol-

ume and months since stroke, respectively.

2.5.4 | Hierarchical drift diffusion modeling

Cleaned RT and accuracy data were submitted to hierarchical 

drift diffusion modeling by use of the python toolbox HDDM 

(Wiecki et  al.,  2013). HDDM uses hierarchical Bayesian 

parameter estimation, which provides enhanced statistical 

power and allows for estimation of both individual and group 

parameters simultaneously (Wiecki et al., 2013). We applied 

mildly informative priors and starting points as predefined 

in the toolbox (Wiecki et al., 2013). We did not estimate any 

bias in starting point. The data were accuracy-coded (accu-

rate responses = 1, erroneous responses = 0). In addition to 

the data cleaning described above, an outlier mixture model 

Executive control= (RT incongruent−RT congruent)/RT congruent

Alerting= (RT no cue−RT center cue)/RT center cue

Orienting= (RT center cue−RT spatial cue)/RT spatial cue

Executive slope= (beta incongruent−beta congruent)
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included in the HDDM was applied, which assumes that a 

fixed proportion (5%) of trials are outliers that come from 

a uniform distribution not generated by a diffusion process 

(Wiecki et  al.,  2013). A mixed-effects model allowing for 

some outliers has been shown to provide a better fit in likeli-

hood models than models not allowing for any outliers at all 

(Wiecki et al., 2013).

2.5.5 | Model selection/ defining parameters

When parametrizing the hDDM, we tested different cogni-

tively plausible models to identify the model that best ex-

plained data, guided by the theoretical assumption that drift 
rate (v) should be allowed to vary as a function of stimu-

lus difficulty condition (Ratcliff, Smith, & McKoon, 2015). 

Further, decision threshold (a) was assumed to be constant 

across stimulus conditions, following the logic that if a varies 

with stimulus conditions, the participant would have to first 

identify the condition, before adjusting threshold and then 

start accumulating information from the stimulus, a sequence 

of events that does not seem plausible (Thapar, Ratcliff, & 

McKoon, 2003). Non-decision time (t, stimulus encoding and 

motor responses) was not expected to be affected by flanker 

condition, given that the visual stimuli were highly similar 

across flanker conditions and motor responses were simple 

and identical across conditions (simple button press).

Building on the above-mentioned assumptions, we esti-

mated different models and tested which combination of pa-

rameter fixations provided the best model fit. See Table 2 for 

an overview of models tested.

Variability estimates were included in the preliminary 

models, but were discarded as they failed to converge ade-

quately and slightly worsened model fit. Variability parame-

ters are often estimated poorly, and less complex models may 

improve estimates of the parameters of interest (Lerche & 

Voss, 2016). To evaluate in which parameter the interaction 

between time and FSS should be localized, we estimated a 

Model Samples DIC

(a ~ warningcue) A1 1,500 −15,424

(t ~ warningcue) A2 1,500 −15,717
(v ~ warningcue) A3 1,500 −15,169

([v ~ flanker + time * FSS, t ~ time * 

FSS + warningtype, a ~ FSS * time], 

group_only = True)

B1 12,000 −16,608

(a ~ time) C1 1,500 −14.356

(t ~ time) C2 1,500 −14.448
(v ~ time) C3 1,500 −14.219

(a ~ FSS) D1 1,500 −14.109

(t ~ FSS) D2 1,500 −14.110
(v ~ FSS) D3 1,500 −14.109

(a ~ FSS:time) E1 1,500 −14.353

(t ~ FSS:time) E2 1,500 −14.454
(v ~ FSS:time) E3 1,500 −14.222

([‘v ~ flanker, t ~ warningtype, a ~ FSS * time], 

group_only = True)

F1 6,000 −16,590

([v ~ flanker, t ~ time * FSS + warningcue], 

group_only = True)

F2 6,000 −16,602

([v ~ flanker + time * FSS, t ~ warningtype], 

group_only = True)

F3 6,000 −16,575

([v ~ flanker, t ~ time * FSS + warningcue], 

group_only = False)

G1 6,000 −17,648

([v ~ flanker, t ~ time * FSS + warningcue], 

group_only = False)

G2 12,000 −17,648

([v ~ flanker, t ~ time * FSS + warningcue], 
group_only = True)

H1 12,000 −16,602

Note: DIC, deviance information criterion, where lower values indicate a better model fit. DIC values in bold 

indicate the combination of parameter fixation that provided the best fit for each model comparison (model 

comparisons between same letter models (i.e., A1–A3).

T A B L E  2  Parameter fixations and 

model fits (DIC) for various hDDM 

regression models
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regression model where all three parameters (a, t and v) were 

allowed to vary by the interaction term. To further explore 

which parameter fixations provided the best model fit, we ran 

nine simple models with (a) the main effect of time on either 

a, t or v; (b) the main effect of FSS on either a, t or v; and 

(c) the FSS*time interaction on a, t or v separately. Finally, 

we estimated the best model with individual regressors and 

group only regressors.

Model fit was assessed by comparing the deviance in-

formation criteria (relative DIC values) between models. In 

Bayesian analyses, the DIC provides an estimation of fit of 

the model to the data, where lower DIC values indicate that 

the model has better support (François & Laval,  2011). In 

models where individual regressors were estimated, we sim-

ulated data from the respective models and performed poste-

rior predictive checks (PPC) to evaluate whether the model 

was able to reproduce central patterns in the observed data 

(Wiecki,  2016). 500 data sets were simulated by drawing 

500 samples for each parameter from the estimated posterior 

distribution. The simulations thus capture the uncertainty in 

the estimated model and allow for comparisons with the ob-

served data.

Final choice of model was based on a combination of 

model fit and convergence (see below).

2.5.6 | Estimating the posterior 
distributions and assessing convergence (model 
diagnostics)

We used a Bayesian framework and Markov chain Monte 

Carlo sampling (MCMC) to estimate the posterior distribu-

tions (Kruschke,  2014). In the preliminary models, when 

testing and comparing parameter fixations, models were es-

timated on 1,500 or 6,000 samples. The final model was run 

on 12,000 samples. To improve convergence, the 4,000 first 

samples were discarded, and thinning was set to 2 (keeping 

only every second sample).

A valid model should demonstrate convergence of the 

MCMC chains (Wiecki,  2016). Convergence was assessed 

by plotting and visually inspecting traces and autocorrelation 

plots for each estimated parameter. As a more formal test of 

convergence, the Gelman–Rubin statistics (R^; (Gelman & 

Rubin, 1992) were calculated. These values should be close 

to 1 and not exceed 1.1 if the chains have converged success-

fully, that is, if the samples of the different chains are similar 

(Wiecki et al., 2013).

2.5.7 | Hypothesis testing within the hDDM

Effects of task and cue conditions, as well as the effects 

of time and fatigue status, were determined by Bayesian 

hypothesis testing, by assessing the degree of overlap be-

tween posterior distributions. If less than 5 percent of the 

posterior distributions of two parameters overlap, the differ-

ence is said to be credible, or an effect is credibly different 

than null when at least 95 percent of the posterior distribution 

does not contain zero.

3 |  RESULTS

3.1 | ANT behavioral results

Table 3 shows mean RT and error rates for each flanker con-

dition. Two-tailed, one-sample t tests revealed significant 

differences in RT between incongruent and congruent condi-

tion, M = 111, CI = 101–122, t(52) = 20, p < .001, between 

incongruent and neutral condition, M = 124, CI = 112–136, 

t(52) = 20, p <.001 and between congruent and neutral con-

dition, M = 12, CI = 3.7, t(52) = 3.6, p < .001.

There was no significant association between FSS and 

mean RT across (r = .09, p = .48) or within conditions (in-

congruent flanker: r = .05, p = .67, congruent flanker: r = 

.11, p = .47, neutral flanker: r = .12, p = .37). There was no 

association between FSS and error rate (r = −.09, p = .48).

3.2 | Associations between FSS, time and RT

Table 4 shows the summary statistics from a linear mixed-

effects model testing for associations between RT and FSS, 

time, sex, age and flanker condition for all conditions si-

multaneously. The model including FSS score performed 

significantly better than the model not including FSS score 

as indicated by ANOVA model comparison, supporting the 

predictive value of FSS (L.ratio(1)  =  19.09, p  <  .001, see 

also Table S2).

The model presented in Table 4 was also run with lesion 

volume and lesion location as independent variables to con-

trol for effects related to lesion characteristics. As both vol-

ume and location displayed low predictive value and did not 

improve model fit, they were not included in the final anal-

yses. Results from the linear mixed model including lesion 

volume and lesion location are presented in Table S3.

T A B L E  3  Error rates and mean RTs by flanker condition

Flanker

Mean RT in ms

Accuracy 
(%)

Total 
(SD)

Error 
(SD)

Accurate 
(SD)

Congruent 668 (187) 841 (329) 667 (185) 99.2

Incongruent 773 (199) 645 (300) 776 (195) 97.7

Neutral 655 (180) 713 (245) 654 (179) 99.1
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Table  5 presents summary statistics for models esti-

mated for each flanker condition separately, estimating the 

effect of FSS score, time (trial number) and the interaction 

effect between time and FSS. Figure 3 shows the estimated 

RT (output from Table 5) plotted by group (PSF vs. non-

PSF patients, based on mean FSS score ≥ 4). Briefly, after 

Bonferroni correction for multiple comparisons (corrected 

alpha 0.5/8 = .006), the interaction between time and FSS 

was significant in the neutral and incongruent condition, 

as was the association between age and RT, indicating that 

age was associated with increased RT across conditions. 

There was no significant main effect of FSS on RT in any 

condition.

Corresponding linear mixed model with group (PSF sta-

tus) instead of FSS score revealed similar associations with 

the various independent factors as presented in Table 4, ex-

cept for identifying a negative main effect of time (β = −0.05, 

SE = .01, t = −3.31, p < .001). The interaction effect between 

PSF status and time was comparable to that of FSS score and 

time, albeit smaller (β =0.06, SE = .01, t = 2.27, p = .022), 

and only nominally significant. All results from the model 

with PSF status as predictor are presented in Table S4.

t Beta CI p

Intercept 0.63 109.49 (−229.4, 448.5) .526

FSS_z 0.37 7.02 (−29.9, 43.6) .298

Time −1.03 −0.03 (−0.09, 0.03) .870

Time:FSS 2.65 0.07 (0.02, 0.14) .008

Sex 0.04 1.92 (−77.34, 81.2) .962

Age 3.34 8.15 (3.37, 12.93) .001*

Incongruent flanker 40.5 111.52 (106.14, 116.93) <.000*

Neutral flanker −4.31 −11.78 (−17.15, −6.43) <.000*

*p-Values that remained significant after Bonferroni correcting for multiple comparisons. 

T A B L E  4  Linear mixed-effects models 

for whole sample, all flanker conditions

T A B L E  5  Linear mixed-effects models by flanker stimulus, one model per condition

Neutral Incongruent Congruent

Beta t p Beta t p Beta t p

FSS 8.31 0.50 .614 −1.21 −0.06 .949 13.67 0.78 .472

Time −0.03 −1.68 .091 −0.05 −2.27 .023 −0.00 −0.26 .791

Time:FSS 0.09 4.22 <.001* 0.10 4.16 <.001* 0.04 2.08 .037

Sex −4.78 −0.13 .896 0.14 0.00 .997 2.06 0.05 .958

Age 8.22 3.71 <.001* 8.42 3.26 .002* 7.95 2.08 .037

*p-Values that remained significant after Bonferroni correcting for multiple comparisons. 

F I G U R E  3  Estimated RT from linear mixed-effects models plotted by PSF status [Colour figure can be viewed at wileyonlinelibrary.com]
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Mixed-effects models with PHQ score included instead 

of FSS did not indicate significant interaction effects be-

tween depressive symptoms and time on RT in any flanker 

condition.

Table  6 shows summary statistics from linear mixed 

models estimating the main effect of sustained performance 

(time) on RT in the various flanker conditions, conducted 

separately for patients with and without PSF. In this model, 

that included only trial number (time) and not FSS score as 

predictor, the results suggested that patients without PSF 

demonstrated more speeded RTs in the incongruent condition 

during the course of the experiment, while patients with PSF 

did not show any significant changes in RT in any condition.

3.3 | Associations between FSS and other 
clinical measures

There was no correlation between FSS score and months 

since stroke (r = .00, p = .97), between FSS score and lesion 

volume, indicated by number of voxels affected (r = −.14, p 

= .30) or FSS score and stroke severity, indicated by NIHSS 

score (r = .10, p = .46). FSS score was positively correlated 

with PHQ score (r = .47, p < .001).

3.4 | Associations between ANT network 
scores and FSS

One-sample t tests revealed significant group-level net-

work score effects for executive control network (M = 0.18, 

CI  =  0.17–0.20, t  =  21.57, p < .001), orienting network 

(M = 0.06, CI = 0.05–0.08, t = 11.27, p < .001) and alert-

ing network (M = 0.04, CI = 0.03–0.06, t = 7.47, p < .001). 

Table  7 shows summary statistics from linear models esti-

mating the associations between ANT network scores and 

FSS. Whereas the analyses revealed a nominally significant 

negative association between FSS and the executive network 

score (t = −2.23, p = .03) and a negative effect of age on 

the alerting network (t = −2.17, p = .03), no associations re-

mained significant after correction for multiple comparisons.

Table 8 shows linear models testing associations between 

ANT network efficiency change over time (network slope) 

and FSS score, age and sex. Results suggested a (nominally) 

significant association between executive slope (network 

efficiency change over time, where positive score indicate 

efficiency) and FSS (t = 2.24, p = .029). No associations re-

mained significant after correction for multiple comparisons. 

See Figure 4 for network slopes plotted against FSS scores. 

Follow-up linear models with PSF status as predictor instead 

of FSS did not support a significant main effect of PSF status 

(t = −0.73, p = .466) on executive network slope.

3.5 | hDDM regression models

The best fitting model that showed adequate convergence 

allowed drift rate (v) to vary across flanker conditions, 

non-decision time (t) to vary across warning cue conditions 

and time while boundary separation (a) was kept constant 

(“v  ~  flanker,” “t  ~  warningcue +time”). In this group-

level model, no Gelman–Rubin statistics (R-hat values) 

were > 1.1, and chains and autocorrelations confirmed ad-

equate convergence for all parameters.

A less restricted model where all parameters were allowed 

to vary by the FSS*time interaction term generated a slightly 

better model fit (DIC value −16,608 vs. −16,602), but worse 

convergence in terms of (R-har values  >  1.1), chains and 

autocorrelations. This model was therefore discarded as 

not sufficiently valid. Estimations of the best fitting model 

(“v ~  flanker,” “t ~ warningcue +  time”) on the individual 

level produced the best fit in terms of DIC values, but pos-

terior predictive checks indicated that the models did not 

sufficiently reproduce observed patterns in the data and the 

standard deviations for t:FSS and t_time:FSS showed subop-

timal convergence.

Neutral Incongruent Congruent

Beta t p Beta t p Beta t p

Non-PSF patients

Time −0.06 −2.17 .029 −0.10 −3.22 .001* −0.01 −0.55 .575

Sex 34.1 0.66 .509 10.9 0.18 .854 26.5 0.48 .632

Age 10.1 2.90 .007 8.96 2.21 .035 8.90 2.39 .024

PSF patients

Time −0.00 −0.12 .377 0.00 0.18 .851 0.00 0.17 .859

Sex −47.4 −0.76 .454 −9.77 −0.13 .897 −25.7 −0.38 .707

Age 7.86 2.26 .036 8.36 1.99 .062 8.17 2.15 .045

*p-Values that remained significant after Bonferroni correcting for multiple comparisons. 

T A B L E  6  Linear mixed-effects models 

estimating RT by time for PSF/non-PSF 

patients separately
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3.6 | Effect of time and FSS on t,  
non-decision time

Figure 5 shows the posterior distributions for non-decision 

time, t. hDDM provided support for a negative main effect 

of time (P(t_time < 0) = 0.98) on non-decision time, indi-

cating that time needed for stimulus encoding and response 

execution decreased during the course of the test. hDDM did 

not identify a main effect of FSS on non-decision time (P(t_

FSS > 0) = 0.77). In contrast, the model provided evidence 

for a positive interaction effect between time on task and FSS 

on non-decision time (P(t_time:FSS > 0) = 1.00), suggesting 

that the association between FSS and non-decision time in-

creased during the course of the experiment, so that patients 

with high levels of fatigue were more negatively affected by 

time on task (resulting in higher non-decision times), than 

patients low on fatigue. The interaction effect is small, but 

robust (posterior distribution not overlapping the null, model 

displaying good convergence), and it is in the opposite direc-

tion of the main effect of time when FSS is not accounted for.

3.7 | Effect of warning cue on t, non-
decision time

Figure 6 (left) shows the posterior probability plot for non-

decision time (t) as a function of warning cue (intercept: 

center cue). Non-decision time was lowest for cue conditions 

“up” and “down”. “No cue” resulted in the highest non-de-

cision time out of all cue conditions. Thus, model evidence 

suggests that the presence of cues facilitated the process of 

stimulus encoding and response execution, and most effi-

ciently so when the cues provided both temporal and spatial 

information (“up” and “down”).

3.8 | Effect of flanker conditions on 
drift rate

Figure  6(right) shows the posterior probability plot for 

the drift rate (v) estimated by flanker condition (inter-

cept: congruent condition). The model provided strong 

evidence supporting that drift rate was lower in the incon-

gruent condition compared to both congruent and neutral 

condition (P(v_Incongruent  <  v_Congruent) = 1.0, and 

P(v_Incongruent < v_Neutral) = 1.0), suggesting lower rates 

of evidence accumulation in the cognitively most demanding 

condition (incongruent flanker with cognitive conflict). Drift 

rate was highest in the neutral condition (P(v_Neutral > v_

Congruent) = 1.0, P(v_Neutral > v_Incongruent) = 1.0).

4 |  DISCUSSION

Post-stroke fatigue is a common and debilitating symptom 

in stroke patients, yet its mechanisms are poorly understood. 

Many patients suffering from PSF report increased fatigue 

T A B L E  7  Linear regression models by ANT network

Orienting Alerting Executive

t p t p t p

FSS 0.57 .567 −1.03 .305 −2.23 .030*

Age 1.10 .276 −2.17 .034 −1.18 .243

Sex 1.66 .103 −0.41 .681 −0.03 .975

*Nominally significant p-values. 

T A B L E  8  Linear regression models by ANT network slope

Executive Alerting Orienting

t p t p t p

FSS 2.24 .029* 0.18 .85 0.55 .580

Age 0.832 .409 −0.54 .587 1.44 .156

Sex −0.98 .332 0.697 .489 0.27 .787

Note: Higher network values indicate lower relative network efficiency.

*Nominally significant p-values. 

F I G U R E  4  Estimated attention network slopes plotted against z-normalized FSS scores [Colour figure can be viewed at wileyonlinelibrary.com]
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and cognitive difficulties when engaging in cognitive tasks, 

but previous studies have largely failed to establish robust 

associations between subjective fatigue and cognitive perfor-

mance. The scarcity of evidence may be due to the use of 

instruments lacking cognitive sensitivity and specificity, and 

tests that do not account for the effect of time on task.

In the current study, we aimed to characterize the rela-

tionship between subjective fatigue and attentional func-

tion, taking duration of effort into account. To this end, 

we collected behavioral data using ANT and self-reported 

fatigue using FSS from 53 chronic stroke patients. First, we 

tested the assumption that FSS scores would interact nega-

tively with time on task, manifesting in a performance de-

cline for patients with high fatigue relative to patients with 

low fatigue. Results from linear mixed models provided 

support for this hypothesis, identifying significant inter-

actions between FSS score and time on RT in the neutral 

and incongruent flanker conditions. In these whole sample 

models, no significant main effects of time or FSS were 

identified. Interestingly, when examining the main effect 

of time separately for patients with and without PSF, re-

sults revealed that non-PSF patients significantly improved 

F I G U R E  5  Posterior distributions of non-decision times (t) as a function of FSS score (left), and as a function of (a) time and (b) the 

interaction between FSS score and time (right). hDDM provided no evidence in support of a main effect of FSS, but indicated a negative main 

effect of time ((P(t_time < 0) = 0.98), and a small, but robust ((P(t_FSS*time > 0) = 1.0) positive interaction effect between FSS and time on non-

decision time (t; neither of the distributions in the right plot overlap the null) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6  Posterior distributions of non-decision time (left) and drift rate (right). Drift rate posteriors (right plot) for incongruent and neutral 

flanker conditions are plotted relative to the intercept (congruent flanker condition). Incongruent drift rate is lower than both congruent and neutral 

drift rate, and the distributions are not overlapping. In the left plot showing non-decision time, posteriors probability distributions for different 

warning cue conditions are plotted relative to the intercept (center cue) [Colour figure can be viewed at wileyonlinelibrary.com]
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RTs over time in the most cognitively demanding condi-

tion, while the PSF group did not demonstrate significant 

improvement.

These findings underscore the relevance of taking time on 

task into account and measure sustained performance when 

addressing fatigue. Because the study design does not allow 

causal inference, the observed interaction between subjective 

fatigue and RT may be either a manifestation of fatigue, a cause 

of fatigue (i.e., that attentional difficulties give rise to fatigue), 

or both. Providing a speculative theoretical context, the cop-

ing hypothesis (Van Zomeren, Brouwer, & Deelman,  1984; 

Van Zomeren & Van den Burg, 1985) offers one explanatory 

framework for the observed interaction. Originally articulated 

in relation to traumatic brain injury patients, this view suggests 

that the chronic effort needed to compensate for subtle, cogni-

tive deficiencies gives rise to secondary symptoms, hereunder 

fatigue. Hence, subtle cognitive deficits associated with stroke 

may be temporarily disguised by a compensating and tempo-

rary increase in cognitive effort. However, this compensation 

comes with the cost of increased feeling of fatigue, in partic-

ular during sustained effort. In line with this, the current in-

teraction between time on task and fatigue may be understood 

as a result of increased cognitive effort, producing increased 

tiredness over time, resulting in suboptimal performance. The 

concept of “cognitive compensation” also ties well with evi-

dence from the split sample analysis indicating that non-PSF 

patients’ performance benefitted from practice (sustained per-

formance) in the most cognitively demanding condition, while 

the PSF group did not improve with practice. This may reflect 

a weakening of learning effects due to cognitive compensation 

costs as described above, or, alternatively, a failure to benefit 

from practice due to increasing fatigue.

The interaction between FSS and time can also be medi-

ated by motivation, with high levels of fatigue leading to re-

duced motivation and suboptimal performance. Accordingly, 

the role of motivation is implied by the high scores on the FSS 

item reflecting reduced motivation when feeling fatigued.

Regardless of the specific theoretical account, the results 

can be understood as lending support to Holtzers definition 

of cognitive fatigue as “an executive failure to monitor and 

optimize performance over acute but sustained cognitive ef-

fort resulting in performance that is lower and more variable 

than the individual´s optimal ability” (Holtzer et al., 2010, p. 

123).

It should be noted that the interaction between time on 

task, self-reported fatigue and RT did not change when de-

pressive symptoms were added to the model. Moreover, 

when testing the model with PHQ score on the interaction 

term instead of FSS, we did not find any interaction effects 

between depressive symptoms and time. These results sug-

gest that although fatigue and depression are overlapping and 

correlated clinical phenomena, the specific characteristics 

of fatigue may be more strongly associated with sustained 

attentional performance during the course of a demanding 

cognitive task.

Results did not reveal any significant association between 

stroke location/laterality or lesion volume and outcome vari-

ables (RT or FSS), suggesting that, in this sample, lesion 

location and volume are not strong predictors of subjective 

fatigue or attentional function as measured by ANT. Whereas 

the lack of a robust relationship between lesion location/le-

sion volume and FSS score is in line with previous reports 

(Choi-Kwon, Han, Kwon, & Kim, 2005; Mead et al., 2011), 

the literature is not conclusive, and right hemispheric lesions 

are frequently associated with attentional dysfunction and 

neglect (Robertson, Ridgeway, Greenfield, & Parr,  1997; 

Spaccavento et al., 2019; Vallar & Perani,  1986). The cur-

rent lack of predictive value of stroke location highlights the 

complex etiology of attentional function in chronic stroke 

patients. However, we cannot rule out that different opera-

tionalizations of attentional dysfunction or alternative catego-

rizations of lesion location could reveal stronger associations.

Our hypothesis that FSS scores would be associated with 

overall reduced executive network efficiency was not sup-

ported, and no associations between fatigue and attentional 

networks remained after correcting for multiple comparisons. 

This finding does not support previous studies on fatigue in 

neurological conditions, linking fatigue to reduced efficiency 

of the ANT executive network (Holtzer et  al.,  2010; Togo 

et  al.,  2015). There was, however, a nominally significant 

association between change in executive network efficiency 

over time (network slope) and fatigue, indicating that patients 

with higher levels of fatigue exhibited a larger decline in ex-

ecutive network efficiency with sustained effort than patients 

reporting lower levels of fatigue. Although these findings did 

not remain after corrections for multiple comparisons, they 

may suggest that subjective fatigue is less associated with re-

duced executive attention per se, and more with an increased 

susceptibility to distractors when the attentive system is put 

under sustained pressure.

Suggestive FSS network effects were only observed in the 

executive network. It is unclear whether the lack of alerting 

and orienting network effects reflects that subjective fatigue 

is related to executive attention exclusively, or rather reflects 

psychometric properties of the ANT networks. A psycho-

metric evaluation of the ANT networks based on 15 previ-

ous studies (MacLeod et al., 2010) reported that the power 

to identify significant effects varied across networks, while 

network reliability was consistently highest for executive net-

work effects, and low to medium for alerting and orienting 

network effects.

Because traditional analyses based on observed data alone 

do not allow for any inference regarding the specific cogni-

tive processes that may underpin differences in RT, we per-

formed an exploratory analysis where we fitted a hierarchical 

drift diffusion model (hDDM) to the ANT behavioral data. 
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This computational dissection of the ANT data indicated that 

the interaction between fatigue and time on RT was best ex-

plained by non-decision time, and not the speed of evidence 

accumulation (drift rate) or response style (boundary sepa-

ration). hDDM revealed no main effect of FSS on any of the 

model parameters, but provided evidence of an interaction 

between time and FSS on non-decision time, indicating in-

creasing effects of FSS during the course of the experiment. 

In this respect, the results concurred with the linear mixed-ef-

fects models on RT data, suggesting stronger associations 

between fatigue and hDDM parameters with more sustained 

performance, and indicate that hDDM is sensitive to fatigue 

in a cognitive context when explicitly modeling the interac-

tions with time.

Non-decision time (t) comprises both sensory encoding 

and motor response output (Ratcliff & Smith, 2010). The fact 

that model evidence was stronger for the models where the 

interaction between FSS and time was estimated on non-de-

cision time, rather than on drift rate or boundary separation, 

indicates that fatigue may be specifically associated with 

non-decision aspects of the response process, such as stimu-

lus encoding or response execution rather than with the speed 

or efficiency of the evidence accumulation or with the deci-

sion threshold (i.e., how much information is required before 

making a decision). Previous studies have reported higher 

non-decision times in older compared to younger individuals 

(Ratcliff et al., 2001), and in this respect, patients reporting 

high fatigue are responding more like elderly individuals, but 

only after sustained exertion.

It is also interesting to note that the negative main effect 

of time (in non-decision time) suggested by the current model 

is in line with previous drift diffusion research on practice 

effects, identifying a reduction in the non-decision compo-

nent across trials (Dutilh, Vandekerckhove, Tuerlinckx, & 

Wagenmakers, 2009). In this context, the current positive in-

teraction between time and fatigue on non-decision time may 

be understood as fatigue counteracting the otherwise benefi-

cial effects of practice.

This ties well with results from the linear mixed-effects 

models, suggesting that patients with PSF did not improve 

performance over time, in contrast to patients without PSF 

who got faster with during the course of the session. However, 

this effect was found in the incongruent condition, defined by 

flankers, while in the reported hDDM results, non-decision 

time primarily accounts for variance introduced by cues. One 

explanation could be that responses in the incongruent con-

dition require an inhibition of the dominant motor response 

after the decision is made and that the identified interaction 

between fatigue and time on non-decision time is driven by 

a stronger slowing of these inhibitory responses in patients 

with higher levels of fatigue.

Research aiming to delineate the nervous system patho-

physiology of PSF may further inform hypotheses about 

this apparent link between non-decision time and fatigue. 

Applying transcranial magnetic stimulation (TMS), a pre-

vious study (Kuppuswamy, Clark, Turner, Rothwell, & 

Ward, 2014) reported higher motor thresholds in stroke pa-

tients with high fatigue and suggested that patients with PSF 

experience diminished excitability of motor pathways, re-

garding both corticospinal outputs and facilitatory inputs. In 

this respect, the current observation of an interaction between 

time and fatigue on non-decision time might reflect altered 

neuronal excitability. However, how such neurophysiological 

mechanisms would translate into the subjective perception of 

fatigue remains unclear. Here, the perception of effort might 

be central, in the sense that subjective fatigue may manifest 

when volitional motor cortex input does not longer produce 

the expected output due to reduced excitability (Kuppuswamy 

et al., 2014).

These explorative results based on computational mod-

eling provide a novel account of the specific cognitive un-

derpinnings of PSF. When the task context is appropriate, 

DDM parameters can be interpreted directly (Froehlich 

et al., 2016) and thus provide insight into the modular and 

temporal evolution of the decision process. Decision bound-

ary separation (a) adjusts the trade-off between speed and 

accuracy (Pedersen, Frank, & Biele, 2017). Large estimates 

of (a) are typically interpreted as indicative of a conservative 

decision style, associated with higher RTs but more accu-

rate responses (Pedersen et  al.,  2017). Larger estimates of 

drift rate (v) are typically interpreted as more efficient infor-

mation processing and are expected to vary by “the quality 

of the information extracted from the stimulus” (Ratcliff & 

McKoon, 2008, p. 3), implying that experimental conditions 

varying in difficulty should produce different drift rates 

(Ratcliff & McKoon, 2008). In line with this, and in agree-

ment with previous studies estimating the effect of stimulus 

difficulty on drift rate (Voss et al., 2004), hDDM identified 

a credible effect of flanker type on drift rate, with the more 

cognitively demanding incongruent condition resulting in 

the lowest drift rate, while neutral flankers yielded the high-

est drift rate.

To sum, results from linear mixed-effects models sug-

gested that subjective fatigue interacts with time on task, pos-

sibly counteracting practice effects, in particular in the most 

cognitively demanding incongruent flanker condition. Group 

analyses revealed that patients without PSF improved perfor-

mance over time in the incongruent condition, while the PSF 

group did not. Additionally, higher FSS scores were associ-

ated with declining efficiency in the executive network over 

time. However, the effect was small and was not associated 

with PSF status. Lastly, hDDM modeling identified an inter-

action between fatigue scores and time on non-decision time.

Some limitations should be considered when interpreting 

the results of the current study. In line with most clinical stud-

ies, the study design does not allow for causal inference. Still, 
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the findings may pave the way for future clinical or exper-

imental studies examining possible causal mechanisms and 

subsequent interventions. Moreover, as subjective fatigue 

can manifest as both a normal and a pathological phenom-

enon, and no universally accepted definition or criteria of 

PSF exists, we adopted an explorative approach, aiming to 

characterize the relationship between subjective fatigue and 

sustained attentional performance by a continuous measure 

symptom scale. While our main objective was not to identify 

case–control differences between stroke patients and healthy 

controls, but rather to characterize the cognitive correlates 

of post-stroke fatigue using computational modeling of re-

sponse patters, future studies adding a healthy control group 

may provide stronger interpretations regarding the clinical 

sensitivity of the computational behavioral parameters.

The distribution of NIHSS scores indicates that the cur-

rent patients were sampled from a relatively healthy part 

of the full population of stroke patients. It is possible that 

a higher fatigue symptom burden on the group level could 

reveal associations that were not expressed in this relatively 

well-functioning patient sample. Reported fatigue levels are, 

however, comparable with what has been reported in other 

studies (Wang, Wang, Wang, & Chen, 2014) and higher than 

what is reported in healthy control samples (Valko, Bassetti, 

Bloch, Held, & Baumann, 2008). Further studies are needed 

to test the generalizability of the findings to different and 

more severely affected patient samples.

Although the classical version of ANT (Fan et al., 2002) 

appears to be a suitable paradigm to target cognitive aspects 

of PSF, as performance requires sustained attentional and 

executive resources (Holtzer et al., 2010), other versions of 

the test, like the ANT-I Vigilance task (Roca, Castro, López-

Ramón, & Lupiánez, 2011), could offer a more comprehen-

sive account of relevant, associated processes like vigilance. 

It should also be noted that the error rate in the sample was 

low. This might have implications for the validity of the re-

sults from hDDM model, because the model estimates pa-

rameters based on distributions of both RT and accuracy and 

assumes different RT distributions for correct versus errone-

ous responses. Moreover, ANT is not frequently applied in 

hDDM modeling and may not be ideal for such due to ex-

istence of flankers and cues. However, our model displayed 

adequate convergence, and a recent hDDM study reported 

encouraging results for ANT data with no error responses 

(O’Callaghan et al., 2017).

In conclusion, the current study represents a novel ap-

proach to assess the cognitive phenotype of fatigue in stroke 

patients. The results indicate a relationship between the 

subjective experience of fatigue and response time distri-

butions from a sustained attention task and demonstrate the 

significance of considering the sustained nature of the task 

when targeting fatigue in a neuropsychological context, 

intuitively indicating that the cognitive phenotype of fa-

tigue entails an increased vulnerability to sustained effort. 

It is encouraging that the evidence suggests a link between 

self-reported fatigue and performance in a computerized, 

standardized paradigm, as it may contribute to bridging 

the gap between subjective experience and behavioral per-

formance in this complex and prevalent stroke sequela. 

The explorative application of an advanced computational 

model on the temporal evolution of response times en-

abled the possibility to parse the observed response time 

patterns into specific cognitive processes. In general, the 

use of computational approaches in the neuropsychologi-

cal workup may offer a dissection of the specific cognitive 

processes underlying observed behavioral differences, with 

clinical relevance.
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Table 1

Disconnectome maps FSS PHQ FSS + PHQ
T1 844 1193 820
T2 1064 0 137
VLSM
T1                   56 2577 334
T2           232 0 24
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