
Discrete choice methods in market research for
seafood. A statistical analysis

Lu Nguyen Nhung
Master’s Thesis, Autumn 2021



This master’s thesis is submitted under the master’s programme Stochastic 
Modelling, Statistics and Risk Analysis, with programme option Statistics, 
at the Department of Mathematics, University of Oslo. The scope of the 
thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries
in differential equations and today they play a central role in various parts
of mathematics.



Abstract

This master thesis reviews and discusses the literature on discrete choice
methods. Discrete choice modelling is an effective tool for predicting choice
behavior, analyzing consumer preferences, and determining consumption
patterns and market trends. Nevertheless, increasing diversity in markets,
customer preferences, and available products require more customized
models that have high predictive power in different choice situations
and behaviors. This also applies to the study of food choice. This
thesis assesses the available methods from the point of view of statistics.
It discusses the usefulness, strengths, and weaknesses of some of the
most widely used discrete choice models, with a special focus on seafood
preferences and food choice. We use survey data on the French seafood
market for empirical assessments of the models, in order to determine the
best model for predicting choice probabilities. By doing so, this thesis
aims to improve the modelling of seafood preferences in particular, and
of food choice in general.
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CHAPTER 1

Introduction

In this thesis, we review the theory of discrete choice methods and the use of
choice models in survey and experiment. In particular, we present and discuss
three standard models, including multinomial logit, nested logit and mixed
logit, together with recent developed discrete choice models such as latent class,
generalized multinomial logit and logit-mixed-logit. In addition to describing the
models, we point out the strengths and weaknesses of each model for analyzing
choice behavior in general, and for predicting choice probabilities of different
product alternatives and attributes in particular. The objective of the master
thesis is to find out the best model that has powerful predictive power and at
the same time avoid measurement errors in food choice analysis.

In summarizing the existing literature on choice studies, McFadden et. al.
(2005) point out the sources of response errors and biases that have accumulated
in survey and experiment research. They conclude that much of the literature
on measurement errors assumes them to be “classical”, i.e. the error is assumed
to be independent of the latent true variable. However, empirical studies in
the field suggest that survey response errors, in many cases, are correlated
with unmeasured variables and do not confirm to the classical measurement
assumption. For example, they can be correlated with unobservable factors
such as the cognitive ability of participants in a survey. For identifying sources
of correlation in discrete choice methods, Hensher, Rose & Greene (2005) and
Train (2009) study different choice models and use statistical data for empirical
assessment of the models. They found that choices can be

• correlated over alternatives;

• correlated over attributes of alternatives. For example, seafood alterna-
tives may share the same attributes, such as product origin. In such cases,
the attributes do not vary across alternatives;

• correlated over different choice situations responsed by the same individual;

• correlated over time periods.

In addition to correlated choices, preference heterogeneity (or taste variation)
among consumers also poses another challenge to choice modelling. Discrete
choice models that allow for individual heterogeneity by making coefficients of
the model random, as in the mixed logit model by McFadden and Train (2000),
can be good strategies for the statistical analysis of survey response behavior.
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1. Introduction

In order to test whether respondents show greater variability of preferences,
researchers can implement within subject setting using repeated choices in stated
preference experiments (i.e. choices made by one individual in several choice
situations) that vary in difficulty and design. Stated preference experiments are
studies in which respondents are presented with one or more choice experiments.
In these studies, repeated measurement can provide additional variation and
instruments, which are then used in analytical models (McFadden et. al.
2005). The measurement techniques are often performed by creating choices
made by one individual in several choice situations and over several time
periods. According to many researchers in the field, the approach that allows
for coefficient heterogeneity is very flexible and can capture a variety of survey
response effects. For this reason, Train (2009) suggests that stated reference
studies can test the impact of new product attributes on consumers’ choices
and can fabricate new situations, for example in this analysis, for sustainable
food choices (Chen et. al. 2015, Nguyen et. al. 2015).

We review discrete choice models in this thesis from a statistical point
of view. For empirical assessment of the models, we use a seafood dataset
that exhibits several challenges in choice modelling, as well as in survey and
choice experiments. First of all, we begin with clarifying the settings for
choice probabilities in chapter 2 in order to understand discrete choice methods
clearly. In chapter 3, we introduce, describe, and discuss three standard choice
models: multinomial logit, nested logit, and mixed logit. In addition, we present
recent development of discrete choice methods such as latent class, generalized
multinomial logit, and logit-mixed-logit models. These are important choice
models in the field, the estimation of which will be described briefly in chapter
4. The dataset and empirical analysis in chapter 5 are obtained from an online
survey of seafood consumption in France under a stated choice experiment. In
this experiment, potential seafood consumers were asked for their preferences
of different seafood alternatives and attributes. We also discuss the empirical
analysis of discrete choice models and suggest some measures to improve the
modelling of food choices in this chapter. We summarize our work in chapter 6.
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CHAPTER 2

Modelling consumer choice
behavior

2.1 The settings for modelling consumer choice

Commercial products have numerous characteristics and attributes. These
include, but are not limited to, prices, brands, labels, origins, quality and
quantity. The consumer’s choice of a product among similar ones is assumed to
be dependent on the product’s characteristics or attributes (Lancaster 1966).
These product attributes act as explanatory variables in discrete choice models
(McFadden 1974), in which choice probabilities are calculated under a vari-
ety of behavioral specification. Based on choice contexts, product trends and
consumer behaviors, researchers make assumptions about probabilities of a
set of available outcomes, called the choice set. The consumer is assumed to
choose one outcome among the alternatives within the choice set. Discrete
choice models explain consumers’ choices based on alternative products and
their attributes. In particular, by using this method, researchers can separate
the random effects of different product attributes on consumers’ choice and
predict consumer response in a new hypothetical situation, for example, a price
change.

Researchers build discrete choice models using utility theory and derive choice
probabilities from utility-maximizing behavior (Manski 2001). By observing
how a consumer n (n = 1, .., N) gives values to different alternatives j (j =
1, ..., J) when this person faces a choice situation Ct, a researcher will define
the consumer’s utility function ut(.) for these alternatives. The choice situation
Ct is also known as a choice set and t specifies a specific set out of a total of
T sets. As choices are observed repeatly over time, t also specifies a specific
time period. When a choice dataset has several time periods, we call it a panel
dataset. In the given choice situation, the consumer obtains a certain utility
level only if he/she chooses an alternative. If the consumer decides to choose
alternative i ∈ Ct, the utility brought by choosing i is always higher than any
other alternative j ∈ Ct, or Ut(i) ≥ Ut(j) (i, j = 1, ..., J). Subscript j is used
generally to address any alternative in the set of J alternatives. In our analysis,
j is used to address alternatives i and any other alternatives in the choice set.
When an alternative is chosen, we denote it i. The choice probability for the
chosen alternative i is (Train 2009)
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2. Modelling consumer choice behavior

Pi = Prob[t : Ut(i) ≥ Ut(j), j 6= i] (2.1)

Equation (1) is known as a random utility model (RUM) in which the
probability of a randomly chosen outcome i in a choice set Ct will specify a
function for the observed part of utility Vnit for person n.

There are factors that collectively determine the consumer choice for alter-
native i in the choice set. In order to understand the behavioral process of this
individual, researchers observe some of the factors that may lead to the person’s
choice. The observed factors are believed to have underlying relationship with
the outcome ynj , which we will specify later. There are also other factors in
utility that can not be observed by the researcher, Vnj 6= Unj . Consumer utility
is then decomposed into two parts, the observed utility Vnj and unobserved
error terms εnj

Unj = Vnj + εnj (2.2)

In this introduction, we omit the subscript t for the sake of simplicity
and describe the utilities Unj for different alternatives j in one choice set Ct.
The observed utility Vnj does not represent the consumer utility as a whole,
(Vni 6= Uni). The error terms are, thus, defined as unknown factors affecting
utility. They are the difference between true utility Unj and the part of utility
that the researcher captures in Vnj . Because researchers can calculate Vnj based
on their measurement of some observable variables, it is called the observed
utility.

In the particular choice set Ct, the researcher observes some product at-
tributes labelled zj and some characteristics of person n labeled sn, such as
income and education levels, which are also known as alternative specific vari-
ables and individual specific variables, respectively (Hensher, Rose & Greene
2005). Then the observed utility in general is

Vnj = V (zj , sn).

For simplicity, zj and sn are combined in a vector of observed variables xnj .
The observed utility Vnj in RUM models is assumed to be a linear function as

Vnj = β′xnj + kj , (2.3)

where kj is a constant that is specific to alternative j. Vector β is a vector
of estimated coefficients reflecting the relationships between observed variables
and outcome ynj . The alternative-specific constant for an alternative captures
the average effect on utility of all factors that are not included in the model.
Thus they served a similar function to an intercept in a regression model, which
also captures the average effect of all unincluded factors. We will further explain
the logic of having the constant in the specified utility function as well as several
modelling techniques related to it in section 2.3.

It is worth noting the difference between Unj and ynj . The outcome ynj
takes in the value of 1 or 0 if consumer n chooses or does not choose a specific
alternative j in the choice set. For example, yni = 1 indicates the success of
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2.2. Choice probabilities

having alternative i as the chosen alternative while Uni indicates the utility (or
satisfaction) obtained by the consumer n for choosing alternative i. According
to Train (2009), consumer’s choice is not deterministic and can not be predicted
exactly if researchers rely only on observed variables. He defines a function
ynj = h(xnj , εnj) to represent the consumer behavioral process based on the
probability of any particular outcome as

P (ynj |xnj) = Prob(εni s.t. h(xnj , εnj) = ynj),

where the unobserved terms εnj are considered random with density f(ε).
The probability that the consumer chooses a particular outcome from the set
of all possible outcome is simply the probability that the behavioral process
results in that outcome with such unobserved factors.

For the chosen alternative i, an indicator function I[h(xni, εni) = yni] is
defined, which takes the value of 1 when the statement in bracket is true and 0
otherwise. In particular I[.] = 1 if the value of εni, combined with xni induces
the agent to choose outcome yni with the chosen alternative i and I[.] = 0
if the value of εni, combined with xni induces the agent to choose another
outcome. Then the probability that the consumer choose outcome yni is simply
the expected value of this indicator function, where the expectation is over all
possible values of the unobserved factors

P (yni|xni) = π(I[h(xni, εni) = yni] = 1). (2.4)

The distributions of error terms and the values of unobserved factors, in
sum, are random and unknown. Nevertheless, through choice modelling, they
can be approximated by the researchers depending on the specification of the
choice situation and the calculation of observed utility Vnj . In most case,
εnj are treated as random and assumed to be independently and identically
distributed (i.i.d.). The i.i.d. assumption is part of the limitation in describing
choice behavior, because choices in surveys and choice experiements are often
made in different situations and time periods by the same decision maker, i.e.
a panel data setting. In those cases, choice decisions may be identical but
not independent. Thus, the error terms may be correlated, and may not be
independently distributed over time and/or over alternatives. We will discuss
this problem further in chapter 3 and chapter 5. In the next section, we will
examine closely probabilities for choice.

2.2 Choice probabilities

The random Utility Models introduced in the previous section have two com-
ponents: a systematic component denoted Vj and an unobserved component
denoted εj . The second component is an error term that captures the impact
of all unobserved variables on the utility of choosing a specific alternative j
in a choice set. Therefore, we should note here that the choice is made by a
random decision maker/consumer. From the researcher’s point of view, the
determinants of the decision maker’s utility are partly unobserved. Choice
models based on choice probabilities are built to fabricate the impacts of the
error terms as well as of the determinants on consumer utility, as we have seen
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2. Modelling consumer choice behavior

in the previous part. In this section, we will further describe choice probability
for a chosen alternative i, which are derived from error terms in different utility
functions for all alternatives in the choice set.

With a setting for modelling choice as in the previous section, beginning
with equation 2.2 and 2.3 while ignoring the constant for simplicity, Croissant
(2010) further clarifies utility levels of the consumer n for each alternative j ∈ J
as follows,

U1 = V1 + ε1 = β′1x1 + ε1

...

UJ = VJ + εJ = β′JxJ + εJ

Alternative i will be chosen if ∀j 6= i, Ut(i) ≥ Ut(j). We have the following
J − 1 conditions:

Ui − U1 = (Vi − V1) + (εi − ε1) > 0

...

Ui − Ui−1 = (Vi − Vi−1) + (εi − εi−1) > 0

Ui − Ui+1 = (Vi − Vi+1) + (εi − εi+1) > 0
...

Ui − UJ = (Vi − VJ) + (εi − εJ) > 0.

The general expression of the probability of choosing alternative i is then

(Pi|εi) = P (Ui > U1, ..., UJ)

(Pi|εi) = F−i(ε1 < Vi − V1 + εi, ..., εJ < Vi − VJ + εi), (2.5)

where F is the joint distribution of all error terms and F−i is the multivariate
distribution of J−1 error terms (i.e. all except εi). The unconditional probability
for alternative i is then

Pi =
∫

(Pi|εi)f(εi)dεi (2.6)

Pi =
∫
F−i(ε1 < Vi − V1 + εi, ..., εJ < Vi − VJ + εi)f(εi)dεi, (2.7)

where f(εi) is the marginal density function for the error term εi related to
the chosen alternative i.

McFadden (1974) points out a challenge facing choice modellers in prac-
tice. It is particularly difficult to define a joint distribution F that allows the
computation of probability Pi, such as the one in equation 2.4. He suggests an
alternative approach for which researchers can specify formulas for the selection
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2.3. Assumptions in discrete choice models

probabilities and then examine whether these formulas could be obtained via
equation 2.4 from some distribution of utility maximizing consumers. Using
this approach, researchers in the field have specified different choice models
depending on varried choice contexts, utility maximizing behaviors and corre-
sponding distribution for the density f(εi). For example, McFadden (1978) uses
logit formula and Gumbel distribution to specify a multinomial logit model and
analyze residential choice behavior.

Using function h as the generalization of utility function specifying the
choice behavior, Train (2009) rewrites a general form for choice probability in
which yni is the observed outcome for choosing alternative i over j as

Pi =
∫
I[h(xni, εni) = yni]f(ε)dε, (2.8)

where f(ε) is the joint density function for the vector of random error terms
ε = (ε1, ..., εJ). Calculating choice probability is the first step to build models
in order to explain choice behaviors. For certain specifications of density f(ε)
for the error terms/ unobserved utility ε, the integral in equation 2.8 takes a
closed form, which means that the choice probability can be calculated exactly.
An example is when the unobserved portion of utility ε is assumed to be logit or
nest logit. In some other cases, such as probit and mixed logit, the integral does
not have a closed form and choice probability has to be calculated numerically.

2.3 Assumptions in discrete choice models

The distribution of the error terms ε = (ε1, ..., εJ) in discrete choice models,
according to McFadden (1974), will rely on two hypotheses: one is about
Gumbel distribution and the other one is about independent and identical
distribution for the error terms.

Firstly, in order to have discrete choice models that are consistent with
economic theory of utility maximization and at the same time have strong
mathematical foundation, McFadden (1978) developed a process to generate
Generalized extreme value (GEV) models for choice analysis. Let Zj ≡ eVnj ,
and consider a function G that depends on Zj for any alternative j in the set
of J available alternatives. For the chosen alternative i, we have Zi ≡ eVni . Let
Gi to be the derivative of G with respect to Zi, such that:

Gi = ∂G/∂Zi,

G = G(Z1, ..., ZJ).

If G satisfies four following conditions

1. For all Zj > 0(∀j), G ≥ 0,

2. G is homogenous of degree one, meaning: G(αZj) = αG(Zj) for any
positive α,

3. G→∞ as Zj →∞ for any j,
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2. Modelling consumer choice behavior

4. the cross partial derivatives of G change sign in a particular way, i.e.
Gi ≥ 0 for all i, Gil = ∂Gi/∂Zl ≤ 0, and Gilk = ∂Gil/∂Zk ≥ 0 for any
distinct alternatives i, l, k and so on for higher-order cross-partials.

then we have the choice probability for the chosen alternative i as

Pi = ZiGi
G

= Zi
G

∂G

∂Zi
.

Following this generating process, any function G that satisfies the four
conditions can be used to derive a choice probability, which helps to constitute a
GEV model. In the GEV model, each error term εj follows a Gumbel distribution
with a location parameter µ and a scale parameter θ as

f(z) = 1
θ
e−

(z−µ)
θ e−e

− (z−µ)
θ ,

P (z < t) = F (t) =
∫ t

−∞

1
θ
e−

(z−µ)
θ e−e

− (z−µ)
θ dz = e−e

− (t−µ)
θ . (2.9)

The first two moments of the distribution are E(z) = µ+ θγ, where γ is the
Euler-Mascheroni constant (0.577) and V (z) = π2

6 θ
2 (McFadden 1974).

We have mentioned briefly the assumption of i.i.d. distribution for the error
terms in 2.1. We will explain here the complexity of error terms in explaining
unobserved utility. Train (2009) suggests two properties of choice probability
that can affect the specification and estimation of any discrete choice model.
These properties are

1. Only differences in utility matter, not the absolute utility level,

2. The scale of utility is arbitrary.

The first property implies that we can only estimate and identify coefficients
capturing differences across alternatives. In other words, the overall scale of
utility will not be identified when we account for the change in a decision maker’s
choice over alternatives. Recalling from equation 2.3 that kj is a constant that
is specific to alternative j which captures the average effect of all unincluded
factors and has similar function to an intercept in a regression model. When
alternative specific constants are included, the unobserved portion of utility εnj
has zero mean by construction. We can then, without loss of generality, suppose
that µj = 0 ∀j. Indeed, when we do not have the constants kj in the observed
utility Vnj for the opposite case, the unobserved error terms εnj may have a
nonzero mean. Suppose that from equation 2.2, we have a utility function

U0
nj = V 0

nj + ε0nj = β′1xnj + ε0nj , E(ε0nj) 6= 0.

Adding the contants, as a result, may force the error to have zero mean

U1
nj = V 1

nj + ε1nj = β′2xnj + kj + ε1nj , E(ε1nj) = 0.

Thus, in discrete choice models, we have alternative specific constants acting
like intercepts and at the same time capturing differences across alternatives.
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2.3. Assumptions in discrete choice models

Then the property only differences in utility matter can be translated to only
differences in the alternative specific constants are relevant, not their absolute
levels (Train 2009). This property often causes confusion in studying econo-
metrics for choice modelling. And in discrete choice models, when researchers
mention the technique of adding a constant or alternative specific constants, it
means adding the intercepts.

The second property, the scale of utility is arbitrary, requires us to have a
treatment for scale heterogeneity, i.e. variance of utility varries over different
choice situations. Because utility has no unit or scale, the estimated coefficients
are uniterpretable as numbers. This problem happens due to unidentified units
for utility in discrete choice models and generally in economic theory. In order
to solve the problem and account for scale differences between utilities gained
from different choices, we have to rely on several techniques of normalizing the
scale of utilities. The normalization process is, thus, considered as a way to
account for scale heterogeneity as we specify, interpret, and compare different
choice models (Greene and Hensher 2010) as well as different consumer groups
(Swait and Louviere 1993) in chapter 5.

Vass et. al. (2017) clarify that the use of scale parameter λ in econometrics
is similar to one of dispersion parameter in statistics. In particular, λ is
explained to be inversely proportional to the variance of the error term σ2.
As scale parameter decreases, variance increases and the errors become more
dispersed. As error variance increases, the random part of utility (εnj) becomes
larger relative to the systematic part (Vnj), and choices become more random.
Completely random choices occur when there is an equal probability of selecting
any alternative.

According to Train (2009), a standard way of normalizing the scale of
utility is to normalize the variance of the error terms in different choice models.
When utility is multiplied by λ, the variance of each εnj changes by λ2, or
V ar(λεnj) = λ2V ar(εnj). Therefore normalizing the variance of the error terms
is equivalent to normalizing the scale of utility. In general, researchers can
normalize the error variance to some number based on each model’s assumptions
about the error terms. For example, in the case of multinomial logit, the error
terms are assumed to be i.i.d. and researchers can normalize the error variance
of different multinomial logit models (with different explanatory variables) to
1, as we will explain in detail in the next paragraph. As all the errors in
different multinomial logit choice models have the same variance by assumption,
normalizing the variance of any error term in a particular choice model also sets
the variance of other multinomial logit models. As we will discuss multinomial
logit, nested logit, and mixed logit in chapter 3, we separate the assumptions
about the error terms into three cases: i.i.d. errors, heteroskedastic errors, and
correlated errors. Depending on assumptions for the error terms of each choice
model following each of these cases, we have different approaches to normalize
the variance of the error terms.

The first approach is used for models with error terms that are assumed to
be independent and identically distributed with univariate distribution. We
have

P (Uj − U1) = F1((Vj − V1 + εj)

P (Uj − U2) = F2((Vj − V2 + εj)

9



2. Modelling consumer choice behavior

...

P (Uj − UJ) = FJ((Vj − VJ + εj),

where Fj is the cumulative density of εj . From the conditional choice
probability in equation 2.5, we realize that J − 1 error terms may be identified,
and therefore, J − 1 scale parameters θ in the Gumbel distribution in equation
2.9 have to be identified, one natural choice of normalization is to impose one of
the θj to be equal to 1. For example, we have a utility function for individual
n in a general case, when the variance has not been normalized as

U0
nj = β′xnj + ε0nj , E(ε0nj) = 0, V ar(ε0nj) = σ2.

The researchers can normalize the scale of utility by setting the error variance
to 1. We then have an equivalent model as

U1
nj = β′

σ
xnj + ε1nj , E(ε1nj) = 0, V ar(ε1nj) = 1, (2.10)

where the coefficients becomes β/σ due to the fact that the original coef-
ficients β are divided by the standard deviation of the unobserved portion of
utility σ. The new coefficient β/σ reflect the effect of the observed variables
relative to the standard deviation of the unobserved factors.

In the second case of heteroskedastic errors, the variance of the error terms
are different for different segments of population. We have the second approach
for normalization. We can set the overall scale of utility by normalizing the
variance or one segment, and then estimate the variance for each segment
relative to the segment we have just normalized the variance. We can use
the example of seafood choice again for this case. Suppose decision makers
are divided into different groups of similar sociodemographic characteristics.
Considering two groups, one group/segment above 45 years old (O) and another
group under 45 (U), the model in its original form is

Unj = β′xnj + εOnj for above 45 years old,

Unj = β′xnj + εUnj for under 45 years old.

The variances for two groups are not the same. Suppose we have k =
V ar(εOnj)/V ar(εUnj), which is a rate between the two variances for the two
groups of people. We can divide the utility for decision makers under 45 years
old by

√
k and do not have any impact on their choices (given the fact that

absolute level of utility does not matter). The model is rewritten as

Unj = β′xnj + εnj for above 45 years old

Unj = ( β√
k

)′xnj + εnj for under 45 years old (2.11)

where variance of εnj is the same for all observations in two groups. The
coefficient k has a function like a scale parameter in this case, which will be
estimated along with β. The estimated value of k̂ tells us the relative variance
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2.3. Assumptions in discrete choice models

of unobserved factors in the group under 45 years old to compare with the
variance of the other group.

In the third case where choice models have correlated errors, the normaliza-
tion process is more complicated. Since in such case, normalizing the variance of
the error for one alternative is not sufficient to set the scale of utility differences.
We have an example for choices made over four alternatives, in which utility is
expressed as

Unj = Vnj + εnj , j = 1, ..., 4.

The vector of error is

εnj =≺ εn1, ..., εn4 �

and is assumed to be normally distributed with zero mean and a covariance
matrix

Ω =


σ11 σ12 σ13 σ14
. σ22 σ23 σ24
. . σ33 σ34
. . . σ44

 . (2.12)

Since only differences in utility matter, this model is equivalent to the model

Ũnj = Ṽnj + ε̃nj , j = 2, 3, 4 (2.13)

where
Ũnj = Unj − Un1

Ṽnj = Vnj − Vn1,

and the vector of error difference becomes

εnj =≺ (εn2 − εn1), (εn3 − εn1), (εn4 − εn1) �=≺ ε̃n2, ε̃n3, ε̃n4 �

The variance of each error difference, thus, depends on the variance and
covariance of the error that is normalized, which is in this case εn1. For instance,
the variance of the difference between the first and second errors is

V ar(ε̃n21) = V ar(εn2−εn1) = V ar(εn1)+V ar(εn2)−Cov(εn2, εn1) = σ11+σ22−2σ12.

The covariance of ε̃n21 and ε̃n31 is calculated as

Cov(ε̃n21, ε̃n31) = E(εn2−εn1)(εn3−εn1) = E(εn2εn3−εn2εn1−εn3εn1+εn1εn1) = σ23−σ21−σ31+σ11.

The covariance matrix for the vector of error differences, following the matrix
in equation 2.12, becomes

Ω =

σ11 + σ22 − 2σ12 σ11 + σ23 − σ12 − σ13 σ11 + σ24 − σ12 − σ14
. σ11 + σ33 − 2σ13 σ11 + σ34 − σ13 − σ14
. . σ11 + σ44 − 2σ14

 .
11



2. Modelling consumer choice behavior

To set the scale of utility, normalization is done by setting the variance of
one of the error differences to a number. Suppose we normalize the variance of
ε̃n21 to 1, the covariance matrix for the error differences now has the form

Ω =

1 (σ11 + σ23 − σ12 − σ13)/m (σ11 + σ24 − σ12 − σ14)/m
. (σ11 + σ33 − 2σ13)/m (σ11 + σ34 − σ13 − σ14)/m
. . (σ11 + σ44 − 2σ14)/m

 , (2.14)

where m = σ11 + σ22 − 2σ12. Utility is divided by
√
σ11 + σ22 − 2σ12 in order

to achieve this scaling.

12



CHAPTER 3

Discrete choice models

3.1 Multinomial Logit

Logit choice probabilities

Suppose that the consumer n faces J alternatives and has a utility function
Uni by choosing alternative i. A multinomial logit choice model is obtained
by assuming that each error term is independently and identically distributed
(i.i.d.) with a Gumbel distribution (see section 2.3). The Gumbel distribution
of each error term is also known as Extreme Value type I and has density
f(εi) = e−εie−e

−εi and cumulative distribution F (εi) = e−e
−εi .

In order to derive choice probabilities for logit models, Croissant (2010) first
simplifies the unconditional probabilities in equation 2.5 as a product of joint
distribution F of all error terms, except for εi as

(Pi|εi) = F−i(ε1 < Vi−V1 +εi, ..., εJ < Vi−VJ +εi) =
∏
i6=j

F (Vi−Vj+εi) (3.1)

The unconditional probabilities in equation 2.5 becomes

Pi =
∫ ∏

i 6=j
F (Vi − Vj + εi)f(εi)dεi, (3.2)

where f is the marginal density with a Gumbel distribution. We then have
the conditional probabilities of choosing alternative i over J alternatives as

(Pi|εi) = Prob(εj < Vi − Vj + εi) = e−e
−(Vi−Vj+εi)

. (3.3)
The conditional probability of choosing i is then simply the product of

probabilities in equation 3.1 for all the alternatives except for i

(Pi|εi) =
∏
i6=j

e−e
−(Vi−Vj+εi)

, (3.4)

where the unconditional probability is the expected value of expression in
equation 3.2 with respect to εi,

Pi =
∫ +∞

−∞

∏
i 6=j

e−e
−(Vi−Vj+εi)

e−εie−e
−εi
dεi =

∫ +∞

−∞
[
∏
i 6=j

e−e
−(Vi−Vj+εi)

e−e
−εi ]e−εidεi.

13



3. Discrete choice models

The later has a better form, which is an intergral over probabilities of
unobserved factors in utilities for all J alternatives in the choice set

Pi =
∫ +∞

−∞

J∏
j=1

e−e
−(Vi−Vj+εi)

e−εidεi. (3.5)

Replacing t = e−εi or dt = −e−εidεi and following some algebra manipula-
tion, the unconditional probability becomes

Pi =
∫ +∞

0
e−tΣje

−(Vi−Vj)
dt,

which has the closed form

Pi = −e
−tΣje−(Vi−Vj)

Σje−(Vi−Vj)

∣∣∣∣∣
+∞

0

= 1
Σje−(Vi−Vj)

.

This is the logit choice probability for the chosen alternatives i over J
alternatives

Pi = 1
Σje−(Vi−Vj)

= eVi

J∑
j=1

eVj
= eβ

′xi

J∑
j=1

eβ
′xj

, (3.6)

where the observed utility is specified to be linear: Vi = β′xi. The vector β
contains the estimated coefficients of the explanatory variables, reflecting the
relationships between product attributes and the chosen outcome yi. In the
equation, xi is a vector of explanatory variables or independent variables. These
variables are often observable product attributes and consumer characteristics.
As xi’s are specific to alternative i ∈ J , they are called alternative specific
attributes (zi). And as xi’s are specific to individual characteristics n ∈ N ,
they are called individual specific attributes (sn). When individual specific
attributes vary between N decision makers, we have a multinomial logit choice
probability for the individual n as

Pni = eVni

J∑
j=1

eVnj
= eβ

′xni

J∑
j=1

eβ
′xnj

. (3.7)

In assessing consumer’s utilities for different alternatives, the researcher
also has to take into account the property of Independence from irrelevant
alternatives (IIA). For any two alternatives i and j, the ratio of the logit
probabilities is

Pni
Pnj

= eVni

eVnj
= eVni−Vnj . (3.8)

This ratio must not depend on any alternatives other than i and j. It means
that the relative probability of choosing i over j is the same no matter what
other available alternatives as well as their attributes are. Since the probability
ratio is independent from other alternatives than i and j, it is said to be inde-
pendent from irrelevant alternatives and is known as the IIA condition in or
property of choice modelling theory (Train 2009).

14



3.1. Multinomial Logit

Normalization in multinomial logit models

Following the normalization process for the case of i.i.d. errors in equation 2.10
in section 2.3, researchers can choose any number to normalize error variances.
Nevertheless, the error variances in multinomial logit model are traditionally
normalized to π2/6. The error variance in equation 2.10, thus, is π2/6 rather
than 1. The normalized scale of utility in multinomial logit model becomes

U1
nj = β′√

π2

6

xnj + ε1nj , E(ε1nj) = 0, V ar(ε1nj) = π2/6. (3.9)

The coefficients still reflect the variance of the unobserved portion of utility
but these coefficients are scaled by a factor of

√
π2

6 .

Panel data setting in multinomial logit models

Suppose that we have a case in which a consumer has to make decisions over T
choice situations and/or T time periods and J alternatives, known as a panel
data setting. The utility obtained from alternative j in period t would be

Unjt = Vnjt + εnjt (3.10)

where εnjt is the error terms. In this case, the chosen alternatives may
change over choice situations, and so do the attributes zjt. One may expect
the unobserved error terms to be not independent over time as well as over
alternatives, as in the case of the seafood data we will analyze in this thesis.

In some cases, the unobserved factors that affect the decision makers can
be independent over repreated choices and multinomial logit models can be
used to examine such panel data. The error terms εnjt is then assumed to be
i.i.d. extreme value, i.e. independent and identically distributed over n, j, and
t. Using the same proof in section 3.1, the choice probabilities become

Pnit = eVnit

J∑
j=1

eVnjt
, (3.11)

where each choice situation and/or time period t by each decision maker n
becomes a separate observation. We can proceed in two ways to analyze the
data. In the first way, if utility for each period t is specified to depend only
on variables for that period, then Vnjt = β′xnjt where xnjt are explanatory
variables related to alternative j and individual n in period t. In this case, the
multinominal logit model for panel data is not very different from cross-sectional
data. In the second way, utility in each period can be specified to depend on
observed variables from other periods. For example, utility in period t can
be specified to be dependent on observed variables from the previous period
t − 1. A lagged independent variable xnj(t−1) (i.e. attributes of the chosen
alternative in the previous period) can be used to define the observed utility
in period t. For example, we can use a lagged price of the previously chosen
alternative (Pricenj(t−1)) to be the lagged independent variable. The observed
utility function in this case becomes
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3. Discrete choice models

Vnjt = Vnit = Pricenj(t−1) + β′xnit, (3.12)
where the lagged price acts like an intercept in our model. The previously

chosen alternative can be any alternative in J alternatives while xnit are
attributes of the chosen alternative i in this period. Or we can use a lagged
dependent variable yni(t−1). The observed utility becomes

Vnjt = Vnit = αynj(t−1) + β′xnit, (3.13)
where ynj(t−1) = 1 if individual n also chooses i in the previous period t− 1

and 0 otherwise. If α > 0, the utility of choosing alternative i in the current
period will be higher if alternative i is also chosen in the previous period. If
α < 0, the utility in the current period will be higher if the individual switched
to another alternative, or the previous choice must be different from alternative
i.

The assumption of independent errors over choice situations or over time
periods is, nevertheless, unreasonable. We will discuss the cases of panel data
further in 3.3. In the next sections of this part, we will point out several
important analytical aspects of multinomial logit as a starting point for the
discussion of other choice models.

Interpreting discrete choice models’ results

3.4.1 Marginal effects
While the coefficients in a linear model can be directly interpreted as marginal

effects of the explanatory variables on the outcome y, coefficients in discrete
choice models need to be transformed for analysis. To obtain meaningful results
as marginal effects in multinomial logit model, for example, the coefficients for
alternative specific attributes (zj), individual specific attributes (sn) and the
price (Price) need to be transformed separately. In particular, the marginal
effect of an individual specific attribute is

∂Pni
∂sn

= Pni(βi −
J∑
j=1

Pnjβj)

The sign of the marginal effect is given by (βi−
J∑
j=1

Pnjβj)), which is positive

if the coefficient for the alternative i is greater than the weighted average of
the coefficients for all the alternatives (Croissant 2010).

For an alternative specific attribute defining two different alternatives i and
j, the marginal effect is

∂Pni
∂zni

= γPni(1− Pni)

∂Pni
∂znj

= −γPniPnj

Thus, the sign of the coefficients for alternative specific variables are directly
intepretable. In this case, the marginal effect is obtained by multiply the
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3.2. Nested logit models

coefficient by the product of two probabilities (which is −γ0.5× 0.5 = −1/4γ).

3.4.2 Marginal rate of substitution
The term marginal rate of substitution is often used in economic models in

order to interpret the marginal effect of price on the chosen outcome. Suppose we
have β̂nAttribute and β̂nPrice as the estimated coefficients of an alternative specific
attribute (Attribute) and price (Price). The marginal rates of substitution
between product attributes are given as

WTPn = − β̂nAttribute
β̂nPrice

(3.14)

where WTP is the willingness to pay level of person n. Ratios of coefficients
such as the one in equation 3.14 usually provide economically meaningful infor-
mation. For example, in the case of two seafood types with sustainable ecolabel
and without ecolabel, the ratio between coefficients of ecolabel and seafood
price enacts the rate of substitution for seafood with and without ecolabel.
This ratio, in other words, reflects the WTP of person n for a desired seafood
attribute (in this example, the ecolabel). Consumer willingness to pay is one
way to assess different choices by saying that who wants the product the most
will pay the highest price for that product. In orther words, utility brought by
the chosen alternative with that specific attribute compared to utilities brought
by other alternatives is the highest.

3.4.3 Matching choice probabilities
One way to assess the predictive power of a choice model is to see how closely

the estimated average probabilities by the model (average probabilities) match
with the shares of chosen alternatives in the experiment. The shares of chosen
alternatives are the probabilities for chosen alternatives in practice, which are
known as frequencies of alternatives or the shares of consumers choosing each
alternative. When the model predicts the average probabilities that are close
to the frequencies of alternatives in the experiment, we can say the predictive
power of the model is high. And if the chosen participants are randomly se-
lected in the experiment (which differs from the case of self-selected participant
problem), we can make the inference that these predicted probabilities represent
the market shares for product alternatives. When a new product alternative or
its attributes are presented, we can use the good model to predict/estimate the
market share for this new alternative or product attributes. This is often the
reason why a choice experiment is carried out in the first place.

3.2 Nested logit models

The nested logit model is one of the well-known members of the GEV family for
choice analysis, especially in choice studies of transports and vehicles. Nested
logit models are developed to relax the assumption that unobserved factors εj
are mutually independent (or i.i.d.). Each error term εj has an extreme-value
type I distribution. A nested logit model is appropriate for a choice context
when the set of alternatives J faced by a consumer can be divided into k non-
overlapping subsets (denoted B1, B2, ..., BK), called nests, so that the following
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3. Discrete choice models

properties hold

1. For any two alternatives that are in the same nest, the ratio of probabilities
is independent of the attributes or existence of all other alternatives. That
is the IIA property holds within each nest;

2. For any two alternatives in different nests, the ratio of probabilities can
depend on the attributes of other alternatives in the two nests, i.e. the
IIA property does not hold in general for alternatives in different nests.

These two properties imply that the unobserved utility εj ’s can be correlated
within nests. For any two alternatives i and j in nest Bk, εi is correlated with
εj . But for any two alternatives in different nests, the unobserved utility is still
uncorrelated, Cov(εi, εm) = 0 for any alternative m ∈ nest Bl, and alternative
i ∈ nest Bk, k 6= l (i&m = 1, ..., J ; k&l = 1, ...,K). This kind of setting is called
a two-level nested logit model. The first level is for choices over nests and the
second level is for choices over alternatives within a nest.

In a nested logit model, vector of unobserved utility εj = (ε1, ..., εJ) is
assumed to have cumulative distribution as

F (εj) = exp(−
K∑
k=1

(
∑

j∈Bk
e−εj/λk)λk), (3.15)

where λk is a measure of the degree of independence in unobserved utility
among the alternatives in nest k. The unobserved factors of utility are less
correlated and more independent if λk has a higher value. The quantity 1− λk
is a measure of correlation, as an increasing λk indicates less correlation. In
some literature, λk is known as a log sum coefficient.

In order to derive a nested logit probability for alternative i among a set
of j alternatives in nest Bk, we assume a logit structure for this probability,
as the one in equation 3.6, instead of using the cumulative distribution of the
unobserved utility F (εj). As in the case of i.i.d. εj , we have a logit probability
for choosing alternative i in nest Bk as

Pki = eVki

K∑
k=1

J∑
j=1

eVkj
= eβ

′xki

K∑
k=1

J∑
j=1

eβ
′xkj

. (3.16)

However, it is possible that unobserved utility εj are not i.i.d. In nested
logit models, this part of utility can be correlated within a nest. We then need
to derive another form of probability for nested logit, which is an intersection
probability. The intersection probability of alternative i in nest Bk is

P (A ∩B) = P (A|B)P (B)

Replacing A by alternative i and B by nest Bk, we have the probability for
choosing i ∈ Bk

18



3.2. Nested logit models

P (i ∩Bk) = P(i|Bk)P(Bk)

Written in this form, the nested logit probability can be decomposed into
two logit probabilities: P(Bk) - a marginal probability of choosing an alternative
in nest Bk and P(i|Bk) - a conditional probability of choosing alternative i given
that an alternative in nest Bk is chosen (McFadden 1978). From equation 3.16
we have

P(i|Bk) = eVki

J∑
j=1

eVkj
(3.17)

P(Bk) =

J∑
i=1

eVki

K∑
l=1

M∑
m=1

eVlm
. (3.18)

Suppose that we can further decompose the observed utility Vkj into two
parts; one part is Wk - a constant utility for all alternatives in nest k, and
another part is Ykj - varried utility over alternatives within nest k, such that

Vkj = Wk + Ykj = γ′wk + β′xkj (3.19)

where wk is a matrix of independent variables associated with nest k; γ, β
are coefficients corresponding with observed nests’ characteristics and the
alternatives’ attributes. The constant utility Wk differs over nests, but not over
alternatives within each nest. For any Wk , Ykj is defined as Vkj −Wk, which
is the log of the denominator of the conditional logit probability.

In order to obtain the joint probability for the conditional and marginal
probabilities in 3.17 and 3.18, Ben-Akiva (1973) suggests a quantity Ink called
inclusion value. This quantity is defined as a link between the two probabilities
so that λkIk is the expected utility a decision maker receives from the choice
among J alternatives in nest Bk. In particular, we have

Ik = ln

J∑
j=1

eVkj , (3.20)

then a formula for the conditional probability is derived as

P(i|Bk) = eVki

J∑
j=1

eVkj
= eβ

′xki

eIk
= eYki

eIk
. (3.21)

Writen in this form, the conditional probability is slightly different from the
formula suggested by McFadden (1978), which uses a scaling factor λ as

P(i|Bk) = eYki/λk

J∑
j=1

eVkj
= eYki/λk

eIk
. (3.22)
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3. Discrete choice models

Recalling that λk reflects the correlation among unobserved factors in nest
k (correlation = 1− λk), the scaling factor can differ over nests. Models using
λ are also called "normalized nested logit" and are consistent with RUM setup,
i.e. by scaling the coefficient of utility within each nest, the model allows utility
to be compared across nests. In other words, without the scaling, utilities can
only be compared for alternatives within the same nest. Having the option of
choosing alternative m in another nest Bl, the marginal probability of nest Bk
is then

P(Bk) =

J∑
i=1

eVki

K∑
l=1

J∑
m=1

eVlm
=

eγ
′wk [

J∑
i=1

eβ
′xki ]

K∑
l=1

eγ′wl [
J∑

m=1
eβ′xlm ]

= eγ
′wk+Ik

K∑
l=1

eγ′wl+Il
. (3.23)

Following the logic of scaling, instead of using the general observed utility
Vki, Train (2009) use the varried utility Ykj and the degree of independence λk
in unobserved utility among alternatives within a nest to define the inclusion
value as

Ik = ln

J∑
j=1

eYkj/λk . (3.24)

Using the decomposition of known utility Vkj , the conditional and marginal
probabilities then take the forms

P(i|Bk) = eYki/λk

J∑
j=1

eYkj/λk
,

P(Bk) = eWk+λkIk

K∑
l=1

eWl+λlIl

.

The choice probability for nested logit models is

Pi = eYi/λk∑
j∈Bk e

Yj/λk

eWk+λkIk

K∑
l=1

eWl+λlIl

(3.25)

After some steps of mathematical manipulation (see Train 2009, p. 86 for
more detailed calculations), we come to the well known form for nested logit
probability

Pi =
eVi/λk(

∑
j∈Bk e

Vj/λk)λk−1

K∑
l=1

(
∑
j∈Bl e

Vj/λl)λl
. (3.26)

One advantage of the nested logit model is that choice probabilities take a
closed form and can be estimated without relying on numerical approximations.
In other words, standard maximum likelihood techniques can be used for estima-
tion (which will be discussed in section 4.1). Until recently, only a small portion
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3.3. Mixed logit models

of nested logit models has ever been implemented to consumer choice problems.
This is also the case for seafood choice studies. In their systematic literature
review of purchasing behavior of fish and seafood products, Carlucci et. al.
(2015) show no relevant study that uses nested logit. Nevertheless, Train (2009)
believes that researchers may find more potentially powerful models to the
consumer choice analysis in this model class. Hensher and Greene (2002), for
example, have developed a three-level nested logit model. In this thesis, we at-
tempt to analyze consumer seafood choice with nested logit models in section 5.4.

3.3 Mixed logit models

Error component approach

The i.i.d. asumption in discrete choice modelling is restrictive because it does
not allow unobserved error terms of differerent alternatives to be correlated.
In order to take this correlation into account, we can decompose εnj into two
parts with a joint density f(εnj) = f(εnj1, εnj2). The error terms, thus, are
conveniently partitioning into one part that is heteroskedastic and correlated
over alternatives and another part that is i.i.d. over alternatives as well as
individuals. The utility function in equation 2.2 is rewritten as

Unj = Vnj + εnj1 + εnj2 = β′xnj + εnj1 + εnj2, (3.27)

where εnj1 is a random term with zero mean whose distribution over indi-
viduals and alternatives depends on underlying parameters and observed data
relating to alternative j and individual n; εnj2 is a random term with zero mean
that is i.i.d. over alternatives and does not depend on underlying parameters
or data (Hensher and Greene 2003).

The joint density can be expressed as a product of a marginal and a
conditional density f(εnj1, εnj2) = f(εnj2 | εnj1)f(εnj1) (Train 2009). And
the choice probabiltiy in equation 2.1 can then be rewritten as

Pj =
∫
εnj1

[
∫
εnj2

I(h(x, εnj1, εnj2) = y)f(εnj2 | εnj1)dεnj2] f(εnj1).dεnj1

(3.28)
The integral in bracket has a closed form, which helps to calculate exactly

the integral over εnj2 given εnj1. This is an advantage because we can use the
derived choice probability in multinomial logit model in 3.1, which has a closed
form. Based on an assumption of i.i.d. extreme value for εnj2, we can derive
a logit form for the conditional probability of the chosen alternative i for a
given value of εnj1 following equation 3.7. Thus, mixed logit models assumes
an i.i.d. extreme value type 1 distribution for εnj2 and a general distribution
for εnj1. It means that εnj1 can take on a number of distributional forms such
as normal, lognormal or other forms depending on researchers’ assumption for
their choice models. Denote the density of εnj1 by f(εnj1 | θ) where θ are the
fixed parameters of the assumed distribution of εnj1. We have the conditional
probability for choosing alternative i as
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3. Discrete choice models

(Pni | εnj1) = e(β′nxni+εni1)

J∑
j=1

e(β′nxnj+εnj1)
. (3.29)

Moreover, learning from equation 2.6, we can derive the unconditional
probability as

Pni =
∫

(Pni | εnj1)f(εnj1 | θ)dεnj1 =
∫

e(β′nxni+εni1)

J∑
j=1

e(β′nxnj+εnj1)
f(εnj1 | θ)dεnj1.

(3.30)
Thus, the unconditional probability would be a multinormial logit probability

integrated over all value of εnj1 weighted by the density of εnj1 as

Pni =
∫
Lni(εnj1 | θ)f(εnj1 | θ)dεnj1, (3.31)

where Lni denotes a logit form for the choice probability. Models in this
form are called mixed logit because the choice probability Pni is a mixture of
logits with f(εnj1 | θ) as the mixing distribution. The mixing distribution has a
set of parameters θ depending on the assumption about the general distribution
of the random error term εnj1. Thus, the probability of the chosen alternative
i will be dependent on the choice of θ by the researchers. The probabilities,
nevertheless, satisfy the IIA property and different substitution patterns may
be obtained by appropriate specification of f . This can be done in two ways.
The first way is to treat the unobserved information as a single separate error
component in the random component, known as error component approach. We
have just addressed this approach, starting from equation 3.27. The second way
is to specify each element of βn in equation 3.29 associated with attributes of
an alternative as having both a mean and a standard deviation, known as ran-
dom coefficient approach. The random coefficient specification is widely used in
recent applications of mixed logit models, and will be described in the next part.

Random coefficient approach

Suppose that utility of person n is derived from his/her behavior of choosing
alternative i among J alternatives as

Uni = β′nxni + εni, (3.32)

where xni are observed variables that are related to both attributes of
alternative i and characteristics of person n, βn is a vector of coefficients of
these variables representing the person’s tastes, and εni is a random term that
is i.i.d. extreme value. The coefficients βn vary over decision makers in the
population with density f(βn | θ), which is a function of fixed parameters θ that
present the mean and covariance of the βn’s in the population. To compare
with multinomial logit models, the specification is similar except that βn varies
over decision makers rather than being fixed. This is why we use "random
coefficients" rather than "coefficients" in general. In mixed logit models with

22



3.3. Mixed logit models

random coefficient approach, the researcher observes the xni’s but not βn or the
εni’s. As such, these two components are treated as stochastic influences. For
each value of βn, the conditional choice probability for the chosen alternative i
is logit based on the i.i.d. assumption of extreme value for εni. Thus, we specify
another form for equation 3.29 as

Pni(β = βn) = Lni(βn | θ) = eβ
′
nxni

J∑
j=1

eβ
′
nxnj

. (3.33)

The unconditional choice probability would be the logit Lni integrated over
all values of βn and weighted by the density f(βn | θ). This leads us to a
well-known mixed logit choice probability (with some modification which we
believe to be necessary)

Pni =
∫
Lni(βn | θ)f(βn | θ)dβn =

∫
eβ
′
nxni

J∑
j=1

eβ
′
nxnj

f(βn | θ)dβn. (3.34)

Since parameters θ have unknown distribution, selecting the right specifica-
tion for the density f(βn | θ) is empirically challenging. Hensher and Greene
(2003) list several empirical issues that they have investigated in their paper
about mixed logit models, which include

1. selecting the random coefficients,

2. selecting the distribution of the coefficients,

3. selecting the number of points on the distributions,

4. preference heterogeneity around the mean of a random coefficient,

5. correlated choice situations for observations drawn from the same individ-
ual,

6. correlation between coefficients,

7. willingness to pay challenges.

For the first four empirical issues, researchers can generally specify a dis-
tribution for the random coefficients and estimates the parameters of that
distribution depending on choice contexts and situations. For most applications,
the density f(βn | θ) is specified to be continuous (Train 2009). For instance, a
normal distribution φ(βn | b,Ω) with mean b and covariance Ω is assumed to
be the density and the choice probability for normal distributed mixed logit
models becomes

Pni =
∫

eβ
′
nxni

J∑
j=1

eβ
′
nxnj

φ(βn | b,Ω)dβn. (3.35)
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3. Discrete choice models

In other contexts and situations, the researcher may choose gamma, lognor-
mal or uniform to specify the mixing distribution of f(βn | θ), instead of using
a normal distribution.

If the mixing distribution f(βn | θ) is specified to be discrete, in which the
random coefficients βn take a finite set q of distinct values labelled b1, ..., bQ
with probability ρnq that βn = bq, mixed logit becomes a latent class model.
This model relaxes the requirement that specific assumptions about the density
f(βn | θ) have to be specified. In latent class model, choice probabilities is
derived from the logit probabilities in equation 3.33 as

Pni = Lni(βn) =
Q∑
q=1

ρnq(
eb
′
qxni

J∑
j=1

eb
′
qxnj

). (3.36)

Comparing the two approaches for mixed logit models

According to Train (2009), the two approaches, random coefficients and error
components, are equivalent. Under the random coefficient specification, βn can
be decomposed into their mean µ and deviation vn (or deviation from the mean
µ) so that utility in equation 3.32 is specified

Uni = µ′xni + v′nxni + εni, (3.37)

with xni as observed variables. Under the error component specification,
utility in equation 3.27 may be specified as

Uni = µ′xni + v′nzni + εni, (3.38)

where xni and zni are vectors of observed variables relating to alternative i.
In this case, vector vn comprises random terms with zero mean while vector µ
has fixed coefficients. The error terms εni are assumed to be i.i.d. extreme value
type 1. We can infer from this specification that v′nzni+εni ≡ εnj1+εnj2. In this
way, models have fixed coefficients for variables xni and random coefficients with
zero means for variable zni. Thus, correlation over alternatives (if any) in the
error component approach depends on the specification of observed variables zni.

Panel data in mixed logit models and the heterogeneity problem

In mixed logit models, preference heterogeneity is often an issue in a panel
data setting (N persons with T choice situations and/or time periods). The
heterogeneity problem due to correlated random effects can happen in two
scenarios:

• correlation over alternatives or correlation over attributes of alternatives;

• correlation over choice situations and/or time periods made by the same
individual.
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3.3. Mixed logit models

Both of these are likely the case for our seafood data. In other words, there
is possible correlation among choices made in different situations, as a decision
maker is given two or five choice sets. Following Hensher and Greene (2003), to
address correlated choice situations and correlated random coefficients in the
previous section (empirical issue no. 5 and 6), we chose the random coefficient
approach and specify a structure for the (likely) correlated random coefficients
βnt for person n in choice situation t as

βnt = µ+ Lvnt, (3.39)

where the underlying parameters are: θ = (µ, vnt). In this specification, µ
is the mean of βnt, vnt is a set of correlated random components with variance
on the diagonals of a covariance matrix Ω, and L is a lower triangular matrix
so that Var[βnt] = LΩL′.

Furthermore, we specify the utility obtained from the chosen alternative i
for this person as

Unit = µ′xnit + v′ntxnit + εnit (3.40)

This utility function is not different from the one in equation 3.37 except
that the subscript t is now added to describe choice situations.

Correlation over random coefficients of alternative specific variables can
happen because vnt (as being the deviation from the mean µ) may be the
same for all alternatives in the first scenario. We can think of such a situation
when different alternatives have similar attributes or when alternative specific
variables are invariant. The covariance matrix for unobserved utility in this
cenario is Cov[v′ntxnit + εnit, v

′
n(t+1)xni(t+1) + εni(t+1)] = σ2(vnt) where σ2(vnt)

is the variance of vnt.

Correlation over random coefficients of individual specific variables may ap-
pear for each alternative in the shape of unchanged socio-demographic variables.
These variables are also known as individual specific variables. In this case,
covariance matrix is more complex, since we have to specify the random coeffi-
cient as βnt and assume it to be i.i.d. over choice situations for each individual.
This is often a unreasonable assumption. Even though the random coefficients
βnt may be identical across T choice situations/time periods as preferences vary,
they are not independent with each other, because the preferences are given by
the same individual n in this case. This leads to the conclusion by Hensher and
Greene (2003) that a trade-off between the two types of correlation exists in
mixed logit models. In particular, by using empirical evidences from analyzing
different datasets, they show that mixed logit can accommodate correlation over
alternatives but not over choice situations by just using the i.i.d. assumption.
And according to these two researchers, correlation over choice situations (but
not over alternatives) may be resolved by using alternative specific constants,
i.e. using intercepts in our models.

In the presence of correlation due to choices made in different choice situa-
tions/choice sets, as in the case of our seafood data (which will be described in
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3. Discrete choice models

chapter 4), the utility that decision maker n obtains from alternative i in the
choice set t is

Unit = β′ntxnit + εnit

where βnt is a vector of random coefficients. One would expect εnit to be
correlated over choice sets as well as over alternatives. Denote the vector of
errors for all chosen alternatives in T choice sets as

εnit =≺ εn11, ..., εnJ1, εn12, ..., εnJ2, ..., εn1T , ..., εnJT �

where the density of εnit belongs to a distribution of assumption with
zero mean. Instead of having a normal estimation procedure for the random
coefficients and their variances, Train (2009) and later, Bliemer and Rose
(2013) specify a method to derive a covariance matrix Ω for the correlated
random coefficients based on Cholesky decomposition. This covariance matrix
has dimension JT × JT . Compared to the logit probability for one time period,
the integral in equation 3.34 is expanded to be over JT dimension rather than
J .

The distribution of random coefficients f(βnt) may have a normal distribu-
tion with mean bnt and covariance Ω. From equation 3.39, we obtain a normal
multivariate βnt with mean bnt and variance σ2

nt for the random coefficients of
explanatory variables xni as

βnt = bnt + σntηnt (3.41)

where ηnt is a draw from a standard normal distribution N(0, 1).
In order to analyze the survey data of seafood and address correlated random

coefficients βk with K elements, we use βk as a vector of random coefficients
corresponding to attributes of seafood alternatives (or alternative specific vari-
ables). Random coefficients βk are assumed to be normal distributed with mean
bk and covariance matrix Ω: βk ∼ N(bk,Ω). In order to test whether these
random coefficients are correlated, we derive the covariance matrix and look at
the non-diagonal elements on this matrix. If these elements are non-zero, we
can conclude that the random coefficients are correlated. For calculating the
elements of the covariance matrix, a Cholesky factor of Ω, which is defined as a
lower-triangular matrix L such that LL′ = Ω, is derived. The matrix L is often
called the generalized square root of Ω (Train 2009). According to Bliemer and
Rose (2013), a draw of βk from N(b,Ω) is obtained as


β1
β2
...
βK

 =


b1
b2
...
bK

+


s11 0 ... 0
s21 s22 ... 0
... ... ... 0
sK1 sK2 ... sKK



η1
η2
...
ηK

 . (3.42)

We modify the steps used to derive a K-dimensional vector of error terms (in
a probit model) by Train (2009) to obtain the K-dimensional vector of random
coefficients βn as follows:
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3.3. Mixed logit models

1. Take K draws from a standard normal and label the vector of these draws

η = (η1, ..., ηK)′.

2. By using equation 3.42, each single random coefficient can be calculated
as

βk = bk +
K∑
c=1

skcηk,

where βk is normally distributed (because the sum of normals is normal).
The estimated parameters θ̂k of the random coefficients βk have a mean
bk as

E(βk) = bk + LE(ηk) = bk,

and the variance

V ar(βk) = E(Lηk(Lηk)′) = LE(ηkη′k)L′ = LV ar(ηk)L′ = LIL′ = LL′ = Ω,

which is also the covariance matrix Ω we want to derive. The diagonal
elements of this matrix specify variances of random coefficients

V ar(βk) = s2
11 + s2

22 + ...+ s2
kk = σ2

1 + σ2
2 + ...+ σ2

k.

The square roots of these diagonal elements specify the standard deviations
of the random coefficients. Futhermore, the non-diagonal elements of the
covariance matrix will specify the covariances between random coefficients.
For example, the covariance between β1 and β2 would be

Cov(βn1, βn2) = s11s21 = σ11σ21.

As mentioned above, if the covariance matrix Ω has non zero covariances (or
the non-diagonal elements are not zero), the random coefficients are correlated.
Thus βk no longer just depends on only ηk but also η1, η2, ..., ηK . The K
random coefficients will depend on K + 1 distributional parameters θ̂K =
(bk, sK1, ..., sKK). And estimation of the vector of random coefficients produces
not only the parameter estimates, θ̂k, but also yields an asymptotic covariance
matrix Ω.

We will see the method mentioned above more clearly in chapter 5, section
5.4 for the seafood data. In this particular dataset, we have three random
coefficients that are correlated. Therefore, we need a three-dimensional vector
of correlated random coefficients and a covariance matrix for efficient estimation
of mixed logit model as well as for correct interpretation of WTP (which is, in
fact, the empirical issue no. 7 we have mentioned in the previous section).

Thus, for a general case with K-dimension random coefficients, the Cholesky
factorization expresses K correlated terms as arising from K dependent compo-
nents, with each component loading differently onto each random coefficient.
For any pattern of covariance, there is some set of loadings M from dependent
components that reproduces that covariance. From the specification in equation
3.39, we can infer that µ is now a kth dimension vector of mean coefficients
estimated from the relations between choices and observed attributes as well as
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3. Discrete choice models

consumer characteristics. Vector vnt is a mth dimension vector of correlated
random variables that are dependently distributed with standard normal density
and Ω is a K ×M matrix of factor loadings (McFadden and Train 2000).

In sum, any behavioral specification whose derived choice probabilities
take the particular form in equation 3.34 is called a mixed logit model. Each
derivation depends on a variety of behavioral specifications, and the derived
choice probability provides a particular interpretation of consumer behavior in a
market, as we will see in the next chapter. One advantage of mixed logit models
is that they allow preferences to vary across individuals and pairs of alternatives
to be correlated through specifying a random error term. For estimation, the
choice probabilities in mixed logit models cannot be calculated exactly but have
to be approximated through numerical approximation, which will be discussed
in the next chapter.

3.4 Latent Class models

Latent class models (LCM) is a special case of mixed logit, with mixing dis-
tribution to be specified as discrete. In these models, individuals are sorted
implicitly into a set of Q classes with a probability ρq that is unknown to
researchers. Suppose that individual n with a set of observable charateristics
called sn has a probability ρnq to be sorted to class q(q = 1, ..., Q). Even though
it is unknown, the probability can take a semiparametric multinomial logit
formulation suggested by Greene and Hensher (2003) as

ρnq = esnθq

Q∑
q=1

esnθq

. (3.43)

In the formulation, θq is the latent class parameter vector,
Q∑
q=1

ρnq = 1

and ρnq > 0. The parameter of the first class are normalized to zero: θ1 = 0
for the identification of the model, as described in 2.3 (Sarrias and Daziano 2017).

Considering yni as a specific choice made by individual n by choosing
alternative i among a set of available alternatives j = 1, ..., J . This specific
choice is observed in several choice situations/time periods called T (t = 1, ..., T ).
The probability of individual n in class q choosing alternative i is

Pni|q = Prob(yni = i | class = q) = eb
′
qxni

J∑
j=1

eb
′
qxnj

. (3.44)

Since there are T choice situations/time periods, which gives T observations
for each individual, the conditional contribution of each individual to the
likelihood of joint probability has the form

Pt|q =
T∏
t=1

Pni|q =
T∏
t=1

eb
′
qxni

J∑
j=1

eb
′
qxnj

. (3.45)
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3.5. Other discrete choice models

Using the logit probabilities in equation 3.36, in which q is seen as possible
values for β, we make some modification and specify a new form for choice
probability in latent class models

Pni =
Q∑
q=1

ρnq(
eb
′
qxni

J∑
j=1

eb
′
qxnj

)
T∏
t=1

eb
′
qxni

J∑
j=1

eb
′
qxnj

. (3.46)

Seen in this light, LCM is a logit model for discrete choice among J alterna-
tives by individual n observed in T choice situations with probability specified
in equation 3.46. Data is considered to be panel data in the sense that the
individual is observed in several choice situations or events. It is, nevertheless,
not clear whether there is dependency between T and Q, in the sense that
sorting probability is correlated to time period/choice situation. Further re-
search on this type of model needs to address the preference heterogeneity due
to invariant decision makers over T situations. Nevertheless, due to the fact
that participants are sorted into different classes and groups with unknown
probabilities, and socio-demographic variables vary in different groups, the
latent class parameters θq are likely independent of each other, unlike the case
of random coefficients β′nt discussed in the previous section.

3.5 Other discrete choice models

In recent years, researchers have used new techniques to solve several problems
in modelling choice and improve the choice models mentioned above. Fiebig
and his colleagues (2010), for example, raise the problem of heterogenous
preferences that are not well-captured in mixed logit models. The density of the
random coefficients f(β) in equation 3.34 is often assumed to have a multivariate
normal distribution, such as the one in equation 3.35. This misspecifies choice
contexts and different tastes, which can be well observed nowadays by the
diversified product attributes and consumer characteristics. They suggest a
"scale heterogeneity" σ for the error term in the utility function (specified in
section 2.3) and develop a generalized multinomial logit model (G-MNL) to solve
the problem. The scale heterogeneity σ can explain the different scales across
individuals and choice contexts. It is a function of consumer characteristics snt
and choice events t

σnt = exp(σ̄ + θsnt + τε0),

where ε0 is an error term for the scale heterogeneity and σ is the average scale
heterogeneity over n observations. θ is the estimated coefficients of consumer
characteristics snt. Researchers can let the vector snt contain demographics, or
some factors that differentiate consumers from each other.

Another way to solve the problem of heterokedasticity is allowing the random
coefficients β in mixed logit to have flexible mixing distribution. Train (2016)
suggests a new model called Logit-Mixed-Logit (LML). Researchers can specify
the shape of distribution as polynomials, splines, steps or other functions to
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3. Discrete choice models

the probability of each coefficient. The probabilities of β are positive, sum to
one with a discrete mixing distribution over a finite support set S

Prob(β = βr) = eα
′z(βr)∑

s∈S e
α′z(βs)

,

where z(βr) is a vector-valued function of any coefficient βr ∈ S, that
captures the shape of the probabiltiy mass function. Vector α is a vector of
coefficients for β in this new model. Caputo et. al. (2018) explore the LML
model in their analysis of food choices and conclude that this model captures
very well food quality attributes, which often have asymatric and multi-modal
distribution features.
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CHAPTER 4

The estimation of discrete choice
models

4.1 Maximum likelihood estimation

The estimation of choice models relies on the calculation of choice probabilities,
which are specific for each choice model as we have explained in chapter 3. De-
pending on whether or not the choice probabilities are in closed form, researchers
will use maximum likelihood estimation (MLE) or numerical approximation to
estimate the models’ coefficients or/and parameters.

As choice probabilities have closed forms, such as those in logit models,
a log-likelihood function is derived from probability Pn(β) of the observed
outcome for individual n:

LL(β) =
N∑
i=1

lnPn(β), (4.1)

where N is the sample size and β is a vector of coefficients. Finding the
value of β that maximizes the log-likelihood function can be done by using the
usual methods of numerical maximization such as using gradient descent or
Newton Raphson algorithms. In logit choice models, the log-likelihood function
derived from logit choice probability is concave (McFadden 1974) and it is often
simple to find a global maximum for the estimation of the coefficient β. The
Newton-Raphson algorithm, in this case for example, is guaranteed to provide
an increase in the likelihood function at each iteration. The estimator of β that
maximizes the logit function is consistent and efficient.

Nested logit models also have closed forms for choice probabilities and are
relatively easy to estimate (Hensher and Greene 2002). According to Train
(2009), there are two ways to estimate β coefficients in these models. The first
way is to use maximum likelihood and follow the procedure described in the
previous paragraph for logit models. Nevetheless, the log-likelihood function
derived from nested logit probability is not always globally concave and multiple
peaks may exists. As a consequence, gradient based optimization methods
may give local optimal solution. We can then try different algorithms and
starting values in order to find the global maximum. This step takes time and
researchers need to have certain skills to find a good value to begin with. In
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4. The estimation of discrete choice models

addition, this solution is difficult when a large number of coefficients need to be
estimated, as of the case in dynamic behavioral models. In order to find the
starting value systematically, Liu and Mahmasani (2000) suggest a procedure
that incorporates genetic algorithms (GAs) and nonlinear programming (NLP)
techniques, to search for a global optimum. The GAs are used to search for
good starting points systematically and globally through the possible solution
region while maintaining a positive definite variance-covariance matrix. At
the same time the nonlinear programming algorithm is used to fine-tune the
solutions obtained from the GAs procedure.

The second way to estimate β coefficients for nested logit models is to
apply a sequential method. As shown in 3.2, the nested logit probability is
decomposed into two logit probabilities, with which the coeffcients can be
estimated separately in two different models. Recalling that PnBk is marginal
probability of choosing an alternative in nest Bk and Pni|Bk is conditional
probability of choosing alternative i given that an alternative in nest Bk is
chosen, we have

Pni = Pni|BkPnBk = Pti = eYti/λk∑
j∈Bk e

Ytj/λk

eWti+λkItk

K∑
l=1

eWtl+λlItl

. (4.2)

The model with the conditional logit probability for choice of alternatives
within a nest is estimated first and is called lower model. The model for choice
of nests is estimated afterwards and is therefore called upper model. For more
details of this sequential estimation method, please see Train (2009, p. 81-86).
Sequential estimation, as in this way, may be easier in the sense that the
log-likelihood function is a sum of two logit log-likehoods and is maximized
in two stages. In particular, choice probabilities in each stage can be esti-
mated with a standard multinomial logit model. The log-likelihood function
in the lower model has an advantage of being definitely concave. Neverthe-
less, the estimated values of coefficients β are consistent but may not be as
efficient as the ones in conventional maximum likelihood methods for choice
probability given in equation 3.26. Approximation using Hessian matrix for
the log-likelihood function of the lower model may be imprecise and thus the
estimated standard errors in the first stage is not correct. As a consequence,
the estimated coefficients β in the upper models are biased downward. In
addition, several overlapping coefficients may exist in two stages. Different
values for the same coefficients can be estimated in the two stages because the
estimation procedures are carried out in two separated models. And researchers
who used this sequential method made no effort to constrain these overlapping
coefficients to be equal. Last but not least, different ways of specifying nests
can produce very different results for estimation. Regardless of the limitation,
estimated coefficients from the sequential estimation method can be used to
improve the maximum likelihood estimation mentioned above, specially for
nested logit models. For example, we can use them as starting values for the
MLE of the joint probabilities in equation 4.2, and the estimation procedure
afterwards is similar to the first way for nested logit estimation mentioned above.
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4.2 Simulation and maximum likelihood estimation

In mixed logit models, under the random component specification, the random
coefficients βn are assumed to vary from one individual to another. If conven-
tional maximum likelihood methods can be used to estimate βn, we need to
compute the average of the unconditional probabilities in equation 3.34 for all
the value of βn as

Pni = E(Pni | βn) =
∫
β1

∫
β2

...

∫
βN

(Pni | βn)f(β | θ) dβ1 dβ2... dβN . (4.3)

This is a N-dimensional integral which cannot be easily estimated without
resorting to numerical approximation. In this approximating process, for a given
value of the parameters θ, a number of R Monte Carlo draws for βn are taken
from its distribution f(β | θ) (r = 1, ..., R). The parameters θ are unknown and
rely on researchers’ assumption about the distribution of random coefficients.
Based on the value of βrn in each draw, we use the logit formula in equation
3.34 to calculate Lni(βrn | θ). This is a logit probability evaluated at parameters
θ as alternative i is chosen in a choice situation, given the explanatory variables
xni. The process is repeated for R draws, and the mean of the resulting Lni’s
is taken as the approximated choice probability for the chosen alternative i as

Pni = (1/R)
R∑
r=1

Lni(βrn | θ), (4.4)

where βrn is the value of the rth draw. The resulting approximated probabil-
ities in 4.4 is a positive, unbiased estimator of the mixed logit choice probability
(McFadden and Train 2000)

For empirical issue no. 4 listed in Hensher and Greene (2003) and specified
in section 3.3, in order to overcome the difficulty of finding the location of
each individual’s preferences on the distribution, one can retrieve estimates of
individual-specific preferences by deriving the individual’s conditional distribu-
tion (within sample) based on their choices (i.e. prior knowledge) and Bayesian
Theorem. This suggestion is helpful, but the researchers mispecified the Bayes
Rule. With the help of Train (2009), we modify the function of conditional
distribution for individual n as

Hni(θ | βn) = Lni(βn | θ)g(θ)
Pni(βn) , (4.5)

where Lni(βn | θ) is now the logit likelihood of an individual’s choice if they
had this specific βn, g(θ) is the distribution of the population of βn with θ as
the set of parameters, and Pni(βn) is the choice probability function defined in
the open form specified in equation 3.34 as

Pni(βn) =
∫
βn

Lni(βn | θ)g(βn | θ)dβn. (4.6)

This form shows how one can estimate the person’s specific choice proba-
bilities as a function of the underlying parameters in the random coefficients’
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distribution.

The estimation of mixed logit model can take into account the time dimension
of a panel setting (Train 2009). Considering a sequence of chosen alternatives,
one for each time period, i = i1, ..., iT , we will compute one probability for each
individual, which is then included in the log-likelihood function. In particular,
for a given vector of random coefficients βnt, the conditional probability that
individual n chooses alternative i in the tth observation has a logit form

(Pni | βnt) = Lni(βnt) = eβ
′
ntxnit

J∑
j=1

eβ
′
ntxnjt

. (4.7)

Define a dependent variable ynit that has a value of 1 when alternative i is
chosen and 0 otherwise. The probability for individual n in the tth observation
is then

Pni =
J∏
i=1

(Pni | βnt)ynit .

The joint probability for the total observations in T time periods of individual
n is:

Pnit =
T∏
t=1

J∏
i=1

(Pni | βnt)ynit .

Nevertheless, the probabilities for the mixed logit Pnit are the integrals
with no closed form, which degree of integrations is the number of of random
coefficients. The computation is done using the following steps in practice:

1. Make an initial hypothesis about the distribution of the random coefficients
βnt,

2. Draw R numbers of this distribution,

3. For each draw βrnt, compute the conditional probability

(Pni | βnt) = eβ
′
nt
rxnit

J∑
j=1

eβ
′
nt
rxnjt

,

4. Compute the average of the conditional probabilities in step 3

Pnit = 1/R
R∑
r=1

(Pni | βnt).

The random coefficients βnt can be serial correlated over different choice
situations (T > 1) given to the same decision maker n. In such case Train
(2009, p.147) specifies a utility function as

Unjt = βnjtxnjt + εnjt.
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The random coefficients for that person in choice set Ct are specified as

βnt = µ+ β̃nt,

where µ is fixed and β̃nt has a function similar to a variance

β̃nt = ρβ̃nt−1 + vnt,

where vnt is i.i.d. over n and t and ρ represents the serial correlation over
choice situation/time period (if any). Simulations of the probability for the
sequence of choices it in the presence of serial correlation proceed as follows:

1. Draw vrn1 for the initial period with choice i1, and calculate the logit
fomula for this period using βrn1 as

βrn1 = µ+ vrn1,

2. Draw vrn2 for the second period, calculate the logit formula using βrn2 as

βrn2 = µ+ ρvrn1 + vrn2

with the serial correlation p,

3. Continue for all T time periods and choice situations,

4. Take the product of the T logits,

5. Repeat steps 1-4 for numerous sequences of draws,

6. Average the results.

We will show in the next chapter how the dependence and correlation among
random coefficients are resolved in the case of repeated choices for the same
decision maker. In this chapter, in order to describe choice modelling of seafood
preference, real data are analyzed with the use of different discrete choice
models.
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CHAPTER 5

Choice modelling in a market
research for seafood

5.1 Description of data

The data was collected by a research group at the University of Southern
Denmark in August 2011 in a stated choice preference study. The study was
carried out in a form of the online survey of French consumers. Details of how
the survey was carried out can be found in Nguyen et. al. (2015). In the
survey, the consumers were asked for choices of different seafood products in a
hypothetical choice experiment. There were 960 participants who were divided
into 16 blocks by the researchers. There were 60 participants in each block.
Each respondent answered six choice sets, in which the first set is a practice
set. This practice set is kept unchanged over respondents. The other choice
sets have different number of fish and shellfish alternatives, which is six as the
minimum and thirteen as the maximum number. Every choice set has a None
option alternative.

We chose a data subset which represents choices for 10 seafood alternatives,
including the None option alternative (which is also known as no option alter-
native) because the choice sets in the original dataset do not have equal number
of alternatives. The data subset shows the choices of 840 individuals, out of
a total of 960 participants in the survey. Information on dependent variable
seafood choice is 1 if an alternative is chosen and 0 otherwise.

The dataset used for this analysis, thus, has 16800 rows, listing 1680 choice
sets. Each choice set has 10 rows with 10 seafood alternatives. Information
on seafood preferences is given by 840 participants. Each participant answers
either 1, 2, or 5 choice sets. The fish alternatives assigned for choice sets are
chosen among 12 fish types, including 8 finfish and 4 shellfish. The 8 finfish
types are salmon, cod, sole, seabream, saithe, pangasius, monkfish and tuna.
The 4 shellfish types are oyster, mussel, langoustine and crab. The choice
models are built on nine variables, which are listed in the next part.

37



5. Choice modelling in a market research for seafood

5.2 Description of variables

We have information on participants’s choices based on one dependent variable
and eight explanatory variables. These explanatory variables are divided into
two types: four are alternative specific variables and four are individual specific
variables.

1. ’Choice’ is the dependent variable in our models. This variable shows us
the chosen alternative in a choice set. It is assigned with value 1 if an
alternative is chosen and 0 otherwise.

2. ’Seafood Origin’ is an alternative specific variable. The variable gives
information about whether a seafood is produced domestically in France
(assigned as ’1’) or is imported (assigned as ’2’).

3. ’Seafood Price’ is an alternative specific variable. It shows the prices of
different seafood alternatives. ’Seafood Price" is collected based on both
market positioning and retail system. On the one hand, the researchers
used market price in euros at the time of the survey in order to illustrate
the market position and pricing strategy of different seafood producers
(figure 3). On the other hand, they also used three price levels in order to
adjust the given price in accordance with retail and distribution system
(figure 2, chart d.). For our modelling, we use market price in euros for
the ’Seafood Price’ variable.

4. ’Product Form’ is an alternative specific variable specifying package forms
for different seafood alternatives. This variable is coded as ’1’ for fillet,
loin, live, or raw seafood and as ’2’ for steak, tail or whole fish and chilled
or cooked (with shell on) seafood. In our analysis, we consider this variable
as having two forms: ’Handy Form and Fresh’ category and ’Unhandy
and Cooked’ category.

5. ’Production Method’ is also an alternative specific variable. It is differen-
tiated from farmed (assigned as ’1’) or wild catch seafood (assigned as
’2’),

6. ’Children’ is an individual specific variable. It shows the number of
children that each participant has in his/her household. No children in
the household is the minimum number and six is the maximum number
of children.

7. ’Education level’ is an individual specific variable. The participants give
information about their highest education level that they received in the
French education system. These levels are: elementary, secondary, and
high school, 1-2 years at bachelor level, 3-4 years at bachelor level, or 5
years and above.

8. ’Income’ is an individual specific variable. It shows the level of income
each participant has. The income levels are divided into 13 ranges with
less than 1000€/month to more than 5000€/month.

9. ’Age’ is also an individual specific variable. It is divided into 5 different
categories, depending on the age of participants.
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Tables 5.1 and 5.2 summarize the alternative specific as well as individual
specific variables. It is worth keeping in mind the coding for alternative specific
variables in the survey. Researchers used values 1 and 2 to describe categorical
variables such as seafood origin, seafood price, forms of product and methods
of production. Thus, three out of four alternative specific variables are dummy
variables. The opt-out choice naturally does not have information on seafood
products as well as participants and was coded as "NA" in the survey. It is the
nooption alternative in each choice set, meaning that not choosing any seafood
type is also an option and is listed as a choice alternative in every choice set.
As a way to overcome the problem of missing values of this alternative (in
statistical software), we turn the value of the opt-out choice to 0 in this analysis.
We describe these variables further in figure 2, in which value 0 accounts for
10% of the statistics of variables ’Seafood Origin’, ’Seafood Price’, ’Product
Form’, and ’Production Method’.

Table 5.1: Design for Alternative Specific Variables

Variables Type Value 1 Value 2
Seafood Origin Categorical French Imported
Production Method Categorical Farmed Wild catch
Product Form Categorical Fillet, lion, live, raw Steak, whole, chilled, cooked
Seafood Price Continuous (min) (max)

Table 5.2: Design for Individual Specific Variables (demographic characteristics
of participants)

Range Age Education Number of children Income
0 - - No Children Not disclosed
1 18-24 Elementary 1 1-12 levels
2 25-34 Secondary 2 12000-36000 Euros a year
3 35-44 High School 3
4 45-59 Lower college 4
5 60-64 College/ University 6 children
6 - Post-graduate -

5.3 Description of choice sets

Participants are given 1, 2, or 5 choice sets. Each choice set Ct has 9 seafood
alternatives and an opt-out choice, j = 1, ..., 10. Thus, each participant has to
choose one alternative among 10 available seafood types in each choice set. The
total set T varies between 1, 2 or 5 randomly depending on the number of sets
that researchers gave to each participant. The 9 seafood alternatives varies in
different sets, and are chosen from a list of 12 seafood types. The 9 seafood
types in each set are characterised by alternative specific variables, also known
as products’ attributes. These attributes are labeled as zj in 2.1 in the theory
part. The data subset has a total of 1680 choice sets, which are given to 840
participants, n = 1, ..., 840.
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Figure 5.1: Individual Specific Variables (demographic characteristics of partici-
pants)

(a) Participants’ Age (b) Number of children in the household

(c) Participants’ Education Level (d) Participants’ Income Range

40



5.3. Description of choice sets

Figure 5.2: Alternative Specific Variables (seafood attributes)
(a) Seafood Origin (b) Production Method

(c) Product Form (d) Seafood Price
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Figure 5.3: Descriptive statistics of Seafood Price

The choice sets in the survey satisfy three condition for the choice sets listed
in Train (2009). The three conditions are

1. The alternatives must be mutually exclusive. Choosing one alternative in
one choice set necessarily implies not choosing any of the other alternatives,

2. The choice set must be exhaustive in that all possible alternatives are
included, even the option of choosing none of the alternatives,

3. The number of alternatives is finite. Nevertheless, this condition is
restrictive because there would be unlimited amount of alternatives. In
an experiment, researchers often give consumers a constraint on budget
or shopping basket to limit the number of alternatives.

5.4 Description of discrete choice models and estimation
results

Multinomial logit

In multinomial logit, we assume the error terms εnj to be independently and
identically distributed. We use forward selection to choose a model with the
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best Akaike information criterion (AIC). The best multinomial logit model has
the form

Unj = β0 +β1 Seafood Price+β2 Production Method+β3 Product Form+
β4 Seafood Origin + γ1 Age + εnj

where βk is coefficients of alternative specific variable k, γk is coefficients
of individual specific variables k. In this model, α1 is an alternative specific
constant used as a baseline. We have β0 =

∑
αj . The estimation results for

the model are shown on table 5.3.

The results first show αj−1 alternative specific constants. The first constants
for the first seafood alternative in a choice set is α1, acting as a baseline for
normalizing the constant. For example, the first person chooses an alternative
in the first choice set, with ’Salmon’ as the first fish alternative. The constant
for alternative ’Salmon’ is set to zero in this case and the constants for nine
other alternatives in the person’s choice set are interpreted as utility being
relative to ’Salmon’, with values −1.175 for ’Seabream’, −1.678 for ’Saithe’
and so on. In general, these are the constants specific to alternatives 2,...,10
and known as the differrences in utilities between the first and the other nine
alternatives (as we have discussed in chapter 2).

Secondly, we examine the results for four alternative specific variables.
All four variables are statistically significant (at 0.001 level) and their four
coefficients are significantly different from zero. The t-statistics for all four
coefficients in absolute value are greater than 1.96, which is the critical level for
0.05 confidence level.

The coefficient for seafood price has an expected negative sign −0.107. As
the food cost for an alternative increases (and the cost of other alternatives
remain the same), the probability of that seafood alternative being chosen falls.
It means that a higher price will discourage the purchase of more expensive
seafood alternatives. Furthermore, this negative impact of seafood price on
choice is highly significant (at 0.001 level).

The ratios of coefficients for seafood price and other alternative specific
variables, as discussed in 3.1, shows marginal rates of substitution between
seafood attributes. In particular, the marginal rate of substitution between
farmed and wild catch seafood is

WTP = − 0.465
(−0.107) = 4.35

which is the coefficient ratio of ’Production Method’ and ’Seafood Price’.
This marginal rate of substitution implies that consumers prefer wild catched
seafood and natural products from the sea to those harvested from aquaculture.
With similar interpretation, this ratio is −8.79 for ’Seafood Origin’ and ’Seafood
Price’, reflecting a marginal rate of substitution between domestic and imported
seafood. It is negative in this case because the French seafood is specified as
1 and imported seafood as 2, meaning a switch from a French product to an
imported product will bring negative utility. In other words, the marginal rate
of substitution lets us know consumer preference towards French products. In
fact, this result is consistent with the conclusion of Nguyen et. al. (2015) that
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Table 5.3: Estimation results for multinomial logit and nested logit models

Dependent variable: Choice
Multinomial logit Nested logit

(Intercept):2 −1.175∗∗∗ (0.251) −1.115∗∗∗ (0.285)
(Intercept):3 −1.678∗∗∗ (0.277) −1.589∗∗∗ (0.349)
(Intercept):4 −2.085∗∗∗ (0.297) −1.971∗∗∗ (0.390)
(Intercept):5 −1.428∗∗∗ (0.299) −1.353∗∗∗ (0.342)
(Intercept):6 −2.354∗∗∗ (0.350) −2.223∗∗∗ (0.440)
(Intercept):7 −2.110∗∗∗ (0.270) −2.026∗∗∗ (0.346)
(Intercept):8 −1.509∗∗∗ (0.276) −1.441∗∗∗ (0.295)
(Intercept):9 −2.597∗∗∗ (0.355) −2.475∗∗∗ (0.462)
(Intercept):10 −3.305∗∗∗ (0.322) −3.152∗∗∗ (0.475)
Seafood Price −0.107∗∗∗ (0.006) −0.101∗∗∗ (0.015)
Production Method 0.465∗∗∗ (0.061) 0.442∗∗∗ (0.084)
Product Form −0.180∗∗∗ (0.057) −0.171∗∗∗ (0.058)
Seafood Origin −0.879∗∗∗ (0.058) −0.833∗∗∗ (0.122)
Age:2 0.294∗∗∗ (0.078) 0.278∗∗∗ (0.084)
Age:3 0.366∗∗∗ (0.084) 0.347∗∗∗ (0.095)
Age:4 0.354∗∗∗ (0.090) 0.335∗∗∗ (0.096)
Age:5 0.131 (0.094) 0.124 (0.093)
Age:6 0.291∗∗∗ (0.106) 0.274∗∗∗ (0.104)
Age:7 0.236∗∗∗ (0.082) 0.220∗∗ (0.090)
Age:8 0.152∗ (0.086) 0.139 (0.086)
Age:9 0.168 (0.110) 0.155 (0.113)
Age:10 0.053 (0.088) 0.047 (0.086)
Log sum λk 0.943∗∗∗ (0.140)
Observations 1,680 1,680
R2 0.089 0.089
Log Likelihood −3,438.186 −3,438.106
LR Test 671.983∗∗∗ (df = 22) 672.144∗∗∗ (df = 23)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

French consumers value domestic seafood highly.

Thirdly, based on the estimated coefficients, the first participant in the
dataset obtains a level of utility of −3.795 for choosing ’Pangasius’ alternative
in his/her first choice set. This utility is negative because it is actually the
utility difference between "Pangasius" and the first alternative "Salmon" in the
choice set. Moreover, as mentioned in 2.3, we should interpret the effects of
individual specific variable with caution, since it is related to a normalization
process and the two properties only differences in utility matter and the scale
of utility is arbitrary. In case the first seafood alternative in the choice set is
chosen as the baseline, the coefficient for "Age 2" (0.294) is interpreted as the
effect of participants’ age on the indirect utility of the second alternative relative
to the effect of age on the indirect utility of the first alternative (which is set at 0).

Last but not least, estimated average probabilities for the ten alternatives
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in the best multinomial logit model are shown on table 4. We can see that
the average probabilities closely match the shares of customers choosing each
alternative. As discussed in section 3.1.5, the matching probabilities show the
predictive power of a choice model. In this case, most of the average probabilities
match exactly the frequencies of chosen alternatives in the survey. Thus, the
best multinomial logit model also has high predictive power.

The role of alternative specific constants was discussed in 3.1. For application
and analysis, we fit a multinomial logit model without alternative specific
constants in order to examine the effects of these constants more clearly. In
particular, the new model has the form

Unj = β1 Seafood Price + β2 Production Method + β3 Product Form +
β4 Seafood Origin + εnj

Estimated average probabilities of the new model are shown on table 5.4,
in comparison with those estimated by the best multinomial logit model. We
see that the average probabilities in the model without the intercepts do not
match well with the share of customers choosing each alternatives.

Table 5.4: Comparison of matching probabilities in multinomial logit models

Fish Alternatives Sample frequencies Without alt.
specific constants Best Multinomial logit

1 0.1417 0.0694 0.1417
2 0.1518 0.0942 0.1518
3 0.1214 0.0871 0.1214
4 0.0917 0.0974 0.0917
5 0.0744 0.0882 0.0744
6 0.0565 0.0991 0.0565
7 0.1185 0.1298 0.1185
8 0.1071 0.0982 0.1071
9 0.0476 0.1154 0.0476
Opt-out choice 0.0893 0.1213 0.0893

It is worth noticing that seafood alternatives in the model are ones which
fall into the positions of the alternative 1 to the alternative 10 (j = 1, 2, ..., 10)
in each choice set Ct (given to each participant). Furthermore, seafood alter-
natives in different choice sets are not fixed in the ten positions due to the
researchers’ intention and initial purposes of designing the choice sets for the
experiment. We do not know these purposes clearly. Nevertheless, we can
observe the alternative positions for four (out of eight) finfish and four shellfish
by having a brief look at the choice sets. Due to the variation of alternatives
in different choice sets, estimating choice probabilities for consumer preference
of seafood seems not to give as much comparison meaning as in other studies,
such as a study of transport modes.

As discussed in 3.1, unobserved factors in utility εnj are not likely well-
captured in multinomial logit due to taste variation and preference heterogeneity.
We wish to examine other choice models as well in this analysis. We will specif-
ically estimate a nested logit model in the next part.
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Nested logit

We will now examine the data with nested logit models. One advantage of
nested logit is that it relaxes the i.i.d. assumption by allowing some correlation
among unobserved factors of utillity in different nests. It means that the IIA
condition can be alleviated for alternatives in different nests even though this
condition has to be strictly fulfilled for alternatives in the same nest.

In order to estimate the nested logit models, we partition 10 alternatives in
each choice set into 2 nests. One nest includes fish alternatives (known as fish
nest) and one nest includes shellfish alternatives (known as shellfish nest). The
opt-out choice is also included in the shellfish nest. We choose the two nests
based on the suggestion by Nguyen et. al. (2015) about differences in tastes
and consumer preferences of fish and shellfish. Using the same model selection
technique, the best nested logit model with the best AIC has the form

Unj = β0 +β1 Seafood Price+β2 Production Method+β3 Product Form+
β4 Seafood Origin + γ1 Age + εnj

Table 5.3 shows estimation results for the best nested logit model, which
has a similar structure to the best multinomial logit model. By comparing the
two models, we realize that the multinomial logit tends to overestimate most of
the coefficients, including those of alternative specific and individual specific
variables.

The log sum coefficient λk is estimated to be 0.943. As discussed in 3.2, a
high value for log sum coefficient implies that unobserved factors of utility in a
nest are less correlated to each other. It also means that choice probabilities
over alternatives are more independent within each nest. In this case, if there is
any correlation or dependence in the fish nest or shellfish nest, it is estimated to
be 1−0.943 = 0.057. This is not high correlation or not very strong dependence,
implying that the IIA condition is fulfilled within a nest in this model.

We can test if the within-nest correlations are statistically different from
those implied by the multinomial logit model, because a log sum coefficient equal
to 1 means a similar condition to multinomial logit. We have here λk = 0.943,
which is near 1. We use a Likelihood Ratio Test in this case. The test results
are shown on table 5.5. We fail to reject the null hypothesis, meaning nested
logit is not very different from multinomial logit.

Table 5.5: Likelihood Ratio test for Nested Logit and Multinomial Logit models

DF Log- Likelihood DF Chi Square Pr(>Chisq)
Multinomial logit 22 3438.1864
Nested logit 23 3438.1060 1 0.160729 0.688486

Using table 5.6, we can compare average choice probabilities for the ten
seafood alternatives in nested logit and multinomial logit models. The table
shows that the estimated probabilities in nested logit do not differ significantly
from the shares of customers choosing each alternative. Nevertheless, these
average probabilities are not as precise as those estimated by the best multino-
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mial logit model.

Table 5.6: Comparison of matching probabilities in different approaches

Fish Alternatives Sample frequencies Multinomial logit Nested logit Mixed logit
1 0.1417 0.1417 0.1418 0.1417
2 0.1518 0.1518 0.1516 0.1528
3 0.1214 0.1214 0.1214 0.1223
4 0.0917 0.0917 0.0917 0.0909
5 0.0744 0.0744 0.0743 0.0744
6 0.0565 0.0565 0.0566 0.0566
7 0.1185 0.1185 0.1182 0.1167
8 0.1071 0.1071 0.1073 0.1072
9 0.0476 0.0476 0.0477 0.0483
Opt-out choice 0.0893 0.0893 0.0893 0.0891

Mixed logit

Choices made in different choice sets/choice situations by the same individual
are not independent. As mentioned above, some participants in the survey are
given more than one choice set. In particular, some participants are given 2 and
5 choice sets (T = 2 or T = 5). Multinomial logit and nested logit have some
limitations in accomodating the dependence of choice probabilities for different
alternatives. Mixed logit overcomes these limitations by allowing preferences to
vary among individuals and unobserved factors in utility among alternatives
to be correlated over choice situations. The mixed logit model achieves this
flexibility by not using a set of fixed coefficients for the entire population. It
assumes that there is a distribution of coefficients throughout the population,
in this case, a normal distribution. The best mixed logit model based on AIC
has the form

Unj = β0+βn1 Seafood Price+βn2 Production Method+βn3 Seafood Origin+
βn4 Product Form + γ1 Age + εnj

where the coefficients for the three alternative specific variables (Seafood
Price, Production Method, and Seafood Origin) are assumed to be normally
distributed with mean bk 6= 0 and variance σ2

k. All random coefficients are
estimated using a panel specification.

βn1 ∼ N(b1, σ2
1)

βn2 ∼ N(b2, σ2
2)

βn3 ∼ N(b3, σ2
3)

Most of the variables of the best mixed logit model are statistically significant
at 0.001 level. The estimation results in table 5.7 show significant random
coefficients for the three alternative specific variables. We run the mixed logit
models with 100 Halton draws and take into account panel structure of the data
(for more details of Halton sequences and the Halton draws, see Train, 2009, p.
221). The random effects of the three alternative specific variables are shown
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on tables 5.9. The variances for these coefficients are statistically significant
at 0.001 level (which are ’sd.Fish Price’, ’sd.Prod. Method’, ’sd.Fish Origin’
on table 5.7). It means that we can not ignore the random effects. The fixed
effects on table 5.7, are ones for alternative specific intercepts, coefficients for
individual specific variable ’Age’ as well as coefficient for ’Product Form’. Most
of these fixed effects are also statistically significant.

Table 5.7: Estimation results for Mixed Logit models

Dependent variable: Choice
Mixed logit Mixed logit with correlated random effects

(Intercept):2 −1.245∗∗∗ (0.270) −1.251∗∗∗ (0.270)
(Intercept):3 −1.838∗∗∗ (0.301) −1.822∗∗∗ (0.300)
(Intercept):4 −2.284∗∗∗ (0.311) −2.334∗∗∗ (0.314)
(Intercept):5 −1.630∗∗∗ (0.326) −1.683∗∗∗ (0.330)
(Intercept):6 −2.507∗∗∗ (0.345) −2.524∗∗∗ (0.346)
(Intercept):7 −2.487∗∗∗ (0.303) −2.482∗∗∗ (0.300)
(Intercept):8 −1.771∗∗∗ (0.291) −1.758∗∗∗ (0.288)
(Intercept):9 −2.782∗∗∗ (0.376) −2.777∗∗∗ (0.376)
(Intercept):10 −4.688∗∗∗ (0.460) −4.602∗∗∗ (0.467)
Seafood Price −0.131∗∗∗ (0.008) −0.129∗∗∗ (0.008)
Production Method 0.532∗∗∗ (0.070) 0.540∗∗∗ (0.072)
Product Form −0.221∗∗∗ (0.061) −0.214∗∗∗ (0.061)
Seafood Origin −1.044∗∗∗ (0.076) −1.033∗∗∗ (0.076)
Age:2 0.314∗∗∗ (0.084) 0.317∗∗∗ (0.084)
Age:3 0.408∗∗∗ (0.091) 0.407∗∗∗ (0.091)
Age:4 0.389∗∗∗ (0.094) 0.395∗∗∗ (0.094)
Age:5 0.165 (0.103) 0.171 (0.104)
Age:6 0.312∗∗∗ (0.105) 0.314∗∗∗ (0.106)
Age:7 0.280∗∗∗ (0.091) 0.284∗∗∗ (0.090)
Age:8 0.178∗ (0.092) 0.184∗∗ (0.091)
Age:9 0.182 (0.117) 0.186 (0.117)
Age:10 0.033 (0.111) 0.039 (0.111)
sd.Seafood Price 0.091∗∗∗ (0.012)
sd.Production Method 0.633∗∗∗ (0.173)
sd.Seafood Origin 0.860∗∗∗ (0.160)
chol.Price:Price 0.087∗∗∗ (0.012)
chol.Price:Method 0.309∗∗ (0.120)
chol.Method:Method 0.513∗∗ (0.214)
chol.Price:Origin −0.109 (0.116)
chol.Method:Origin −0.231 (0.212)
chol.Origin:Origin 0.841∗∗∗ (0.165)
Observations 1,680 1,680
R2 0.102 0.103
Log Likelihood −3,389.231 −3,385.761
LR Test 769.893∗∗∗ (df = 25) 776.834∗∗∗ (df = 28)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the best multinomial logit, all coefficients are assumed to be fixed, or
variances σ2

k = 0∀k. We can test if the random coefficient variances of the mixed
logit model are statistically different from those implied by the multinomial logit
model. For example, we can use a likelihood ratio test with a null hypothesis
H0 : σ2

1 = σ2
2 = σ2

3 = 0. From the test results on table 5.8, we can reject the
null hypothesis at 0.01% confidence level. There are significant random effects
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and we need the mixed logit model to estimate choice probabilties as well as
consumer utilities.

Table 5.8: Likelihood Ratio test for Mixed Logit and Multinomial Logit models

DF Log- Likelihood DF Chi Square Pr(>Chisq)
Multinomial logit model 22 -3438.1864
Mixed logit model 25 -3389.2314 3 99.91 <2.2e-16 ***

Table 5.9: Random effects – Mixed logit model

1st Qu. Median Mean 3rd Qu.
βSeafood Price -0.1926278 -0.1309361 -0.1309361 -0.06924443
βProd. Method 0.1047443 0.5318100 0.5318100 0.95887576
βSeafood Origin -1.6236560 -1.0439228 -1.0439228 -0.46418970

In addition to the Likelihood Ratio Test mentioned above, we also use a
Chi-Square test to examine the dependence in random effects (known as the
Score test in the m.logit package) in the best mixed logit model. The null
hypothesis is H0: correlated random effects. Based on the statistic χ̃3

2 : 5.014
on table 5.10, we fail to reject the null hypothesis and there is indeed some
level of dependence among random coefficients. In orther words, the random
coefficients of the three alternative specific variables in this mixed logit model
are correlated.

Table 5.10: Chi-Square test for correlation in the mixed logit model that has
not accounted for correlated random effects

The Score test Ho: correlation = TRUE
chisq = 5.014 df = 3 p-value = 0.1708

In order to account for the dependency of random coefficients, we fit a
new mixed logit model. Estimation results for the new mixed logit model are
also shown on table 5.7. For observation of whether random coefficients are
correlated, we derive a correlation matrix (table 5.11). Elements of this matrix
signify some degree of correlation between the two pairs: Price and Method,
Origin and Method. As discussed in section 3.3, we can test whether the random
coefficients are correlated by deriving a covariance matrix Ω, which is shown
on table 5.12. The non-diagonal elements of this matrix is not zero. We can
conclude that the three random coefficients in the new estimated mixed logit
model are, indeed, correlated. These correlated random effects are shown on
table 5.13. This conclusion is consistent with the Score test mentioned above.

The asymptotic covariance matrix Ω in the new mixed logit model is calcu-
lated based on equation 3.42 and the Cholesky decomposition method discussed
in section 3.3. The three random coefficients of Seafood Price, Seafood Origin
and Production Method are assumed to be normal distributed with mean and
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Table 5.11: Correlation matrix of random coefficients in mixed logit

βSeafood Price βProd. Method βSeafood Origin
βSeafood Price 1 0.51593 -0.12374
βProd. Method 0.51593 1 -0.44102
βSeafood Origin -0.12374 -0.28923 1

Table 5.12: Covariance matrix of correlated random coefficients in mixed logit

βSeafood Price βProd. Method βSeafood Origin
βSeafood Price 0.0076 0.027 -0.0095
βProd. Method 0.027 0.3584 -0.1522
βSeafood Origin -0.0095 -0.1522 0.7729

Table 5.13: Coefficients of correlated random effects – Mixed logit model with
dependently distributed random coefficients

1st Qu. Median Mean 3rd Qu.
βSeafood Price -0.1877400 -0.1287962 -0.1287962 -0.06985242
βProd. Method 0.1361892 0.5399901 0.5399901 0.94379106
βSeafood Origin -1.6262973 -1.0333342 -1.0333342 -0.44037120

standard deviations shown on table 5.15. The variance σ2
k of the three correlated

random coefficients are the elements on the diagonal of the matrix Ω shown
on table 5.12. The covariances of the correlated random coefficients σkc are
the non-diagonal elements of the same matrix. In addition to the covariance
matrix Ω, we also derive standard deviations for the estimated variances and
covariances of the random coefficients on table 5.14. Relating the results on the
two tables 5.14 and 5.15 to those on table 5.7, we have made an improvement
for the calculation of standard deviations for correlated random effects in the
new mixed logit model that takes the correlation into account.

In order to illustrate the Cholesky decomposition method for a three-
dimensional vector β3 of correlated random coefficients, we derive a lower
triangular matrix L as

L =

s11 0 0
s21 s22 0
s31 s32 s33

 (5.1)

The covariance matrix on table 5.12 has the form

Ω = LL′ =

 s2
11 s11s12 s11s13

s11s21 s2
21 + s2

22 s21s13 + s22s23
s11s31 s21s31 + s22s32 s2

31 + s2
32 + s2

33

 =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3


(5.2)
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Table 5.14: Standard deviations for the variances and covariances of the corre-
lated random effects

Estimation standard deviation "z-value" "Pr(>z)"
var(βSeafood Price)-σ2

1 0.0076 0.0021 3.6973 2e-04
var(βProd. Method)-σ2

2 0.3584 0.2154 1.6636 0.0962
var(βSeafood Origin)-σ2

3 0.7729 0.2752 2.808 0.005
cov(Price:Method)-σ12 0.027 0.0107 2.528 0.0115
cov(Price:Origin)-σ13 -0.0095 0.0103 -0.9263 0.3543
cov(Method:Origin)-σ23 -0.1522 0.122 -1.248 0.212

Table 5.15: Mean and variance of correlated random coefficients in mixed logit
model that accounts for correlation

Random coefficients Mean - bk Standard deviation-σk
βSeafood Price -0.129 0.087
βProd. Method 0.540 0.599
βSeafood Origin -1.033 0.879

Table 5.16: Comparison of matching probabilities in mixed logit models

Fish Alternatives Sample frequencies Not account
for correlation

Correlated
random effect

1 0.1417 0.1417 0.142
2 0.1518 0.1528 0.1529
3 0.1214 0.1223 0.1225
4 0.0917 0.0909 0.091
5 0.0744 0.0744 0.0748
6 0.0565 0.0566 0.0564
7 0.1185 0.1167 0.1167
8 0.1071 0.1072 0.1068
9 0.0476 0.0483 0.0482
Opt-out choice 0.0893 0.0891 0.0886

Table 5.17: Estimated probabilities for the first 10 choice sets – The best model

Salmon Fish_2 Fish_3 Pangasius Monkfish Tuna Oyster Mussels
Languostine/

Crab
Opt-out

0.298 0.169 0.097 0.05 0.089 0.016 0.043 0.141 0.006 0.09
0.081 0.159 0.062 0.034 0.037 0.053 0.06 0.338 0.067 0.109
0.255 0.189 0.12 0.062 0.086 0.018 0.047 0.14 0.006 0.078
0.065 0.176 0.075 0.041 0.036 0.056 0.066 0.331 0.063 0.091
0.301 0.169 0.098 0.049 0.09 0.016 0.043 0.143 0.006 0.085
0.082 0.159 0.062 0.034 0.037 0.055 0.061 0.337 0.067 0.107
0.305 0.169 0.094 0.049 0.089 0.015 0.042 0.139 0.006 0.092
0.079 0.159 0.062 0.033 0.038 0.053 0.06 0.338 0.067 0.111
0.255 0.192 0.119 0.062 0.087 0.017 0.046 0.139 0.006 0.077
0.066 0.177 0.073 0.041 0.035 0.058 0.065 0.33 0.064 0.091
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5.5 Implication for the choice modelling of seafood
preference

After considering three criteria, AIC, matching probabilities, and tests for
correlated random coefficients, we decide that the mixed logit model with
correlated random coefficients is the best model so far. We have used this model
to report choice probabilities derived from 1680 choice sets. The results for the
first 10 choice sets are shown on table 5.17. In addition, we also compare the
matching probabilities between two types of mixed logit models (correlated and
uncorrelated random effects) on table 5.16.

Though the analysis of our best model, we come to the conclusion that
correlation between random coefficients in mixed logit models is a serious
problem to which researchers need to pay attention. In many studies instead,
the modelling of consumer preferences often neglect the correlated random
coefficients when researchers interpret marginal effects, willingness to pay, or
marginal rates of substitution. This has an immediate consequence because these
indicators for consumer preferences are not precisely described. In particular,
the estimation of these indicators rely on correlated random coefficients, whose
mean and standard deviations are not efficiently estimated. Taking the seafood
study as an example, the calculation of willingness to pay relies on a correct
estimation of two coefficients, which are the coefficient of price and the coefficient
of one of the seafood attributes. If we did not take into account correlated
random coefficients, and did not derive a covariance matrix for the calculation of
standard deviations of these (alternative specific) random coefficients, willingness
to pay would be misspecified.

The modelling of food choice using mixed logit models, in addition to the
preference heterogeneity problem, needs to account for a possible correlation
among random coefficients. And one of the proper ways to do this, as we have
pointed out, is to test for the correlation. If there is, indeed, any dependence
among random coefficients, we use Cholesky decomposition method to derive a
covariance matrix. It is not adequate if we only assume a distribution for the
random coefficients and report estimated parameters, i.e. mean and variances,
for the assumed distribution. In sum, the correlated random coefficients need a
covariance matrix so that we can caculate precisely their mean and standard
deviations.

In addition to the conclusion about the best discrete choice model for
describing the seafood data mentioned above, we would like to mention another
finding in our empirical analysis of seafood choice. Estimation results of the
model on table 5.7 shows significant fixed effect for individual specific variable
’Age’, which is different from the seafood preference study of Nguyen et. al.
(2015). Using the same data, researchers in this study estimated a latent class
model and found significant effects for ’Income’ and ’Education level’. Given
the bias in survey questionnaire with regards to income (Moore 2000), which
are difficult to collect and rarely disclosed precisely by survey participants, our
finding suggests that participants’ age can be obtained instead of income or
other sensitive information. Nowadays, it is not a big challenge to have access
to information on consumers’ age. Based on the knowledge of utility differences
and consumer preferences of different age groups, seafood producers can target
the market for different customer groups. The companies can then improve
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their business based on effective pricing strategies for consumers in different
age groups.
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CHAPTER 6

Discussion and future research of
seafood markets

In this thesis, we have looked at different discrete choice models and applied them
in the choice modelling of seafood preferences, using real data from an online
survey of seafood consumption in France. We have discussed ways of estimating
choice models that can explain well consumer preference of seafood and how to
overcome the models’ limitation in dealing with preference heterogeneity as well
as correlation among unobserved error terms. We have specifically examined
the i.i.d. assumption and the IIA property and considered in which ways the
models can predict correctly choice probabilities of different product alternatives.
As such, the models are useful in unveiling the consumer preference and in
explaining well choice behavior in market research for seafood.

Our main goal for this thesis, as stated in the introduction, is to describe and
compare different discrete choice models. In order to find the best model that
has powerful predictive power and at the same time avoid measurement errors in
seafood choice analysis, we estimate three discrete choice models: multinomial
logit, nested logit and mixed logit. In the seafood dataset, we have a choice
setting in which a survey participant makes decisions over seafood alternatives
in several choice situations. Thus, in addition to preference heterogeneity
among individuals and taste variation among seafood alternatives as well as
their attributes, we have to take into account correlation over choice situations.
Modelling problems can arise due to the fact that choices are made by the same
decision maker over many choice situations and therefore their probabilities are
dependent upon each other.

We began the data analysis with estimating a standard multinomial logit
model, assuming unobserved factors of utility are independently and identically
distributed. This is a good model in terms of matching average choice probabil-
ities. It shows that the estimated choice probabilities match well with shares of
consumers choosing each seafood alternative. The model, however, does not
allow random taste variation, as we have pointed out in the theory discussion.
In addition, it cannot handle the dependence in choice probabilities due to
similar individual specific variables. These demographic characteristics describe
the same decision maker and thus are invariant over different choice sets.

With an attempt to address taste variation among seafood alternatives, we
estimated a nested logit model. To the best of our knowledge, few studies in
seafood choice have exploited the nested logit model. Therefore, we attempted
to do so and hoped to solve part of the preference heterogeneity by directing the
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dependence between alternatives into dependence between nests. It means that
choice probabilities can be dependent on attributes of alternatives in different
nests but this dependence is resolved for alternatives within a nest. In sum,
the unobserved factors of utility in different nests can be correlated, but not
within a nest. With this logic in mind, we estimated a two–level nested logit
model, which shows some advance over multinomial logit. The unobserved
factor of utility is, indeed, uncorrelated within each nest in this model. However,
a test for our nested logit model with two nests does not differ it much from
multinomial logit.

For the purpose of handling dependence across alternatives and individuals,
we estimated a mixed logit model, first with the uncorrelated random effects.
The model confirms the existence of preference heterogeneity problem and we
need models with random effects to explain choice behavior that varies among
individuals in a population. Due to this existence, the mixed logit model was
estimated with a specific hope to produce more accurate probability prediction
for seafood alternatives when there are choice dependent effects. Nevertheless, it
is difficult to ignore a possible correlation among unobserved factors of utility in
our mixed logit model. By testing for the correlation, we found that the random
effects are in fact correlated. Even after taking into account the preference
heterogeneity problem, we still have the dependency among random effects.

By acknowledging the inevitable correlation, we estimate a new mixed logit
model with correlated random effects. In this model, standard deviation of the
random coefficients can not be estimated directly. The Cholesky decomposition
and method of deriving an asymptotic covariance matrix were selected to
calculate precisely the standard deviations of the random coefficients. In
believing that the mixed logit model with correlated random effects is the best
one we could find to analyze the seafood data, we calculate choice probabilities
for different seafood alternatives. We judge the adequacy of our solution based
on its ability to produce dynamic prediction, measured by matching average
probabilities with the shares of consumers choosing each seafood alternative. The
model works well for the seafood data compared to standard multinomial logit
and nested logit. Furthermore, mixed logit model, given the correlated random
effects, is considered as a solution to the problem of preference heterogeneity in
a panel data setting. Thus, we believe that this model is the best discrete choice
method in describing seafood preferences as well as choice behaviors in seafood
survey and choice experiment. Last but not least, levels of willingness to pay in
mixed logit models with a panel data setting should be interpreted with caution.
Researchers should first adopt a routine of testing for correlation among random
coefficients. If these random coefficients are correlated, researcher should
explicitly include an asymptotic covariance matrix in estimation results of the
mixed logit models. This technique will definitely help to estimate efficiently
the mean and standard deviation of the correlated random effects, describe
precisely levels of willingness to pay, and therefore, improve the modelling of
food choices.

For further work, we wish to assess generalized multinomial logit and logit
mixed logit models empirically. These are recent developed models for improving
multinomial logit and mixed logit models. Moreover, as Hensher and Greene
(2003) point out the complexity of individual specific random effects, it may
be challenging but interesting to estimate these random effects for individual
specific variables in food choice models. Estimation results of our best model
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show that participants’ age is a significant variable indicating utility differences
between seafood alternatives. Seafood producers can target their customers by
this knowledge of utility differences and willingness to pay levels of different
consumer groups in the population. Choice modelling should also takes into
account preference heterogeneity that is dependent on consumer demographic
characteristics, such as age. Other individual specific variables, for instance,
income and education level, also signify random taste variation for different
individual groups in many choice studies. Therefore, it will be interesting to
see how the random effects of these individual specific variables, in addition
to the random effects of alternative specific variables, can address preference
heterogeneity in seafood choices as a whole.
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