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The front page depicts a section of the root system of the exceptional
Lie group Eg, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842-1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.



Abstract

We examine some of the symmetries of the Klein quartic curve by describing
the fixed points of the subgroups of its automorphism group, and some orbits
of fixed points on the quartic curve and on the curves of the covariants.
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CHAPTER 1

Introduction

The aim of this thesis is to examine some of the symmetries of the Klein quartic
curve by describing the fixed points of the subgroups of its automorphism group,
and some orbits of fixed points on the quartic curve and on the curves of the
covariants.

In chapter 2, we define the Klein quartic invariant and its covariants.

In chapter 3, we describe generators and cyclic subgroups of the automorphism
group of the Klein quartic curve, specifically the isomorphic groups the projective
special linear group PSL(2,7) and the general linear group GL(3,2).

Next, in chapter 4, we examine the representation of the automorphism group
in GL(3,C) and the fixed points of its subgroups.

Finally, in chapter 5, by way of examination of some fixed points on the curve
of an invariant of degree 21, we show that specific products of the fixed lines of
groups of order 2 return an integral factoring of the degree-21 invariant.



CHAPTER 2

The Klein Quartic Curve

With homogeneous coordinates [z : y : z] on P?(C), we define the Klein quartic
invariant:

Definition 2.0.1. The Klein quartic invariant: K4 := 23y + y32 + 23x.

The zero set of this invariant is the Klein quartic curve. It was first de-
scribed by Klein in [K1e99], and is a compact Riemann surface of genus 3 with
an automorphism group of size 168.

Klein also described three covariants to the quartic: a sextic invariant, a
degree-14 invariant and a degree-21 invariant.

Definition 2.0.2. The sextic invariant: K6 := 5x%y?2% — zy® — y2° — 22°

Definition 2.0.3. The degree-14 invariant:

% f o’ f 2’f  og
0z2 Oxdy  Oxdz Ox
9% f 9%f 8%f 9o
Oyox oy? oydz Oy

1
Kld=5 10 o2p o5 o
920x 020y 022 0z
99 g 99
ox oy 0z

= oM 4yt 21 =3 (et Yz + 2%yt 4wyt 2?) — 250(2%y2t + ayt 2 + aty¥z2)
+375(z8y 2% + 2ty?28 + 2%yt + 18(aTyT + 2727 +y72T)

+126(25y325 + 239°20 + 259523)



Note: The term % is not unique, but yields an integral polynomial.

Definition 2.0.4. The degree-21 invariant:

9f 99 0oh

ox ox ox

1 |9f b9 0oh
K21:=3; |3y @y oy
of 99 Oh

0z 0z 0z

— 22 g2 422 T(218y2 1 22y218 4 2y18,2)
+217(z 0yt + zy?2'0 + 2ty102) — 308(x 0yt 2? + 2ty?2 15 + 2?ylo2t)
CBT(eMyT 4 2T 4y M2T) - 280(aM42T 4 T2 4 2Tyl

4 4018(213y325 + 23yP 218 1 aPy1323) 4 637(212y02 4 1by3212 4 2By1220)
+1638(x M%7 + 29921 + 2y'129) — 6279(x1 1228 + 22yB1 4 aByll2)
+ 7007(22095 26 + 2590210 4 26¢1025) — 10010(22y82* + 28y*2% + a4y%28)

+ 1029627y " 27

Note: The term ﬁ is not unique, but yields an integral polynomial.



CHAPTER 3

The automorphism group

In this chapter we study some aspects of two representations of the automorph-
ism group of the Klein quartic curve; PSL(2,7) and GL(3,2).

3.1 Generators of PSL(2,7)

The projective special linear group PSL(2,7) consists of the quotient group
of all 2x2 matrices with unit determinant over the finite field of 7 elements,
identifying the identity matrix I and -I. It is well known that PSL(2,7) has 168
elements. This group is generated by the matrices S’, T’ and R’

, (11
s=(p 1)
, (40
= (o 9)
;. (0 6
v (] 9)

By calculation we establish the following proposition:

Proposition 3.1.1. /" =T"® = R? = I.

3.2 Cyclic subgroups of PSL(2,7)

The cyclic subgroups of PSL(2,7) are as follows: 28 cyclic subgroups of order 3,
21 cyclic subgroups of order 4, each with a further cyclic subgroup of order 2,
and 8 cyclic subgroups of order 7. These cyclic subgroups with a generator are
listed in the tables below.



3.2. Cyclic subgroups of PSL(2,7)

Table 3.1: Cyclic subgroups of order 7 in PSL(2,7) with a generator

Group Generator
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3.2. Cyclic subgroups of PSL(2,7)

Table 3.2: Cyclic subgroups of order 3 in PSL(2,7) with a generator

Group Generator Group Generator Group Generator

) 30 ) 3 5 , 3 3
SO G I T I I )

oo Gy)om (3 om0
N () I S (R B T )
B (63 m (s = (o)
B () om (3o (3
B () m (2 o= (0)
T ) B G R O
O (B I O
o () om (3 o ()
o (1)




3.3. Generators of GL(3,2)

Table 3.3: Cyclic subgroups of order 4 in PSL(2,7) with a generator

Group Generator Name Generator Name Generator

0 2 3 4 3 3
a@ Gy o« Go s ()

o () e (D) a (Y
a0 e () e ()
a (9w () e ()
o () a () a (Y
W () e () e ()
o () e () e (9

The cyclic subgroups of order 2 are generated by the generators of order 4
squared. We notice that the square of the generator of Cf equals R'.

3.3 Generators of GL(3,2)

The general linear group GL(3,2) is the set of all invertible 3x3 matrices under
multiplication over the finite field of 2 elements. GL(3,2) is isomorphic to
PSL(2,7), and hence has the same structure when it comes to cyclic subgroups.
The corresponding generators are S”, T” and R”:

—
o




3.4. Cyclic subgroups of GL(3,2)

3.4 Cyclic subgroups of GL(3,2)

The cyclic subgroups with a generator are listed in the tables below.

Table 3.4: Cyclic subgroups of order 7 in PSL(3,2) with a generator

Group  Generator
0 0 1
AY 1 01
0 1 0
01 0
AY 0 0 1
1 10
1 1 1
AY 1 10
100
1 10
Al 1 01
11 1
0 0 1
AY 1 00
1 10
0 1 1
AY 100
01 0
11 1
Al 100
1 0 1
1 1 1
Af 0 1 1
110




3.4. Cyclic subgroups of GL(3,2)

Table 3.5: Cyclic subgroups of order 3 in PSL(3,2) with a generator

Generator  Group  Generator  Group  Generator
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3.4. Cyclic subgroups of GL(3,2)

Table 3.6: Cyclic subgroups of order 4 in PSL(3,2) with a generator

Group  Generator  Group  Generator  Group  Generator

0 0 1 010 1 0 1

cy 1 1 1 cl 0 0 1 cy 1 00
010 1 1 1 110

0 0 1 1 1 1 1 1 0

cy 1 01 ct 11 Ccy 010
01 1 1 0 1 1 0 1

1 0 1 0 1 1 1 0

cy 01 1 cy 11 1 cy 110
1 1 1 1 1 0 1

0 0 1 1 0 1 0 1 1

C1o 1 00 cYy 11 crh 010
1 1 1 0 0 1 1 0 0

1 00 0 0 1 1 0 1

Ctly 1 1 1 cyy 1 10 Cs 0 0 1
1 0 1 1 0 0 010

1 00 010 1 10

Cs 0 0 1 1 1 0 1 Cils 0 1 1
1 10 0 0 1 0 0 1

010 0 1 1 1 1 1

CTo 1 0 0 Ch 0 0 1 cly 010
1 1 1 0 1 0 1 1

Again, a generator from the table
cyclic subgroup of order 2.

above squared yields a generator of a

10



CHAPTER 4

Representation in GL(3,C)

4.1 Generators and subgroups

Following [E1k99, p. 54], PSL(2,7) has a faithful 3-dimensional representation
in GL(3,C), the set of all invertible 3x3 matrices over the field of complex
numbers, generated by the three matrices S, T and R:

¢t 00
S=[0 ¢ o0
0 0 ¢

(=5 - -0
Ri=a|C=¢ =8 (¢
S A

C = 627ri/7
,_ 1

In this representation, the generating matrices S, T and R correspond to the
generating matrices S’, T" and R’ of PSL(2,7) respectively. We name the

subgroup in GL(3,C) generated by S,T,R G. It is isomorphic to PSL(2,7) and
GL(3,2).

11



4.2. Conjugate groups of order 7

We want to examine the nontrivial proper subgroups of G in order to establish
if they have fixed points in common, whether the fixed points are on any of our
curves, and whether the fixed points constitute orbits. Following [Kle99], the
nontrivial proper subgroups of G are:

a) 8 conjugate elementary abelian groups of order 7

b) 28 conjugate cyclic groups of order 3

¢) 21 conjugate cyclic groups of order 4

d) 21 conjugate cyclic groups of order 2

e) two classes of 7 conjugate dihedral abelian Klein 4-groups of order 4
f) 28 dihedral nonabelian groups of order 6

g) 21 dihedral nonabelian groups of order 8

h) 8 nonabelian groups of order 21

i) two classes of 7 nonabelian conjugates of
the symmetric group of degree 4

j) two classes of 7 nonabelian conjugates of
the alternating group of degree 4

When seeing points in CP? as one-dimensional subspaces of a three-dimensional
space, a non-zero eigenvector represents a fixed point. [MAT21] has been a
useful aid in finding the fixed points.

4.2 Conjugate groups of order 7

The subgroups of order 7 of GG, with generators and fixed points, are as follows:

12



4.2. Conjugate groups of order 7

Table 4.1: Conjugate subgroups of order 7 of G with a generator and fixed

points
Name Generator Fixed point 1 Fixed point 2 Fixed point 3
1 0 0
Al S /UALl = O UA1‘2 = 1 UA1,3 = O
0 0 1
[ ¢ [ [
Asy SORSS VA,, = 5 (2 VAp, = 5 —¢ VAy, = ¢ -t
¢ —¢t | ¢° ¢ ¢®—¢
[ (¢ [ (-1 [ ¢ ¢
As RS5 Vs, = Q 5 —¢? VAg, = Q 1-¢2 VAg, = Q ¢
¢*=¢ | | P =¢? | =<
S [ ¢ ¢ [ ¢° - ¢
Ay SRS* va, =a| = va, =a| (—¢ Va,=a| °-1
¢ | ¢ ¢ 1-¢2
[ 1-¢? [ ¢ —¢2 5 — 2
As S*RS? VAs, = & <5 - C2 VAo = & <3 - C5 VA5 s = @ CQ - §3
| ¢°-1 NSNS | (¢
B <5 -1 5 4-6 5 C2
AG S2RS3 Vag, =« C5 _ C2 Vag, = 2 _ C4 Vag, = @ C4 _ /5
1-¢ | ¢° ¢ | ¢t ¢
ESESl 1-¢ [ ¢ -¢
A S5R VA, = Q (5 —¢? VAg, = Q -1 Vg, = Q 5 ¢S
| ¢t =¢P | ¢°=¢? ¢ =¢t
S [ ¢t [ ¢°-¢?
Ag S*RS Vag, =a | ¢ —¢? VAg, = ¢t — ¢ VA, = Q 1-¢
_CB—CG_ _C5_<2 _45_1
To show that A1 — A8 are conjugate, consider the automorphism i, : G — G

where i4(z) = grg~" for all zeG. Let © = S, a generator of Al. Let g = RS°RS,

with inverse ¢! = S°RSR.

Then i,(S) = RS RSSS°RSR = RS°RSRSR = RSPSRSRSR = RS®(SR)3.

Now, (SR) generates a (cyclic) group of order 3, the group B9 in table
4.3 below. Hence (SR)®> = 1 and i,4(S) = RS®. RS® is an element of order

13




4.2. Conjugate groups of order 7

7 and generates A7, so iy[Al] = A7. Furthermore, by conjugating RS® by
h = S, with inverse h=! = S%, we get SRS*, which generates A4. Repeatedly
conjugating by A = S we find that all the elements of order 7 are covered, until
conjugation of S9RS® gets us back to RS®. This shows that all the groups of
order 7 are conjugate, hence they are all isomorphic to each other.

We examine whether the fixed points in table 4.1 satisfy the Klein quartic
equation, and consider v4,, as an example.

Let 2 = (¢ - (), y= oz(é5 — (%) and z = a(C® - ¢Y).
We substitute these values into f, and calculate, recalling that ¢7 = (e>7/7)7 =
1.

f=z3y+y32+ 252
=a*((CC = O} =)+ (P = CPC =)+ (C = =Q)

= a((2¢° + ¢° = 3¢* = 3¢% + (7 +2()
+ (=3¢ +2C° + ¢+ B +2¢2—30) + (¢ = 3¢5 +2¢ +2¢3 - 3¢2+ Q)

=0
Proceeding in the same manner for all the fixed points, we get a general result.

x
Given va, ; = | vy |, we find that:
z

Proposition 4.2.1. All the fized points of the groups of order 7 are on the Klein
quartic curve K4 = x3y + y32 4+ 232 = 0.

We find the following relations between these fixed points and the group
generators:

14



4.2. Conjugate groups of order 7

Table 4.2: Relations between the fixed points of the subgroups of order 7 of G
and the group generators

VA; ; R'UAM S'UAM T'UAM
VA1 VAs, VA1 VA »
VA1, UVAss VA » VA5
VA3 VA, VAy 5 VA4
VAs, VA, VAz VAs 5
VAzo VA VAz,2 VAs 3
VAs3 VA, VA3 VAs
VA1 VA7, VAgq VAy >
VAz o VA7 VAy > VAy s
VAgs VArg VAu s VA,
VAy1  VAge VAg,1 VAs 2
VAso VAgs VAg,2 VAs 3
VAs3  VAgh VAg,3 VAs
VAs1  UVAsgs VAs 1 VAs -
VAs o VAs, VAs > VAs 5
VAs3  VAg, VAg 3 VAs
VAg,1 VAus VA5, VA7 5
VAgo VAsy VAs o VA7 5
VAgs VAap» VAs 3 VA7,
VA71  UVAs, VAs VAs >
VA7, VA, VAs o VAg 3
VA73 VA VAs 3 VAg
VAg, VA5, VAz, VAg,2
VAg o UVAss VA7 » VAg 3
VAgs UVAs: VA7 5 VAg,1

> s

Since the group generators R, S, T can map all the fixed points to every
other fixed point in the same set, and only to these, we conclude:

Proposition 4.2.2. The 2/ fized points of the groups of order 7 form an orbit.

Klein shows in [Kle99] that these fixed points are found where the zero set
of the sextic invariant K6 = xy® + y2° + za® — 52%y?2? intersects the Klein
quartic curve. By calculation we conclude that none of the points are in the
zero sets of K14 or K21.

Next we examine whether a tangent to the Klein quartic curve through a fixed
point of a group of order 7 intersects the quartic curve somewhere else. In
general we know that such a tangent must satisfy

%(a,b, c)(x—a)+ %—I?{f(a,b, c)(y—b)+ 6£4(a, b,c)(z —¢)

15



4.2. Conjugate groups of order 7

= (3a?b+ ) (x — a) + (3b?c + a®)(y — b) + (3c2a + b*) (2 — ¢) = 0,
where (a,b,c) is the fixed point.

We examine vy, , and set (a,b,c) = (1,0,0).
The equation above yields z = 0, and inserting this into K4, we get z3y = 0.

0
y = 0 gives us the point we started with, while x = 0 gives us va, , = | 0
1

Here va,, is a zero of multiplicity 3, which implies that is a simple in-
flection point. Similarly, all the tangents to K4 through a point of the orbit of
the fixed points of the groups of order 7 passes through another point of the
orbit, which is a simple inflection point. According to [Mir95, p. 241], a smooth
algebraic curve of degree d has exactly 3d(d — 2) inflection points (assuming
they are all simple). In our case, K4 has 24 inflection points.

Proposition 4.2.3. For every fixed point of a group of order 7, there is a
tangent to the Klein quartic curve through that point which intersects the curve
in another point, and only there. That point is also a fixed point of a group of
order 7. The fixed points of the groups of order 7 are all the inflection points of
the Klein quartic curve.

Proceeding in the same manner for the sextic curve K6, we get

G (a.b,o) (@ —a) + %P (a,b,c)(y — b) + % (a,bye)(z — ¢)

ox z
= (10ab?c? — b°)(z — a) + (10a?bc® — ) (y — b) + (10a?b*c — a®)(z — ¢) = 0.

Again we insert (a,b,c¢) = (1,0,0), which yields z = 0. Applying this to K6, we
get zy°® = 0.

0
We see that the tangent in question intersects the sextic curve in va, , = | 1
0

V4, , is a zero of multiplicity 5. Again by [Mir95, p. 241], K6 has 3d(d—2) = 72
inflection points, where an inflection point where the tangent meets the curve
at the point with multiplicity v is counted v — 2 times. Counting the 24 points
of the orbit of the fixed points of the groups of order 7 three times, we see that
these are all the inflection points of K6.

By the properties of symmetry we establish a propostion similar to the previous
one.

16



4.3. Conjugate groups of order 3

Proposition 4.2.4. For every fized point of a group of order 7, there is a tangent
to the sextic curve through that point which intersects the curve in another point,
and only there. That point is also a fized point of a group of order 7. The fized
points of the groups of order 7 are all the inflection points of the sextic curve
K6.

4.3 Conjugate groups of order 3

The subgroups of order 3, with generators, are as follows:

Table 4.3: Conjugate subgroups of order 3 of G with a generator

Group Generator Group Generator

Bl T B15 RS5RS?
B2 ST B16 RS®RS
B3 S2T B17 RS*RSS
B4 S3T B18 RS®RS®
B5 S4T B19 RS*RS?
B6 S5T B20 RSRT
B7 SéT B21 RSSRT
B8 RS B22 RS?RT
B9 SR B23 RS°RT

B10 RSRS? B24 RS3RT
B11 RS°RS*  B25 RS*RT
B12 RS?RS*  B26 SRTS
B13 RS°RS®  B27 S2RT?S?
B14 RS?RS®  B28 S3RS3

Conjugation by .S yields four sets of subgroups with seven subgroups each, such
that B; = S™[B;]S™" for B;, B; subgroups in the same set and neZ. These sets
are {B1 — B7}, {B8 — B11, B22, B23, B28}, {B12 — B15, B24, B25, B27} and
{B16 — B21, B26}.

Similarly, conjugation by T yields one set {B1} (since TTT~! = T) and
the nine sets {B2, B3, B5}, {B4, B6,B7}, {B8, B12, B19}, {B9, B13, B18},
{B10, B14, B17}, {B11, B15, B16}, {B20, B22, B25}, {B21, B23, B24} and
{B26, B27, B28}.

Finally, conjugation by R gives us four sets with one subgroup each:
{B1}, {B14}, {B15} and {B28}, and twelve sets of two subgroups
each: {B2,B24}, {B3, B21}, {B4, B22}, {B5, B23}, {B6, B20}, {B7, B25},
{B8, B9}, {B10, B17}, {B11, B16}, {B12, B18}, {B13, B19} and {B26, B27}.
This means that all the 28 subgroups are conjugate, i.e. there is some geG
such that B; = gB;g~' for any pair B;, B; of subgroups. For example
(RTS)[B1](RTS)~* = B20.

The groups all have the eigenvalues e>™/3, ¢*™/3 and 1. We designate the
fixed points on the Klein quartic curve as vp, ,, i=1,2,...,28, j=1,2. We have
used [MAT21] to find the fixed points, so the coordinates of the points are
approximations. For instance we get

17



4.3. Conjugate groups of order 3

0.2974 + 1.3025i
vp,, = | 0.6410 4 0.3086i
1

These values yield f = —1.2-107° — 2.1 - 10~%i. We claim that the point is on
the Klein quartic curve (f = 0) under the assumption that a more powerful
program would give us that result, and based on what is stated by Klein and
others about the fixed points. Under this assumption, we proceed. The fixed
points with the first two eigenvalues are on the Klein quartic curve K4, while
the fixed points with eigenvalue 1 are not. We calculate the effect of the group
generators on these fixed points, and get the following results:

Table 4.4: Relations between the fixed points on the Klein quartic curve of the
subgroups of order 3 of G and the group generators

’UBM R'UBM S'UBM TUBM
UB1 1 UBi » UB7 1 UB1 1
UBi » UB11 UB7 » UBi »
UBsy 1 UBaa 2 UB1 1 UBs 1
UBj 5 UBga,1 UBy 2 UBs 5
UBs,1 UB21,2 UBs,y UBs 1
UB3,2 UB21,1 UB3,2 UBs,2
UB4 1 UBss 2 UB; 1 UB7 1
UBy > UBaa 1 UBs » UB7 »
UBs 1 UBa3, 2 VB4 UBs 1
UBs » UBss,1 UBy 2 UBj 5
UBg,1 UB20,2 UBs 1 UBy4 1
UBg » UBso,1 UBs » UBy »
UB7 1 UBss,2 UBsg 1 UBg 1
UBz7,2 UBgs 1 UBg,2 UBg,2
UBs 1 UBg 1 UBg 1 UBi19,2
UBs,2 UBg 2 UBg,2 UB19,1
UBg 1 UBs 1 UBi11,2 UBi1s,1
UBg » UBs » UB11,1 UBi1s,2
UBi10,1 UB17,2 UBs 1 UB17,1
UBIO,2 UB17,1 UBS,2 UB17,2

UB11,1 UB16,2 UBa2,2 UB16,1
UB11,2 UB16,1 UB22,1 UB16,2
UB12,1 UBi1s,2 UB15,1 UBs »
UBi12,2 UBis,1 UBi15,2 UBs 1
UB131  UBig2 UBas 1 UBg 1
UB132  UBign UBgs.2 UBg,2
UB1a1 UB14,2 UBi3,1 UB10,1

UB14,2 UB141 UBi13,2 UBi10,2
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TUB

UBi15,1 UBi15,2 UBs7,2 UB11,1
UBi15,2 UBi15,1 UBa7,1 UBi11,2
UB16,1 UB11,2 UBi7,2 UB15,1
UB1s,2 UB11:1 UB17.1 UBis5.2
UB17,1 UBi10,2 UBso,1 UB1a,1
UBi17,2 UBi10,1 UBso,2 UB14,2
UB1g,1  UBia2 UBai 2 UB13,1
UBis,2 UB12,1 UB31 1 UBi13,2
UB19,1 UBy3,2 UB26,2 UBi2,1
UBi19,2 UB13,1 UBas,1 UBi12,2

UB;,; Rvp, ;  Svp, i

UBso,1 UBg » UBi1g,2 UBas,1
UBso2  UBga UBi19.1 UBgs,2
UBa1 1 UBs » UBi6,1 UBga,1
UB21,2 UBs,1 UB16,2 UB24,2
UBas 1 UBy » UBosg 2 UBao,1
UBgs 2 UB4 1 UBas,1 UBso,2
UBas,1 UBs » UBi10,2 UBs1 1
UB23,2 UBs,l UB10,1 Ule,2
UBoa 1 UBs,2 UB12,1 UBas,1
UBa4 2 UBs,y UB12,2 UB23,2
UBas,1 UB7 » UBs4,2 UBss 1
UBss,2 UB7 1 UBsa,1 UBss .2

UBss,1  UBar2 UBi1s .1 UBa7 1
UBgs,2  UBarn UBi1s.2 UBa7.2
UBay71  UBagg 2 UB141 UBas, 2
UBa7,2 UBag,1 UB14,2 UBas 1
UBss,1 UBss,2 UBas,1 UBsg,2
UBsg»  UBsg UBs3 2 UBss 1

By the same reasoning as in the previous proposition, we conclude:

Proposition 4.3.1. The groups of order 3 each have 3 fixed points, of which 2
are on the Klein quartic curve. The 56 fized points on the curve form an orbit.

The fixed points of this orbit are found where the degree-14 invariant K14
intersects the Klein quartic curve. They do not satisfy K6 = 0 or K21 = 0.
However, the fixed points of the groups of order 3 that are not on the Klein
quartic curve, satisfy K21 = 0, but not K6 =0 or K14 = 0.

We examine the lines between the two fixed points of the groups of order 3 that
are on K4.
For the 3-group B1 these are the fixed points
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4.3. Conjugate groups of order 3

1 1
VB, , = 62772/3 and VB, , = e47r7,/3
oAmi/3 o2mi/3

Parametrizing the line through them, we get
lBl = UBy, + k(UBl,z - vBl,l)

1
= | €2mi/3 4 f(edmi/3 — ¢2mif3)
AT/ | (23— eAmi/3)

We define:

Tig, =1,

Uiy, = e2mi/3 | (AT _ 2mi/3)

and 2, = e47r7,'/3 + k(eQﬂ'i/S _ e47r7i/3)'
1

The following holds for the line [, :

Tig, +Yip, T 2,

=1 4 e2m/3 4 (/3 — ¢27i/3) 4 dmi/3 4 J(e2m/3 — ¢tmi/3)
=14 e27'ri/3 4 e47'1'2'/3 =0.

The relation « + y + z = 0 defines lp,. Substituting z = —(a + y) into
K4 = 23y + y3z + 232, we find that [p, and K4 have common points where
lp,* := —(2% + 2y + y*)* = 0. This yields the result that the fixed points vp, ,
and vp, , are the only common points of /5, and K4. Both points are solutions
of Ip,* = 0 with multiplicity 2, implying that [p, is tangent to K4 at the two
points. By the properties of symmetry this must hold for all the similar lines
through fixed points of groups of order 3 that are on the Klein quartic curve.

We cite Bezout’s Theorem in order to introduce a further proposition.

Theorem 4.3.2. (Bezout’s Theorem) Let C and C' be two curves in P? without
common components, of degree d and d' respectively. Then the number of points
of CNC', counting intersection multiplicity, equals dd’.

By Bezout’s theorem, there are (at most) 56 intersection points of K4 and K14.
These are the 56 points of our orbit, yielding the 28 bitangents. Furthermore, it
is known from the theory of algebraic plane curves that a general quartic plane
curve has 28 bitangents, so these are all the bitangents of the Klein quartic
curve.

Proposition 4.3.3. The lines through the two fixed points of a group of order 3
that intersect the Klein quartic curve are bitangents of the curve, and these are
all the bitangents of the Klein quartic curve. No other points of the lines are on
the curve.
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4.4 Conjugate cyclic groups of order 4

The cyclic groups of order 4, with generators, are as follows:

Table 4.5: Conjugate cyclic subgroups of order 4 of G with a generator

Name Generator Name Generator Name Generator

C1 RTS C8 RS* Cl5  RS®RS?
C2 TSR 9 RSRS® Cl16  RS*RS?
C3 TS®R C10 RSRSS C17  RS*RS°
C4 SRT C11 S2RS? C18 RS°RS

Ch STRS C12 RS?RS3 C19 RS5RS*
C6 SiT?RS*  C13 RS?RSS C20 RS®RS
c7 RS? C14 RS3RS? C21 RS®RS?

To verify that the subgroups are conjugate, we can use the same procedure
as in section 4.3. We just leave as an example conjugation of C1 by the
generators of G. Repeated conjugation by R yields the subset {C'1,C2}. When
it comes to T we get the subset {C'1,C3,C8}. Lastly, repeated conjugation by
S produces the subset {C1,C4,C6,C14,C15,C16,C17}.

The groups all have the eigenvalues 4, —i and 1. None of the fixed points
satisfies K4 = 0, and they are thus not on the Klein quartic curve. We find
that the fixed points with eigenvalues i and —i are on the sextic curve.

—0.1274 + 0.55831
Let ve,, = | —0.344440.1659¢ | be the fixed point of C'1 with eigen-
' 0.7252
value i. Then K6 = 52%y?2% — xy® — y2° — 227
= 5(—0.1274 + 0.5583i)%(—0.3444 + 0.16594)(0.7252)?
— (—0.1274 + 0.5583i)(—0.3444 + 0.1659i)°
— (—0.3444 + 0.16594)(0.7252)°
—(0.7252)(—0.1274 4 0.5583i)°
=0.

None of the fixed points are on the degree-14 curve, but they are all on
the degree-21 curve.

In the following table we see the products of each generator with each fixed
point, where vc, | is the fixed point with eigenvalue i for C1, v¢, , the fixed
point with eigenvalue —i for C1, and similarly for the other subgroups.
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Table 4.6: Relations between the fixed points on the sextic curve of the cyclic
subgroups of order 4 of G and the group generators

UCi,j R'UCM S'UCM T'UCM
Ve 4 VCy VCy VCy 9
UC o VCy 5 VCy 5 Vs,
VCy 4y Vo 4 VCi2,1 Ve 5
V3,9 VCy 2 VCiz,2 Ve
VCs 4y VCy 2 UCs 5 UCs 2
VCs5,0 VCy VCsy VCy 1
VCy VCs; 5 VCis,1 Vo, 4
VCy 5 Vo5, VG52 VCy 5
VCs 1 VCs 1 UGy UGy
VCs5 5 UCs 5 VG, 5 VCi1 2

UVCs,1 VCyy 1 VCy7 1 VCs5 1
VC,2 VCyy,2 VCy7,2 VCs5 5

s

Clert UCs > V0,1 VCy,»
VCy 5 VCs 4 VCy0,2 VCy
VCs y VCy 5 VCs1 1 Ve 4y
UCs 2 Ve, VCyy 2 V0, o
UVCy 1 VCy3,2 Ve VCi6,1
UVCy o VCi3,1 VCy 5 VCi6,2
UCip,1  VCio,2 VCs 1 VCi7,1
VCio2  VCion UCs,2 UCi7,2
VCyy,y  VCen VCy 5 VG,
UCi12  VCs,2 VCy 4 VCg,2

VCi21  VCir2 UCis,1 VCio,1
VCis5  VCiz UCis,2 VCio,2

VCizn UGy VCio1 VCy 1
VCy3,2 VCy 4 VCyg,2 VCy 5
UCian VCig,2 VCg 2 VCig1
UCia2  VUCion VCg 1 VCig,2

UCi5,1  VCis,2 VCiy4,» VCis,1
VCy5,,  VUCis,1 VCi41 VCis,2
UCi6,1  VCis.2 UGy 2 UGz
VCy6,2 VCy6,1 Vo V03,2
UCi71  UCia2 VCig,2 VCis,1
VCi75  VCi2 UCi6,1 VCys,5
UCis,1  VCai,2 VCy3,2 V01,1
UCig2  VC21a UGz VCai 2
VCig,1 VCyy4 2 VCs VCs0,1
UChg,2 VCia,1 VCs3 9 VCs0,2
VCs,1  VCa0,2 VCi,2 VCi41
VUCs,2  VCa0,1 UCio,1 VCiy4,2
VC31,1  VCis,2 VCy1,1 VCys5,1
UCQI 2 IZ]ClS 1 Ucll 2 Ucls 2
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Again we see that the generators of G maps the fixed points to every other
fixed point in the set, and nowhere else. We conclude that the 42 fixed points
on the sextic curve form an orbit.

Proposition 4.4.1. The cyclic groups of order 4 each have 3 fixed points, of
which 2 are on the sextic curve. The 42 fized points on the curve form an orbit.

4.5 Conjugate groups of order 2
The generators of the order 2 groups are the squares of the generators in the
table above, but for completeness and since we have found some simplifactions,

we leave a table of generators:

Table 4.7: Conjugate subgroups of order 2 of G with a generator

Name Generator Name  Generator Name  Generator
D1 RS?’RS DS (RS%)? D15 (RS3RS*)?
D2 SRS D9 S3RS*RS D16 (RS4R53)2
D3 SSRS D10 S?RS3RS D17 (RS"‘RSE’)2

D4  RSSRS® DIl RT D18 S3RS*
D5 R D12 S?RS® D19 S5RS?
D6 TR D13 S*RS3 D20  SRS*RS?

D7  (RS®)? D14 (RS3RS?)? D21  SRS‘RS

Conjugation follows the pattern of the groups of order 4 in section 4.4. To
show this, let M be an element of G that generates a cyclic 4-group, and
conjugate M by an element g such that gMg~! = N. Then N = g~ Mg and
N? = g7 ' M2g. It follows that M? is an element that generates a 2-group and
that gM?¢g~! = N2.

The groups have the eigenvalue 1 with multiplicity 1 and the eigenvalue —1
with multiplicity 2. This means that any point on the line through the fixed
points with eigenvalue —1 is fixed; we have a fixed line. To show this, we let
vp,, and vp,, be the two fixed points of D2 with eigenvalue —1. Any point
on the line through them can be expressed as vp, , + k(vp,, — vp,, ), where
k € C is a constant. In this case we have: '

0.8919

vp,, = | —0.0919 — 0.4028i

| 0.1657 4 0.0798: |
[ —0.0475 — 0.2199; |
Up,, = | 0.1349 4 0.3638i

0.8938

The line:
UDy = UDy + k(ngyz - UD2,1)
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4.5. Conjugate groups of order 2

0.8919 —0.9394 — 0.2199¢
= | —0.0919 —0.4028: | +k | 0.2268 + 0.76667
0.1657 + 0.0798: 0.7281 — 0.0798¢

0.8919 — £(0.9394 4 0.2199)
= | —0.0919 — 0.4028i + k(0.2268 + 0.76667)
0.1657 4 0.0798i¢ + £(0.7281 — 0.07984)

We multiply vp, with Dy from the left:

Dyvp, =
—0.5910 0.1640 — 0.71857 —0.2955 + 0.1423:
0.1640 + 0.71857 0.3280 —0.3685 — 0.46212
—0.2955 — 0.14237 —0.3685 + 0.46212 —0.7370

0.8919 — £(0.9394 + 0.21997)

—0.0919 — 0.4028i + k(0.2268 + 0.76667)

0.1657 4 0.0798i + k(0.7281 — 0.07984)
—0.8919 + £(0.9394 + 0.2199i)

= | 0.0919 + 0.4027i — k(0.2268 + 0.76664)
—0.1657 — 0.0798i — k(0.7281 — 0.07984)
0.8919 — £(0.9394 + 0.2199)
= (=1) | —0.0919 — 0.4027i + k(0.2268 + 0.76664)
0.1657 + 0.0798i + k(0.7281 — 0.07984)

We get the expected eigenvalue of —1, and conclude that any point on the line
is a fixed point. Again we have assumed that the lack of accuracy is due to the
insufficient power of [MAT21].

None of the fixed points with eigenvalue 1 of the groups of order 2 are on the
quartic, sextic or degree-14 curves. However, they are all on the degree-21 curve.

Solving the Klein quartic equation with the parametrization of vp, above,
ie. m,,, = 08919 — k(0.9394 + 0.2199%), y,,, = —0.0919 — 0.4028 +
k(0.2268 + 0.76667) and z,,, = 0.1657 + 0.0798¢ + k(0.7281 — 0.0798i) in

:v;o’)D2 Yup, T yng Zyp, T z;‘f% Typ, = 0, [MAT21] gives us four distinct solution.

Proposition 4.5.1. The fized lines of the groups of order 2 intersect the Klein
quartic curve in four points.

[E1k99] shows that these 84 points is an orbit, and the intersection of the zero
sets of K4 and K21.
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4.6 Two classes of 7 Klein 4-groups

These groups consist of 3 matrices from 3 different groups of order 2, other then
the identity matrix. Following Klein’s exposition for the case of PSL(2,7), the
corresponding subgroups of G are:

E1:= D1,D2,D10

E2:=D1,D7,D19

E3:=D2,D8, D14

FE4:= D3, D4, D20

E5:= D3,D7,D17

E6 := D4, D8, D12

E7:= D5, D10, D15

E8 := D5, D16, D20

E9 := D6, D9, D19

E10:= D6, D12, D21

E11:= D9, D13, D16

E12:= D11, D13, D14

E13 := D11, D17, D18

E14 := D15, D18, D21

Each 2-group is in two of the above 4-groups, one from each class. For instance
ET7 and E8, both containing D5, must be from different classes.

Sorting the Klein 4-groups into the two classes, one class consists of F1, Eb5,
E6, E8, £9, F12 and E14, and the other class consists of the rest of the Klein
4-groups.

Conjugation of E1 by R gives us RDIR™! = D2, RD2R™' = D1 and
RD10R™~!' = D10, so RE1R~! = E1. Conjugation by T yields TD1T~! = D3,
TD2T~' = D7 and TD10T~!' = D17, which means that TE1T~!' = FE5.
Finally, conjugation by S results in SD1S~' = D4, SD2S~! = D12 and
SD10S~! = D8, yielding SE1S~! = E6. As we can see, E1, E5 and E6 belong
to the same class.

Associated to each 2-group there is a fixed point and a fixed line. In the
following, let P5 be the fixed point of D5 and L5 be the fixed line of D5, and
let the fixed points and lines of the other 2-groups be assigned in the same way.
The eigenvectors defining the fixed lines are those whose corresponding
eigenvalues equal —1. Now D10P5 = —P5 and D15P5 = —P5, implying
that P5 is a point both on L10 and L15. We check this by parametrizing the
lines.

The relevant eigenvectors of D10 are

0.9319 i [ 0.1617 + 0.1042¢
Upy,, = | —0.1097 +0.1376: | and vp,,, = 0.8211 ,
| —0.0706 + 0.30917 | | —0.4717 + 0.2575¢ |
and for D15 they are
0.3614 + 0.4532i ] [ —0.2329 + 0.00407 |
Upys, = | —0.1134 —0.4970i | and vp,,, = 0.8953
0.6357 | | —0.0963 — 0.3673i |
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4.6. Two classes of 7 Klein 4-groups

For convenience of calculation we divide the coordinates of each vector by the
third coordinate, yielding

0.9319 i [ —0.6545 — 2.86547 |
VD, = | —0.1097 +0.1376i | = | 0.5001 + 0.2407i |,
| —0.0706 + 0.30917 | i 1 |
0.1617 + 0.1042; | [ —0.1712 — 0.3144i |
VDo = 0.8211 = | —1.3411 —0.7321i |,
| —0.4717 + 0.2575¢ | i 1 |
0.3614 4 0.4532; ] [ 0.5685 + 0.7129:
Upys, = | —0.1134 —0.4970i | = | —0.1784 — 0.7818i |,
i 0.6357 | i 1 |
and
—0.2329 + 0.0040¢ 0.1454 — 0.5960i
UDyg, = 0.8953 = | —0.5980 + 2.2807i
—0.0963 — 0.3673i 1

Parametrizing the fixed lines of D10 and D15, we get:
L10 = leo,l =+ S(va,z - leO,l)

—0.6545 — 2.86541

= 0.5001 + 0.2407:
1

—0.1712 — 0.3144: —0.6545 — 2.86541

+s(| —1.3411 - 0.7321¢ | — 0.5001 + 0.2407 |)
1 1

and
L15 = UDs5,1 + t(/UDlsz - UD15,1)

0.5685 + 0.7129:
= | —0.1784 — 0.7818¢

1
0.1454 — 0.59601 0.5685 4+ 0.71297
+t(| —0.5980 +2.2807¢ | — | —0.1784 — 0.7818: |).
1 1
Tp
Let p= | y, | =L10N L15.
Zp

Then z, = —0.6545 — 2.8654i + s(—0.1712 — 0.3144i — (—0.6545 — 2.8654i))
= 0.5685 + 0.7129i + £(0.1454 — 0.5960i — (0.5685 + 0.7129i)),
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yp = 0.5001 + 0.2407¢ + s(—1.3411 — 0.7321¢ — (0.5001 + 0.24077))
= —0.1784 — 0.7818i + t(—0.5980 4 2.2807i — (—0.1784 — 0.78184)),
and finally z, = 1.

Cleaning up the expressions we have that

xp = —0.6545 — 2.8654¢ + 5(0.4833 + 2.55107)

= 0.5685 + 0.7129: + t(—0.4231 — 1.3089%)

and y, = 0.5001 + 0.24077 + s(—1.8412 — 0.97281)
= —0.1784 — 0.7818i + t(—0.4196 + 3.06251).

Solving the two equations z, and y, for ¢, we get that

4 — (0.6545-2.86541) —(0.5685+0.7120i) +5(0.4833+2.55100)
= —0.4231—1.3089:

_ (0.500140.24077)—(—0.1784—0.78184)+s(—1.8412—0.97287)
- —0.4196+3.06257 .

Solving this for s, yields

_ (—0.4231—1.30897)((0.500140.24074) — (—0.1784—0.7818)) — (—0.4196+3.06254) ((—0.6545—2.86544) — (0.5685-+0.71291))

S {0.4833+2.55104)(—0.4196+3.06257) —(—1.8412—0.97284) (—0.4231 —1.30897)

= 1.2206 — 0.51421.

1.2471 — 0.001¢

It follows that x, = 1.2471—-0.001%, y, = —2.2475 and p = —2.2475
1
Comparing this to
—0.4522 1.2471
P5 = 0.8149 = | —2.2474
—0.3626 1

and taking into account the inaccuracies introduced by the limitations of our
software, this seems to confirm that L10 N L15 = P5. Proceeding in the same
way for the other points and lines of E7, we find that L5 N L15 = P10 and
L5N L10 = P15.

Similarly for E8, L5 N L16 = P20, L5 N L20 = P16, and L16 N L20 = P5. The
results hold for both classes. We conclude that the fixed points of the 2-groups
are also fixed points of the dihedral abelian 4-groups they are part of. The
fixed points are the vertices of triangles where the sides are segments of the
fixed lines of the 2-groups, as illustrated in figure 4.1. We have seen before that
these fixed points are on the degree-21 curve.
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Figure 4.1: The fixed points of E7

P15

L10 L5

P5 P10
L15

Proposition 4.6.1. The fixed points of the dihedral abelian 4-groups are the
fized points of the 2-groups they consist of. There are three fized points for each
dihedral abelian 4-group. The fixed points are not on the Klein quartic curve,
the sextic curve or the degree-14 curve. They are on the degree-21 curve.

Since every 2-group is part of two Klein 4-groups, we know that every line is
part of two triangles like the one in figure 4.1. This means that every one of the
fixed lines of the 2-groups intersects four different fixed points on the degree-21
curve. For instance, since D1 is part of E1 and E2, the fixed points of the
other 2-groups in those Klein 4-groups must be on the fixed line L1 of D1. We
list which points are on which lines:

L1: P2, P7, P10, P19

L2: P1, P8, P10, P14

L3: P4, P7, P17, P20

L4: P3, P8, P12, P20

L5: P10, P15, P16, P20

L6: P9, P12, P19, P21

L7: P1, P3, P17, P19

L8: P2, P4, P12, P14

L9: P6, P13, P16, P19

L10: P1, P2, P5, P15

L11: P13, P14, P17, P18

L12: P4, P6, P8, P21

L13: P9, P11, P14, P16

L14: P2, P8, P11, P13

L15: P5, P10, P18, P21

L16: P5, P9, P13, P20

L17: P3, P7, P11, P18

L18: P11, P15, P17, P21

L19: P1, P6, P7, P9

L20: P3, P4, P5, P16

L21: P6, P12, P15, P18
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The other way around, every fixed point is on four different lines, for instance
the point P1is on L2, L7, L10 and L19.

4.7 Dihedral groups of order 6

These groups consist of the matrices of a group of order 3 together with three
matrices from three different groups of order 2:
F1:= B1,D5,D6,D11
F2:= B2,D3, D14, D21
F3:= B3, D8, D15, D19
F4:= B4,D4, D10, D13
F5:= B5,D1, D18, D20
F6:= B6,D7,D12, D16
F7:=B7,D2,D9, D17
F8:= B8, D8, D9, D17
F9:=B9,D7,D13, D21
F10 := B10, D10, D11, D12
F11 := B11, D11, D19, D20
F12:= B12, D3, D13, D15
F13:= B13,D2,D16, D18
F14 := B14, D5, D12, D17
F15 := B15, D5, D14, D19
F16 := B16, D6, D14, D20
F17 := B17,D6, D10, D17
F18 := B18, D4, D9, D15
F19 := B19, D1, D16, D21
F20 := B20, D8, D16, D17
F21:= B21,D7,D14, D15
F22:= B22,D3,D9, D10
F23 := B23, D2, D20, D21
F24 := B24, D4, D18, D19
F25:= B25, D1,D12, D13
F26 := B26, D1, D4, D11
F27:= B27,D2, D3, D6
F28 := B28, D5,D7, D8

All these subgroups are conjugate. Conjugation follows the same pattern as
the one described in section 4.3 for the groups of order 3. By this we mean
that conjugation of one of these dihedral groups by one of the generators of
G yields the dihedral group which contains the 3-group which is conjugate to
the 3-group in the first dihedral group by the same generator. In particular, to
follow the example in 4.3, (RT'S)[F1](RTS)~! = F20.

We examine F'1, consisting of B1, D5, D6 and D11. B1 has three fixed points;

47mi/3 27i/3

e e

vp,, = | e*/3 | and vp,, = | €*™/3 |, both on the Klein quartic curve,
1 1
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4.7. Dihedral groups of order 6

1
and vg, ; = | 1 | not on the curve.

1

1.2471
The fixed points of D5, D6 and D11 respectively are P5 = | —2.2474 |,
1
—1.8021 —0.4450
P6 = 0.8019 and P11 = | —0.5549
1 1

We see that the fixed points of the 2-groups are all distinct from each other and
from the fixed points of the 3-group. The only possibility for any fixed points
of F1 is if any of the fixed points of B1 is on all the fixed lines of the 2-groups.
We know that this means that multiplying a fixed point from the left with each
of the generating matrices of the 2-groups yields the negative of the fixed point.
Doing this, we get D5vp, , = Dbvg, , = D1lvg, , = v, , # —UB, ,,

.D5’UBL2 = D61}BL2 == Dll’UBL2 = UB1,1 75 _UB1,27

and finally Dbvg, , = Dbvp, , = D1lvp, , = —vp, ,.

We see that vp, , is on all three lines. However it is not on the Klein quartic
curve.

Let us check in another way if vp, , is on L5:

L5 = VD5, t+ k(vD5,2 - vDS,l)

[ —4.8499 —0.0686 — 0.2127: —4.8499
= | —2.2463 | + k(| 0.4069 —0.1181¢ — | —2.2463 |)
1 1 1

[ —4.8499 + k(4.7813 — 0.2127i)
= | —2.2463 + k(2.6532 — 0.11811)
1

Solving for the first coordinate:

—4.8499 + k(4.7813 — 0.2127i) = 1

— 1+44.8499 _ ;

Applying the result to the second coordinate:

—2.2463 + k(2.6532 — 0.11817)
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4.7. Dihedral groups of order 6

— —2.2463 + (1.2211 + 0.05434)(2.6532 — 0.11811)
= 0.9999 — 0.0001i.

Taking into account the inaccuracies, this also indicates that vp, , is on the
line.

In the same way, vp, , is a fixed point of F2 since D3vp,, = Dldvp,, =
D21vp, , = —vB, ,. v, , and vp, , are not on either of the quartic, sextic or
degree-14 curves, but they are both on the degree-21 curve. All the groups in
this category are in the same class, so we draw a general conclusion.

Proposition 4.7.1. The 28 dihedral nonabelian groups of order 6 each has one
fized point. The fixed points are not on the Klein quartic curve, the sextic curve
or the degree-14 curve. They are on the degree-21 curve.

In table 4.8 we see what happens when we multiply the generator of a subgroup
of F'1 with the fixed points of the subgroups B1, D1, D6 and D11. In the table
UDy, UDg OF Up,, is any fixed point of D5, D6 or D11 respectively, whether it
is an isolated fixed point or a point on a fixed line. The relation is the same.
The columns under each fixed point consists of the points the fixed points are

sent to by the action of the different subgroups of F'1, thus giving us the orbits
of F1 in the complex projective plane.

Table 4.8: Orbits of the fixed points of the subgroups of F'1

UB11 UBy » UBi 5 UDs UDg UDyy

B1 UB11 UBi2 UBys VUDyy VD5 UDs
D5 UBy2 UBy1 UBy3 UDs UDy, UDg
D6 UBi > UB11 UBi 3 UDyy UDg UDs

D11 UBy 2 UBi 1 UBy 3 UDg UDs UDqy

We see that F'1 has orbits of order 1, 2 and 3.
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4.8. Dihedral groups of order 8

4.8 Dihedral groups of order 8

To construct these, take a cyclic group of order 4 and add to it all the matrices
that appear together with its element of order 2 in the Klein 4-groups:
H1:=C1,D2,D7,D10, D19

H2:=C2,D1,D8,D10, D14

H3:=C3,D4,D7,D17, D20

H4:=C4,D3,D8, D12, D20

H5 := C5,D10, D15, D16, D20

H6 := C6, D9, D12, D19, D21

H7:=C7,D1,D3,D17,D19

H8:=(C8,D2,D4, D12, D14

HY9:=C9,D6,D13, D16, D19

H10 := C10, D1, D2, D5, D15

H11:=C11,D13,D14, D17, D18

H12 := C12, D4, D6, D8, D21

H13 :=C13,D9, D11, D14, D16

H14 := C14,D2, D8, D11, D13

H15 := C15, D5, D10, D18, D21

H16 := C16, D5, D9, D13, D20

H17:=C17,D3,D7,D11, D18

H18 := C18, D11, D15, D17, D21

H19 :=C19,D1,D6,D7,D9

H20 := C20,D3, D4, D5, D16

H21:=(C21,D6,D12, D15, D18

These subgroups are also all conjugate, and conjugation follows the pattern of
the cyclic 4-groups of section 4.4. For example, conjugation of C'1, D2, D7, D10
and D19 respectively by R, we get C2, D1, D8, D10 and D19. This means
that conjugation of H1 by R yields H2, just as conjugation of C'1 by R yields
C2. This pattern holds throughout.

We produce a table showing the orbits of the fixed points of the subgroups of
H1.

Table 4.9: Orbits of the fixed points of the subgroups of H1

VCy,, VUCi s VCyijs UD, VD UDio  VUDig
1 UGy UCio VCis VUDig UDiy UDy UDr
D2 we,, wve,, Ve,s VD,  UDyy  UDyy  UDyg
D7 VCy, VCii VCis  UDip VD, UD, UDig
D10 vc,, VCy, VCis UDy UDyy UDyy UD;

D19 we,, wve,, Ve,; VD VD, UD,  Uby
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4.9. Nonabelian groups of order 21

We see that H1 has orbits of order 1 and 2, and that vc, , is a fixed point for
H1. This is the fixed point of C1 that is not on the Klein quartic curve. It is
on the degree-21 curve however. Since all the groups in this category are of the
same class, we can draw a conclusion.

Proposition 4.8.1. The 21 dihedral nonabelian groups of order 8 each has one
fized point. The fixed points are not on the Klein quartic curve, the sextic curve
or the degree-14 curve. They are on the degree-21 curve.

4.9 Nonabelian groups of order 21

These subgroups consist of the matrices of a group of order 7 together with
14 matrices from the groups of order 3. Klein describes one such subgroup

. . . 1 k 2 k 3 k
in PSL(2,7) as consisting of the matrices (0 1), (0 4) and (0 5) for
k=0,1,..,6.

In PSL(2,7) these are the matrices of the subgroups Al’, B1', B2', B3/, B4,
BY, B6' and B7’, so for G we can define J1 := Al, B1, B2, B3, B4, B5, B6, B7
as one of these nonabelian groups.

As for conjugation, we have seen in section 4.2 that the 7-groups are conjugate.
Conjugation of A1 by RS®RS yields A8, and conjugation of the remaining
subgroups Bl — B7 of J1 by the same element, gives us B19, B24, B7, B12,
B16, B28 and B10 respectively. This is another nonabelian group of order
21, J8. That the same group properties hold for J8 can be seen considering
a relation AB = C for A,B,CeJ1. Conjugation of A, B and C by geG leads
to gAg tgBg—1 = gABg—1 = gCg—1. Starting from J8 and conjugating
repeatedly by S returns the remaining nonabelian groups of order 21, so all
these subgroups are conjugate.

We have seen in 4.2 that the fixed points of the subgroups of order 7 are on the
intersection of the quartic and sextic curves, inflection points on both curves.
In 4.3 we saw that two of the fixed points of the 3-groups are on the quartic
curve, but not on the sextic curve. The other fixed points are on the degree-21
curve, but not on any of the other curves we study. Since all of the fixed points
of the 7-groups are on the sextic curve, and none of the fixed points of the
3-groups are, we conclude:

Proposition 4.9.1. None of the 8 nonabelian groups of order 21 have any fized
points in common.

4.10 Two classes of 7 nonabelian conjugates of the
symmetric group of degree 4

We follow Kleins description of these subgroups in PSL(2,7). We start with a
Klein 4-group and add to it six matrices from three cyclic 4-groups whose second
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4.10. Two classes of 7 nonabelian conjugates of the symmetric group of
degree 4

iterates belong to the Klein 4-group. Then add three pairs of 2-groups that
commute with some 2-group in the Klein 4-group. Finally, add the compositions
of the matrices of the three pairs just mentioned, which yield four new pairs of
matrices from 3-groups. We look more closely at these compositions as described

by Klein. He starts with the Klein 4-group consisting of (é (1)>, <(1) _01>,

-2 -3 3 -2
. . 2 -3 3 2 -1 1 1 2
group in the Klein 4-group are (_3 _2), (2 _3>, (_2 1), (_1 _1),

(g :;}), and <_13 _33> According to Klein, compositions of these matrices,

( 3 _2), and (2 3 . The six 2-groups that commute with some 2-

other then compositions of matrices belonging to the same pair, yield eight
matrices from four different 3-groups. Compositions of matrices from the same
pair already belong to the Klein 4-group we started with. The other eight

tri in Klein’ 1 . -3 -1 -2 -1 2 0
matrices in Klein's example are given as { 2 o 3 b \1 —3)

3 0 0 2 -1 2 -1 3 and 0 -3
1 =2)7\3 1)\ 3 0)°\2 0)° 2 1)
There are in total 24 compositions to consider, and by performing them we get

every one of the eight matrices expected three times, except the last one.
In stead, we have that

G2 (D)
(2G5
(T D=0

There seems to be an error or a misprint in Klein’s paper.

Correcting that and considering the corresponding subgroups of G rather
than of PSL(2,7), we can define one of the subgroups in this section as
M8 := E8,C5,C16,C20, D3, D4, D9, D10, D13, D15, B4, B12, B18, B22.
From 4.6 we know that E8 := D5, D16, D20. Since every matrix of D5 is in
C5, every matrix of D16 is in C'16 and every matrix of D20 is in C20, we can
simplify and define

M8 := C5,C16,C20, D3, D4, D9, D10, D13, D15, B4, B12, B18, B22.

Conjugation of each of the subgroups making up M8 by S in the same order
as above, returns C2, C'1, C10, D5, D15, D7, D8, D19, D14, B2, B15, B21
and B28 respectively. The group containing these subgroups also contains
E1 = D1, D2, D10, so it is natural to designate it as M1. Repetitive conjugation
by S yields all the groups of the class, while the same procedure applied to a
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4.10. Two classes of 7 nonabelian conjugates of the symmetric group of
degree 4

group in the other class, for example M7 containing E7, gives us the groups of
the other class.

E8 has three fixed points, the ones with eigenvalue 1 for each of the 2-groups
D5, D16 and D20. These are

1.2471 —1.1233 + 1.4090:
P5=| —22474 |, P16 = | —0.1784 4 0.7817¢
1 1

0.0990 — 0.4339¢
and P20 = | 0.4999 — 0.2408¢
1
These points are fixed points for C'5, C'16 and C20 by the above.
Multiplication of the generating matrices of the other 2-groups and the 3-groups
in M8 respectively with the three fixed points, yields the following results:

Table 4.10: Orbits of the fixed points of E8
P5 P16 P20

D3 P16 P5 P20
D4 P16 P5 P20
D9 P20 P16 P5
D10 P5 P20 P16
D13 P20 P16 P5
D15 P5 P20 P16
B4 P20 P5 P16
B12 P20 P5 P16
B18 P16 P20 P5

B22 P16 P20 P5

We see that the three fixed points of E8 is an orbit.

We construct the group M7 from the other class. It consists of E7 =
D5, D10, D15 and then also of the cyclic 4-groups C5, C'10 and C'15. D5
commutes with D16 and D20, D10 commutes with D1 and D2, and D15
commutes with D18 and D21. These are also part of M7. Finally, compositions
of the last six 2-groups show that B5, B13, B19 and B23 belong to M7. By
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4.11. Two classes of 7 nonabelian conjugates of the alternating group of
degree 4

checking the products of the subgroups contained in M7 with the three fixed
points of E7, we find the same type of orbits as in the former case.

Proposition 4.10.1. None of the nonabelian conjugates of the symmetric group
of degree 4 have any fized points in common.

4.11 Two classes of 7 nonabelian conjugates of the
alternating group of degree 4

The alternating group of degree 4 consists of the even permutations of
the symmetric group of degree 4. The even permutations are the identity,
the 3-cycles and the double-transpositions. In our cases, this means
that the alternating group N8 of M8 consists of the elements of E8
(i.e. D5, D16 and D20), B4, B12, B18 and B22. Similarly, N7 :=
E7(D5, D10, D15), B5, B13, B19, B23. Conjugation follows the pattern of the
symmetric groups, in that conjugation by S yields all the alternating groups
of both classes. Checking back with the four bottom rows of table 4.10 we
establish that the fixed points of the Klein 4-groups form three-point orbits
under the alternating groups, and that the alternating groups do not have any
fixed points.

Proposition 4.11.1. None of the nonabelian conjugates of the alternating group
of degree j have any fized points in common.

4.12 Summary

Summing up what we know about the fixed points and orbits on the Klein
quartic curve:

Proposition 4.12.1. The 2/ fized points of the groups of order 7 are on the
curve. They constitute an orbit and is the intersection of the quartic and the
sextic curve.

2 fized points from each of the 28 groups of order 3 are on the curve. These 56
fized points constitute an orbit and is the intersection of the quartic and the
degree-14 curve.

The fized lines of the groups of order 2 intersect the quartic curve in four points
each. These 84 points form an orbit and is the intersection of the quartic and
degree-21 curve.
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CHAPTER 5

Factoring K21

5.1 Examination of some fixed points on K21

As we have seen, every 3-group has three fixed points, with one of these
satisfying K21=0, in total 28 points. Factoring with [MAT21] reveals that K21
can be factored into four factors over Z; one polynomial of degree 3, and three
polynomials of degree 6, which we define as

Ql:=x2> — 2%y — 2222 — 2xy? + 6ayz — 222 + 9> — y?2 — 2y2? + 23

Q2:=20 +52°y + 3252+ 112*y? + 162ty 2 + 924 22 + 1323y + 3623y % 2 + 3723y 22 +
132323 4+ 922y* + 3722y 2 + 552%y? 22 + 362%y23 + 11222* + 3zy® + 162y 2 +
36xy3 22 +372y? 22 +162y2* +522° +yS+5y° 2+ 11y 22 +13y3 23+ 9y 2 2% + 3y 25+ 26

Q3:=2% — 22%y + 3252 + 4aty? — Batyz + 22422 — 233 + 8x3y?z + 923y —
2323 4 222yt + 922132 — 229222 + 822y + 422t + 3wy’ — Srytz + SwyP2? +
99?23 — bayzt — 2w2° + 90 — 2%z + 4yt2? — 323 + 2y22% 4 3y2® + 26

Q4:=20 — 22%y — 4Oz + daty? + 22y + 92* 22 — 823y — 623y%2 + 223y —
82323 + 922yt + 22293 2 + 13229222 — 622y23 + 4?2t — day® + 22yt 2 — 62y 22 +
22y%23 + 2xyzt — 2w2° + 90 — 2%z + 4yte? — 8323 + 9y?et — 4y2® + 26

In order to find which factor(s) are zero for each point, we calculate every factor
with [MAT?21] for every fixed point. In each case we get a complex number.
Determining its distance from 0, we get the results in the following table. The
numbers in the table are the exponent of the result in standard form notation,
so for instance "—16" in the table means that the result is larger than or equal
to 10716 but smaller than 10715, b; designates the fixed point (on K21) of the
3-group B1, and so on.
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5.2. Linear factoring

Table 5.1: Distance from 0 as calculated by MATLAB
point Q1 Q2 Q3 Q4

b1 -16 1 0 -1
ba 0 e I )
bs 0 -5 -5 4
by 0 -5 -5 4
bs 0 -5 -5 4
bs 0 -5 -5 4
b7 0 -5 -5 D
bs 0 0 -8 A4
bg 0 0 -8 A4
bio -4 -8 0 0
b11 -4 -8 0 0

bi4 -4 -8 0 0
bis -4 -8 0 0
bie -4 -8 0 0
bi7 -4 -8 0 0
bis 0 0 -8 A4

b1g 0 0 -8 A4
bao 0 -4 -4 5
ba1 0 -4 -4 5
bao 0 -4 -4 5
bas 0 -4 -4 -5
baa 0 -4 -4 5
bas 0 -4 -4 5
bag -5 0 0 -9
b7 -5 0 0 -9
bag -5 0 0 -9

It is hard to tell which points are exactly zero for each factor. Assuming
that -4 or lower indicates a true zero, preliminarily we seem to have one point
(b1) on Ql, twelve points simultaneously on Q2, Q3 and Q4, six points on
Q1 and Q2, six points on Q3 and Q4, and lastly three points on both Q1 and Q4.

5.2 Linear factoring

To find the real symmetries we seem to need a complete factoring of K21 into
linear factors. From [Kle99, p. 304] and [Ad199, p. 265] we learn that K21 is a
product of the fixed lines of the 2-groups. The fixed lines have the eigenvalue
—1, so by multiplying each involution by the fixed points, we can tell that the
fixed point is on the line if the result of the multiplication is the negative of the
fixed point. We get the following allocation:

L1: bs, b1g, bas, bog
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5.2. Linear factoring

L2:
L3:
L4:
L5:
L6:
L7:
L8:
L9:

L10:
L11:
L12:
L13:
L14:
L15:
L16:
L17:
L18:
L19:
L20:
L21:

bz, b13, ba3, bay
b2, b1z, b2z, boy
by, big, baa, bag
b1, bia, bis, bog
b1, big, bi7, bar
be, by, ba1, bog
b3, bg, bao, basg
b7, bg, big, bao
by, big, b1z, bao
b1, bio, bi1, bos
be, b1o, b1, bas
by, by, b12, bas
ba, bis, big, b1
b3, b12, b1g, b2y
be, b13, b1g, bao
bz, bia, b1z, b
bs, bs, b1, bay
b3, b1y, bis, by
bs, b11, bie, o3
ba, by, b1g, ba3

There are four points on every line, and three lines through every point, as
follows:

bli

b222
b232

L5, L6, L11

: L3, L14, L21

. L8, L15, L19

: L4, L10, L13

: L1, L18, L20

: L7, L12, L16

: L2, L9, L17

: L8, L9, L18

. L7, L13, L21

. L10, L11, L12
: L11, L19, 120
: L3, L13, L15
: L2, L16, L18
. L5, L12, L17
. L5, L14, L19
: L6, L14, L20
. L6, L10, L17
: L4, L9, L15

. L1, L16, L21
. L8, L16, L17
. L7, L14, L15

L3, L9, L10
L2, 120, L21
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5.3. Factoring the degree-3 factor

b242 L4, L18, L19
b252 Ll, L12, L13
b262 Ll, L47 L11
b272 L2, L3, L6
6285 L5, L7, L8

5.3 Factoring the degree-3 factor

Looking back at table 5.1, we see that by is by far the point that comes closest
to zero for a specific factor, namely Q1. We hypothesize that this may be
because by is a zero for all the three fixed lines of L5, L6 and L11 simultaneously,
i.e that Q1 is a product of the three lines. To check this, we need to find the

L1 L2
equations of the lines. For any 2-group, let v1 = | y1 | andva = | y2 | be
2! 22
T 1 + k(ze — 1)
the fixed points with eigenvalue —1. Thenv:= | v | = | y1+k(y2—11) |,
z 21+ k(zg — 1)

with k£ € C a constant, is any point on the line.
Let M be the matrix with v, v, v respectively as column vectors. Then its

T Ty X1 wo x1+ k(ze —21)
determinant detM = |y1 y2 y| = |y1 y2  y1+k(y2 —y1)| = 0, which
21 29 % z1 2o z1+ k(za — 21)

means that (y120 —y221)x+ (221 —2122)y+ (X1y2 — x2y1 )2z = 0 is an expression
for the fixed line.
We utilize this to find the fixed line L5 of D5. The fixed points of D5 with

eigenvalue —1 are

0.8919 —0.0619 — 0.1918:
Ups, = 0.4131 and vp; , = 0.3670 — 0.10657 |,
—0.1839 0.9019

so L5 = (0.4131 - 0.9019 — (0.3670 — 0.1065¢)(—0.1839))x

+ ((—0.0619 — 0.19187)(—0.1839) — 0.8919 - 0.9019)y
+(0.8919(0.3670 — 0.10657) — (—0.0619 — 0.19187)0.4131)z

— (0.4401 — 0.01967)z 4 (—0.7930 + 0.0353¢)y + (0.3529 — 0.0158i)z
= 0.

In the same way we find that
L6 = (—0.8063 + 0.05337)x + (0.3589 — 0.02374)y + (0.4475 — 0.02967)z = 0 and
L11 = (—0.3622 4 0.0065¢)x + (—0.4517 + 0.00814)y + (0.8139 — 0.0147¢)z = 0.

We calculate the product of the fixed lines of our hypothesis:
L5-L6-L11

= (0.4401 — 0.0196¢)x + (—0.7930 4 0.0353i)y + (0.3529 — 0.0158i)z
- (—0.8063 + 0.0533i)x + (0.3589 — 0.0237%)y + (0.4475 — 0.0296¢) 2

- (—0.3622 + 0.0065%)x + (—0.4517 4+ 0.00814¢)y + (0.8139 — 0.0147i)z
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5.4. Equations for the fixed lines

= (0.1279 — 0.0165i)z> + (—0.1279 + 0.0165i)z%y + (—0.2558 + 0.03314)2>z
+ (—0.2558 4 0.0331i)zy? + (0.7674 — 0.0992i)zyz + (—0.1279 + 0.01667)x2>
+ (0.1279 — 0.0165i)y> + (—0.1279 + 0.0165i)y?z + (—0.2558 + 0.0331i)yz>
+(0.1279 — 0.0166i)z3

Multiplying our expression for Q1 by a factor of (0.1279 — 0.0165¢), the coeffi-
cient of 22 in the product above, we get:

= (0.1279 — 0.01657)2> + (—0.1279 + 0.0165i)z?y + (—0.2558 + 0.0330¢) %2

+ (—0.2558 + 0.03307)zy? + (0.7674 — 0.09907)zy2z + (—0.1279 + 0.01657 )z 22
+(0.1279 — 0.01654)y> + (—0.1279 + 0.0165i)y?z + (—0.2558 + 0.0330i)y 22
+(0.1279 — 0.01657) 23

Taking into account the compounded inaccuracies inherent in many consecutive
MATLAB calculations limited to four decimals, we conclude that Q1 is a
product of the three lines L5, L6 and L11.

5.4 Equations for the fixed lines

Following the same method, we derive all the 21 fixed lines.
They are:

L1:
L2:
L3:
L4: (-0.7210 + 0.0393i)x+(0.2137 + 0.23991)y-+(-0.1104 - 0.3852i)z=0

(-0.5481 + 0.2041i)x+(0.0811 - 0.2474i)y+(0.0428 + 0.32171)z=0
(
(
(
L5: (0.4401 - 0.0196i)x+(-0.7930 + 0.0353i)y-+(0.3529 - 0.01581)z=0
(
(
(
(

-0.0755 - 0.4311i)x+(-0.7875 - 0.0402i)y+(0.2045 + 0.2851i)z=0
-0.1218 + 0.28001)x+(-0.5407 - 0.1017i)y-+(0.1853 - 0.1600i)z=0

L6: (-0.8063 + 0.0533i)x+(0.3589 - 0.0237i)y+(0.4475 - 0.02961)z=0
L7: (-0.2110 - 0.2632i)x+(0.0946 + 0.4099i)y+(0.7579 - 0.0018i)z=0
L8: (-0.2117 + 0.2915i)x+(0.0801 - 0.4420i)y+(0.8087 - 0.03661)z=0
L9: (0.2977 + 0.1329i)x+(-0.2441 + 0.32491)y+(0.7321 - 0.0211i)z=0
L10:
Li11:
L12:
L13:

(0.0743 - 0.34701)x+(0.3960 - 0.19731)y+(0.7973 - 0.0108i)z=0
(-0.3622 + 0.00651)x+(-0.4517 + 0.0081i)y+(0.8139 - 0.0147i)z=0
(-0.0879 + 0.4174i)x+(-0.4691 + 0.6090i)y+(0.2178 + 0.2638i)z=0
(0.2624 - 0.36611)x+(-0.8105 + 0.0417i)y+(-0.3331 - 0.1397i)z=0
L14: (-0.8100 - 0.0219i)x+(-0.0707 - 0.35371)y-+(-0.3997 - 0.2060i)z=0
L15: (-0.7408 + 0.08951)x+(-0.2797 + 0.1789i)y+(0.2952 + 0.29051)z=0
L16: (-0.7922 + 0.02271)x+(-0.3220 - 0.14381)y+(0.2643 - 0.35161)2z=0
L17: (-0.7967 + 0.08681)x+(-0.0412 + 0.3543i)y+(-0.3775 + 0.2352i)z=0
L18: (0.3186 + 0.30351)x+(-0.7855 + 0.1080i)y+(-0.2941 + 0.1949i)z=0
L19: (-0.4050 - 0.19831)x+(-0.8125 - 0.0052i)y-+(-0.0782 - 0.3531i)z=0
L.20: (0.1089 + 0.32651)x+(0.4030 + 0.1477i)y-+(0.7698 - 0.07551)z=0
L21: (0.3281 - 0.1531i)x+(-0.2771 - 0.3564i)y+(0.8134 + 0.0100i)z=0
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5.5 Factoring the degree-6 factors

We have seen that the product of the fixed lines of D5, D6 and D11 is the
degree-3 factor Q1. We expect the remaining 18 fixed lines to consist of three
sets of six lines each, where the product of lines in each set is a degree-6 factor.
Looking back at table 5.1, we seem to have clear and similar zeros for Q3 for
the points bg, by, b12, b1z, big and bjg. We examine the lines going through
these points:

bs: L8, L9, L18
bg: L7, L13, L21
blgi L3, L13, L15
b132 L2, L16, L18
blgi L4, L9, L15
blgl Ll, L16, L21

We notice that six lines occur twice in the list above; L9, 113, L15, 16, L18
and L21. We hypothesize that the product of these lines is the degree-6 factor
Q3. Initially we find that the product of the x-coefficients of the six lines
is equal to the product of the y-coefficients and equal to the product of the
z-coefficients. This means that the coefficients of 25, y® and 2% in the product
are equal, as they must be in Q3. Performing the multiplication of the six lines,
we get:

L9-L13-L15-L16- L18 - L21

= ((0.2977 + 0.13294)z + (—0.2441 + 0.3249i )y + (0.7321 — 0.0211i)z)
((0.2624 — 0.36618)z + ( 0.8105 + 0.0417d)y + (—0.3331 — 0.13974)z)
((—0.7408 4 0.08951)x + (—0.2797 4 0.1789i)y + (0.2952 + 0.2905¢)z)
- ((—0.7922 4 0.0227i)x + (—0.3220 — 0.14384)y + (0.2643 — 0.35167)z)
((0.3186 + 0.30354 )2 + (—0.7855 + 0.10808)y + (—0.2941 + 0.1949i)z)
((0.3281 — 0.15314)z + (—0.2771 — 0.3564i)y + (0.8134 + 0.01004)z)

(0.0130 — 0. 00482')3;6 + (—0.0260 + 0.00967)2°y + (0.0389 — 0.01444)25
(0.0519 — 0.01914)z4y + (—0.0649 + 0.0239i)z4y2 + (0.0259 — 0.00967 )22
(—0.0130 + 0. 00481)x + (0.1038 — 0.0383i)23y%z + (0.1168 — 0.04317)23y2>
(—0.0130 + 0.0048¢) 2323 + (0.0259 — 0.00967) 2% +(0.1168 - 0.04314)22y32
(—0.0130 + 0.00484)22y? 22 + (0.1038 — 0.03837)22y23 + (0.0519 — 0.01917)x2z*
(0.0389 — 0.01444) 2y 4 (—0.0649 + 0.0239%)zy*z + (0.1038 — 0.03837)zy> 2>
(0.1168 — 0.04314)zy223 + (—0.0649 + 0. 02392):cyz + (—0.0260 + 0. 0096@):%5
(0.0130 — 0.0048¢)® + (—0.0259 + 0.00961)y°z + (0.0519 0. 01914)y*
(—0.0130 + 0.0048)y323 + (0.0259 — 0.00967)y%=* + (0.0389 — 0.0144z)yz
(0.0130 — 0.00484)°

+++++++++H
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5.5. Factoring the degree-6 factors

Multiplying our expression for @3 by a factor of (0.0130 — 0.0048i), the coeffi-
cient of 2% in the product above, we get:

(0.0130 — 0.0048i)z% + (—0.0260 + 0.0096i)z°y + (0.0390 — 0.01444)x° 2

+ (0.0520 — 0.0192i)z*y? + (—0.0650 + 0.0240i)z*yz + (0.0260 — 0.00967)z* 2>

+ (—0.0130 + 0.00487)x3y3 + (0.1040 — 0.03844)z3y%2 + (0.1170 — 0.0432i) 23y 2>
+ (—0.0130 + 0.00484)2322 + (0.0260 — 0.00964)z%y* + (0.1170 — 0.0432i)z2y>2
+ (—0.0130 + 0.00487)x2y? 22 4 (0.1040 — 0.03844) x>y 2> + (0.0520 — 0.01927) 2 2*
+ (0.0390 — 0.0144i)zy® + (—0.0650 + 0.0240i)zy*z + (0.1040 — 0.03847)xy>2>

+ (0.1170 — 0.0432i)2y?2® + (—0.0650 + 0.0240)xyz? + (—0.0260 + 0.00967)z2°
+ (0.0130 — 0.0048i)y% + (—0.0260 + 0.0096i)y°z + (0.0520 — 0.0192i)y*z2

+ (—0.0130 + 0.0048i)y>2% + (0.0260 — 0.00967)y*z* + (0.0390 — 0.01444)y=°

+ (0.0130 — 0.0048i)z5

By the same reasoning as for @1, we claim that @3 is the product of the six
lines L9, L13, L15, 116, L.18 and L21.

Looking at table 5.1 again, we have clear and similar zeros for Q2 for the points
b10, b11, b14, b15, b1 and b17. We examine the lines going through these points:

bio: L10, L11, L12
bip: L11, 119, L.20
b142 L5, L12, L17
bis: L5, L14, L19
big: L6, L14, L20
bi7: L6, L10, L17

All the lines occur twice in this list, but we know that L5, L6 and L11 make up
Q1. Checking the product of the remaining six lines L10, L12, L14, .17, L19
and L20, we find that the coefficients of 2%, ¢ and 2% in the product are equal
by the method we used before, and perform the full multiplication. We get:

L10-L12-L14 - L17-L19- L20

= ((0.0743 — 0.3470¢)x + (0.3960 — 0.1973i)y + (0.7973 — 0.01084)2)
- ((—0.0879 + 0.41744)x + (—0.4691 + 0.6090i)y + (0.2178 + 0.26384)2)

- ((—0.8100 — 0.02197)x + (—0.0707 — 0.3537i)y + (—0.3997 — 0.20604) 2)

- ((—0.7967 + 0.0868i)x + (—0.0412 + 0.3543i)y + (—0.3775 + 0.2352i)z)

- ((—0.4050 — 0.19837)x + (—0.8125 — 0.0052i)y + (—0.0782 — 0.35314)2)

- ((0.1089 + 0.3265i)x + (0.4030 + 0.1477i)y + (0.7698 — 0.07557)2)

= (0.0069 — 0.0136i)z% + (0.0346 — 0.0680i)z°y + (0.0207 — 0.0408¢)x°z

+ (0.0760 — 0.14964)z*y? + (0.1106 — 0.21767)x*yz + (0.0622 — 0.12244)z* 2>
+(0.0899 — 0.17687)2%y> + (0.2489 — 0.4896i)x3y? 2z + (0.2557 — 0.5032i) a3y 2>
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+ (0.0898 — 0.1768i)z323 + (0.0622 — 0.12247)x%y* + (0.2558 — 0.5032i)z2y> 2
+ (0.3802 — 0.7480i) 22y 2% + (0.2489 — 0.48974)2%yz> + (0.0760 — 0.1497i)x22*
4 (0.0207 — 0.04084)xy® + (0.1106 — 0.21767)xy*z 4 (0.2489 — 0.48961 )2y 2>

4 (0.2558 — 0.50337)xy? 2% + (0.1106 — 0.21764)zyz* + (0.0346 — 0.0680i)x2°

+ (0.0069 — 0.01367)y° + (0.0346 — 0.0680i)y°z + (0.0761 — 0.14967)y* 2>

+ (0.0899 — 0.17687)y>2> + (0.0622 — 0.12247)y?z* + (0.0207 — 0.0408i)y2°
+ (0.0069 — 0.01364) 2°
Multiplying our expression for Q2 by a factor of (0.0069 — 0.0136¢), the coeffi-
cient of 2% in the product above, we get:

(0.0069 — 0.01361)2° + (0.0345 — 0.0680i)a”y + (0.0207 — 0.0408i)a”z
+(0.0759 — 0.14961)ay” + (0.1104 —0. 21762)x4yz +(0.0621 — 0.1224)a*

+ (0.0897 — 0.1768i) x> y + (0.2484 — 0.4896i)x3y%z + (0.2553 — 0.50322)9& yz?
+(0.0897 — 0.17680)2>? + (0.0621 — 012245} y +(0.2553 — 0.5032)a% =
4 (0.3795 — 0.74807)%222 + (0.2484 — 0.48967)2y=% + (0.0759 — 0.14961)222*
+ (0.0207 — 0.04082):53/ (0.1104 — 0.21767)xy*z + (0.2484 — 0.48961)xy>22
+(0.2553 — 0.5032)zy%2% + (0.1104 — 0.21767)zy="* + (0.0345 — 0.0680 )72
+ (0.0069 — 0.01364)
+ (0.0897 — 0.17684)
+ (0.0069 — 0.01364)

y% + (0.0345 — 0.0680i)y° 2 + (0.0759 — 0.14964 )y* 2>
y323 + (0.0621 — 0.12244)y%2* + (0.0207 — 0.04084)y=°
6
z
Again, we hold that even though the product deviates slightly from a perfect

match with the modified expression for ()2, the conclusion that ()2 is a product
of the six lines 110, 112, L.14, 117, L19 and L20 is justified.

Left over now are the fixed lines of D1, D2, D3, D4, D7 and D8. Again we
confirm that the coefficients of 2%, 4% and 2% in the product are equal, and
proceed to perform the full multiplication. We get:

L1-L2-L3-L4-L7-L8

= ((—0.5481 + 0.20414)z + (0.0811 — 0.24744)y + (0.0428 + 0.3217i)z
((=0.0755 — 0.43118)x + (—0.7875 — 0.0402i)y + (0.2045 + 0.28514)z)
((—0.1218 + 0.2800) + (—0.5407 — 0.1017i)y + (0.1853 — 0.1600i)z)
- ((=0.7210 4 0.03931) + (0.2137 + 0.2399i)y + (—0.1104 — 0.3852i)z)
((=0.2110 — 0.2632i)x + (0.0946 + 0.4099)y + (0.7579 — 0.00184)z)
((—0.2117 4 0.29151)x + (0.0801 — 0.44207)y + (0.8087 — 0.0366)z)

= (0.0067 — 0.00157)x° + (—0.0134 + 0.0030i)z5y + (—0.0268 + 0.00607)z° 2
+ (0.0268 — 0.00607)x*y? + (0.0134 — 0.0030i)x*yz + (0.0602 — 0.01367)x* 2>

+ (—0.0535+0.01217)23y? + (—0.0402 + 0.0090i)x3y2z +(0.0134 — 0.0030i)x3y22
+ (—0.0535 + 0. 01212)17 + (0.0602 — 0.01364)z%y* + (0.0134 — 0.0030i)2%y> ;
+(0.0870 — 0.01964) 2%y 22 4 (—0.0401 4 0.00904) 2%y 2> + (0.0267 — 0.00607 ) 2> z
+ (—0.0268 + 0.0060z)my + (0.0134 — 0.00304)zy*2 + (—0.0401 + 0.00917)xy> 22
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+(0.0134 — 0.00308)zy%23 + (0.0134 — 0.0030i)zyz* + (—0.0134 + 0.00307)x:2°
+ (0.0067 — 0.00154)y5 + (—0.0134 + 0.00307)y°z + (0.0267 — 0.00607 )y* 22

+ (—0.0535 + 0.01214)y32 + (0.0602 — 0.01364)y22* + (—0.0267 + 0.0060)y=°
+ (0.0067 — 0.00157) 25

Multiplying our expression for Q4 by a factor of (0.0067 — 0.0015¢), the coeffi-
cient of 2% in the product above, we get:

(0.0067 — 0.0015i)z% + (—0.0134 + 0.0030)z°y + (—0.0268 + 0.00607)x°
(0.0268 — 0.0060)z*y? + (0.0134 — 0.00304)z*y= + (0.0603 — 0.0135i)z* 22
(—0.0536 + 0.01204)23y> + (—0.0402 + 0.00904 )23y z + (0.0134 — 0.0030¢ ) 23y 2>
(—0.0536 + 0.0120i)x323 + (0.0603 — 0.01357)2?y* + (0.0134 — 0.0030¢) 2%y~
(0.0871 — 0.0195i)x2y?22 + (—0.0402 4 0.0090i) 2y 2> + (0.0268 — 0.0060i )z 2*
(—0.0268 + 0.0060i)zy® + (0.0134 — 0.0030i)zy*z + (—0.0402 + 0.0090¢ ) wy? 2>
(0.0134 — 0. 0030z)xy 23 +(0.0134 — 0.00304)zyz* 4+ (—0.0134 + 0.0030i)z2°
(0.0067 — 0.00154)y5 ( 0.0134 + 0.0030i)y°z + (0.0268 — 0.00607)y* 22
(—0.0536 + 0. 0120z)y 3 +(0.0603 — 0.0135i)y?z* + (—0.0268 + 0.0060i)yz°
+ (0.0067 — 0.0015i)z5

+
+
+
_|_
_|_
+
+
+

By the same reasoning as before, we conclude that @4 is a product of the six
lines L1, L2, L3, L4, L7 and LS.

5.6 Summary

We started out this chapter with examining the fixed points of the 3-groups,
those on the degree-21 curve. This led us to consider the factoring of K21. By
examination, hypothesis and calculation, we achieved a factoring of the four
factors of K21 over Z.

Q1=L5-L6-L11
Q2=1L19-L13-L15-L16-L18- L21
Q3=L10-L12-L14- L17- L19 - L20
QA=1L1-L2-L3-L4-L7 L8

Out of the many intersections of the fixed lines of the 2-groups, we present a
few related to our factoring.
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5.6. Summary

The lines in Q2 meet pairwise in fixed points of 3-groups, with which we
started, making up two triangles.

Figure 5.1: The triangles of Q2

bio
L10 L12
bi7 17 bis
bis
L14 L19
bie 730 b1
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5.7. Another factoring of K21

The lines in @3 make up a hexagon with vertices in fixed points of 3-groups.

Figure 5.2: The hexagon of Q3

L9
big bg
L15 L1
b12 b3
L13 L16
b big
L21

The lines in @1 and Q4 do not make up similar polygons.

5.7 Another factoring of K21

There are many ways to factor our degree-21 invariant. Referring back to section
4.6, we know that the fixed lines of the 2-groups intersect each other in fixed
points of other 2-groups, making up triangles. For instance, we have the fixed
points of E7 in figure 4.1. Conjugation of E7 by S returns E3, and then E10,
FE13, F11, E2, E4 and back to E7 by consecutive conjugations. Starting with
E8 in the other class of Klein 4-groups, consecutive conjugations by S gives
us F1, £6, E14, F12, E9, E5 and back to E8, in that order. For every class
we can draw seven triangles and every fixed line occurs only once in a triangle
for each class. The product of the three fixed lines in a triangle is a factor of
degree 3, and in the same way for the other triangles. The product of the seven
such degree-3 factors for each of the two classes is K21. We may say that the
triangles or lines are related by conjugation.
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