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Abstract

We examine some of the symmetries of the Klein quartic curve by describing
the fixed points of the subgroups of its automorphism group, and some orbits
of fixed points on the quartic curve and on the curves of the covariants.
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CHAPTER 1

Introduction

The aim of this thesis is to examine some of the symmetries of the Klein quartic
curve by describing the fixed points of the subgroups of its automorphism group,
and some orbits of fixed points on the quartic curve and on the curves of the
covariants.
In chapter 2, we define the Klein quartic invariant and its covariants.
In chapter 3, we describe generators and cyclic subgroups of the automorphism
group of the Klein quartic curve, specifically the isomorphic groups the projective
special linear group PSL(2,7) and the general linear group GL(3,2).
Next, in chapter 4, we examine the representation of the automorphism group
in GL(3,C) and the fixed points of its subgroups.
Finally, in chapter 5, by way of examination of some fixed points on the curve
of an invariant of degree 21, we show that specific products of the fixed lines of
groups of order 2 return an integral factoring of the degree-21 invariant.
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CHAPTER 2

The Klein Quartic Curve

With homogeneous coordinates [x : y : z] on P2(C), we define the Klein quartic
invariant:

Definition 2.0.1. The Klein quartic invariant: K4 := x3y + y3z + z3x.

The zero set of this invariant is the Klein quartic curve. It was first de-
scribed by Klein in [Kle99], and is a compact Riemann surface of genus 3 with
an automorphism group of size 168.

Klein also described three covariants to the quartic: a sextic invariant, a
degree-14 invariant and a degree-21 invariant.

Definition 2.0.2. The sextic invariant: K6 := 5x2y2z2 − xy5 − yz5 − zx5

Definition 2.0.3. The degree-14 invariant:

K14 := 1
9

∣∣∣∣∣∣∣∣∣∣∣∣

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂g
∂x

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂g
∂y

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

∂g
∂z

∂g
∂x

∂g
∂y

∂g
∂z 0

∣∣∣∣∣∣∣∣∣∣∣∣
= x14 + y14 + z14− 34(x11y2z+x2yz11 +xy11z2)− 250(x9yz4 +xy4z9 +x4y9z)

+ 375(x8y4z2 + x4y2z8 + x2y8z4) + 18(x7y7 + x7z7 + y7z7)

+ 126(x6y3z5 + x3y5z6 + x5y6z3)
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Note: The term 1
9 is not unique, but yields an integral polynomial.

Definition 2.0.4. The degree-21 invariant:

K21 := 1
14

∣∣∣∣∣∣∣∣
∂f
∂x

∂g
∂x

∂h
∂x

∂f
∂y

∂g
∂y

∂h
∂y

∂f
∂z

∂g
∂z

∂h
∂z

∣∣∣∣∣∣∣∣
= x21 + y21 + z21 − 7(x18y2z + x2yz18 + xy18z2)

+ 217(x16yz4 + xy4z16 + x4y16z)− 308(x15y4z2 + x4y2z15 + x2y15z4)

− 57(x14y7 + x7z14 + y14z7)− 289(x14z7 + y7z14 + x7y14)

+ 4018(x13y3z5 + x3y5z13 + x5y13z3) + 637(x12y6z3 + x6y3z12 + x3y12z6)

+ 1638(x11y9z + x9yz11 + xy11z9)− 6279(x11y2z8 + x2y8z11 + x8y11z2)

+ 7007(x10y5z6 + x5y6z10 + x6y10z5)− 10010(x9y8z4 + x8y4z9 + x4y9z8)

+ 10296x7y7z7

Note: The term 1
14 is not unique, but yields an integral polynomial.
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CHAPTER 3

The automorphism group

In this chapter we study some aspects of two representations of the automorph-
ism group of the Klein quartic curve; PSL(2,7) and GL(3,2).

3.1 Generators of PSL(2,7)

The projective special linear group PSL(2,7) consists of the quotient group
of all 2×2 matrices with unit determinant over the finite field of 7 elements,
identifying the identity matrix I and -I. It is well known that PSL(2,7) has 168
elements. This group is generated by the matrices S’, T’ and R’:

S′ :=
(

1 1
0 1

)

T ′ :=
(

4 0
0 2

)

R′ :=
(

0 6
1 0

)

By calculation we establish the following proposition:

Proposition 3.1.1. S′7 = T ′3 = R′2 = I.

3.2 Cyclic subgroups of PSL(2,7)

The cyclic subgroups of PSL(2,7) are as follows: 28 cyclic subgroups of order 3,
21 cyclic subgroups of order 4, each with a further cyclic subgroup of order 2,
and 8 cyclic subgroups of order 7. These cyclic subgroups with a generator are
listed in the tables below.
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3.2. Cyclic subgroups of PSL(2,7)

Table 3.1: Cyclic subgroups of order 7 in PSL(2,7) with a generator

Group Generator

A′1

(
1 1
0 1

)

A′2

(
1 0
6 1

)

A′3

(
0 1
6 2

)

A′4

(
1 3
1 4

)

A′5

(
3 5
1 2

)

A′6

(
2 5
1 3

)

A′7

(
2 1
6 0

)

A′8

(
3 4
6 6

)
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3.2. Cyclic subgroups of PSL(2,7)

Table 3.2: Cyclic subgroups of order 3 in PSL(2,7) with a generator

Group Generator Group Generator Group Generator

B′1

(
3 0
0 5

)
B′2

(
3 5
0 5

)
B′3

(
3 3
0 5

)

B′4

(
3 1
0 5

)
B′5

(
3 6
0 5

)
B′6

(
3 4
0 5

)

B′7

(
3 2
0 5

)
B′8

(
0 1
6 6

)
B′9

(
1 6
1 0

)

B′10

(
1 3
6 5

)
B′11

(
1 4
1 5

)
B′12

(
1 4
5 0

)

B′13

(
1 3
2 0

)
B′14

(
1 5
5 5

)
B′15

(
1 2
2 5

)

B′16

(
1 1
4 5

)
B′17

(
1 6
3 5

)
B′18

(
1 5
4 0

)

B′19

(
1 2
3 0

)
B′20

(
3 0
4 5

)
B′21

(
3 0
3 5

)

B′22

(
3 0
1 5

)
B′23

(
3 0
6 5

)
B′24

(
3 0
5 5

)

B′25

(
3 0
2 5

)
B′26

(
3 5
3 3

)
B′27

(
3 3
5 3

)

B′28

(
3 1
1 3

)
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3.3. Generators of GL(3,2)

Table 3.3: Cyclic subgroups of order 4 in PSL(2,7) with a generator

Group Generator Name Generator Name Generator

C ′1

(
0 2
3 3

)
C ′2

(
3 4
5 0

)
C ′3

(
3 3
2 0

)

C ′4

(
3 2
3 0

)
C ′5

(
2 5
2 2

)
C ′6

(
2 6
4 2

)

C ′7

(
0 1
6 4

)
C ′8

(
0 1
6 3

)
C ′9

(
1 5
6 3

)

C ′10

(
1 6
6 2

)
C ′11

(
2 3
1 2

)
C ′12

(
1 3
5 2

)

C ′13

(
1 6
5 3

)
C ′14

(
1 2
4 2

)
C ′15

(
1 4
4 3

)

C ′16

(
1 3
3 3

)
C ′17

(
1 5
3 2

)
C ′18

(
1 1
2 3

)

C ′19

(
1 4
2 2

)
C ′20

(
1 1
1 2

)
C ′21

(
1 2
1 3

)

The cyclic subgroups of order 2 are generated by the generators of order 4
squared. We notice that the square of the generator of C ′5 equals R′.

3.3 Generators of GL(3,2)

The general linear group GL(3,2) is the set of all invertible 3x3 matrices under
multiplication over the finite field of 2 elements. GL(3,2) is isomorphic to
PSL(2,7), and hence has the same structure when it comes to cyclic subgroups.
The corresponding generators are S”, T” and R”:

S′′ :=

0 0 1
1 0 1
0 1 0



T ′′ :=

1 0 0
0 0 1
0 1 1



R′′ :=

1 0 0
0 0 1
0 1 0


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3.4. Cyclic subgroups of GL(3,2)

3.4 Cyclic subgroups of GL(3,2)

The cyclic subgroups with a generator are listed in the tables below.

Table 3.4: Cyclic subgroups of order 7 in PSL(3,2) with a generator

Group Generator

A′′1

0 0 1
1 0 1
0 1 0



A′′2

0 1 0
0 0 1
1 1 0



A′′3

1 1 1
1 1 0
1 0 0



A′′4

1 1 0
1 0 1
1 1 1



A′′5

0 0 1
1 0 0
1 1 0



A′′6

0 1 1
1 0 0
0 1 0



A′′7

1 1 1
1 0 0
1 0 1



A′′8

1 1 1
0 1 1
1 1 0


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3.4. Cyclic subgroups of GL(3,2)

Table 3.5: Cyclic subgroups of order 3 in PSL(3,2) with a generator

Group Generator Group Generator Group Generator

B′′1

1 0 0
0 0 1
0 1 1

 B′′2

0 1 1
1 1 1
0 0 1

 B′′3

0 0 1
0 1 0
1 1 1



B′′4

1 1 1
1 1 0
0 1 0

 B′′5

0 1 0
1 0 1
1 1 0

 B′′6

1 1 0
1 0 0
1 0 1



B′′7

1 0 1
0 1 1
1 0 0

 B′′8

0 0 1
0 1 0
1 0 1

 B′′9

0 1 0
1 1 0
0 0 1



B′′10

1 1 1
0 1 1
0 1 0

 B′′11

1 0 0
0 1 1
1 1 0

 B′′12

1 1 1
1 0 1
0 0 1



B′′13

0 0 1
1 1 0
1 0 1

 B′′14

1 1 0
0 1 1
0 1 0

 B′′15

1 0 0
1 1 1
0 1 0



B′′16

1 0 0
1 1 1
1 1 0

 B′′17

1 0 1
0 1 1
0 1 0

 B′′18

0 1 1
0 1 0
1 0 1



B′′19

1 1 0
1 0 0
1 1 1

 B′′20

0 0 1
0 1 1
1 0 1

 B′′21

1 1 1
1 0 0
0 0 1



B′′22

0 1 1
1 0 1
0 1 0

 B′′23

1 1 0
1 1 1
1 0 0

 B′′24

1 0 1
0 1 0
1 1 0



B′′25

0 1 0
1 1 0
1 1 1

 B′′26

0 1 0
0 1 1
1 1 1

 B′′27

0 1 1
1 0 1
1 0 0



B′′28

0 1 0
0 0 1
1 0 0


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3.4. Cyclic subgroups of GL(3,2)

Table 3.6: Cyclic subgroups of order 4 in PSL(3,2) with a generator

Group Generator Group Generator Group Generator

C ′′1

0 0 1
1 1 1
0 1 0

 C ′′2

0 1 0
0 0 1
1 1 1

 C ′′3

1 0 1
1 0 0
1 1 0



C ′′4

0 0 1
1 0 1
0 1 1

 C ′′5

1 1 1
1 1 0
1 0 1

 C ′′6

1 1 0
0 1 0
1 0 1



C ′′7

1 0 1
0 1 1
1 1 1

 C ′′8

0 1 1
1 1 1
1 1 0

 C ′′9

1 0 0
1 1 0
0 1 1



C ′′10

0 0 1
1 0 0
1 1 1

 C ′′11

1 0 1
1 1 0
0 0 1

 C ′′12

0 1 1
0 1 0
1 0 0



C ′′13

1 0 0
1 1 1
1 0 1

 C ′′14

0 0 1
1 1 0
1 0 0

 C ′′15

1 0 1
0 0 1
0 1 0



C ′′16

1 0 0
0 0 1
1 1 0

 C ′′17

0 1 0
1 0 1
0 0 1

 C ′′18

1 1 0
0 1 1
0 0 1



C ′′19

0 1 0
1 0 0
0 1 1

 C ′′20

0 1 1
0 0 1
1 0 1

 C ′′21

1 1 1
0 1 0
0 1 1



Again, a generator from the table above squared yields a generator of a
cyclic subgroup of order 2.
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CHAPTER 4

Representation in GL(3,C)

4.1 Generators and subgroups

Following [Elk99, p. 54], PSL(2,7) has a faithful 3-dimensional representation
in GL(3,C), the set of all invertible 3x3 matrices over the field of complex
numbers, generated by the three matrices S, T and R:

S :=

ζ4 0 0
0 ζ2 0
0 0 ζ



T :=

0 0 1
1 0 0
0 1 0



R := α

 ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5



ζ := e2πi/7

α := − 1√
−7

In this representation, the generating matrices S, T and R correspond to the
generating matrices S′, T ′ and R′ of PSL(2,7) respectively. We name the
subgroup in GL(3,C) generated by S,T,R G. It is isomorphic to PSL(2,7) and
GL(3,2).
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4.2. Conjugate groups of order 7

We want to examine the nontrivial proper subgroups of G in order to establish
if they have fixed points in common, whether the fixed points are on any of our
curves, and whether the fixed points constitute orbits. Following [Kle99], the
nontrivial proper subgroups of G are:

a) 8 conjugate elementary abelian groups of order 7

b) 28 conjugate cyclic groups of order 3

c) 21 conjugate cyclic groups of order 4

d) 21 conjugate cyclic groups of order 2

e) two classes of 7 conjugate dihedral abelian Klein 4-groups of order 4

f) 28 dihedral nonabelian groups of order 6

g) 21 dihedral nonabelian groups of order 8

h) 8 nonabelian groups of order 21

i) two classes of 7 nonabelian conjugates of
the symmetric group of degree 4

j) two classes of 7 nonabelian conjugates of
the alternating group of degree 4

When seeing points in CP2 as one-dimensional subspaces of a three-dimensional
space, a non-zero eigenvector represents a fixed point. [MAT21] has been a
useful aid in finding the fixed points.

4.2 Conjugate groups of order 7

The subgroups of order 7 of G, with generators and fixed points, are as follows:

12



4.2. Conjugate groups of order 7

Table 4.1: Conjugate subgroups of order 7 of G with a generator and fixed
points

Name Generator Fixed point 1 Fixed point 2 Fixed point 3

A1 S vA1,1 =

 1
0
0

 vA1,2 =

 0
1
0

 vA1,3 =

 0
0
1



A2 S6RS6 vA2,1 = α

 ζ6 − ζ
ζ5 − ζ2

ζ3 − ζ4

 vA2,2 = α

 ζ3 − ζ4

ζ6 − ζ
ζ5 − ζ2

 vA2,3 = α

 ζ5 − ζ2

ζ3 − ζ4

ζ6 − ζ



A3 RS5 vA3,1 = α

 ζ − ζ3

ζ5 − ζ2

ζ2 − ζ3

 vA3,2 = α

 ζ6 − 1
1− ζ2

ζ5 − ζ2

 vA3,3 = α

 ζ5 − ζ2

ζ − ζ2

ζ3 − ζ5



A4 SRS4 vA4,1 = α

 ζ3 − ζ5

ζ5 − ζ2

ζ − ζ2

 vA4,2 = α

 ζ2 − ζ3

ζ − ζ3

ζ5 − ζ2

 vA4,3 = α

 ζ5 − ζ2

ζ6 − 1
1− ζ2



A5 S3RS2 vA5,1 = α

 1− ζ2

ζ5 − ζ2

ζ6 − 1

 vA5,2 = α

 ζ − ζ2

ζ3 − ζ5

ζ5 − ζ2

 vA5,3 = α

 ζ5 − ζ2

ζ2 − ζ3

ζ − ζ3



A6 S2RS3 vA6,1 = α

 ζ5 − 1
ζ5 − ζ2

1− ζ

 vA6,2 = α

 ζ5 − ζ6

ζ2 − ζ4

ζ5 − ζ2

 vA6,3 = α

 ζ5 − ζ2

ζ4 − ζ5

ζ4 − ζ6



A7 S5R vA7,1 = α

 ζ4 − ζ6

ζ5 − ζ2

ζ4 − ζ5

 vA7,2 = α

 1− ζ
ζ5 − 1
ζ5 − ζ2

 vA7,3 = α

 ζ5 − ζ2

ζ5 − ζ6

ζ2 − ζ4



A8 S4RS vA8,1 = α

 ζ2 − ζ4

ζ5 − ζ2

ζ5 − ζ6

 vA8,2 = α

 ζ4 − ζ5

ζ4 − ζ6

ζ5 − ζ2

 vA8,3 = α

 ζ5 − ζ2

1− ζ
ζ5 − 1



To show that A1−A8 are conjugate, consider the automorphism ig : G −→ G
where ig(x) = gxg−1 for all xεG. Let x = S, a generator of A1. Let g = RS6RS,
with inverse g−1 = S6RSR.
Then ig(S) = RS6RSSS6RSR = RS6RSRSR = RS5SRSRSR = RS5(SR)3.

Now, (SR) generates a (cyclic) group of order 3, the group B9 in table
4.3 below. Hence (SR)3 = 1 and ig(S) = RS5. RS5 is an element of order
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4.2. Conjugate groups of order 7

7 and generates A7, so ig[A1] = A7. Furthermore, by conjugating RS5 by
h = S, with inverse h−1 = S6, we get SRS4, which generates A4. Repeatedly
conjugating by h = S we find that all the elements of order 7 are covered, until
conjugation of S6RS6 gets us back to RS5. This shows that all the groups of
order 7 are conjugate, hence they are all isomorphic to each other.

We examine whether the fixed points in table 4.1 satisfy the Klein quartic
equation, and consider vA2,1 as an example.
Let x = α(ζ6 − ζ), y = α(ζ5 − ζ2) and z = α(ζ3 − ζ4).
We substitute these values into f , and calculate, recalling that ζ7 = (e2πi/7)7 =
1.

f = x3y + y3z + z3x

= α4((ζ6 − ζ)3(ζ5 − ζ2) + (ζ5 − ζ2)3(ζ3 − ζ4) + (ζ3 − ζ4)3(ζ6 − ζ))

= α4((2ζ6 + ζ5 − 3ζ4 − 3ζ3 + ζ2 + 2ζ)
+ (−3ζ6 + 2ζ5 + ζ4 + ζ3 + 2ζ2 − 3ζ) + (ζ6 − 3ζ5 + 2ζ4 + 2ζ3 − 3ζ2 + ζ))

= 0

Proceeding in the same manner for all the fixed points, we get a general result.

Given vAi,j
=

 x
y
z

, we find that:

Proposition 4.2.1. All the fixed points of the groups of order 7 are on the Klein
quartic curve K4 = x3y + y3z + z3x = 0.

We find the following relations between these fixed points and the group
generators:

14



4.2. Conjugate groups of order 7

Table 4.2: Relations between the fixed points of the subgroups of order 7 of G
and the group generators

vAi,j
RvAi,j

SvAi,j
TvAi,j

vA1,1 vA2,1 vA1,1 vA1,2

vA1,2 vA2,3 vA1,2 vA1,3

vA1,3 vA2,2 vA1,3 vA1,1

vA2,1 vA1,1 vA3,1 vA2,2

vA2,2 vA1,3 vA3,2 vA2,3

vA2,3 vA1,2 vA3,3 vA2,1

vA3,1 vA7,1 vA4,1 vA4,2

vA3,2 vA7,2 vA4,2 vA4,3

vA3,3 vA7,3 vA4,3 vA4,1

vA4,1 vA6,2 vA6,1 vA5,2

vA4,2 vA6,3 vA6,2 vA5,3

vA4,3 vA6,1 vA6,3 vA5,1

vA5,1 vA8,3 vA8,1 vA3,2

vA5,2 vA8,1 vA8,2 vA3,3

vA5,3 vA8,2 vA8,3 vA3,1

vA6,1 vA4,3 vA5,1 vA7,2

vA6,2 vA4,1 vA5,2 vA7,3

vA6,3 vA4,2 vA5,3 vA7,1

vA7,1 vA3,1 vA2,1 vA8,2

vA7,2 vA3,2 vA2,2 vA8,3

vA7,3 vA3,3 vA2,3 vA8,1

vA8,1 vA5,2 vA7,1 vA6,2

vA8,2 vA5,3 vA7,2 vA6,3

vA8,3 vA5,1 vA7,3 vA6,1

Since the group generators R, S, T can map all the fixed points to every
other fixed point in the same set, and only to these, we conclude:

Proposition 4.2.2. The 24 fixed points of the groups of order 7 form an orbit.

Klein shows in [Kle99] that these fixed points are found where the zero set
of the sextic invariant K6 = xy5 + yz5 + zx5 − 5x2y2z2 intersects the Klein
quartic curve. By calculation we conclude that none of the points are in the
zero sets of K14 or K21.

Next we examine whether a tangent to the Klein quartic curve through a fixed
point of a group of order 7 intersects the quartic curve somewhere else. In
general we know that such a tangent must satisfy

∂K4
∂x (a, b, c)(x− a) + ∂K4

∂y (a, b, c)(y − b) + ∂K4
∂z (a, b, c)(z − c)

15



4.2. Conjugate groups of order 7

= (3a2b+ c3)(x− a) + (3b2c+ a3)(y − b) + (3c2a+ b3)(z − c) = 0,

where (a,b,c) is the fixed point.

We examine vA1,1 and set (a, b, c) = (1, 0, 0).
The equation above yields z = 0, and inserting this into K4, we get x3y = 0.

y = 0 gives us the point we started with, while x = 0 gives us vA1,3 =

 0
0
1

.
Here vA1,3 is a zero of multiplicity 3, which implies that is a simple in-
flection point. Similarly, all the tangents to K4 through a point of the orbit of
the fixed points of the groups of order 7 passes through another point of the
orbit, which is a simple inflection point. According to [Mir95, p. 241], a smooth
algebraic curve of degree d has exactly 3d(d − 2) inflection points (assuming
they are all simple). In our case, K4 has 24 inflection points.

Proposition 4.2.3. For every fixed point of a group of order 7, there is a
tangent to the Klein quartic curve through that point which intersects the curve
in another point, and only there. That point is also a fixed point of a group of
order 7. The fixed points of the groups of order 7 are all the inflection points of
the Klein quartic curve.

Proceeding in the same manner for the sextic curve K6, we get

∂K6
∂x (a, b, c)(x− a) + ∂K6

∂y (a, b, c)(y − b) + ∂K6
∂z (a, b, c)(z − c)

= (10ab2c2 − b5)(x− a) + (10a2bc2 − c5)(y − b) + (10a2b2c− a5)(z − c) = 0.

Again we insert (a, b, c) = (1, 0, 0), which yields z = 0. Applying this to K6, we
get xy5 = 0.

We see that the tangent in question intersects the sextic curve in vA1,2 =

 0
1
0

.
vA1,2 is a zero of multiplicity 5. Again by [Mir95, p. 241], K6 has 3d(d−2) = 72
inflection points, where an inflection point where the tangent meets the curve
at the point with multiplicity v is counted v − 2 times. Counting the 24 points
of the orbit of the fixed points of the groups of order 7 three times, we see that
these are all the inflection points of K6.
By the properties of symmetry we establish a propostion similar to the previous
one.
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4.3. Conjugate groups of order 3

Proposition 4.2.4. For every fixed point of a group of order 7, there is a tangent
to the sextic curve through that point which intersects the curve in another point,
and only there. That point is also a fixed point of a group of order 7. The fixed
points of the groups of order 7 are all the inflection points of the sextic curve
K6.

4.3 Conjugate groups of order 3

The subgroups of order 3, with generators, are as follows:

Table 4.3: Conjugate subgroups of order 3 of G with a generator

Group Generator Group Generator
B1 T B15 RS5RS2

B2 ST B16 RS3RS
B3 S2T B17 RS4RS6

B4 S3T B18 RS3RS5

B5 S4T B19 RS4RS2

B6 S5T B20 RSRT
B7 S6T B21 RS6RT
B8 RS B22 RS2RT
B9 SR B23 RS5RT
B10 RSRS3 B24 RS3RT
B11 RS6RS4 B25 RS4RT
B12 RS2RS4 B26 SRTS
B13 RS5RS3 B27 S2RT 2S2

B14 RS2RS5 B28 S3RS3

Conjugation by S yields four sets of subgroups with seven subgroups each, such
that Bj = Sn[Bi]S−n for Bi, Bj subgroups in the same set and nεZ. These sets
are {B1−B7}, {B8−B11, B22, B23, B28}, {B12−B15, B24, B25, B27} and
{B16−B21, B26}.
Similarly, conjugation by T yields one set {B1} (since TTT−1 = T ) and
the nine sets {B2, B3, B5}, {B4, B6, B7}, {B8, B12, B19}, {B9, B13, B18},
{B10, B14, B17}, {B11, B15, B16}, {B20, B22, B25}, {B21, B23, B24} and
{B26, B27, B28}.
Finally, conjugation by R gives us four sets with one subgroup each:
{B1}, {B14}, {B15} and {B28}, and twelve sets of two subgroups
each: {B2, B24}, {B3, B21}, {B4, B22}, {B5, B23}, {B6, B20}, {B7, B25},
{B8, B9}, {B10, B17}, {B11, B16}, {B12, B18}, {B13, B19} and {B26, B27}.
This means that all the 28 subgroups are conjugate, i.e. there is some gεG
such that Bj = gBig

−1 for any pair Bi, Bj of subgroups. For example
(RTS)[B1](RTS)−1 = B20.

The groups all have the eigenvalues e2πi/3, e4πi/3 and 1. We designate the
fixed points on the Klein quartic curve as vBi,j

, i=1,2,...,28, j=1,2. We have
used [MAT21] to find the fixed points, so the coordinates of the points are
approximations. For instance we get
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4.3. Conjugate groups of order 3

vB2,1 =

 0.2974 + 1.3025i
0.6410 + 0.3086i

1

.
These values yield f = −1.2 · 10−5 − 2.1 · 10−4i. We claim that the point is on
the Klein quartic curve (f = 0) under the assumption that a more powerful
program would give us that result, and based on what is stated by Klein and
others about the fixed points. Under this assumption, we proceed. The fixed
points with the first two eigenvalues are on the Klein quartic curve K4, while
the fixed points with eigenvalue 1 are not. We calculate the effect of the group
generators on these fixed points, and get the following results:

Table 4.4: Relations between the fixed points on the Klein quartic curve of the
subgroups of order 3 of G and the group generators

vBi,j
RvBi,j

SvBi,j
TvBi,j

vB1,1 vB1,2 vB7,1 vB1,1

vB1,2 vB1,1 vB7,2 vB1,2

vB2,1 vB24,2 vB1,1 vB3,1

vB2,2 vB24,1 vB1,2 vB3,2

vB3,1 vB21,2 vB2,1 vB5,1

vB3,2 vB21,1 vB2,2 vB5,2

vB4,1 vB22,2 vB3,1 vB7,1

vB4,2 vB22,1 vB3,2 vB7,2

vB5,1 vB23,2 vB4,1 vB2,1

vB5,2 vB23,1 vB4,2 vB2,2

vB6,1 vB20,2 vB5,1 vB4,1

vB6,2 vB20,1 vB5,2 vB4,2

vB7,1 vB25,2 vB6,1 vB6,1

vB7,2 vB25,1 vB6,2 vB6,2

vB8,1 vB9,1 vB9,1 vB19,2

vB8,2 vB9,2 vB9,2 vB19,1

vB9,1 vB8,1 vB11,2 vB18,1

vB9,2 vB8,2 vB11,1 vB18,2

vB10,1 vB17,2 vB8,1 vB17,1

vB10,2 vB17,1 vB8,2 vB17,2

vB11,1 vB16,2 vB22,2 vB16,1

vB11,2 vB16,1 vB22,1 vB16,2

vB12,1 vB18,2 vB15,1 vB8,2

vB12,2 vB18,1 vB15,2 vB8,1

vB13,1 vB19,2 vB25,1 vB9,1

vB13,2 vB19,1 vB25,2 vB9,2

vB14,1 vB14,2 vB13,1 vB10,1

vB14,2 vB14,1 vB13,2 vB10,2
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4.3. Conjugate groups of order 3

vBi,j RvBi,j SvBi,j TvBi,j

vB15,1 vB15,2 vB27,2 vB11,1

vB15,2 vB15,1 vB27,1 vB11,2

vB16,1 vB11,2 vB17,2 vB15,1

vB16,2 vB11,1 vB17,1 vB15,2

vB17,1 vB10,2 vB20,1 vB14,1

vB17,2 vB10,1 vB20,2 vB14,2

vB18,1 vB12,2 vB21,2 vB13,1

vB18,2 vB12,1 vB21,1 vB13,2

vB19,1 vB13,2 vB26,2 vB12,1

vB19,2 vB13,1 vB26,1 vB12,2

vB20,1 vB6,2 vB19,2 vB25,1

vB20,2 vB6,1 vB19,1 vB25,2

vB21,1 vB3,2 vB16,1 vB24,1

vB21,2 vB3,1 vB16,2 vB24,2

vB22,1 vB4,2 vB28,2 vB20,1

vB22,2 vB4,1 vB28,1 vB20,2

vB23,1 vB5,2 vB10,2 vB21,1

vB23,2 vB5,1 vB10,1 vB21,2

vB24,1 vB2,2 vB12,1 vB23,1

vB24,2 vB2,1 vB12,2 vB23,2

vB25,1 vB7,2 vB24,2 vB22,1

vB25,2 vB7,1 vB24,1 vB22,2

vB26,1 vB27,2 vB18,1 vB27,1

vB26,2 vB27,1 vB18,2 vB27,2

vB27,1 vB26,2 vB14,1 vB28,2

vB27,2 vB26,1 vB14,2 vB28,1

vB28,1 vB28,2 vB23,1 vB26,2

vB28,2 vB28,1 vB23,2 vB26,1

By the same reasoning as in the previous proposition, we conclude:

Proposition 4.3.1. The groups of order 3 each have 3 fixed points, of which 2
are on the Klein quartic curve. The 56 fixed points on the curve form an orbit.

The fixed points of this orbit are found where the degree-14 invariant K14
intersects the Klein quartic curve. They do not satisfy K6 = 0 or K21 = 0.
However, the fixed points of the groups of order 3 that are not on the Klein
quartic curve, satisfy K21 = 0, but not K6 = 0 or K14 = 0.

We examine the lines between the two fixed points of the groups of order 3 that
are on K4.
For the 3-group B1 these are the fixed points
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4.3. Conjugate groups of order 3

vB1,1 =

 1
e2πi/3

e4πi/3

 and vB1,2 =

 1
e4πi/3

e2πi/3

.
Parametrizing the line through them, we get
lB1 := vB1,1 + k(vB1,2 − vB1,1)

=

 1
e2πi/3 + k(e4πi/3 − e2πi/3)
e4πi/3 + k(e2πi/3 − e4πi/3)

.
We define:
xlB1

:= 1,
ylB1

:= e2πi/3 + k(e4πi/3 − e2πi/3)
and zlB1

:= e4πi/3 + k(e2πi/3 − e4πi/3).

The following holds for the line lB1 :
xlB1

+ ylB1
+ zlB1

= 1 + e2πi/3 + k(e4πi/3 − e2πi/3) + e4πi/3 + k(e2πi/3 − e4πi/3)
= 1 + e2πi/3 + e4πi/3 = 0.

The relation x + y + z = 0 defines lB1 . Substituting z = −(x + y) into
K4 = x3y + y3z + z3x, we find that lB1 and K4 have common points where
lB1∗ := −(x2 + xy + y2)2 = 0. This yields the result that the fixed points vB1,1

and vB1,2 are the only common points of lB1 and K4. Both points are solutions
of lB1∗ = 0 with multiplicity 2, implying that lB1 is tangent to K4 at the two
points. By the properties of symmetry this must hold for all the similar lines
through fixed points of groups of order 3 that are on the Klein quartic curve.

We cite Bezout’s Theorem in order to introduce a further proposition.

Theorem 4.3.2. (Bezout’s Theorem) Let C and C ′ be two curves in P2 without
common components, of degree d and d′ respectively. Then the number of points
of C ∩ C ′, counting intersection multiplicity, equals dd′.

By Bezout’s theorem, there are (at most) 56 intersection points of K4 and K14.
These are the 56 points of our orbit, yielding the 28 bitangents. Furthermore, it
is known from the theory of algebraic plane curves that a general quartic plane
curve has 28 bitangents, so these are all the bitangents of the Klein quartic
curve.

Proposition 4.3.3. The lines through the two fixed points of a group of order 3
that intersect the Klein quartic curve are bitangents of the curve, and these are
all the bitangents of the Klein quartic curve. No other points of the lines are on
the curve.
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4.4. Conjugate cyclic groups of order 4

4.4 Conjugate cyclic groups of order 4

The cyclic groups of order 4, with generators, are as follows:

Table 4.5: Conjugate cyclic subgroups of order 4 of G with a generator

Name Generator Name Generator Name Generator
C1 RTS C8 RS4 C15 RS3RS4

C2 TSR C9 RSRS5 C16 RS4RS3

C3 TS6R C10 RSRS6 C17 RS4RS5

C4 SRT C11 S2RS2 C18 RS5RS
C5 STRS C12 RS2RS3 C19 RS5RS4

C6 S4T 2RS4 C13 RS2RS6 C20 RS6RS
C7 RS3 C14 RS3RS2 C21 RS6RS2

To verify that the subgroups are conjugate, we can use the same procedure
as in section 4.3. We just leave as an example conjugation of C1 by the
generators of G. Repeated conjugation by R yields the subset {C1, C2}. When
it comes to T we get the subset {C1, C3, C8}. Lastly, repeated conjugation by
S produces the subset {C1, C4, C6, C14, C15, C16, C17}.

The groups all have the eigenvalues i, −i and 1. None of the fixed points
satisfies K4 = 0, and they are thus not on the Klein quartic curve. We find
that the fixed points with eigenvalues i and −i are on the sextic curve.

Let vC1,1 =

 −0.1274 + 0.5583i
−0.3444 + 0.1659i

0.7252

 be the fixed point of C1 with eigen-

value i. Then K6 = 5x2y2z2 − xy5 − yz5 − zx5

= 5(−0.1274 + 0.5583i)2(−0.3444 + 0.1659i)2(0.7252)2

− (−0.1274 + 0.5583i)(−0.3444 + 0.1659i)5

− (−0.3444 + 0.1659i)(0.7252)5

− (0.7252)(−0.1274 + 0.5583i)5

= 0.

None of the fixed points are on the degree-14 curve, but they are all on
the degree-21 curve.

In the following table we see the products of each generator with each fixed
point, where vC1,1 is the fixed point with eigenvalue i for C1, vC1,2 the fixed
point with eigenvalue −i for C1, and similarly for the other subgroups.
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Table 4.6: Relations between the fixed points on the sextic curve of the cyclic
subgroups of order 4 of G and the group generators

vCi,j RvCi,j SvCi,j TvCi,j

vC1,1 vC2,1 vC4,1 vC3,2

vC1,2 vC2,2 vC4,2 vC3,1

vC2,1 vC1,1 vC12,1 vC7,2

vC2,2 vC1,2 vC12,2 vC7,1

vC3,1 vC4,2 vC5,2 vC8,2

vC3,2 vC4,1 vC5,1 vC8,1

vC4,1 vC3,2 vC15,1 vC2,1

vC4,2 vC3,1 vC15,2 vC2,2

vC5,1 vC5,1 vC2,1 vC11,1

vC5,2 vC5,2 vC2,2 vC11,2

vC6,1 vC11,1 vC17,1 vC5,1

vC6,2 vC11,2 vC17,2 vC5,2

vC7,1 vC8,2 vC20,1 vC4,2

vC7,2 vC8,1 vC20,2 vC4,1

vC8,1 vC7,2 vC21,1 vC1,1

vC8,2 vC7,1 vC21,2 vC1,2

vC9,1 vC13,2 vC7,1 vC16,1

vC9,2 vC13,1 vC7,2 vC16,2

vC10,1 vC10,2 vC8,1 vC17,1

vC10,2 vC10,1 vC8,2 vC17,2

vC11,1 vC6,1 vC9,2 vC6,1

vC11,2 vC6,2 vC9,1 vC6,2

vC12,1 vC17,2 vC18,1 vC10,1

vC12,2 vC17,1 vC18,2 vC10,2

vC13,1 vC9,2 vC19,1 vC9,1

vC13,2 vC9,1 vC19,2 vC9,2

vC14,1 vC19,2 vC6,2 vC19,1

vC14,2 vC19,1 vC6,1 vC19,2

vC15,1 vC15,2 vC14,2 vC18,1

vC15,2 vC15,1 vC14,1 vC18,2

vC16,1 vC16,2 vC1,2 vC13,1

vC16,2 vC16,1 vC1,1 vC13,2

vC17,1 vC12,2 vC16,2 vC12,1

vC17,2 vC12,1 vC16,1 vC12,2

vC18,1 vC21,2 vC13,2 vC21,1

vC18,2 vC21,1 vC13,1 vC21,2

vC19,1 vC14,2 vC3,1 vC20,1

vC19,2 vC14,1 vC3,2 vC20,2

vC20,1 vC20,2 vC10,2 vC14,1

vC20,2 vC20,1 vC10,1 vC14,2

vC21,1 vC18,2 vC11,1 vC15,1

vC21,2 vC18,1 vC11,2 vC15,2
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Again we see that the generators of G maps the fixed points to every other
fixed point in the set, and nowhere else. We conclude that the 42 fixed points
on the sextic curve form an orbit.

Proposition 4.4.1. The cyclic groups of order 4 each have 3 fixed points, of
which 2 are on the sextic curve. The 42 fixed points on the curve form an orbit.

4.5 Conjugate groups of order 2

The generators of the order 2 groups are the squares of the generators in the
table above, but for completeness and since we have found some simplifactions,
we leave a table of generators:

Table 4.7: Conjugate subgroups of order 2 of G with a generator

Name Generator Name Generator Name Generator
D1 RS2RS D8 (RS4)2 D15 (RS3RS4)2

D2 SRS6 D9 S3RS4RS D16 (RS4RS3)2

D3 S6RS D10 S2RS3RS D17 (RS4RS5)2

D4 RS5RS6 D11 RT D18 S3RS4

D5 R D12 S2RS5 D19 S5RS2

D6 TR D13 S4RS3 D20 SRS3RS2

D7 (RS3)2 D14 (RS3RS2)2 D21 SRS4RS4

Conjugation follows the pattern of the groups of order 4 in section 4.4. To
show this, let M be an element of G that generates a cyclic 4-group, and
conjugate M by an element g such that gMg−1 = N . Then N = g−1Mg and
N2 = g−1M2g. It follows that M2 is an element that generates a 2-group and
that gM2g−1 = N2.

The groups have the eigenvalue 1 with multiplicity 1 and the eigenvalue −1
with multiplicity 2. This means that any point on the line through the fixed
points with eigenvalue −1 is fixed; we have a fixed line. To show this, we let
vD2,1 and vD2,2 be the two fixed points of D2 with eigenvalue −1. Any point
on the line through them can be expressed as vD2,1 + k(vD2,2 − vD2,1), where
k ∈ C is a constant. In this case we have:

vD2,1 =

 0.8919
−0.0919− 0.4028i
0.1657 + 0.0798i


vD2,2 =

 −0.0475− 0.2199i
0.1349 + 0.3638i

0.8938


The line:
vD2 := vD2,1 + k(vD2,2 − vD2,1)
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=

 0.8919
−0.0919− 0.4028i
0.1657 + 0.0798i

+ k

 −0.9394− 0.2199i
0.2268 + 0.7666i
0.7281− 0.0798i



=

 0.8919− k(0.9394 + 0.2199i)
−0.0919− 0.4028i+ k(0.2268 + 0.7666i)
0.1657 + 0.0798i+ k(0.7281− 0.0798i)



We multiply vD2 with D2 from the left:

D2vD2 = −0.5910 0.1640− 0.7185i −0.2955 + 0.1423i
0.1640 + 0.7185i 0.3280 −0.3685− 0.4621i
−0.2955− 0.1423i −0.3685 + 0.4621i −0.7370


·

 0.8919− k(0.9394 + 0.2199i)
−0.0919− 0.4028i+ k(0.2268 + 0.7666i)
0.1657 + 0.0798i+ k(0.7281− 0.0798i)


=

 −0.8919 + k(0.9394 + 0.2199i)
0.0919 + 0.4027i− k(0.2268 + 0.7666i)
−0.1657− 0.0798i− k(0.7281− 0.0798i)


= (−1)

 0.8919− k(0.9394 + 0.2199i)
−0.0919− 0.4027i+ k(0.2268 + 0.7666i)
0.1657 + 0.0798i+ k(0.7281− 0.0798i)


We get the expected eigenvalue of −1, and conclude that any point on the line
is a fixed point. Again we have assumed that the lack of accuracy is due to the
insufficient power of [MAT21].

None of the fixed points with eigenvalue 1 of the groups of order 2 are on the
quartic, sextic or degree-14 curves. However, they are all on the degree-21 curve.

Solving the Klein quartic equation with the parametrization of vD2 above,
i.e. xvD2

= 0.8919 − k(0.9394 + 0.2199i), yvD2
= −0.0919 − 0.4028i +

k(0.2268 + 0.7666i) and zvD2
= 0.1657 + 0.0798i + k(0.7281 − 0.0798i) in

x3
vD2

yvD2
+ y3

vD2
zvD2

+ z3
vD2

xvD2
= 0, [MAT21] gives us four distinct solution.

Proposition 4.5.1. The fixed lines of the groups of order 2 intersect the Klein
quartic curve in four points.

[Elk99] shows that these 84 points is an orbit, and the intersection of the zero
sets of K4 and K21.
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4.6 Two classes of 7 Klein 4-groups

These groups consist of 3 matrices from 3 different groups of order 2, other then
the identity matrix. Following Klein’s exposition for the case of PSL(2,7), the
corresponding subgroups of G are:
E1 := D1, D2, D10
E2 := D1, D7, D19
E3 := D2, D8, D14
E4 := D3, D4, D20
E5 := D3, D7, D17
E6 := D4, D8, D12
E7 := D5, D10, D15
E8 := D5, D16, D20
E9 := D6, D9, D19
E10 := D6, D12, D21
E11 := D9, D13, D16
E12 := D11, D13, D14
E13 := D11, D17, D18
E14 := D15, D18, D21

Each 2-group is in two of the above 4-groups, one from each class. For instance
E7 and E8, both containing D5, must be from different classes.
Sorting the Klein 4-groups into the two classes, one class consists of E1, E5,
E6, E8, E9, E12 and E14, and the other class consists of the rest of the Klein
4-groups.
Conjugation of E1 by R gives us RD1R−1 = D2, RD2R−1 = D1 and
RD10R−1 = D10, so RE1R−1 = E1. Conjugation by T yields TD1T−1 = D3,
TD2T−1 = D7 and TD10T−1 = D17, which means that TE1T−1 = E5.
Finally, conjugation by S results in SD1S−1 = D4, SD2S−1 = D12 and
SD10S−1 = D8, yielding SE1S−1 = E6. As we can see, E1, E5 and E6 belong
to the same class.

Associated to each 2-group there is a fixed point and a fixed line. In the
following, let P5 be the fixed point of D5 and L5 be the fixed line of D5, and
let the fixed points and lines of the other 2-groups be assigned in the same way.
The eigenvectors defining the fixed lines are those whose corresponding
eigenvalues equal −1. Now D10P5 = −P5 and D15P5 = −P5, implying
that P5 is a point both on L10 and L15. We check this by parametrizing the
lines.

The relevant eigenvectors of D10 are

vD10,1 =

 0.9319
−0.1097 + 0.1376i
−0.0706 + 0.3091i

 and vD10,2 =

 0.1617 + 0.1042i
0.8211

−0.4717 + 0.2575i

,
and for D15 they are

vD15,1 =

 0.3614 + 0.4532i
−0.1134− 0.4970i

0.6357

 and vD15,2 =

 −0.2329 + 0.0040i
0.8953

−0.0963− 0.3673i

.
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For convenience of calculation we divide the coordinates of each vector by the
third coordinate, yielding

vD10,1 =

 0.9319
−0.1097 + 0.1376i
−0.0706 + 0.3091i

 =

 −0.6545− 2.8654i
0.5001 + 0.2407i

1

,

vD10,2 =

 0.1617 + 0.1042i
0.8211

−0.4717 + 0.2575i

 =

 −0.1712− 0.3144i
−1.3411− 0.7321i

1

,

vD15,1 =

 0.3614 + 0.4532i
−0.1134− 0.4970i

0.6357

 =

 0.5685 + 0.7129i
−0.1784− 0.7818i

1

,
and

vD15,2 =

 −0.2329 + 0.0040i
0.8953

−0.0963− 0.3673i

 =

 0.1454− 0.5960i
−0.5980 + 2.2807i

1

.
Parametrizing the fixed lines of D10 and D15, we get:
L10 = vD10,1 + s(vD10,2 − vD10,1)

=

 −0.6545− 2.8654i
0.5001 + 0.2407i

1



+ s(

 −0.1712− 0.3144i
−1.3411− 0.7321i

1

−
 −0.6545− 2.8654i

0.5001 + 0.2407i
1

)

and

L15 = vD15,1 + t(vD15,2 − vD15,1)

=

 0.5685 + 0.7129i
−0.1784− 0.7818i

1


+ t(

 0.1454− 0.5960i
−0.5980 + 2.2807i

1

−
 0.5685 + 0.7129i
−0.1784− 0.7818i

1

).

Let p =

 xp
yp
zp

 = L10 ∩ L15.

Then xp = −0.6545− 2.8654i+ s(−0.1712− 0.3144i− (−0.6545− 2.8654i))
= 0.5685 + 0.7129i+ t(0.1454− 0.5960i− (0.5685 + 0.7129i)),
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4.6. Two classes of 7 Klein 4-groups

yp = 0.5001 + 0.2407i+ s(−1.3411− 0.7321i− (0.5001 + 0.2407i))
= −0.1784− 0.7818i+ t(−0.5980 + 2.2807i− (−0.1784− 0.7818i)),
and finally zp = 1.

Cleaning up the expressions we have that
xp = −0.6545− 2.8654i+ s(0.4833 + 2.5510i)
= 0.5685 + 0.7129i+ t(−0.4231− 1.3089i)
and yp = 0.5001 + 0.2407i+ s(−1.8412− 0.9728i)
= −0.1784− 0.7818i+ t(−0.4196 + 3.0625i).

Solving the two equations xp and yp for t, we get that

t = (−0.6545−2.8654i)−(0.5685+0.7129i)+s(0.4833+2.5510i)
−0.4231−1.3089i

= (0.5001+0.2407i)−(−0.1784−0.7818i)+s(−1.8412−0.9728i)
−0.4196+3.0625i .

Solving this for s, yields

s = (−0.4231−1.3089i)((0.5001+0.2407i)−(−0.1784−0.7818i))−(−0.4196+3.0625i)((−0.6545−2.8654i)−(0.5685+0.7129i))
(0.4833+2.5510i)(−0.4196+3.0625i)−(−1.8412−0.9728i)(−0.4231−1.3089i)

= 1.2206− 0.5142i.

It follows that xp = 1.2471−0.001i, yp = −2.2475 and p =

 1.2471− 0.001i
−2.2475

1

.
Comparing this to

P5 =

 −0.4522
0.8149
−0.3626

 =

 1.2471
−2.2474

1


and taking into account the inaccuracies introduced by the limitations of our
software, this seems to confirm that L10 ∩ L15 = P5. Proceeding in the same
way for the other points and lines of E7, we find that L5 ∩ L15 = P10 and
L5 ∩ L10 = P15.

Similarly for E8, L5 ∩ L16 = P20, L5 ∩ L20 = P16, and L16 ∩ L20 = P5. The
results hold for both classes. We conclude that the fixed points of the 2-groups
are also fixed points of the dihedral abelian 4-groups they are part of. The
fixed points are the vertices of triangles where the sides are segments of the
fixed lines of the 2-groups, as illustrated in figure 4.1. We have seen before that
these fixed points are on the degree-21 curve.
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4.6. Two classes of 7 Klein 4-groups

Figure 4.1: The fixed points of E7

P5 P10

P15

L10 L5

L15

Proposition 4.6.1. The fixed points of the dihedral abelian 4-groups are the
fixed points of the 2-groups they consist of. There are three fixed points for each
dihedral abelian 4-group. The fixed points are not on the Klein quartic curve,
the sextic curve or the degree-14 curve. They are on the degree-21 curve.

Since every 2-group is part of two Klein 4-groups, we know that every line is
part of two triangles like the one in figure 4.1. This means that every one of the
fixed lines of the 2-groups intersects four different fixed points on the degree-21
curve. For instance, since D1 is part of E1 and E2, the fixed points of the
other 2-groups in those Klein 4-groups must be on the fixed line L1 of D1. We
list which points are on which lines:
L1: P2, P7, P10, P19
L2: P1, P8, P10, P14
L3: P4, P7, P17, P20
L4: P3, P8, P12, P20
L5: P10, P15, P16, P20
L6: P9, P12, P19, P21
L7: P1, P3, P17, P19
L8: P2, P4, P12, P14
L9: P6, P13, P16, P19
L10: P1, P2, P5, P15
L11: P13, P14, P17, P18
L12: P4, P6, P8, P21
L13: P9, P11, P14, P16
L14: P2, P8, P11, P13
L15: P5, P10, P18, P21
L16: P5, P9, P13, P20
L17: P3, P7, P11, P18
L18: P11, P15, P17, P21
L19: P1, P6, P7, P9
L20: P3, P4, P5, P16
L21: P6, P12, P15, P18
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4.7. Dihedral groups of order 6

The other way around, every fixed point is on four different lines, for instance
the point P1 is on L2, L7, L10 and L19.

4.7 Dihedral groups of order 6

These groups consist of the matrices of a group of order 3 together with three
matrices from three different groups of order 2:
F1 := B1, D5, D6, D11
F2 := B2, D3, D14, D21
F3 := B3, D8, D15, D19
F4 := B4, D4, D10, D13
F5 := B5, D1, D18, D20
F6 := B6, D7, D12, D16
F7 := B7, D2, D9, D17
F8 := B8, D8, D9, D17
F9 := B9, D7, D13, D21
F10 := B10, D10, D11, D12
F11 := B11, D11, D19, D20
F12 := B12, D3, D13, D15
F13 := B13, D2, D16, D18
F14 := B14, D5, D12, D17
F15 := B15, D5, D14, D19
F16 := B16, D6, D14, D20
F17 := B17, D6, D10, D17
F18 := B18, D4, D9, D15
F19 := B19, D1, D16, D21
F20 := B20, D8, D16, D17
F21 := B21, D7, D14, D15
F22 := B22, D3, D9, D10
F23 := B23, D2, D20, D21
F24 := B24, D4, D18, D19
F25 := B25, D1, D12, D13
F26 := B26, D1, D4, D11
F27 := B27, D2, D3, D6
F28 := B28, D5, D7, D8

All these subgroups are conjugate. Conjugation follows the same pattern as
the one described in section 4.3 for the groups of order 3. By this we mean
that conjugation of one of these dihedral groups by one of the generators of
G yields the dihedral group which contains the 3-group which is conjugate to
the 3-group in the first dihedral group by the same generator. In particular, to
follow the example in 4.3, (RTS)[F1](RTS)−1 = F20.

We examine F1, consisting of B1, D5, D6 and D11. B1 has three fixed points;

vB1,1 =

 e4πi/3

e2πi/3

1

 and vB1,2 =

 e2πi/3

e4πi/3

1

, both on the Klein quartic curve,

29



4.7. Dihedral groups of order 6

and vB1,3 =

 1
1
1

 not on the curve.

The fixed points of D5, D6 and D11 respectively are P5 =

 1.2471
−2.2474

1

,
P6 =

 −1.8021
0.8019

1

 and P11 =

 −0.4450
−0.5549

1

.
We see that the fixed points of the 2-groups are all distinct from each other and
from the fixed points of the 3-group. The only possibility for any fixed points
of F1 is if any of the fixed points of B1 is on all the fixed lines of the 2-groups.
We know that this means that multiplying a fixed point from the left with each
of the generating matrices of the 2-groups yields the negative of the fixed point.
Doing this, we get D5vB1,1 = D6vB1,1 = D11vB1,1 = vB1,2 6= −vB1,1 ,
D5vB1,2 = D6vB1,2 = D11vB1,2 = vB1,1 6= −vB1,2 ,
and finally D5vB1,3 = D6vB1,3 = D11vB1,3 = −vB1,3 .
We see that vB1,3 is on all three lines. However it is not on the Klein quartic
curve.

Let us check in another way if vB1,3 is on L5:

L5 = vD5,1 + k(vD5,2 − vD5,1)

=

 −4.8499
−2.2463

1

+ k(

 −0.0686− 0.2127i
0.4069− 0.1181i

1

−
 −4.8499
−2.2463

1

)

=

 −4.8499 + k(4.7813− 0.2127i)
−2.2463 + k(2.6532− 0.1181i)

1

.
Solving for the first coordinate:

−4.8499 + k(4.7813− 0.2127i) = 1

k = 1+4.8499
4.7813−0.2127i = 1.2211 + 0.0543i.

Applying the result to the second coordinate:

−2.2463 + k(2.6532− 0.1181i)
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= −2.2463 + (1.2211 + 0.0543i)(2.6532− 0.1181i)
= 0.9999− 0.0001i.

Taking into account the inaccuracies, this also indicates that vB1,3 is on the
line.

In the same way, vB2,3 is a fixed point of F2 since D3vB2,3 = D14vB2,3 =
D21vB2,3 = −vB2,3 . vB1,3 and vB2,3 are not on either of the quartic, sextic or
degree-14 curves, but they are both on the degree-21 curve. All the groups in
this category are in the same class, so we draw a general conclusion.

Proposition 4.7.1. The 28 dihedral nonabelian groups of order 6 each has one
fixed point. The fixed points are not on the Klein quartic curve, the sextic curve
or the degree-14 curve. They are on the degree-21 curve.

In table 4.8 we see what happens when we multiply the generator of a subgroup
of F1 with the fixed points of the subgroups B1, D1, D6 and D11. In the table
vD5 , vD6 or vD11 is any fixed point of D5, D6 or D11 respectively, whether it
is an isolated fixed point or a point on a fixed line. The relation is the same.
The columns under each fixed point consists of the points the fixed points are
sent to by the action of the different subgroups of F1, thus giving us the orbits
of F1 in the complex projective plane.

Table 4.8: Orbits of the fixed points of the subgroups of F1
vB1,1 vB1,2 vB1,3 vD5 vD6 vD11

B1 vB1,1 vB1,2 vB1,3 vD11 vD5 vD6

D5 vB1,2 vB1,1 vB1,3 vD5 vD11 vD6

D6 vB1,2 vB1,1 vB1,3 vD11 vD6 vD5

D11 vB1,2 vB1,1 vB1,3 vD6 vD5 vD11

We see that F1 has orbits of order 1, 2 and 3.

31



4.8. Dihedral groups of order 8

4.8 Dihedral groups of order 8

To construct these, take a cyclic group of order 4 and add to it all the matrices
that appear together with its element of order 2 in the Klein 4-groups:
H1 := C1, D2, D7, D10, D19
H2 := C2, D1, D8, D10, D14
H3 := C3, D4, D7, D17, D20
H4 := C4, D3, D8, D12, D20
H5 := C5, D10, D15, D16, D20
H6 := C6, D9, D12, D19, D21
H7 := C7, D1, D3, D17, D19
H8 := C8, D2, D4, D12, D14
H9 := C9, D6, D13, D16, D19
H10 := C10, D1, D2, D5, D15
H11 := C11, D13, D14, D17, D18
H12 := C12, D4, D6, D8, D21
H13 := C13, D9, D11, D14, D16
H14 := C14, D2, D8, D11, D13
H15 := C15, D5, D10, D18, D21
H16 := C16, D5, D9, D13, D20
H17 := C17, D3, D7, D11, D18
H18 := C18, D11, D15, D17, D21
H19 := C19, D1, D6, D7, D9
H20 := C20, D3, D4, D5, D16
H21 := C21, D6, D12, D15, D18

These subgroups are also all conjugate, and conjugation follows the pattern of
the cyclic 4-groups of section 4.4. For example, conjugation of C1, D2, D7, D10
and D19 respectively by R, we get C2, D1, D8, D10 and D19. This means
that conjugation of H1 by R yields H2, just as conjugation of C1 by R yields
C2. This pattern holds throughout.

We produce a table showing the orbits of the fixed points of the subgroups of
H1.

Table 4.9: Orbits of the fixed points of the subgroups of H1
vC1,1 vC1,2 vC1,3 vD2 vD7 vD10 vD19

C1 vC1,1 vC1,2 vC1,3 vD10 vD19 vD2 vD7

D2 vC1,2 vC1,1 vC1,3 vD2 vD19 vD10 vD7

D7 vC1,2 vC1,1 vC1,3 vD10 vD7 vD2 vD19

D10 vC1,2 vC1,1 vC1,3 vD2 vD19 vD10 vD7

D19 vC1,2 vC1,1 vC1,3 vD10 vD7 vD2 vD19
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We see that H1 has orbits of order 1 and 2, and that vC1,3 is a fixed point for
H1. This is the fixed point of C1 that is not on the Klein quartic curve. It is
on the degree-21 curve however. Since all the groups in this category are of the
same class, we can draw a conclusion.

Proposition 4.8.1. The 21 dihedral nonabelian groups of order 8 each has one
fixed point. The fixed points are not on the Klein quartic curve, the sextic curve
or the degree-14 curve. They are on the degree-21 curve.

4.9 Nonabelian groups of order 21

These subgroups consist of the matrices of a group of order 7 together with
14 matrices from the groups of order 3. Klein describes one such subgroup
in PSL(2,7) as consisting of the matrices

(
1 k
0 1

)
,
(

2 k
0 4

)
and

(
3 k
0 5

)
for

k = 0, 1, ..., 6.

In PSL(2,7) these are the matrices of the subgroups A1′, B1′, B2′, B3′, B4′,
B5′, B6′ and B7′, so for G we can define J1 := A1, B1, B2, B3, B4, B5, B6, B7
as one of these nonabelian groups.

As for conjugation, we have seen in section 4.2 that the 7-groups are conjugate.
Conjugation of A1 by RS6RS yields A8, and conjugation of the remaining
subgroups B1−B7 of J1 by the same element, gives us B19, B24, B7, B12,
B16, B28 and B10 respectively. This is another nonabelian group of order
21, J8. That the same group properties hold for J8 can be seen considering
a relation AB = C for A,B,CεJ1. Conjugation of A, B and C by gεG leads
to gAg−1gBg−1 = gABg−1 = gCg−1. Starting from J8 and conjugating
repeatedly by S returns the remaining nonabelian groups of order 21, so all
these subgroups are conjugate.

We have seen in 4.2 that the fixed points of the subgroups of order 7 are on the
intersection of the quartic and sextic curves, inflection points on both curves.
In 4.3 we saw that two of the fixed points of the 3-groups are on the quartic
curve, but not on the sextic curve. The other fixed points are on the degree-21
curve, but not on any of the other curves we study. Since all of the fixed points
of the 7-groups are on the sextic curve, and none of the fixed points of the
3-groups are, we conclude:

Proposition 4.9.1. None of the 8 nonabelian groups of order 21 have any fixed
points in common.

4.10 Two classes of 7 nonabelian conjugates of the
symmetric group of degree 4

We follow Kleins description of these subgroups in PSL(2,7). We start with a
Klein 4-group and add to it six matrices from three cyclic 4-groups whose second
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degree 4

iterates belong to the Klein 4-group. Then add three pairs of 2-groups that
commute with some 2-group in the Klein 4-group. Finally, add the compositions
of the matrices of the three pairs just mentioned, which yield four new pairs of
matrices from 3-groups. We look more closely at these compositions as described
by Klein. He starts with the Klein 4-group consisting of

(
1 0
0 1

)
,
(

0 −1
1 0

)
,(

3 −2
−2 −3

)
, and

(
2 3
3 −2

)
. The six 2-groups that commute with some 2-

group in the Klein 4-group are
(

2 −3
−3 −2

)
,
(

3 2
2 −3

)
,
(
−1 1
−2 1

)
,
(

1 2
−1 −1

)
,

(
3 −1
3 −3

)
, and

(
−3 −3
1 3

)
. According to Klein, compositions of these matrices,

other then compositions of matrices belonging to the same pair, yield eight
matrices from four different 3-groups. Compositions of matrices from the same
pair already belong to the Klein 4-group we started with. The other eight
matrices in Klein’s example are given as

(
−3 −1
0 2

)
,
(
−2 −1
0 3

)
,
(

2 0
1 −3

)
,

(
3 0
1 −2

)
,
(

0 2
3 1

)
,
(
−1 2
3 0

)
,
(
−1 3
2 0

)
, and

(
0 −3
2 1

)
.

There are in total 24 compositions to consider, and by performing them we get
every one of the eight matrices expected three times, except the last one.
In stead, we have that(

3 2
2 −3

)
·
(
−3 −3
1 3

)

=
(

1 2
−1 −1

)
·
(

3 2
2 −3

)

=
(
−3 −3
1 3

)
·
(

1 2
−1 −1

)
=
(

0 3
2 1

)
.

There seems to be an error or a misprint in Klein’s paper.
Correcting that and considering the corresponding subgroups of G rather
than of PSL(2,7), we can define one of the subgroups in this section as
M8 := E8, C5, C16, C20, D3, D4, D9, D10, D13, D15, B4, B12, B18, B22.
From 4.6 we know that E8 := D5, D16, D20. Since every matrix of D5 is in
C5, every matrix of D16 is in C16 and every matrix of D20 is in C20, we can
simplify and define
M8 := C5, C16, C20, D3, D4, D9, D10, D13, D15, B4, B12, B18, B22.

Conjugation of each of the subgroups making up M8 by S in the same order
as above, returns C2, C1, C10, D5, D15, D7, D8, D19, D14, B2, B15, B21
and B28 respectively. The group containing these subgroups also contains
E1 = D1, D2, D10, so it is natural to designate it asM1. Repetitive conjugation
by S yields all the groups of the class, while the same procedure applied to a
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group in the other class, for example M7 containing E7, gives us the groups of
the other class.

E8 has three fixed points, the ones with eigenvalue 1 for each of the 2-groups
D5, D16 and D20. These are

P5 =

 1.2471
−2.2474

1

, P16 =

 −1.1233 + 1.4090i
−0.1784 + 0.7817i

1


and P20 =

 0.0990− 0.4339i
0.4999− 0.2408i

1

.
These points are fixed points for C5, C16 and C20 by the above.
Multiplication of the generating matrices of the other 2-groups and the 3-groups
in M8 respectively with the three fixed points, yields the following results:

Table 4.10: Orbits of the fixed points of E8
P5 P16 P20

D3 P16 P5 P20

D4 P16 P5 P20

D9 P20 P16 P5

D10 P5 P20 P16

D13 P20 P16 P5

D15 P5 P20 P16

B4 P20 P5 P16

B12 P20 P5 P16

B18 P16 P20 P5

B22 P16 P20 P5

We see that the three fixed points of E8 is an orbit.

We construct the group M7 from the other class. It consists of E7 =
D5, D10, D15 and then also of the cyclic 4-groups C5, C10 and C15. D5
commutes with D16 and D20, D10 commutes with D1 and D2, and D15
commutes with D18 and D21. These are also part of M7. Finally, compositions
of the last six 2-groups show that B5, B13, B19 and B23 belong to M7. By
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checking the products of the subgroups contained in M7 with the three fixed
points of E7, we find the same type of orbits as in the former case.

Proposition 4.10.1. None of the nonabelian conjugates of the symmetric group
of degree 4 have any fixed points in common.

4.11 Two classes of 7 nonabelian conjugates of the
alternating group of degree 4

The alternating group of degree 4 consists of the even permutations of
the symmetric group of degree 4. The even permutations are the identity,
the 3-cycles and the double-transpositions. In our cases, this means
that the alternating group N8 of M8 consists of the elements of E8
(i.e. D5, D16 and D20), B4, B12, B18 and B22. Similarly, N7 :=
E7(D5, D10, D15), B5, B13, B19, B23. Conjugation follows the pattern of the
symmetric groups, in that conjugation by S yields all the alternating groups
of both classes. Checking back with the four bottom rows of table 4.10 we
establish that the fixed points of the Klein 4-groups form three-point orbits
under the alternating groups, and that the alternating groups do not have any
fixed points.

Proposition 4.11.1. None of the nonabelian conjugates of the alternating group
of degree 4 have any fixed points in common.

4.12 Summary

Summing up what we know about the fixed points and orbits on the Klein
quartic curve:

Proposition 4.12.1. The 24 fixed points of the groups of order 7 are on the
curve. They constitute an orbit and is the intersection of the quartic and the
sextic curve.
2 fixed points from each of the 28 groups of order 3 are on the curve. These 56
fixed points constitute an orbit and is the intersection of the quartic and the
degree-14 curve.
The fixed lines of the groups of order 2 intersect the quartic curve in four points
each. These 84 points form an orbit and is the intersection of the quartic and
degree-21 curve.
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CHAPTER 5

Factoring K21

5.1 Examination of some fixed points on K21

As we have seen, every 3-group has three fixed points, with one of these
satisfying K21=0, in total 28 points. Factoring with [MAT21] reveals that K21
can be factored into four factors over Z; one polynomial of degree 3, and three
polynomials of degree 6, which we define as

Q1:=x3 − x2y − 2x2z − 2xy2 + 6xyz − xz2 + y3 − y2z − 2yz2 + z3

Q2:=x6 +5x5y+3x5z+11x4y2 +16x4yz+9x4z2 +13x3y3 +36x3y2z+37x3yz2 +
13x3z3 + 9x2y4 + 37x2y3z + 55x2y2z2 + 36x2yz3 + 11x2z4 + 3xy5 + 16xy4z +
36xy3z2+37xy2z3+16xyz4+5xz5+y6+5y5z+11y4z2+13y3z3+9y2z4+3yz5+z6

Q3:=x6 − 2x5y + 3x5z + 4x4y2 − 5x4yz + 2x4z2 − x3y3 + 8x3y2z + 9x3yz2 −
x3z3 + 2x2y4 + 9x2y3z − x2y2z2 + 8x2yz3 + 4x2z4 + 3xy5 − 5xy4z + 8xy3z2 +
9xy2z3 − 5xyz4 − 2xz5 + y6 − 2y5z + 4y4z2 − y3z3 + 2y2z4 + 3yz5 + z6

Q4:=x6 − 2x5y − 4x5z + 4x4y2 + 2x4yz + 9x4z2 − 8x3y3 − 6x3y2z + 2x3yz2 −
8x3z3 + 9x2y4 + 2x2y3z+ 13x2y2z2−6x2yz3 + 4x2z4−4xy5 + 2xy4z−6xy3z2 +
2xy2z3 + 2xyz4 − 2xz5 + y6 − 2y5z + 4y4z2 − 8y3z3 + 9y2z4 − 4yz5 + z6

In order to find which factor(s) are zero for each point, we calculate every factor
with [MAT21] for every fixed point. In each case we get a complex number.
Determining its distance from 0, we get the results in the following table. The
numbers in the table are the exponent of the result in standard form notation,
so for instance "−16" in the table means that the result is larger than or equal
to 10−16 but smaller than 10−15. b1 designates the fixed point (on K21) of the
3-group B1, and so on.
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Table 5.1: Distance from 0 as calculated by MATLAB

point Q1 Q2 Q3 Q4

b1 -16 1 0 -1
b2 0 -5 -5 -5
b3 0 -5 -5 -4
b4 0 -5 -5 -4
b5 0 -5 -5 -4
b6 0 -5 -5 -4
b7 0 -5 -5 -5
b8 0 0 -8 -4
b9 0 0 -8 -4
b10 -4 -8 0 0
b11 -4 -8 0 0
b12 0 0 -8 -4
b13 0 0 -8 -4
b14 -4 -8 0 0
b15 -4 -8 0 0
b16 -4 -8 0 0
b17 -4 -8 0 0
b18 0 0 -8 -4
b19 0 0 -8 -4
b20 0 -4 -4 -5
b21 0 -4 -4 -5
b22 0 -4 -4 -5
b23 0 -4 -4 -5
b24 0 -4 -4 -5
b25 0 -4 -4 -5
b26 -5 0 0 -9
b27 -5 0 0 -9
b28 -5 0 0 -9

It is hard to tell which points are exactly zero for each factor. Assuming
that -4 or lower indicates a true zero, preliminarily we seem to have one point
(b1) on Q1, twelve points simultaneously on Q2, Q3 and Q4, six points on
Q1 and Q2, six points on Q3 and Q4, and lastly three points on both Q1 and Q4.

5.2 Linear factoring

To find the real symmetries we seem to need a complete factoring of K21 into
linear factors. From [Kle99, p. 304] and [Adl99, p. 265] we learn that K21 is a
product of the fixed lines of the 2-groups. The fixed lines have the eigenvalue
−1, so by multiplying each involution by the fixed points, we can tell that the
fixed point is on the line if the result of the multiplication is the negative of the
fixed point. We get the following allocation:

L1: b5, b19, b25, b26
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L2: b7, b13, b23, b27
L3: b2, b12, b22, b27
L4: b4, b18, b24, b26
L5: b1, b14, b15, b28
L6: b1, b16, b17, b27
L7: b6, b9, b21, b28
L8: b3, b8, b20, b28
L9: b7, b8, b18, b22
L10: b4, b10, b17, b22
L11: b1, b10, b11, b26
L12: b6, b10, b14, b25
L13: b4, b9, b12, b25
L14: b2, b15, b16, b21
L15: b3, b12, b18, b21
L16: b6, b13, b19, b20
L17: b7, b14, b17, b20
L18: b5, b8, b13, b24
L19: b3, b11, b15, b24
L20: b5, b11, b16, b23
L21: b2, b9, b19, b23

There are four points on every line, and three lines through every point, as
follows:

b1: L5, L6, L11
b2: L3, L14, L21
b3: L8, L15, L19
b4: L4, L10, L13
b5: L1, L18, L20
b6: L7, L12, L16
b7: L2, L9, L17
b8: L8, L9, L18
b9: L7, L13, L21
b10: L10, L11, L12
b11: L11, L19, L20
b12: L3, L13, L15
b13: L2, L16, L18
b14: L5, L12, L17
b15: L5, L14, L19
b16: L6, L14, L20
b17: L6, L10, L17
b18: L4, L9, L15
b19: L1, L16, L21
b20: L8, L16, L17
b21: L7, L14, L15
b22: L3, L9, L10
b23: L2, L20, L21
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b24: L4, L18, L19
b25: L1, L12, L13
b26: L1, L4, L11
b27: L2, L3, L6
b28: L5, L7, L8

5.3 Factoring the degree-3 factor

Looking back at table 5.1, we see that b1 is by far the point that comes closest
to zero for a specific factor, namely Q1. We hypothesize that this may be
because b1 is a zero for all the three fixed lines of L5, L6 and L11 simultaneously,
i.e that Q1 is a product of the three lines. To check this, we need to find the

equations of the lines. For any 2-group, let v1 =

 x1
y1
z1

 and v2 =

 x2
y2
z2

 be

the fixed points with eigenvalue −1. Then v :=

 x
y
z

 =

 x1 + k(x2 − x1)
y1 + k(y2 − y1)
z1 + k(z2 − z1)

,
with k ∈ C a constant, is any point on the line.
Let M be the matrix with v1, v2, v respectively as column vectors. Then its

determinant detM =

∣∣∣∣∣∣
x1 x2 x
y1 y2 y
z1 z2 z

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x1 x2 x1 + k(x2 − x1)
y1 y2 y1 + k(y2 − y1)
z1 z2 z1 + k(z2 − z1)

∣∣∣∣∣∣ = 0, which

means that (y1z2−y2z1)x+(x2z1−x1z2)y+(x1y2−x2y1)z = 0 is an expression
for the fixed line.
We utilize this to find the fixed line L5 of D5. The fixed points of D5 with
eigenvalue −1 are

vD5,1 =

 0.8919
0.4131
−0.1839

 and vD5,2 =

 −0.0619− 0.1918i
0.3670− 0.1065i

0.9019

,
so L5 = (0.4131 · 0.9019− (0.3670− 0.1065i)(−0.1839))x
+ ((−0.0619− 0.1918i)(−0.1839)− 0.8919 · 0.9019)y
+ (0.8919(0.3670− 0.1065i)− (−0.0619− 0.1918i)0.4131)z
= (0.4401− 0.0196i)x+ (−0.7930 + 0.0353i)y + (0.3529− 0.0158i)z
= 0.

In the same way we find that
L6 = (−0.8063 + 0.0533i)x+ (0.3589− 0.0237i)y + (0.4475− 0.0296i)z = 0 and
L11 = (−0.3622 + 0.0065i)x+ (−0.4517 + 0.0081i)y + (0.8139− 0.0147i)z = 0.

We calculate the product of the fixed lines of our hypothesis:
L5 · L6 · L11
= (0.4401− 0.0196i)x+ (−0.7930 + 0.0353i)y + (0.3529− 0.0158i)z
· (−0.8063 + 0.0533i)x+ (0.3589− 0.0237i)y + (0.4475− 0.0296i)z
· (−0.3622 + 0.0065i)x+ (−0.4517 + 0.0081i)y + (0.8139− 0.0147i)z
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= (0.1279− 0.0165i)x3 + (−0.1279 + 0.0165i)x2y + (−0.2558 + 0.0331i)x2z
+ (−0.2558 + 0.0331i)xy2 + (0.7674− 0.0992i)xyz + (−0.1279 + 0.0166i)xz2

+ (0.1279− 0.0165i)y3 + (−0.1279 + 0.0165i)y2z + (−0.2558 + 0.0331i)yz2

+ (0.1279− 0.0166i)z3

Multiplying our expression for Q1 by a factor of (0.1279− 0.0165i), the coeffi-
cient of x3 in the product above, we get:
= (0.1279− 0.0165i)x3 + (−0.1279 + 0.0165i)x2y + (−0.2558 + 0.0330i)x2z
+ (−0.2558 + 0.0330i)xy2 + (0.7674− 0.0990i)xyz + (−0.1279 + 0.0165i)xz2

+ (0.1279− 0.0165i)y3 + (−0.1279 + 0.0165i)y2z + (−0.2558 + 0.0330i)yz2

+ (0.1279− 0.0165i)z3

Taking into account the compounded inaccuracies inherent in many consecutive
MATLAB calculations limited to four decimals, we conclude that Q1 is a
product of the three lines L5, L6 and L11.

5.4 Equations for the fixed lines

Following the same method, we derive all the 21 fixed lines.
They are:

L1: (-0.5481 + 0.2041i)x+(0.0811 - 0.2474i)y+(0.0428 + 0.3217i)z=0
L2: (-0.0755 - 0.4311i)x+(-0.7875 - 0.0402i)y+(0.2045 + 0.2851i)z=0
L3: (-0.1218 + 0.2800i)x+(-0.5407 - 0.1017i)y+(0.1853 - 0.1600i)z=0
L4: (-0.7210 + 0.0393i)x+(0.2137 + 0.2399i)y+(-0.1104 - 0.3852i)z=0
L5: (0.4401 - 0.0196i)x+(-0.7930 + 0.0353i)y+(0.3529 - 0.0158i)z=0
L6: (-0.8063 + 0.0533i)x+(0.3589 - 0.0237i)y+(0.4475 - 0.0296i)z=0
L7: (-0.2110 - 0.2632i)x+(0.0946 + 0.4099i)y+(0.7579 - 0.0018i)z=0
L8: (-0.2117 + 0.2915i)x+(0.0801 - 0.4420i)y+(0.8087 - 0.0366i)z=0
L9: (0.2977 + 0.1329i)x+(-0.2441 + 0.3249i)y+(0.7321 - 0.0211i)z=0
L10: (0.0743 - 0.3470i)x+(0.3960 - 0.1973i)y+(0.7973 - 0.0108i)z=0
L11: (-0.3622 + 0.0065i)x+(-0.4517 + 0.0081i)y+(0.8139 - 0.0147i)z=0
L12: (-0.0879 + 0.4174i)x+(-0.4691 + 0.6090i)y+(0.2178 + 0.2638i)z=0
L13: (0.2624 - 0.3661i)x+(-0.8105 + 0.0417i)y+(-0.3331 - 0.1397i)z=0
L14: (-0.8100 - 0.0219i)x+(-0.0707 - 0.3537i)y+(-0.3997 - 0.2060i)z=0
L15: (-0.7408 + 0.0895i)x+(-0.2797 + 0.1789i)y+(0.2952 + 0.2905i)z=0
L16: (-0.7922 + 0.0227i)x+(-0.3220 - 0.1438i)y+(0.2643 - 0.3516i)z=0
L17: (-0.7967 + 0.0868i)x+(-0.0412 + 0.3543i)y+(-0.3775 + 0.2352i)z=0
L18: (0.3186 + 0.3035i)x+(-0.7855 + 0.1080i)y+(-0.2941 + 0.1949i)z=0
L19: (-0.4050 - 0.1983i)x+(-0.8125 - 0.0052i)y+(-0.0782 - 0.3531i)z=0
L20: (0.1089 + 0.3265i)x+(0.4030 + 0.1477i)y+(0.7698 - 0.0755i)z=0
L21: (0.3281 - 0.1531i)x+(-0.2771 - 0.3564i)y+(0.8134 + 0.0100i)z=0
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5.5 Factoring the degree-6 factors

We have seen that the product of the fixed lines of D5, D6 and D11 is the
degree-3 factor Q1. We expect the remaining 18 fixed lines to consist of three
sets of six lines each, where the product of lines in each set is a degree-6 factor.
Looking back at table 5.1, we seem to have clear and similar zeros for Q3 for
the points b8, b9, b12, b13, b18 and b19. We examine the lines going through
these points:

b8: L8, L9, L18
b9: L7, L13, L21
b12: L3, L13, L15
b13: L2, L16, L18
b18: L4, L9, L15
b19: L1, L16, L21

We notice that six lines occur twice in the list above; L9, L13, L15, L16, L18
and L21. We hypothesize that the product of these lines is the degree-6 factor
Q3. Initially we find that the product of the x-coefficients of the six lines
is equal to the product of the y-coefficients and equal to the product of the
z-coefficients. This means that the coefficients of x6, y6 and z6 in the product
are equal, as they must be in Q3. Performing the multiplication of the six lines,
we get:

L9 · L13 · L15 · L16 · L18 · L21

= ((0.2977 + 0.1329i)x+ (−0.2441 + 0.3249i)y + (0.7321− 0.0211i)z)
· ((0.2624− 0.3661i)x+ (−0.8105 + 0.0417i)y + (−0.3331− 0.1397i)z)
· ((−0.7408 + 0.0895i)x+ (−0.2797 + 0.1789i)y + (0.2952 + 0.2905i)z)
· ((−0.7922 + 0.0227i)x+ (−0.3220− 0.1438i)y + (0.2643− 0.3516i)z)
· ((0.3186 + 0.3035i)x+ (−0.7855 + 0.1080i)y + (−0.2941 + 0.1949i)z)
· ((0.3281− 0.1531i)x+ (−0.2771− 0.3564i)y + (0.8134 + 0.0100i)z)

= (0.0130− 0.0048i)x6 + (−0.0260 + 0.0096i)x5y + (0.0389− 0.0144i)x5z
+ (0.0519− 0.0191i)x4y2 + (−0.0649 + 0.0239i)x4yz + (0.0259− 0.0096i)x4z2

+ (−0.0130 + 0.0048i)x3y3 + (0.1038− 0.0383i)x3y2z + (0.1168− 0.0431i)x3yz2

+ (−0.0130 + 0.0048i)x3z3 + (0.0259− 0.0096i)x2y4 + (0.1168− 0.0431i)x2y3z
+ (−0.0130 + 0.0048i)x2y2z2 + (0.1038− 0.0383i)x2yz3 + (0.0519− 0.0191i)x2z4

+ (0.0389− 0.0144i)xy5 + (−0.0649 + 0.0239i)xy4z + (0.1038− 0.0383i)xy3z2

+ (0.1168− 0.0431i)xy2z3 + (−0.0649 + 0.0239i)xyz4 + (−0.0260 + 0.0096i)xz5

+ (0.0130− 0.0048i)y6 + (−0.0259 + 0.0096i)y5z + (0.0519− 0.0191i)y4z2

+ (−0.0130 + 0.0048i)y3z3 + (0.0259− 0.0096i)y2z4 + (0.0389− 0.0144i)yz5

+ (0.0130− 0.0048i)z6
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Multiplying our expression for Q3 by a factor of (0.0130− 0.0048i), the coeffi-
cient of x6 in the product above, we get:

(0.0130− 0.0048i)x6 + (−0.0260 + 0.0096i)x5y + (0.0390− 0.0144i)x5z
+ (0.0520− 0.0192i)x4y2 + (−0.0650 + 0.0240i)x4yz + (0.0260− 0.0096i)x4z2

+ (−0.0130 + 0.0048i)x3y3 + (0.1040− 0.0384i)x3y2z + (0.1170− 0.0432i)x3yz2

+ (−0.0130 + 0.0048i)x3z3 + (0.0260− 0.0096i)x2y4 + (0.1170− 0.0432i)x2y3z
+ (−0.0130 + 0.0048i)x2y2z2 + (0.1040− 0.0384i)x2yz3 + (0.0520− 0.0192i)x2z4

+ (0.0390− 0.0144i)xy5 + (−0.0650 + 0.0240i)xy4z + (0.1040− 0.0384i)xy3z2

+ (0.1170− 0.0432i)xy2z3 + (−0.0650 + 0.0240i)xyz4 + (−0.0260 + 0.0096i)xz5

+ (0.0130− 0.0048i)y6 + (−0.0260 + 0.0096i)y5z + (0.0520− 0.0192i)y4z2

+ (−0.0130 + 0.0048i)y3z3 + (0.0260− 0.0096i)y2z4 + (0.0390− 0.0144i)yz5

+ (0.0130− 0.0048i)z6

By the same reasoning as for Q1, we claim that Q3 is the product of the six
lines L9, L13, L15, L16, L18 and L21.

Looking at table 5.1 again, we have clear and similar zeros for Q2 for the points
b10, b11, b14, b15, b16 and b17. We examine the lines going through these points:

b10: L10, L11, L12
b11: L11, L19, L20
b14: L5, L12, L17
b15: L5, L14, L19
b16: L6, L14, L20
b17: L6, L10, L17

All the lines occur twice in this list, but we know that L5, L6 and L11 make up
Q1. Checking the product of the remaining six lines L10, L12, L14, L17, L19
and L20, we find that the coefficients of x6, y6 and z6 in the product are equal
by the method we used before, and perform the full multiplication. We get:

L10 · L12 · L14 · L17 · L19 · L20

= ((0.0743− 0.3470i)x+ (0.3960− 0.1973i)y + (0.7973− 0.0108i)z)
· ((−0.0879 + 0.4174i)x+ (−0.4691 + 0.6090i)y + (0.2178 + 0.2638i)z)
· ((−0.8100− 0.0219i)x+ (−0.0707− 0.3537i)y + (−0.3997− 0.2060i)z)
· ((−0.7967 + 0.0868i)x+ (−0.0412 + 0.3543i)y + (−0.3775 + 0.2352i)z)
· ((−0.4050− 0.1983i)x+ (−0.8125− 0.0052i)y + (−0.0782− 0.3531i)z)
· ((0.1089 + 0.3265i)x+ (0.4030 + 0.1477i)y + (0.7698− 0.0755i)z)

= (0.0069− 0.0136i)x6 + (0.0346− 0.0680i)x5y + (0.0207− 0.0408i)x5z
+ (0.0760− 0.1496i)x4y2 + (0.1106− 0.2176i)x4yz + (0.0622− 0.1224i)x4z2

+ (0.0899− 0.1768i)x3y3 + (0.2489− 0.4896i)x3y2z + (0.2557− 0.5032i)x3yz2
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+ (0.0898− 0.1768i)x3z3 + (0.0622− 0.1224i)x2y4 + (0.2558− 0.5032i)x2y3z
+ (0.3802− 0.7480i)x2y2z2 + (0.2489− 0.4897i)x2yz3 + (0.0760− 0.1497i)x2z4

+ (0.0207− 0.0408i)xy5 + (0.1106− 0.2176i)xy4z + (0.2489− 0.4896i)xy3z2

+ (0.2558− 0.5033i)xy2z3 + (0.1106− 0.2176i)xyz4 + (0.0346− 0.0680i)xz5

+ (0.0069− 0.0136i)y6 + (0.0346− 0.0680i)y5z + (0.0761− 0.1496i)y4z2

+ (0.0899− 0.1768i)y3z3 + (0.0622− 0.1224i)y2z4 + (0.0207− 0.0408i)yz5

+ (0.0069− 0.0136i)z6

Multiplying our expression for Q2 by a factor of (0.0069− 0.0136i), the coeffi-
cient of x6 in the product above, we get:

(0.0069− 0.0136i)x6 + (0.0345− 0.0680i)x5y + (0.0207− 0.0408i)x5z
+ (0.0759− 0.1496i)x4y2 + (0.1104− 0.2176i)x4yz + (0.0621− 0.1224i)x4z2

+ (0.0897− 0.1768i)x3y3 + (0.2484− 0.4896i)x3y2z + (0.2553− 0.5032i)x3yz2

+ (0.0897− 0.1768i)x3z3 + (0.0621− 0.1224i)x2y4 + (0.2553− 0.5032i)x2y3z
+ (0.3795− 0.7480i)x2y2z2 + (0.2484− 0.4896i)x2yz3 + (0.0759− 0.1496i)x2z4

+ (0.0207− 0.0408i)xy5 + (0.1104− 0.2176i)xy4z + (0.2484− 0.4896i)xy3z2

+ (0.2553− 0.5032i)xy2z3 + (0.1104− 0.2176i)xyz4 + (0.0345− 0.0680i)xz5

+ (0.0069− 0.0136i)y6 + (0.0345− 0.0680i)y5z + (0.0759− 0.1496i)y4z2

+ (0.0897− 0.1768i)y3z3 + (0.0621− 0.1224i)y2z4 + (0.0207− 0.0408i)yz5

+ (0.0069− 0.0136i)z6

Again, we hold that even though the product deviates slightly from a perfect
match with the modified expression for Q2, the conclusion that Q2 is a product
of the six lines L10, L12, L14, L17, L19 and L20 is justified.

Left over now are the fixed lines of D1, D2, D3, D4, D7 and D8. Again we
confirm that the coefficients of x6, y6 and z6 in the product are equal, and
proceed to perform the full multiplication. We get:

L1 · L2 · L3 · L4 · L7 · L8

= ((−0.5481 + 0.2041i)x+ (0.0811− 0.2474i)y + (0.0428 + 0.3217i)z)
· ((−0.0755− 0.4311i)x+ (−0.7875− 0.0402i)y + (0.2045 + 0.2851i)z)
· ((−0.1218 + 0.2800i)x+ (−0.5407− 0.1017i)y + (0.1853− 0.1600i)z)
· ((−0.7210 + 0.0393i)x+ (0.2137 + 0.2399i)y + (−0.1104− 0.3852i)z)
· ((−0.2110− 0.2632i)x+ (0.0946 + 0.4099i)y + (0.7579− 0.0018i)z)
· ((−0.2117 + 0.2915i)x+ (0.0801− 0.4420i)y + (0.8087− 0.0366i)z)

= (0.0067− 0.0015i)x6 + (−0.0134 + 0.0030i)x5y + (−0.0268 + 0.0060i)x5z
+ (0.0268− 0.0060i)x4y2 + (0.0134− 0.0030i)x4yz + (0.0602− 0.0136i)x4z2

+(−0.0535+0.0121i)x3y3 +(−0.0402+0.0090i)x3y2z+(0.0134−0.0030i)x3yz2

+ (−0.0535 + 0.0121i)x3z3 + (0.0602− 0.0136i)x2y4 + (0.0134− 0.0030i)x2y3z
+ (0.0870− 0.0196i)x2y2z2 + (−0.0401 + 0.0090i)x2yz3 + (0.0267− 0.0060i)x2z4

+ (−0.0268 + 0.0060i)xy5 + (0.0134− 0.0030i)xy4z + (−0.0401 + 0.0091i)xy3z2
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+ (0.0134− 0.0030i)xy2z3 + (0.0134− 0.0030i)xyz4 + (−0.0134 + 0.0030i)xz5

+ (0.0067− 0.0015i)y6 + (−0.0134 + 0.0030i)y5z + (0.0267− 0.0060i)y4z2

+ (−0.0535 + 0.0121i)y3z3 + (0.0602− 0.0136i)y2z4 + (−0.0267 + 0.0060i)yz5

+ (0.0067− 0.0015i)z6

Multiplying our expression for Q4 by a factor of (0.0067− 0.0015i), the coeffi-
cient of x6 in the product above, we get:

(0.0067− 0.0015i)x6 + (−0.0134 + 0.0030i)x5y + (−0.0268 + 0.0060i)x5z
+ (0.0268− 0.0060i)x4y2 + (0.0134− 0.0030i)x4yz + (0.0603− 0.0135i)x4z2

+(−0.0536+0.0120i)x3y3 +(−0.0402+0.0090i)x3y2z+(0.0134−0.0030i)x3yz2

+ (−0.0536 + 0.0120i)x3z3 + (0.0603− 0.0135i)x2y4 + (0.0134− 0.0030i)x2y3z
+ (0.0871− 0.0195i)x2y2z2 + (−0.0402 + 0.0090i)x2yz3 + (0.0268− 0.0060i)x2z4

+ (−0.0268 + 0.0060i)xy5 + (0.0134− 0.0030i)xy4z + (−0.0402 + 0.0090i)xy3z2

+ (0.0134− 0.0030i)xy2z3 + (0.0134− 0.0030i)xyz4 + (−0.0134 + 0.0030i)xz5

+ (0.0067− 0.0015i)y6 + (−0.0134 + 0.0030i)y5z + (0.0268− 0.0060i)y4z2

+ (−0.0536 + 0.0120i)y3z3 + (0.0603− 0.0135i)y2z4 + (−0.0268 + 0.0060i)yz5

+ (0.0067− 0.0015i)z6

By the same reasoning as before, we conclude that Q4 is a product of the six
lines L1, L2, L3, L4, L7 and L8.

5.6 Summary

We started out this chapter with examining the fixed points of the 3-groups,
those on the degree-21 curve. This led us to consider the factoring of K21. By
examination, hypothesis and calculation, we achieved a factoring of the four
factors of K21 over Z.

Q1 = L5 · L6 · L11
Q2 = L9 · L13 · L15 · L16 · L18 · L21
Q3 = L10 · L12 · L14 · L17 · L19 · L20
Q4 = L1 · L2 · L3 · L4 · L7 · L8

Out of the many intersections of the fixed lines of the 2-groups, we present a
few related to our factoring.
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The lines in Q2 meet pairwise in fixed points of 3-groups, with which we
started, making up two triangles.

Figure 5.1: The triangles of Q2

b17 b14
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L10 L12

L17

b16 b11

b15

L14 L19
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5.7. Another factoring of K21

The lines in Q3 make up a hexagon with vertices in fixed points of 3-groups.

Figure 5.2: The hexagon of Q3
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The lines in Q1 and Q4 do not make up similar polygons.

5.7 Another factoring of K21

There are many ways to factor our degree-21 invariant. Referring back to section
4.6, we know that the fixed lines of the 2-groups intersect each other in fixed
points of other 2-groups, making up triangles. For instance, we have the fixed
points of E7 in figure 4.1. Conjugation of E7 by S returns E3, and then E10,
E13, E11, E2, E4 and back to E7 by consecutive conjugations. Starting with
E8 in the other class of Klein 4-groups, consecutive conjugations by S gives
us E1, E6, E14, E12, E9, E5 and back to E8, in that order. For every class
we can draw seven triangles and every fixed line occurs only once in a triangle
for each class. The product of the three fixed lines in a triangle is a factor of
degree 3, and in the same way for the other triangles. The product of the seven
such degree-3 factors for each of the two classes is K21. We may say that the
triangles or lines are related by conjugation.
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