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GENERAL SUMMARY

The overarching aim of this thesis has been to contribute to a better understanding of fatigue
in the chronic phase after stroke. Although the acknowledgment of fatigue and the debilitating
consequences associated with this condition has been on the rise for the last two decades,
much is still unknown regarding underlying mechanisms. Moreover, treatment options are
few and sparsely documented. Subtle cognitive impairments have been hypothesized to play a
role in fatigue etiology, as have brain perturbations caused by the stroke lesion. Still, the
literature is characterized by inconsistent findings, and further documentation of the detailed
relationship between subjective fatigue, cognition, and neuronal underpinnings using sensitive

measures is needed.

In three separate empirical papers, the present thesis examines chronic phase post-stroke
fatigue at different levels, using a mix of methods and novel approaches. Starting with the
cognitive and behavioral correlates of fatigue, we performed a detailed examination of the
relationship between self-reported, general, subjective fatigue and cognitive performance
using a well-documented attentional paradigm. Subjective fatigue was associated with a
slowing of responses throughout the duration of the 20 min task session, and the effect was
most pronounced in the most cognitively demanding condition, suggesting that fatigue entails
an increased vulnerability for performance deterioration when the attentional system is put
under sustained pressure. The effect was not found for depression, suggesting that this type of
sustained tasks may be particularly sensitive to fatigue. In an effort to pinpoint the specific
mechanisms driving the observed differences in response times, we fitted a computational
drift diffusion model to the response time data. Results suggested that the interaction between
time on task and fatigue was best explained by the parameter comprising sensory encoding

and motor responses.

The search for brain perturbations associated with post-stroke fatigue is ongoing.
Accumulating evidence highlights the role of network structure- and function for a range of
symptoms, as illustrated by the observation that lesions affecting large white matter pathways
or densely connected hubs may yield more severe symptoms. The effect of a lesion may thus
be determined, at least in part, by the disconnectivity it causes in implicated networks and

degree of preserved network function. In recognition of this, we applied a novel approach to



study the brain correlates of fatigue, by indirectly estimating the white matter pathway
disconnection caused by the lesion, thus capturing not only the immediate damage caused by
the stroke lesions but also distal effects. The results provided no evidence for a simple
association between structural disconnectivity and fatigue, but revealed associations between
fatigue, depression and sleep quality. Together, the findings supports that chronic phase PSS
is a complex condition that is not simply explained by lesion characteristics such as extent

and distribution of structural brain disconnection.

While there is currently little documentation on efficient treatment options for fatigue after
stroke, preliminary evidence suggests beneficial effects of non-invasive brain stimulation. In a
sham-controlled, randomized trial, we therefore evaluated the effect of repeated transcranial
direct current stimulation (tDCS) combined with computerized cognitive training. Results
revealed no added effect of tDCS. In recognition of the close association of fatigue and
depression, we recorded symptoms at five consecutive time points during the intervention,
and adopted a network approach to assess individual symptom centrality across time. Fatigue
items demonstrated overall high centrality compared to depression items, suggesting that the
impact of fatigue is of importance for the general symptom constellation. Also, patients
withdrawing from the study had higher baseline fatigue scores and younger age than the
patients completing, underscoring the need of individual adjustments of treatment protocols

for this patient group.

Together, the results from Paper I — III suggest that subjective fatigue is associated with a
time-dependent reduction in processing efficiency during sustained attentional effort, but do
not provide evidence for a simple association between lesion characteristics, degree of
structural disconnection and fatigue in the chronic stroke phase. tDCS did not demonstrate
beneficial effects on self-reports of fatigue or depression. Future studies should aim to
generalize the findings to a broader spectrum of the stroke patient population, both in terms of

stroke severity and functional outcome.
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INTRODUCTION
BACKGROUND

Fatigue, the feeling of being overly tired, worn out, devoid of energy and aversive to effort, is
familiar to most of us. In its healthy form, transient fatigue provides a protective reaction to
stress and high energy consumption, guiding us towards rest and energy restoration.
Simultaneously, fatigue constitutes a hallmark symptom in a range of medical conditions.
Here, in its pathological form, fatigue can be excessive and persistent, unresponsive to rest,
and negatively affecting life in many aspects (Annoni, Staub, Bogousslavsky, & Brioschi,
2008). This is the type of fatigue commonly experienced after stroke, referred to as post-
stroke fatigue (PSF). Karl Gustafsen, a 77 years old stroke patient suffering from PSF,

describes his experience with fatigue like this:

“In the aftermath of the stroke, my greatest challenge seems to be this endless quantity of
fatigue. It can be overpowering at times. Fatigue resulting from a stroke is recognized as a
different species from normal fatigue. It’s not just the physical sort you feel after, say, a
hard mountain climb, nor the mental weariness you might feel after a long day at work.
Post-stroke fatigue is more like a double whammy, hitting you broadside both mentally and
physically to produce a bone-tiredness that chases you at every turn and is impossible to

escape from, except in brief intervals” (Gustafson, 2019, p. 23).

Although fatigue is a fundamentally subjective experience, implying that we could find as
many definitions of fatigue as there are sufferers, Gustafson’s account paints a vivid picture
of fatigue from a first-hand perspective that resonates well with the commonly used
descriptions of post-stroke fatigue in the literature. And it touches on a central aspect of
post-stroke fatigue, namely that it separates from normal tiredness by being disproportionate
to efforts and difficult to relieve: it can be triggered by seemingly trivial activities, creating

unpredictable and frustrating conditions for rebuilding life after stroke.
While recent years has offered an increased awareness of post-stroke fatigue in the clinic and

a growing body of post-stroke fatigue research, our understanding of fatigue has not

developed proportionally to efforts (Kuppuswamy, 2017). One of the major challenges in
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research on post-stroke fatigue may be attributable to the nature of the phenomenon itself -
as an unspecific and subjective symptom with low diagnostic specificity and aberrant
definitions, fatigue presents as a challenging object for empirical research (DeLuca, 2005).
For the individual patient, fatigue can be particularly difficult to cope with due to the
invisibleness of the difficulties, leading to concerns about the legitimacy of the experience
and challenges with explaining their condition to others (Roding, Lindstrom, Malm, &
Ohman, 2003). Attempts to treat or alleviate post-stroke fatigue has largely fallen short, and a
recent Cochrane report concluded that we do not yet have sufficient empirical support for any
treatment (Wu, Kutlubaev, et al., 2015). Yet, its significance to patients can hardly be
understated. Around 40 percent of stroke patients listed fatigue as the worst, or one of the
worst, symptoms after stroke (Ingles, Eskes, & Phillips, 1999), and stroke care surveys have
identified fatigue, emotional and cognitive problems amongst the main unmet needs in stroke
survivors in the chronic phase (McKevitt et al., 2010; Walsh, Galvin, Loughnane, Macey, &
Horgan, 2015).

The observation that fatigue plays a prominent role in the late/chronic stroke phase has
important implications. Fatigue does not appear to follow a predictable trajectory of
improvement over time, and a recent meta-analysis suggests increasing rates of fatigue with
increasing time since stroke (Toby B. Cumming et al., 2018). Moreover, fatigue may present
as the only remaining stroke complication in patients with nearly fully recovered strokes
(Bogousslavsky, 2003; Staub & Bogousslavsky, 2001a). In this respect, fatigue represents for
many a major obstacle for going back to life as it were, as the early and excessive exhaustion
interferes with engaging in professional, social or leisure activities. Taken together, this
conveys a sense of urgency to the work of advancing the current understanding of post-stroke
fatigue, its constituents and correlates, and identification of efficient preventive or treatment

approaches.

This thesis aims at contributing evidence to further our understanding of what post-stroke
fatigue is and how it can be alleviated. Three papers are included, addressing fatigue in the
chronic stroke phase at different levels: Paper I examines how fatigue manifests at the
behavioral/cognitive level during a sustained attentional task, Paper II investigates the brain
neurological substrate of fatigue and Paper III evaluates the effects of noninvasive brain
stimulation combined with cognitive training on symptoms of fatigue and depression in a

randomized controlled design. The thesis is organized in three main parts: 1) an introductory
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section, where key concepts, current knowledge and knowledge gaps are discussed in relation
to the three papers comprising the thesis, 2) a section presenting the paper in terms of aims,
hypotheses, methods and results, and 3) a discussion of the thesis’ contribution to the field,

including methodological and ethical considerations, limitations, and future directions.

STROKE AND FATIGUE IN A HISTORICAL CONTEXT

Stroke is characterized by inadequate blood supply to the brain, causing brain cells to die
from lack of oxygen and nutrients. It can be of ischemic or hemorrhagic origin, and represents
a leading cause of deaths and disability worldwide (Donkor, 2018; Feigin, Norrving, &
Mensah, 2017; Johnson et al., 2019). On a global scale, the population growth, increased life
expectancy and increased prevalence of risk factors are likely to contribute to a rise in stroke
prevalence (Di Carlo, 2009; Feigin et al., 2014; Feigin et al., 2016). Although recent years
have offered major improvements in acute stroke care and survival rates (Lackland et al.,
2014; Walsh et al., 2015), stroke was among the main causes disability in 2013, accounting
for 4.5 percent of Disability-Adjusted Life Years (DALYSs) (Feigin et al., 2017). Adding to
the clinical and human burden of stroke, the economic costs associated with treatment,
rehabilitation and informal care are substantial (Di Carlo, 2009; Rajsic et al., 2019). For most
stroke survivors, having a stroke constitutes a life changing experience, and depending on
stroke severity, some may need life-long care. Persistent deficits after stroke can manifest in a
multitude of domains, including cognitive, motoric, language/speech, emotional and sensory-
motoric functions (P. W. Duncan, Goldstein, Matchar, Divine, & Feussner, 1992; Hankey,
Jamrozik, Broadhurst, Forbes, & Anderson, 2002; Leegaard, 1983). Among the long term
consequences of stroke, post-stroke fatigue is among the most frequently reported (Walsh et

al., 2015) and least understood (De Doncker, Dantzer, Ormstad, & Kuppuswamy, 2018).

While fatigue in association with other neurological diseases such as multiple sclerosis and
Parkinson’s disease has been widely recognized and extensively researched (de Groot,
Phillips, & Eskes, 2003; Staub & Bogousslavsky, 2001a), the acknowledgement of post-
stroke fatigue as an independent and frequent stroke sequela is relatively new. PSF was not
even mentioned in the 1996 first edition of the handbook “Stroke: A practical guideline to
management” (DeLuca, 2005). Fatigue after stroke was first addressed in an academic setting
by Leegaard (1983), within the framework of “diffuse cerebral symptoms” together with other
emotional and cognitive symptoms such as reduced memory, impaired attention and

emotional lability. In the following decades, post-stroke fatigue was little researched and
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generally considered to be a constituent of post-stroke depression (PSD) (Ponchel, Bombois,
Bordet, & Hénon, 2015). As fatigue is a common symptom of depression, and the majority of
depressed patients also experienced fatigue (P. N. Stein, Sliwinski, Gordon, & Hibbard,
1996), this was the dominant view until converging evidence of cases of post-stroke fatigue
frequently appearing independent of depression (Ingles et al., 1999). In the coming years,
numerous observations of patients suffering from fatigue in the absence of depression or other
significant impairments, sparked interest in post-stroke fatigue as a specific syndrome

(Bogousslavsky, 2003; Ingles et al., 1999).

EXTENT AND IMPLICATIONS

Prevalence

Despite a general consensus that post-stroke fatigue is prevalent in the stroke population,
prevalence rates are highly variably, with estimates ranging from 35% to 92% (F. Duncan,
Wu, & Mead, 2012). The discrepancies are explained in part by the lacking consensus on how
to define fatigue, the use of different scales and different cut-off values, as well as
heterogeneity in study designs and samples, where patients are assessed in different stages of
recovery (Acciarresi, Bogousslavsky, & Paciaroni, 2014; Wu, Mead, Macleod, & Chalder,
2015). Moreover, variation in stroke type, stroke severity, age of included stroke survivors

and number of comorbidities may affect estimates of prevalence rates (Ponchel et al., 2015).

Course of fatigue

The relationship between fatigue severity and time since stroke is encumbered with
uncertainty, with studies reporting both increasing (Schepers, Visser-Meily, Ketelaar, &
Lindeman, 2006), decreasing (Christensen et al., 2008) and stable (van Eijsden, van de Port,
Visser-Meily, & Kwakkel, 2012) levels of fatigue with time. Notably, a recent individual
participant meta-analysis including >2000 stroke patients assessed with the Fatigue Severity
Scale (FSS), suggested greater fatigue with increasing time since stroke (Toby B. Cumming et
al., 2018). Summarizing five longitudinal studies, Wu, Mead, et al. (2015) revealed that two
thirds of patients with fatigue at early assessments (within ~three months after stroke onset)
also reported fatigue in the chronic phase, while between 12 to 58% of the patients not
experiencing early fatigue, had developed fatigue in the chronic phase. These observations led
Wu, Mead, et al. (2015) to suggest three different temporal courses of fatigue; persistent

fatigue, recovered fatigue and late onset fatigue.

14



Although early fatigue has been consistently identified as a predictor for late fatigue (Lerdal
& Gay, 2013; Snaphaan, Van der Werf, & de Leeuw, 2011), the fact that fatigue can also
initially emerge during the chronic phase suggests that there may be several etiologies and
mediating factors following the acute stage (De Doncker et al., 2018). One conceptual model
by Wu, Mead, et al. (2015) is in line with these observations, drawing a distinction between
early and late fatigue. Here, they suggest that while early fatigue is predominantly determined
by stroke lesion characteristics and biological factors associated with the stroke, late fatigue
may be more strongly affected by behavioral and psychosocial factors, although residual
neurological deficits and disability may perpetuate late post-stroke fatigue both directly and
indirectly, through their effect on affective factors. However, studies have identified
associations between stroke lesion characteristics and fatigue at 15 and 18 months post stroke
onset (Snaphaan et al., 2011; Wai Kwong Tang et al., 2014), suggesting that stroke related
brain perturbations may mediate fatigue in the chronic phase as well, although the
mechanisms of such mediation are still largely unknown. I will elaborate on this subject in the

section on PSF and lesion characteristics below.

A related account of early versus late fatigue has implicated an acute immune response and
the secretion of inflammatory cytokines in the genesis of early fatigue (Ormstad, Aass,
Amthor, Lund-Sgrensen, & Sandvik, 2011, 2012; Wen, Weymann, Wood, & Wang, 2018).
While acute phase cytokines and other blood components predicted fatigue at 6 and 12
months post stroke onset, no such associations were found for fatigue at 18 months since

stroke (Ormstad et al., 2011), suggesting different pathways mediating early and late fatigue.

Implications

A growing body of research has related post-stroke fatigue to a range of negative outcomes.
Fatigue after stroke can prevent social participation and rehabilitation adherence (Glader,
Stegmayr, & Asplund, 2002; Nadarajah & Goh, 2015), and has been identified as an
independent contributor to disability (Mandliya et al., 2016) as well as a predictor of
increased mortality (Glader et al., 2002). The detrimental outcomes of persistent fatigue have
also been demonstrated in a long term follow up study where fatigue and depression were
identified as the major contributing factors to reduced quality of life in young stroke survivors
(Naess, Waje-Andreassen, Thomassen, Nyland, & Myhr, 2006). On a related note, fatigue

tends to be rated as a more severe symptom in patients with lower levels of physical or
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cognitive disability (Van Zandvoort, Kappelle, Algra, & De Haan, 1998), possibly reflecting
that fatigue constitutes and becomes a more salient symptom in patients with overall better
recovery and more subtle disabilities, or that otherwise well-recovered patients have higher
expectancies of things to return to normal and face higher demands from the environment (de

Groot et al., 2003; Staub & Bogousslavsky, 2001a).

MEASUREMENT, DEFINITIONS AND MODELS

The literature on fatigue in general is characterized by a lack of consensus on terminology,
conceptual frameworks and a vast number of different measurement instruments, and the PSF
field is no exception (Kuppuswamy, 2017; Manjaly et al., 2019; Skogestad, Kirkevold,
Indredavik, Gay, & Lerdal, 2019). In the following section, I provide a brief overview of

frequently used measurement scales, definitions and models.

Measurements

A systematic review by G. Mead et al. (2007) identified no less than 52 fatigue scales applied
in the literature, among which none were developed for post-stroke fatigue specifically. Based
on an evaluation of measurement validity in relation to PSF, Mead et al. (2007) recommended
the following four scales for post-stroke fatigue assessment: Fatigue Assessment Scale (FAS),
Profile of Mood States (POMS-Fatigue), Multidimensional Fatigue Symptom Inventory
(MFSI-General) and the vitality subscale of the SF-36v2 (McNair, Lorr, & Droppleman,
1971; Michielsen, De Vries, Van Heck, Van de Vijver, & Sijtsma, 2004; K. D. Stein, Martin,
Hann, & Jacobsen, 1998; Ware Jr & Sherbourne, 1992). Other reviews (Lauren B Krupp,
Nicholas G LaRocca, Joanne Muir-Nash, & Alfred D Steinberg, 1989) have identified the
Fatigue Severity Scale (FSS) among the most commonly used measure for post-stroke fatigue
(Toby B Cumming, Packer, Kramer, & English, 2016; Lerdal et al., 2009). The FSS is also
recommended by the American Heart Association (AHA) for assessing fatigue after stroke

(Hinkle et al., 2017).

Definitions and models

The subjective nature of fatigue implies that the patient”s self-reported experience is the
primary basis for definitions and measurement (De Doncker et al., 2018). Commonly applied
definitions in the literature are “fatigue is a feeling of lack of energy, weariness, and aversion
to effort” (G. Mead et al., 2007), and “decrease or loss of abilities associated with a

heightened sensation of physical or mental strain, even without conspicuous effort, an
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overwhelming feeling of exhaustion, which leads to inability or difficulty to sustain even
routine activities and which is commonly expressed verbally as a loss of drive” (Staub &

Bogousslavsky, 2001a, p. 76). Other definitions found in the literature include:

“A feeling of physical tiredness and lack of energy that is (de Groot et al.,
described as pathological, abnormal, excessive, chronic, 2003)
persistent or problematic”

“A feeling of weariness, tiredness, and lack of energy that is (Choi-Kwon & Kim,
pathologic and chronic» 2011)

“A subjective lack of physical and/or mental energy that is (Haselkorn, Balsdon
perceived by the individual or caregiver to interfere with usual Richer, & Fry

and desired activities” Welch, 2005)

(Commonly used definition of fatigue in multiple sclerosis)

“A subjective experience of extreme and persistent tiredness, (Zedlitz et al., 2012)
weakness or exhaustion after stroke, which can present itself
mentally, physically or both and is unrelated to previous exertion
levels”

“Over the past month, there has been at least a 2 week period (Lynch et al., 2007)
when patient has experienced fatigue, a lack of energy, or an
increased need to rest every day or nearly every day. And this
fatigue has led to difficulty taking part in everyday activities”
(Case definition for community-dwelling patients)

Fatigue has also been defined from a more mechanistic perspective, proposing that
“pathological fatigue is, thus, be best understood as an amplified sense of normal
(physiological) fatigue that can be induced by changes in one or more variables regulating
work output. Fatigue could develop during a disease because of dissociation between the
level of internal input (motivational and limbic) and that of perceived exertion from applied

effort” (Chaudhuri & Behan, 2004, p. 979).

A recent theoretical development incorporates the acute immunological response with a
mechanistic understanding of fatigue in the chronic stage (Kuppuswamy, Rothwell, & Ward,
2015). The authors speculate that the early proinflammatory environment may depress motor

cortex excitability, and that these changes are irreversible in some patients, possibly
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dependent on genotypes. The authors further suggest that such motor deficits coupled with
alterations in sensory processing and poor sensory attenuation give rise to fatigue through an
increase in “estimated action cost” or effort (De Doncker et al., 2018; Kuppuswamy et al.,

2015).

As fatigue is considered a complex, multidimensional phenomenon, most theoretical accounts
take on a biopsychosocial approach. Lerdal et al. (2009) focus on how fatigue is experienced,
and propose a model consisting of three components; fatigue antecedents, experiences and
effects. The suggested antecedents are personal factors, pre-stroke fatigue, stroke
characteristics, biomarkers, and chronic diseases, while the component of experience also
incorporates other concomitants of stroke, like depression, anxiety and sleep disturbance.
Also according to the biopsychosocial framework, a model by Ormstad and Eilertsen (2015)
propose that early fatigue is related to immune response and kynurenine pathway activation,
but simultaneously emphasizes the importance of acknowledging fatigue in the late phase as a
means of facilitating adaptive coping and thus decrease the risk of developing depression.
Underscoring the complexity of post-stroke fatigue and the probability of numerous
mechanisms in play, studies have identified sleep problems (Naess, Lunde, Brogger, & Waje-
Andreassen, 2012), anxiety (Toby B. Cumming et al., 2018; Wu, Barugh, Macleod, & Mead,
2014), pain (Naess et al., 2012; Wai Kwong Tang et al., 2014), various medications (Chen &
Marsh, 2018), lack of social support (K. M. Michael, Allen, & Macko, 2006), aphasia (Glader
et al., 2002; Staub & Bogousslavsky, 2001b), reduced physical function (Lerdal et al., 2011;
Aarnes, Stubberud, & Lerdal, 2020) and depression (Ponchel et al., 2015; Wu et al., 2014) to
be associated with fatigue. Yet, causality has been hard to establish, and for many of the

mentioned factors, the existence of a bidirectional relationship is likely.

As evident from the above definitions, post-stroke fatigue can manifest in the psychological
and physical domains, and the notion of an increased weariness and sense of effort is central
to several definitions. Regarding the mental aspect of the fatigue experience, there are several
frameworks emphasizing the role of subtle cognitive deficits, particularly within attention and
processing speed (Bushnik et al., 2015; Birgitta Johansson & Ronnback, 2014; Birgitta
Johansson & Ronnbéck, 2012). The coping hypothesis (Van Zomeren, Brouwer, & Deelman,
1984; Van Zomeren & Van den Burg, 1985) originally developed in relation to patients with

traumatic brain injury, in brief proposes that subtle cognitive impairments require
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compensatory effort to maintain performance, which leads to the subjective feeling of fatigue.
Evidence from imaging studies have provided some support to this framework by showing
that, compared to healthy controls, individuals with TBI display increased brain network
activity when performing attentional tasks (Kim et al., 2012; Kohl, Wylie, Genova, Hillary, &
Deluca, 2009). Yet, the question of how or whether brain lesion characteristics in stroke relate
to fatigue in the chronic phase, remains open. Below, I elaborate on the association between

stroke lesions, cognitive deficits and fatigue.

STROKE LESIONS AND FATIGUE

Although the brain perturbations caused by the cerebral infarct is assumed to be a
precipitating event in the development of post-stroke fatigue, the relationship between stroke
lesion characteristics and fatigue etiology remains elusive (Paciaroni & Acciarresi, 2019).
Observations of fatigue being more prevalent in the aftermath of minor strokes compared to
transient ischemic attacks (TIA)(Naess et al., 2012; Winward, Sackley, Metha, & Rothwell,
2009) suggest that the cerebral infarction is of importance. Moreover, fatigue after stroke is
described as qualitatively different than normal tiredness or pre-stroke fatigue by stroke
survivors (Flinn & Stube, 2010; Thomas, Gamlin, De Simoni, Mullis, & Mant, 2019), and the
fact that fatigue is a hallmark symptom in a range of neurological diseases and acquired brain

injuries, also speaks of a central origin (Chaudhuri & Behan, 2004).

The findings on the relationship between fatigue and lesion characteristics are partly
conflicting and largely inconclusive. One study identified basal ganglia infarcts as predictors
of fatigue (Wai Kwong Tang et al., 2010), and caudate infarcts have been found to be more
frequent in patients with fatigue (W. K. Tang et al., 2013). Moreover, Wai Kwong Tang et al.
(2014) observed an increased risk of non-remitting post-stroke fatigue at 15 months post-
stroke in patients with subcortical white matter infarcts, whereas Snaphaan et al. (2011) found
higher risk of fatigue at 15 months post-stroke in patients with infratentorial lesion. Regarding
the latter, brain stem and thalamic strokes have been associated with post-stroke fatigue
(Mutai, Furukawa, Houri, Suzuki, & Hanihara, 2017), as have basilar artery infarctions
(Naess, Nyland, Thomassen, Aarseth, & Myhr, 2005). It has been hypothesized that
disruptions to the reticular activation system and associated subtle attentional deficits may
contribute to PSF (Staub & Bogousslavsky, 2001b) and that disconnection between insula and
the anterior cingulate cortex or frontal lobe, caused by right insula damage, may cause

impaired energy or drive (Manes, Paradiso, & Robinson, 1999). Yet, the clinical
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generalizability of these findings remains unclear, as several studies report no significant
association between stroke location- or type, and fatigue (Appelros, 2006; Ingles et al., 1999;
Kutlubaev et al., 2013; G. E. Mead et al., 2011; Ormstad et al., 2011; Radman et al., 2012;
Schepers et al., 2006).

The lack of consistency with regards to the brain correlates of post-stroke fatigue may be
partly attributable to varying times of measurement and differences in how lesion
characteristics are defined and specified. Moreover, although lesion-based localization studies
have produced indispensable insights in the relationship between brain and behavior, there is
an increasing awareness of its inherent limitations. One of the key concerns stems from the
clinical observation that lesions in different locations can give rise to the same clinical
symptoms (Corbetta et al., 2015; Fox, 2018; Vuilleumier, 2013), through processes like e.g.
diaschisis (where focal injury causes remote neurophysiological changes in distant regions)
(Carrera & Tononi, 2014; von Monakow, 1914) and disconnection (Geschwind, 1974).
Moreover, accumulating neuroimaging evidence suggest that many symptoms are related to
complex brain networks in anatomically distant but interconnected regions (Lim & Kang,
2015), and that lesions affecting densely connected hubs or white matter pathways may be
associated with more severe symptoms (Fox, 2018), implying that even smaller lesions may
have large implications if localized in such areas. Following this logic, certain clinical
symptoms in the aftermath of stroke, such as fatigue, may be mediated not primarily by the
localization or size of the focal lesion, but rather by the functional neuroanatomy of the
implicated networks and degree of preserved network function (Bartolomeo & de Schotten,

2016; de Schotten, Foulon, & Nachev, 2020; Lim & Kang, 2015).

Methods including connectivity-based measures, capturing network perturbations beyond the
focal lesion, may therefore provide both a theoretically and clinically relevant tool for
studying associations between lesion impact and specific symptoms after stroke. Newer
advances/developments now allow for indirect estimations of individual lesions’ effect on
global brain connectivity (Foulon et al., 2018). Such lesion-network mapping approaches has
been applied to the study of a variety of brain disorders (Darby, Joutsa, & Fox, 2019;
Ferguson et al., 2019; van den Heuvel & Sporns, 2019), and recent work suggest improved
predictive value with inclusion of implicated network projections (de Schotten et al., 2020;
Griffis, Metcalf, Corbetta, & Shulman, 2019). Yet, this approach had not yet been applied to

study post-stroke fatigue. In Paper II, we therefore investigate whether an indirectly estimated
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maps of structural disconnection add insight on the relationship between lesion-related brain

disconnectivity and fatigue beyond what is detectable by conventional lesion measures.

COGNITIVE IMPAIRMENTS AND FATIGUE

Long-term cognitive impairments are frequent following stroke (Mahon et al., 2017,
Schaapsmeerders et al., 2013) and have been hypothesized to contribute to fatigue after
acquired brain injuries (Birgitta Johansson & Ronnback, 2014; Ponsford et al., 2012).
Problems with attention and memory are common complaints in otherwise well-recovered
patients with PSF (Birgitta Johansson & Ronnbéck, 2012; Koopman et al., 2009), and many
report increased fatigue when engaging in tasks requiring mental effort, referred to as mental
fatigue (Birgitta Johansson & Ronnback, 2014). Still, the accumulated evidence on

associations between post-stroke fatigue and objective cognitive correlates is divergent.

A recent review paper including 11 studies on post-stroke fatigue and cognition concluded
that there are currently no convincing evidence of a significant association between global
cognitive status and fatigue after stroke, but suggestive evidence of an association between
attention, processing speed, memory and fatigue (Lagogianni, Thomas, & Lincoln, 2018),
mirroring a previous review from Ponchel et al. (2015). Also, studies reporting no association
between PSF and cognition tend to use rather coarse measures of general cognitive function,
such as the Mini-Mental State Examination (MMSE; (Folstein, Folstein, & McHugh, 1975;
Kutlubaev et al., 2013; van Eijsden et al., 2012), which may not be sufficiently sensitive to
individual differences in less severe end of the clinical spectrum (Holtzer, Shuman, Mahoney,

Lipton, & Verghese, 2010; Snaphaan et al., 2011).

It has been speculated that cases of post-stroke fatigue may be associated with subtle
attentional impairments that is not readily revealed by standard neuropsychological
assessments (Bogousslavsky, 2003), and that tests putting stronger demands on processing
speed and attentional function over time may be more appropriate for detecting mental fatigue
and its cognitive correlates (Holtzer et al., 2010; Birgitta Johansson & Ronnbick, 2012;
Jonasson, Levin, Renfors, Strandberg, & Johansson, 2018). Moreover, assuming that a key
clinical characteristic of mental/cognitive fatigue is “decreased performance during acute but
sustained mental effort” (DeLuca, 2005), temporal analyses/monitoring of performance may

provide information that is not revealed by sum scores.
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As revealed by a review on cognitive correlates (Lagogianni et al., 2018), the majority of
significant correlations between self-reported fatigue and cognitive function were identified
using mental fatigue sub-scales, and not general scales such as the FSS. Although the former
may be more sensitive for the mental aspect of fatigue, it is plausible that reported
correlations were higher because the items in mental fatigue scales also reflect subjective
cognitive complaints rather than general fatigue (i.e. “I had trouble concentrating” (attention),
“I have been forgetful” (memory), and “My thinking has been slowed down” (processing
speed). The significant correlations may thus in part reflect an association between subjective
and objective measures of cognitive impairments, rather than a relationship between general
fatigue and cognition. In line with this, it has been suggested that for the purpose of
evaluating the association between cognitive function and fatigue, general measures of fatigue

should be included (Lagogianni et al., 2018).

In Paper I we therefore investigated the association between subjective general fatigue,
attentional function and mental fatigue as defined above (“decreased performance during
sustained effort”) using the Attention Network Test (ANT; Fan, McCandliss, Sommer, Raz, &
Posner, 2002). The ANT is a widely used experimental paradigm, combining a cued reaction
time task (Posner, 1980) with a flanker task (Eriksen & Eriksen, 1974), allowing for parsing
of attentional components. Moreover, because the tasks involves 288 trials and lasts for 20
minutes, the effects of sustained effort can be evaluated. Furthering our understanding of the
relationship between subjective fatigue, mental fatigability and attentional function is
imperative, as these putatively connected constructs represent common obstacles to almost

recovered stroke survivors hoping to return to previous activities and everyday life (Birgitta

Johansson & Ronnbick, 2012).

HOW CAN POST-STROKE FATIGUE BE ALLEVIATED?

Despite the growing acknowledgement of post-stroke fatigue as a distressing and prevalent
problem after stroke, there is still uncertainty about how it can best be managed and
alleviated. A randomized controlled trial demonstrated that a 12-week cognitive therapy
intervention alleviated fatigue, with best effects being obtained when augmenting therapy
with graded activity training (A. M. Zedlitz, Rietveld, Geurts, & Fasotti, 2012). However, the
authors point to several study limitations such as lack of sham/control conditions, implying
that the generalizability of the findings is uncertain. Mindfulness-based interventions have

also shown some promise for alleviating fatigue in patients with MS and acquired brain
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injuries (B. Johansson, Bjuhr, & Ronnbéck, 2012; Ulrichsen et al., 2016). Still, a 2015
Cochrane review comprising 12 intervention studies concluded that the evidence of the
included treatments’ efficacy was insufficient (Wu, Kutlubaev, et al., 2015). Following this, a
pilot RCT has demonstrated beneficial effects of cognitive behavioral therapy (CBT)
compared to treatment as usual (Nguyen et al., 2019), and a phase II trial has shown
promising effects of modafinil with regards to fatigue and quality of life (Bivard et al., 2017).
Due to the putative association between post-stroke fatigue and specific cognitive deficits,
cognitive rehabilitation has been put forward as potentially relevant intervention for this
patient group (Aarnes et al., 2020). Recently, a clinical trial revealed evidence supporting
beneficial effects of a single session of tDCS in mildly impaired stroke patients suffering from
high fatigue (De Doncker, Ondobaka, & Kuppuswamy, 2021). Together with positive effects
from tDCS fatigue studies in other patient populations, this may suggest that tDCS has

potential to relieve post-stroke fatigue.

tDCS

The interest in non-invasive brain stimulation techniques has grown significantly in the past
20 years (Fregni et al., 2015). tDCS represents one of the most frequently applied and
extensively researched neuromodulatory techniques (Brunoni et al., 2012). It is typically
administered via a battery-driven direct current stimulator with two electrodes (anodal and
cathodal), whose location on the scalp is decided according to the brain functions of interest
(Stagg & Nitsche, 2011). While the specific mechanisms by which tDCS modulate behavior
are still unclear and reliable neurophysiological effects have been difficult to establish
(Horvath, Forte, & Carter, 2015), the main mechanism of action is generally assumed to be
altered cortical excitability induced by subthreshold modulation of neuronal membrane
potential (Purpura & McMurtry, 1965; Woods et al., 2016). When coupled with relevant
actions or tasks targeting the behavior one wish to modulate, altered cortical excitability may

facilitate synaptic plasticity through LTP-like effects (Au et al., 2016; Woods et al., 2016).

Due to its assumed neuromodulatory properties, tDCS has been evaluated as a therapeutic
intervention in a range of disorders, including but not limited to, Alzheimer’s disease, chronic
pain, depression and stroke recovery within motor and cognitive domains (Paulo Sergio
Boggio et al., 2012; DaSilva et al., 2012; Lindenberg, Renga, Zhu, Nair, & Schlaug, 2010; L.
Valiengo et al., 2016; L. C. L. Valiengo et al., 2017). There is evidence suggesting that tDCS

can boost the effects of behavioral interventions like language treatment for aphasia
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(Fridriksson, Richardson, Baker, & Rorden, 2011) and cognitive training (Au et al., 2016; Jo
et al., 2009; Martin, Liu, Alonzo, Green, & Loo, 2014), but the generalizability of such
findings is unclear. Moreover, several studies have reported beneficial effects on fatigue after
tDCS in patients with multiple sclerosis (Chalah et al., 2020; Charvet et al., 2018; Ferrucci et
al., 2014), and the aforementioned study by De Doncker, Ondobaka, and Kuppuswamy

(2020) found improvement of fatigue in stroke patients after a single session of anodal tDCS.
While such preliminary findings are promising, it remains to be confirmed whether the
fatigue-reducing effects of repeated tDCS seen in multiple sclerosis patients can be
generalized to chronic stroke samples. This question is addressed in Paper 111, where the
effects of tDCS in combination with computerized cognitive training is evaluated with regards

to self-reported symptoms of fatigue and depression.

Computerized cognitive training

Based on the general and emerging principle of the plastic brain, that is, the brain’s ability to
change in response to experience, the number of studies attempting to restore or improve
cognitive functions through systematic training has been growing rapidly (Shipstead, Redick,
& Engle, 2012). CCT is one on several types of cognitive training, typically consisting of
repeated, structured sessions of various computerized tasks. The basic assumption is that
repeated practice of tasks targeting specific cognitive abilities can lead to improved cognitive
functioning bearing real-life implications (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008;
Sternberg, 2008). The latter is typically the main goal, and is inherently relying on far-transfer
effects, where improvement in performance on trained tasks will generalize to outcomes that

are dissimilar to the trained tasks and ultimately every day functioning.

The identification of working memory as a central component of the cognitive system with a
close relationship to higher cognition has motivated the development of training programs
specifically targeting working memory functioning, with the hypothesis that working memory
improvement may generate broader cognitive benefits (Klingberg et al., 2005; Morrison &
Chein, 2011; Shipstead et al., 2012). While early findings were highly encouraging,
suggesting that a fixed number of practices could produce increases in fluid intelligence
(Jaeggi et al., 2008) and decrease symptoms of ADHD (Klingberg et al., 2005), a growing
number of subsequent studies have failed to replicate the initial, promising effects (Redick,
2019). Specifically, the generalizability of practice effects beyond the specific training

context (far-transfer effects) has been subject to much controversy and problematic to
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establish. Several meta-analyses conclude that training effects are predominantly found in
near-transfer tasks (tasks that are similar to the trained tasks), while evidence in support of
generalized far-transfer benefits is weak to non-existent (Melby-Lervag, Redick, & Hulme,
2016; Sala & Gobet, 2019). Yet, other meta-analyses have reported evidence for far transfer-
effects, albeit smaller than near-transfer effects (Karbach & Verhaeghen, 2014) or evidence of
effects under specific circumstances and for certain patient groups (Hill et al., 2017; Weicker,

Villringer, & Thone-Otto, 2016).

Summary

Accumulating evidence suggests that fatigue continues to impose a significant burden on
stroke survivors’ quality of life in years after stroke onset. However, current understanding of
underlying mechanisms remain elusive, and effective treatment options are still not identified.
It has been speculated that subtle cognitive deficits, particularly within attentional functions,
may play a role in PSF etiology. Still, the literature on the relationship between fatigue and
cognition remains largely inconclusive, possibly due to the use of screening measures with

low sensitivity to subtle deficits and fatigue.

Among the biological correlates of post-stroke fatigue, stroke lesion characteristics have been
most frequently studied. However, the predictive value of conventional lesion characteristics
such as location, size or type, have remained unclear. Connectome-based approaches such as
indirectly estimating the extended structural network disconnectivity implied by the lesion
have not yet been applied to target post-stroke fatigue, and may have the potential to reveal

new knowledge on the association with brain perturbations and fatigue.

Regarding treatment of post-stroke fatigue, the need for efficient interventions is widely
recognized. Studies on fatigue in other neurological populations suggest that tDCS may have
the potential to alleviate post-stroke fatigue. Coupled with computerized cognitive training,
tDCS may be particularly efficient considering the hypothesized association between fatigue
and cognitive impairments, but the effects and acceptability of repeated tDCS on post-stroke

fatigue should be evaluated in randomized controlled trials.
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MAIN RESEARCH OBJECTIVES AND HYPOTHESIS

PAPER I

Post-stroke fatigue is a prevalent and persistent symptom among stroke patients, and the
current lack of a mechanistic understanding of its pathophysiology has impeded the
development of targeted rehabilitation programs. Cognitive difficulties are common among
stroke patients with post-stroke fatigue, but studies using conventional neuropsychological
assessments have yielded divergent findings on the cognitive signatures related to post-stroke
fatigue. In contrast to standard neuropsychological assessment, computerized assessment of

sustained attention may be more sensitive to cognitive manifestation of fatigue.

Hence, the main objectives of Paper I was to characterize the relationship between
subjectively reported fatigue and attentional function as measured by the ANT, and to
investigate whether and how fatigue manifest in performance during sustained mental effort.
The ANT was chosen as it is a widely used and well documented paradigm, enabling parsing
of different attentional networks while simultaneously allowing for evaluating time-effects on
performance. Based on previous literature on fatigue in other populations (Holtzer et al.,
2010; Pauletti et al., 2017), we hypothesized that subjective fatigue would be associated
primarily with executive network efficiency, and that subjective fatigue would interact with
time-on-task, resulting in reduced performance after sustained effort for patients with high
fatigue. A second aim was to evaluate whether a computational approach using drift diffusion
modeling (DDM) of the behavioral data could elaborate the understanding of the
hypothesized relationship between subjective fatigue and sustained performance. DDMs
applied to fast two-choice decision tasks provide estimates of the cognitive processes assumed
to underlie observed behavior (Roger Ratcliff & McKoon, 2008). In an exploratory analysis,
we fitted a hierarchical drift diffusion model to the ANT behavioral data, and tested for
associations between model parameters and subjective fatigue. Due to the exploratory

approach, no specific hypotheses were defined.
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PAPER 11

Brain perturbations caused by the stroke lesion are assumed to be precipitating events in post-
stroke fatigue etiology, but the specific predictive value of key lesion characteristics such as
location and neuroanatomical distribution is still uncertain (De Doncker et al., 2018). The
brain is increasingly conceptualized as a complex, highly interconnected network, implying
that abrupt changes to key neural pathways can spark cascade effects by altering connectivity
in remote cortical areas (Fox, 2018; Rehme & Grefkes, 2013). In this context, even small,
focal lesions can cause connectome-wide perturbations if occuring in densely connected
areas. Recent advances within neuroimaging have resulted in remarkable roadmaps of brains’
connectivity, collectively coined the brain connectome, and such templates derived from
normative samples have enabled the indirect estimation of disconnection caused by individual
lesions (Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut de Schotten, & Corbetta, 2020).
In support of a (dis)connectivity approach, recent work suggest that lesions affecting large
white matter pathways cause a greater number of symptoms (Corbetta et al., 2015), as do
lesions affecting highly connected hubs (Warren et al., 2014). Such lesion-network mapping
approach has been applied to the study of a variety of brain disorders (Darby et al., 2019;
Ferguson et al., 2019; van den Heuvel & Sporns, 2019), and may provide a more sensitive

measure to capture the brain perturbations associated with fatigue.

In light of the considerable inconstancy in the existing research literature examining the
relationship between lesion characteristics and fatigue, the main aim of this study was to
investigate the added explanatory value of a structural disconnectivity approach compared to
conventional lesion-symptom mapping. Because no previous studies have examined post-
stroke fatigue by a disconnectivity approach, we had an agnostic view regarding involvement
of specific brain networks and conducted a whole-brain analysis. However, based on recent
work suggesting improved predictive value with inclusion of network projections (de
Schotten et al., 2020; Griffis et al., 2019), we hypothesized that the disconnectivity based
approach would exhibit higher sensitivity to fatigue than conventional measures of lesion

characteristics.
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PAPER I11

Despite a growing awareness of post-stroke fatigue in research and the clinic, few treatment
options exist for fatigue. Simultaneously, fatigue and emotional distress rank high among
patients’ reports of unmet needs in life after stroke, underscoring the importance of
identifying effective treatments. There are studies suggesting that non-invasive brain
stimulation techniques such as tDCS have may have the potential to alleviate fatigue and
depression in other patient groups, but the acceptability and effects of repeated tDCS for post-
stroke fatigue in chronic stroke patients need to be further explored. Moreover, due to the
assumed link between subtle cognitive impairments and mental fatigue, cognitive training
may prove beneficial for patients with post-stroke fatigue. The aim of this study was to
evaluate the added effect of tDCS combined with cognitive training with regards to alleviate
fatigue and depression. 74 chronic stroke patients were included in a randomized sham-
controlled design, where tDCS or sham stimulation were administered simultaneously with
computerized cognitive training. We hypothesized that patients receiving real stimulation
would display larger reductions in fatigue and depression symptoms than patients receiving

sham.

In recognition of the strong association and clinical overlap between fatigue and depression,
we used an exploratory network-approach to map the relationship between individual fatigue-
and depression symptoms at baseline and across five time points. Repeated measures of
symptom severity also provide relevant information on stability and fluctuations in individual
symptoms over time. Due to the exploratory approach assumed, no specific hypotheses were

formulated for the network analyses.
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RESEARCH QUESTIONS

PAPER I

Is subjective fatigue associated with attentional network efficiency as measured by the ANT,
and is subjective fatigue associated with mental fatigability conceptualized as reduced
performance with sustained mental effort? Can the use of a computational approach (hDDM)

expand our understanding of fatigue-related differences in performance?

PAPER 11

Does applying a structural disconnectivity approach add to our understanding of the neuronal
underpinnings of post-stroke fatigue in the chronic stroke phase beyond what is revealed by

conventional lesion characteristics?

PAPER I11

Can tDCS combined with computerized cognitive training alleviate symptoms of fatigue and
depression in chronic stroke patients? Is degree of fatigue associated with training gain and
the probability of completing the intervention? How do individual symptoms of depression

and fatigue fluctuate over time, and how do symptoms vary in terms of network centrality?
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MATERIAL AND METHODS

DESIGN AND GENERAL SETTING

This thesis is part of the StrokeMRI study (Beck et al., 2021; Dgrum et al., 2020; Kolskaar et
al., 2020; Richard, Petersen, et al., 2020; Sanders et al., 2021), a collaborative research project
with an overarching goal to identify determinants of stroke rehabilitation and recovery as well
as successful ageing and brain health. For this purpose, both healthy control participants and
stroke patients were included. A central part of the project was to evaluate the clinical
feasibility of combined tDCS and computerized cognitive training with regards to
improvement of cognitive function in particular. In this respect, the assessment of tDCS’
effects on post-stroke fatigue and depression presented in Paper III should be regarded pre-

specified, but exploratory endpoints.

PARTICIPANTS

Healthy Control group

Healthy control group participants were recruited through newspaper advertisements, word-
of-mouth and online social media. Of the 500 persons responding, approximately 400 persons
were deemed eligible for inclusion after a telephone screening interview. A final sample of
346 healthy controls completed a comprehensive test protocol, including a battery of
cognitive assessments, self-reports of mental distress, multimodal MRI and blood sampling.
General inclusion criteria were age > 18 with no known diagnoses of neurological or
psychiatric disease, no previous strokes or other acquired brain injuries. Persons taking
medications with significant effect on central nervous system functioning were also excluded.

As with the stroke patients, MRI-contraindications were a criterion for exclusion.

Patient Sample

Stoke survivors in a chronic phase (Paper I — III) were recruited from the stroke unit at Oslo
University hospital (OUS) and the Geriatric Department at Diakonhjemmet Hospital. Suitable
participants were identified by the hospital staff, and invitation letters were sent to

approximately 900 patients admitted with acute stroke between 2013-2016, of which
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approximately 250 responded to decline or to receive more information. Following an initial
telephone screening, 77 patients were deemed eligible and scheduled for inclusion. Paper II
included an additional subsample of 18 patients recruited within 14 days of hospital
admittance. These patients participated in an affiliated stroke-MRI sub-study (not the RCT),
and the data presented in Paper II were collected from follow-up tests conducted at minimum

three months post stroke.

We included patients aged 18 or older, with clinically documented stroke of ischemic or
hemorrhagic etiology. Exclusion criteria included contraindications for MRI (i.e. metal
implants, claustrophobia, pregnancy), other neurological conditions diagnosed prior to the

stroke, severe mental illness and drug abuse.

Table 1 presents sample descriptive information for each paper, while Figure 1 describes the

study protocol for patients:

Table 1
Paper I Paper 11 Paper III

Patients (N) 53 84 74 baseline/ 54
complete*

Months since stroke 25 (6 — 45) 22 (3 -45) 25 (6 —45)

Age, years (mean(SD)) 69.0 (7.43) 65.8 (12.6) 69.1 (7.3)

Age range, years 47 - 81 24 - 87 47 - 81

Males/Females (count) 38/15 60/24 40/14

Healthy controls (count) NA 155 (age/sex-matched) | NA

Design Cross sectional | Cross sectional RCT/Cross sectional

*Table data reported on completing patients
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First Baseline Assessment:
Cognitive and Clinical Assessment + MRI

Waiting Period

2 - 4 weeks

Second Baseline Assessment:

Cognitive and Clinical Assessment + MRI + blood sample + EEG

Intervention:
17 CCT sessions and 6 tDCS/sham stimulations over 3 weeks

Group 1 (n=27) Group 2 (n=27)
CCT + anodal tDCS 2x a week CCT + sham tDCS 2x a week

Post Intervention Assessment:
Cognitive & Clinical Assessment + MRI + blood sample

Fig. 1. Flow chart of study protocol and timeline from baseline to post-assessments.

SELF-REPORT SCALES AND COGNITIVE ASSESSMENTS

All self-report and cognitive data included in the present study were collected using validated

and standardized neuropsychological tests and questionnaires.

Fatigue Severity Scale

FSS is a one-dimensional, 9-item scale, originally developed to assess fatigue in patients with
multiple sclerosis and lupus (L. B. Krupp, N. G. LaRocca, J. Muir-Nash, & A. D. Steinberg,
1989). In the later years it has been extensively used in other neurological conditions, and it is
currently one of the most frequently used self-report measures to assess fatigue severity after
stroke (Lerdal et al., 2011; Whitehead, 2009). A recent psychometric study concluded that
FSS is reliable and valid for measuring fatigue in stroke patients, but has limited specificity

for differentiating stroke-related fatigue from fatigue in other populations (Ozyemisci-
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Taskiran, Batur, Yuksel, Cengiz, & Karatas, 2019). Although FSS was designed to assess the
impact of fatigue in daily life on specific types of functioning (Krupp et al., 1989), it is now
primarily used as a unidimensional measure of fatigue severity (Dittner, Wessely, & Brown,
2004). While this may represent a limitation of the scale, applying a widely used scale
facilitates comparison with previous studies, as well as synthesizing and communication of
results. Moreover, a review including 18 fatigue scales concluded that FSS was among the
three measures that demonstrated good psychometric properties, as well as an ability to detect
change in fatigue over time (Whitehead, 2009). The latter is considered important, as we in
Paper III reported fatigue measures at five consecutive time points. Different cut off values
for clinically significant fatigue are reported in the literature. Commonly used values are > 4
(L. B. Krupp et al., 1989; Nadarajah & Goh, 2015; Schepers et al., 2006; Wai Kwong Tang et
al., 2010) or = 5 (Kjeverud et al., 2020; Lerdal, Wahl, Rustoen, Hanestad, & Moum, 2005;
Naess et al., 2012).

Patient Health Questionnaire for depression

Symptoms of depression were measured by The Patient Health Questionnaire 9 (PHQ-9;
(Kroenke, Spitzer, & Williams, 2001). PHQ-9 is a nine-item self-report scale, based on the
DSM-IV criteria for depression. Items are scored from 0-3, reflecting presence of symptoms
(0 - not at all, 3 — nearly every day). The PHQ-9 has proven a reliable and valid measure of
depression and depression severity in the general population and in stroke patients (Beard,
Hsu, Rifkin, Busch, & Bjorgvinsson, 2016; Williams et al., 2005), where a cut off value of 10

has demonstrated good sensitivity and specificity for major depression (Williams et al., 2005).

Other measures

Information on sleep quality was collected by Pittsburg Sleep Quality Index (PSQI; Buysse,
Reynolds Iii, Monk, Berman, & Kupfer, 1989) and subjective cognitive, perceptive and
motoric problems assessed by the Cognitive Failures Questionnaire (CFQ; Broadbent,

Cooper, FitzGerald, & Parkes, 1982).

Cognitive assessments
General cognitive abilities were assessed by the subtests “Vocabulary” and “Matrix
Reasoning” from Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI 1I;

Wechsler, 2011). Screening for cognitive impairment was done by The Montreal Cognitive
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Assessment (MoCA; Nasreddine et al., 2005) and the Mini-Mental State Examination
(MMSE; Folstein et al., 1975). The ability to inhibit cognitive interference was assessed by
D-KEFS color-word interference test (Delis, Kaplan, & Kramer, 2001) and the California
Verbal Learning Test (CVLT; Delis, 2000) was used as a measure of episodic verbal learning
and memory. A complete overview of measures included in the StrokeMRI protocol but not

presented in the present work, can be found in Richard, Kolskér, et al. (2020).

The Attention Network Test (ANT)

In Paper I, we analyze and report behavioral data collected with the ANT (Fan et al., 2002), a
widely used computerized test of attentional function. In the ANT, a cued response time (RT)
task (Posner, 1980) is combined with the Erikson flanker test (Eriksen & Eriksen, 1974) into
one experimental paradigm, allowing for parsing of three different components of attention,
assumed to be largely independent from each other (Fan et al., 2002). Briefly, these are an
executive control component, based on RT change associated with the introduction of a
cognitive conflict (the details of the test are illustrated in Figure 2, as presented in Paper I), an
alerting component, based on RT change accompanying a temporal cue/warning signal that
the stimulus is about to occur and reflecting vigilance, and an orienting component, based on
change in RT resulting from getting a cue on where the stimulus will occur, thus providing
information about how efficiently the individual selects and orients towards sensory

information (Posner & Petersen, 1990).

We applied a conventional version of the ANT, as previously described (Fan et al., 2002).
Figure 2 depicts the details of the task. Briefly, participants were instructed to keep their gaze
towards a fixation cross presented for 400, 800, 1200 or 1600 milli seconds. Immediately
succeeding the fixation cross, and prior to the target stimulus, one out of four cues would
appear for 100 milliseconds; a spatial cue (temporal and spatial cue), a center cue (temporal
cue only), a double cue (temporal cue only), or no cue. Then, the task stimulus of five arrows
was presented for 1700 milliseconds, and the participant was instructed to decide whether the
middle arrow (target arrow) was pointed left or right. Responses were executed by pressing
the right or left mouse button. Participants were encouraged to make responses as quickly and

as accurately as possible.
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The full paradigm consisted of a practice block of 24 trials followed by three rounds of 96
trials each (corresponding to 288 trials in total). Each round lasted approximately 6 minutes
and participants were encouraged to take a short break (maximum 2 minutes) between each
round. E-prime software (Psychology Software Tools, Pittsburgh, PA) was used for setting up

the experiment and collecting the responses.

Figure 2 shows details of the ANT conditions

No cue Center cue Double cue Spatial cue
*
+ ¥ + +
*
+
*
Congruent Incongruent Neutral
—_ - > - — —_ . — — — _—— = — —
- + +
- + +
— — — — — — — > — — —_—— — — —

Fig. 2. A schematic representation of the ANT cue and flanker conditions. Adapted from

Paper I (Ulrichsen et al., 2020).

Individual network scores were computed using the following definition based on median

RTs:

Executive control = (RT incongruent — RT congruent)/RT congruent
Alerting = (RT no cue — RT center cue)/RT center cue
Orienting = (RT center cue — RT spatial cue)/RT spatial cue
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NEUROIMAGING

MRI acquisition

All participants were scanned on a 3T GE 750 Discovery MRI scanner at Oslo University
Hospital. A 32-channel head coil was used, with paddings applied to minimize head motion.
The full protocol included structural (T1, FLAIR), functional (resting-state and task-based
fMRI) and diffusion data. Only data from T1-weighted and FLAIR are presented in this
thesis, used for lesion demarcation as presented in Paper II. T1-weighted images were
acquired using a 3D IR-prepared FSPGR (BRAVO), with scan time 4:43 and the following
parameter specifications: TR: 8.16 ms; TE: 3.18 ms; TI: 450 ms; FA: 12°; voxel size:

I x 1 x 1 mm; slices: 188; FOV: 256 x 256, 188 sagittal slices. Corresponding parameters for
FLAIR were TR: 8000 ms; TE: 127 ms, TI: 2240; voxel size: 1 x 1 x 1 mm).

Lesion delineation

Lesions were semi-automatically delineated in native space, using the Clusterize-Toolbox (De
Haan, Clas, Juenger, Wilke, & Karnath, 2015) running under MATLAB (MathWorks, 2018).
Trained personnel (a radiographer and a physician) traced lesions based on visible damage
and hyperintensities on FLAIR images, and guided by neuroradiological descriptions. Using a
linear transformation with 6 degrees of freedom, FLAIR images were registered with the
high-resolution T1 images. T1 images were subsequently registered to MNI152 standard
space by linear affine transformations (with 12 degrees of freedom). Native-to-standard
transformation matrices (nearest neighbor interpolation) were applied to register the binarized

lesion masks to standard space.

Figure 3 shows a probabilistic representation of stroke location across all patients (n=84).
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Fig. 3. Adapted from Paper II. Heatmap displaying lesion overlap across stroke patients by 70
slices (2 mm thickness) from z(voxel) = 1 to z = 70.
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Structural Disconnectome maps

Disconnectome maps were calculated using an automated tractography-based procedure,
described in detail elsewhere (Foulon et al., 2018) and implemented in the BCBtoolkit (Brain
Connectivity Behaviour Toolkit (BCBtoolkit)). Here, full-brain tractography data from 170
healthy individuals (7T data, derived from the Human Connectome Project) serves as a
training set used to track fibers passing through individual lesions. The probability of lesion-
related disconnection (ranging from 0 to 100%) can then be presented in individual
disconnectome maps. In Paper II, we also computed individual summary measures of total
disconnection severity, by a) calculating mean voxel intensity across the disconnectome map,
and b) summarizing the total number of voxels with >50% probability of disconnection

(corresponding to intensity of >.5).

Figure 4 shows a probabilistic representation of the neuroanatomical distribution of estimated

white matter disconnection across all patients.
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Fig. 4. Adapted from Paper II. Individual lesions (blue) and associated disconnectome maps
(yellow-red). Probability for disconnection ranges from 10 (yellow) to 100 (red). Patient A:
right cerebral white matter lesion, Patient B: brain stem lesion, Patient C: left and right
cerebral cortex and white matter lesions.
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INTERVENTION PROTOCOL

Randomization and blinding

An in-house Matlab script was used to randomize participants into the experimental
conditions (sham vs active), while ensuring balanced numbers of participants between the
groups. Both patients and we who administered the stimulation were blinded to the

experimental condition throughout the experiment, as well as during initial data analyses.

tDCS

Each session of stimulation lasted for 20 minutes (administered during the first 20 minutes of
Cogmed training), whereof 120 seconds were ramp-up and 30 seconds fade-out. Sham
stimulation was provided using the fade in — short stimulation — fade out approach (Ambrus
et al., 2012). The short stimulation following fade in/ramp-up lasted for 40 seconds, thus
providing a tingling sensation, before fade out in accordance with factory settings. To
minimize risks of adverse effects, active stimulation was set to 1 mA. We used a direct
current stimulator (neuroConn DC plus, Germany) with 5x7 cm rubber pads to deliver the
stimulation. Rubber pads were covered in high-conducting gel to keep impedance below 20
k€. The anodal electrode was placed at the left dorsolateral prefrontal cortex (F3) and the
cathodal electrode at right occipital/cerebellum (O2). As previously described, the
intervention was created and conducted as a collaborative effort between different PhD
projects, where the primary goal was to evaluate the potential effects of tDCS in combination

with cognitive training on cognitive function.

Decisions on study settings such as electrode placement was motivated first and foremost by
previous literature on tDCS and cognition. Yet, there are several randomized controlled
studies (Chalah, Riachi, et al., 2017; Charvet et al., 2018) and case reports (Ayache,
Lefaucheur, & Chalah, 2017; Chalah, Lefaucheur, & Ayache, 2017) reporting beneficial
fatigue effects of repeated anodal tDCS to the left DLPFC in MS patients. With regards to
depression, the left DLPFC is a frequent target area for anodal tDCS (Bennabi & Haffen,
2018; Paulo S. Boggio et al., 2008), and associations between depression after stroke and left
DLPFC connectivity or damage (Egorova et al., 2017; Grajny et al., 2016) may suggest

positive effects of stimulation to this region (Egorova et al., 2017). Together, these
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observations suggest a sufficient rationale for assessing the potential of fatigue- and

depression effects of tDCS to this region in stroke patients.

Computerized cognitive training (Cogmed)

Computerized cognitive training was administered by Cogmed QM (Cogmed Systems AB,
Stockholm, Sweden), a commercially available working memory training system. Cogmed
was originally developed by Klingberg et al. (2005), and has been applied in a variety of
patient groups suffering from impaired working memory, including stroke patients
(Bjorkdahl, Akerlund, Svensson, & Esbjérnsson, 2013; Nyberg et al., 2018; van de Ven,
Murre, Veltman, & Schmand, 2016). The training program is available online, and can be
practiced from home, requiring only a computer with internet connection and speakers. It
consists of 10 different training tasks, targeting visuospatial and verbal working memory,
where each session includes 8 of the 10 tasks and lasts around 45 minutes. Level of difficulty
is adjusted according to performance, meaning that the tasks get increasingly challenging as

performance improves.

The original Cogmed QM protocol consists of 25 training sessions, often carried out over the
course of five weeks. In the present study, due to practicality and feasibility concerns, we
included 17 of the 25 training sessions spanning a period of three to four weeks,
corresponding to approximately five training sessions per week. The training sessions with
simultaneous tDCS or sham stimulation were carried out at Oslo University Hospital (two
days a week, yielding a total of 6 stimulation sessions), while the remaining sessions were

completed at home.

STATISTICAL ANALYSES

A variety of different statistical procedures were used in Paper I-11I, and will therefore be
presented independently for each paper. If not stated otherwise, statistical analyses have been

conducted using R version 4.0.3 (R core team, 2020).
Paper 1

In line with previous reports (Chang, Pesce, Chiang, Kuo, & Fong, 2015; Westlye, Grydeland,

Walhovd, & Fjell, 2011) response times <200 milliseconds (2% of responses) were removed
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from analyses, assumed to reflect fast guesses. Participants with over 50% incorrect responses
within the respective flanker conditions were discarded from analyses. This applied to one

participant.

Associations between RT, subjective fatigue and time on task

To model the association between subjective fatigue (standardized FSS scores), time on task
(trial number 1 —288) and RT, we estimated linear mixed-effects models using the nlme
package in R (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2007). To identify the best fitting
model, we started with a maximal model, in line with recommendations from Barr, Levy,
Scheepers, and Tily (2013). Here, random slopes for FSS*time were included at subject level,
together with random intercepts and the following fixed effects/covariates: FSS*time, PHQ
scores, age, flanker condition, sex, stroke topography, lesion volume, TOAST classification
for stroke etiology and NIHSS scores. As the initial model did not converge, we removed
fixed effects sequentially until attaining convergence. We started with dropping NIHSS
scores, due to the low variability in the distribution of scores (mean = 1.4, median = 1 and SD
=1.2). TOAST scores were then discarded, based on a high number of “not

specified/unknown” cases, and PHQ scores were removed due to high correlations with FSS.

After identifying the most complex converging model, we formally tested whether random
slopes should be included by comparing model fit between model with/without random slopes
using the ANOVA function in R, and this procedure supported the inclusion of random
slopes. As a final step in model refinement, independent variables with no significant
predictive value were removed (lesion load and location), and this improved model fit
marginally. To obtain an indication of FSS effect size, we estimated the final model with and
without FSS scores, and compared models by ANOVA as described above. FSS models
performed significantly better in terms of model fit (p <.001). Importantly, we re-ran the same
analyses with PHQ scores substituted for FSS scores to assess whether potential effects were
specific for fatigue or common for symptoms of depression. Details of model selection can be
found in Supplementary Material, Paper I. Further, to test whether effects were different
between flanker conditions, models were estimated separately for incongruent, congruent and

neutral flankers, respectively.

In a follow-up analyses investigating whether effects of sustained effort interacted with PSF

status, the above described models were re-run with dichotomized FSS scores (mean FSS
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score >= or <4 (L. B. Krupp et al., 1989; Nadarajah & Goh, 2015; Schepers et al., 2006)
instead of FSS continuous scores. Of note, these group models (PSF/no PSF) were run

without inclusion of random slopes to secure convergence.

Associations between ANT network scores and subjective fatigue
ANT network scores were computed according to a previous definition (Westlye et al., 2011)
and as described in detail in the introduction. We estimated linear models for each attentional

network to test for associations with FSS, covarying for age and sex.

Hierarchical drift diffusion modeling

To further investigate the relationship between subjective fatigue and specific cognitive
processes underlying RT differences in ANT, we conducted an exploratory analysis fitting a
hierarchical drift diffusion model (hDDM) to the RT data. Computational approaches such as
the DDM have been applied to decompose data from fast two-choice decision tasks in a range
of clinical disorders (White, Ratcliff, Vasey, & McKoon, 2010), providing a theoretical
framework to understand cognitive processes and a psychometric tool to disentangle the
specific processes hypothesized to underlie observed behavior. A significant advantage with
the DDM is that it extracts more information from the behavioral data and both mean RT, RT
distributions and accuracy are accounted for in the same model (Roger Ratcliff, Thapar, &
McKoon, 2003). Briefly, the original model postulates four parameters (R. Ratcliff, 1978).
drift rate (v): the rate or speed of information accumulation, assumed to reflect processing
efficiency, non-decision time (t): a “non-cognitive” parameter, accounting for time needed to
encode the stimulus and execute a response, decision threshold (a): reflecting the amount of
evidence needed to make a decision, and the starting point (z), describing bias toward a

response option (Roger Ratcliff & McKoon, 2008).

hDDM modelling was performed in the python toolbox HDDM (Wiecki, Sofer, & Frank,
2013), with starting points as predefined in the toolbox, and mildly informative priors. Data
was accuracy coded (errors = 0, correct = 1). For more detailed model specifications, see
methods section Paper I. To identify the model best explaining the data, we estimated and
compared a variety of different cognitively plausible models, where parameter fixations were

guided by theoretical assumptions and previous practice in the literature (Roger Ratcliff,

Smith, & McKoon, 2015; Roger Ratcliff et al., 2003).
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To evaluate where the interaction between time on task (trial 1- 288) and FSS should be
localized (in which parameter), we first fitted a model where all three parameters (a, t and v)
were allowed to vary by this interaction term. Using a systematic approach, the following nine
simple models were estimated and compared in terms of which parameter fixations yielded
best model fit: a) Main effect of time on t, v or a, b) main effect of FSS on t, v or a, and ¢)
interaction effect between FSS*time on trial on either t, v or a. Model comparison by model
fit indicated that the interaction between FSS and time on trial should be placed in t, non-

decision time.

Model fit was evaluated by comparing of deviance information criteria (DIC) values from
respective models. The DIC provides an estimate of a model’s fit relative to other models,
where lower values indicate better support (Frangois & Laval, 2011). Additionally, for the
models including individually estimated regressors, posterior predictive checks (PPC) were
conducted to evaluate how the model succeeded in reproducing distributions from the
observed data (Wiecki, 2016). For each parameters’ estimated posterior distribution, 500
samples were randomly drawn from the estimated posterior distribution, and these simulated
datasets were then compared with observed data, providing an estimate of fit and uncertainty
in the model. Table 2, Paper I, provides an overview of different models tested and associated
DIC values. The best model in terms of model fit and convergence allowed non-decision time
to vary across warning cue conditions, and drift rate to vary between flanker conditions while

keeping boundary separation constant.

Paper 11

For analyses of structural disconnectome maps and binarized lesion masks, we used the
randomise tool within FSL (Smith et al., 2004; Woolrich et al., 2009) to conduct permutation-
based inference. Associations between FSS scores and disconnectome/lesions masks were
evaluated in separate models within the framework of the general linear model (GLM), where
linear effects of FSS were tested voxel-wise. In addition, we re-estimated the model with a) a
dichotomized fatigue-variable (FSS score of >/< 4, corresponding to commonly used clinical

cutoff value (Nadarajah & Goh, 2015; Schepers et al., 2006), and b) the upper tertile of FSS
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scores contrasted with the lowest tertile, motivated by the possibility that more extreme scores

might demonstrate increased sensitivity to brain correlates associated with fatigue.

Two different procedures were used to control for depression: a) excluding patients fulfilling
the criteria for clinical depression (= 10 on PHQ, n = 74 remaining), and b) including
normalized PHQ-and FSS scores in the same model. 5000 permutations were performed for
each contrast. Applying threshold free cluster enhancement (TFCE; Smith & Nichols, 2009)
to correct for multiple testing, results were considered significant at p<.05. For transparency,
we also plotted distributions of the uncorrected t-values from the main models, as shown in

Supplementary Material, Paper II.

Follow-up analyses were conducted in R, version 3.4.0 (R core team, 2020) to explore
whether sensitivity could be increased by creating simple summary measures, and to quantify
the evidence for an absent association if results were indicative of such. Simple disconnection
measures were computed for each patient by a) calculating the mean voxel intensity across the
total disconnectome map, and b) summarizing the number of voxels with a probability of

disconnection larger than 50%.

Using the BayesFactor package (Morey, Rouder, Jamil, & Morey, 2015) we then computed
linear correlations between these disconnection measures, FSS and PHQ. We further tested
for associations between fatigue and more clinical, stroke-related characteristics (lesion
location, as defined in four categories — left/right hemisphere, both hemispheres or
cerebellum/brain stem, TOAST classification of ischemic stroke, months since stroke onset,
lesion volume (defined as number of voxels in the lesion mask), and stroke severity (NIHSS
score at hospital discharge used as a proxy for clinical severity). We estimated linear models
with FSS scores as dependent variable, while controlling for age, sex and depression scores.
To allow for model comparison by Bayes Factor, clinical stroke variables were added
subsequently, and the ImBF function was used to compute Bayes Factors for model

comparison against the null (intercept only) model.
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Paper 11

We used Bayesian hypothesis testing to assess the effects of tDCS on fatigue and depression,
and to quantify evidence supporting the alternative and null hypothesis. Mixed effects

regression models were created in the Stan computational framework (http://mc-stan.org/),

using the brms package (Biirkner, 2017). Mixed models were estimated separately for FSS
and PHQ, entering FSS or PHQ as dependent variables, and time (1-5), tDCS group (sham or
active), tDCS group * time, sex and age as fixed factors, with participant as random factor.
All variables were standardized prior to analysis. Models were run using 4 chains (8000
iterations each), of which the first 4000 were discarded as burn-in. We applied normal priors

with means of O and standard deviations of 1.

Baseline group differences between completing (n=50) and withdrawing (n=19) patients were
assessed by t-tests for independent samples. In post-hoc analyses testing for specific effects of
fatigue on study adherence, we estimated logistic regression models using
completing/withdrawing status as dependent variable, and fatigue status, PHQ scores, sex and
age as independent variables. Fatigue status was defined as either = 5 or = 4 on FSS. Since
both 5 and 4 are commonly used cutoff values in the literature, we chose to report both for

transparency.

Cogmed individual training gain was quantified following the approach by Kolskaar et al.
(2020), estimating the effect of repeated training by running linear models with task
performance as dependent variable, and session number as independent variable. The models
were estimated separately for each Cogmed subtask, yielding one beta-estimate (slope) per
task for each individual, reflecting individual performance change across sessions/time.
Testing for multivariate outliers, we used the mvoutliers package in R and the aq.plot function
(Filzmoser & Gschwandtner, 2018). The subtasks “hidden objects” and “digits” displayed a
high number of outliers relative to the remaining tests and were discarded from further
analyses. Association between fatigue and training gain were then assessed by estimating
linear models for each task, using the estimated beta slope as dependent variable, and baseline
FSS score, age and sex as independent variables. To test whether effects were specific for
fatigue or common to depression, we re-ran the same models with PHQ as independent

variable instead of FSS.
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As an additional test of baseline associations between fatigue/depression and measures of
cognitive functions at baseline, we estimated Bayes factors for correlations between score on
FSS or PHQ, neuropsychological test performance (MoCA, WASI, CVLT, Stroop), and a

subjective measure of cognitive failures (CFQ).

To get an estimate of the time-dependent variability of the individual FSS and PHQ items,
we estimated the coefficient of variation value (CV) for each item on FSS and PHQ across
time point 1 to 5, resulting in one CV value per item for each person. Because FSS and PHQ
have different scale properties, direct comparisons of CV values across scales are not
meaningful, but the CV value still offers relevant information about the relative variability of

individual items within each scale.

To explore the centrality of individual symptoms and symptom-level associations, we
estimated networks based on Spearman’s rank order correlation matrixes using the qgraph
package in R (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012). Two baseline
(n = 74) networks were estimated: one with FSS sum score and individual PHQ items
(investigating associations between specific depressive symptoms and general fatigue
severity), and one with all individual items from both scales. The sum-FSS network was
EBICglasso regularized (tuning parameter 0.15), while the all-item network was based on full
correlations without regularization, because of stability issues due to the high number of
parameters relative to sample size. PHQ item # 9 displayed a highly skewed distribution
(mean = 0.08) and was thus discarded from all-item networks. All-item networks were then
estimated for all time points (1-5) and plotted according to their loadings principal component
analyses (PCA) component loadings, enabling visual comparison of network structure across
time. In the temporal networks, only completing patients (n=50) were included. Of note, the
low number of observations implies that this (PCA)-feature of node-placement should be
regarded an exploratory means of visualizing the data, and does not allow for conclusions on
dimensionality. Network stability was evaluated using case-dropping bootstrap in the bootnet
package (Epskamp, Borsboom, & Fried, 2018). Stability was acceptable for the regularized
network and good for the unregularized networks, but see methods and results section Paper

III for details.

To evaluate the relative centrality of the included nodes (items) in the network, we estimated

strength centrality, which represents the sum of all edge weights directly connected to a
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particular node (Bringmann et al., 2019). Strength is thus a coarse, but stable, measure of
centrality (Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016) and it the most commonly
evaluated centrality measure in networks on psychological constructs (Malgaroli, Calderon, &
Bonanno, 2021). To obtain an estimate of the individual nodes’ aggregated centrality across
time, we followed the approach by Malgaroli et al. (2021), ranking each node (from 1-17)
according to strength centrality at each time point, before calculating across-time mean of
these temporal rankings. We used Spearman correlations to test whether item centrality (mean

ranking across time) was associated with symptom severity (mean item score across time).

RESEARCH ETHICS

All data presented in this thesis were collected from a study approved by the Regional
Committee for Medical and Health Research Ethics (South-East Norway, 2014/694;
2015/1282), and by the data protection regulation Oslo University Hospital
(Personvernombudet OUS). All participants provided oral and written consent prior to

participation, and received a compensation by a 500 NOK gift card.

As the study protocol was quite extensive, we strived to convey a realistic picture of the
labor-intensity associated with participation during the first consultation, and emphasized the
right to withdraw consent and leave the study at any point. The study spanned over a period of
6 or more weeks, and we had regular conversations with the patients about their experience
with the repeated assessments and training. In cases where participation was deemed to be too
time consuming, demanding or tiring, the patient was thanked for her/his contribution and

received the compensation as agreed, without completing the protocol (n=19).

Low intensity tDCS administered by conventional protocols is considered safe (Woods et al.,
2016). Reported side effects or adverse events are typically non-existent or mild (Antal et al.,
2017; Bikson et al., 2016). Yet, typical sensations of itching, pinching or burning can be
uncomfortable, and we monitored adverse events by the end of each session. One patient
experienced discomfort resulting in a decision to quit the study. Although there are no known
side effects of undergoing MRI, the assessments can be uncomfortable. Lying still in the
scanner for about an hour can be particularly challenging for people with claustrophobia, so
all volunteers were screened for claustrophobia and discouraged from participating if such

issues were revealed.
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MR images from both stroke patients and healthy control participants were evaluated by a
trained neuroradiologist. Incidental findings warranting further investigation were followed
up by informing participants and conveying information to relevant instances, in most cases
the general practitioner, in line with participant consent. The same procedure was followed
for all relevant health related information collected during the study (although not presented

here), such as blood pressure and blood test results.

SUMMARY OF PAPERS

Abstract Paper I

Post-stroke fatigue is prevalent among stroke patients, but its mechanisms are poorly
understood. Many patients with post-stroke fatigue experience cognitive difficulties, but
studies aiming to identify cognitive correlates of post-stroke fatigue have been largely

inconclusive.

With the aim of characterizing the relationship between subjective fatigue and attentional
function, we collected behavioral data using ANT and self-reported fatigue scores using FSS
from 53 stroke patients. In order to evaluate the utility and added value of computational
modeling for delineating specific underpinnings of RT distributions, we fitted a hierarchical

drift diffusion model (hDDM) to the ANT data.

Results revealed a relationship between fatigue and RT distributions. Specifically, there was a
positive interaction between FSS score and elapsed time on RT. Group analyses suggested
that patients without post-stroke fatigue increased speed during the course of the session,
while patients with post-stroke fatigue did not. In line with the conventional analyses based
on observed RT, the best fitting hDD model identified an interaction between elapsed time
and fatigue on non-decision time, suggesting an increase in time needed for stimulus encoding
and response execution rather than cognitive information processing and evidence

accumulation.
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The results demonstrate the significance of considering the sustained nature of effort when
defining the cognitive phenotype of post-stroke fatigue, intuitively indicating that the
cognitive phenotype of fatigue entails an increased vulnerability to sustained effort, and
suggest that the use of computational approaches offers a further characterization of specific

processes underlying behavioral differences.

Abstract Paper 11

Stroke patients commonly suffer from post-stroke fatigue. Despite a general consensus that
brain perturbations constitute a precipitating event in the multifactorial etiology of post-stroke
fatigue, the specific predictive value of conventional lesion characteristics such as size and

localization remains unclear.

The current study represents a novel approach to assess the neural correlates of post-stroke
fatigue in chronic stroke patients. While previous research has focused primarily on lesion
location or size, with mixed or inconclusive results, we targeted the extended structural

network implicated by the lesion, and evaluated the added explanatory value of a structural

disconnectivity approach with regards to the brain correlates of post-stroke fatigue.

To this end, we estimated individual structural brain disconnectome maps in 84 stroke
survivors in the chronic phase (=3 months post stroke) using information about lesion location
and normative white matter pathways obtained from 170 healthy individuals. Post-stroke
fatigue was measured by the FSS. Voxel wise analyses using non-parametric permutation-
based inference were conducted on disconnectome maps to estimate regional effects of
disconnectivity. Associations between post-stroke fatigue and global disconnectivity and
clinical lesion characteristics were tested by linear models, and we estimated Bayes factor to

quantify the evidence for the null and alternative hypotheses, respectively.

The results revealed no significant associations between post-stroke fatigue and
disconnectome measures or lesion characteristics, with moderate evidence in favor of the null
hypothesis. These results suggest that symptoms of post-stroke fatigue among chronic stroke
patients are not simply explained by lesion characteristics or the extent and distribution of

structural brain disconnectome, and are discussed in light of methodological considerations.
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Abstract Paper 111

Fatigue and emotional distress rank high among self-reported unmet needs in stroke
survivors. Currently, few treatment options exist for post stroke fatigue, a condition
frequently associated with depression. Non-invasive brain stimulation techniques such as
transcranial direct current stimulation (tDCS) have shown promise in alleviating fatigue and
depression in other patient populations, but the acceptability and effects of repeated

stimulation for chronic phase stroke survivors are not established.

Here, we used a randomized sham-controlled design to evaluate the added effect of tDCS
combined with computerized cognitive training to alleviate symptoms of fatigue and
depression. 77 patients were enrolled at baseline (mean time since stroke = 26 months) and 54
patients completed the intervention. Self-report measures of fatigue and depression were

collected at five consecutive timepoints, spanning a period of two months.

While fatigue and depression severity were reduced during the course of the intervention,
Bayesian analyses provided evidence for no added effect of tDCS. Lower baseline symptoms
of fatigue and depression were associated with higher improvement rate in select tasks, and
study withdrawal was higher in patients with more severe fatigue and younger age. Time-
resolved analyses of individual symptoms by a network-approach suggested overall higher

centrality of fatigue symptoms (except item 1 and 2) than depression symptoms.
In conclusion, the results reveal no effect of tDCS on fatigue or depression, but support the

notion of fatigue as a significant stroke sequela with possible implications for treatment

adherence and response.
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DISCUSSION

A main goal of this thesis was to increase our understanding of post-stroke fatigue in terms of
behavioral and cognitive correlates, neural underpinnings and treatment. Data were collected
from a range of modalities, including self-report measures, behavioral data, cognitive and
neuropsychological assessments and MRI data. In the following, the results from Paper I-I11

will be discussed in light of existing knowledge and relevant theories.

Linking subjective fatigue, mental fatigability and attentional impairment by tracking
sustained performance in the ANT

An accurate characterization of the different aspects of fatigue may elaborate our
understanding and inform selection and development of tailored treatments (Manjaly et al.,
2019). In Paper I, we present results from linear mixed models on ANT data suggesting a
significant interaction between subjective fatigue and time-on-task on response times,
meaning that high fatigue was associated with a stronger slowing of responses throughout the
paradigm, particularly in the most demanding (incongruent) condition. While several studies
have reported no correlation between cognitive impairments and fatigue (Kutlubaev et al.,
2013; Schepers et al., 2006; van Eijsden et al., 2012), stroke patients suffering from fatigue
often report increased fatigue with sustained mental effort and attentional difficulties, and in
this respect the current findings may represent a step towards bridging the gap between
subjective experience and more objective behavioral measures. Interestingly, when estimating
the main effect of time separately for high vs. low fatigue patients, patients with low fatigue
demonstrated a significant decrease in RTs over time (i.e. faster responses) in the incongruent
condition, in contrast to patients with high fatigue, who showed no such changes in RT. Our
results thus mirror reports from studies on patients with traumatic brain injuries (TBI) linking
sustained effort and cognitive function to fatigue, by demonstrating improved performance
after repeated practice for healthy controls, but not for TBI patients with fatigue (Birgitta
Johansson & Ronnbéck, 2015; Skau, Bunketorp-Kéll, Kuhn, & Johansson, 2019).

The observed negative interaction between subjective fatigue and sustained attentional effort
may be interpreted as a manifestation of fatigue/fatigability, an expression of an underlying

cognitive impairment (such as subtle attentional difficulties), or both (Tommasin et al., 2020).
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Whether fatigability constitutes a distinct phenomenon or should rather be conceptualized as
an aspect of cognitive impairment, is still debated (Tommasin et al., 2020). However, few

studies, including Paper I in this thesis, are designed to make such causal inference.

We discuss this matter in further detail in Paper I, and provide a speculative theoretical
context of van Zomerens coping hypothesis (Van Zomeren et al., 1984), which postulates that
subtle cognitive deficits associated with brain injury may be temporarily masked by
compensatory mechanisms and increased effort. However, compensation and effort increase
have a cost, namely increased fatigue, which over time results in deteriorating performance.
Interestingly, the strongest effect was identified in the most cognitively demanding condition
(incongruent flanker, conflict resolution), and the effect was time dependent, providing
support to the notion of effort as a key feature of fatigue. As described by Kahneman
(Kahneman, 1973), attention is a limited capacity. Following this, we can speculate that if
patients with high fatigue and subtle attentional impairments have to invest more effort to
maintain performance, this may be unproblematic in low demanding tasks, but as task
complexity and mental load increases, as in the conflict condition, performance deteriorates

(Van Zandvoort et al., 1998).

Evidence from imaging studies provide some empirical support to the interpretational
framework emphasizing the notion of effort. A fMRI study on mental fatigue in patients with
TBI revealed increased activation over time in patients performing a cognitive task in the
scanner, in contrast to healthy controls demonstrating a subsequent reduction in activation
(Kohl et al., 2009). Yet, the lack of subjective fatigue measures constituted an important
limitation in this study. A more recent study on TBI patients reported similar results,
observing thalamus and caudate deactivation over time in healthy controls but not in patients
(Berginstrom et al., 2018). It’s speculated that altered recruitment of brain regions in response
to sustained attentional tasks reflect increased cerebral “effort” in the patients, which in turn
might manifest as subjective fatigue. A relevant prospect for future stroke studies could be
integrating functional MRI or other functional brain imaging measures with self-reported
fatigue and sustained attentional tasks like the ANT, to investigate whether the fatigue-related
response time patterns revealed in Paper I are accompanied with specific patterns of

activation in the brain.
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By fitting a computational drift diffusion model to the ANT data, we were able to further
parse the response time patterns into specific sub-processes and assess associations with
fatigue. The best fitting model indicated an interaction between time on task and subjective
fatigue on non-decision time, the parameter encompassing stimulus encoding and motor
response execution (Roger Ratcliff & Smith, 2010). This particular finding thus suggests that
the observed differences in response time distributions between fatigued and non-fatigued
patients may be explained, at least in part, by non-cognitive mechanisms, and ties well with
the mechanistic model of fatigue as a symptom reflecting sensorimotor deficits (Kuppuswamy
et al., 2015). In further support of this hypothesis, a study from 2021 demonstrated that higher
fatigue was associated with reduced pre-movement facilitation and a slowing of response
times (De Doncker, Brown, & Kuppuswamy, 2021). It should be noted that while our model
demonstrated adequate convergence, the error rate in the data was low. Because parameters
are estimated based on distributions of both accuracy and response times, the low error rate
could have implications for the validity of the results. In addition, ANT is not a commonly
applied paradigm in hDDM modelling, and all though a recent study demonstrated
encouraging results for hDDM modelling of ANT data devoid of errors (O’Callaghan et al.,

2017), the results should be replicated in samples with higher error rates.

In accordance with previous studies on post-stroke fatigue (Kutlubaev et al., 2013; Naess &
Nyland, 2013; Schepers et al., 2006; van Eijsden et al., 2012), we found no associations
between post-stroke fatigue and cognitive functions measured by global screening tools
(MMSE in Paper I, or MoCA in Paper II-11I) or more specific tests such as the Stroop Color
Word Interference test (Delis et al., 2001), the California Verbal Learning Test (CVLT-II;
Delis, 2000) or WASI (WASI-II; Wechsler, 2011) in Paper II1. Nor did the results support any
main effect of FSS on response times in the ANT. A relationship with subjective fatigue was
only revealed when putting the attentional system under sustained pressure, underscoring the
relevance of accounting for the effect of time and task difficulty when examining

manifestations of fatigue in a cognitive/neuropsychological context.

Fatigue and depression

Among the range of concomitant experiences associated with post-stroke fatigue, depression
is the most consistently reported (Ponchel et al., 2015; Wu et al., 2014). Despite the close
association, it is now generally recognized that post-stroke fatigue can manifest independently

of depression (Schepers et al., 2006; van der Werf, van den Broek, Anten, & Bleijenberg,
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2001). This is supported by the results we report in Paper III, where all patients scoring above
the clinical cutoff for depression reported fatigue, while only a third of the patients
experiencing moderate or severe fatigue reported depressive symptoms above cut off. It has
been suggested that the overlapping symptoms together with the disparity of prevalence, may
hint of both common origins as well as independent mediators of fatigue (De Doncker et al.,

2018).

Gaining more insight in the relationship between fatigue and depression by using self-reports
alone has inherent limitations. While contrasting fatigue with depression was never a main
aim for the present thesis, we include depression scores in the majority of analyses conducted
on fatigue, hereunder analyses on ANT data, MRI data, cognitive training and brain
stimulation. This offers an opportunity to identify common or unique mechanisms and

correlates within the different modes of measurement.

In Paper I, the identified association between self-reported fatigue and response time
distributions in the ANT, was not found for depression. This observation lends further support
the notion of fatigue as a partly separate phenomenon from depression, and suggests that
fatigue, but not depression, entails an increased vulnerability to sustained effort in cognitively

demanding attentional task.

Studies addressing the relationship between post-stroke fatigue and depression across time
have primarily assessed patients with longer time intervals (e.g. three or six months), using
fatigue scale sum scores or binary diagnosis status as outcome measures (Douven et al., 2017;
F. Duncan et al., 2015; Kjeverud et al., 2020). While sum scores provides relevant, clinical
information about overall symptom load and prevalence, it does not offer insight into which
symptoms are more pronounced or how specific symptoms covary. It is conceivable that
certain depressive symptoms are more strongly related to fatigue severity, and similarly, that
certain aspects of fatigue are more associated with overall depression. Moreover, symptoms
do not manifest randomly - some symptoms co-occur more frequently than others (Hofmann,
Curtiss, & McNally, 2016), but the ways in which they co-occur vary substantially, resulting
in heterogeneity in the clinical manifestations. Taken together, this supports the intuitive
notion that a sole focus on total sum scores, attaching equal weight to all symptoms, may not

convey the full picture when investigating the relationship between fatigue and depression.
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The network analyses framework offers a tool to move beyond these problems,
conceptualizing diagnoses as interconnected networks of symptoms and their interactions
(Boschloo et al., 2015; Malgaroli et al., 2021). Networks are increasingly used to address the
heterogeneity of various conditions, while also probing etiological underpinnings (Borsboom
& Cramer, 2013), as illustrated by the notion that highly influential symptoms and related
edges may have a larger impact on disease trajectories and outcome (Hofmann et al., 2016).
In addition, network approaches appear well suited to deal with comorbidities and
overlapping clinical conditions, because rather than aiming to remove or disentangle
nonspecific symptoms occurring in multiple diagnoses, such symptoms are conceptualized as
important bridges that will affect other symptoms in the network if activated (Hofmann et al.,
2016). Thus, investigating repeated measures of post-stroke fatigue and depressive symptom
associations by a network approach, may further inform hypotheses about the putative
reciprocal relationship between the two conditions, with possible implications for treatment

approach.

On this backdrop, we investigated the relationship between repeated measures of self-reported
individual symptoms of fatigue and depression using a network-based approach. Results are
presented in Paper III, and suggested higher centrality of fatigue items then depression items
(with exception of FSS item 1 and 2). As a means of visualizing change and stability in
network structure and item associations across time, network nodes from the temporal
networks were plotted according to their PCA loadings. It should be noted that the sample
size is too small to allow for explicit interpretation of PCA results, so this analyses feature
should be considered explorative. However, strength centrality measures for network
estimated on full Spearman correlations demonstrated acceptable stability, and the centrality

plots thus provide a reliable indication of centrality for the individual items.

Overall, results suggested high centrality of FSS items relative to PHQ items. The item
displaying highest ranked centrality across time was FSS item #9 (“Fatigue interferes with my
work, family, or social life””). Although the applied design does not enable causal inference,
the overall relative importance of fatigue items suggested by the network estimations may be
seen as support to the hypothesis that fatigue after stroke exacerbates the risk of depression
(Ormstad & Eilertsen, 2015). Following this line of interpretation, the high centrality of FSS

item #9 may indicate that fatigue restraining social and professional activities is particularly
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stressful and predisposes for increases in respective symptoms. The relevance of this
hypothesis could be evaluated in longitudinal studies designed to disentangle the causal
relationship between symptoms. Provided that FSS item #9 has significant impact on the
symptom network, interventions aimed at limiting the negative impact of fatigue on the social
and professional domain could potentially alleviate both fatigue- and depressive symptoms.
In addition, FSS item #9 was identified among the most stable items across time points (as
reflected by low coefficient of variation value relative to other FSS items), possibly reflecting
that the impact of fatigue in terms of social and professional obligations is a more stable trait

than e.g. fatigue in relation to exercise.

Structural disconnectivity mapping of post-stroke fatigue

In Paper II, we adopted a novel approach to the study of the lesion-related neural
underpinnings of fatigue in chronic stroke patients. Results from permutation testing revealed
no association between fatigue and individual disconnectome maps, reflecting the structural,
distal effects of focal lesions, nor between fatigue and binarized lesion maps, reflecting
volume and location. Results from the same analyses conducted with PHQ scores mirrored
results from the fatigue models, with no significant effects identified for depression.
Moreover, results from linear models including conventional clinical stroke characteristics
such as TOAST, lesion location (coarsely defined as either left/right hemisphere, both
hemispheres or cerebellum/brainstem) or months since stroke did not support an association
with fatigue or depression. Importantly, Bayesian comparisons of models with stroke
characteristics (including global disconnectivity measures) versus null models revealed that
all models with stroke characteristics provided moderate support of no lesion-related effects

on fatigue and depression.

A strength of the current study is the use of Bayesian analyses, providing a quantitative
estimate of the probability of no association between global measures of disconnectivity and
fatigue, which is not attainable using conventional null-hypothesis significance testing
(Keysers, Gazzola, & Wagenmakers, 2020). Although several methodological limitations
have to be taken into account when interpretating the findings, the moderate evidence for no
association between global disconnectivity and fatigue may suggest support for the view that
fatigue in the chronic phase is associated primarily with other factors, and that lesion related

brain perturbations have a lesser impact at this stage. According to a review by Wu, Mead, et
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al. (2015), studies reporting significant associations between fatigue and lesion characteristics
were generally conducted shortly after stroke onset, whereas studies finding no associations
tended to measure fatigue at a later stage. In the current study, the mean time since stroke
onset was 22 months. Considering that the characteristics of brain perturbations, stroke
sequela and the relationship between them change over time through recovery and
compensation (Fornito, Zalesky, & Breakspear, 2015; Fox, 2018), the temporal aspect may be
particularly relevant. Future studies may be able to delineate the dynamics in the associations

between brain perturbations and fatigue as a function of time since stroke incidence.

In the discussion section, Paper II, methodological considerations and limitations are
discussed in detail. A key concern relates to one of the main cautionary notes involving
sample size and related power to detect effects. Although a sample size of n = 84 is in line
with common practice in MRI stroke studies (see e.g. a review by Nickel and Thomalla
(2017) finding that sample sized in studies assessing the relationship between PSD and lesion
location using VLSM analyses varied from 24 — 55), studies with even larger samples will
allow for stronger conclusions, and reduce the probability both for false positives and
negatives (see e.g. Westlye, Alnas, van der Meer, Kaufmann, & Andreassen, 2019). VLSM
analyses are fundamentally restricted by the variability of lesions represented in the sample.
Regarding the present results, this represent a fundamental limitation particularly for analyses
on focal/binarized lesion maps, as the spatial scope of the analyses was limited by lack of
whole brain representation. For example, there was a higher prevalence of right hemispheric
strokes than left hemispheric strokes, and prefrontal cortex was minimally affected. As a
consequence, the sample displayed low numbers of lesioned voxel overlap in the binarized
lesion maps. However, due to this particular concern, the use of disconnectome maps may me
particularly relevant in smaller samples, as the disconnectivity measures represent

information about common disruptions across spatially distant lesions (Griffis et al., 2019).

On another note, the psychological construct one aims to understand in terms of properties of
the brain will always be inherently dependent on how the construct is operationalized and
measured. In terms of fatigue, it has been shown that frequently used scales correlate only
moderately, load on different factors (A. Zedlitz, Van, Van, Geurts, & Fasotti, 2016) and
display low content overlap (Skogestad et al., 2019). Thus, a person may be considered as
fatigued by one scale, but not by the other. Although this constitutes a limitation in all

research relying on some quantification of psychological constructs, it may be particularly
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relevant for subjective and often fluctuating phenomena such as mental health and fatigue and
warrants caution before formulating strong statements about the existence or absence of

specific relationships.

Lastly and importantly, our approach did not allow for inference about functional
(dis)connectivity. Aberrant functional connectivity has been implicated in fatigue in relation
to TBI (Nordin et al., 2016; Ramage, Tate, New, Lewis, & Robin, 2019; Schonberger et al.,
2017) and multiple sclerosis (Hogestgl et al., 2019). Investigating whether the present results
(no association revealed between subjective fatigue and structural brain connectivity)
replicate with functional disconnectivity measures could thus be a relevant prospect for future
studies. Moreover, provided that the behavioral pattern we observed during sustained ANT
performance is a valid cognitive phenotype of fatigue, functional connectivity measures could
also be integrated with the approach applied in Paper I, to explore whether the fatigue-related

differences in response time distributions (ANT-task) manifest in brain activation.

tDCS combined with computerized cognitive training: No added effect of tDCS

Results from the intervention study presented in Paper III revealed no added beneficial effect
of repeated tDCS with regards to symptoms of fatigue or depression. Although sample size
was moderate, the Bayes Factor evidence for the null hypothesis provided strong evidence
(BFy, >10 ) for no tDCS effect (no interaction between time and experimental condition on
symptom severity). These results thus contrast previously referred tDCS studies on patients
with MS, reporting beneficial effects of tDCS stimulation on fatigue (Chalah et al., 2020;
Charvet et al., 2018; Ferrucci et al., 2014), and the recent study on tDCS for fatigue in stroke
patients (De Doncker, Ondobaka, et al., 2021).

Direct comparison of results between studies is complicated by heterogeneity in patient
samples and differences in tDCS protocols (regarding stimulation frequency, electrode
montage, current amperage and number of sessions). For example, De Doncker, Ondobaka, et
al. (2021) applied two 20 minute sessions of 2 mA stimulation bilaterally to the motor
cortices, with 10 minutes break between sessions, thus differing from our design in both
current amperage, electrode design, duration and number of sessions. This implies that while
we can say with a certain confidence that fatigue was not reduced by the tDCS administered

by the current design, other setups targeting other areas may still prove effective.
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Also, the existence of lesions may be a complicating factor in tDCS stroke studies. It is
conceivable that treatment response may interact with individual characteristics such as lesion
location or size, as illustrated by Saiote et al. (2014), reporting no group effects of tDCS in
MS patients, but a correlation between treatment response and lesion load in the left frontal
cortex. Discerning associations between treatment response and stroke characteristics may be

a relevant target for future well-powered studies.

The observation that patients withdrawing from the study (n=19) had significantly higher
fatigue scores than the patients completing the study corroborates the notion that fatigue can
be a hinderance to compliance with rehabilitation programs (K. Michael, 2002). Because the
majority of the patients withdrew during the double-baseline phase, prior to the intervention,
we cannot infer that the intervention per se was intolerable to patients with high fatigue. Still,
many put forward the anticipated labor-intensity of the intervention as a reason for
withdrawing, suggesting that effective interventions for patients with fatigue need to be
adjusted according to the individuals’ energy, time and resources. On a related note, the
patients who completed the intervention reported a significant reduction in symptoms from
pre- to post assessments. This reduction was not related to tDCS, however, and because we
did not have any control arm for the cognitive training, we cannot disentangle the positive

effects from placebo and other unmeasured variables.

METHODOLOGICAL CONSIDERATIONS

Representativeness and selection bias

Several methodological dilemmas are associated with recruiting and including of participants.
Stroke survivors comprise a highly heterogeneous group, in terms of stroke and lesion
characteristics and severity, level of functioning, comorbidity and age. Criteria for inclusion

will affect the quality and variability of the data, as well as the generalizability of the results.

As the study protocol was rather extensive, with 17 meetings scheduled at Oslo University
Hospital in addition to 10 home-based training sessions, patients with more disabling
symptoms and severe fatigue may have been prevented from participating. Patients with
significant aphasia or neglect would also be excluded due to difficulties perceiving test

instructions and training content displayed on computer screens. The relatively low NIHSS
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scores in the sample (all patients scored below 7 at the time of hospital discharge) confirm
that the included patients suffered relatively mild strokes, and attrition analyses in Paper I11
revealed that fatigue scores were higher in patients who withdrew from the study, than in the
patients who completed the intervention. If the patient sample turns out to be highly selected
and significantly different than the patient population in general, this may compromise the
generalizability of the findings and limit transfer value to a clinical setting. Yet, as reported in
Paper II, we observed significant differences between patients and age-and sex-matched
matched healthy controls on self-reported symptoms of fatigue and depression, as well as in
cognitive functioning, suggesting that patients in the current sample were experiencing
symptoms of mental distress and cognitive impairments beyond what could be explained by
age or sex alone. Moreover, fatigue severity was comparable to what have been reported in
other chronic phase stroke studies (Choi-Kwon, Han, Kwon, & Kim, 2005; Toby B.
Cumming et al., 2018; Valko, Bassetti, Bloch, Held, & Baumann, 2008) as were levels of
depression (Dajpratham et al., 2020). However, we cannot exclude the possibility that
inclusion of more severely impaired patients could reveal associations not detectable in the
current sample, and sampling a broader spectrum of the stroke patient population in regards to
symptoms (i.e. aphasia, neglect, motor dysfunction etc.) would likely increase the

generalizability.

Sample size

Achieving a sufficient sample size is a frequent challenge in clinical trials, and our study is no
exception. According to Ferreira and colleagues (2019), clinical stroke trials have
problematically low recruitment yields, in some studies down to four (Koh, Lin, Jeng, Huang,
& Hsieh, 2017) or eight (Talelli et al., 2012) percent. With 74 patients included out of 900
letters sent, our recruitment yield is low, but comparable to similar studies. Our sample size
can be considered modest. To what extent this poses a threat to the validity of the results,
depends in part on the research question asked, as well as applied models and methods. In this
thesis, the sample size represents a limitation especially concerning MRI analyses, and we
cannot exclude the possibility that relevant associations between lesion locations and clinical
symptoms were missed due to a lack of statistical power, specifically related to VLSM
analyses and the subsequent lack of whole brain representation coupled with low lesion

overlap.
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Lack of information on relevant variables

As previously described, post-stroke fatigue has been associated with a great number of risk
factors, and many of them are not covered in the current work, implying that we have limited
grounds to make statements about etiology. For example, pre-stroke fatigue have been
reported to predict post-stroke fatigue in the chronic phase (Choi-Kwon, Choi, Kwon, Kang,
& Kim, 2007; Lerdal et al., 2009), as have pain (Naess et al., 2012; Wai Kwong Tang et al.,
2014), lack of social support (K. M. Michael et al., 2006), anxiety (Toby B. Cumming et al.,
2018; Wu et al., 2014) and use of various medications (Chen & Marsh, 2018). Stroke patients
frequently take a range of medications, of which many can cause fatigue. Current data on
medication use was based on self-report only, resulting in incomplete reports for several
patients. In addition, the combination of a moderate sample size and individual medication
plans with regards to type of medication dosage and regime implies that a meaningful
synthesizing of medication protocols and associated statistical tests on these data would not
be very reliable. Medication was therefore not included in the analyses. Paper II explicitly

states that medication status constitutes an important possible confounder.

Aphasia has also been hypothesized to contribute to (mental) fatigue (Staub &
Bogousslavsky, 2001b), and patients with speech impairments have been reported to
experience more fatigue two years after stroke than patients without such deficits (Glader et
al., 2002). Yet, while we did not administer any formal tests of aphasic deficits, none of the
included patients demonstrated or reported significant difficulties with language

comprehension or production.

Considerations on the design of the intervention

Designing and initiating an intervention study without infinite time and resources at hand
involves balancing of competing priorities. Pragmatic concerns will often conflict with best
practice, and one have to balance what is practically feasible with what is methodologically
ideal. The current study is no exception in this respect, and the design of the intervention part
of the StrokeMRI project (tDCS combined with CCT, presented in Paper III) comprises both
strengths and limitations. First, the double-blind randomized sham-controlled design
represents a considerable strength, in that it enables direct evaluation of a stimulation effect
compared to sham. However, all patients received CCT, and the lack of an active control
group condition for cognitive training implies that we were not able to disentangle effects of

the computerized training from other factors such as placebo, regression towards the mean or
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positive effects of meeting with research staff on a regular basis. While the inclusion of an
active control CCT control group would represent a considerable strength in this respect, this
was not practically feasible for the current study. Consequently, we did not aim to identify
effects of CCT per se, but rather the added effect of tDCS when combined with cognitive

training.

Regarding the design and extent of the intervention, the applied setup with 17 training
sessions trainings and six stimulations does not allow for direct comparison with other studies
using different protocols. There are currently little consensus in the literature on how to
implement tDCS interventions in order to optimize effects (Marquez, van Vliet, McElduff,
Lagopoulos, & Parsons, 2015), and on a general note concerning stroke rehabilitation, more
(in terms of intensity or frequency) is not always better (Cassidy & Cramer, 2017). While
some studies suggest increased effect of stimulation with higher amplitude or higher number
of sessions (Charvet et al., 2018), we aimed to minimize the chances of adverse effects by
limiting stimulation to 1 mA. Related to number of sessions, the choice of six tDCS sessions
was partly motivated by feasibility concerns, as increasing the number of sessions would
significantly prolong the study period and require substantially more resources in terms of
research staff and effort from participants. A related concern was limiting the scope of the
intervention to avoid patient drop-out because participation got too demanding or time
consuming. Moreover, the current setup with 17 training sessions administered over
approximately three weeks was also in part motivated by the fact that mean hospitalization
time in Norwegian rehabilitation hospitals (spesialisthelsetjenesten) ranges between 8 and 22
days, depending on the conditions’ complexity and institution (public vs private) (Myrli,
2020). An intervention length of around three weeks might thus increase the

applicability/transfer value to clinical practice.

Measurement/operationalization of fatigue

Lack of consistency in measurement and diagnostics of post-stroke fatigue represents a major
challenge in the field (Skogestad et al., 2019). It contributes to heterogeneity in results and
impedes communication and synthesizing of findings across studies (A. Zedlitz et al., 2016).
The highly subjective nature of fatigue, and the fact that it is common to a range of illnesses
and conditions while simultaneously constituting a normal reaction to stress and strain,

implicates that it is difficult to operationalize and disentangle specific types of fatigue, post-
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stroke fatigue included. Currently, the most frequently used measure of post-stroke fatigue is
the FSS, which is also the measure adopted in the present work. While the FSS has several
previously described beneficial properties, whereof the widespread use of the scale is one of
them, it is not developed for post-stroke fatigue specifically. Moreover, FSS primarily taps
into fatigue interference (six items concern fatigue interference, while the remaining three
items concerns general fatigue severity), despite its common application as a one-dimensional
measure of fatigue severity. This implies that there are several dimensions of the post-stroke
fatigue experience not being captured by the FSS, such as diurnal variations (Birgitta
Johansson & Ronnbick, 2012), recovery time and management strategies (Skogestad et al.,
2019), and it can thus be considered a rather coarse measure of a complex phenomenon. A
recent review on measures used to quantify post-stroke fatigue revealed low content overlap
between the various scales (Skogestad et al., 2019), exacerbating challenges with
generalizability and synthesizing of results across studies. As such, development of stroke-
specific fatigue measures and greater consensus on definitions and measurements appears an
important step in developing the field further, and future studies could benefit from including

a more detailed characterization of the fatigue experience.

On a final note regarding the FSS, item #1 an #2 are sometimes disregarded in favor of an
abbreviated version (FSS7), as studies have revealed reduced reliability and discriminative
properties when including these specific items (A. Zedlitz et al., 2016) as well as impaired
potential to detect change across time (Lerdal & Kottorp, 2011). While such observations
correspond to the results presented in Paper III, where #1 and #2 were found to have overall
low centrality as compared to the respective FSS items, the full FSS scale was nonetheless
used in the papers comprising this thesis in an attempt to cover a more comprehensive part of
the fatigue spectrum and comply with the most commonly used application. Moreover, the
inclusion of other, domain-specific measures of fatigue such as e.g. the mental fatigue scale
(MFS; Birgitta Johansson & Ronnback, 2014) could provide a richer description of the
phenomenon, and reveal details of the relationship between fatigue and behavioral measures

(such as the ANT) not detected by FSS.

Lack of prospective registration

Guidelines for preregistration of clinical trials were developed following the WHQO’s Joint
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statement on public disclosure of results from clinical trials, and joined by the Research
Council of Norway in 2017 (RCN, 2020). Preregistration is an important tool for reducing
bias and facilitate transparency in clinical research involving human subjects, and most
scientific journals now require trial ID for publication. When the StrokeMRI project was
initiated in 2012-2013, preregistration was both intended and initialized, but due to practical
circumstances the registration was unfortunately never completed. While the study is now
retrospectively registered, preregistration prior to data collection should be a priority for
future research as it fulfills a range of purposes and benefits both the research community and

patients.

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The overarching aim of this thesis has been to contribute to a better understanding of the
symptoms and mechanisms of fatigue in the chronic phase after stroke. Beyond the above
discussed methodological considerations, we used various and novel approaches to discern
the correlates of fatigue at different levels. Briefly summarized, Paper I suggested that
subjective fatigue is associated with an increased vulnerability to sustained attentional effort
despite no apparent associations with baseline cognitive performance, and that this effect is
specific for fatigue in contrast to depression. Paper II demonstrated that chronic phase fatigue
could not be explained by neither conventional lesion characteristics nor by the extent and
distribution of structural disconnection in our sample, while Paper III provided evidence for
no added effect of tDCS combined with cognitive training with regards to fatigue or
depression, and found more severe symptoms to be associated with less favorable outcomes in

terms of attendance and training gain.

The considerable heterogeneity characterizing the stroke patient population calls for
personalized treatment. Coupled with the multifactorial etiology of post-stroke fatigue, a “one
size fits all” approach to treatment seems unrealistic, and different subgroups of patients are
likely to benefit from different treatments (Barker-Collo, Feigin, & Dudley, 2007). Accurately
defined subgroups in future studies could strengthen claims and contribute to identifying the

most appropriate interventions for specific groups.
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Abstract

Post-stroke fatigue (PSF) is prevalent among stroke patients, but its mechanisms are
poorly understood. Many patients with PSF experience cognitive difficulties, but
studies aiming to identify cognitive correlates of PSF have been largely inconclusive.
With the aim of characterizing the relationship between subjective fatigue and atten-
tional function, we collected behavioral data using the attention network test (ANT)
and self-reported fatigue scores using the fatigue severity scale (FSS) from 53 stroke
patients. In order to evaluate the utility and added value of computational modeling
for delineating specific underpinnings of response time (RT) distributions, we fitted
a hierarchical drift diffusion model (hDDM) to the ANT data. Results revealed a
relationship between fatigue and RT distributions. Specifically, there was a positive
interaction between FSS score and elapsed time on RT. Group analyses suggested
that patients without PSF increased speed during the course of the session, while pa-
tients with PSF did not. In line with the conventional analyses based on observed RT,
the best fitting hDD model identified an interaction between elapsed time and fatigue
on non-decision time, suggesting an increase in time needed for stimulus encoding
and response execution rather than cognitive information processing and evidence
accumulation. These novel results demonstrate the significance of considering the
sustained nature of effort when defining the cognitive phenotype of PSF, intuitively
indicating that the cognitive phenotype of fatigue entails an increased vulnerability to
sustained effort, and suggest that the use of computational approaches offers a further

characterization of specific processes underlying behavioral differences.

Abbreviations: ANT, attention network test; CI, confidence interval; DIC, deviance information criteria; FSS, Fatigue Severity Scale; hDDM, hierarchical
drift diffusion model; MCMC, Markov chain Monte Carlo; MMSE, Mini-Mental Status Examination; NIHSS, National Institutes of Health stroke scale;
PHQ-9, Patient Health Questionnaire; PPC, posterior predictive checks; PSF, post-stroke fatigue; RT, reaction time; SD, standard deviation; TOAST, Trial
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1 | INTRODUCTION

Post-stroke fatigue (PSF) is acommon complaint among stroke
survivors, with an estimated prevalence ranging between 25%
and 85% (Cumming, Packer, Kramer, & English, 2016). The
symptom burden is often pervasive and persistent (Duncan,
Wu, & Mead, 2012; Schepers, Visser-Meily, Ketelaar, &
Lindeman, 2006; van der Werf, van den Broek, Anten, &
Bleijenberg, 2001) and associated with poorer outcome
after rehabilitation, higher mortality (Michael, 2002; Naess,
Lunde, Brogger, & Waje-Andreassen, 2012) and increased
probability of institutionalization (Glader, Stegmayr, &
Asplund, 2002). Post-stroke fatigue has been defined as a
highly prioritized future research topic by stroke survivors,
family members and healthcare professionals (Pollock, St
George, Fenton, & Firkins, 2012).

Although a universally accepted definition is lacking
(Deluca, 2005), PSF is generally conceptualized as the feel-
ing of debilitating tiredness and loss of energy (Stulemeijer,
Fasotti, & Bleijenberg, 2005). Moreover, many patients
suffering from PSF experience cognitive difficulties such
as problems concentrating (Johansson & Ronnbick, 2012;
Koopman et al., 2009) and report increased fatigue when
engaging in cognitively demanding activities over time,
often referred to as mental or cognitive fatigue (Johansson
& Ronnback, 2014). To date, identifying robust and ob-
jective cognitive correlates of PSF has proven difficult,
and the literature has failed to confirm or refute an associ-
ation between self-reported fatigue and cognitive function
(Lagogianni, Thomas, & Lincoln, 2018). However, this may
partly be due to the use of multifactorial neuropsychologi-
cal tests, with varying or low cognitive specificity and which
do not account for the temporal aspects during the course
of a test session (Holtzer, Shuman, Mahoney, Lipton, &
Verghese, 2010). In line with this, many of the studies failing
to identify an association use rather general measures of cog-
nitive function such as the Mini-Mental State Examination
(MMSE; (Folstein, Folstein, & McHugh, 1975); van Eijsden,
van de Port, Visser-Meily, & Kwakkel, 2012; Kutlubaev
et al., 2013) and a recent review on factors associated with
PSF concluded that although the evidence does not support a
link between general cognitive function and PSF, there may
be an association between attentional functioning, processing
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speed and fatigue (Pihlaja, Uimonen, Mustanoja, Tatlisumak,
& Poutiainen, 2014; Ponchel, Bombois, Bordet, & Hénon,
2015).

With the assumption that a critical characteristic of cog-
nitive fatigue is the failure to maintain or sustain cognitive
effort over time, monitoring performance over time should
increase sensitivity to cognitive manifestations of fatigue
(Holtzer et al., 2010) and would also be closer in line with
the conceptual definition of cognitive fatigue as “decreased
performance during acute but sustained mental effort”
(Deluca, 2005). Accordingly, the attentional network task
(ANT; (Fan, McCandliss, Sommer, Raz, & Posner, 2002))
appears to be appropriate for examining the relationship be-
tween self-reported fatigue and attentional function over time
in stroke patients. ANT combines a flanker test (Eriksen &
Eriksen, 1974), and a cued reaction time task (Posner, 1980)
in a computerized behavioral paradigm requiring sustained
attention over time. The full version lasts for about 20 min,
where accuracy and response times (RT) are tracked over
time in 288 trials with varying cognitive demands. The ANT
allows for estimation of individual-level attention network
scores such as the alerting, orienting and executive compo-
nents, defined as relative differences in average RTs between
different flanker and cue conditions (Fan et al., 2002).

ANT has been applied in studies of fatigue and attention
in other neurological patient groups, such as Parkinson's dis-
ease, where fatigue was associated with reduced efficiency
in the executive attentional network (Pauletti et al., 2017)
and chronic fatigue syndrome, associated with higher RT
in the most cognitively demanding condition (Togo, Lange,
Natelson, & Quigley, 2015).

Although representing a widely applied and valuable
contribution to theories on attentional function, analytical
approaches based on mean RTs are vulnerable to trade-
offs between speed and accuracy which are not accounted
for in the model (Miller & Ulrich, 2013), and they do
not provide information about which underlying mecha-
nisms give rise to observed RT differences. In contrast,
computational approaches such as the drift diffusion
models (DDM; (Ratcliff, 1978)) simultaneously model
the full distribution of RTs and accuracies to estimate
parameters reflecting specific theoretical cognitive con-
stituents of the decision process. DDMs are frequently
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applied to simple and speeded decision-making tasks
(Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, &
McKoon, 2016), offering both a theoretical framework to
understand basic cognitive processes, and a psychomet-
ric tool to translate behavioral data into subcomponents of
cognitive processing (Ratcliff & McKoon, 2008). DDMs
conceptualize decision-making as a noisy process where
information is accumulated over time, continuing until a
decision threshold is reached and a response is initiated
(Ratcliff & McKoon, 2008). Four parameters are postu-
lated in the original model (Ratcliff, 1978): drift rate (v),
describing the rate or the speed of information accumula-
tion, reflecting processing efficiency; non-decision time
(1) representing time needed for stimulus encoding and
response execution; decision boundary separation (a) in-
dicating how much evidence is needed before a decision is
made; and the starting point (z), reflecting any bias toward
one of the two responses (Ratcliff & McKoon, 2008). The
parameters have been validated in various experimental
paradigms (Lerche & Voss, 2017; Voss, Rothermund, &
Voss, 2004).

Applying computational models such as the DDM in
clinical research may allow for a dissection of specific cog-
nitive processes underlying observed group and individual
differences in RT patterns. For example, assessing young
and older subjects with a signal detection task, Ratcliff,
Thapar, and McKoon (2001) found that the prolonged RTs
often observed in older individuals were not explained by
slower drift rates but rather longer non-decision times and
higher decision thresholds, which provided a relevant ad-
justment to the long-held notion of a general slowing in cog-
nitive aging (Brinley, 1965; Salthouse, 1985). In the context
of stroke patients and PSF, such computational approaches
may provide a valuable, supplementary tool to expand our
understanding of cognitive function beyond conventional
methods of neuropsychological assessment and statistical
analysis.

In sum, a large number of stroke patients suffer from PSF,
and many experience cognitive difficulties and cognitive fa-
tigue. Attentional deficits may be particularly involved. The
ANT paradigm allows us to determine whether and how
subjective fatigue manifests cognitively during prolonged
effort, and assess associations between subjective fatigue
and efficiency of the attentional networks. With the aim of
characterizing the relationship between subjective fatigue
and attentional function, we collected behavioral data using
the ANT and self-reported symptoms of fatigue using the fa-
tigue severity scale (FSS; (Krupp, LaRocca, Muir-Nash, &
Steinberg, 1989) from 53 chronic stroke patients (>6 months
since hospital admission). We hypothesized that self-reported
symptoms of fatigue as measured by the fatigue severity scale
(FSS; (Krupp et al., 1989) would interact with time on task,
manifesting in an increase in RT for patients with high fatigue

levels relative to patients with low levels of fatigue. Further,
we expected to find a negative association between fatigue
and executive network functioning, in line with previously
mentioned literature. Main analyses were conducted with
FSS score as a continuous predictor, and follow-up sensitivity
analyses were conducted with PSF group (high/low PSF) as a
factor predictor, or separately for patients with high/low PSF
to assess manifestation of group differences. Lastly, evaluat-
ing whether DDM modeling can elaborate our understanding
further by characterizing the specific cognitive processes un-
derlying observed differences in RT patterns, we performed
an exploratory analysis where we fitted a hDDM to the ANT
behavioral data and tested for associations between the model
parameters (drift rate (v), non-decision time (f) and boundary
separation (a)) and fatigue (FSS) score. To account for the
temporal aspects of task performance, we specifically tested
for interactions between FSS, trial number and performance.
In line with our first hypothesis, we hypothesized that any
associations between subjective fatigue and model param-
eters will interact with time, with increasing associations
between fatigue and model parameters with more sustained
performance.

2 | MATERIALS AND METHODS

2.1 | Sample

Stroke patients who had been previously admitted with acute
stroke to the Stroke Unit, Oslo University Hospital, or the
Geriatric Department, Diakonhjemmet Hospital, between
2013 and 2016, were invited by letter. Patients had to be in
a chronic phase, defined as minimum 6 months post-stroke,
with no other severe neurological, psychiatric or neurodevel-
opmental conditions. Among the approximately 900 invita-
tion letters, 250 patients responded to decline or obtain more
information. Seventy-seven were interested and eligible for
inclusion and provided informed consent. Nineteen of the 77
patients withdrew during the course of the study and before
the data for the current paper were collected. Four additional
patients were excluded because of medical conditions. One
patient was excluded due to behavioral criteria for the ANT
(see below), resulting in a final sample of n = 53 stroke
patients.

Table 1 summarizes relevant demographic and clinical
information of the patient group, and Figure 1 shows the age
distribution. This work was part of an intervention study on
cognitive rehabilitation after stroke with a double baseline,
randomized controlled design (see (Kolskaar et al., 2019) for
more details, including a description of overall study design).
All data for the current study were collected from the baseline
assessments prior to the intervention, starting 6—45 months
after the acute stroke.
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Mini-Mental Status Examination scores < 24 may indi-
cate cognitive impairment and warrant further examination
(Strobel & Engedal, 2008). One patient scored below 24, but
further neuropsychological assessments done by a clinical
psychologist indicated that cognitive function was sufficient
for participation and that the inclusion criteria were not vio-
lated. The study was approved by the Regional Committee for
Medical and Health Research Ethics, south-east Norway. All
participants provided their written informed consent prior to
inclusion.

TABLE 1 Sample characteristics

Current demographic and

clinical information Mean SD Min  Max
Age 69.00 7.43 47 81
Males/females (count) 38/15 - - -
Education in years 14.56 3.65 9 30
FSS 3.53 1.46 1.11 6.77
PHQ-9 4.79 3.61 1 14
MMSE 28.22 1.68 22 30
Stroke-related information

NIHSS at hospital 1.14 1.23 0 6

discharge
Months since stroke 25.59 9.40 6.00 45.00

TOAST classification for
ischemic stroke®

Large artery artherosclerosis (19)

Small vessel occlusion (18)
Cardioembolism (6)

Other known/not known (10)
Right Hemisphere (20)

Left Hemisphere (18)

Stroke location

Brainstem/cerebellum (7)
Both Hemispheres (5)
Not specified (3)

“All but one patient suffered ischemic stroke.

EJN Eropean joumar o Newroscence. - FENS
22 | FSS

Fatigue was measured by the FSS (Krupp et al., 1989),
which is a one-dimensional, 9-item self-report scale, and
one of the most frequently used measures to assess fatigue
after stroke and other neurological conditions (Cumming
et al., 2016; Lerdal et al., 2009; Whitehead, 2009). The
nine items are statements about impact of fatigue on dif-
ferent areas of daily life, and responses are given on a
nine-point Likert scale reflecting degree of agreement
(minimum mean score 1, maximum mean score 7). A re-
view of 22 fatigue measures concluded that FSS was
among the three scales that demonstrated good psychomet-
ric properties, as well as sensitivity to change in fatigue
over time (Whitehead, 2009). Figure 1 shows the distribu-
tion of mean FSS scores by sex. Average FSS score was
3.53 (SD = 1.46), and 35% of the patients reported mean
FSS > 4, which is a commonly adapted threshold for clini-
cal fatigue in stroke studies (Krupp et al., 1989; Schepers
et al., 2006; Tang et al., 2010). Table S1 shows the mean
scores per item for patients with- and without PSF accord-
ing to this cutoff value, offering a more detailed characteri-
zation of fatigue complaints in the sample. The PSF group
scored significantly higher on all items.

23 | PHQ-9
Depressive symptoms were measured by the self-report scale
Patient Health Questionnaire (PHQ-9; Spitzer, Kroenke,
Williams, & Patient Health Questionnaire Primary Care
Study, 1999). PHQ-9 consists of nine items based on the
DSM-1V criteria for depression. These are scored 0-3, pro-
viding severity scores ranging from O to 27. Briefly, sum
scores of 5, 10, 15 and 20 represent mild, moderate, moder-
ately severe and severe symptom levels. Average PHQ score
in the patient sample was 4.79.

1 I
0.31 : 0154 Sex :
1 [ |Female 1
) Male !
1 \ I
=021 / \u\ = 0.101 |
3 | ! 3 !
@) ¥ 1 X (e} i A
O e (&) val
0.11 / ! 0.05 1 A &
FIGURE 1 Distribution of mean FSS | - | | : =\
scores by gender and distribution of age by ! = J:,\ | l ‘
gender. Red line denotes the mean [Colour 0.0 : 0.004 ' — :
figure can be viewed at wileyonlinelibrary. 2 4 6 50 60 70 80
com] Mean FSS Age
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2.4 | Attention network test

A conventional version of the ANT was applied, as previ-
ously described (Fan et al., 2002). In the ANT, accuracy and
response times (RT) are tracked over time in trials with vary-
ing cognitive demands in a computerized paradigm. By com-
bining a flanker test (Eriksen & Eriksen, 1974), and a cued
reaction time task (Posner, 1980), the ANT estimates network
scores as relative differences in mean RTs between different
flanker and cue conditions (Fan et al., 2002). Figure 2 depicts
the details of the task.

Briefly, participants were instructed to direct their gaze at
fixation cross that was presented with a duration of 400, 800,
1,200 or 1,600 milliseconds. Immediately following the fix-
ation cross, one out of four cue conditions would appear for
100 milliseconds; no cue, a center cue (temporal cue only), a
double cue (temporal cue only), or a spatial cue (temporal and
spatial cue), alerting the attention toward the stimulus about
to appear. Then, five small arrows or lines were presented
for 1,700 milliseconds, and the task was to, as quickly and
correctly as possible, decide whether the middle arrow (target
arrow) was pointed left or right. Participants responded by
pressing the left or the right mouse button. The four flanker
arrows/lines surrounding the middle, target arrow could point
in either the same direction (congruent flankers) or the op-
posite (incongruent flankers) direction as the middle, target
arrow, or they could simply be lines without direction, con-
stituting neutral flankers. The flanker arrows/lines represent
the different stimulus conditions associated with different
cognitive demands, where incongruent flankers typically re-
sult in the highest error rates and RTs (Westlye, Grydeland,
Walhovd, & Fjell, 2010).

Starting with a practice run of 24 trials, the full test con-
sisted of 288 trials, divided into three rounds (96 trials per
round), lasting about 20 min. Participants were instructed to

take a short break between rounds. For setting up the experi-
ment and collecting responses, E-prime software (Psychology
Software Tools, Pittsburg, PA) was applied.

2.5 | Statistical analyses

Statistical analyses were performed using R version 3.4.0
(2017-04-21; R Core Team, 2017) and the python toolbox
HDDM (Wiecki, Sofer, & Frank, 2013). Figures were pro-
duced using the ggplot2 package (Wickham, 2009).

2.5.1 | Outlier exclusion and data cleaning
Trials with RT < 200 ms, thought to reflect fast guesses, were
removed from the analysis, in line with previous ANT re-
ports (Chang, Pesce, Chiang, Kuo, & Fong, 2015; Westlye
et al., 2010). 2% of the responses were removed due to this
criterion. Participants having more than 50% incorrect re-
sponses within any of the flanker conditions were discarded.
One participant was removed due to this criterion.

2.5.2 | Associations between FSS,
time and RT

In order to characterize the relationship between subjec-
tive fatigue (FSS_z), time (trial 1-288) and RT, we ap-
plied linear mixed-effects models using the Ime function
from the nlme package in R (Pinheiro, Bates, DebRoy,
& Sarkar, 2013). Following the recommendations from
Barr, Levy, Scheepers, and Tily (2013), we started with
a maximal model, including by-subject random slopes for
FSS_z * time at the subject level, in addition to random

No cue Center cue Double cue Spatial cue
* *
+ ¥ + +
*
*
Congruent Incongruent Neutral
- > > > > —_ o — > > _— s — —
+ + +
+ + + . .
— s e e e — e — e B N FIGURE 2 A schematic representation
of the ANT cue and flanker conditions
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intercepts, and all fixed effects or covariates of potential
interest. These were z-normalized FSS scores X time, age,
sex, flanker condition, stroke topography (left or right hem-
isphere, brainstem/cerebellum), lesion volume (defined
by number of voxels affected), TOAST classification for
stroke etiology (large artery artherosclerosis, small vessel
occlusion, cardioembolism or “other known or unknown
factors”), NIHSS scores and z-normalized PHQ scores.
Non-converging models were dealt with by sequentially
simplifying the fixed effect structure until reaching con-
vergence. The full model did not converge, and we dropped
NIHSS, on the basis that the variability in NIHSS scores
was small (mean = 11.4, median = 1, SD = 1.23), reflect-
ing the fairly highly functioning patient sample. Next, we
removed TOAST classification of stroke etiology, due to
a large number of cases in the “not specified/unknown”
category, and then excluded PHQ scores because of high
correlations with FSS.

The most complex converging model was specified as fol-
lows: Ime (RT ~ FSS_z * time + age + sex + flanker + le-
sion volume + lesion location, random = 1 + FSS_z * timelid,
data = data, method = “REML”). As a formal test of whether
random slope effects were warranted, we used the ANOVA
function in R to compare model fit between this model and
a similar model without a random slope term, and results
indicated that random slopes should be included. To further
refine the model, we tested whether removing independent
variables that did not provide predictive value improved
model fit. Model fit improved marginally by removing lesion
volume and lesion location. As an indication of FSS effect
size, we compared the final model with a model that did not
include FSS score. Model formulae and notes on model se-
lection are provided in Table S2.

Assessing whether PSF status (PSF defined by mean FSS
score > 4, in line with common practice (Krupp et al., 1989;
Schepers et al., 2006)) interacted with the effect of time/trial
number, we reran the above-specified regression model with
PSF status included in the model instead of FSS score as a
continuous measure. Additionally, to test whether effects
varied between flanker conditions, we estimated the full re-
gression model separately for each flanker condition. In these
follow-up models, random slopes were not estimated in order
to secure convergence. To explore whether the relationship
between time, fatigue and performance manifested differently
according to PSF status, we repeated the above-described
within-flanker linear mixed-effects models within patients
with PSF and patients without PSF.

Importantly, to test whether potential effects were specific
for fatigue or could be explained by depressive symptoms, the
full linear mixed-effects model was repeated with PHQ in-
stead of FSS, keeping all other model specifications constant.

In all analyses, the time variable refers to trial number
(1-288).
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2.5.3 | Associations between conventional
ANT network scores and FSS

Based on a previous definition (Westlye et al., 2010), we
computed the conventional ANT network scores orienting,
alerting and executive control network based on median RTs:

Executive control = (RT incongruent —RT congruent)/RT congruent
Alerting = (RT no cue — RT center cue)/RT center cue

Orienting = (RT center cue —RT spatial cue)/RT spatial cue

To assess the association between estimated attentional
networks and subjective fatigue, we ran a linear model for
each attentional network and tested for main effects of FSS,
covarying for age and sex. We then estimated change in net-
work efficiency over time (network slope) for each network
and fitted this to a linear model adding FSS, age and sex as
predictors to test for interactions between attentional net-
works, time and FSS. Network slopes were created in two
steps: First, we ran linear models for each patient within each
flanker and cue condition separately, predicting RT by trial
number. Then, change in network efficiency/network slope
was calculated for each patient by subtracting the betas from
the first models in the same way as outlined above, that is:

Executive slope = (beta incongruent — beta congruent)

Following the same procedure as in the RT models above,
we reran the network analyses replacing FSS with PSF status
as independent variable, to investigate whether attentional
networks were differently affected by time dependent on PSF
status.

As an additional test of potential associations between
subjective fatigue and stroke-related variables, we estimated
the correlations between FSS score, NIHSS score, lesion vol-
ume and months since stroke, respectively.

2.5.4 | Hierarchical drift diffusion modeling
Cleaned RT and accuracy data were submitted to hierarchical
drift diffusion modeling by use of the python toolbox HDDM
(Wiecki et al., 2013). HDDM uses hierarchical Bayesian
parameter estimation, which provides enhanced statistical
power and allows for estimation of both individual and group
parameters simultaneously (Wiecki et al., 2013). We applied
mildly informative priors and starting points as predefined
in the toolbox (Wiecki et al., 2013). We did not estimate any
bias in starting point. The data were accuracy-coded (accu-
rate responses = 1, erroneous responses = (). In addition to
the data cleaning described above, an outlier mixture model
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included in the HDDM was applied, which assumes that a
fixed proportion (5%) of trials are outliers that come from
a uniform distribution not generated by a diffusion process
(Wiecki et al., 2013). A mixed-effects model allowing for
some outliers has been shown to provide a better fit in likeli-
hood models than models not allowing for any outliers at all
(Wiecki et al., 2013).

2.5.5 | Model selection/ defining parameters
When parametrizing the hDDM, we tested different cogni-
tively plausible models to identify the model that best ex-
plained data, guided by the theoretical assumption that drift
rate (v) should be allowed to vary as a function of stimu-
lus difficulty condition (Ratcliff, Smith, & McKoon, 2015).
Further, decision threshold (a) was assumed to be constant
across stimulus conditions, following the logic that if a varies
with stimulus conditions, the participant would have to first

identify the condition, before adjusting threshold and then
start accumulating information from the stimulus, a sequence
of events that does not seem plausible (Thapar, Ratcliff, &
McKoon, 2003). Non-decision time (t, stimulus encoding and
motor responses) was not expected to be affected by flanker
condition, given that the visual stimuli were highly similar
across flanker conditions and motor responses were simple
and identical across conditions (simple button press).

Building on the above-mentioned assumptions, we esti-
mated different models and tested which combination of pa-
rameter fixations provided the best model fit. See Table 2 for
an overview of models tested.

Variability estimates were included in the preliminary
models, but were discarded as they failed to converge ade-
quately and slightly worsened model fit. Variability parame-
ters are often estimated poorly, and less complex models may
improve estimates of the parameters of interest (Lerche &
Voss, 2016). To evaluate in which parameter the interaction
between time and FSS should be localized, we estimated a

TABLE 2 Parameter fixations and

Model Samples DIC . .
model fits (DIC) for various hDDM
(a ~ warningcue) Al 1,500 —15,424 regression models
(t ~ warningcue) A2 1,500 —15,717
(v ~ warningcue) A3 1,500 —15,169
([v ~ flanker + time * FSS, t ~ time * Bl 12,000 —16,608
FSS + warningtype, a ~ FSS * time],
group_only = True)
(a ~ time) Cl 1,500 —14.356
(t ~ time) C2 1,500 —14.448
(v ~ time) C3 1,500 —14.219
(a ~ ESS) D1 1,500 —14.109
(t ~FSS) D2 1,500 —14.110
(v ~ESS) D3 1,500 —14.109
(a ~ FSS:time) El 1,500 —14.353
(t ~ FSS:time) E2 1,500 —14.454
(v ~ FSS:time) E3 1,500 —14.222
([*v ~ flanker, t ~ warningtype, a ~ FSS * time], F1 6,000 —16,590
group_only = True)
([v ~ flanker, t ~ time * FSS + warningcue], F2 6,000 —-16,602
group_only = True)
([v ~ flanker + time * FSS, t ~ warningtype], ES! 6,000 —16,575
group_only = True)
([v ~ flanker, t ~ time * FSS + warningcue], Gl 6,000 —17,648
group_only = False)
([v ~ flanker, t ~ time * FSS + warningcue], G2 12,000 —17,648
group_only = False)
([v ~ flanker, t ~ time * FSS + warningcue], H1 12,000 —16,602

group_only = True)

Note: DIC, deviance information criterion, where lower values indicate a better model fit. DIC values in bold

indicate the combination of parameter fixation that provided the best fit for each model comparison (model

comparisons between same letter models (i.e., AI-A3).
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regression model where all three parameters (a, t and v) were
allowed to vary by the interaction term. To further explore
which parameter fixations provided the best model fit, we ran
nine simple models with (a) the main effect of time on either
a, t or v; (b) the main effect of FSS on either a, t or v; and
(c) the FSS*time interaction on a, ¢ or v separately. Finally,
we estimated the best model with individual regressors and
group only regressors.

Model fit was assessed by comparing the deviance in-
formation criteria (relative DIC values) between models. In
Bayesian analyses, the DIC provides an estimation of fit of
the model to the data, where lower DIC values indicate that
the model has better support (Frangois & Laval, 2011). In
models where individual regressors were estimated, we sim-
ulated data from the respective models and performed poste-
rior predictive checks (PPC) to evaluate whether the model
was able to reproduce central patterns in the observed data
(Wiecki, 2016). 500 data sets were simulated by drawing
500 samples for each parameter from the estimated posterior
distribution. The simulations thus capture the uncertainty in
the estimated model and allow for comparisons with the ob-
served data.

Final choice of model was based on a combination of
model fit and convergence (see below).

2.5.6 | Estimating the posterior
distributions and assessing convergence (model
diagnostics)

We used a Bayesian framework and Markov chain Monte
Carlo sampling (MCMC) to estimate the posterior distribu-
tions (Kruschke, 2014). In the preliminary models, when
testing and comparing parameter fixations, models were es-
timated on 1,500 or 6,000 samples. The final model was run
on 12,000 samples. To improve convergence, the 4,000 first
samples were discarded, and thinning was set to 2 (keeping
only every second sample).

A valid model should demonstrate convergence of the
MCMC chains (Wiecki, 2016). Convergence was assessed
by plotting and visually inspecting traces and autocorrelation
plots for each estimated parameter. As a more formal test of
convergence, the Gelman—Rubin statistics (R”; (Gelman &
Rubin, 1992) were calculated. These values should be close
to 1 and not exceed 1.1 if the chains have converged success-
fully, that is, if the samples of the different chains are similar
(Wiecki et al., 2013).

2.5.7 | Hypothesis testing within the hDDM

Effects of task and cue conditions, as well as the effects
of time and fatigue status, were determined by Bayesian
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hypothesis testing, by assessing the degree of overlap be-
tween posterior distributions. If less than 5 percent of the
posterior distributions of two parameters overlap, the differ-
ence is said to be credible, or an effect is credibly different
than null when at least 95 percent of the posterior distribution
does not contain zero.

3 | RESULTS

3.1 | ANT behavioral results

Table 3 shows mean RT and error rates for each flanker con-
dition. Two-tailed, one-sample ¢ tests revealed significant
differences in RT between incongruent and congruent condi-
tion, M = 111, CI = 101-122, #(52) = 20, p < .001, between
incongruent and neutral condition, M = 124, CI = 112-136,
1(52) =20, p <.001 and between congruent and neutral con-
dition, M = 12, CI = 3.7, 1(52) = 3.6, p < .001.

There was no significant association between FSS and
mean RT across (r = .09, p = .48) or within conditions (in-
congruent flanker: r = .05, p = .67, congruent flanker: r =
A1, p = .47, neutral flanker: r = .12, p = .37). There was no
association between FSS and error rate (r = —.09, p = .48).

3.2 | Associations between FSS, time and RT

Table 4 shows the summary statistics from a linear mixed-
effects model testing for associations between RT and FSS,
time, sex, age and flanker condition for all conditions si-
multaneously. The model including FSS score performed
significantly better than the model not including FSS score
as indicated by ANOVA model comparison, supporting the
predictive value of FSS (L.ratio(1) = 19.09, p < .001, see
also Table S2).

The model presented in Table 4 was also run with lesion
volume and lesion location as independent variables to con-
trol for effects related to lesion characteristics. As both vol-
ume and location displayed low predictive value and did not
improve model fit, they were not included in the final anal-
yses. Results from the linear mixed model including lesion
volume and lesion location are presented in Table S3.

TABLE 3  Error rates and mean RTs by flanker condition

Mean RT in ms

Total Error Accurate  Accuracy
Flanker (SD) (SD) (SD) (%)
Congruent 668 (187) 841(329) 667 (185) 99.2
Incongruent 773 (199) 645 (300) 776 (195) 97.7
Neutral 655 (180) 713 (245) 654 (179)  99.1
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TABLE 4 Linear mixed-effects models
t Beta CI P .
for whole sample, all flanker conditions
Intercept 0.63 109.49 (—=229.4, 448.5) .526
FSS_z 0.37 7.02 (=29.9, 43.6) 298
Time —1.03 -0.03 (—0.09, 0.03) .870
Time:FSS 2.65 0.07 (0.02, 0.14) .008
Sex 0.04 1.92 (=77.34,81.2) 962
Age 3.34 8.15 (3.37, 12.93) 001"
Incongruent flanker 40.5 111.52 (106.14, 116.93) <.000"
Neutral flanker —4.31 —11.78 (—=17.15, —6.43) <.000"

*p-Values that remained significant after Bonferroni correcting for multiple comparisons.

TABLE 5 Linear mixed-effects models by flanker stimulus, one model per condition
Neutral Incongruent Congruent
Beta t P Beta t P Beta t P
FSS 8.31 0.50 .614 -1.21 —-0.06 .949 13.67 0.78 472
Time —-0.03 —1.68 .091 —0.05 —2.27 .023 —0.00 —-0.26 791
Time:FSS 0.09 422 <.001" 0.10 4.16 <.001" 0.04 2.08 .037
Sex —4.78 —0.13 .896 0.14 0.00 997 2.06 0.05 958
Age 8.22 3.71 <.001° 8.42 3.26 002" 7.95 2.08 037
*p-Values that remained significant after Bonferroni correcting for multiple comparisons.
Linear mixed—effects models estimated RTs by flanker condition
Neutral flanker Incongruent flanker Congruent flanker
6801
670+ 8001 R8O
8 6601 8 7801 2 6701
© © ©
£ ool E £
if t 760 d 660 —
_— — No PSF
PSF
7401
6301, : : . . . . r 6501 . . -
0 100 200 300 0 100 200 300 0 100 200 300
Time/trial number Time/trial number Time/trial number
FIGURE 3 Estimated RT from linear mixed-effects models plotted by PSF status [Colour figure can be viewed at wileyonlinelibrary.com]

Table 5 presents summary statistics for models esti-
mated for each flanker condition separately, estimating the
effect of FSS score, time (trial number) and the interaction
effect between time and FSS. Figure 3 shows the estimated
RT (output from Table 5) plotted by group (PSF vs. non-
PSF patients, based on mean FSS score > 4). Briefly, after
Bonferroni correction for multiple comparisons (corrected
alpha 0.5/8 = .006), the interaction between time and FSS
was significant in the neutral and incongruent condition,
as was the association between age and RT, indicating that
age was associated with increased RT across conditions.

There was no significant main effect of FSS on RT in any
condition.

Corresponding linear mixed model with group (PSF sta-
tus) instead of FSS score revealed similar associations with
the various independent factors as presented in Table 4, ex-
cept for identifying a negative main effect of time (# = —0.05,
SE =.01,t=-3.31, p <.001). The interaction effect between
PSF status and time was comparable to that of FSS score and
time, albeit smaller (# =0.06, SE = .01, t = 2.27, p = .022),
and only nominally significant. All results from the model
with PSF status as predictor are presented in Table S4.
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Mixed-effects models with PHQ score included instead
of FSS did not indicate significant interaction effects be-
tween depressive symptoms and time on RT in any flanker
condition.

Table 6 shows summary statistics from linear mixed
models estimating the main effect of sustained performance
(time) on RT in the various flanker conditions, conducted
separately for patients with and without PSF. In this model,
that included only trial number (time) and not FSS score as
predictor, the results suggested that patients without PSF
demonstrated more speeded RTs in the incongruent condition
during the course of the experiment, while patients with PSF
did not show any significant changes in RT in any condition.

3.3 | Associations between FSS and other
clinical measures

There was no correlation between FSS score and months
since stroke (r = .00, p = .97), between FSS score and lesion
volume, indicated by number of voxels affected (r = —.14, p
= .30) or FSS score and stroke severity, indicated by NIHSS
score (r = .10, p = .46). FSS score was positively correlated
with PHQ score (r = .47, p < .001).

3.4 | Associations between ANT network
scores and FSS

One-sample ¢ tests revealed significant group-level net-
work score effects for executive control network (M = 0.18,
CI = 0.17-0.20, t+ = 21.57, p < .001), orienting network
(M = 0.06, CI = 0.05-0.08, t = 11.27, p < .001) and alert-
ing network (M = 0.04, CI = 0.03-0.06, t = 7.47, p < .001).
Table 7 shows summary statistics from linear models esti-
mating the associations between ANT network scores and
FSS. Whereas the analyses revealed a nominally significant
negative association between FSS and the executive network

TABLE 6 Linear mixed-effects models
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score (t = —2.23, p = .03) and a negative effect of age on
the alerting network (r = —2.17, p = .03), no associations re-
mained significant after correction for multiple comparisons.

Table 8 shows linear models testing associations between
ANT network efficiency change over time (network slope)
and FSS score, age and sex. Results suggested a (nominally)
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significant association between executive slope (network
efficiency change over time, where positive score indicate
efficiency) and FSS (r = 2.24, p = .029). No associations re-
mained significant after correction for multiple comparisons.
See Figure 4 for network slopes plotted against FSS scores.
Follow-up linear models with PSF status as predictor instead
of FSS did not support a significant main effect of PSF status
(t=—-0.73, p = .466) on executive network slope.

3.5 | hDDM regression models
The best fitting model that showed adequate convergence
allowed drift rate (v) to vary across flanker conditions,
non-decision time (t) to vary across warning cue conditions
and time while boundary separation (a) was kept constant
(“v ~ flanker,” “t ~ warningcue +time”). In this group-
level model, no Gelman—Rubin statistics (R-hat values)
were > 1.1, and chains and autocorrelations confirmed ad-
equate convergence for all parameters.

A less restricted model where all parameters were allowed

9

to vary by the FSS*time interaction term generated a slightly
better model fit (DIC value —16,608 vs. —16,602), but worse
convergence in terms of (R-har values > 1.1), chains and
autocorrelations. This model was therefore discarded as
not sufficiently valid. Estimations of the best fitting model
(“v ~ flanker,” “t ~ warningcue + time”) on the individual
level produced the best fit in terms of DIC values, but pos-
terior predictive checks indicated that the models did not
sufficiently reproduce observed patterns in the data and the
standard deviations for t:FSS and t_time:FSS showed subop-
timal convergence.

estimating RT by time for PSF/non-PSF Neutral Incongruent Congruent
patients separately Beta t )/ Beta t P Beta t P
Non-PSF patients
Time -0.06 -217 .029 —0.10 =322 .001° —0.01 —055 .575
Sex 34.1 0.66  .509 10.9 0.18  .854 26.5 048  .632
Age 10.1 290  .007 8.96 2.21 .035 8.90 239  .024
PSF patients
Time -0.00 -0.12  .377 0.00 0.18  .851 0.00 0.17  .859
Sex -474 -0.76 454 -9.77 -0.13 897 -257 =038  .707
Age 7.86 226  .036 8.36 1.99  .062 8.17 2.15  .045

*p-Values that remained significant after Bonferroni correcting for multiple comparisons.
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3.6 | Effect of time and FSS on ¢,
non-decision time

Figure 5 shows the posterior distributions for non-decision
time, t. hDDM provided support for a negative main effect
of time (P(t_time < 0) = 0.98) on non-decision time, indi-
cating that time needed for stimulus encoding and response
execution decreased during the course of the test. hDDM did
not identify a main effect of FSS on non-decision time (P(t_
FSS > 0) = 0.77). In contrast, the model provided evidence
for a positive interaction effect between time on task and FSS
on non-decision time (P(t_time:FSS > 0) = 1.00), suggesting
that the association between FSS and non-decision time in-
creased during the course of the experiment, so that patients
with high levels of fatigue were more negatively affected by
time on task (resulting in higher non-decision times), than
patients low on fatigue. The interaction effect is small, but
robust (posterior distribution not overlapping the null, model

TABLE 7 Linear regression models by ANT network
Orienting Alerting Executive
t p t p t p
FSS 0.57 567 -1.03 305 -2.23 030
Age 1.10 276 -2.17 .034 —1.18 243
Sex 1.66 .103 -0.41 .681 -0.03 975

*Nominally significant p-values.

TABLE 8 Linear regression models by ANT network slope

Executive Alerting Orienting

t P t P t P
FSS 2.24 029" 0.18 .85 0.55 .580
Age 0.832 .409 —0.54 .587 1.44 .156
Sex —0.98 332 0.697 489 0.27 187

Note: Higher network values indicate lower relative network efficiency.

*Nominally significant p-values.

Executive network

Alerting network

displaying good convergence), and it is in the opposite direc-
tion of the main effect of time when FSS is not accounted for.

3.7 | Effect of warning cue on ¢, non-
decision time

Figure 6 (left) shows the posterior probability plot for non-
decision time (#) as a function of warning cue (intercept:
center cue). Non-decision time was lowest for cue conditions
“up” and “down”. “No cue” resulted in the highest non-de-
cision time out of all cue conditions. Thus, model evidence
suggests that the presence of cues facilitated the process of
stimulus encoding and response execution, and most effi-
ciently so when the cues provided both temporal and spatial
information (“up” and “down”).

3.8 | Effect of flanker conditions on
drift rate

Figure 6(right) shows the posterior probability plot for
the drift rate (v) estimated by flanker condition (inter-
cept: congruent condition). The model provided strong
evidence supporting that drift rate was lower in the incon-
gruent condition compared to both congruent and neutral
condition (P(v_Incongruent < v_Congruent) = 1.0, and
P(v_Incongruent < v_Neutral) = 1.0), suggesting lower rates
of evidence accumulation in the cognitively most demanding
condition (incongruent flanker with cognitive conflict). Drift
rate was highest in the neutral condition (P(v_Neutral > v_
Congruent) = 1.0, P(v_Neutral > v_Incongruent) = 1.0).

4 | DISCUSSION

Post-stroke fatigue is a common and debilitating symptom
in stroke patients, yet its mechanisms are poorly understood.
Many patients suffering from PSF report increased fatigue

Orienting network
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FIGURE 4 Estimated attention network slopes plotted against z-normalized FSS scores [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Posterior distributions of non-decision times (¢) as a function of FSS score (left), and as a function of (a) time and (b) the

interaction between FSS score and time (right). hDDM provided no evidence in support of a main effect of FSS, but indicated a negative main

effect of time ((P(t_time < 0) =

0.98), and a small, but robust ((P(t_FSS*time > 0) = 1.0) positive interaction effect between FSS and time on non-

decision time (#; neither of the distributions in the right plot overlap the null) [Colour figure can be viewed at wileyonlinelibrary.com]
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and cognitive difficulties when engaging in cognitive tasks,
but previous studies have largely failed to establish robust
associations between subjective fatigue and cognitive perfor-
mance. The scarcity of evidence may be due to the use of
instruments lacking cognitive sensitivity and specificity, and
tests that do not account for the effect of time on task.

In the current study, we aimed to characterize the rela-
tionship between subjective fatigue and attentional func-
tion, taking duration of effort into account. To this end,
we collected behavioral data using ANT and self-reported
fatigue using FSS from 53 chronic stroke patients. First, we

tested the assumption that FSS scores would interact nega-
tively with time on task, manifesting in a performance de-
cline for patients with high fatigue relative to patients with
low fatigue. Results from linear mixed models provided
support for this hypothesis, identifying significant inter-
actions between FSS score and time on RT in the neutral
and incongruent flanker conditions. In these whole sample
models, no significant main effects of time or FSS were
identified. Interestingly, when examining the main effect
of time separately for patients with and without PSF, re-
sults revealed that non-PSF patients significantly improved
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RTs over time in the most cognitively demanding condi-
tion, while the PSF group did not demonstrate significant
improvement.

These findings underscore the relevance of taking time on
task into account and measure sustained performance when
addressing fatigue. Because the study design does not allow
causal inference, the observed interaction between subjective
fatigue and RT may be either a manifestation of fatigue, a cause
of fatigue (i.e., that attentional difficulties give rise to fatigue),
or both. Providing a speculative theoretical context, the cop-
ing hypothesis (Van Zomeren, Brouwer, & Deelman, 1984;
Van Zomeren & Van den Burg, 1985) offers one explanatory
framework for the observed interaction. Originally articulated
in relation to traumatic brain injury patients, this view suggests
that the chronic effort needed to compensate for subtle, cogni-
tive deficiencies gives rise to secondary symptoms, hereunder
fatigue. Hence, subtle cognitive deficits associated with stroke
may be temporarily disguised by a compensating and tempo-
rary increase in cognitive effort. However, this compensation
comes with the cost of increased feeling of fatigue, in partic-
ular during sustained effort. In line with this, the current in-
teraction between time on task and fatigue may be understood
as a result of increased cognitive effort, producing increased
tiredness over time, resulting in suboptimal performance. The
concept of “cognitive compensation” also ties well with evi-
dence from the split sample analysis indicating that non-PSF
patients’ performance benefitted from practice (sustained per-
formance) in the most cognitively demanding condition, while
the PSF group did not improve with practice. This may reflect
a weakening of learning effects due to cognitive compensation
costs as described above, or, alternatively, a failure to benefit
from practice due to increasing fatigue.

The interaction between FSS and time can also be medi-
ated by motivation, with high levels of fatigue leading to re-
duced motivation and suboptimal performance. Accordingly,
the role of motivation is implied by the high scores on the FSS
item reflecting reduced motivation when feeling fatigued.

Regardless of the specific theoretical account, the results
can be understood as lending support to Holtzers definition
of cognitive fatigue as “an executive failure to monitor and
optimize performance over acute but sustained cognitive ef-
fort resulting in performance that is lower and more variable
than the individual s optimal ability” (Holtzer et al., 2010, p.
123).

It should be noted that the interaction between time on
task, self-reported fatigue and RT did not change when de-
pressive symptoms were added to the model. Moreover,
when testing the model with PHQ score on the interaction
term instead of FSS, we did not find any interaction effects
between depressive symptoms and time. These results sug-
gest that although fatigue and depression are overlapping and
correlated clinical phenomena, the specific characteristics
of fatigue may be more strongly associated with sustained

attentional performance during the course of a demanding
cognitive task.

Results did not reveal any significant association between
stroke location/laterality or lesion volume and outcome vari-
ables (RT or FSS), suggesting that, in this sample, lesion
location and volume are not strong predictors of subjective
fatigue or attentional function as measured by ANT. Whereas
the lack of a robust relationship between lesion location/le-
sion volume and FSS score is in line with previous reports
(Choi-Kwon, Han, Kwon, & Kim, 2005; Mead et al., 2011),
the literature is not conclusive, and right hemispheric lesions
are frequently associated with attentional dysfunction and
neglect (Robertson, Ridgeway, Greenfield, & Parr, 1997;
Spaccavento et al., 2019; Vallar & Perani, 1986). The cur-
rent lack of predictive value of stroke location highlights the
complex etiology of attentional function in chronic stroke
patients. However, we cannot rule out that different opera-
tionalizations of attentional dysfunction or alternative catego-
rizations of lesion location could reveal stronger associations.

Our hypothesis that FSS scores would be associated with
overall reduced executive network efficiency was not sup-
ported, and no associations between fatigue and attentional
networks remained after correcting for multiple comparisons.
This finding does not support previous studies on fatigue in
neurological conditions, linking fatigue to reduced efficiency
of the ANT executive network (Holtzer et al., 2010; Togo
et al., 2015). There was, however, a nominally significant
association between change in executive network efficiency
over time (network slope) and fatigue, indicating that patients
with higher levels of fatigue exhibited a larger decline in ex-
ecutive network efficiency with sustained effort than patients
reporting lower levels of fatigue. Although these findings did
not remain after corrections for multiple comparisons, they
may suggest that subjective fatigue is less associated with re-
duced executive attention per se, and more with an increased
susceptibility to distractors when the attentive system is put
under sustained pressure.

Suggestive FSS network effects were only observed in the
executive network. It is unclear whether the lack of alerting
and orienting network effects reflects that subjective fatigue
is related to executive attention exclusively, or rather reflects
psychometric properties of the ANT networks. A psycho-
metric evaluation of the ANT networks based on 15 previ-
ous studies (MacLeod et al., 2010) reported that the power
to identify significant effects varied across networks, while
network reliability was consistently highest for executive net-
work effects, and low to medium for alerting and orienting
network effects.

Because traditional analyses based on observed data alone
do not allow for any inference regarding the specific cogni-
tive processes that may underpin differences in RT, we per-
formed an exploratory analysis where we fitted a hierarchical
drift diffusion model (hDDM) to the ANT behavioral data.
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This computational dissection of the ANT data indicated that
the interaction between fatigue and time on RT was best ex-
plained by non-decision time, and not the speed of evidence
accumulation (drift rate) or response style (boundary sepa-
ration). hDDM revealed no main effect of FSS on any of the
model parameters, but provided evidence of an interaction
between time and FSS on non-decision time, indicating in-
creasing effects of FSS during the course of the experiment.
In this respect, the results concurred with the linear mixed-ef-
fects models on RT data, suggesting stronger associations
between fatigue and hDDM parameters with more sustained
performance, and indicate that hDDM is sensitive to fatigue
in a cognitive context when explicitly modeling the interac-
tions with time.

Non-decision time () comprises both sensory encoding
and motor response output (Ratcliff & Smith, 2010). The fact
that model evidence was stronger for the models where the
interaction between FSS and time was estimated on non-de-
cision time, rather than on drift rate or boundary separation,
indicates that fatigue may be specifically associated with
non-decision aspects of the response process, such as stimu-
lus encoding or response execution rather than with the speed
or efficiency of the evidence accumulation or with the deci-
sion threshold (i.e., how much information is required before
making a decision). Previous studies have reported higher
non-decision times in older compared to younger individuals
(Ratcliff et al., 2001), and in this respect, patients reporting
high fatigue are responding more like elderly individuals, but
only after sustained exertion.

It is also interesting to note that the negative main effect
of time (in non-decision time) suggested by the current model
is in line with previous drift diffusion research on practice
effects, identifying a reduction in the non-decision compo-
nent across trials (Dutilh, Vandekerckhove, Tuerlinckx, &
Wagenmakers, 2009). In this context, the current positive in-
teraction between time and fatigue on non-decision time may
be understood as fatigue counteracting the otherwise benefi-
cial effects of practice.

This ties well with results from the linear mixed-effects
models, suggesting that patients with PSF did not improve
performance over time, in contrast to patients without PSF
who got faster with during the course of the session. However,
this effect was found in the incongruent condition, defined by
flankers, while in the reported hDDM results, non-decision
time primarily accounts for variance introduced by cues. One
explanation could be that responses in the incongruent con-
dition require an inhibition of the dominant motor response
after the decision is made and that the identified interaction
between fatigue and time on non-decision time is driven by
a stronger slowing of these inhibitory responses in patients
with higher levels of fatigue.

Research aiming to delineate the nervous system patho-
physiology of PSF may further inform hypotheses about
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this apparent link between non-decision time and fatigue.
Applying transcranial magnetic stimulation (TMS), a pre-
vious study (Kuppuswamy, Clark, Turner, Rothwell, &
Ward, 2014) reported higher motor thresholds in stroke pa-
tients with high fatigue and suggested that patients with PSF
experience diminished excitability of motor pathways, re-
garding both corticospinal outputs and facilitatory inputs. In
this respect, the current observation of an interaction between
time and fatigue on non-decision time might reflect altered
neuronal excitability. However, how such neurophysiological
mechanisms would translate into the subjective perception of
fatigue remains unclear. Here, the perception of effort might
be central, in the sense that subjective fatigue may manifest
when volitional motor cortex input does not longer produce
the expected output due to reduced excitability (Kuppuswamy
et al., 2014).

These explorative results based on computational mod-
eling provide a novel account of the specific cognitive un-
derpinnings of PSF. When the task context is appropriate,
DDM parameters can be interpreted directly (Froehlich
et al., 2016) and thus provide insight into the modular and
temporal evolution of the decision process. Decision bound-
ary separation (a) adjusts the trade-off between speed and
accuracy (Pedersen, Frank, & Biele, 2017). Large estimates
of (a) are typically interpreted as indicative of a conservative
decision style, associated with higher RTs but more accu-
rate responses (Pedersen et al., 2017). Larger estimates of
drift rate (v) are typically interpreted as more efficient infor-
mation processing and are expected to vary by “the quality
of the information extracted from the stimulus” (Ratcliff &
McKoon, 2008, p. 3), implying that experimental conditions
varying in difficulty should produce different drift rates
(Ratcliff & McKoon, 2008). In line with this, and in agree-
ment with previous studies estimating the effect of stimulus
difficulty on drift rate (Voss et al., 2004), hDDM identified
a credible effect of flanker type on drift rate, with the more
cognitively demanding incongruent condition resulting in
the lowest drift rate, while neutral flankers yielded the high-
est drift rate.

To sum, results from linear mixed-effects models sug-
gested that subjective fatigue interacts with time on task, pos-
sibly counteracting practice effects, in particular in the most
cognitively demanding incongruent flanker condition. Group
analyses revealed that patients without PSF improved perfor-
mance over time in the incongruent condition, while the PSF
group did not. Additionally, higher FSS scores were associ-
ated with declining efficiency in the executive network over
time. However, the effect was small and was not associated
with PSF status. Lastly, hDDM modeling identified an inter-
action between fatigue scores and time on non-decision time.

Some limitations should be considered when interpreting
the results of the current study. In line with most clinical stud-
ies, the study design does not allow for causal inference. Still,
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the findings may pave the way for future clinical or exper-
imental studies examining possible causal mechanisms and
subsequent interventions. Moreover, as subjective fatigue
can manifest as both a normal and a pathological phenom-
enon, and no universally accepted definition or criteria of
PSF exists, we adopted an explorative approach, aiming to
characterize the relationship between subjective fatigue and
sustained attentional performance by a continuous measure
symptom scale. While our main objective was not to identify
case—control differences between stroke patients and healthy
controls, but rather to characterize the cognitive correlates
of post-stroke fatigue using computational modeling of re-
sponse patters, future studies adding a healthy control group
may provide stronger interpretations regarding the clinical
sensitivity of the computational behavioral parameters.

The distribution of NIHSS scores indicates that the cur-
rent patients were sampled from a relatively healthy part
of the full population of stroke patients. It is possible that
a higher fatigue symptom burden on the group level could
reveal associations that were not expressed in this relatively
well-functioning patient sample. Reported fatigue levels are,
however, comparable with what has been reported in other
studies (Wang, Wang, Wang, & Chen, 2014) and higher than
what is reported in healthy control samples (Valko, Bassetti,
Bloch, Held, & Baumann, 2008). Further studies are needed
to test the generalizability of the findings to different and
more severely affected patient samples.

Although the classical version of ANT (Fan et al., 2002)
appears to be a suitable paradigm to target cognitive aspects
of PSF, as performance requires sustained attentional and
executive resources (Holtzer et al., 2010), other versions of
the test, like the ANT-I Vigilance task (Roca, Castro, Lopez-
Ramén, & Lupianez, 2011), could offer a more comprehen-
sive account of relevant, associated processes like vigilance.
It should also be noted that the error rate in the sample was
low. This might have implications for the validity of the re-
sults from hDDM model, because the model estimates pa-
rameters based on distributions of both RT and accuracy and
assumes different RT distributions for correct versus errone-
ous responses. Moreover, ANT is not frequently applied in
hDDM modeling and may not be ideal for such due to ex-
istence of flankers and cues. However, our model displayed
adequate convergence, and a recent hDDM study reported
encouraging results for ANT data with no error responses
(O’Callaghan et al., 2017).

In conclusion, the current study represents a novel ap-
proach to assess the cognitive phenotype of fatigue in stroke
patients. The results indicate a relationship between the
subjective experience of fatigue and response time distri-
butions from a sustained attention task and demonstrate the
significance of considering the sustained nature of the task
when targeting fatigue in a neuropsychological context,

intuitively indicating that the cognitive phenotype of fa-
tigue entails an increased vulnerability to sustained effort.
It is encouraging that the evidence suggests a link between
self-reported fatigue and performance in a computerized,
standardized paradigm, as it may contribute to bridging
the gap between subjective experience and behavioral per-
formance in this complex and prevalent stroke sequela.
The explorative application of an advanced computational
model on the temporal evolution of response times en-
abled the possibility to parse the observed response time
patterns into specific cognitive processes. In general, the
use of computational approaches in the neuropsychologi-
cal workup may offer a dissection of the specific cognitive
processes underlying observed behavioral differences, with
clinical relevance.
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Supplementary Table 1
FSS item score per group (PSF and no PSF)

Supplementary Material

Patients with fatigue Patients without fatigue Group
difference**

FSS Mean Median SD Mean Median  SD t p
item*

#1 6.0 6 1.2 3.7 3 1.7 -5.6 <.001
#2 4.3 5 1.5 2.1 2 1.4 -5.2 <.001
#3 5.0 5 1.9 2.2 2 1.1 -8.6 <.001
#4 53 5 1.6 3.5 3 1.1 -4.9 <.001
#5 4.9 4.5 1.2 2.0 2 1.1 -6.2 <.001
#6 5.0 5 1.5 2.0 2 0.9 -8.3 <.001
#7 4.8 5 1.7 2.6 2 1.5 -5.0 <.001
#8 5.5 55 1.3 2.2 2 1.2 9.1 <.001
#9 4.7 5 1.5 2.1 2 1.4 -6.0 <.001

*Items in the Fatigue Severity Scale, English (US) version

1
2
3
4
5.
6
7
8
9
*

. My motivation is lower when [ am fatigued
. Exercise brings on my fatigue
. I am easily fatigued

. Fatigue interferes with my physical functioning
Fatigue causes frequent problems for me

. My fatigue prevents sustained physical functioning

. Fatigue interferes with carrying out certain duties and responsibilities
. Fatigue is among my three most disabling symptoms

. Fatigue interferes with my work, family, or social life.
* Group differences tested by unpaired t-tests.



Supplementary Table 2

Overview of Ime model selection and formulae of key models

Linear mixed effects models Model notes AIC Anova
comparisons
Ime(rt ~ time * FSS z+ PHQ z+ Sex + 1a. Full model with random
Age + Flanker + lesionVoxels + slopes and random intercepts.
topography + NIHSS + stroke type, Did not converge
random =~1+time*FSS_z |id, data=data,
method="REML")
Ime(rt ~ time * FSS_z + Sex + Age + 1b. Reduced number of fixed 175589
Flanker + lesionVoxels + topography +  effects. Model converges.
random =~1+time*FSS_z|id, data=data, = Results are reported in
method="REML") supplementary Table 3
Ime(rt ~ time * FSS_z + Sex + Age + lc. Same as above, but random 175673 anova(lb,
Flanker + lesionVolume + topography + intercept only. Model 1b 1c) p<.0001.
random =~1 |id, data=data, displayed better fit by anova
method="REML") comparison
Ime(rt ~ time * FSS z + Sex + Age + 2a. Same as (1b), but “ML” for 175637
Flanker + lesionVoxels + topography +  comparison of fixed effects
random =~1+time*FSS_z|id, data=data,
method="ML")
Ime(rt ~ time * FSS z + Sex + Age + 2b. Removed lesion location 175631 anova(2a,
Flanker + lesionVoxels + random (no significant predictive value). 2b) p=.937
=~1+time*FSS_z|id, data=data, Improved fit marginally, no
method="ML") significant difference
Ime(rt ~ time * FSS z + Sex + Age + 2c. Removed lesion volume 175635 anova(2a,
Flanker + random =~1+time*FSS_z[id, (no significant predictive value). 2¢) p=.794
data=data, method="ML") Improved fit marginally, but no
significant difference
Ime(rt ~ time * FSS z + Sex + Age + 2d. Same model as 2c, but 175604
Flanker + random =~1+time*FSS z[id, = “REML”. This is the model
data=data, method="REML") Reported in Table 4
Ime(rt ~ time + Sex + Age + Flanker + 2e. “Null model” without FSS 189261
random =~1|id, data=data, for measure of FSS effect size
method="ML")
Ime(rt ~ time * FSS z + Sex + Age + 2f. Similar to 2e, but with FSS 189295 anova(2e,
Flanker + random =~1[id, data=data, as predictor. 2f) p<.001

method="ML")

Formulae for various models reported in text.

Ime(rt ~ time * PSF Status + Sex + Age
+ Flanker + lesionVoxels + topography
+ random =~1+FSS_z |id, data=data,
method="REML")

3a. Predicting RT from the
interaction between PSF status
and time, instead of continuous




fatigue score and time.

Reported in text.
Ime(rt ~ time * FSS_z + Sex + Age + 4a Model testing interaction
lesionVoxels + topography + random between FSS score and time on
=~1id, data=data[incongruent flanker RT. Repeated for each flanker
only], method="REML") condition Reported in Table 5

Supplementary Table 3
Linear mixed effects model for whole sample, all flanker conditions, full model
t Beta CI p
Intercept 0.51 100.59  (-282.4,483.59) .606
FSS z 0.16 3.30 (-35.99,42.6) 300
Time -1.03 -0.03 (-0.09,0.03) .870
Time:FSS 2.64 0.07 (0.02,0.14) .008
Sex 0.09 3.99 (-81.39,89.37) 927
Age 3.08 8.136 (2.97,13.3) .003*
LesionVoxels -0.19 -0.00 (-0.04,0.03) .849
Left Hemisphere 0.14 6.41 (-80.55,93.38) .885
Brainstem/cerebellum 0.66 40.86 (-79.12,160.86) 508
Both Hemispheres 0.27 18.44 (-114.18,151.07)  .786
Incongruent flanker 40.5 111.529 (106.13,116.92) <.000*

Neutral flanker -4.31 -11.79 (-17.15,-6.43) <.000*




Supplementary Table 4

Linear mixed effects model for whole sample, all flanker conditions

t Beta Ccl p

Intercept 0.47 87.19 (-270.7, 445.1) .633
PSF status 0.50 19.45 (-56.0, 94.9) .616
Time -3.31 -.05 (-0.09, -0.02) <.000*
Time:PSF status 2.27 0.06 (0.01, 0.12) .023
Sex 0.03 1.31 (-78.2, 80.9) 974
Age 3.31 8.37 (3.43,13.33) .001*
Incongruent flanker 40.2 111.47  (106.04,116.91)  <.000*

Neutral flanker -4.36 -12.01 (-17.42,-6.62) <.000*
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ARTICLE INFO ABSTRACT
Keywords: Stroke patients commonly suffer from post stroke fatigue (PSF). Despite a general consensus that brain pertur-
Stroke bations constitute a precipitating event in the multifactorial etiology of PSF, the specific predictive value of

Post-stroke fatigue

MRI

Brain mapping
Structural disconnectome
Lesion

conventional lesion characteristics such as size and localization remains unclear. The current study represents a
novel approach to assess the neural correlates of PSF in chronic stroke patients. While previous research has
focused primarily on lesion location or size, with mixed or inconclusive results, we targeted the extended
structural network implicated by the lesion, and evaluated the added explanatory value of a structural dis-
connectivity approach with regards to the brain correlates of PSF. To this end, we estimated individual structural
brain disconnectome maps in 84 S survivors in the chronic phase (>3 months post stroke) using information
about lesion location and normative white matter pathways obtained from 170 healthy individuals. PSF was
measured by the Fatigue Severity Scale (FSS). Voxel wise analyses using non-parametric permutation-based
inference were conducted on disconnectome maps to estimate regional effects of disconnectivity. Associations
between PSF and global disconnectivity and clinical lesion characteristics were tested by linear models, and we
estimated Bayes factor to quantify the evidence for the null and alternative hypotheses, respectively. The results
revealed no significant associations between PSF and disconnectome measures or lesion characteristics, with
moderate evidence in favor of the null hypothesis. These results suggest that symptoms of post-stroke fatigue
among chronic stroke patients are not simply explained by lesion characteristics or the extent and distribution of
structural brain disconnectome, and are discussed in light of methodological considerations.

1. Introduction Phillips, & Eskes, 2003). Persistent PSF can be highly distressing,
negatively impacting quality of life (de Bruijn et al., 2015; Naess, Waje-

Between 25 and 85 percent of stroke survivors experience post stroke Andreassen, Thomassen, Nyland, & Myhr, 2006) and preventing social
fatigue (PSF) (Cumming, Packer, Kramer, & English, 2016), described as participation and attendance to rehabilitation programs (Nadarajah &
an excessive and debilitative tiredness that can be unrelated to strain Goh, 2015). PSF is associated with both poor functional outcome and
and not ameliorated by rest (UK Stroke Association, 2020; de Groot, increased mortality (Glader, Stegmayr, & Asplund, 2002), and a recent

* Corresponding authors at: Department of Psychology, University of Oslo, PoBox 1094 Blindern, 0317 OSLO, Norway.
E-mail addresses: k.m.ulrichsen@psykologi.uio.no (K.M. Ulrichsen), l.t.westlye@psykologi.uio.no (L.T. Westlye).

https://doi.org/10.1016/j.nicl.2021.102635

Received 12 November 2020; Received in revised form 15 February 2021; Accepted 15 March 2021

Available online 22 March 2021

2213-1582/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



K.M. Ulrichsen et al.

meta-analysis revealed that the prevalence increases with time since
stroke (Cumming et al., 2018). Early detection, prevention and treat-
ment of fatigue might thus have positive effects on the overall outcome
of stroke rehabilitation and quality of life. As such, identification of risk
factors is important to facilitate detection and individual tailoring of
rehabilitation programs.

PSF is considered a multifactorial condition with a complex etiology
(Choi-Kwon & Kim, 2011). Among the most commonly reported risk
factors are depression (Ponchel, Bombois, Bordet, & Hénon, 2015; Wu,
Barugh, Macleod, & Mead, 2014), reduced physical function (Lerdal
et al., 2011; Aarnes, Stubberud, & Lerdal, 2019), anxiety (Cumming
et al.,, 2018; Wu et al., 2014), various medications (Chen & Marsh,
2018), pain and sleep disturbances (Naess, Lunde, Brogger, & Waje-
Andreassen, 2012). While PSF is generally conceptualized as an inde-
pendent condition, the clinical overlap with depression is substantial
(Cumming et al., 2018), and the nature of the relationship between fa-
tigue and depression has been debated. The use of advanced brain im-
aging to detect the brain correlates of the two clinical syndromes may
facilitate our understanding of the phenomena through identification of
both common and specific brain mechanisms (Hggestgl et al., 2019).

Despite a general consensus that the lesion and the associated brain
perturbations following the stroke constitute causal factors for PSF, little
is known about the predictive value of key lesion characteristics such as
extent and neuroanatomical distribution. Fatigue is more prevalent
following a minor stroke compared to a transient ischemic attack (TIA)
(Naess et al., 2012; Winward, Sackley, Metha, & Rothwell, 2009), sug-
gesting that the vascular lesion itself is of importance with regards to
fatigue. Further, stroke survivors describe the fatigue experienced after
stroke as qualitatively different than fatigue before stroke or normal
tiredness (Thomas, Gamlin, De Simoni, Mullis, & Mant, 2019). Lastly,
fatigue is a common sequela or symptom in several neurological con-
ditions, i.e. traumatic brain injury, multiple sclerosis and post-
poliomyelitis, jointly referred to as “central fatigue” (Chaudhuri &
Behan, 2000, 2004).

Studies examining associations between lesion characteristics and
fatigue in stroke survivors have generated mixed findings. In line with
the hypothesis of fatigue caused by nervous system disruptions
(Chaudhuri & Behan, 2000, 2004), basal ganglia infarcts have been
identified as predictors of fatigue (Tang et al., 2010) and caudate in-
farcts were more frequent in patients with, than without, PSF (Tang
et al., 2013). Further, infratentorial infarcts have been associated with
increased risk of fatigue (Snaphaan, Van der Werf, & de Leeuw, 2011),
as have right hemisphere lesions, brainstem and thalamic lesions (Mutai,
Furukawa, Houri, Suzuki, & Hanihara, 2017). Subcortical white matter
lesions have been associated with PSF 15 months post-stroke (Tang
et al., 2014), but the generalizability of these findings is unclear (Sna-
phaan et al., 2011). In short, the relationship between fatigue and lesion
location remains unresolved (De Doncker, Dantzer, Ormstad, & Kup-
puswamy, 2018), and several studies find no significant associations
between lesion characteristics and fatigue (Choi-Kwon et al., 2005; In-
gles et al., 1999; Mead et al., 2011).

It is conceivable that clinical symptoms following a stroke are not
mediated primarily by the localization of the lesion, but rather by the
functional neuroanatomy of the extended brain networks that are
affected by the lesion and degree of preserved network function (Bar-
tolomeo and Thiebaut de Schotten, 2016; Nordin et al., 2016; Thiebaut
de Schotten et al., 2020). Neuroimaging suggests that many psychiatric
and neurologic symptoms are related to complex brain networks of
anatomically distant but connected regions (Fox, 2018) that are
vulnerable to injuries in a range of locations. Through processes like
diaschisis (remote neurophysiological changes or dysfunctions of a
distant region caused by a focal injury (Carrera & Tononi, 2014; von
Monakow, 1914)), disconnection (Geschwind, 1974) and transneuronal
degeneration (Cowan, 1970), stroke lesions may affect brain function
and behavior in ways not readily predicted by the location or size of the
damaged tissue. For example, functional network disturbances have
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been observed between remotely connected cortical areas in both the
unaffected and affected hemisphere (Rehme & Grefkes, 2013), and
abrupted connectivity may cause impairments that are functionally
similar to tissue necrosis (Bonilha et al., 2014), like when a patient
suffers severe Brocas aphasia without any damage to Brocas area (Fri-
driksson et al., 2007). Probing the extended brain network character-
istics involved in a lesion and its associations with outcome may
therefore provide theoretically and clinically relevant information of the
functional neuroanatomy of specific symptoms post stroke and other
brain disorders.

Recent large-scale collaborative neuroimaging efforts have resulted
in remarkable advances in the characterization of the human brain
“connectome” and “disconnectome” (Thiebaut de Schotten et al., 2020),
providing highly valuable roadmaps for studies attempting to link
symptoms, lesions and brain networks. Notably, normative samples
enable indirect estimations of structural and functional disconnection,
by which individual lesions from clinical structural imaging can be
embedded onto a template of functional or structural connections
derived from healthy subjects, and the lesions’ effect on the global
connectome is estimated by tracking the connections passing through
the lesion (Salvalaggio et al., 2020). A key advantage of atlas based
tractography methods is that they do not require costly and specialized
imaging sequences beyond those routinely collected in the clinic (Boes
et al., 2015), thus offering a versatile tool for clinical-neuroanatomical
predictions in studies on brain lesions (Salvalaggio et al., 2020). While
functional and structural (dis)connectivity are intimately connected,
there are evidence suggesting that a lesion’s impact on functional con-
nectivity is primarily determined by how the lesion affects the structural
connectome (Griffis et al., 2019), and indirect measures of structural
disconnection have been found to perform significantly better than in-
direct measures of functional disconnection in predicting behavior
(Salvalaggio et al., 2020).

By date, the relationship between PSF and stroke lesions has not been
evaluated using a structural disconnectome approach, but a recent study
on fatigue in multiple sclerosis (MS) revealed associations between
structural network disconnection and subjective fatigue severity beyond
what was explained by conventional MRI measures (Fuchs et al., 2019).
With regards to the inconsistent findings on the relationship between
stroke lesions and PSF, targeting structural network disconnections in
addition to lesion characteristics may thus have the potential to advance
our understanding on the relationship between brain perturbations and
fatigue beyond what is revealed by traditional lesion-symptom mapping.

To evaluate the added explanatory value of a disconnectivity based
approach with regards to the brain correlates of PSF, we quantified
lesion disconnectivity indirectly using information about normative
white matter pathways in the healthy population to estimate individual
structural disconnection (disconnectome) maps in 84 S survivors in the
chronic phase. The maps were created by a tractography-based pro-
cedure (Foulon et al., 2018) yielding voxel-wise probability of structural
disconnection of white matter tracts (Salvalaggio et al., 2020).

Associations between disconnectome maps and PSF (assessed by the
Fatigue Severity Scale (FSS)), were examined using permutation testing.
Due to the substantial overlap and interaction between fatigue and
depression and the possibility of common mechanisms across these
conditions, all voxel-wise analyses were done with a) fatigue scores, b)
depression scores (measured using the Pittsburg Health Questionnaire
(PHQ-9) (Spitzer et al., 1999) fatigue and depression scores combined.
The above described disconnectome based analyses were repeated on
the binarized lesion maps, reflecting a traditional voxel-based lesion
symptom mapping (VSLM) approach (Bates et al., 2003). In addition, we
estimated the global disconnectivity for each patient, and tested for
correlations with FSS, using Bayes factor to quantify evidence for the
null hypothesis. Finally, in agreement with a more traditional, clinical
approach, we applied linear models to test for associations between PSF
and stroke related factors such as stroke location (right hemisphere, left
hemisphere, brainstem, cerebellum, or both hemispheres), months since
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stroke, stroke severity (using National Institute of Health Stroke Scale
(NIHSS; Lyden et al., 2009) score at discharge as a proxy for clinical
severity) and etiology as defined by the stroke subtype classification
system Trial of Org 10,172 in Acute Stroke Treatment (TOAST; Adams
et al., 1993).

Due to a lack of previous studies applying a disconnectivity approach
to PSF, we remained agnostic about the specific brain networks involved
and performed a whole-brain analysis. Based on recent work demon-
strating the benefits of targeting network projections of a lesion (Griffis
etal., 2019; Thiebaut de Schotten et al., 2020), and the notion that many
psychiatric and neurological conditions correspond more closely to
brain networks than specific regions (Fox, 2018), we expected the dis-
connectivity based approach to demonstrate higher sensitivity to PSF
than conventional lesion-related approaches.

2. Materials and methods
2.1. Study participants

Table 1 summarizes demographic and clinical information for the
patient sample and the healthy control group.

2.1.1. Healthy control group

Healthy individuals > 18 years were recruited through newspaper
ads, word-of-mouth and social media (Dgrum et al., 2020; Richard et al.,
2018). Exclusion criteria for healthy controls included a history of
stroke, neurological or psychiatric disease, medications with significant
effects on central nervous system function and MR contraindications.

Healthy controls and stroke patients were matched on age and sex,
using Matchlt in R (Stuart, King, Imai, & Ho, 2011) and the default

Table 1

Sample Patients (n = 84) Control group (n t (p) BF**

characteristics =155)

Demographic and Mean Min- Mean Min-

clinical (SD) Max (SD) Max

information

Age 65.8 24-87 64.7 24-92 1.0 0.16

(12.6) (12.3) (0.279)

Males/females 60/24 111/

(count) 44
Education in years 14.5 7-30 15.7 6-25 0.6 0.6
(3.4) (3.3) (0.513)
FSS 3.9 1-7 29 1-6 -39 1911
(1.5) (1.3) (<0.001)
PHQ-9 5.0 0-21 3.2 0-15 -3.2 30
(4.5) (3.0) (0.001)

Montreal 26.3 19-30 27.4 22-30 3.0 171
cognitive 2.4 aa.7) (0.002)
assessment
(MoCA)

Stroke related patient information

NIHSS at hospital 1.1 0-6
discharge (1.2)

TOAST Large artery artherosclerosis (26)

Small vessel occlusion (26)
Cardioembolism (13)
Other determined etiology (6)
Undetermined etiology (13)
Brainstem/cerebellum (17)
Left Hemisphere (26)
Right Hemisphere (34)
Both Hemispheres (6)
Months since 22.0 3-45

stroke (11.9)

classification
for ischemic
stroke*

Lesion location

*all but one patient suffered ischemic stroke

**BF = Bayes factor.

Both frequentist and Bayesian statistics are reported, in line with current prag-
matic recommendations (Keysers et al., 2020).
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method nearest. Applying a ratio of 2:1 (two controls selected for each
patient), healthy participants were collected from a pool of 341 controls
(age 24-92), resulting in an age- and sex matched control group of 155
individuals (mean age = 64.7, SD = 12.3, 44 females).

2.1.2. Patients

We recruited 84 S patients from the Geriatric Department, Dia-
konhjemmet Hospital, the Stroke Unit, Oslo University Hospital and
Beerum Hospital. A subsample of the patients (n = 66) participated in a
longitudinal intervention study examining the effects of cognitive
training and tDCS on cognitive function (see Kolskaar et al. (2020) for
details). All data reported in the current study were collected prior to the
intervention. Criteria were ischemic or hemorrhagic stroke in a chronic
phase defined as > 3 months since admission, age above 18 years, no
MRI contraindications and no other known, severe neurological condi-
tions prior to the stroke. While aphasia was not a formal exclusion cri-
terion and was not assessed explicitly, no patients reported or revealed
severe speech or language impairments. All participants provided
informed consent prior to enrollment. The study was approved by the
Regional Committee for Medical and Health Research Ethics, South-East
Norway.

3. Clinical measures

Stroke subtype was classified by the Trial of Org 10,172 in Acute
Stroke Treatment (TOAST; (Adams et al., 1993), and clinical assessment
of stroke severity was indexed by the National Institute of Health Stroke
Scale (NIHSS) at hospital discharge.

Subjective fatigue was measured by the Fatigue Severity Scale (FSS)
(Krupp, LaRocca, Muir-Nash, & Steinberg, 1989), which is a self-report
scale consisting of 9 statements about impact of fatigue on daily life.
Degree of agreement is indicated on a seven-point Likert scale (lowest
possible total score 7, highest score 63). FSS is one of the most frequently
used instruments for measuring fatigue in neurological conditions
(Cumming et al., 2016) and has demonstrated reasonable psychometric
qualities (Whitehead, 2009). A commonly adapted threshold for clinical
fatigue is a mean score of >= 4 (total score >= 36) (Krupp et al., 1989;
Nadarajah & Goh, 2015; Schepers, Visser-Meily, Ketelaar, & Lindeman,
2006), where a higher score is suggested to indicate a moderate to high
impact of fatigue (Schepers et al., 2006).

Depressive symptoms were measured by the depression module of
the PHQ-9, in which occurrence of depressive symptoms corresponding
to the DSM-IV criteria is rated on a 9-item Likert scale. Scores range from
0 (not at all) to 3 (nearly every day), yielding a minimum score of zero
and a maximum score of 27. A cutoff score of > 10 has demonstrated
acceptable sensitivity and specificity for depression (Kroenke et al.,
2001). Cognition was measured by Montreal Cognitive Assessment
(MoCA) (Nasreddine et al., 2005), and sleep quality was assessed by the
Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989).

4. MRI acquisition

Patients were scanned at Oslo University Hospital on a 3 T GE 750
Discovery MRI scanner with a 32-channel head coil. We collected
structural (T1w, FLAIR), functional (resting-state and task-based fMRI)
and diffusion MRI data. For lesion demarcation used in the present
analysis T1-weighted images were collected using a 3D IR-prepared
FSPGR (BRAVO) sequence (TR: 8.16 ms; TE: 3.18 ms; TI: 450 ms; FA:
12°; voxel size: 1 x 1 x 1 mm; slices: 188; FOV: 256 x 256, 188 sagittal
slices), and T2-FLAIR with the following parameters: TR: 8000 ms; TE:
127 ms, TI: 2240; voxel size: 1 x 1 x 1 mm).

5. Lesion demarcation

Lesions were demarcated in native space, using the Clusterize
toolbox (de Haan et al., 2015) with SPM8 running under Matlab R2013b



K.M. Ulrichsen et al.

(The Mathworks, Inc., Natick, MA). Lesions were traced by trained
personnel (a physician and a radiographer), based on hyperintensities
and visible damage on FLAIR images, and guided by independent
neuroradiological descriptions of dAMRI/FLAIR images (see Dgrum et al.
(2020) for details). The binarized lesion masks were registered to MNI
space using nearest neighbor interpolation, using the transformation
parameters obtained using the T1w data. To register the FLAIR images to
the T1 images, we applied a linear transformation with 6 degrees of
freedom. T1 images were registered to MNI152 space by linear affine
transformation with 12 degrees of freedom. Fig. 1 displays a probabi-
listic map of lesion overlap across patients.

5.0.1. Disconnectome maps

To calculate the disconnectome maps we used an automated
tractography-based procedure (Foulon et al., 2018) implemented in the
BCBtoolkit disconnectome maps (Brain Connectivity Behaviour Toolkit
(BCBtoolkit)). Briefly, a training set based on full-brain tractography
data obtained from a normative group of 170 individuals from the
Human Connectome Project 7 T data (HCP 7 T) was used to track fibers
passing through each lesion. Using affine and diffeomorphic de-
formations (Avants et al., 2011; Klein et al., 2009), each patienfs MNI
152 space lesions were registered to each controls native space, and used
as seed for the tractography in Trackvis (Wang et al., 2007). Subse-
quently, the tractography was transformed to visitation maps, binarized
and registered to MNI152 space, before a percentage overlap map was
produced by summarizing each point in the normalized healthy subject
visitation maps. The resulting disconnectome maps indicate a voxel-wise
probability of lesion-related disconnection ranging from 0 to 100%. We
computed two simple summary measures of disconnection severity,
defined for each patient as a) mean voxel intensity across the individual
disconnectome map and b) number of voxels within the individual
disconnectome map with intensity > 0.5 (reflecting 50% probability of
disconnection).

5.1. Statistical analysis
Voxel wise analyses on disconnectome maps and binarized lesions
(VLSM) were done by non-parametric permutation-based inference as
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implemented in the FSL randomise tool (Winkler et al., 2014). The
statistical tests subsequently described were repeated in separate models
for disconnectome maps and binarized lesions alike. Within the frame-
work of the general linear model (GLM), linear effects of fatigue and
depression (indicated by total score on FSS and PHQ, respectively) were
tested in separate models, covarying for age and sex. To comply with a
more common clinical definition of PSF, we re-ran the model on
dichotomized fatigue variables defined as either a) a mean FSS score of
> 4, consistent with the common cut off value, or b) the upper tertile of
FSS total score (contrasted with the lowest tertile), reflecting the pos-
sibility that more extreme scores demonstrate increased sensitivity to
fatigue related brain correlates. We estimated models controlling for
depression in two different ways, first by excluding patients scoring
above clinical threshold on PHQ (remaining n = 74), and second, by
including z-normalized summary scores from both FSS and PHQ in the
same model. One additional model tested the effect of fatigue and
depression combined, applying the total of the z-normalized sum scores
(zPHQ + zFSS) as predictor. For each contrast, 5000 permutations were
performed. Results were thresholded by threshold free cluster
enhancement (TFCE, Smith and Nichols (2009)) and considered signif-
icant at p < 0.05, two tailed, corrected for multiple comparisons using
permutation testing. One patient suffered a very large stroke and
constituted an outlier in terms of number of affected voxels (~8 SDs
above the mean). Main analyses were therefore repeated with this pa-
tient excluded.

Subsequent statistical analyses were performed using R version 3.4.0
(R Core Team, 2017). In a follow-up analysis aiming to increase sensi-
tivity to clinical measures and evaluate the relationship between global
disconnectivity and fatigue, we computed two disconnection severity
measures, defined for each patient as a) mean voxel intensity across the
individual disconnectome map and b) number of voxels within the in-
dividual disconnectome map with intensity > 0.5 (reflecting 50%
probability), and correlated these with FSS and PHQ-9. To quantify the
evidence in favor of the null and alternative hypothesis, we applied
Bayes factor hypothesis testing, in line with current recommendations
(Keysers et al., 2020). We applied the BayesFactor package (Morey et al.,
2015) with default priors. For transparency, key analyses were run with
different priors.

lesion overlap

@ L] . & Fou
z=1

BEBLBLEBBGO

z=15

"':‘;9 W xf} "53 5"5%}

z=29
w6 mg;ga ™ D
\w f' . % @ W
z—43

’Df@@@@f)@

2 « e ®© O6»
> D D D D DO D DG

'Y
S 2

%@é@é@é@é&@z

%@%@a

W K W

g | “1],7 @

Y

"'k‘

® 4

Fig. 1. Heatmap displaying lesion overlap across stroke patients by 70 slices (2 mm thickness) from z(voxel) = 1 to z = 70. Maximal overlap was 8, but for

illustration purposes, the color scale saturates at 5.
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To test for associations with clinical, stroke-related characteristics
(TOAST classification, months since stroke, lesion volume and lesion
location), we applied linear models with FSS score as dependent vari-
able, controlling for age and depressive symptoms. Lesion location was
clustered by four categories — right or left hemisphere, both hemispheres
or brainstem/cerebellum. Stroke variables were added subsequently,
allowing for model comparison by Bayes factor for each added variable.
We applied the ImBF function from the BayesFactor package to compute
Bayes factors. As an additional test of the added predictive value of
global disconnectivity measures compared to clinical stroke character-
istics, we also estimated the models with mean voxel intensity across the
individual disconnectome map and number of voxels within the indi-
vidual disconnectome map with intensity > 0.5.

6. Results

6.0.1. Fatigue and depression in the stroke sample compared to healthy
controls

Fig. 2 shows the distributions of FSS and PHQ score in each group. 48
percent of the stroke patients reported clinically significant fatigue
(mean FSS > 4), compared to 23 percent of the control participants.
Severe fatigue (mean FSS > 6) was reported by 9 percent of the patients
and 1 percent of the healthy controls. A two-tailed, two sample t-test
(ttestBF in BayesFactor, with default Cauchy prior) provided compelling
evidence (Bayes Factor: BF) > 150) for higher total FSS scores in the
patient group (mean = 35) compared to healthy controls (mean = 26,
median posterior § = —8.5, 95% credible interval (CI) = [-11--5]),
relative to the null hypothesis. Stroke patients (mean = 5.0) also re-
ported higher levels of depression symptoms on the PHQ than controls
(mean = 3.2). 18 percent of the patients scored 10 or higher, indicating
clinical depression, compared to 2.4 percent of the controls. The cor-
responding Bayes factor provided strong evidence for a group difference
in PHQ sum score (BF = 20, 95% CI = [—-2.5-—0.5]).

6.0.2. Fatigue associations in patient sample

Among patients, Bayes factor estimation for linear correlations pro-
vided strong evidence (BF > 150) for a positive association between FSS
and PHQ (median posterior § = 0.71, 95% CI = [0.59-0.80]), suggesting
more depressive symptoms with increasing fatigue. The substantial as-
sociation persisted when re-estimating the correlation after excluding
the fatigue-item (“feeling tired or having little energy™) from the PHQ
scale (median posterior 6 = 0.61, 95% CI = [0.46-0.73]). There was only

HC stroke
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anecdotal support for an association between FSS and age (BF = 1.20,
median posterior § = -0.18, 95% CI = [-0.38-0.02]). Mean global PSQI
score was 6.8 (SD = 3.6), with 51 patients (60%) scoring > 5, indicating
poor sleep quality in a majority of patients. Global PSQI correlated
moderately with FSS score (BF > 150, median posterior § = 0.49, 95%
CI = [0.31-0.64]), and strongly with PHQ score (BF > 150, median
posterior § = 0.61, 95% CI = [0.47-0.73]).

7. Permutation based analyses on disconnectome maps and
lesions

Fig. 3 shows a selection of stroke lesions and the associated dis-
connectome maps, for illustrative purposes.

Permutation testing revealed no significant associations between the
disconnectome maps and the clinical measures (FSS, PHQ-9, FSS/PHQ
combined), or of fatigue status defined by either a) mean FSS score of >
4, or b) by the lowest vs highest FSS tertile. Controlling for depression by
a) excluding patients with depression from the analysis or b) including
PHQ scores in the model revealed similar results.

Similarly, permutation tests on binarized lesion maps (voxel-based
lesion symptom mapping) revealed no significant associations with the
clinical measures (fatigue, depression or fatigue/depression combined,
or on group defined by fatigue status (mean FSS score > 4). Due to the
considerable reduction in sample size when including only the lowest
and highest FSS tertile (n = 56), we did not repeat this analysis on the
binarized lesion maps. For transparency, the distributions of the un-
corrected t-values across the brain from the models testing for associa-
tions with either disconnectome or lesion maps are depicted in
Supplementary Fig. 1, and the corresponding number of uncorrected
voxels with p < 0.05 are reported in Supplementary Table 1.

7.1. Associations between global summary measures of disconnectivity
and clinical measures

Both measures of global disconnectivity (mean value in dis-
connectome map and number of voxels with disconnection probability
> 50%) were strongly correlated with lesion size (posterior mean =
0.74, BF > 150 and median posterior 5 = 0.68, BF > 150, respectively).
Global disconnectivity (mean value in disconnectome map) was not
correlated with FSS (median posterior § = 0.03) or PHQ (median pos-
terior 5§ = 0.03). Bayesian correlations (using default priors) provided
moderate evidence (BF = 0.26) for these null effects, relative to H1
(positive associations between disconnectivity measures and FSS/PHQ).
This indication of a null effect was mirrored in correlations between the
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Fig. 2. Distributions and group differences in FSS and PHQ for healthy controls (HC) and stroke patients. Red line denotes cut off value for clinically significant
symptom load. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Individual lesions (blue) and associated disconnectome maps (yellow-red). Probability for disconnection ranges from 10 (yellow) to 100 (red). Patient A:
right cerebral white matter lesion, Patient B: brain stem lesion, Patient C: left and right cerebral cortex and white matter lesions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

alternative measure of disconnectivity (number of voxels with discon-
nection probability > 50%) and FSS (median posterior § = 0.05, BF =
0.29), and PHQ (median posterior 5 = 0.02, BF = 0.26). For trans-
parency, Bayes factors of the main correlations estimated on different
priors are reported in Supplementary Table 2, while Supplementary
Table 3 reports the correlations after removing the most extreme outlier
in terms of lesion size.

7.2. Associations between clinical stroke-related characteristics and FSS

Linear models (ImBF) corrected for age and depressive symptoms did
not provide evidence for associations between FSS scores and lesion
location (brainstem/cerebellum, left or right hemisphere or both
hemispheres), lesion volume, months since stroke or TOAST stroke
classification (see Supplementary Table 4 for model comparisons and
associated Bayes factors). No stroke related variable, including global
disconnectivity, demonstrated Bayes factors > 1, indicating low pre-
dictive value for all. Specifically, all extended models with stroke lesion
variables displayed Bayes factors below 0.33 when compared to the
simpler null model, suggesting moderate evidence of no effect of stroke
lesion characteristics.

8. Discussion

Fatigue following stroke is common and represents a significant
clinical burden. Stroke sequelae reflect both cell death at the site of the
lesion, as well as structural and functional alterations in extended brain
networks. Brain network dysfunction, directly or indirectly related to
the stroke lesion, is a putative mechanism underlying PSF pathophysi-
ology. Previous studies have primarily assessed lesion characteristics
such as volume or location, and the added explanatory value of probing
the extended brain network connections with the lesion has been un-
clear. To this end, we calculated structural disconnectome maps for 84
patients in the chronic phase and used permutation testing to evaluate
the association between PSF symptoms and regional network
disconnection.

Permutation testing revealed no significant associations between

symptoms of fatigue and disconnectome maps, or between fatigue and
binarized lesion maps (VLSM). We found no support for our hypothesis
that a disconnectivity approach by disconnectome maps would add
predictive value of fatigue beyond conventional lesion analyses. In line
with this, Bayes factor estimations on correlations between dis-
connectivity summary measures and FSS score provided moderate evi-
dence for the null hypothesis (no association) relative to the alternative
hypothesis (association between fatigue and disconnectivity). However,
results are not decisive, and alternative explanations of the absent ef-
fects must be considered.

The lack of added predictive value from the disconnectivity measures
when compared to more traditional lesion characteristics is in general
agreement with recent studies (Hope et al., 2018; Salvalaggio et al.,
2020) reporting similar predictive value for models including (dis)con-
nectivity measures compared to models with lesion information only.
The lack of robust associations between disconnectome maps and the
clinical measures has several likely explanations. It has been suggested
that the information provided in the disconnectome maps is largely
embedded in the binarized lesion masks (Hope et al., 2018; Salvalaggio
et al., 2020), implying that the two representations of lesion related
pathology convey overlapping variance. Indeed, the correlation be-
tween lesion volume and global disconnectivity, operationalized as the
average voxel value across the disconnectome map or the number of
voxels with probability of disconnection > 50%, was relatively strong,
intuitively supporting that larger lesions project to a larger proportion of
the brain.

Alternatively, it may be that disconnectome maps and lesion masks
convey similar information primarily when the sample is large and
lesion diversity sufficiently high to capture the variance embedded in
the disconnectome maps (Griffis et al., 2019). This could imply that in
many real-life situations where large samples are not always realistic/
feasible, such as in clinical stroke populations, disconnectome maps may
provide relevant, complementary and unique information. In agreement
with this, a recent study revealed that structural disconnectome maps
explained a larger proportion of the variance in core functional con-
nectivity disruptions than did focal lesions, and displayed significant
correlations with behavior (Griffis et al., 2019), thus facilitating the
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understanding of individual differences in outcome. Moreover, higher
accuracy in cognitive and mobility prediction for models including
disconnection metrics than models based on lesion volume has been
reported (Kuceyeski et al., 2016).

A key assumption underlying our analyses is that the indirectly
calculated disconnectome maps provide a realistic estimate of structural
network disconnection and that these disconnections have functional
effects. As depicted in Fig. 3, the degree of estimated tract disconnection
can be extensive, even for smaller lesions. While such lesion to brain
network mapping supports the notion that lesions in hub-like regions
project to and implicates an extended set of brain regions and networks
(Colizza et al., 2006; Van Den Heuvel & Sporns, 2011), the tractography
process used to build the normative training set has several inherent
limitations and errors can be introduced in any stage of the tracking
process (Schilling et al., 2019). Noise and artefacts in the image acqui-
sition, difficulties establishing fiber orientation (Jeurissen et al., 2019)
and choices regarding the tracking algorithm and parameters such as
stop criteria and curvature threshold (Knosche et al., 2015; Schilling
et al., 2019), are among the commonly recognized pitfalls. Conse-
quently, the reconstructed pathways based on diffusion tractography
may not necessarily reflect true structural connections, and to which
degree disconnectome maps reflect biological disconnections is still
debated (Salvalaggio et al., 2020), warranting caution when interpret-
ing tractography results without supporting converging evidence
(Jeurissen et al., 2019). These limitations are not specific for the
currently employed algorithm, and further work is needed to overcome
general limitation of biological accuracy and validity of diffusion based
tractography. On a related note, different approaches for disconnectome
mapping may reveal different associations with clinical measures, which
should be pursued in future validation studies.

The added value of disconnectome maps in brain-behavior mapping
also depends on the reliability, validity and functional neuroanatomy of
the included clinical and behavioral measures. For example, primary
motor dysfunctions, which may require simpler operationalizations and
measurements than more complex cognitive symptoms, are more
strongly associated with focal damage, while other behaviors, like ver-
bal associative memory, may be more strongly predicted by extended
network function (Griffis et al., 2019; Siegel et al., 2016). The lack of
significant associations between brain characteristics and behavioral
measures in the current study may therefore be partly related to the
properties and measurement of PSF. Although fatigue is painfully
tangible for the individual patient, it is unspecific and difficult to
operationalize, and the lack of “gold standard” measures of subjective
fatigue has been characterized as one of the major obstacles to PSF
research (Nadarajah & Goh, 2015). In the current study, we applied the
FSS as a general measure of fatigue interference and severity. As FSS is
the most widely used fatigue measure in stroke research (Cumming
et al., 2016), reporting FSS scores facilitates communication and syn-
thesizing of results across studies. Still, FSS constitutes a rather coarse
measure of a complex phenomenon, and does not provide information
on other relevant aspects of PSF such as diurnal fluctuations and fatigue
subtypes. It is conceivable that more finely grained measures of i.e. fa-
tigue subtypes could reveal associations not detected by the FSS.

Mimicking the results from the disconnectome approach, linear re-
gressions testing for associations between FSS and lesion characteristics
(volume and location) revealed no significant associations. This is in
agreement with several previous studies (Choi-Kwon et al., 2005; Ingles
et al., 1999; Mead et al., 2011). Still, the literature is inconclusive, and
some suggest significant associations between PSF and lesion charac-
teristics (Snaphaan et al., 2011; Tang et al., 2014, 2010). The incon-
sistency between studies may be attributable to differences in how lesion
site is defined and reported, as well as time since stroke and clinical
characteristics and severity of the sample. Studies that do not report
significant associations between fatigue and lesion characteristics tend
to define lesion location broadly (Wu et al., 2015), such as posterior/
anterior circulation or left/right hemisphere, while studies reporting
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significant associations often apply a more detailed account of lesion site
(e.g. which specific structures are affected) and are conducted within the
first few months after stroke. The temporal aspect may be of particular
importance, considering that the character of stroke sequelae and
associated brain correlates change over time through processes of re-
covery and compensation (Fornito et al., 2015; Fox, 2018). In the pre-
sent study, fatigue was measured on average 22 months post stroke. The
absence of identified stroke lesion effects may thus suggest that lesion
characteristics play a less critical role in the chronic phase (Aarnes et al.,
2020).

In addition to the general limitations related to the interpretation of
imaging-based measures of brain connectivity listed above, the results
should be interpreted in light of the following caveats. First, the
recruited patients suffered mild strokes and were drawn from a highly
functioning part of the stroke population, as the extent and type of as-
sessments prevented the more disabled patients from participating (e.g.
severe aphasia, paralysis, severe neglect). This limits generalizability of
results, and we cannot exclude the possibility that including more
severely fatigued patients would reveal associations not detected in the
current study. However, even in this sample of fairly high functioning
stroke patients, levels of fatigue were significantly higher than in the
healthy control group, and comparable to fatigue levels reported in
other samples of chronic stroke patients (Choi-Kwon et al., 2005; Valko
et al., 2008). Moreover, fatigue correlated highly with depression and
moderately with sleep quality, in line with previous reports (Choi-Kwon
et al., 2005; Park et al., 2009; van de Port et al., 2007), intuitively
indicating that FSS scores reflect a relevant clinical phenotype.

Second, related to the complex and multifactorial nature of PSF, the
design of the current study does not allow for an extensive account of all
factors potentially involved in fatigue etiology. Unmeasured factors like
pain (Naess et al., 2012; Tang et al., 2014), pre-stroke fatigue (Choi-
Kwon et al., 2005; Duncan et al., 2014), social support (Michael, Allen,
& Macko, 2006) and specific cognitive impairments like memory
problems and reduced processing speed (Pihlaja et al., 2014; Ulrichsen
et al., 2020) have been associated with PSF, as have the use of various
medications (Chen & Marsh, 2018) (see e.g. Aarnes et al. (2020) for an
updated review on PSF related factors). While the aim of this paper was
to evaluate the added explanatory value of a structural disconnectome
approach with regards to subjective fatigue, rather than providing an
extensive mapping of associated factors and comorbidities, the number
of potential confounders constitutes a principal constraint to the un-
derstanding of PSF etiology in our sample.

Third, VSLM analyses are inherently contingent on and restricted by
the variability of the patients’ lesion locations, as a lesion site cannot be
identified as important for a symptom if it is not represented in the
sample. With regards to the current sample, the lack of whole brain
representation limits the spatial scope of the analyses, where i.e. right
hemispheric strokes were more densely sampled than left hemispheric
strokes, and prefrontal cortex was marginally affected. This lack of full
or random sampling of the brain represents a common caveat in stroke
research, because stroke lesions are not randomly or evenly dispersed
throughout the brain, but are dependent on vascular organization and
architecture and tend to occur in proximity to major arteries (Rorden
et al., 2007; Zhao et al., 2020). In line with this, degree of voxel-wise
lesion overlap between patients in the current sample was low, and
although a sample size of 84 is comparable with common practice in
MRI studies targeting stroke (Nickel & Thomalla, 2017; Nott et al., 2019;
Sihvonen et al., 2017), further studies with even larger samples are
needed.

Low power due to small sample sizes is common in neuroscience
(Button et al., 2013), and might be especially pressing in stroke imaging
research where inter-patient variability in lesions and symptoms is high,
and large datasets are logistically and financially demanding to collect
(Liew et al., 2020; Price et al., 2017). With reference to this fundamental
constraint, the best hope for future stroke neuroimaging studies may lie
in large-scale data-sharing initiatives such as the ENIGMA Stroke



K.M. Ulrichsen et al.

Recovery database (Liew et al., 2020), where pooled and synthesized
data from individual studies facilitates conduction of well powered
studies on large and diverse samples.

However, in smaller samples with low lesion overlap, targeting dis-
connectivity through disconnectome maps may be particularly relevant,
because such measures reveal common disruptions across spatially
dispersed lesions (Griffis et al., 2019), resulting in a higher degree of
disconnectome overlap compared to lesion overlap.

In conclusion, the current study represents a novel approach to assess
the neural correlates of PSF in chronic stroke patients. By indirectly
estimating structural network disconnections caused by the stroke le-
sions, we arrived at individual disconnectome maps capturing distal
effects of focal damage. The results did not provide evidence that a
structural disconnectome based approach demonstrates higher sensi-
tivity to PSF than a VLSM approach. Nor did the results support the
notion that lesions to particular regions or disconnections to specific
networks contribute to PSF in the chronic phase. Importantly, our
approach does not allow for claims about functional connectivity, and
future studies should investigate whether the findings replicate with
functional disconnectivity measures. Finally, methodological consider-
ations regarding statistical power, lesion coverage- and overlap warrants
caution when interpreting results.
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Density plot of uncorrected t-statistics from permutation tests on disconnectome maps (left)
and lesion maps (right), for FSS, PHQ-9, and the sum scores of FSS and PHQ combined.

Table 1

Number of uncorrected voxels with p < .05

Disconnectome maps FSS PHQ FSS + PHQ
T1 844 1193 820

T2 1064 0 137

VLSM

T1 56 2577 334

T2 232 0 24

Number of uncorrected voxels with p <.05 from permutation tests on disconnectome maps
and lesion maps (VLSM) for FSS, PHQ, and the sum scores of FSS and PHQ combined.



Table 2

Varying priors on disconnectivity models

Prior

BF

0 & 95% CI

corrBF (FSS, mean_disconnectivity)
corrBF (FSS, mean_disconnectivity)*
corrBF (FSS, mean_disconnectivity)
corrBF(FSS, n voxels > 50% disconnect)

corrBF(FSS, n voxels > 50% disconnect)*

MediumNarrow 0.34
DefaultMedium 0.26

Wide

0.20

MediumNarrow 0.38
DefaultMedium 0.29

0.02 [-0.17 — 0.23]
0.03 [-0.18 — 0.24]
0.03 [-0.18 — 0.24]
0.05 [-0.15 — 0.26]
0.06 [-0.15 — 0.27]

corrBF(FSS, n voxels > 50% disconnect)  Wide 0.22 0.05 [-0.15 - 0.27]
*Models reported in manuscript

Table 3

Main models with outlier excluded BF 0 & 95% CI

corrBF (FSS, mean_disconnectivity) 0.32 0.07 [-0.13 - 0.29]

corrBF (PHQ, mean_disconnectivity) 0.26 0.01 [-0.19-0.22]

corrBF (FSS, n voxels > 50% disconnect)  0.39 0.09 [-0.11 —0.30]

corrBF(PHQ, n voxels > 50% disconnect) 0.29 0.05 [-0.16 — 0.26]

corrBF(FSS, number of voxels lesioned) 0.28 0.05[-0.16 —0.25]

corrBF(PHQ, number of voxels in lesion)  0.29 0.05 [-0.16 — 0.26]




Table 4

Model comparison by Bayes Factor

One variable added in each model and compared against null model

Bayes Factor

“Null model FSS”: ImnBF(FSS ~ Age + PHQ) / intercept only
Null + sex / null

Null + months since stroke / null

Null + TOAST / null

Null + lesion location / null

Null + lesion size / null

Null + mean disconnectivity / null

Null + number of voxels disconnectivity probability >50% / null

>150 £0%
0.29 +0.28%
0.17 £0%
0.16 £0.42%
0.19 £0.38%
0.16 £0%
0.19 £0%
0.19 £0%

No models (except “null model”) display Bayes factors >1, indicating that variables have low

predictive value and that no extended models are preferred over the null model.
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