
Parameterized Quantum Circuits for Machine
Learning

by

Kristian Wold

Thesis

for the degree of

Master of Science

Department of Physics

Faculty of Mathematics and Natural Sciences

University of Oslo

September 2021

This master’s thesis is submitted under the master’s program Computational Science,
with program option Physics, at the Department of Physics, University of Oslo.
The scope of the thesis is 60 credits.

Z Kristian Wold, 2021

www.duo.uio.no

Print production: Reprosentralen, University of Oslo

https://www.duo.uio.no/

Abstract

Can quantum computers be used for implementing machine learning models that
are better than traditional methods, and are such methods suitable for today’s
noisy quantum hardware? In this thesis we made a Python framework for imple-
menting machine learning models based on parameterized quantum circuits that
are evaluated on quantum hardware. The framework is capable of implementing
quantum neural networks (QNNs) and quantum circuit networks (QCNs), and train
them using gradient-based method. To calculate the gradient of quantum circuit
networks, we developed a backpropagation algorithm based on the parameters shift
rule that leverage both classical and quantum hardware. We performed a numerical
study where we sought to characterize how dense neural networks (DNNs), QNNs
and QCNs behave as a function of model architecture. We focus on investigating
the vanishing gradient phenomenon, and quantifying the models trainability and
expressivity using the empirical fisher information matrix (EFIM) and trajectory
length, respectively. We also test the performance of the models by training them
on artificial data, as well as on real-world data sets.

Due to the multi-circuit nature of QCNs, large models can be constructed by
using multiple layers of small circuits. For shallow circuits with few qubits, the
local gradients of the individual circuits can be easily estimated on noisy quantum
hardware. This is contrary to single-circuit QNNs that are deep and consist of
many qubits, whose gradient is difficult to estimate on quantum hardware due to
the vanishing gradient phenomenon. However, when the gradients of QCNs are
calculated with backpropogation on classical hardware using the local gradients,
the gradient tends to vanish exponentially fast as the number of layers increase.
We showed that the vanishing gradient of QCNs manifests itself as a loss landscape
that is very flat in most directions, with strong distortions in a single direction.
This characteristic loss landscape is typical for DNNs, and is known to cause slow
optimization. However, for a conservative number of qubits and layers, QCNs had
significantly less distorted loss landscape than similar DNNs. We also showed that
during training of QCNs and DNNs, the former models required two orders of
magnitude fewer epochs in order to become exponentially expressive. Finally, we
showed that QCNs of few qubits and layers trained faster than both DNNs and
QNNs on the artificial data. QCNs also trained and generalize better on some
real-world data sets, using both ideal and noisy simulation. This shows that QCNs
may have merit for some data sets, even on noisy hardware, but not all.

i

Acknowledgements

I would first like to thank my supervisor, Morten Hjorth-Jensen, for providing me
outstanding support, guidance and inspiration. You are always available for a talk
about anything, anytime. For that, I am truly grateful.

I would like to thank my co-supervisor, Stian Bilek, for being a mentor and friend.
Thank you for all the lengthy discussions we have and the invaluable insight you
have help me obtain.

From the deepest of my heart, I would like to thank my family and friends, for their
tireless support during hard times. Without you, this thesis would not be possible.
I would also like to extend a special thanks to my brother, Anders Wold-Dobbe,
for giving excellent insight into scientific writing and help with correction.

I would like to thank Overwatch Squad, our own discord server of friends, for
helping me through these times of isolation due to the pandemic. Thank you for all
the late nights and long talks. A special thanks goes to my friend, Nicolai Haug,
for always being available when times are difficult (for example when my LaTeX
document crashes.)

Lastly, I would like to thank the computational physics group, for creating such a
friendly environment and pleasant place to be. You have been very important to
me, both academically and socially.

Kristian Wold
Oslo, September 2021

ii

Abbreviations

NISQ Noisy Intermediate-Scale Quantum (Technology)
PQC Parameterized Quantum Circuit
QNN Quantum Neural Network
QCN Quantum Circuit Network
DNN Dense Neural Network
EFIM Empirical Fisher Information Matrix
PCA Principal Component Analysis

iii

Contents

Abstract i

Acknowledgements ii

Abbreviations iii

1 Introduction and Objective of the Study 1
1.1 Introduction . 1

1.1.1 Machine Learning . 1
1.1.2 Quantum Computing . 2
1.1.3 Quantum Machine Learning 3

1.2 Objectives . 5
1.3 The Organization of the Thesis . 6

I Theoretical Background 7

2 Supervised Learning 8
2.1 Parametric Models . 9

2.1.1 Regression . 9
2.1.2 Classification . 10

2.2 Optimization . 11
2.2.1 Batch Gradient Descent . 11
2.2.2 Adam Optimizer . 13

2.3 Dense Neural Network . 14
2.3.1 Feedforward . 14
2.3.2 Backpropagation . 15
2.3.3 Activation Functions . 16
2.3.4 Saturated Activations and Vanishing Gradient 17

2.4 Generalizability . 18
2.5 Pre-processing Data . 19

2.5.1 Scaling Features . 19
2.5.2 Principal Component Analysis 20

3 Quantum Computing 22

Contents v

3.1 States in Quantum Mechanics . 22
3.1.1 The Qubit . 23
3.1.2 Multiple Qubits . 23
3.1.3 Measuring Qubits . 24

3.2 Quantum Circuits . 24
3.2.1 Single Qubit Operations . 25
3.2.2 Multi-Qubit Operators . 28
3.2.3 Observables . 30
3.2.4 Expectation Values . 31
3.2.5 Estimating Expectation Values 31

3.3 Noisy Intermediate-Scale Quantum Computing 33
3.3.1 Gate Fidelity . 33
3.3.2 Quantum Decoherence . 33
3.3.3 Coupling of Qubits . 34
3.3.4 Basis Gates . 34

4 Quantum Machine Learning 35
4.1 Quantum Neural Networks . 36
4.2 Feature Encoding . 37

4.2.1 Qubit Encoding . 37
4.2.2 RZZ Encoding . 38
4.2.3 Latent Qubits . 39

4.3 Ansatz . 39
4.4 Model Output . 40
4.5 Optimization of PQC . 41

4.5.1 Analytical Gradient-Based Optimization 41
4.5.2 Barren Plateus in QNN Loss Landscape 43

4.6 Quantum Circuit Network . 44
4.6.1 Feed-Forward . 44
4.6.2 Backward Propagation . 45

5 Tools for Analysis 48
5.1 Trainability . 48

5.1.1 Hessian Matrix . 48
5.1.2 Empirical Fisher Information Matrix 49

5.2 Expressivity . 50
5.2.1 Trajectory Length . 50

II Implementation 53

6 Implementation 54
6.1 Qiskit . 54

6.1.1 Registers and Circuits . 55
6.1.2 Applying Gates . 55

Contents vi

6.1.3 Measurement . 56
6.1.4 Exact Expectation Value . 56
6.1.5 Simulating Real Devices . 57

6.2 QNN Example . 58
6.2.1 Encoding . 58
6.2.2 Ansatz . 59
6.2.3 Model Output . 59
6.2.4 Gradient . 60
6.2.5 Training . 61

6.3 Quantum Circuit Network . 62
6.3.1 Encoders, Ansatzes and Samplers 62
6.3.2 QLayer . 63
6.3.3 Constructing QCNs from QLayers 64
6.3.4 Backpropagation . 65
6.3.5 Training . 65
6.3.6 Single-Circuit Models . 66
6.3.7 Dense Neural Networks . 66
6.3.8 Hybrid Models . 67

6.4 Tools for Analysis . 68
6.4.1 Magnitude of Gradients . 68
6.4.2 Empirical Fisher Information 69
6.4.3 Trajectory Length . 70

6.5 Numerical Experiments . 70
6.5.1 Initialization . 70
6.5.2 Pre-processing Data . 71
6.5.3 Optimization . 72
6.5.4 Configuring QCNs and DNNs 72

III Results & Discussion 73

7 Results and Discussion 74
7.1 Vanishing Gradient Phenomenon 74

7.1.1 Vanishing Gradient in QNNs 74
7.1.2 Vanishing Local Gradient in QCNs 76
7.1.3 Vanishing Total Gradient in QCNs 77
7.1.4 Discussion . 78

7.2 Investigating the Loss Landscape 79
7.2.1 Discussion . 82

7.3 Expressivity . 83
7.3.1 Untrained Models . 83
7.3.2 Trained Models . 86
7.3.3 Single Node Expressivity . 88
7.3.4 Discussion . 89

7.4 Training Models on Mixed Gaussian Data 89

Contents vii

7.4.1 Ideal Simulation . 90
7.4.2 Noisy Simulation . 92
7.4.3 Discussion . 93

7.5 Real-World Data . 95
7.6 Discussion . 96

IV Conclusion & Future Research 97

8 Summary & Conclusions 98
8.1 Summary & Conclusions . 98
8.2 Future Research . 101

Appendices 103

A Data Sets 103
A.1 Mixed Gaussian Data . 103
A.2 Real Data . 105

A.2.1 Boston Housing Data . 106
A.2.2 Breast Cancer Wisconsin Data 106
A.2.3 Feature Reduction with PCA 107

References 108

1
Introduction and Objective of the Study

1.1 Introduction

1.1.1 Machine Learning
Machine learning is a highly successful field of study involving algorithms that
allow computers to solve problems using data, relieving the need for tailoring
problem-specific solutions [1]. This practice has transformed nearly every aspect
of our modern society, from medicine [2] to finance [3]. One branch of machine
learning is supervised learning, which is the practice of training a model to learn a
relation between input and output data [4]. Typically, one starts by acquiring a
training set of labelled data, which is a collection of pairs of inputs and outputs. As
an example, the inputs and outputs can be age and salary of people, respectively.
By training a machine learning model on the training set, the aim is that it "learns"
the general relation between age and salary. If this is the case, the model can be
used to predict the salary of people based on their age, even for values of age not
present in the training set. If the latter is the case, the model is said to generalize
to unseen data, which is required for prediction. How are machine learning models
trained? One often starts by defining a loss function (also commonly known as risk
or cost), which is a scalar function that measures how accurately a model predicts
the outputs from the corresponding inputs [4]. The lower the value of the loss
function, the better the model reproduces the outputs. Therefore, training a model
involves minimizing the loss function with respect to the training set.

A particular powerful family of machine learning models are neural networks (NN).
Neural networks are models consisting of layers of artificial neurons, originally
inspired by the neural structures in the brain [5], that sequentially transform the

Chapter 1. Introduction and Objective of the Study 2

inputs it is fed. They are parametric models, meaning that the input-output
relation that an NN computes are determined by a set of real-valued parameters.
When setting up a NN, the goal of the training is to find the correct parameters
such that the given loss function is minimized. This is done by first calculating
the derivative of the loss function with respect to the parameters of the NN. This
derivative is called the gradient, which quantifies how the loss function changes
when the parameters are adjusted. Using gradient-based methods, such as gradient
descent, the gradient can be utilized to adjust the parameters such that the loss
decreases [5]. The backpropagation algorithm, tailored for accommodating their
layered structure, is commonly used for calculating the gradient of NNs [5].

What kind of functions can a NN compute, and how is this affected by the number
of neurons and layers present in the model? Quantifying the flexibility of NNs and
relating this to how complex data the models can learn is considered a difficult
problem [6]. In an effort to address these questions, Raghu et al. [6] introduced
a heuristic called trajectory length for quantifying the flexibility, or expressivity,
of NNs. To calculate the heuristic, a one dimensional trajectory of input data is
fed to a neural network. As the trajectory is transformed by each layer, its length
is calculated at each step. The authors found that the trajectory length increase
exponentially with each transformation, suggesting that NNs with many layers can
compute (and learn) functions that are exponentially complex.

Even though additional layers increase the expressivity of NNs, this comes with a
drawback: with increasing number of layers, the vanishing gradient phenomenon
emerges, meaning the magnitude of the gradient decreases exponentially [7]. This
phenomenon manifests itself as a loss function that is insensitive to adjustments of
the parameters, known as a flat loss landscape, making the training of many-layered
NNs difficult [8]. To uncover the geometry of the loss landscape, and determine
its flatness, it is common practice to assess the spectrum of the empirical fisher
information matrix (EFIM) [8].

1.1.2 Quantum Computing
Quantum computing is the processing of information using systems that obey the
laws of quantum mechanics [9]. In 1982, Richard Feynman pointed out that quantum
mechanical systems are notoriously difficult to simulate on classical computers. He
suggested that this complexity can be exploited by build a computer based on
the principles of quantum mechanics [9]. Only three years later, David Deutsch
formalized a theory describing such a device, a universal quantum computer [10].
Even though such a device was not yet realized physically, people started developing
algorithms for quantum computers that was theorized to be more efficient than
their classical counterparts. In 1996, physicist Seth Lloyd showed that quantum
mechanical systems could be efficiently simulated on quantum computers [11]. This
is perhaps a not too surprising result, since quantum mechanics is the "native
language" of quantum computers. A more surprising discovery happened two years
prior, when Peter Shor developed Shor’s algorithm for prime factorization of integers

Chapter 1. Introduction and Objective of the Study 3

in polynomial time, potentially breaking the secure encryption protocols of today
[12]. Interestingly, this is a type of problem which does not spring naturally from
the realm of quantum mechanics. Prime factorization is believed to be exponentially
hard on classical computers, and the effectiveness of Shor’s algorithm shows that the
capabilities of quantum computers go beyond the simulation of quantum mechanical
systems [12]. This has sparked a huge interest in mapping out what type of problems
quantum computing can excel at.

Today, there is a lot of focus on making quantum computers, with big companies
such as Google and IBM at the forefront. Despite the effort, today’s quantum
computers are not able to implement useful quantum algorithms that would change
the world right away. This is because today’s quantum computers are small,
typically supporting only tens of qubits [13], the quantum mechanical analog of
the classical bit. In addition, the computations tends to be very noisy [14]. As it
performs an algorithm, also called a circuit, it manipulates a very delicate quantum
state. During the span of the computation, the state is susceptible to interference
from the surrounding environment, causing the information of the system to degrade.
This phenomenon is called decoherence, and puts a strict limit on the circuit depth
[15], which can be though of as the time it takes to execute the circuit. The limited
size of hardware and presence of noise makes many highly anticipated algorithms,
such as Shor’s algorithm, unfeasible to implement today [13].

1.1.3 Quantum Machine Learning
Could quantum computing be useful for developing algorithms for machine learning,
and could they be useful on the noisy quantum hardware of the near future?
By combining machine learning and quantum computing, you get the emerging
interdisciplinary field quantum machine learning. Just from the name, it is not
immediately obvious what it might entail, and as matter of fact, it depends on the
context. From Figure 1.1, we see the different ways machine learning and quantum
computing can be combining. The CC case refers to classical data that is processed
on classical devices, which is of course the traditional form of machine learning,
e.g. NNs. The other case, CQ, investigates how classical data can be processed
with help of quantum computers. These are the two cases we will focus on in this
thesis.

Lately, there has been many proposed methods for implementing machine learning
using quantum computers. One of the promising candidates is parameterized
quantum circuits (PQC) used for machine learning. Parameterized quantum
circuits are a family of quantum algorithms that construct a quantum state based
on input data and parameters [13]. Due to the algorithm’s parametric nature,
it is often called a quantum neural network (QNN). Unlike algorithms that are
tailored for solving specific problems, like Shor’s algorithm, QNNs use data to
learn a specific set of parameters that produce a solution to a problem. During
training of such algorithms, quantum computers are used to evaluate the circuit,
while classical computers are utilized to update the parameters. By leveraging both

Chapter 1. Introduction and Objective of the Study 4

Figure 1.1: Four approaches that combine machine learning and quantum com-
puting. The figure is retrieved from Schuld and Petruccione [1].

classical and quantum computation, the quantum algorithms involved can be kept
relatively small. Because of this, it is believed that QNNs are perfect candidates
for implementation on noisy, near-term quantum hardware [16]. Quantum neural
networks have already been used to solve several problems in supervised learning
[13, 17, 18]. Abbas et al. [17] showed that a QNN could be trained to distinguish
between different plants in the Iris data set. They also showed that their model
trained faster and was more flexible than NNs with the same number of parameters,
even when trained on today’s noisy quantum computers.

QNNs and other methods for quantum machine learning have been shown to
outperform traditional methods for prediction on some data sets [17, 19]. Still,
McClean et al. [20] point out that many of these studies rely on heuristics, and that
there are few rigorous proofs for their performance when used on larger learning
problems. Further, they showed that a large family of QNNs suffer from similar
problems as NNs: When the model size of QNNs are increased, e.g. by increasing
the number of parameters and inputs, their gradients tend to vanish exponentially
fast. This is the same behaviour as when the number of layers of NNs are increased,
and cause QNNs to become intractable to train when scaled up to handle larger
problems. A vanishing gradient is an even bigger problem when the QNN is trained
on a noisy quantum computer, as this results in a bad signal-to-noise ratio for the
gradient. Consequently, the optimization of the QNN fails to converge [21].

Is it possible to implement a quantum machine learning model that is scalable,
fast to train, and performs well on today’s noisy quantum computers? Bilek [22]
introduced a multi-circuit model for machine learning that utilizes several QNNs
to sequentially transform data. This model was later dubbed a quantum circuit

Chapter 1. Introduction and Objective of the Study 5

network (QCN), and corresponds closely to the layered structure of NNs where
each node is a parametric circuit. While he showed that the QCN was able to train
on and reproduce nonlinear 1D data, very little is known about its properties. Is it
possible to derive an algorithm akin to backpropagation to calculate its gradient?
How does its expressivity change as the model is scaled up? Does it suffer from a
vanishing gradient? How does it perform on noisy quantum hardware? These are
some of the questions we wish to explore in this thesis. As of now, we are preparing
an article we hope to soon publish that includes many of the results and findings
in this thesis [23].

1.2 Objectives
The overall objective of this study is to implement and investigate quantum circuit
networks (QCNs), and characterize their behavior as a function of their architecture.
This will be done by using various numerical methods. This investigation is then
repeated on traditional methods, such as dense neural networks (DNNs) and
quantum neural networks (QNNs). Finally, the mentioned models are benchmarked
and compared against each other on artificial and real-world data, using both ideal
and noisy simulation of quantum hardware. The main goals can be divided into
the following seven points:

• Implement a Python framework for constructing quantum neural networks
(QNNs), dense neural networks (DNNs) and QCNs.

• Develop a backpropagation algorithm based on the parameter shift rule for
calculating the gradient of QCNs, allowing for gradient-based optimization
with respect to a loss function.

• Investigate the vanishing gradient phenomenon for QCNs by calculating the
magnitude of their gradients for different numbers of qubits and layers. Repeat
this investigation for QNNs and DNNs and compare.

• Study the loss landscape for QNNs, DNNs and QCNs by calculating the
spectrum of their empirical fisher information matrix (EFIM), and assess how
trainable the different models are for different architectures.

• Assess the expressivity of QCNs and DNNs using the trajectory length metric,
for both untrained and trained models, and compare.

• Train QNNs, DNNs and QCNs on mixed Gaussian data and assess whether
the EFIM spectrum and trajectory length are good predictors for rate of
optimization and expressivity of the models, respectively. Also train QCNs
and QNNs using simulation of noisy hardware to study how they perform on
real hardware.

Chapter 1. Introduction and Objective of the Study 6

• Train QCNs and DNNs on real-world data and compare how well they
generalize to unseen data to see if they have any merit for practical problems,
both on ideal and noisy quantum hardware.

1.3 The Organization of the Thesis
In part I of this thesis, we will introduce the theoretical background. We go through
the theory of supervised learning and optimization of parametric models in Chap-
ter 2. In Chapter 3, we present the fundamentals of quantum computing. Quantum
machine learning, the intersection of the two former disciplines, is presented in
Chapter 4. We present the various numerical methods for analyzing the models
implemented in this thesis in Chapter 5.

In part II, we go through aspects surrounding the implementation of various models
and methods used in this thesis. These are implemented using Python together with
Qiskit [24], an IBM made open-source Python framework for quantum computing.
We present details of various experiments and subsequent results and discussion in
part III. We finally conclude our analysis and discuss future studies in part IV. In
Appendix A, we detail the various data sets used in this thesis.

Part I

Theoretical Background

2
Supervised Learning

This chapter introduces the fundamentals of supervised learning, optimization and
neural networks (NNs). The content of this chapter is mainly based on the material
in Schuld and Petruccione [1], Hastie et al. [4] and Nielsen [25].

The goal of supervised learning, one of the big branches of machine learning, is
to obtain a model for predicting an output y from an input x. This is done by
learning from input-output pairs T = {(x(1), y(1)), · · · , (x(N), y(N))}, known as the
training set. Here, we assume that x(i) is a vector and y is a scalar. The domain of
the input and output depends on the specific learning problem. The output y, also
called the target or the response, is often either of a quantitative or qualitative
character. These two cases constitute two big paradigms in supervised learning:
regression and classification, respectively. For regression, the goal of the learning
task is to predict a real-valued target y from the input x. Typical examples of
targets to regress on are temperature, weight and length, which have in common a
natural notion of distance measure in the sense that instances close in numerical
value are also similar in nature. E.g., two fish weighing 12.1 kg and 12.2 kg are
similar, while a third fish weighing 24.0kg is notably different.

For classification, the goal is to predict one or more classes from an input x. In
this setting, the target y is discrete and categorical, such as color, dead/alive and
animal species. In contrast to quantitative targets, qualitative targets lack a natural
distance measure, in the sense that it is not meaningful to compare the distance
between dog and cat, and dog and seagull. They are simply mutually exclusive
classes.

The input x is a vector consisting of elements (x1, · · · , xp) often called features or
predictors. Each feature xi can either be quantitative or qualitative in the same

Chapter 2. Supervised Learning 9

manner as with the target previously discussed. In this thesis, we will investigate
quantitative features x ∈ Rp.

2.1 Parametric Models
The approach of supervised learning often starts by acquiring a training set T =
{(x(1), y(1)), · · · , (x(N), y(N))}, where N is the number of samples in the training
set. This is called labeled data, since the samples of features x(i) are accompanied
by the ground truth target y(i) that we want to predict. One often hypothesizes
that the acquired training data was produced by some mechanism or process that
we can mathematically express as

y = f(x) + ε, (2.1)

where ε is often included to account for randomness, noise or errors in the data, in
contrast to the deterministic part f(x). Depending on the context, the ε may be
neglected or assumed to be normally distributed such as ε ∼ N (0, σ2), where σ2 is
the variance.

The goal is to approximate the underlying mechanism f(x). To do this, one often
proposes a parametric model

ŷ = f̂(x;θ),

where ŷ is the predicted value, f̂(·; ·) defines a family of models, and θ is a vector
of parameters that defines a specific model from that family. Training (or fitting)
the model involves finding the parameters θ such that the model best reproduces
the targets from the features found in the training data set. To quantify what is
meant by "best" in this context, it is common to introduce a loss function that
measures the quality of the model with respect to the training data set:

L(θ) = 1
N

N∑
i=1

L(f̂(x(i);θ), y(i)), (2.2)

The loss function returns a scalar value that indicates how good your model fits
the training data for a particular set of parameters. In general, a lower value
indicates a better model. This formulates the task of training the model as an
optimization problem. In the next section, we will discuss different ways of training
parameterized models, in particular with the use of gradient-based methods.

2.1.1 Regression
The choice of loss function is highly problem dependent, and there is a vast collection
of different choices in the machine learning literature [4]. A common loss function

Chapter 2. Supervised Learning 10

used for training supervised models on regression problems is the Mean Squared
Error (MSE). This loss function is suitable since it implements a natural distance
measure between prediction and target. It is formulated as

MSE = 1
N

N∑
i=1

(f̂(x(i);θ)− y(i))2. (2.3)

From this formulation, we see that the closer the predicted targets ŷ(i) = f̂(x(i);θ)
are to the real targets y(i), the smaller the MSE will be. In other words, a model
with lower MSE than some other model fits the data better. Fitting the model
using MSE as loss function is often referred to as the least squares approach.

2.1.2 Classification
In this thesis, we will be concerned with binary classification, where the targets of the
data are one of two classes that we want to predict. Typically, the different classes
are represented by discrete values, such as y ∈ {0, 1}. Here 0 and 1 corresponds to
the first and second class, respectively. When parametric models are trained on
discrete targets, by for example by minimizing the MSE loss, they tend to produce
output values in the range f̂(x(i);θ) ∈ [0, 1]. The continuous value of f̂(x(i);θ)
are often interpreted as the probability that sample x(i) belongs to the second
class. As an example, say f̂(x(i);θ) = 0.8 for a particular sample x(i). This tells
us that it belongs to the second class with 80% probability, and to class 0 with
20% probability. A class can then be predicted from the sample by implementing a
threshold value c, such as

ŷ(i) = I(f̂(x(i);θ) > c), (2.4)

where I() returns one if f̂(x(i);θ) > c is true, and otherwise zero. Typically,
a threshold value c = 0.5 is used, as this causes the most probable class to be
picked

Whereas MSE can be used to assess how closely regression models fits the data, a
more suitable metric for assessing classification models is accuracy. The accuracy
can be expressed as

accuracy = 1
N

N∑
i=1

I(ŷ(i) = y(i)). (2.5)

From Equation (2.5), we see that the accuracy of a model is the average number of
targets it classifies correctly.

Chapter 2. Supervised Learning 11

2.2 Optimization
Finding the optimal parameters θ̂ with respect to a chosen loss function L can be
formulated as

θ̂ = arg min
θ

1
N

N∑
i=1

L(f̂(x(i);θ), y(i)). (2.6)

This optimization problem is generally not trivial, and depends highly on the choice
of loss function and parametric model. Aside from a few exceptions, like the case
of linear regression, Equation (2.6) does not generally have an analytical solution.
Moreover, many popular parametric models result in non-convex optimization
problems, meaning that the loss function has several local minima. In practice,
such optimization problems can’t be solved efficiently [26]. However, it is important
to realize that an exact, or close to exact, minimization of the loss function is
seldom needed or even favorable. What is ultimately interesting is whether the
trained model has sufficient ability to predict. Over the years, several cheap
and approximate methods for optimization have been invented to train machine
learning models. We will discuss two such methods that implement gradient-based
optimization.

2.2.1 Batch Gradient Descent
In the absence of an analytical expression that minimizes the loss function, gradient
descent is an easy-to-implement method that iteratively decreases the loss. This
is done by repeatedly adjusting the model parameters using information of the
gradient of the loss function. The derivative of the loss function Equation (2.2)
with respect to the model parameters can be calculated as

∂L(θ)
∂θk

= 1
N

N∑
i=1

∂L(ŷ(i), y(i))
∂ŷ(i)

∂ŷ(i)

∂θk
, (2.7)

where θk is the k’th model parameter, and ŷ(i) = f̂(x(i);θ). To arrive at this
expression, the chain rule was used under the assumption that the loss function
L(ŷ(i), y(i)) and model output ŷ(i) are differentiable with respect to ŷ(i) and θk,
respectively. For MSE loss Equation (2.3), the derivative has the form

∂L(θ)
∂θk

= 2
N

N∑
i=1

(ŷ(i) − y(i))∂ŷ
(i)

∂θk
. (2.8)

Note that the derivative is calculated with respect to the entire training set, i.e. the
whole batch, hence the name. The gradient is then constructed simply as a vector
quantity containing the derivatives with respect to each model parameter:

Chapter 2. Supervised Learning 12

∇θL(θ) =
(∂

∂θ1
L(θ), · · · , ∂

∂θnθ
L(θ)

)
, (2.9)

where nθ is the number of parameters. The gradient Equation (2.9) can be
geometrically interpreted as the direction at point θ in parameter space for which
the value of the loss function increases most rapidly. In light of this, one can
attempt to move all the parameters some small amount in the opposite direction,
the direction of steepest descent, in order to decrease the loss. This can be done
iteratively, and can be formulated as

θt = θt−1 − µ∇θL(θt−1) (2.10)

for t = 1, · · · , T . Here, T is the total number of iterations, or epochs, and µ is
some small positive value called the learning rate. Usually, some initial choice of
parameters θ0 is chosen at random. Analogous to walking down a mountain, the
recalculation of the gradient and repeated adjustment of the parameters results in
a gradual descent in the loss landscape. This is the heart of gradient descent.

Even though batch gradient descent is intuitively simple and sometimes sufficiently
effective for training some models, it has several flaws that should be addressed
when suggesting better methods of optimization. A common problem with batch
gradient descent is that optimization has a tendency of getting stuck in local
minima, as only local information in the loss landscape is used when updating
the parameters. In addition, the presence of plateaus, areas of particular flatness
in the loss landscape, tend to induce slow convergence. The two aforementioned
phenomena are illustrated in Figure 2.1.

Figure 2.1: One-dimensional representation of the loss landscape for a parame-
terized model, showcasing the phenomenon of getting stuck in local minima, and
slow convergence induced by plateaus. The figure is retrieved from Géron [5].

Furthermore, the presence of high degree of distortion in certain directions in
parameter space, so called thin valleys, can lead to oscillations and inefficient
optimization. This is exemplified in Figure 2.2. We will discuss how the popular
Adam optimizer [27], which was used in this thesis, addresses these problems.

Chapter 2. Supervised Learning 13

Figure 2.2: Two-dimensional representation of the loss landscape for a param-
eterized model, showcasing the phenomenon of "thin valleys", known to induce
slow convergence due to oscillations. The blue optimizations steps incorporate
momentum, which dampens the oscillations and leads to faster convergence. The
figure is retrieved from Schuld and Petruccione [1].

2.2.2 Adam Optimizer
Introduced by Kingma and Ba [27], the Adam algorithm implements a moving av-
erage of the gradient, called momentum, together with a rescaling. Replacing Equa-
tion (2.9) and Equation (2.10), Adam implements the following algorithm:

Algorithm 1: Adam, [27]. The authors suggest default hyperparameters
α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. The algorithm is applied
parameter-wise.
m0 ← 0;
v0 ← 0;
t← 0;
while θt not converged do

t ←t+1
gt ← ∇θL(θt−1) (Get gradients w.r.t. loss at timestep t)
mt ← β1mt−1 + (1− β1)gt (Update biased first moment estimate)
vt ← β2vt−1 + (1− β2)g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − µm̂t/(

√
v̂t + ε) (Update parameters)

end
return θt

Algorithm 1 updates moving averages of the gradient mt and its square vt, picking
up information about the gradient from earlier update events. In particular, if
the gradient tends to flip sign in certain directions, the averaging over previous
iterations tends to dampen these oscillations. Likewise, directions of persistent sign
tend to accumulate magnitude, making the optimisation gain "momentum" in these
directions. This property helps the model overcoming thin valleys and plateaus.
Also, the effect of momentum may also avoid getting stuck in local minima by
gracing over them. Further, the moving average of the gradient and its square is

Chapter 2. Supervised Learning 14

rendered unbiased by calculating m̂t = mt/(1 − β1) and v̂t = vt/(1 − β2). Since
the averages are initialized as zero, they are initially biased downward. Finally,
the parameters are updated using θt ← θt−1 − µm̂t/(

√
v̂t + ε). Here, the rescaling

term
√
v̂t serves to decrease the step size in directions where the gradient has a

large magnitude and increase it where it is small. This effectively implements a
variable learning rate for each direction, depending on whether big or small steps
are needed.

Adam is a highly successful algorithm for optimizing machine learning models. In
popular machine learning frames such as scikit-learn [28] and pyTorch [29], it is
a default optimizer. Lately, Adam has also been used for optimizing quantum
machine learning models [17, 21]. As pointed out by its authors, Adam requires
very little tuning of hyperparameters to be efficient, making it attractive and easy
to use. Adam is also suited for noisy gradients, which will be relevant for the work
in this thesis.

2.3 Dense Neural Network
Originally inspired by the network structure of the brain [5], artificial neural
networks are powerful parameterized machine learning models that have proven
extremely useful for a vast number of applications. Over the years, a comprehensive
collection of different network architectures has been developed to target specific
problems, such as Recurrent Neural Networks for predicting time series data and
Convolutional Neural Networks for image classification. In this thesis, we focus on
Dense Neural Networks (DNNs), which is a type of simple feedforward network,
meaning the information is processed in a forward fashion without any loops that
direct information backwards.

2.3.1 Feedforward
Dense Neural Networks work by sequentially transforming input data by passing
them through one or more layers, which each applies a parameterized and often
nonlinear transformation. The result of the first layer of the neural network can be
formulated as

a1 = f 1(z1) = f 1(W 1x+ b1), (2.11)

Here, x ∈ Rp is a single sample of p features. W 1 ∈ Rm×p and b1 ∈ Rm are a
matrix and a vector of parameters called the weights and biases, respectively. The
operations W 1x+ b1 apply an affine transformation of the features resulting in m
new derived features, each identified as a node in the specific layer. Further, f 1(·)
is a layer-specific function, often monotonous and nonlinear, applied element-wise
on the derived features. This finally results in the output of the layer, a1, called
the activation.

Chapter 2. Supervised Learning 15

We will now generalize Equation (2.11) to an arbitrary layer. For a neural network
with L layers, the feedforward procedure for layer l can be formulated as

al = f l(zl) = f l(W lal−1 + bl), (2.12)
where al−1 is the activation of the previous layer with the exception a0 = x. The
output of the network is then the activation of the last layer, namely

ŷ = fDNN(x;θ) = aL, (2.13)
where θ = [W 1, b1, · · · ,WL, bL]. Using the recursive relation Equation (2.12), one
is free to choose an arbitrary number of layers, and nodes for each layer, so long
that the dimension of the input of one layer matches the shape of the output of the
preceding layer. Typically, the initial input a0 = x is called the input layer, while
the last layer aL is called the output layer. All intermediate layers are called hidden
layers, since we usually don’t observe the internal transformations a neural network
does. Figure 2.3 illustrates the connectivity of a typical DNN. Here, the DNN has
four inputs, two hidden layer with three nodes each, and a single output.

Figure 2.3: Illustration of the connectivity of a typical DNN. Here, the DNN
has four inputs, two hidden layer with three nodes each, and a single output. The
connecting lines are identified as the weights W l. This diagram was made using
the NN-SVG tool [30].

Equation (2.12) and Equation (2.13) define the whole forward procedure of a neural
network, and also highlight the role of the functions f l(·), called the activation
function. If set to identity, f l(x) = x, the recursive application of Equation (2.12)
would simply apply repeated linear operations. In other words, increasing the
number of layers would not increase the expressiveness of the network, as all
the layers would collapse into a single layer. Therefore, introducing nonlinear
transformations is necessary to increase the flexibility of the neural network.

2.3.2 Backpropagation
Assume that ŷ = f(x(i);θ) is a dense neural network as defined by Equation (2.12)
and Equation (2.13). In order to use gradient-based methods, one needs to calculate

Chapter 2. Supervised Learning 16

the derivative of the loss function Equation (2.7) for an arbitrary parameter θk,
which could be any of the weights W l or biases bl in the various layers. This is
not trivial given the sequential structure of the neural network. Often attributed
to Rumelhart et al. [31], the backpropagation algorithm calculates the gradient in
a sequential manner, starting with the last layers first. Calculating for a single
sample, the algorithm starts by calculating the error of the last layer

δLk = ∂L(ŷ, y)
∂aLk

, (2.14)

where k indicates the node. This error can be defined for any layer recursively by
repeated application of the chain-rule:

δlj = ∂L(ŷ, y)
∂alj

=
∑
k

∂L(ŷ, y)
∂al+1

k

∂al+1
k

∂alj
=
∑
k

δl+1
k

∂al+1
k

∂alj
. (2.15)

This relation is the origin of the name backpropagation, as the error terms δl
"propagate" backwards through the neural network as they are calculated.

Using that ∂alk
∂W l

ij
= f l′(zlk)al−1

j Iik and ∂alk
∂bli

= f l′(zlk)Iik, the derivative with respect
to the weights and biases can then be calculated as

∂L(ŷ, y)
∂W l

ij

=
∑
k

∂L(ŷ, y)
∂alk

∂alk
∂W l

ij

=
∑
k

δlkf
l′(zlk)al−1

j Iik = δlif
l′(zli)al−1

j , (2.16)

and

∂L(ŷ, y)
∂bli

=
∑
k

∂L(ŷ, y)
∂alk

∂alk
∂bli

=
∑
k

δlkf
l′(zlk)al−1

j Iik = δlif
l′(zli). (2.17)

The final gradient, over all samples, is then the average of all the single-sample
gradients

∇θL(θ) = 1
N

N∑
i=1
∇θL(ŷ(i), y(i)), (2.18)

which can be used to optimize the neural network with a gradient-based method as
discussed earlier.

2.3.3 Activation Functions
As mentioned earlier, activation functions are important for introducing nonlineari-
ties to the layers of DNNs. A comprehensive list can be found in Figure 2.4.

Chapter 2. Supervised Learning 17

Figure 2.4: List of popularly used activation functions for DNNs and other NNs.
The figure is retrieved from Berner et al. [32].

In this thesis, we will be mainly concerned with the activation functions linear,
sigmoid and tanh. The linear activation function, or identity function, applies
no transformation to the layer output z = W lal−1 + bl. This activation function
is usually applied to the output layer only, and is useful when we don’t want to
transform the final output of the DNN into any particular shape. This is usually the
case for regression, where the targets we want to predict can be any real value. The
sigmoid activation function constraints the output to be in the interval aL ∈ [0, 1].
This activation is often used on the output layer when doing classification, as the
target labels are (in the binary case) y ∈ {0, 1}. For all hidden layers, we will use
tanh activation. This choice is discussed in Section 6.5.4.

2.3.4 Saturated Activations and Vanishing Gradient
A common problem with many widely used activation functions is saturation. An
activation function f(x) is said to be saturated if the input x causes it to become
locally very flat. From Figure 2.4, one can see that this happens for the tanh
activation for very high or low values of x. This causes the derivative of the
activation to be approximately zero, i.e. f ′(x) ≈ 0. If sufficiently many activations
are saturated in the network, backpropagation using Equation (2.15) tends to

Chapter 2. Supervised Learning 18

produce gradients close to zero. This phenomenon is known as a vanishing gradient
[33], and is known to slow down training of the neural network. Typically, the
effect is worse for NNs with many layers.

2.4 Generalizability
If we obtain a low loss on the training data after fitting a model, can we assume
that the resulting model is good and useful? It depends on what we want to use the
model for, but if we want to use the model for predicting on new data (data that
was not seen during training), we often don’t want to train the model too much.
As explained earlier, the main goal of a model is to approximate the underlying
mechanism f(x) of Equation (2.1) producing the data. If the model fits the data
too well, it might also pick up details of the noise ε in the training data, which is
called overfitting. The problem with this is that if we gather a new data set, a test
set y′ = f(x) + ε′, the noise ε′ will be different from the noise in the training data
because of its random nature. Since the overfitted model is very affected by the
noise in the training data, it will likely perform poorly on new data where the noise
is different, even though it performs well on the training data. Typically, the more
complex and flexible a model is, the more likely it is to overfit the training data.
This is because it has a greater capacity to fit the noise present in the training data.
By restricting the complexity of the model, one often ends up with a model that
resembles f(x) more closely. In turn, this results in a model that generalizes better,
which means that it makes accurate predictions on values of x not present in the
training set. On the other hand, if the model is not complex enough, it might not
be sufficiently flexible to recreate f(x), causing underfitting.

To uncover overfitting, the standard procedure is to prepare independent training
and test sets TTrain and TTest, and train the model on the former set and test its
performance on the latter. The behaviour of the prediction error, e.g. MSE, on the
training and test set is expected to behave as in Figure 2.5. From this figure, we
see that the prediction error on the training set is strictly decreasing, since a more
complex model is able fit the training data more closely. However, the prediction
error of the test set obtains a minimum prediction error for some model complexity,
providing the best generalization. Beyond this point, the model will start to overfit
and produce worse predictions.

The number of epochs For NNs are trained for can be though of as a type of model
complexity. For increasing number of epochs, the network will fit the training data
better and better. Continuing this, the network will eventually start overfitting
the data and produce worse prediction error for the test set. One technique for
avoiding overfitting is to add a small amount of noise to the input data of the NN.
By adding noise to the input, one forces the NN to learn the same output for slight
variations of the same input. Ultimately, this leads to a more robust model that
avoids overfitting [34].

Chapter 2. Supervised Learning 19

Figure 2.5: Training and test error as a function of model complexity. For models
trained iterativly, like neural networks, "Model Complexity" can be associated with
the number of optimization steps. The figure is retrieved from Hastie et al. [4].

2.5 Pre-processing Data
In this section, we will discuss common techniques for preparing and processing
features and data before training models, generally known as pre-processing. We
start by presenting two methods of scaling features, standardization and min-max
scaling, meant for improving the performance of models. Then, we will present
principal component analysis (PCA), a technique for reducing the number of features
and speeding up training of models.

2.5.1 Scaling Features
For data sets gathered for real world applications, it is often the case that the
different features have very different units and numerical scales. E.g., a data set
detailing health habits may include features such as age in the range 0− 80, and
caloric intake of order 2000. Many models, such as neural networks, are sensitive
to the scales of the features and may perform poorly if they are very different
[5]. Therefore, it is typical to scale the features in a way to avoid such outlier
values.

Standardization

For neural networks of the type presented in Section 2.3, features are often scaled
using standardization to improve performance [7]. Mathematically, this involves
subtracting the mean and divide by the standard deviation over the data set, for
each feature:

Chapter 2. Supervised Learning 20

x
(i)
j →

x
(i)
j − x̄j
σ(xj)

, (2.19)

where x̄j and σ(xj) is the mean and standard deviation of the feature xj , respectively.
This ensures that each feature has zero mean and unit standard deviation.

Min-Max Scaling

An alternative to standardization is min-max scaling, useful for when we want the
features to lie in a certain interval. To scale the feature xj to the interval [a, b], we
can apply the transformation

x
(i)
j → (b− a)

x
(i)
j −min(xj)

max(xj)−min(xj)
− a (2.20)

where min(xj) and max(xj) return the minimum and maximum value of xj over
the data set, respectively.

2.5.2 Principal Component Analysis
For data sets with many features, training models may become computationally
expensive. Because of this, we often want to reduce the number of features without
losing too much of the information of data that may be important for prediction.
One way of accomplishing this is with the use of principal component analysis,
which applies a linear transformation on the features xj to derive new features zj
called principal components. The property of the principal components is that
they determine the directions in feature space that capture the largest amount
of variance in the data, and hence information. The first component z1 is the
direction of largest variance, z2 the second largest, etc. In Figure 2.6, the resulting
two principal components are visualized for a data set with two features. For a
data set where the features are highly correlated, which is typical for real data
sets, performing PCA and keeping the first few components can greatly reduce the
number of features without losing too much of the information of the data.

Chapter 2. Supervised Learning 21

Figure 2.6: The two principal components resulting from PCA applied to a data
set with two features x1 and x2. The components give the directions in feature
space with most and second most variance in the data. The figure is retrieved from
Hastie et al. [4].

3
Quantum Computing

This chapter introduces the fundamentals of quantum computing. The content of
this chapter is mainly based on material in Nielsen and Chuang [9].

3.1 States in Quantum Mechanics
In quantum mechanics, isolated physical systems are described completely by its
state vector, which lives in a complex vector space. In this thesis, we will focus on
finite vector spaces Cn, where states are n-tuples of complex numbers (z1, · · · , zn)
called amplitudes. Adopting Dirac notation, a state is denoted as

|ψ〉 ∼

z1
...
zn

 , (3.1)

where ψ is the label of the state, and |·〉 indicates that it is a vector. More specifically,
in quantum mechanics, the states live in Hilbert space, which is a vector space that
has a well-defined inner product. The inner product of two states |ψ〉 , |ψ′〉 ∈ Cn is
denoted

〈ψ′|ψ〉 ≡ [z′∗1 , · · · , z′∗n]

z1
...
zn

 =
n∑
i=1

z′∗i zi, (3.2)

where z∗ indicates the complex conjugate. That is, if z = a + ib, the complex
conjugate results in z∗ = a− ib. As a constraint on the amplitudes, state vectors
that describe physical systems have unit norm, meaning

Chapter 3. Quantum Computing 23

〈ψ|ψ〉 ≡ [z∗1 , · · · , z∗n]

z1
...
zn

 =
n∑
i=1
|zi|2 = 1. (3.3)

3.1.1 The Qubit
As is common in quantum computing, we will focus on perhaps the simplest possible
quantum system, the qubit, which is a two-level system defined on C2. There are
multiple ways of implementing qubits in hardware, some of which will be discussed
later, although the specific physical realization is not necessary to account for when
discussing quantum computing. In abstract terms, the state of a qubit can be
formulated as

|ψ〉 = α |0〉+ β |1〉 , (3.4)

where α and β are complex numbers, and |0〉 and |1〉 are orthonormal states known
as the computational basis states and are defined by the implementation of the
hardware. This linear combination of states is an important principle of quantum
mechanics and is called superposition; the system is in neither state |0〉 nor |1〉,
but both at the same time(unless either α or β is zero). In general, if states
|ψ〉 and |φ〉 are allowed, then so is the linear combination α |ψ〉 + β |φ〉, where
|α|2 + |β|2 = 1.

Being the "atom" of quantum computing, the qubit is reminiscent of the classical
bit, which is always definitely "0" or "1". However, as we have seen, the qubit also
may assume any normalized linear combination of the two states.

3.1.2 Multiple Qubits
As a central property of quantum mechanics, it is possible to create composite
systems by combining several smaller quantum systems. This can be used to
construct systems of multiple qubits, whose collective state can be expressed, if the
qubits are independent, as

|ψ1ψ2 · · ·ψn〉 ≡ |ψ1〉 ⊗ |ψ2〉 ⊗ · · · |ψn〉 . (3.5)

Here, the tensor product "⊗" was used to indicate that each state |ψi〉 lives in
its own C2 space. Using the principle of superposition, one may make a linear
combination of several multi-qubit states, where each |ψi〉 is either |0〉 or |1〉. In
general, this can be written as

|ψ〉 =
∑
v

cv |v1〉 ⊗ |v2〉 ⊗ · · · |vn〉 , (3.6)

Chapter 3. Quantum Computing 24

where v ∈ {0, 1}n sums over all possible binary strings of length n. As there
are 2n unique strings, we arrive at the remarkable result that one also needs 2n
amplitudes cv to describe the state of n qubits in general. In other words, the
information stored in the quantum state of n qubits is exponential in n, as opposed
to the linear information of an equivalent classical system of classical bits. In a
sense, the quantum information is "larger" than the classical information. This is a
fascinating property of the capabilities of quantum computing, which we will return
to when discussing the usefulness of quantum computing in relation to machine
learning.

3.1.3 Measuring Qubits
It appears the information encoded in quantum systems is much greater than the
information in a corresponding classical system, at least in the case of qubits versus
bits. How can one interact with this information? Unlike classical bits, whose
state can always be measured exactly, the state of one or multiple qubits cannot
be measured and determined. Returning to the single qubit example, one can
choose to perform a measurement in the computational basis on a qubit in the
state |ψ〉 = α |0〉 + β |1〉. The measurement will result in either |0〉 or |1〉, with
probabilities |α|2 and |β|2, respectively. For multiple qubits in a general state
Equation (3.6), a measurement on all qubits will grant a state in the computational
basis, i.e. |v1〉 ⊗ |v2〉 ⊗ · · · |vn〉 for some binary string v ∈ {0, 1}n, with probability
|cv|2. This motivates why states in quantum mechanics need to have unity norm,
i.e ∑

v

|cv|2 = 1, (3.7)

as the probabilities of any outcome must sum to 1.

3.2 Quantum Circuits
We have discussed how quantum states can encode information, and how to interact
with information through measuring the state. How then can quantum mechanics
be used for computation? In order to perform computations, it is necessary to
introduce some dynamical transformation of the quantum state. In quantum
mechanics, transformations can be formulated as

|φ〉 = U |ψ〉 , (3.8)

where U is a unitary operator that acts on the vector space where |ψ〉 and |φ〉 live.
"Unitary" means that the operator U is linear with the property that U † = U−1, that
is, the Hermitian conjugate is equal to its inverse. This is a necessary property of
linear operators in quantum mechanics as to ensure that the state stays normalized
to 1:

Chapter 3. Quantum Computing 25

〈φ|φ〉 = 〈ψ|U †U︸ ︷︷ ︸
I

|ψ〉 = 〈ψ|ψ〉 = 1. (3.9)

Assuming |ψ〉 is initially normalized, so is |φ〉 after a unitary transformation.

By construction, quantum computers allow for the application of carefully selected
sequences of operators that transform the state in a desired way, often called
a quantum circuit. Typical operators used in quantum computing, often called
quantum gates, act on one or multiple qubits, and are analogous to logical operations
in the classical context.

Figure 3.1 illustrates an example of a quantum circuit. Going from left to right
indicates the chronological order of application of the different quantum gates.
Note that the exact passing of time is not shown in this schematic, and is highly
dependent on the implementation of physical hardware. The horizontal lines, called
wires, each symbolize a qubit. The qubits are initialized in the zero state, as
shown by the notation on the left-hand side. Then, various gates are applied to
the qubits, acting on one, two or three qubits. Lastly, illustrated by the gauge
symbol, each qubit is measured in the computational basis, yielding either 0 or 1.
This information is then stored in the classical register c, indicated by the double
line.

Figure 3.1: Example circuit consisting of 4 qubits initialized to |0〉. A random
selection of quantum gates acting on one, two and three qubits are then applied.
Finally, all qubits are measured in the computational basis and stored in a classical
register.

3.2.1 Single Qubit Operations
Returning again to the single qubit, the state of a qubit can be represented as a
vector

|ψ〉 = α |0〉+ β |1〉 ≡ α

[
1
0

]
+ β

[
0
1

]
=
[
α
β

]
. (3.10)

Likewise, linear operators acting on a single qubit can in general be represented by
a 2× 2 matrix [

c11 c12
c21 c22

]
, (3.11)

Chapter 3. Quantum Computing 26

which is unitary. A particularly interesting single qubit quantum gate is the
Hadamard gate, which is formulated as

H = 1√
2

[
1 1
1 −1

]
= H . (3.12)

Acting on the computational basis, the Hadamard gate can be seen to produce
superpositions

H |0〉 = 1√
2
|0〉+ 1√

2
|1〉

H |1〉 = 1√
2
|0〉 − 1√

2
|1〉 ,

which gives a 50% chance to yield either 0 or 1 upon measuring. In a sense, this
is the quantum mechanical equivalent to a coin toss. Contrary to a coin toss, if
applied a second time, we return to the original state, "unscrambling" the coin, or
qubit:

HH |0〉 = 1√
2
H |0〉+ 1√

2
H |1〉 = 1

2(|0〉+ |0〉) + 1
2(|1〉 − |1〉) = |0〉 . (3.13)

As pointed out in Schuld and Petruccione [1], this phenomenon has no classical
equivalent. If one has a classical procedure of scrambling a coin, e.g. shaking
it in your hands, a second shaking will not leave it unscrambled, but scrambled
still. Quantum computation is able to reverse this because quantum mechanics is
fundamentally not a theory of probabilities; Probabilities can be derived from the
theory, but the underlying description revolves around amplitudes, as explained
earlier. Whereas probabilities must be positive or zero, amplitudes can be positive
or negative(and complex in general), which allows destructive interference. This
can be seen in Equation (3.13), where the last term 1

2(|1〉 − |1〉) is cancelled out. In
addition to the exponentially large size of Hilbert space, this is also an interesting
property of quantum computing when discussing its capabilities over classical
computing.

Further, a much-used set of single qubit gates are the Pauli operators:

X = σx =
[
0 1
1 0

]
= X

Y = σy =
[
0 −i
i 0

]
= Y

Z = σz =
[
1 0
0 −1

]
= Z

(3.14)

To visualize what these operators do, it is useful to introduce a geometrical repre-
sentation called the Bloch sphere, illustrated in Figure 3.2. Rewriting the state of a
qubit to

Chapter 3. Quantum Computing 27

|ψ〉 = α |0〉+ β |1〉 = eiγ(cos θ2 |0〉+ eiφ sin θ2 |1〉) ∼ cos θ2 |0〉+ eiφ sin θ2 |1〉 , (3.15)

the new parameters θ and φ can be identified as the azimuthal and polar angles,
respectively. Here, the factor eiγ is known as a global phase, which is not physically
important to include. Using this, any single qubit state can then be identified as a
point on the Bloch sphere.

Figure 3.2: Geometrical representation of the state of a qubit, called the Bloch
sphere. The figure is retrieved from Nielsen and Chuang [9].

The Pauli-gates represent a 180◦ rotation of the state around the corresponding
axis. Particularly, the X gate, often called the flip gate, acts on the basis states
as

X |0〉 = |1〉
X |1〉 = |0〉

X(α |0〉+ β |1〉) = β |0〉+ α |1〉 .
(3.16)

Much like how the classical NOT-gate flips the bit, the X gate flips the qubit.

Chapter 3. Quantum Computing 28

Another essential set of gates used for quantum machine learning, which can be
derived from the aforementioned Pauli gates, are the Pauli rotations. They are
formulated as exponentiated Pauli gates in the following way:

Rx(θ) = e−iθσx/2 = cos θ2I − i sin θ2σx =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]

Ry(θ) = e−iθσy/2 = cos θ2I − i sin θ2σy =
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

Rz(θ) = e−iθσz/2 = cos θ2I − i sin θ2σz =
[
e−iθ/2 0

0 eiθ/2

]
.

(3.17)

The action of a gate Rj(θ) on a state, for j ∈ {x, y, z}, is to rotate the state around
the j-axis on the Bloch sphere, for an amount of θ radians. As θ can be any real
number, these gates can be viewed as being quantum gates parameterized by θ,
which will be an essential component when we will construct parameterized quantum
circuits later.

3.2.2 Multi-Qubit Operators
With only single qubit gates, the number of states we can access is greatly reduced
as all the qubits stay independent, i.e. the state can be written as Equation (3.5).
By introducing gates that operate on several qubits, one can for example transform
the state of one qubit conditioned on the state of an other qubit. This makes the
two qubits correlated, known as entanglement in quantum mechanics.

CNOT

One such conditional gate is the controlled NOT gate (CNOT gate). It is formulated
as

CNOT = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = •
, (3.18)

where we have also included its formulation in Dirac notation. Looking at the
circuit representation, the black dot indicates that the gate is conditioned on the
top qubit(control qubit). If it is in state |1〉, an X gate is applied to the bottom
qubit(target qubit). Otherwise, it is left unchanged. By convention, the X gate
here is denoted by ⊕. This operation has an interesting effect if the control qubit
is in a superposition. Assume we begin in the state

|ψ〉 = H |0〉 ⊗ |0〉 = 1√
2

(|0〉+ |1〉)⊗ |0〉 , (3.19)

Chapter 3. Quantum Computing 29

the application of the CNOT gate will yield the following:

CNOT |ψ〉 = 1√
2

(|0〉 ⊗ I |0〉+ |1〉 ⊗X |0〉) = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). (3.20)

This is a well-known state called a Bell state. It has the interesting property that
the qubits are correlated: When the first qubit is measured to be in either state 0 or
1, the second qubit will be found in the same state, and vice versa. This is known
as an entangled state, which cannot be expressed as a product of independent
single qubit states, such as Equation (3.5). By introducing controlled gates, we
have increased the space of accessible states.

Multi-Controlled Gate

The CNOT gate is just one example of a controlled quantum gate. In general, we
can have a controlled gate on the form

|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U =
•
U

, (3.21)

where U is any single qubit gate. Moreover, there also exists multi-controlled gates
on the form

•
•
•
U

. (3.22)

This gate applies U to the target qubit if, and only if, all three control qubits(in
general n control qubits) are in state |1〉. The application of the gate may be
dependent on the control qubits being in |0〉 rather that |1〉. This can be done
by applying an X gate before and after the controlled operation to the qubit one
wishes to invert, such as

•
X • X

•
U

=
•

•
U

. (3.23)

Here, the conditioning on state |0〉 is indicated by a white dot.

SWAP gate

A well-known two-qubit gate is the SWAP gate. As the name indicates, the SWAP
gate swaps the information of qubits. It is defined as

Chapter 3. Quantum Computing 30

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = ×
×

, (3.24)

For a two-qubit system, where the first qubit is in the state |ψ〉 and the second is
in |φ〉, the swap gate has the following function:

|ψ〉 × |φ〉
|φ〉 × |ψ〉

(3.25)

3.2.3 Observables
In Section 3.1.3, we introduced the process of measurement. We will now generalize
this by introducing quantum observables. In quantum mechanics, an observable is
an operator that acts on the state space of the system being measured. It can be
expressed as

Ô =
∑
m

mPm, (3.26)

wherem are real numbers called eigenvalues and Pm are projection operators(satisfying
P 2
m = Pm) with the condition ∑m Pm = I. Under these conditions, the operator Ô

is said to be Hermitian, which is a property required of all quantum observables.
Upon measuring the observable Equation (3.26) on a state |ψ〉, the measured value
will be m with probability

p(m) = 〈ψ|Pm |ψ〉 , (3.27)

and original state will be projected onto Pm yielding

|ψ〉 → Pm |ψ〉√
〈ψ|Pm |ψ〉

, (3.28)

where the scaling factor ensures that the new state is still normalized. Using this
formalism, one can identify the Pauli gate σz as a suitable observable for measuring
the computational basis:

σz = |0〉 〈0| − |1〉 〈1| . (3.29)

For the general single qubit state |ψ〉 = α |0〉+ β |1〉, we see that probabilities of
measuring m = 1 and m = −1 are respectively

p(0) = 〈ψ|0〉 〈0|ψ〉 = (α∗ 〈0|+ β∗ 〈1|) |0〉 〈0| (α |0〉+ β |1〉) = |α|2,
p(1) = 〈ψ|1〉 〈1|ψ〉 = (α∗ 〈0|+ β∗ 〈1|) |1〉 〈1| (α |0〉+ β |1〉) = |β|2,

(3.30)

Chapter 3. Quantum Computing 31

and the states after the corresponding measurement is

|0〉 〈0| (α |0〉+ β |1〉)√
|α|2

= α

|α|
|0〉 ∼ |0〉

|1〉 〈1| (α |0〉+ β |1〉)√
|β|2

= β

|β|
|1〉 ∼ |1〉 ,

(3.31)

where it was used that α
|α| and

β
|β| are just global phases, and hence not important.

Thus we see that the measurement leaves the state in the computational basis
corresponding with the measured value, with the correct probability as described
in Section 3.1.3.

3.2.4 Expectation Values
What is the average value of an observable for a given state |ψ〉? Using statistical
formalism, we can formulate this as the expectation values of the observable

E(m) =
∑
m

mp(m) =
∑
m

m 〈ψ|Pm |ψ〉 = 〈ψ|
∑
m

mPm |ψ〉 = 〈ψ| Ô |ψ〉 , (3.32)

where 〈ψ| Ô |ψ〉 is a recurring expression in quantum mechanics, often denoted
simply as 〈Ô〉. The expectation value is crucial for quantum computing as it serves
as a method for extracting a deterministic value from a quantum state. Whereas
the total quantum information of a state is inaccessible to us, estimating the
expectation value for some desired observable is possible for retrieving an output
of a quantum algorithm. Desirably, this output serves as a solution to the problem
one wishes to solve. Looking at the expected value Equation (3.32), it is easy to see
why global phases of the state are physically insignificant. How does the expected
value of an arbitrary observable change when we add a global phase |ψ〉 → eiγ |ψ〉?
We get

〈ψ| e−iγÔeiγ |ψ〉 = 〈ψ| ei(γ−γ)Ô |ψ〉 = 〈ψ| Ô |ψ〉 . (3.33)

The above results show that whatever measurement we do on the state, we cannot
determine if the global phase is present or not. Therefore, we can assume two
states that differ by a global phase are physically identical, as was assumed in
Equation (3.15) and Equation (3.31).

3.2.5 Estimating Expectation Values
How do we practically calculate or estimate expectation values? For all observables
to this thesis, we are able to express them as a spectral decomposition of the
computational basis, meaning we can write them in the form

Chapter 3. Quantum Computing 32

Ô =
∑
i=1

λi |i〉 〈i| , (3.34)

where i sums over all computational basis vectors |i〉, and λi are real values. We
calculate the expectation value by inserting a linear expansion of |ψ〉 in terms of
the computational basis:

〈ψ| Ô |ψ〉 =
∑
i

α∗i 〈i| (
∑
j

λj |j〉 〈j|)
∑
k

αk |k〉 =
∑
i

|αi|2λi. (3.35)

Given that we know the eigenvalues λi, all we need to do is estimate |αi|2. Even
though we don’t have direct access to the amplitudes of a state, |αi|2 coincide with
the probability of measuring the corresponding basis state. We can introduce a
Bernoulli random variable yij such that P (yij = 0) = 1−|αi|2 and P (yij = 1) = |αi|2.
By repeatedly preparing the state |ψ〉 and measuring it in the computational basis,
called performing several shots, one can gather S such samples {yi1, · · · yiS}. As
pointed out in Schuld and Petruccione [1], |αi|2 can be estimated with a frequentist
estimator p̂i given by

|αi|2 ≈ p̂i = 1
S

S∑
j=1

yij. (3.36)

The standard deviation of the estimator p̂i can be shown to be

σ(p̂) =
√
p̂i(1− p̂i)

S
. (3.37)

If S is reasonably large, p̂ is approximately normally distributed by the law of large
numbers. Consequently, any one estimation of p̂ falls within the interval of one
standard deviation around the mean with a probability of 68%. This means that
in order to reduce the error of the estimation, i.e. the standard deviation, one need
to increase the number of shots S. Looking at the above expression, the error of p̂i
goes as O(1/

√
S).

The expectation values can be estimated by inserting the estimates p̂i into Equa-
tion (3.35), giving

〈ψ| Ô |ψ〉 ≈
∑
i

p̂iλi. (3.38)

From this expression, it can be seen that also the error of the expectation value goes
as O(1/

√
S). This is a computationally expensive aspect of quantum computing,

since a reduction of error by a factor 10 requires a factor 100 more shots. In
practice, the output of quantum circuits tends to be noisy because of the use of a
finite number of shots. When one tries to estimate vanishingly small quantities,

Chapter 3. Quantum Computing 33

the number of shots required to overcome bad signal-to-noise ratio can become
prohibitively high.

3.3 Noisy Intermediate-Scale Quantum Comput-
ing

So far, we have introduced abstract and rather idealized aspects of quantum
mechanics in the context of quantum computing. We have not yet discussed how
quantum algorithms are implemented on quantum hardware in practice, and what
drawbacks such implementation might bring. Even in the ideal case, we saw in
Section 3.2.5 that outputs of quantum circuits are noisy as a result of finite number
of shots. Quantum computing on near-term quantum hardware, so-called noisy
intermediate-scale quantum computing (NISQ) [14], is characterized by few available
qubits, low-fidelity computations and other restrictions. These aspects tend to
make performing quantum computing even more challenging, and will be frequently
discussed when we later motivate different ways of implementing quantum machine
learning. The content of this section is mainly based on Schuld and Petruccione [1]
and Preskill [14].

3.3.1 Gate Fidelity
In physical quantum computers, it is important to implement ways to precisely
control qubits and interactions between them in order to execute various quantum
gates. One of the more promising implementations of qubits, super-conducting
qubits, uses pulses of microwaves to control the qubits. Using this technique, Barends
et al. [35] was able to implement quantum gates with as low as 1% measurement
error probability, although oftentimes higher. In addition, it is unclear whether
such low error can be maintained when the quantum computer is scaled up. In
practice, the application of multiple noisy gates results in the accumulation of error
rendering the outcome useless [14]. Consequentially, the number of gates should be
kept low in order to minimize error of the quantum algorithm.

3.3.2 Quantum Decoherence
In addition to the error introduced by the imprecision of the gates, the qubits
themselves are susceptible to outside disturbance, causing decoherence of the state.
In Section 3.1 and Section 3.2, we talked about states of isolated systems and how
they transform under unitary operators. In this context, "isolated" means that the
system of qubits is not affected by any external sources, with the exception of the
mechanisms that implement quantum gates. In practice, quantum computers are
only approximately isolated, as vibrations and external fields tends to leak into
the system, degrading the information stored in the state. This effect tends to
strengthen the longer the computation takes, and places another restriction on how

Chapter 3. Quantum Computing 34

many gates one can implement. Specifically, decoherence limits the circuit depth,
which refers to the number of gates applied in sequence.

3.3.3 Coupling of Qubits
Depending on the specific implementation of the hardware, it is not given that a
two-qubit gate can be applied on any two qubits. Typical for near-term quantum
computers, the qubits are arranged in a linear array [36]. This means that two-qubit
gates may only be applied on neighboring qubits, i.e. they are linearly connected.
Figure 3.3 gives examples on quantum circuits that either respect or violate the
linear connectivity of qubits.

•
•
•

(a) Respecting the linear
connectivity of qubits.

•
•
•

(b) Violating the linear
connectivity of qubits.

•
× × •
× × •

(c) Restoring the linear
connectivity using SWAP.

Figure 3.3: Different quantum circuit that either respect or violate the linear
connectivity of qubits.

Figure 3.3a applies CNOT gate only on neighboring qubits, which is allowed on a
linear architecture. In contrast, Figure 3.3b shows a violation of this. However, the
circuit in Figure 3.3c has the equivalent functionality as the aforementioned circuit,
while still respecting linear connection. This was achieved by using SWAP gates
to essentially "move qubits around", but at the cost of a greater circuit depth. In
order to limit the circuit depth as much as possible, we will often discuss quantum
circuits respecting the linear connectivity going forward.

3.3.4 Basis Gates
Real quantum computers can rarely implement all of the quantum gates discussed
earlier in this thesis directly. They often implement a small set of gates called the
basis gates. This set of basis gates varies from computer to computer, but it is
common that these sets are universal. This means that for any gate we would like
to implement, there exists a finite number of basis gates that is able to reproduce
our target gate to arbitrary precision. In this way, all quantum computers with
universal basis gates are able to implement any conceivable algorithm, as the name
suggests. This is of course disregarding any potential noise of the hardware, as
discussed earlier.

4
Quantum Machine Learning

Over the years, many different quantum algorithms have been proposed that is
anticipated to greatly outshine classical methods. Perhaps most famously is the
Shor’s algorithm [12], which promises to factor integers in polynomial time. This
is believed to be an exponentially hard problem for classical computers. However,
such useful quantum algorithms often need a large number of error-corrected qubits
to be efficient, meaning noise introduced by the environment is corrected for. Also,
their implementation requires a large number of quantum gates, requiring the
quantum computer to handle deep circuits. As explained in Section 3.3, near-term
quantum computers are not able to accommodate these criteria, and are thus
unsuitable. What would then be interesting candidate algorithms for useful near-
term applications? A promising family of algorithms is parameterized quantum
circuits (PQC), which are quantum circuits comprised of fixed gates, such as CNOT
gates, and adjustable gates, such as Pauli rotations [13]. Unlike algorithms that are
tailored to solve specific problems, such as Shor’s algorithm for factoring integers,
PQCs are general algorithms with free parameters that need to be adjusted in order
to solve a given problem. In practice, quantum computers are used to evaluate the
circuits, while classical hardware is used to post-process the results and optimized
the parameters. In this sense, both quantum and classical hardware are leveraged
to solve the problem in a variational manner. This hybrid approach is though to be
much less demanding on the number qubits and the depth of the circuit, as much of
the computation is outsource to classical computers [16]. Thus, they are much more
suitable for near-term applications. Moreover, since PQC are not problem specific,
one is freed from the need to tailor algorithms for solving specific problems, which
is otherwise difficult in practice because of how non-intuitive quantum computing
can be.

Chapter 4. Quantum Machine Learning 36

4.1 Quantum Neural Networks
The use of PQC as machine learning models, often called quantum neural network
(QNN), has been subject to extensive research [17, 13, 19]. In general, the typical
structure of QNNs can be broken up into three stages: feature encoding, processing
and measurement. The result of the measurements is then used to estimate a model
output ŷ. This general procedure is summarized in Figure 4.1.

|0〉

Uφ(x) Uθ

z1

|0〉 z2

...
|0〉 zn︸︷︷︸

Encoding
︸︷︷︸

Processing
︸︷︷︸

Measurement

→ ŷ = 〈ψx,θ| Ô |ψx,θ〉︸ ︷︷ ︸
Estimation

Figure 4.1: The general structure of a quantum neural network (QNN). The
procedure consists of three steps: First, a routine |ψx〉 = Uφ(x) |0〉 for encoding
a feature vector onto an n-qubit Hilbert space is applied. Next, |ψx,θ〉 = Uθ |ψx〉
applies a circuit parameterized by θ, transforming the state in Hilbert space.
Lastly, the expectation value of some appropriate observable Ô is estimated from
measurements on the resulting state, yielding a model output ŷ = 〈ψx,θ| Ô |ψx,θ〉.

The first stage of the QNN is to encode a feature vector of x into the qubits of
a quantum computer by applying a data dependent circuit Uφ(x), often called a
quantum feature map:

|ψx〉 = Uφ(x) |0〉 , (4.1)

This procedure prepares a state |ψx〉 which encodes the information of the sample.
Typically, φ(·) is used as a function to pre-process the x, like the methods described
in Section 2.5. Next, a circuit Uθ parameterized by θ = (θ1, · · · , θnθ) is applied to
|ψx〉, resulting in the transformed state

|ψx,θ〉 = Uθ |ψx〉 . (4.2)

In this context, the circuit Uθ is often called an ansatz and serves as a parameter-
dependent way of transform the state |ψx〉 encoding the data. Since the information
of state |ψx,θ〉 is not directly accessible, as discussed in Section 3.1.3, we need
perform a measurement and estimate some quantity to derive a model output.
Typically, this is done by estimating an expectation value of some appropriate
observable Ô, resulting in a model output

ŷ = fQNN(x;θ) = 〈ψx,θ| Ô |ψx,θ〉 . (4.3)

Chapter 4. Quantum Machine Learning 37

In the standard approach of supervised learning, the parameters θ must be trained to
minimize some loss function L(θ) = 1

N

∑N
i=1 L(ŷ(i), y(i)), as explained in Section 2.1.

This process adapts the ansatz Uθ such that the QNN is able to predict the labels
y from the features x. In the sections to come, we will discuss specific choices of
feature encoding, ansatzes, and expectation values.

4.2 Feature Encoding
In this section, we will introduce two ways of doing feature encoding, namely qubit
encoding, and RZZ encoding. We will also introduce latent qubits, used for increasing
the circuit size and thus also the size of the resulting Hilbert space.

4.2.1 Qubit Encoding
A popular approach for feature encoding is the method often-called qubit encoding
[13]. This encoding requires p qubits, where p is the number of features, and
it can be applied at a constant circuit depth. Before the encoding, the data is
optionally pre-processed by some function φ(xi), for example scaling of the data.
Then, features are encoded by performing a Pauli-rotation Equation (3.17) on each
qubit with a rotational angle equal to the corresponding feature. Figure 4.2 shows
how qubit encoding is implemented using Rx, Ry and Rz rotation.

|0〉 Rx(φ(x1))

|0〉 Rx(φ(x2))
...

|0〉 Rx(φ(xp))

|0〉 Ry(φ(x1))

|0〉 Ry(φ(x2))
...

|0〉 Ry(φ(xp))

|0〉 H Rz(φ(x1))

|0〉 H Rz(φ(x2))
...

|0〉 H Rz(φ(xp))

Figure 4.2: Qubit encoding using Rx, Ry and Rz rotations to encode p features,
left to right. φ(·) applies some kind of pre-processing to the samples, e.g. scaling.

When using Rz rotations, a Hadamard gate Equation (3.12) is used on each qubit
to create a super-position, as these rotations would otherwise leave |0〉 unchanged.
As an example, two features x = (x1, x2) can be qubit encoded onto two qubits in
the following way using Ry rotations:

Ry(x1)⊗Ry(x2)(|0〉⊗|0〉) = (cos
(
x1

2

)
|0〉+sin

(
x1

2

)
|1〉)⊗(cos

(
x2

2

)
|0〉+sin

(
x2

2

)
|1〉)

(4.4)
By writing out the tensor product as an explicit state vector, we get

Chapter 4. Quantum Machine Learning 38

cos
(
x1
2

)
cos
(
x2
2

)
cos
(
x1
2

)
sin
(
x2
2

)
sin
(
x1
2

)
cos
(
x2
2

)
sin
(
x1
2

)
sin
(
x2
2

)

 . (4.5)

We see from this that qubit encoding provides a state whose amplitudes encode
interactions between the features. In this sense, it computes an exponential number
of interactions between features in constant time, potentially creating a powerful
representation of the data useful for solving a give learning problem. As the
circuit depth is quite low, qubit encoding is an effective method for embedding p
features into a 2p dimensional Hilbert space. However, the state resulting from
qubit encoding is mathematically simple, which may limit the overall expressive
power of the final model. In the next section, we will present a more complex way
of encoding features which has been shown to improve the overall flexibility of the
machine learning model in some contexts.

4.2.2 RZZ Encoding
Abbas et al. [17] implemented a quantum feature map for encoding quantum
features up to second order, meaning the encoding is dependent on terms such
as xixj, for i 6= j. The method can be seen as an extension of qubit encoding
using Rz gates, with additional extra RZZ gates that act on qubit i and j with
rotational angle φ(xi, xj) = (π− xi)(π− xj). This is done for i ∈ [1, · · · , p− 1] and
j ∈ [i+ 1, · · · , p]. As this way of encoding was never given a name, we will call it
RZZ encoding in this thesis. The circuit implementing RZZ encoding can be seen
in Figure 4.3

Figure 4.3: Circuit visualizing implementation of RZZ encoding of p features.
The functions φ(·, ·) in the RZZ gates are suppressed for clarity. The figure is
retrieved from [17] and adapted to fit our notation.

This procedure produces a much more complex feature map, and can be made
more complex still by repeating the whole encoding process several times in a row.
The number of such repetitions is often called the depth of the feature map. Abbas
et al. [17] conjectured that this feature map is difficult to simulate classically for

Chapter 4. Quantum Machine Learning 39

depth ≥ 2. It was shown by the same authors that RZZ encoding produces much
more flexible models than qubit encoding. However, it is also more computationally
demanding, as it requires a circuit depth O(p2) and full connectivity between all
the qubits.

4.2.3 Latent Qubits
For both qubit encoding and RZZ encoding, the number of qubits in the circuit
is restricted to be equal to the number of features p that is being encoded. This
constrained can be relaxed by introducing latent qubits, which are additional qubits
added to the circuit that no features are encoded to. This technique was originally
proposed by Lloyd et al. [18], and was implemented to increase the flexibility of
the model by making the Hilbert space larger. The authors applied a Hadamard
gate to each latent qubit so that they don’t start out in the |0〉 state. Subsequent
ansatzes used for processing the data are then applied to all qubits, including the
latent qubits. Figure 4.4 illustrate how latent qubits are added to a circuit. Here,
Uφ(x) is any encoder, e.g. qubit encoding or RZZ encoding, that maps features to
some number of qubits denoted |0〉. Then, an arbitrary amount of qubits may be
added to the circuit to increase the Hilbert space.

|0〉 Uφ(x)

|0〉 H
...

|0〉 H

Figure 4.4: Circuit for encoding features expanded by adding an arbitrary number
of latent qubits. Here, Uφ(x) is any encoder, e.g. qubit encoding or RZZ encoding,
that maps features to some number of qubits denoted |0〉. Then, an arbitrary
amount of qubits may be added to the circuit to increase the size of Hilbert space.

4.3 Ansatz
What kinds of unitary transformation are interesting as ansatzes used for processing
information encoded in quantum states? In principle, we are able to explore every
conceivable unitary transformation as a parameterized circuit, since there are circuit
designs that are known to be universal [37]. In this context, universality means
that for any unitary transformation, there exists a sufficiently deep ansatz that
approximates the operator to an arbitrary accuracy. However, such approximations
are often exponentially deep [9], meaning the vast majority of unitary transforma-
tions are inaccessible on ideal quantum computers, let alone near-term quantum
computers. Still, it is believed that there exist reasonably shallow ansatzes that are

Chapter 4. Quantum Machine Learning 40

useful for constructing powerful machine learning models. Many of these ansatzes
are also believed to be classically hard to simulate, eluding to a possible quantum
advantage for quantum machine learning [18].

In this thesis, we will investigate an ansatz that respect limitations of near-team
quantum computers, constrained to circuit depths that scale linearly with the
number of qubits and with linear connectivity between qubits. We will refer to this
ansatz as the simple ansatz. It can be visualised as

USA(θ) =

• Ry(θ1)

• Ry(θ2)

• Ry(θ3)
...

Ry(θnθ)

. (4.6)

The simple ansatz applies CNOT gates on neighboring qubits in sequence until the
final qubit is reached. This creates entanglement between the qubits and enables
access to a larger space of transformations, as explained in Section 3.2.2. Then, an
Ry rotation is applied to each qubit, each parameterized with its own parameter.
Both the number of parameters and the circuit depth of the simple ansatz scales
linearly with the number of qubits, making it hardware-efficient and hopefully
suitable for near-term applications.

In order to produce a more expressive ansatz that can produce more compli-
cated transformations, we may repeat the simple ansatz r number of times with
independent parameter as such:

|ψx,θ〉 = USA(θr) · · ·USA(θ2)USA(θ1) |ψx〉 , (4.7)
where θi are independent vectors of parameters. We call r the repetitions of the
ansatz.

4.4 Model Output
To derive a model output ŷ, we must estimate the expectation value of some
observable with respect to the state prepared by the encoder and ansatz, i.e.
ŷ = 〈ψx,θ| Ô |ψx,θ〉. In the same manner as Abbas et al. [17], we use the parity of
the state to derive a model output for inference. The parity of an n qubit state
can be formulated the operator

P = 1
2(I⊗n +

n⊗
i=1

σz). (4.8)

Applying this operator on a computational basis state |v1 · · · vn〉 computes

Chapter 4. Quantum Machine Learning 41

P |v1 · · · vn〉 = 1
2(|v1 · · · vn〉 − (−1)

∑n

i=1 vi |v1 · · · v2〉) =
n⊕
i=1

vi |v1 · · · vn〉 , (4.9)

where ⊕n
i=1 vi is the mod 2 sum of the terms vi, also known as the parity of the

bitstring v1 · · · vn. In short, the parity of a state |v1 · · · vn〉 is zero if the number of
qubits in state |1〉 is even, and is otherwise one. This is called even and odd parity,
respectively. To estimate the expected parity 〈ψx,θ|P |ψx,θ〉, we use the technique
described in Section 3.2.5 by preparing the state repeatedly and measure it in the
computational basis. The expected parity can then be estimated as

〈ψx,θ|P |ψx,θ〉 ≈
1
S

S∑
j=1

pj, (4.10)

where S is the number of shots used (repeated measurements), and pj is the parity
resulting from measurement j.

4.5 Optimization of PQC
A key component of hybrid methods such as PQCs is the optimization of the
parameters θ entering the ansatz. These parameters are usually optimized with
respect to some objective function in order to solve a given problem [13]. In the
context of machine learning, one seeks to minimize the loss function Equation (2.2) to
fit labeled data. There are multiple popular methods for optimization in the context
of PQC. One such method is numerical differentiation of the loss function:

∂

∂θi
L(θ) ≈ L(θ1, · · · , θi + ε, · · · θnθ)− L(θ1, · · · , θi, · · · θnθ)

ε
, (4.11)

for a sufficiently small ε > 0. Having an approximation of the gradient, one can
optimize the parameters using gradient descent or similar techniques. However,
because of the high amount of noise of near-term quantum computers, finite
difference approximations of derivatives can be unfavorable in practice. Recently,
analytical techniques have been proved to be very efficient for calculating the
gradient on quantum computers [17, 13]. In the next section, we will detail how
this gradient can be calculated.

4.5.1 Analytical Gradient-Based Optimization
Based on the derivation presented by Schuld et al. [38], we will now present how
the gradient of a large class of PQC’s can be calculated on quantum computers
using the parameter shift rule. Assume we have some circuit parameterized by θ
that prepares a state |ψθ〉 = Uθ |0〉. The expectation value of some observable Ô
can be formulated as

Chapter 4. Quantum Machine Learning 42

a = 〈ψθ| Ô |ψθ〉 = 〈0|U †θÔUθ |0〉 . (4.12)
Assume for that any parameter θi affects only a single gate. Then, since any circuit
can be decomposed into a sequence of gates, we can decompose the circuit as
Uθ = AG(θi)B, where G(θi) is the only gate dependent on θi, and A and B are the
rest of the circuit. This allows us to rewrite the expectation value as

a = 〈ψ′|G(θi)†Ô′G(θi) |ψ′〉 , (4.13)
where |ψ′〉 = B |0〉 and Ô′ = A†ÔA. Starting from this expression, it is easy to
mathematically compute the derivative of the expectation value. For easier notation,
we will use ∂xy for the partial derivative ∂y

∂x
:

∂θia = 〈ψ′|G(θi)†Ô′(∂θiG(θi)) |ψ′〉+ h.c., (4.14)
where h.c. refers to the Hermitian conjugate of the whole term to the left of it.
In its current form, the terms of the above expression cannot be computed on a
quantum computer since they don’t have the form of expectation values. However,
it is possible to rewrite it as a linear combination of two expectation values

∂θia = 1
4(〈ψ′| [G(θi) + 2∂θiG(θi)]†Ô′[G(θi) + 2∂θiG(θi)] |ψ′〉−

〈ψ′| [G(θi)− 2∂θiG(θi)]†Ô′[G(θi)− 2∂θiG(θi)] |ψ′〉).
(4.15)

Are [G(θi) + 2∂θiG(θi)] and [G(θi)− 2∂θiG(θi)] unitary operators? In the case that
they are not, it is not possible to implement them as circuits. However, for gates
such as Pauli rotations, they turn out to be unitary up to a constant factor and
actually quite easy to implement. Given that G(θi) = Rj(θi) = e−iθiσj/2, where
j ∈ [x, y, z], we have that

G(θi)± 2∂θiG(θi) = (I ∓ iσj)︸ ︷︷ ︸√
2G(±π2)

G(θi) =
√

2G(θi ±
π

2), (4.16)

where the relation Rj(m)Rj(n) = Rj(m+ n) was used in the last step. Inserting
this result back into Equation (4.15), we get the final expression

∂θia = 1
2(〈ψ′|G(θi + π

2)†Ô′G(θi + π

2) |ψ′〉−

〈ψ′|G(θi −
π

2)Ô′G(θi −
π

2) |ψ′〉).
(4.17)

The form of the expression above reveals the origin of the name "parameter shift
rule". To calculate the derivative of the expectation value of a circuit, one simply has
to estimate this expectation value twice: Once with the corresponding parameter
shifted by π

2 , and once shifted by −π
2 . The derivative is finally found by combining

Chapter 4. Quantum Machine Learning 43

the two results in a linear combination. This is a efficient approach for computing
the gradient, since the number of expectation values that needs to be estimated is
proportional to the number of parameters.

For QNNs, the features x enter the state |ψx,θ〉 in the same way as the parameters
θ if qubit encoding is used (see Section 4.2.1), i.e. with Pauli rotations. In this
case, the parameter shift rule can also be applied to calculate the derivative of
the output with respect to the input features, i.e. ∂xia. This will be relevant later
when we introduce models consisting of multiple circuits.

4.5.2 Barren Plateus in QNN Loss Landscape
While recent studies have shown several promising characteristics of QNNs, such as
faster training and greater flexibility [17], these studies have largely been focused
on smaller systems and heuristic measures. As such, few scaling relations of QNNs
have been rigorously proven. Recently, McClean et al. [20] discovered an important
result connecting the magnitude of the gradient to the number of qubits for a large
class of PQCs. First, they point out that expectation values measured on a state
|ψn〉 sampled randomly from an n-qubit Hilbert space tend to concentrate around
their mean over Hilbert space as n increases. Mathematically, we can express this
as

lim
n→∞

V|ψn〉(〈ψn| Ô |ψn〉) = 0, (4.18)

where V|ψn〉(·) calculates the variance over the whole Hilbert space, and Ô is some
observable. This concentration also occurs exponentially fast in n. Are the states
|ψθ〉 prepared by PQCs susceptible to this concentration of expectation values?
As stated in Section 4.3, we know that Uθ can only prepare any random state
|ψθ〉 = Uθ |0〉 if it is exponentially deep. However, McClean et al. [20] showed that
shallow PQCs with polynomial circuit depth were still susceptible for the same
exponential concentration of expectation values. Further, they showed that the
gradient of PQCs has a mean around zero, i.e.

E(∂θi 〈ψθ| Ô |ψθ〉) = 0. (4.19)

These two results show that the gradients of PQCs with many qubits tend to
concentrating around zero. In other words, as the circuit depth and number of
qubits grow, PQCs essentially approach a random circuit whose gradients vanish
exponentially fast.

The vanishing of PQC gradients manifests itself as loss landscapes that are extremely
flat in most of parameter space, reminiscent of how the gradients vanish for classical
neural networks as the number of layers increase (see Section 2.3.4). Since the
gradients of QNNs are estimated on quantum hardware, an exponentially vanishing
gradient requires exponentially many shots in order to estimate it accurately, causing

Chapter 4. Quantum Machine Learning 44

a very large overhead on the quantum computer. As discussed in Section 3.2.5,
using an insufficient number of shots will generally lead to a very bad signal-to-noise
ratio when estimating small quantities. If this is the case when estimating the
gradient, a bad signal-to-noise ratio can cause gradient-based methods to essentially
perform a random walk in parameters space which fails to converge [21]. This
suggests that QNNs of many qubits and large circuit depths are intractable to train
in practice.

4.6 Quantum Circuit Network
We extend the QNN framework discussed so far by implementing multi-circuit
models consisting of several such QNNs. These models exhibit a network-like
structure, consisting of layers of parameterized circuits. These layers of circuits
transform input features in a sequential manner until a model prediction is obtained.
To avoid confusion with the similarly themed "quantum neural networks", we have
opted to call the multi-circuit model a quantum circuit network (QCN). This type
of architecture was explored by Bilek [22] and was found able to sufficiently fit a
nonlinear function in one dimension when optimized with Nelder-Meads algorithm,
a gradient-free optimization algorithm.

4.6.1 Feed-Forward
Figure 4.5 illustrates the general structure of a QCN, which exhibits a neural
network-like architecture. Here, each node in the network is a QNN model f (l)

QNN (see
Equation (4.3)), with some layer specific choice of encoder, ansatz and observable.
Each QNN is parameterized by θ[l,j], where l is the layer and j is the node in the
current layer. The feed-forward procedure is described as follows: For layer l, each
node receives the feature vector a(l−1) resulting from the previous layer(with the
special case that a(0) = x). For each node j in layer l, an output a(l)

k is produced,
i.e.

a
(l)
j = f

(l)
QNN(a(l−1);θ[l,j]) (4.20)

These outputs are then concatenated to make a new feature vector a(l) = (al1, · · · , alm(l)),
where m(l) is the number of nodes in layer l. This is then repeated for each layer
1 through L. Finally, the output of the last layer is identified as the model
output

ŷ = fQCN(x;θ) = a(L), (4.21)

where θ is the collection of all θ[l,j].

Chapter 4. Quantum Machine Learning 45

Figure 4.5: General structure of a quantum circuit network. Each node, indicated
by a box, is a QNN model parameterized by θ[l,j], where l is the layer and j is the
node in the that layer. m(l) is the number of nodes in layer l. For layer l, each
node receives the feature vector a(l−1) resulting from the previous layer (with the
special case that a(0) = x). For each node j, an output a(l)

j is produced, which is
then concatenated to make a new feature vector a(l). This is then repeated for each
layer 1 through L. Finally, the output of the last layer is identified as the model
output ŷ = a(L).

Because of the sequential nature of QCNs, the models can be evaluated one circuit
at a time during feedforward and the resulting values alj can be stored on a classical
computer. At the expense of more circuit evaluation, this enables the possibility of
constructing large QCNs using several shallow circuit. Quantum neural networks,
on the other hand, must execute the whole procedure coherently on a quantum
computer to derive a model output. For QNNs with high circuit depth, this may
be unsuitable on noisy quantum hardware due to decoherence, as explained in
Section 3.3.

Another interesting aspect of QCNs is that their sequential nature actually in-
corporate nonlinear transformations of the input for every layer, much like dense
neural networks Equation (2.13). When estimating the outputs of any layer using
Equation (4.20), we know from Section 3.2.5 that the estimated expectation value
relates to the amplitudes αi of the state via the squared value |αi|2. This causes a
nonlinear relationship between the inputs and outputs. This type of nonlinearity is
introduced for every layer for QCNs, but only once for QNNs. This could potentially
enable QCNs to learn more complicated functions compared to QNNs.

4.6.2 Backward Propagation
When comparing the formulation of QCNs Equation (4.21) and DNNs Equa-
tion (2.13), it becomes apparent that they are structurally identical, excluding the
mathematical operations happening inside each node. For the QCN, each node
implements a QNN model, while the DNNs implements a weighted sum of the
inputs, followed by a nonlinear activation. Using this observation, it is possible

Chapter 4. Quantum Machine Learning 46

to implement a slightly modified backpropagation algorithm for calculating the
gradient of QCNs analytically. This assumes that we are able to calculate the
derivative of the outputs of each QCN node. As described in Section 4.5.1, this is
indeed possible using the parameter shift rule.

For ŷ = fQCN(x;θ) and a loss function L(ŷ, y), the error of the last layer can be
computed as

δLk = ∂L(ŷ, y)
∂aLk

, (4.22)

where k indicates the node. This error can be defined for any layer recursively by
repeated application of the chain-rule:

δlj = ∂L(ŷ, y)
∂alj

=
∑
k

∂L(ŷ, y)
∂al+1

k

∂al+1
k

∂alj
=
∑
k

δl+1
k

∂al+1
k

∂alj
. (4.23)

The derivative of the loss function with respect to any parameter in any node can
then be calculated as

∂L(ŷ, y)
∂θ

[l,j]
n

=
∑
k

∂L(ŷ, y)
∂alk

∂alk

∂θ
[l,j]
n

= δlj
∂alj

∂θ
[l,j]
n

, (4.24)

where it was used that ∂alk
∂θ

[l,j]
n

= 0 for k 6= j, since the output of node k is independent
of the parameters in node j. The terms

∂alj

∂θ
[l,j]
n

(4.25)

∂al+1
k

∂alj
(4.26)

are the derivatives of the node outputs with respect to the parameters and inputs,
respectively. Since they are calculated locally for each node, we call them the local
gradients of the QCN model. As explained in Section 4.5.1, the local gradients
can be calculated analytically using the parameter shift rule with respect to the
parameters θ[l,j]

n and the inputs alj. By first performing a forward pass to calculate
al for all the layers l, the local gradients can then be estimated and stored one at a
time. Finally, Equation (4.24) can be used to classically compute the total gradient
∇θL(ŷ, y) based on the stored values for the single sample x. By repeating this for
all samples x(i), we can calculate the average gradient

∇θL(θ) = 1
N

N∑
i=1
∇θL(ŷ(i), y(i)). (4.27)

The calculation of the gradient allows us to leverage more information of the
loss function and enables for gradient-based optimization. Potentially, this could

Chapter 4. Quantum Machine Learning 47

mean faster optimization relative to derivative-free optimization, such as scikit-
learn’s numerical optimizer algorithm [28] which was originally used to train QCNs
[22]. However, as explained in Section 2.2.1, gradient-based methods such as
gradient descent are prone to getting stuck in local minima, potentially causing
slow optimization.

5
Tools for Analysis

In this chapter, we introduce the various numerical methods used for investigating
the models used in this thesis.

5.1 Trainability
In machine learning, trainability refers to how easily a particular model can be
trained under different conditions [17]. A common way to assess the trainability is
by investigating the geometry of the loss landscape. For example, the loss function
of dense neural networks exhibits local flatness for most directions in parameter
space, and strong distortion in others [8]. In a loss landscape that is mostly flat,
the gradient of the model tends to diminish, known as vanishing gradient, making
it difficult to train the model using gradient-based methods. This problem is
known to worsen with the number of layers, making the training of deep models
prohibitive.

To investigate the flatness and distortions of the loss landscape, a common metric
to use is the Hessian of the loss, which we will introduce in the next section.

5.1.1 Hessian Matrix
Let f(x(k);θ) be a parameterized and differentiable model, where x(k) ∈ Rp are
p features, and θ ∈ Rnθ are nθ model parameters. For a general loss function on
the form Equation (2.2), L(θ) = ∑N

k=1L(f(x(k);θ), y(k)), where N is the number
of samples in the data set, the Hessian matrix of the loss function is given by

Chapter 5. Tools for Analysis 49

Hij = ∂2L(θ)
∂θi∂θj

. (5.1)

The Hessian matrix is an nθ × nθ matrix that quantifies the curvature of the loss
function locally in the parameter space at the point of θ. This is an extensively
studied quantity in the machine learning community, and it has been used to study
the loss landscape both for classical and quantum machine learning models [7, 39].
In particular, its eigenvalue spectrum quantifies the amount of curvature in various
directions. Typically for classical neural networks, the spectrum is characterized
by the presence of many eigenvalues near zero, with the exception of a few large
ones (so-called "big killers") [7]. This indicate that the loss landscape is mostly flat,
with large distortions in a few directions, which in turn causes slow optimization as
discussed earlier. Figure 5.1 shows an example of this.

Figure 5.1: Figure showing an example of a strongly skewed spectrum of the
Hessian for a classical neural network. Most eigenvalues are close to zero, with the
presence a few large ones. This figure is retrieved from LeCun et al. [7].

5.1.2 Empirical Fisher Information Matrix
An apparent shortcoming of the Hessian matrix Equation (5.1) is the large compu-
tational cost of computing it, requiring the evaluation of O(n2

θ) double derivatives.
This is particularly expensive for models of many parameters, which e.g. neural
networks tend to be. An alternative and related quantity, called the Empirical
Fisher Information Matrix (EFIM) [8], can be calculated using O(nθ) first order
derivatives, which is much better suited for big models. We will now derive the
EFIM and relate it to the Hessian matrix.

Chapter 5. Tools for Analysis 50

Assume a square loss 1
2N
∑N
k=1(f(x(k);θ)− y(k))2. Computing Equation (5.1) with

this loss results in

Hij = Fij −
1
N

N∑
k=1

(y(k) − f(x(k);θ))∂
2f(x(k);θ)
∂θi∂θj

, (5.2)

where F is identified as the EFIM, given by

Fij = 1
N

N∑
k=1

∂f(xk;θ)
∂θi

∂f(xk;θ)
∂θj

. (5.3)

From Equation (5.2), the EFIM can been seen to coincide with the Hessian matrix
if f(x(k);θ) = y(k), since the terms in the last sum vanishes. This is the case if
the model manages to perfectly replicate the targets from the features, which is
approximately true for well-trained models that fit the data sufficiently. However,
even for untrained models, the EFIM is sometimes used as a cheaper alternative
to the Hessian matrix, particularly for investigating the geometry of the loss
landscape via its eigenvalue spectrum. This has been done both for classical and
quantum mechanical machine learning models [8, 17]. It is worth pointing out that
these investigations, as well as this thesis, are mainly concerned with untrained
models. Consequently, the EFIM does not coincide with the Hessian matrix and
does not give a mathematically accurate description of the curvature of the loss
landscape. However, the EFIM still serves as a heuristic for addressing the flatness
and distortions of the loss landscape.

5.2 Expressivity
Expressivity in machine learning, especially in the context of neural networks, is a
way of characterizing how architectural properties of a model affect the space of
functions it can compute Raghu et al. [6]. More simply put, expressivity measures
how flexible and complex the model is. The first attempts to measure expressivity of
neural networks took a highly theoretical approach, for example when Bartlett et al.
[40] calculated the VC dimension of shallow neural networks. The VC dimension,
or Vapnik–Chervonenkis dimension [4], is a well-established measure of complexity.
However, it is known to be hard to compute in practice for a variety of models
[17].

5.2.1 Trajectory Length
In order to assess the expressivity of deep neural networks, Raghu et al. [6] intro-
duced a more practical alternative to VC dimension called trajectory length. This is
an easy-to-compute heuristic that measures how small perturbations in the input of
neural networks grow as it is passed through the various layers of the model.

Chapter 5. Tools for Analysis 51

Given a trajectory x(t) in a p-dimensional space, its arc length l(x(t)) is given
by

l(x(t)) =
∫
t

∥∥∥x(t)
dt

∥∥∥dt (5.4)

where ‖ · ‖ indicates the Euclidean norm. Conceptually, the arc length of the trajec-
tory x(t) is the sum of the norm of its infinitesimal segments. By approximating
the trajectory with a finite number of points x(ti), its arc length can be estimated
as

l(x(t)) ≈
N−1∑
i=1
‖x(ti+1)− x(ti)‖. (5.5)

By making an appropriate trajectory x(ti) in some input space, it is possible to
investigate how its length changes as it is passed through each layer of a neural
network. To be concrete, the quantity of interest is l(al(ti)), where al(ti) are the
outputs of layer l resulting from the input x(ti) for some neural network. As
an example, one can make a trajectory x(ti) ∈ R2 in the shape of a circle. By
projecting al(ti) down to two dimensions, it is possible to visualize how each
layer of the neural network distorts the trajectory. This has been exemplified in
Figure 5.2.

Figure 5.2: Figure showing a trajectory increasing with the depth of a network.
Starting with a circular trajectory (left most pane), it is fed through a fully connected
tanh network with width 100. Pane second from left shows the image of the circular
trajectory (projected down to two dimensions) after being transformed by the first
hidden layer. Subsequent panes show the trajectory after being transformed by
multiple layers. This figure is retrieved from Raghu et al. [6].

Figure 5.2 shows that the inputs gets transformed in a highly nonlinear way as they
are being transformed by each layer. Especially, neighboring points in the input
trajectory get mapped further and further apart for each transformation, indicating
that small perturbations in the input grow for each layer. Raghu et al. [6] showed
that the trajectory length of neural networks increase exponentially with depth.
The authors also showed that untrained neural networks that initially lacked this
feature could be brought into the exponential regime by training them on data.
This is exemplified in Figure 5.3, showing that neural networks can be trained to
compute exponentially complex functions.

Chapter 5. Tools for Analysis 52

Figure 5.3: Figure showing the trajectory length of a neural network as it is
trained on data. The legend shows the number of epochs. After about 7 × 104

epochs, the neural network enter the exponential regime, where each additional
layer (more or less) increases the trajectory length exponentially. The figure is
retrieved from Raghu et al. [6].

Part II

Implementation

6
Implementation

In this chapter, we will present details surrounding implementation of algorithms and
methods presented in Part I. For this thesis, we have developed an Python framework
for doing machine learning, capable of implementing dense neural networks (DNN)
Equation (2.13), quantum neural networks (QNNs) Equation (4.3) and quantum
circuit networks (QCN) Equation (4.21). In addition, various numerical tools
for analyzing the models are available. The code base is object-orientated using
Python, focusing on flexibility. This grants a high degree freedom when specifying
model architecture, such as setting the number of layers, number of nodes, type of
activation functions, loss function and optimizer. The frame work is also capable
of implementing hybrid models mixing both DNN and QCN layers. To allow
implementation of quantum machine learning, the frame work is built around Qiskit
[24], an IBM-made python-package used for emulating quantum circuits.

All source code developed for this thesis can be found on our GitHub page https://
github.com/KristianWold/Master-Thesis, together with notebooks containing training
of models, generation of data, analysis and plotting. For easier reading, all python
types referred to in this thesis will be highlighted in bold. All simulations in this
thesis were performed using an Ubuntu desktop computer equipped with a Ryzen
3900x CPU and 32 GB RAM.

6.1 Qiskit
Qiskit [24] is an open source Python-package used for practically emulating quantum
circuits and quantum algorithms. It can be installed using pip with the following
command:

https://github.com/KristianWold/Master-Thesis
https://github.com/KristianWold/Master-Thesis

Chapter 6. Implementation 55

$ pip i n s t a l l q i s k i t

To import the package, include the following in any python scrip:
import q i s k i t as qk

6.1.1 Registers and Circuits
To create a quantum circuit in Qiskit, one can first create one or more quantum
registers, which are list structures containing qubits. The registers can be put
together into a circuit in the following way:

1 q_reg_1 = qk . QuantumRegister (2)
2 q_reg_2 = qk . QuantumRegister (2)
3 c_reg = qk . C l a s s i c a l R e g i s t e r (2)
4 c i r c u i t = qk . QuantumCircuit (q_reg_1 , q_reg_2 , c_reg)

Here, each of the registers q_reg_1 and q_reg_2 contain two qubits. By default,
they are each initialized in the state |0〉. Thus, the total circuit can be written
as

|00〉 |00〉 , (6.1)

where each ket refers to one register. Further, c_reg is a classical register of
classical bits, meant for storing classical information when the circuit is later
measured. In general, a circuit can contain any number of quantum registers with
any number of qubits. However, if one wishes to include a classical register, it must
be included as the last argument in qk.QuantumCircuit().

6.1.2 Applying Gates
Continuing after creating our circuit, we can apply a variety of quantum gates by
calling different methods for the circuit object. Hadamard gates can be applied to
the two qubits of register q_reg_1 in the following way:

1 c i r c u i t . h (q_reg_1 [0])
2 c i r c u i t . h (q_reg_1 [1])

This prepares the state

|00〉 |00〉 →
(1

2 |00〉+ 1
2 |01〉+ 1

2 |10〉+ 1
2 |11〉

)
|00〉 .

A possible way of creating entanglement between the registers is to use CNOT
gates on q_reg_2 conditioned on the qubits in q_reg_1:

1 c i r c u i t . cx (q_reg_1 [0] , q_reg_2 [0])
2 c i r c u i t . cx (q_reg_1 [1] , q_reg_2 [1])

Chapter 6. Implementation 56

resulting in the state

(1
2 |00〉+ 1

2 |01〉+ 1
2 |10〉+ 1

2 |11〉
)
|00〉 →

1
2 |00〉 |00〉+ 1

2 |01〉 |01〉+ 1
2 |10〉 |10〉+ 1

2 |11〉 |11〉 .

For a complete documentation of the gates available in Qiskit, see https://qiskit.
org/documentation/stubs/qiskit.circuit.QuantumCircuit.html.

6.1.3 Measurement
To measure the state of q_reg_2 in the computational basis and store it to c_reg,
we make use of the method measure():

1 c i r c u i t . measure (q_reg_2 , c_reg)

Finally, to repeatedly execute the circuit and sample the results, we make use of
qk.execute together with the backend qasm_simulator :

1 job = qk . execute (c i r c u i t ,
2 backend =
3 qk . Aer . get_backend (" qasm_simulator ") ,
4 shot s = 1000)
5 r e s u l t = job . r e s u l t () . get_counts (c i r c u i t)
6 pr in t (r e s u l t)

→ {′00′ : 261,′ 01′ : 242,′ 10′ : 253,′ 11′ : 244}

This results in a python dictionary whose keys are strings indicating the different
states that were measured. The value corresponding to each key is the number
of times that state was measured. To set the number of times to execute and
measure the circuit, the argument shots may be used. In this case, it was set
to 1000. Using qk.Aer.get_backend("qasm_simulator") as the backend, the
circuit is simulated locally on the classical machine in an ideal fashion, meaning the
imperfections of real quantum computers as described in Section 3.3 are disregarded.
Still, since a finite number of shots was used, the normalized results 261

1000 ,
242
1000 ,

253
1000

and 244
1000 only approximate the exact value 1

4 .

6.1.4 Exact Expectation Value
When simulating circuits on classical hardware, e.g. with Qiskit, we have the luxury
of accessing the state resulting from some computation directly and calculate exact
expectation values. As explained in Section 3.1.3, this is not possible when using real
quantum computers. Having access to exact expectation values is useful when the
noise of finite sampling or realistic hardware is uninteresting for the analysis.

https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html

Chapter 6. Implementation 57

To access the exact state, the classical register c_reg must be omitted from the
circuit, as we never plan to measure it in the ordinary way. Then, the circuit is
simulated using the statevector_simulator backend:

1 job = qk . execute (c i r c u i t ,
2 backend =
3 qk . Aer . get_backend (" s ta t evec to r_s imu la to r "))
4 r e s u l t = job . r e s u l t () . get_counts (c i r c u i t)
5 pr in t (r e s u l t)

→ {′00′ : 0.25,′ 01′ : 0.25,′ 10′ : 0.25,′ 11′ : 0.25}

Here, the "measurements" are exact and normalized, as if infinitely many shots
were used for sampling.

6.1.5 Simulating Real Devices
Even though a given quantum algorithm may produce a satisfying result when
executed on idealized hardware, like simulated with Qiskit, this may not apply
when run on real hardware. This is due to the introduced noise and inaccuracies
as explained in Section 3.3. To produce a more realistic result, Qiskit allows
for realistic simulation of many noisy IBM quantum computers by choosing an
appropriate backend.

Noisy Backend

There are three main components for simulating noisy devices. The first is the
noise model, which is responsible for implementing noise and inaccuracies present
in the real hardware. In Qiskit, noise models have 4 components that determine
the total model:

• Decoherence Error resulting from interactions from the enviroment on the
qubits, such as thermal noise.

• Gate Error: Error resulting from application of gates.

• Gate Length: Error resulting from the length of the gate.

• Measurement Error: Error resulting from the measurement of the qubits.

The next component is a coupling map that defines how the different qubits couple,
i.e. what pairs of qubits that can interact via two-qubits gates (see Section 3.3).
The last component defines the basis gates of the quantum computer.

In this thesis, we will be using the IBM quantum computer Santiago [41], which has
5 qubits with only linear connectivity between the qubits. This choice is deliberate,
as qubit encoding and the simple ansatz are specially made to work efficiently

Chapter 6. Implementation 58

on such architectures. To access and store the backend simulating this quantum
computer, we can use the following code:

1 import p i c k l e
2 from q i s k i t . p rov ide r s . aer import QasmSimulator
3 from q i s k i t import IBMQ
4

5 IBMQ. enable_account (token)
6 backend = prov ide r . get_backend (' ibmq_santiago ')
7 backend = QasmSimulator . from_backend (backend)
8 p i c k l e . dump(backend , open (" backend_santiago " , "wb"))

Here, token is a string identifying an IBM account necessary for accessing the
correct backend. backend = QasmSimulator.from_backend(backend) pulls
the necessary components describes earlier and implements them into the Qasm-
Simulator backend, ready to be used for noisy simulation.

Transpiling

When using a noisy backend, it is important to transpile the circuit prior to
simulation such that gates of the circuit are decomposed into the correct basis gates.
It is also important that the transpiled circuit respects the coupling map of the
target quantum computer. Transpiling a circuit with respect to a given backend is
done automatically when executing the circuit:

1 jov = qk . execute (c i r c u i t , noisy_backend , s e ed_t ran sp i l e r =42,
seed_simulator =42)

Here, the seed_transpiler and seed_simulator are seeds that make the work
of the transpiler and the noise model reproducible, which is otherwise random in
nature. Transpiling a circuit will also apply a light optimization by attempting
to reduce the number of basis gates used. This is particularly important, since
we want the depth to be as low as possible. Heavier optimization routines may
be used to reduce the circuit depth even more, with the price of more time spent
transpiling.

6.2 QNN Example
We will now present a possible way of implementing a QNN Equation (4.3) for
fitting data. The model will be optimized using the parameter shift rule and
gradient descent.

6.2.1 Encoding
To encode input features, we will make a callable object on the form circuit =
encoder(circuit, data_reg, data), where data_reg is a quantum register of
circuit, and data is a numpy array containing the features of one sample. Qubit

Chapter 6. Implementation 59

encoding using Rx rotations, as presented in Section 4.2.1, can be implemented as
the following function:

1 de f qubit_encoder (c i r c u i t , data_reg , data) :
2 f o r i , x in enumerate (data) :
3 c i r c u i t . rx (x , da ta_reg i s t e r [i])
4

5 re turn c i r c u i t

This function requires that the number of features does not exceed the number of
qubits.

6.2.2 Ansatz
To implement the ansatz, we want a callable object on the form circuit =
ansatz(circuit, data_reg, theta), where theta is a numpy array containing the
parameters. The "simple ansatz" detailed in Section 4.3 can be implemented as a
python function:

1 de f s imple_ansatz (c i r c u i t , data_reg , theta) :
2 n_qubits = data_reg . s i z e ()
3

4 f o r i range (n_qubits − 1) :
5 c i r c u i t . cx (data_reg [i] , data_reg [i +1])
6

7 f o r i , w in enumerate (theta) :
8 c i r c u i t . ry (w, da ta_reg i s t e r [i])
9

10 re turn c i r c u i t

Here, data_reg.size() was used to retrieve the number of qubits present in
the register. The first for-loop entangles the qubits in sequence using CNOT
gates. The last for-loop applies an Ry rotation to each qubit corresponding to the
parameters.

6.2.3 Model Output
To derive a model output, we must estimate an expectation value as explained in Sec-
tion 4.4. We can do this by making a callable object y_pred = sampler(counts),
where counts is a python dictionary containing the measuring results, as explained
in Section 6.1.3 and Section 6.1.4. We can implement a function estimating the
parity (see Section 4.4) in the following way:

1 de f pa r i t y (counts) :
2 shot s = sum(counts . va lue s ())
3

4 output = 0
5 f o r b i t s t r i n g , samples in counts . i tems () :

Chapter 6. Implementation 60

6 i f pa r i t y_o f_b i t s t r i ng (b i t s t r i n g) == 1 :
7 output += samples
8

9 output = output / shot s
10

11 re turn output

where parity_of_bitstring(bitstring) is a function that calculates the parity
of a bitstring, which can be implemented as

1 de f pa r i t y_o f_b i t s t r i ng (b i t s t r i n g) :
2 binary = [i n t (i) f o r i in b i t s t r i n g]
3 par i t y = sum(binary) % 2
4

5 re turn pa r i t y

The function parity() iterates over the different measured states and makes a
weighted average of their parities, resulting in the estimation of the average parity
of the state.

To make a prediction, we can implement a function qnn(x, theta), where x is a
numpy array containing features of a single sample, and theta is a numpy array
containing parameters. The function can be implemented as

1 de f qnn (x , theta) :
2 n_qubits = len (x)
3 data_reg = qk . QuantumRegister (n_qubits)
4 c las_reg = qk . C l a s s i c a l R e g i s t e r (n_qubits)
5 c i r c u i t = qk . QuantumCircuit (data_reg , c las_reg)
6

7 c i r c u i t = qubit_encoder (c i r c u i t , data_reg , x)
8 c i r c u i t = simple_ansatz (c i r c u i t , theta)
9

10 job = qk . execute (c i r c u i t ,
11 backend =
12 qk . Aer . get_backend (" qasm_simulator ") ,
13 shot s = 1000)
14 counts = job . r e s u l t () . get_counts (c i r c u i t)
15 y_pred = par i t y (counts)
16

17 re turn y_pred

6.2.4 Gradient
Having a function that implements a QNN that produces a model output, we can
apply the parameter shift rule described in Section 4.5.1 to calculate the gradient
of the output with respect to the parameters:

Chapter 6. Implementation 61

1 de f g rad i en t (x , theta) :
2 der iv_plus = np . z e ro s (l en (theta))
3 deriv_minus = np . z e ro s (l en (theta))
4

5 f o r i in range (l en (theta)) :
6 theta [i] += np . p i /2 #parameter s h i f t e d forward
7 der iv_plus [i] = qnn (x , theta)
8

9 theta [i] −= np . p i #parameter s h i f t e d backwards
10 deriv_minus [i] = qnn (x , theta)
11

12 theta [i] += np . p i /2 #parameter r e s e t
13

14 re turn 0 . 5∗ (der iv_plus − deriv_minus) #l i n e a r combination

This function returns a numpy array with the same length as theta, containing
the derivatives ∂y

∂θi
.

6.2.5 Training
Finally, we can implement a function train(x_list, y_list, theta, lr, epochs)
that calculates the average gradient Equation (2.18) resulting from the samples
and targets x_list and y_list, using MSE loss. The function then updates the
parameters theta iteratively using gradient descent with learning rate lr:

1 de f t r a i n (x_l i s t , y_l i s t , theta , l r , epochs) :
2 l o s s = []
3 f o r i in range (epochs) :
4 grad = np . z e r o s (l en (theta))
5 l o s s . append (0)
6

7 f o r x , y in z ip (x_l i s t , y_ l i s t) :
8 y_pred = qnn (x , theta) #p r e d i c t i o n
9 l o s s [−1] += (y_pred − y) ∗∗2 #accumulate l o s s

10 grad = grad + (y_pred − y) ∗ grad i en t (x , theta)
11

12 l o s s [−1] = l o s s [−1]/ l en (y) #normal ize
13 grad = grad/ l en (y)
14 theta += − l r ∗ grad #update parameters
15

16 re turn theta , l o s s

At line 10, grad = grad + (y_pred - y)*gradient(x, theta) accumulates
the gradients of the MSE loss function with respect to the parameters, i.e. Equa-
tion (2.7). The parameters are then updated at line 14 using gradient descent.

Chapter 6. Implementation 62

6.3 Quantum Circuit Network
In this section, we will introduce how our framework can be used to implement
various QCN architectures, and how these can be used to fit data. We will also
show how the framework can be used to implements single-circuit QNNs, DNNs,
and hybrid models combining QCNs and DNNs.

6.3.1 Encoders, Ansatzes and Samplers
We implement encoders, ansatzes and samplers as callable python classes with
much the same functionality as described in Section 6.2. We will now go through
the use of the most important classes.

Encoder

The encoder class Encoder can be instantiated for implementing qubit encoding
(Figure 4.2) as

1 from encoders import QubitEncoder
2

3 encoder = QubitEncoder (mode)

Here, mode is a string that specifies the rotations used for encoding, either "x",
"y" or "z". See Section 4.2.1 for details.

Ansatz

The ansatz class Ansatz can be instantiated as
1 from ansatze s import Ansatz
2

3 ansatz = Ansatz (block , reps)

Here, block is a python list containing strings that specify gates applied to the
circuit. For example, block = ["entangle", "ry"] will first apply CNOT gates to
all neighboring qubits in sequence. Ry rotations are then applied to every qubit.
This particular argument recreates the simple ansatz described in Section 4.3. reps
specifies the number of times the ansatz is then repeated.

Parity

The sampler class Parity can be instantiated as
1 from samplers import Par i ty
2

3 sampler = Par i ty ()

This class implements the same functionality as the parity function described in
Section 6.2.

Chapter 6. Implementation 63

6.3.2 QLayer
Our framework for constructing QCN models implements layers consisting parater-
ized circuits, as explained in Section 4.6. A QCN layer can be created as a python
object of the type QLayer as follows:

1 from l a y e r s import QLayer
2

3 q laye r = QLayer (n_qubits , #number o f qub i t s in each QNN
4 n_features , #number o f input f e a t u r e s
5 n_targets , #number o f outputs , i . e . nodes
6 s ca l e , #s c a l i n g o f output
7 encoder ,
8 ansatz ,
9 sampler ,

10 backend ,
11 shot s)

The arguments encoder, ansatz and sampler define the architecture of the
circuits in the layer. Examples of possible choices are described in Section 6.3.1.
As an example, a QLayer can be instantiated and used on a data in the following
way:

1 import numpy as np
2 from l a y e r s import QLayer
3 backend = qk . Aer . get_backend (" qasm_simulator ")
4

5 x = np . random . normal ((4 , 3))
6

7 np . random . seed (42)
8 q laye r = QLayer (n_qubits = 3 ,
9 n_features = 3 ,

10 n_targets = 2 ,
11 s c a l e = 2∗np . pi ,
12 encoder = Encoder (mode = " x ") ,
13 ansatz = Ansatz (b locks =[" entang l e " , " ry "] ,
14 reps = 2) ,
15 sampler = Par i ty () ,
16 backend = backend ,
17 shot s =1000)
18

19 y_pred = q laye r (x)
20 pr in t (y_pred)

→ [[5.19619425 4.29769875]
[3.84530941 2.14256619]
[3.08504399 2.19283167]
[4.09663682 2.58867235]]

Chapter 6. Implementation 64

Here, x is a dataset containing four samples of three features each. By specifying
n_targets=2, the resulting layer will consist of two nodes and thus produces
two output targets. The layer is callable, and performs prediction on the input
x sample-wise. If the number of shots are set to zero, i.e. shots=0, the outputs
are exactly calculated with the statevector_simulator backend, as explained in
Section 6.1.4.

6.3.3 Constructing QCNs from QLayers
In general, a QCN can be constructed with any number of layers, with any number
of inputs and outputs. The only constraint is that the outputs of one layer and
the inputs of a subsequent layer must match in shape. A two-layer QNC can be
constructed in the following way using the NeuralNetwork class:

1 from neuralnetwork import NeuralNetwork
2

3 x = np . random . normal (0 , 1 , (4 , 3))
4

5 #u n s p e c i f i e d arguments assumes d e f a u l t va lue s
6 l ay e r1 = QLayer (n_qubits=3,
7 n_features =3,
8 n_targets =4)
9

10 l ay e r2 = QLayer (n_qubits=4,
11 n_features =4,
12 n_targets =1)
13

14 network = NeuralNetwork (l a y e r s = [layer1 , l aye r2] ,
15 co s t = MSE() ,
16 opt imize r = Adam(l r =0.1))
17 y_pred = network . p r e d i c t (x)
18 pr in t (y_pred)

In the above code, the NeuralNetwork class stores the layer objects in a python
list self.layers. When doing prediction, the class implements feed forward, as
described in Section 4.6.1, using a _call_ method:

1 de f __call__(s e l f , x) :
2 s e l f . a = []
3 s e l f . a . append (x)
4 f o r l a y e r in s e l f . l a y e r s :
5 x = l a y e r (x)
6 s e l f . a . append (x)

The outputs of all layers are stored, as they are needed during backpropagation.
network.predict(x) returns only the output of the last layer, i.e. the model
output.

Chapter 6. Implementation 65

6.3.4 Backpropagation
The classNeuralNetwork performs back propagation, as described in Section 4.6.2,
using a class method network.backward(x,y). In simplified terms, the method
is implemented as:

1 de f backward (s e l f , x , y) :
2 s e l f (x) #feed forward
3 y_pred = s e l f . a [−1] #i n f e r e n c e
4 de l t a = s e l f . c o s t . d e r i v a t i v e (y_pred , y)
5

6 #work thru l a y e r s in r e v e r s e
7 f o r i , l a y e r in r eve r s ed (l i s t (enumerate (s e l f . l a y e r s))) :
8 weight_gradient , d e l t a = l a y e r . grad (s e l f . a [i] ,
9 de l t a)

10 s e l f . we ight_grad ient_l i s t . append (weight_gradient)
11

12 s e l f . we ight_grad ient_l i s t . r e v e r s e ()

network.backward(x,y) starts by performing feed forward and predictions. In
line 4, the error of the last layer Equation (4.22) is initiated as delta based on the
specific loss function self.cost. For each layer, starting with the last, the gradient
is calculated and the error delta is updated. This is done using Equation (4.24)
and Equation (4.23), respectively, which is implemented in the layer method
layer.grad(self.a[i], delta).

6.3.5 Training
To train the QCN, the class method network.train(self, x, y, epochs) can be
used. In simplified terms, it is implemented as

1 de f t r a i n (s e l f , x , y) :
2 s e l f . l o s s = []
3 f o r i in range (epochs) :
4 s e l f . backward (x , y)
5 s e l f . s t ep ()
6

7 y_pred = s e l f . a [−1]
8 s e l f . l o s s . append (s e l f . c o s t (y_pred , y))
9

10 y_pred = s e l f . p r e d i c t (x)
11 s e l f . l o s s . append (s e l f . c o s t (y_pred , y))

The method for training starts by calling self.backward in order to calculate and
store the gradient in self.weight_gradient_list. Then, the method self.step()
is used to update the parameters of the layers. This is done using Equation (2.10),
but with the gradient modified by the specified optimizer. This is then repeated a
number of times specified by epochs.

Chapter 6. Implementation 66

6.3.6 Single-Circuit Models
Using the NeuralNetwork, it is possible to construct single-circuit QNNs in
addition to the usual multi-circuit QCNs. This can be done using a single QLayer
with a single node, as this will constitute only one QNN:

1 l a y e r = QLayer (n_qubits = 4 ,
2 n_features = 4 ,
3 n_targets = 1 ,
4 encoder = RZZEncoder () ,
5 ansatz = Ansatz (b locks =[" entang l e " , " ry "] ,
6 reps =2) ,
7 sampler = Par i ty () ,
8 backend = backend ,
9 shot s = 1000)

10

11

12 qnn_model = NeuralNetwork (l a y e r s = [l aye r1])

As there are no intermediate layers, we do not need to compute the derivative of
the node outputs with respect to their inputs. This opens up for ways of encoding
where the parameter shift rule, as implemented in Section 4.5.1 and Section 6.2.4,
fails. A possible choice is RZZ encoding, as used in the above code.

6.3.7 Dense Neural Networks
In addition to QLayer layers, the neural network framework also implements
Dense layers, which are densely connected layers as defined in Section 2.3. It can
be instantiated in the following way, and put together to form a DNN:

1 from l a y e r s import Dense , Sigmoid
2

3 dense1 = Dense (n_features = 4 ,
4 n_targets = 3 ,
5 s c a l e = 1 ,
6 a c t i v a t i o n = Sigmoid () ,
7 b ia s = True)

Here, activation specifies the activation function of the layer, in this case the
sigmoid function. Setting bias to true enables the use of bias parameters in the
layer. Like QLayer, Dense also implements methods like _call_ for feed forward,
and grad() for back-propagation. A DNN can be set up the following way:

1 from l a y e r s import Dense , Sigmoid
2

3 dense1 = Dense (n_features = 4 ,
4 n_targets = 3 ,
5 s c a l e = 1 ,
6 a c t i v a t i o n = Sigmoid () ,

Chapter 6. Implementation 67

7 b ia s = True)
8

9 dense2 = Dense (n_features = 3 ,
10 n_targets = 2 ,
11 s c a l e = 1 ,
12 a c t i v a t i o n = Sigmoid () ,
13 b ia s = True)
14

15 l a y e r s =[dense1 , dense2]
16 network = Neuralnetwork (l a y e r s)

This opens up for construction of neural networks that consists of an arbitrary
combination of QLayer and Dense layers, which can be simultaneously optimized
using the methods described in Section 6.3.5.

6.3.8 Hybrid Models
Due to the flexibility of the framework and compatibility of the different layers, it
is possible to make hybrid models by combining Dense and QLayer layers:

1 dense = Dense (n_features = 64 ,
2 n_targets = 4 ,
3 s c a l e = np . pi ,
4 a c t i v a t i o n = Tanh () ,
5 b ia s = True)
6

7 q laye r = QLayer (n_qubits = 4 ,
8 n_features = 4 ,
9 n_targets = 1 ,

10 encoder = Encoder () ,
11 ansatz = Ansatz (b locks =[" entang l e " , " ry "] ,
12 reps =2) ,
13 sampler = Par i ty () ,
14 backend = backend ,
15 shot s = 1000)
16 l a y e r s =[dense , q l aye r]
17 network = Neuralnetwork (l a y e r s)

In this code, the initial Dense layer is used to produce 4 outputs from 64 features,
which are subsequently fed to the following QLayer layer. It may be useful to
construct such hybrid models for training on data sets with many features, since
feeding 64 features directly to a QCN would require 64 qubits when using qubit
encoding. This high amount of qubits is generally not feasible for near-term
hardware. Note that the use of tanh activation and a scaling of π ensure that
the output of the Dense layer is in [−π, π], which we argue in Section 6.5.4 is an
appropriate scaling for QCNs.

Chapter 6. Implementation 68

6.4 Tools for Analysis
In this section, we present details surrounding the implementation of methods
discussed in Chapter 5.

6.4.1 Magnitude of Gradients
In order to investigate the vanishing gradient phenomenon discussed in Section 4.5.2
for QNNs, QCNs and DNNs, we will calculate the average magnitude of the gradient
for different models and architectures. Instead of calculating the gradient of some
loss function, i.e. Equation (2.7), we will instead calculate the gradient of the model
output itself, i.e.

∂f(x(i);θ)
∂θj

. (6.2)

Using our framework for neural networks, Equation (6.2) is calculated for each
data sample using the NoCost() loss function together with sample-wise backward
propagation. Given a model network, this can be implemented in the following
way:

1 network . co s t = NoCost ()
2 network . backward (samplewise=True)

If Equation (6.2) vanishes, so does does Equation (2.7), for any loss function. The
quantity Equation (6.2) also has the added benefit of being data agnostic, i.e., it is
independent of labels y(i).

Given a QNN fQNN , we wish to compute the magnitude of the gradient averaged
over N samples x(i) and the parameters θj. This allows us to capture the average
behavior of the model’s gradient. To produce a more significant result, this quantity
will finally be averaged over T different realizations of the parameters θ(k). This
quantity can be expressed as

1
TNnθ

T∑
k=1

N∑
i=1

nθ∑
j=1

∣∣∣∂fQNN(x(i);θ(k))
∂θj

∣∣∣. (6.3)

For QCNs and DNNs, we want to compute the same quantity as Equation (6.3),
but averaged over the parameters within each layer, rather than all parameters of
the model. This enables us to investigate how the average behavior of the gradient
changes from layer to layer. This quantity can be formulated as

1
TNnθ

T∑
k=1

N∑
i=1

nlθ∑
j=1

∣∣∣∂f(x(i);θk))
∂θ

[l]
j

∣∣∣, (6.4)

where f is a QCN or DNN model, nlθ are the number of parameters in layer l, and
θ

[l]
j is the j’th of these parameters.

Chapter 6. Implementation 69

We are also interested in the local gradients Equation (4.26) of QCNs, i.e., ∂a
(l)
m

∂a
(l−1)
n

.
We will average the magnitude of the local gradients within the same layer l, over
N samples x(i), and over T different realizations of the parameters. This quantity
can be expressed as

1
TNnθm(l)m(l−1)

T∑
k=1

N∑
i=1

∑
m,n

∣∣∣ ∂a(l)
m

∂a
(l−1)
n

∣∣∣, (6.5)

where m(l) is the number of nodes in layer l, and the indices m and n iterates over
nodes in layer l and l− 1, respectively. Note that the dependence of

∣∣∣ ∂a
(l)
m

∂a
(l−1)
n

∣∣∣ on the
samples and parameter realizations has been suppressed for clarity.

6.4.2 Empirical Fisher Information
To investigate the loss landscape of the QCN model, we calculate the empirical
Fisher information matrix (EFIM) Equation (5.3) and its eigenvalue spectrum
using a class FIM. Given some network and data set x, it can be used in the
following way:

1 from a n a l y s i s import FIM
2

3 f im = FIM(network)
4 f im . f i t (x)

Calling fim.fit(x) calculates the EFIM of network over the data x, and is imple-
mented as

1 de f f i t (s e l f , x) :
2 n_samples = x . shape [0]
3

4 s e l f . model . backward (x , samplewise=True)
5 grad i en t = s e l f . model . we ight_grad ient_l i s t
6

7 g rad i en t_ f l a t t ened = []
8 f o r grad in g rad i en t :
9 g rad i en t_ f l a t t ened . append (grad . reshape (n_samples , −1))

10

11 g rad i en t_ f l a t t ened = np . concatenate (g rad i ent_f la t t ened ,
ax i s =1)

12

13 s e l f . f im = 1 / n_samples ∗ g rad i en t_ f l a t t ened .T @
grad i en t_ f l a t t ened

At line 4, the cost function of the network is set to NoCost(). This ensures that
backward calculates the gradient of the model output and not any particular loss,
which is required by the EFIM. In addition, specifying samplewise=True in the
backward() method stops the gradient from being averaged over all the samples.

Chapter 6. Implementation 70

Rather, it is stored individually for each sample. The following for-loop unravels
and concatenates all the gradients of the various layers into a single matrix with
dimension (N, nθ), which is the number of samples and parameters, respectively.
The EFIM is calculated as a matrix product in line 13, normalized by the number
of samples. This matrix is then stored in self.fim. After calculating the EFIM, its
eigenvalue spectrum can be calculated as

1 eigenvalue_spectrum = fim . e i gen (x)

This performs a simple eigenvalue decomposition of self.fim using numpy’s linalg.eigh
to extract the eigenvalues. Because the EFIM is often highly degenerate, some of
the lower lying eigenvalues turn out negative, likely because of floating-point errors.
To combat this, any eigenvalue lower than 10−25 is set to this value.

6.4.3 Trajectory Length
Assume we have a NeuralNetwork object and a trajectory x(ti), as described in
Section 5.2.1. Then, we can calculate the trajectory length Equation (5.5) of the
resulting outputs of each layer using the class TrajectoryLength:

1 from a n a l y s i s import TrajectoryLength
2

3 t l = TrajectoryLength (network)
4 t ra j_len , t ra j_pro j = t l . f i t (x)

This produces two python lists: traj_len containing the trajectory length of the
layer outputs, and traj_proj containing the layer outputs themselves, projected
down onto 2D for visualization. The projection is done using scikit-learn’s PCA
decomposition [28].

6.5 Numerical Experiments
For easy reading, we will present hyperparameters and configuration details in
Chapter 7 alongside the relevant results and discussion. However, for sake of
tidiness, we will present and discuss configuration choices that appear frequently in
the analysis in this section.

6.5.1 Initialization
For QNNs and QCNs, the parameters will be initialized uniformly as θi ∼ U(−π, π).
Note that Pauli rotations (used in the simple ansatz Equation (4.7)) have a
periodicity of 2π, i.e. Rj(x) = Rj(x + 2π), so all possible rotation angles can be
realized using this initialization. Thus, it is possible to reach the whole space of
models defined by the architecture. Initializations with this characteristic is often
used for machine learning models based on PQCs [17, 21].

Chapter 6. Implementation 71

For DNNs, we will use the popular Xavier initialization [42], which is the default
initialization used by pyTorch [29] when using densely connected layers. The Xavier
initialization is obtained by sampling the weights and biases θl of layer l uniformly
as

θl ∼ U
(
− 1√

n
,

1√
n

)
, (6.6)

where n is the number nodes in the previous layer.

6.5.2 Pre-processing Data
For QNNs and QCNs, features will be min-max scaled such that xi ∈ [−π

2 ,
π
2].

This is deliberately half the periode of Pauli rotations, which are used when
performing qubit encoding (Section 4.2.1). If inputs were rather scaled to one
period, i.e. xi ∈ [−π, π], extremal inputs would result in the same quantum state
after encoding. Since mapping of different data point to the same quantum state
can potentially inhibit learning, we opt for the original way of scaling. For DNNs,
we apply standardization of the input, as explained in Section 2.5.1, by subtracting
the mean and dividing by the standard deviation feature-wise.

To scale the data, we use the scalers included in scikit-learn [28]. They can be
applied the following way:

1 from sk l ea rn . p r ep ro c e s s i ng import StandardScaler , MinMaxScaler
2

3 standard = StandardSca ler ()
4 x_train_standard = standard . f i t_trans fo rm (x_train)
5 x_test_standard = standard . trans form (x_test)
6

7 minmax = MinMaxScaler (feature_range=(−np . p i /2 , np . p i /2))
8 x_train_minmax = standard . f i t_t rans fo rm (x_train)
9 x_test_minmax = standard . trans form (x_test)

Note that when using a training and test set x_train and x_test, like in the
above code, the test set must be scaled after the training data. In practice, it
should not be scaled together with the training data, as it is usually not available
when training the model.

To perform feature reduction using PCA, as described in Section 2.5.2, we will
again use scikit-learn. It can be implemented using:

1 from sk l ea rn . decomposit ion import PCA
2

3 standard = StandardSca ler ()
4 x_train = standard . f i t_t rans fo rm (x_train)
5 x_test = standard . trans form (x_test)
6

7 pca = PCA(n_components=4)
8 x_train = pca . f i t_trans fo rm (x_train)
9 x_test = pca . f i t_t rans fo rm (x_test)

Chapter 6. Implementation 72

Note that we first perform a standardization of the data. This is to ensure that the
amount of variance the features contribute is not affected their units and scale.

6.5.3 Optimization
We use Adam, as presented in Section 2.2.2, to optimize all models in this thesis.
We use default hyperparameters suggested by the authors, Kingma and Ba [27],
together with a learning rate of lr = 0.1. This is the same learning rate as used
by Abbas et al. [17] for training QNNs. Being a relatively high learning rate,
it leads to quick optimization of the models. This is a useful property, as each
training iteration can be quite time consuming due to the overhead associated with
simulating quantum circuits on classical hardware.

6.5.4 Configuring QCNs and DNNs
Unless specified otherwise, the outputs of intermediate layers of QCNs will be
scaled to the interval a(l)

i ∈ [−π, π]. Using the same argument about the periodicity
of Pauli rotations from Section 6.5.1, this enables the outputs of one layer to
potentially realize any rotation angle in the next layer. For the last layer, the
output will be scaled to a(L)

i ∈ [0, 1]. This is sufficient, given that the target y is
scaled to within this interval.

For DNNs, we will be using tanh activations on all hidden layers. This is partly
because it is a hugely popular choice, known to produce fast converging neural
models [5]. Further, tanh is also a bounded function, returning values on the
interval [−1, 1], unlike the also popular activation function, namly ReLU. This
results in the outputs of intermediate layers to be bounded, making them easier to
compare to QCNs.

Part III

Results & Discussion

7
Results and Discussion

In this chapter, we will investigate and characterize the models discussed in the
earlier chapters. We will also detail how the various models are configured, and
how numerical methods are used for characterization. The results will be briefly
commented on as they are presented, with a more in-depth discussion at the end of
each section.

7.1 Vanishing Gradient Phenomenon
In this section, we investigate and compare the vanishing gradient phenomenon
for quantum neural networks (QNNs) Equation (4.3), quantum circuit networks
(QCNs) Equation (4.21) and dense neural networks (DNNs) Equation (2.13) by
studying how the magnitudes of their gradients vary as a function of architecture.
First, we study how the gradients of QNNs behave as the number of qubits and
repetition of the ansatz increase. Then, the local gradients Equation (4.26) of
QCNs are studied for different number of qubits, nodes and layers. Lastly, the
vanishing of the gradient Equation (4.24) is investigated.

7.1.1 Vanishing Gradient in QNNs
We start by investigating the magnitude of the gradient of QNNs for different
number of qubits and repetitions of the ansatz. We use qubit encoding Figure 4.2
with Ry rotations for feature encoding, and the simple ansatz Equation (4.7) for
processing. This combination was chosen as it was found to yield the largest gradient.
To derive an output, we calculate the expected parity Equation (4.8) using ideal
simulation, as explained in Section 6.1.4. We calculate the average magnitude of the

Chapter 7. Results and Discussion 75

gradient using Equation (6.3), with T = 10 different realizations of the parameters
to increase the statistical significance of the result. To get a representative result
for a large feature space, we sample features X = {x(1), · · · ,x(N)} uniformly as
X ∼ U(−π

2 ,
π
2)[N,p]. We use N = 100 samples, and the number of features p is set

equal to the number of qubits for each QNN. The QNNs are also initialized in the
standard way, i.e. sampling parameters as θj ∼ U(−π, π). The resulting magnitude
of the gradients for different number of qubits and ansatz repetitions can be seen
in figure Figure 7.1.

1 2 5 10 20
Reps

2.2

2.0

1.8

1.6

1.4

1.2

1.0

lo
g|

Gr
ad

ie
nt

| 4 Qubits
6 Qubits
8 Qubits
10 Qubits
12 Qubits

Figure 7.1: Average magnitude of gradients for QNNs with different numbers
of ansatz repetitions (Reps) and qubits. The QNNs utilize qubit encoding with
Ry rotations, the simple ansatz for processing, and parity sampling to derive an
output. The QNNs are fed N = 100 points of uniformly sampled points, where the
number of features is set equal to the number of qubits.

From the above figure, we see that our implementation of QNNs results in a
gradient that vanishes in the exponential regime with respect to the number of
qubits. Also, the vanishing is stronger for a higher number of repetitions of the
ansatz. This behavior can be explained by the fact that QNNs are a special
variant of parameterized quantum circuits (PQCs). By encoding random inputs
and randomly initializing the parameters, the QNN essentially approaches a random
circuit as they grow deeper. As shown by McClean et al. [20], and discussed in
Section 4.5.2, randomly initialized PQCs tend to produce gradients closely centered
around zero as the number of qubits are increased, which also applies for our
implementation of QNNs.

Chapter 7. Results and Discussion 76

7.1.2 Vanishing Local Gradient in QCNs
An interesting feature of QCNs is the ability to create larger models by introducing
more circuits, instead of increasing the number of qubits and repetitions. As the
gradients of QNNs tend to vanish with higher numbers of qubits, we want to
investigate how the gradients of smaller parametric circuits behave when used as
nodes a QCN architecture.

The QNNs used as nodes to construct QCNs here are set up and initialized in the
manner explained in Section 7.1.1, but always with two repetitions of the simple
ansatz to keep each circuit shallow. In this section, all QCNs have eight layers
with d number of nodes each and d number of qubits per node Here, d range from
four to eight.. Further, the outputs of each hidden layer is scaled to the interval
[−π, π] to make full use of the qubit encoding in the subsequent layer, as explained
in Section 6.5.4. We use uniformly distributed data with N = 100, as earlier.

In order to investigate the average behavior of the local gradients Equation (4.26)
for each layer, we calculate their magnitude averaged over each layer, the samples
and T = 10 different realizations. This quantity is given by Equation (6.5), and is
plotted in Figure 7.2 for various layers of different QCNs. In addition, the standard
deviation of this quantity is estimated over the different realizations.

2 3 4 5 6 7 8
Layer

1.0

0.8

0.6

0.4

0.2

lo
g1

0(
|g

ra
di

en
t|)

4 Qubits
5 Qubits
6 Qubits
7 Qubits
8 Qubits

Figure 7.2: Average magnitude of local gradients Equation (4.26) calculated for
each layer for various QCNs with eight layers. This quantity is calculated using
Equation (6.5). The number of qubits per node is constant for each QCN, and the
number of nodes per layer is set equal the number of qubits. The QCNs are fed
N = 100 points of uniformly sampled points, where the number of features is set
equal the number of qubits. The standard deviation is calculated over ten different
realizations of the model parameters.

Chapter 7. Results and Discussion 77

In the above figure we see the average magnitude of the local gradients for different
layers and number of qubits. The local gradients of the QCNs tend to vanish
exponentially in the number of qubits, similar to the gradients of single-circuit
QNNs seen in Figure 7.1. However, the relative position along the depth of the
QCN does not seem to affect the magnitude. Even though there is some variation
of the magnitude from layer to layer, these variations are smaller than the standard
deviation, and thus not statistically significant.

7.1.3 Vanishing Total Gradient in QCNs
In the previous section, we showed that the average magnitude of local gradients
of any layer is independent of the relative position of that layer in the QCN
model. However, the parameters are not updated using the local gradients directly.
Rather, they are updated using the gradient Equation (4.24), which is calculated by
combining the local gradients with the backpropagation Equation (4.23). We need
to investigate how the magnitude of the total gradient Equation (4.24) behaves as
a function of layers and qubits.

In this section, the gradient is calculated using the local gradients from the models
in Section 7.1.2. As previously mentioned, the magnitude of the total gradient
is averaged over each layer, the samples and ten realizations of the parameters
using Equation (6.4). This quantity is plotted in Figure 7.3 for different layers and
number of qubits. For comparison, it also shows the magnitude of the total gradient
of two DNNs with the same number of layers and similar number of parameters as
the four and eight-qubit QCN.

Chapter 7. Results and Discussion 78

1 2 3 4 5 6 7 8
Layer

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g(

|g
ra

di
an

t|)

QCN, 4 Qubits
QCN, 5 Qubits
QCN, 6 Qubits
QCN, 7 Qubits
QCN, 8 Qubits
DNN, 5 nodes
DNN, 11 nodes

Figure 7.3: Average magnitude of the total gradient of the model output calcu-
lated for each layer for various 8 layer QCNs. This quantity is calculated using
Equation (6.4). The number of qubits per node are constant for each QCN, and the
number of nodes per layer is set equal to the number of qubits. For comparison, the
same quantity is also calculated for two DNNs with 5 and 11 nodes, respectively.
The DNNs have tanh activations on all layers.

From Figure 7.3, we see that the gradient for a given layer in the DNN tends to
vanish exponentially fast for the more initial layers. The is a manifestation of the
vanishing gradient phenomenon for DNNs caused by saturation of the activation
functions, as explained in Section 2.3.4.

As with the DNN, the QCNs also exhibit a vanishing gradient with increasing
number of layers, with a strong dependence on the number of qubits in each node.
As we see in Figure 7.2, the gradient vanishes faster for higher number of qubits
in each node. This phenomenon can be related to the magnitude of the local
gradients: As the error δlj of layer l is propagated backwards using Equation (4.23),
it accumulates the local gradients ∂al+1

k

∂alj
as factors. Accumulating small factors will

cause δlj to decrease faster, exponentially so for each layer. This is the case when
the number of qubits per circuit is high. However, if these factors are large, the
δlj tend to decrease more slowly, and hence also the gradient. This is the case for
architectures with few qubits per node, as discussed in Section 7.1.2.

7.1.4 Discussion
The results of Section 7.1.1 show that increasing the model size of QNNs by adding
more qubits and repetitions of the ansatz results in an exponential decay of their
gradients. As explained in Section 4.5.2, this means that exponentially many shots

Chapter 7. Results and Discussion 79

are required in order to obtain a good signal-to-noise when estimating the gradient.
If the gradient is too noisy, optimization using gradient descent and similar methods
may essentially result in a random walk in parameter space that fails to converge
[21]. This becomes even more problematic in the presence of noise introduced by
real hardware, as discussed in Section 7.4.2. Ultimately, this indicate that the
training of QNNs can become intractable as they are increased in size to solve
harder learning problems.

In Section 7.1.2, we see that the local gradients of QCNs also vanish exponentially
fast in the number of qubits, but are independent of the overall number of layers.
In other words, the local gradients of any layer are unaffected by outputs produced
by the previous layer. This suggests that QCNs can be scaled up by making them
deeper, without affecting the magnitude of the local gradients. Consequently, a
constant number of shots can be used for each node during estimation to obtain
a certain signal-to-noise ratio, making their estimations tractable on a quantum
computer.

Even though the magnitude of local gradients of QCNs tends to stay constant in
the number of layers, we see in Section 7.1.3 that backpropagation still induces
an exponentially vanishing gradient for sufficiently many qubits. This is due to
the accumulation of small factors when the local gradients are combined using
backpropagation. This behavior is similar to that of DNNs, with the gradient
vanishing faster for initial layers. However, the vanishing was not as severe for
a conservative number of qubits. For 4 qubits, the gradient actually tended to
increase. For 8 qubits, and presumably above, the gradient vanished faster for
QCNs than for similarly sized DNNs.

An interesting observation is that the vanishment caused by back propagation
happens in a purely classical part of the optimization, with the local gradients
stored as floating-point numbers. This means that even though the total gradient
tends to decrease exponentially with the number of layers, it does not introduce
an exponential overhead on the quantum computer by requiring more shots. How-
ever, the overhead increases exponentially for single-QNN models as discussed in
Section 4.5.2. In other words, QCNs’ use of several smaller circuits, rather than
one large, moves the estimation of vanishing quantities (e.g. the gradient) from
quantum expectation values to classical computation.

7.2 Investigating the Loss Landscape
We explore the geometry of the loss landscape of randomly initialized QNNs, QCNs
and DNNs, and quantify their degree of distortion and flatness by studying the eigen-
value spectrum of the empirical fisher information matrix (EFIM) Equation (5.3).
Looking at Equation (5.3), we see that the EFIM, unlike the Hessian, is independent
of the targets y(i), making the analysis independent of the specific problem.

Chapter 7. Results and Discussion 80

In this section, the QNNs utilize RZZ encoding (see Figure 4.3), while the QCNs
utilize qubit encoding (see Figure 4.2) with Ry rotations. Both types of models use
a variable number of repetitions of the simple ansatz Equation (4.7) for processing.
The EFIM is calculated using features sampled uniformly as X ∼ U(−π

2 ,
π
2)[N,p],

with N = 200 samples and either p = 4 or p = 6 inputs, depending on the model.
For each model, the EFIM is calculated ten times for different realizations of
the model parameters. The resulting spectrum is then averaged over different
realizations to produce a more statistically significant result. For a complete
description of the models analyzed in this section, see Table 7.1.

Table 7.1: Description of the architecture of the models analyzed in this section.
Reps is the number of ansatz repetitions, and nθ is the number of model parameters.
NA denotes undefined quantities.

Model Type Qubits Reps Layers Nodes Encoder nθ
A QNN 4 18 NA 4 RZZ Enc 72
B QCN 4 3 2 4 Qubit Enc 60
C QCN 4 2 3 4 Qubit Enc 72
D QCN 4 1 4 4 Qubit Enc 68
E DNN NA NA 3 6 NA 79
F QNN 6 26 NA 6 RZZ Enc 156
G QCN 6 4 2 6 Qubit Enc 168
H QCN 6 2 3 6 Qubit Enc 156
I QCN 6 1 4 6 Qubit Enc 150
J DNN NA NA 3 9 NA 163

Figure 7.4 compares the EFIM spectra of QNNs, QCNs and DNNs. Their ar-
chitectures are chosen so that the models have approximately equal numbers of
parameters. This is to ensure a fair comparison.

Chapter 7. Results and Discussion 81

0 10 20 30 40 50 60
Index

10

8

6

4

2

0

lo
g1

0
Ei

ge
nv

al
ue

(A) QNN, reps=18
(C) QCN, reps=2, L=3, d=4
(E) DNN, L=5, d=4

(a) QNN and QCN with four qubits in each
circuit.

0 20 40 60 80 100 120
Index

10

8

6

4

2

0

lo
g1

0
Ei

ge
nv

al
ue

(F) QNN, reps=26
(H) QCN, reps=2, L=3, d=6
(J) DNN, L=5, d=6

(b) QNN and QCN with six qubits in each
circuit.

Figure 7.4: Comparison of EFIM spectrum between QNNs, QCNs and DNNs,
calculated for uniformly sampled data. The spectrum is truncated at 60 and 120
eigenvalues for easier comparison. For details about the architectures, see Table 7.1.
reps is the number of ansatz repetitions, L is the number of layers, and d is the
number of nodes.

Looking at the spectra of the DNNs in Figure 7.4, we see the characteristic result
of a singular large eigenvalue, with the rest sitting close to zero. This is reminiscent
of the typical Hessian spectrum of DNNs, shown in Figure 5.1. This indicates that
DNN models exhibit a loss landscape that is very flat in all but one direction where
it is extremely distorted. We also see that the spectra of our implementation of
QNNs are much more uniformly distributed compared to the DNN models. This
results in a loss landscape that is significantly distorted in most directions, rather
than just one.

Moving over to the QCNs, we see from Figure 7.4 that the spectra of the three
layer QCNs exhibit much the same uniformity as the QNNs for four qubits, but
more skewed for six qubits. A more thorough comparison between different QCNs
is shown Figure 7.5. In this figure, we vary the number of layers of the QCNs and
the number of repetitions (i.e. the number of times the ansatz is repeated for each
node), while keeping the total number of parameters roughly constant.

Chapter 7. Results and Discussion 82

0 10 20 30 40 50 60
Index

4

3

2

1

0

lo
g1

0
Ei

ge
nv

al
ue

(A) reps=18, L=1, d=4
(B) reps=3, L=2, d=4
(C) reps=2, L=3, d=4
(D) reps=1, L=5, d=4

(a) Comparison of the EFIM spectra
for different QNNs and QCNs with four
qubits.

0 20 40 60 80 100 120
Index

7

6

5

4

3

2

1

lo
g1

0
Ei

ge
nv

al
ue

(E) reps=26, L=1, d=6
(F) reps=4, L=2, d=6
(G) reps=2, L=3, d=6
(H) reps=1, L=5, d=6

(b) Comparison of the EFIM spectra
for different QNNs and QCNs with six
qubits.

Figure 7.5: Comparison of the EFIM eigenvalue spectrum between different QNNs
and QCNs, calculated for uniformly sampled data. The spectrum is truncated at
60 and 120 eigenvalues for easier comparison. For details about the architectures,
see Table 7.1. reps is the number of ansatz repetitions, L is the number of layers,
and d is the number of nodes.

Figure 7.5a shows that, for four qubits, the spectra of the different QCNs exhibit
roughly the same uniformity as the QNN, with the eigenvalues staying within
roughly an order of magnitude of each other. Going up to six qubits, Figure 7.5b
shows that the spectrum tends to concentrate more around zero for increasing
number of layers. This is likely related to the vanishing of the gradient induced by
backpropagation. For four qubits, this is not as big of a problem since the local
gradients are relatively big and hence also the gradient. However, for six qubits, the
local gradients tend to vanish. This results in the gradient vanishing faster when
increasing the number of layers, which in turn results in a flatter landscape.

7.2.1 Discussion
The highly uneven EFIM spectrum of DNNs indicates a loss landscape that is
strongly distorted in one direction and mostly flat otherwise. This result is consistent
with the findings of Karakida et al. [8] and Abbas et al. [17]. The former authors
point out that strong distortions in some directions indicate that the model outputs
are highly sensitive to changes in parameter space in exactly these directions, and
likewise not sensitive to changes in the others. This tend to slow training when
using gradient descent and similar methods, as too high learning rate leads to
overstepping in the distorted directions, while a low learning rate changes the model
insignificantly in the flat directions.

For the QNNs, we found the EFIM spectrum to be much more uniform than that
of a comparable DNN. Abbas et al. [17] came to the same conclusion for their
QNN models, and argued that this uniformity of the spectrum meant that the
landscape was more well-condition for optimization, and thus should train faster.

Chapter 7. Results and Discussion 83

They strengthened this hypothesis by showing experimentally that their QNNs
reduced loss faster than DNNs for equal numbers of epochs.

We found that QCNs with four qubits exhibit similar uniformity of the EFIM
spectrum as QNNs. For six qubits, the spectrum became increasingly more skewed,
with a worsening effect for more layers. However, they still showed several order of
magnitude larger eigenvalues that DNNs, suggesting that small-scale QCNs should
train comparably faster than DNNs.

7.3 Expressivity
We investigate the expressivity of QCNs and DNNs using the trajectory length
method of Raghu et al. [6], as described in Section 5.2.1. The trajectory length will
first be studied for randomly initialized QCNs with a varying number of qubits in
each node. Then, for some selected QCNs, the trajectory length will be investigated
as the models are gradually fitted on two dimensional mixed Gaussian data. The
results in both cases will be compared to similar DNNs, with approximately the same
number of parameters for fair comparison. We use an input trajectory x(ti) ∈ R2

in the shape of a circle, with radius π
2 and centered around 0, divided up into 1000

equally spaced points. The input trajectory and two dimensional mixed Gaussian
data will be pre-processed appropriately, depending on the model, as described in
Section 6.5.2.

7.3.1 Untrained Models
In this section, we investigate the same QCN and DNN architectures as in Sec-
tion 7.1.2. To summarize, all models have eight layers. The QCNs vary between four
and eight nodes and qubits for each layer. They use qubit encoding for encoding
features, and two repetitions of the simple ansatz. The number of nodes in the
DNN is chosen so that it has approximately the same number of parameters as the
biggest QCN. The models are initialized randomly as described in Section 6.5.1,
like earlier.

Figure 7.6 shows how the trajectory length varies as a function of layer, when
the different models are fed the circle trajectory x(ti) defined earlier. Since the
trajectory only has two features, and the circuits of the QCNs utilize qubit encoding,
we make use of latent qubits Figure 4.4 to extend the circuits in the initial layer to
the correct amount of qubits.

Chapter 7. Results and Discussion 84

0 1 2 3 4 5 6 7 8
Layer

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g1

0(
TL

)

4 Qubits
5 Qubits
6 Qubits
7 Qubits
8 Qubits
DNN

Figure 7.6: Logarithmic trajectory length (TL) as a circular trajectory x(ti) is
propagated though QCNs with different number of qubits. The QCNs are defined
as in Section 7.1.2. For comparison, the TL of a DNN with 11 nodes is also shown.

Figure 7.7, accompanying Figure 7.6, shows the trajectories of selected models
and layers, projected onto 2D. The rows correspond to the QCN with four qubits,
the QCN with eight qubits, and the DNN, from top to bottom. The columns
correspond to the trajectory resulting from the first layer, second layer, third layer
and last layer, left to right.

Chapter 7. Results and Discussion 85

Figure 7.7: Trajectory length projected onto two dimensions for selected models
from Figure 7.6. The rows shows the trajectory length of the four qubits QCN,
eight qubit QCN and DNN, from top to bottom. The columns show the trajectory
of the first layer, the second layer and last layer, from left to right.

From Figure 7.6, we see that the trajectory length of QCNs with four and five
qubits tend to grow exponentially with the number of layers, meaning they are in
the exponential growth regime. This growth is however diminishing as the number
of qubits increase, and switches over to an exponential decay for 6 qubits and
above. For 8 qubits, the decay is similar to that of the DNN with similarly many
parameters. Comparing the results to Figure 7.7, we see how the increasing and
decreasing trajectory length manifests themselves. Seen from the top row, the
trajectory produced by the four qubit QCN tends to become increasingly distorted
and complex. This is similar to the behaviour of neural networks seen in Figure 5.2,
produced by Raghu et al. [6], and shows that also QCNs can compute functions
exponentially complex in the number of layers. In contrast, the trajectory of the
eight qubit QCN and DNN (seen in the next two rows) can be seen to gradually
concentrate for each layer, resulting in a function that is very little sensitive to the
input.

Chapter 7. Results and Discussion 86

7.3.2 Trained Models
Raghu et al. [6] showed that networks that initially don’t lay in the exponential
growth regime can be pushed there via training. In this subsection, we will
train different models by incrementally fitting them to the two dimensional mixed
Gaussian data (see Appendix A.1). The trajectory length will be recalculated for
each layer after each increment. The models being investigated here are QCNs
with six and seven qubits, respectively. These will be compared to DNNs with
approximately the same number of parameters. The models have three hidden
layers, with a single node in the output layer. For more information about the
models, see Table 7.2. All the models are trained using Adam optimizer (see
Section 2.2.2) with the standard hyperparameters and a learning rate of 0.1. The
QCNs are trained for a total of 20 epochs in increments of 5. In order to produce a
fair comparison, the DNNs will not be trained for the same increments of epochs.
Rather, they will be trained until they achieve approximately the same MSE on the
training set as the QCNs, for each increment. In this way, we get to compare the
expressivity of QCNs and DNNs that fit the data to an equal degree. Figure 7.8
shows how the trajectory length changes as the different models presented here are
incrementally trained, for each layer.

Chapter 7. Results and Discussion 87

0 1 2 3
Layer

0.6

0.8

1.0

1.2

1.4

1.6

lo
g1

0(
TL

)

0
5
10
15
20

(a) QCN, 6 qubits. 228 parameters.

0 1 2 3
Layer

0.6

0.8

1.0

1.2

1.4

1.6

lo
g1

0(
TL

)

0
5
10
15
20

(b) QCN, 7 qubits. 308 parameters.

0 1 2 3
Layer

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
g1

0(
TL

)

0
33
68
108
140
2000

(c) DNN, 9 nodes. 217 parameters.

0 1 2 3
Layer

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
g1

0(
TL

)

0
31
70
101
130
2000

(d) DNN, 11 nodes. 309 parameters.

Figure 7.8: Logarithmic trajectory length (TL) as a circular trajectory x(ti) is
propagated though QCNs and DNNs defined in Table 7.2. The models are gradually
fitted for different number of epochs, shown in the legend, and the TL recalculated.

From Figure 7.8, we see that training the QCNs and DNNs progressively increases
the trajectory length of the models. After only five epochs, the trajectory length of
the six qubit QCN enters the exponential growth regime. This demonstrates that
randomly initialized QCNs can be made to produce complex functions through
training, even though their outputs initially tend to concentrate around a mean, as
shown in Figure 7.6. The seven-qubit QCN is brought into the exponential growth
regime after ten epochs, twice the amount required for six qubits.

Moving over to the corresponding DNNs, we see that they fail to enter the same
exponential growth regime as the QCNs, even when trained until they fit the data
to the same degree. This indicates that QCNs, in this context, may be more
expressive than DNNs for the same number of parameters.

Chapter 7. Results and Discussion 88

Table 7.2: Hyperparameters of the models trained on the 2D mixed Gaussian
data in Figure 7.8. nθ is the number of model parameters. The DNNs have tanh
activation on all layers, including the output layer.

Model Type Qubits Hidden Layers Nodes nθ
A QCN 6 3 6 228
B QCN 7 3 7 308
C DNN NA 3 9 217
D DNN NA 3 11 309

7.3.3 Single Node Expressivity
To elucidate the discrepancy of expressivity between QCNs and DNNs, we investi-
gate the functional form of node outputs for QCNs and DNNs. To do this, we use a
four-qubit QCN node with qubit encoding and two repetitions of the simple ansatz.
We prepare data x = (x, x, x, x), and encode it in the usual way. For comparison,
we also feed the samples x to a single DNN node with tanh activation. In Figure 7.9,
we plot the output the different nodes for different parameter realizations and values
of x.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut

(a) QCN node with four qubits. It uti-
lizes qubit encoding Figure 4.2 with Ry ro-
tations, and two repetitions of the simple
ansatz Equation (4.7).

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ou
tp

ut

(b) DNN node with tanh activation.

Figure 7.9: Comparison between the functional form of the outputs of a QCN
node and a DNN node. The different functions stem from different parameters
realizations in the nodes.

Seen from Figure 7.9a, the QCN node produces a more flexible output, reflecting
the polynomial representation of the data in the prepared state Equation (4.5).
Figure 7.9b shows that the output of the DNN node is constrained to the functional
form of the tanh activation function.

Chapter 7. Results and Discussion 89

7.3.4 Discussion
For higher number of qubits, we saw from Figure 7.7 that the trajectory of untrained
QNCs tend to concentrate progressively for each layer they pass through. This
is a manifestation of the phenomenon where the outputs of randomly initialized
PQCs tend to concentrate around their mean, as discussed in Section 4.5.2. Since
each node of a QCN is a PQC, they are also subject to this behaviour. In fact,
as the inputs are sequentially transformed by multiple layers, this concentration
of the outputs is applied multiple times. As seen in in Figure 7.6, this causes an
exponential decrease of the trajectory length.

From Figure 7.8 we see that training brought the QCNs into the exponential growth
regime, increasing the sensitivity of the node outputs with respect to the inputs.
In other words, optimizing the QCNs updates the parameters in a way that brings
structure to each of the circuits, moving them away from being random circuits.
This causes the outputs to no longer concentrate around the mean, which in turn
lets the model compute more complex functions.

Comparing Figure 7.8a and Figure 7.8b, we see that the seven-qubit QCN required
twice the number of epochs to enter the exponential growth regime compared to
the six-qubit QCN. As discussed in Section 7.1, increasing the number of qubits
makes the magnitude of the gradient exponentially smaller. Thus, a larger number
of epochs may be required to significantly change the parameters for circuits with
many qubits. This will likely result in a large overhead for QCNs with many
qubits, requiring a significant amount of epochs in order to train them to be
expressive.

Looking at Figure 7.8c and Figure 7.8d, we see that the similarly sized DNNs fail to
enter the exponential growth regime after an amount of training equivalent to the
QCNs. The DNNs approached exponential growth first after training for more than
two order of magnitude more epochs than the QCNs. This suggests that QCNs can
be trained to be more expressive than DNNs of similar number of parameters. How
can we explain this increased expressivity? As seen from Figure 7.9a, QCN nodes
are able to produce flexible functions, likely resulting from the feature interactions
computed by qubit encoding Equation (4.5). Conversely, the functions produced
by DNN nodes was very constricted to the form of the activation function, as seen
from Figure 7.9b. In this sense, it seems likely that QCNs can achieve greater
expressivity by essentially learning unique activation functions for each node.

7.4 Training Models on Mixed Gaussian Data
In this section, we will study the ability of various models to fit one, two and three
dimensional mixed Gaussian data. For more details on the data, see Appendix A.1.
We will train QNNs, QCN and DNNs with varying complexity and use MSE on
the training data to evaluate how good the fit is. This will be done first in the
ideal case, with exact calculation of outputs. Then, we will repeat the training

Chapter 7. Results and Discussion 90

using the simulated noise model of the IBM Santiago quantum computer [41]. The
hyperparameters, such as number of layers, nodes and qubits, are chosen by trial
and error such that the resulting QCNs are relatively small in number of parameters,
but still fit the data sufficiently. The QNNs and DNNs are then chosen such that
they have similar number of parameters as the QCNs. For a detailed description of
the models trained in this section, see Table 7.3.

Table 7.3: Hyperparameters of the different models fitted to the one, two, and
three dimensional mixed Gaussian data (1D, 2D, 3D). Qubits refer to the number
of qubits used in each circuit, Reps refer to the number of repetitions of the simple
ansatz Equation (4.7), and nθ refers to the number of parameters in the model. NA
denotes undefined quantities.

Model Type Data Qubits Reps Layers Nodes nθ
A QNN 1D 4 5 NA NA 20
B QCN 1D 4 1 2 4 20
C QCN 1D 4 2 2 4 40
D DNN 1D NA NA 2 13 40
E QNN 2D 4 10 NA NA 40
F QCN 2D 4 1 3 4 40
G QCN 2D 4 2 3 4 80
H DNN 2D NA NA 3 7 85
I QNN 3D 5 11 NA NA 55
J QCN 3D 5 1 3 5 55
K QCN 3D 5 2 3 5 110
L DNN 3D NA NA 3 8 113

For the QNNs trained in this section, we will utilize RZZ encoding (Figure 4.3)
together with latent qubits (Figure 4.4) in an effort to increase the flexibility of the
models. From Section 4.2.2, we know that the circuit depth of this encoding scales
as O(p2), where p is the number of features. To get a constant depth across the one,
two and three dimensional Gaussian data, we will repeat features until all the data
sets have the same number of features: For the one dimensional data, we repeat
the one feature three times: (x1)→ (x1, x1, x1). For the two dimensional data, we
repeat the first feature once: (x1, x2)→ (x1, x2, x1). The three dimensional data
is left unchanged, since it already has three features. In this way, RZZ encoding
prepares similarly complicated encoding for all data sets.

7.4.1 Ideal Simulation
Figure 7.10 shows the MSE during training of the models defined in Table 7.3 on
the one, two and three dimensional mixed Gaussian data. All models are trained
for 100 epochs, using Adam optimizer and ideal simulation. In order to produce a
more significant result, each model is randomly initialized ten times and trained

Chapter 7. Results and Discussion 91

separately. The resulting MSE for each model is then averaged over the ten runs
and plotted together with one standard deviation. In this way, we get to see the
average model behaviour during training and how it varies between different runs.
Table 7.4 shows the final MSE on the training set after 100 epochs for the various
models. In addition, the final MSE after 104 epochs is included for the DNNs.

0 20 40 60 80 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
SE

(A) QNN, reps = 5
(B) QCN, reps = 1
(C) QCN, reps = 2
(D) DNN

(a) MSE of models trained on 1D mixed
Gaussian data.

0 20 40 60 80 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
SE

(E) QNN, reps = 10
(F) QCN, reps = 1
(G) QCN, reps = 2
(H) DNN

(b) MSE of models trained on 2D mixed
Gaussian data.

0 20 40 60 80 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

(I) QNN, reps = 11
(J) QCN, reps = 1
(K) QCN, reps = 2
(L) DNN

(c) MSE of models trained on 3D mixed
Gaussian data.

Figure 7.10: MSE during training of the models defined in Table 7.3, trained on
the mixed Gaussian data (see Appendix A.1 for details on the data). The QNNs
and QCNs are trained using ideal simulations.

Chapter 7. Results and Discussion 92

Table 7.4: Final MSE on the training set after training of the models detailed
in Table 7.3 on the one, two and three dimensional mixed Gaussian data (1D, 2D,
3D). Ideal simulation was used. These results accompany the training shown in
Figure 7.10. The lowest MSE after 100 epochs is highlighted. NA denote undefined
quantities.

Model Type Data MSE, 102 Epochs MSE, 104 Epochs
A QNN 1D 4.61× 10−2 NA
B QCN 1D 5.88× 10−3 NA
C QCN 1D 7.99 × 10−4 NA
D DNN 1D 9.17× 10−3 2.23× 10−4

E QNN 2D 3.56× 10−2 NA
F QCN 2D 1.75× 10−2 NA
G QCN 2D 4.27 × 10−3 NA
H DNN 2D 3.50× 10−2 4.26× 10−3

I QNN 3D 1.95× 10−2 NA
J QCN 3D 4.91× 10−3 NA
K QCN 3D 2.77 × 10−3 NA
L DNN 3D 1.21× 10−2 1.79× 10−3

From Figure 7.10, we see that the QCNs minimize the MSE quicker than both
the QNNs and DNNs on the mixed Gaussian data, for any number of dimensions.
The QCNs with the two ansatz repetitons also trained faster than those with just
one. Further, we see that QNNs perform overall worst among the models. After
initially fast optimization, the models quickly flatten out at a relatively high MSE,
struggling to obtain a good fit. From Table 7.3, we see that the DNNs obtains the
lowest MSE among all models when trained until saturation, after 104 epochs.

7.4.2 Noisy Simulation
In this section, we investigate how QNNs and QCNs behave when trained on the
Gaussian data using simulated quantum hardware. We do this by repeating the
training of the models of last section using a simulation of the Santiago quantum
computer [41]. We exclude, however, the training on the 3D mixed Gaussian due
to the huge computational burden of simulating real hardware. The resulting MSE
during training can be seen in Figure 7.11. Each model was trained for 100 epochs,
using 1024 shots to estimate the output of each circuit. Table 7.5 shows the final
MSE after 100 epochs for the QNNs and QCNs, trained on simulated hardware.
As earlier, the resulting MSE after 100 and 104 epochs is also included for the
DNNs.

Chapter 7. Results and Discussion 93

0 20 40 60 80 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
SE

(A) QNN
(B) QCN, reps = 1
(C) QCN, reps = 2
(D) DNN

(a) MSE of models trained on 1D mixed
Gaussian data.

0 20 40 60 80 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

(E) QNN
(F) QCN, reps = 1
(G) QCN, reps = 2
(H) DNN

(b) MSE of models trained on 2D mixed
Gaussian data.

Figure 7.11: MSE during training of the models defined in Table 7.3, trained on
the mixed Gaussian data, excluding the 3D data (see Appendix A.1 for details on
the data). The QNNs and QCNs are trained using noisy simulation of the Santiago
quantum computer [41], using the methods of Section 7.4.2.

Table 7.5: Final MSE on training set after training the models detailed in Table 7.3
on the one and two dimensional mixed Gaussian data (1D, 2D). Noisy simulation
of the Santiago quantum computer [41] was used. See Section 7.4.2 for details.
These results accompany the training shown in Figure 7.11. NA denotes undefined
quantities.

Model Type Data MSE, 102 Epochs MSE, 104 Epochs
A QNN 1D 6.49× 10−2 NA
B QCN 1D 1.95× 10−2 NA
C QCN 1D 8.18 × 10−3 NA
D DNN 1D 9.17× 10−3 2.23× 10−4

E QNN 2D 4.03× 10−2 NA
F QCN 2D 2.38× 10−2 NA
G QCN 2D 7.42 × 10−3 NA
H DNN 2D 3.50× 10−2 4.26× 10−3

Comparing Figure 7.11 and Figure 7.10, we see that the QNNs and QCNs trained
on noisy hardware train slower and obtain a overall higher final MSE after 100
epochs, compared to the ideal simulation.

7.4.3 Discussion
In Section 7.1 and Section 7.2, it was suggested that QCNs of few qubits and
layers would train faster than DNNs with similar number of parameters, due to
their relatively larger gradient and more uniform EFIM spectrum. As we see from
Figure 7.10, this is indeed the case when training on the mixed Gaussian data

Chapter 7. Results and Discussion 94

using exact and noiseless simulation. Further, we see that the QCNs with two
ansatz repetitions show faster training and less variance than those with only one
repetition. This shows that QCNs can be made more flexible by adding additional
complexity to each node in the form of additional repetitions.

In Section 5.2, it was suggested that QCNs are more expressive and flexible than
DNNs with similar number of parameters. Looking at Table 7.4, we see that the
final MSE obtained by the QCNs with two repetitions is within the same order
of magnitude as the final MSE obtained by the DNNs. This is despite the fact
that the QCNs were only trained for 100 epochs, while the DNNs where allowed to
train for 104 epochs (basically until saturation, i.e. the lowest possible MSE for
that particular model). In light of this, it is not unlikely that the QCNs would
eventually reach a lower MSE than the DNNs if given the opportunity to train for
more epochs. This suggests that it is possible for QCNs to fit complicated data
more easily than DNNs, and hence are more flexible. However, this is speculative,
as we are unable to train the QCNs much further due to limited computational
resources.

We see in Figure 7.10 that the QNNs struggle to obtain a good fit on the mixed
Gaussian data, even though they have a similar number of parameters as the
QCNs with one ansatz repetition. This shows that RZZ encoding combined with
latent qubits and multiple repetitions of the simple ansatz produce models that
are not able to learn the structure of the mixed Gaussian data. As explained in
Section 4.6.1, our QNNs perform a unitary (and thus linear) transformation of the
input, except at the stage of encoding and measurement. This results in a perhaps
too constrained model, which might explain the QNNs’ inability to fit the data.
QCNs, on the other hand, incorporate multiple nonlinearities for each layer as a
result of measurements done to estimate the output of each node, as explained in
Section 4.6. As with DNNs, this is likely the key to their greater flexibility, as it
enables them to compute a larger family of functions.

Moving over to the training using the simulated noisy hardware, we see from
Figure 7.11 that the QNN and QCN models performed overall worse than in the
ideal case. This is not surprising, since the simulation of real hardware and the
low number of 1024 shots cause a significant amount of noise to be added to the
outputs of the QNNs and QCNs. The slowdown of the training is likely a due to
noise being added to the calculation of the gradient. This causes it to misalign with
the direction of steepest descent, as discussed in Section 4.5.2, and which results in
the optimization slowing down. However, the QCNs with two ansatz repetitions
still obtained a lower MSE than the DNNs after 100 epochs, even in the presence
of noise. This shows that QCNs have the ability to outperform DNNs on some
data sets, even on noisy quantum hardware with few shots.

Chapter 7. Results and Discussion 95

7.5 Real-World Data
In this section, we compare the performance of QCNs and DNNs by performing
regression on the Boston Housing data [43] and classification on the Breast Cancer
Wisconsin data [44]. To reduce the computational burden of training the models,
both data sets are feature reduced to four features (down from 13 and 30 features,
respectively) using principal component analysis (PCA). In addition, the targets y
of the Boston Housing data is scaled such that y ∈ [0, 1]. See Appendix A for more
information about the data sets. We pick independent training and test sets with
N = 100 samples from each of the two data sets. To uncover how well the models
generalize to unseen data, we calculate the MSE on the test set during training
and find the minimum value. Doing this, we find the point during training where
the models generalized the best, as discussed in Section 2.4. For the models trained
on the Breast Cancer data, we also find the final test accuracy Equation (2.5) after
training.

The QCNs models are chosen to have four qubits in each circuit in order to match
the number of features used. Using trial and error, the number of hidden layers is
set to one. As usual, qubit encoding (see Figure 4.2) with Ry and two repetitions
of the simple ansatz (see Equation (4.7)) is used. The DNNs are chosen such
that the number of parameters approximately match that of the QCNs. The
hyperparameters of the various models are listed in Table 7.6.

Table 7.6: Hyperparameters of the various models fitted to the feature reduced
Boston Housing data (BHD) and Breast Cancer data (BCD). Reps is the number
of ansatz repetitions, and nθ is the number of model parameters. NA denotes
undefined quantities.

Model Type Data Qubits Reps Hidden Layers Nodes nθ
A QCN BHD 4 2 1 4 40
B DNN BHD NA NA 1 6 37
C QCN BCD 4 2 1 4 40
D DNN BCD NA NA 1 6 37

The models defined in Table 7.6 are trained for 100 epochs. As usual, this is
repeated ten times for each model for different parameter realizations. The QCNs
are trained using both ideal simulation and noisy simulation. For the latter, a
simulation of the Santiago quantum computer [41] with 1024 shots is used. In
Table 7.7, we see the average minimum training and test MSE for each model
obtained during training. In addition, the final average training and test accuracy
is included for the models trained on the Breast Cancer data.

Chapter 7. Results and Discussion 96

Table 7.7: Minimum training and test MSE obtained during training for the
models defined in Table 7.6. The models are trained on the feature reduced Boston
Housing data (BHD) and Breast Cancer data (BCD) for 100 epochs. The QCNs are
trained using both ideal and noisy simulation. The final training and test accuracy
is also included for the models trained on BCD. The best test MSE and accuracy
is highlighted. NA denotes undefined quantities.

Model Type Data MSE (train/test) Accuracy (train/test)
A (Ideal) QCN BHD 4.29× 10−3/4.32× 10−2 NA
A (Noisy) QCN BHD 5.53× 10−3/4.26 × 10−2 NA
B DNN BHD 5.59× 10−3/5.22× 10−2 NA
C (Ideal) QCN BCD 2.78× 10−2/5.77× 10−2 0.989/0.947
C (Noisy) QCN BCD 4.3× 10−2/6.5× 10−2 0.979/0.941
D DNN BCD 1.11× 10−3/3.19 × 10−2 1.000/0.965

Comparing the models trained on the Boston Housing data, we see that the QCN
has a lower test MSE than the DNN, meaning it generalizes better to unseen data.
The same is however not true for the Breast Cancer data, where the QCN obtained
almost twice the test MSE compared to the DNN.

7.6 Discussion
From Table 7.7, we see that the training MSE for the QCN trained on the Boston
Housing data increased for the noisy simulation compared to the ideal. This is
not surprising, since the added noise makes it harder to approximate the training
data. However, the test error is actually slightly lower for the noisy simulation than
the ideal. As discussed in Section 2.4, it has been shown that adding noise to the
inputs of neural networks help them avoid overfitting [34], which in turn decreases
the test error. This shows that noise introduced from noisy quantum hardware
is not necessarily detrimental for the quality of the model, but could be actually
helpful.

For the Breast Cancer data, the QCN performed overall worse than the DNN using
both ideal and noisy simulation. While the QCN managed to obtain a test accuracy
of 94.7% and 94.1% with ideal and noisy simulation, respectively, the DNN obtained
a test accuracy of 96.5%. This is in contrast to the mixed Gaussian data and
Boston Housing data, where QCNs were shown to outperform DNNs. This shows
that QCNs may perform better than DNNs for some, but not all, problems.

Part IV

Conclusion & Future Research

8
Summary & Conclusions

8.1 Summary & Conclusions
In this thesis we have developed a Python framework capable of implementing
and training dense neural networks (DNNs), quantum neural networks (QNNs),
and quantum circuit networks (QCNs) on various data sets. The models are
optimized using gradient-based methods, such as Adam optimizer [27]. For the
QCN, we developed a backprogagation algorithm based on the parameter shift rule
for calculating its gradient analytically. As of now, we are preparing an article we
hope to soon publish that includes many of the results and findings in this thesis
[23].

Vanishing Gradient

Quantum neural networks are parameterized circuits used as machine learning
models. The QNNs implemented in this thesis were inspired by the ones proposed
by Abbas et al. [17]. We showed in Section 7.1.1 that increasing the number of
qubits of QNNs caused their gradients to vanish exponentially, with a worsening
effect for deeper circuits, due to the barren plateau phenomenon [20]. This causes an
exponential overhead on the quantum hardware used for estimating the gradients,
suggesting that training QNNs consisting of many qubits and a high circuit depth
is intractable, especially on noisy quantum hardware.

Unlike QNNs, QCNs are constructed by combining several layers of parameterized
circuits. In Section 7.1.2 we showed that the magnitude of the local gradients (the
partial gradient of each circuit) of QCNs is unaffected when increasing the number
of layers, but tends to vanish for increased number of qubits in each circuit. This

Chapter 8. Summary & Conclusions 99

property enables the construction of large QCNs with several layers of small circuits
such that their local gradients are easily estimated on quantum hardware.

In Section 7.1.3, we showed that the gradients of QCNs still vanish exponentially
fast in the number of layers when calculated with backpropagation using the
local gradients. However, since backpropagation is a classical computation, this
vanishment of the gradient does not cause an exponential overhead on the quantum
hardware.

Loss Landscape

In Section 7.2, we investigated the loss landscapes of DNNs, QNNs and QCNs by
computing their empirical fisher information matrix (EFIM) spectra [8]. We showed
that the spectra of QCNs with few qubits and layers are similarly uniform as those
of QNNs, indicating that the loss landscape lacks particular strong distortions in
any direction. This property is known to speed up gradient-based optimization
[8]. However, when increasing the number of qubits and layers of the QCNs, we
observe that the EFIM spectra become increasingly skewed like for DNNs, resulting
in loss landscapes that are flat in most directions, but highly distorted in one
direction. This is a direct result of the vanishing gradient phenomenon, which
causes the gradient of initial layers in DNNs and QCNs to vanish exponentially
fast. Consequently, QCNs with many layers and qubits are likely to be slow to
train, like DNNs.

Expressivity

In Section 7.3.1, we showed that untrained QCNs of sufficiently many qubits and
similarly sized DNNs exhibit an exponentially decaying trajectory length. This
indicates that these models compute approximately constant functions that are
insensitive to the input features. For the QCNs, this behaviour results from the fact
that untrained parameterized circuits approximate random circuits, which tend to
produce outputs that concentrate closely around some mean value [20]. As QCNs
are constructed using layers of parameterized circuits, this concentration of the
outputs is applied for each layer, leading to an exponentially decaying trajectory
length.

We showed in Section 7.3.2 that the expressivity of QCNs and DNNs can be
moved into the exponential regime through training, producing exponentially more
expressive models for each layer. In addition, the trajectory length increases faster
for the QCNs compared to the DNNs, requiring two orders of magnitude fewer
epochs to reach the exponential growth regime for the latter. This suggests that
QCNs can be trained to be more expressive than similarly sized DNNs, and hence
fit more complex data.

Chapter 8. Summary & Conclusions 100

Training on Mixed Gaussian Data

In Section 7.4.1, we showed that QCNs using four to five qubits, and two to three
layers, minimize their training MSE faster than similarly sized DNNs when fit to
Gaussian data, as was suggested by the analysis of the loss landscape in Section 7.2.
When the DNNs are trained for 10000 epochs (until saturation), they obtain a lower
MSE than the QCNs, but still within the same order of magnitude. As the QCNs
were trained for only 100 epochs, this might suggest that they can outperform
the DNNs given enough training. While speculative, this indicates that QCNs
are more expressive then DNNs and can thus fit more complicated data, as was
predicted by the analysis of its trajectory length in subsection 5.2.1. On the other
hand, the QNNs implemented in this thesis are unable to fit the mixed Gaussian
data, suggesting that the RZZ encoding of the data or the repetitions of the simple
anstaz, or both, are unfit for producing a QNN that can successfully train on mixed
Gaussian data.

In Section 7.4.2, we showed that QCNs still outperform DNNs when trained using
a noisy simulation of the Santiago quantum computer [41]. Due to the low circuit
depth and number of qubits for each circuit, the local gradients have a relatively
large magnitude, as was found in Section 7.1. Thus, it is easy to obtain a good
signal-to-noise ratio, making QCNs robust with respect to noise. Not surprisingly,
the QNNs perform even worse when using noisy simulation due to their high circuit
depths.

Training and Generalization for Real-World Data

In Section 7.5, we trained QCNs and DNNs on the real-world data sets Boston
Housing data [43] and Breast Cancer Wisconsin data [44]. We showed that QCNs
generalize better on the former data set than DNNs. Surprisingly, the QCNs
generalized slightly better when using noisy simulation compared to ideal. A
possible explanation is that the noise added during training acts regularizing on
the model, making it less susceptible to overfitting and more likely to generalize.
This is known to happen for neural networks when adding noise to the input data
[34], and shows that noise introduced by real quantum hardware is not necessarily
detrimental for QCNs, but could actually be beneficial. This is in contrast to other
quantum algorithms, like Shor’s algorithm [12].

For the Breast Cancer data, the QCNs obtained a test accuracy of 95% and 94%
using ideal and noisy simulation, respectively. The DNN outperformed them both,
obtaining a 97% test accuracy. This shows that QCNs are not necessarily always
superior to DNNs with similar number of parameters, but are better for specific
training problems.

Chapter 8. Summary & Conclusions 101

8.2 Future Research
For future research, we suggest experimenting with different ansatzes beyond the
simple ansatz Equation (4.7) for constructing QCNs. Cerezo et al. [16] recently
showed that there exists parameterized circuits with circuit depth logarithmic in
the number of qubits that does not suffer from an exponential vanishing gradient.
While such shallow circuits likely are unfit as QNNs on their own due to their
low complexity, they could be useful as nodes in a QCN as one could utilize
multiple circuits to build a more expressive model. This can potentially alleviate
the vanishing gradient problem to some degree.

In this thesis, we found that QCNs outperform DNNs on mixed Gaussian data and
the Boston Housing data, but not the Breast Cancer data. This begs the question:
On what type of problems can quantum machine learning outperform classical
methods? Recently, Liu et al. [45] provided a rigorous proof that quantum kernels,
a type of quantum machine learning algorithm, have an exponential advantage over
classical methods for supervised classification on certain data sets. These data sets
are related to the discrete logarithm problem, which is widely believed to be hard to
solve for classical computers. An interesting line of research would be to continue
the search for problems for which quantum machine learning could outperform
classical methods.

To establish a better comparison between QCNs and QNNs, we suggest exploring
different QNN architectures that are able to fit nonlinear data. Recently, Schuld
et al. [46] showed that QNNs can be universal function approximators if multiple
repetitions of alternating feature encoding and ansatzes are applied. This means
that a sufficiently deep QNN can approximate any function to an arbitrary accuracy.
It would be interesting to see whether QCNs can outperform such QNNs when
trained on noisy quantum hardware, since the QNN would likely have higher circuit
depth and be more prone to noise.

Due to limited computational resources, the training of QNN and QCN models
were limited to a small number of qubits and layers. This hindered the exploration
of larger models to see how they perform and if they become intractable to train, as
earlier analyses suggests. This can be explored by adapting the Python framework
to run on supercomputers, or obtain access to real quantum computers with many
qubits.

Appendices

A
Data Sets

In this chapter, we will present details surrounding the data sets used for training
and testing models in this thesis.

A.1 Mixed Gaussian Data
In order to obtain a complex, varying surface suited for regression, we choose
to generate such data artificially by summing multiple Gaussian functions with
different means and standard deviations. This creates what is known as mixed
Gaussian data. Given a data point x with p features, the output of a general
multivariate Gaussian (without normalization and correlations) can be computed
using

y = e(x−µ)TΣ−1(x−µ), (A.1)
where µ is a p-dimensional vector that defines the position of the center of the
Gaussian function, and Σ is a p× p diagonal matrix defining the extension of the
Gaussian in each direction. In this thesis, we will prepare samples x(i) ∈ [0, 1]p as
a meshgrid that uniformly fills the input space [0, 1]p. This ensures a dense data
set that captures the details of the mixed Gaussian function. We will generate
data sets for p ∈ [1, 2, 3]. These differed data sets are described in Table A.1. For a
visualization, see Figure A.1, Figure A.2 and Figure A.3. For a complete description
on how the data is generated, see https://github.com/KristianWold/Master-Thesis/
blob/main/src/utils.py.

To import the mixed Gaussian data, the following code can be used:
1 from u t i l s import generate_1D_mixed_gaussian
2 from u t i l s import generate_2D_mixed_gaussian

https://github.com/KristianWold/Master-Thesis/blob/main/src/utils.py
https://github.com/KristianWold/Master-Thesis/blob/main/src/utils.py

Appendix A. Data Sets 104

3 from u t i l s import generate_3D_mixed_gaussian
4

5 x1 , y1 = generate_1D_mixed_gaussian ()
6 x2 , y2 = generate_2D_mixed_gaussian ()
7 x3 , y3 = generate_1D_mixed_gaussian ()

Table A.1: Details on the various mixed Gaussian data sets. For a complete
description on how to produce it, see https://github.com/KristianWold/Master-
Thesis/blob/main/ src/utils.py

Name #Samples # Features Feature Type Target Type
1D mixed Gaussian 100 1 xi ∈ [0, 1] y ∈ [0, 1]
2D mixed Gaussian 144 2 xi ∈ [0, 1] y ∈ [0, 1]
3D mixed Gaussian 216 3 xi ∈ [0, 1] y ∈ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure A.1: Visualization of the 1D mixed Gaussian dataset. For more details,
see Table A.1.

https://github.com/KristianWold/Master-Thesis/blob/main/src/utils.py
https://github.com/KristianWold/Master-Thesis/blob/main/src/utils.py

Appendix A. Data Sets 105

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure A.2: Visualization of the 2D mixed Gaussian dataset. For more details,
see Table A.1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

(a) Slice of the data set at x3 = 1
6 .

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Slice of the data set at x3 = 5
6 .

Figure A.3: Visualization of the 3D mixed Gaussian dataset. For more details,
see Table A.1

A.2 Real Data
For benchmarking the dense neural networks (DNNs) and quantum circuit networks
(QCNs) implemented in this thesis against realistic data sets, and for investigating
how they generalize to unseen data, we will be using the popular Boston Housing

Appendix A. Data Sets 106

data [43] and Breast Cancer Wisconsin data [44]. In this section, we will presents
details about these data sets.

A.2.1 Boston Housing Data
The Boston Housing data is a popular data set used for regression, readily available
though the scikit-learn python package [28]. The data set can be loaded using the
following code:

1 from sk l ea rn . da ta s e t s import load_boston
2 data = load_boston ()
3 x = data . data
4 y = data . t a r g e t

The targets y of the Boston Housing data are the median values of owner-occupied
homes by town, in $1000, which can be predicted using methods for regression.
Some of the features include quantities such as the per capita crime rate by town,
the average number of rooms per dwelling and the pupil-teacher ratio by town.
For a complete description of the features, see https://www.cs.toronto.edu/~delve/
data/boston/bostonDetail.html. For some general details of the data set, see Ta-
ble A.2.

Table A.2: Some details on the Boston Housing data set.

Name #Samples # Features Feature Type Target Type
Boston Housing Data 506 13 xi ∈ R y ∈ R

A.2.2 Breast Cancer Wisconsin Data
The Breast Cancer Wisconsin data set is another popular data accessible through
scikit-learn. The data set can be loaded using the following code:

1 from sk l ea rn . da ta s e t s import load_breast_cancer
2 data = load_breast_cancer ()
3 x = data . data
4 y = data . t a r g e t

The targets y of the data set are binary values indicating whether breast tissue
is malignant or benign, suitable for classification methods. Some of the features
include quantities such as mean radius, mean area and mean smoothness describing
the breast tissue. For a complete description of the features, see https://www.kaggle.
com/uciml/breast-cancer-wisconsin-datal. For some general details of the data set,
see Table A.3.

Table A.3: Some details on the Breast Cancer Wisconsin data set.

Name #Samples # Features Feature Type Target Type
Breast Cancer Wisconsin 569 30 xi ∈ R y ∈ {0, 1}

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/uciml/breast-cancer-wisconsin-datal
https://www.kaggle.com/uciml/breast-cancer-wisconsin-datal

Appendix A. Data Sets 107

A.2.3 Feature Reduction with PCA
For both the Boston Housing data and the Breast Cancer Wisconsin data, we will
perform a principal component analysis (PCA) to reduce the number of features
from 13 and 30 to four, respectively. This makes the training of QCNs more feasible,
as a high number of features also require a high number of qubits when using qubit
encoding. For more details, see Section 2.5.2.

References

[1] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum
Computers. 1st. Springer Publishing Company, Incorporated, 2018 (cit. on
pp. 1, 4, 8, 13, 26, 32, 33).

[2] George D Magoulas and Andriana Prentza. Machine learning in medical
applications. Berlin: Springer, 2001, pp. 300–307 (cit. on p. 1).

[3] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer.
Deep Learning for Financial Applications : A Survey. 2020. arXiv: 2002.05786
[q-fin.ST] (cit. on p. 1).

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. 2nd. New York, NY, USA: Springer New York Inc., 2009
(cit. on pp. 1, 8, 9, 19, 21, 50).

[5] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow
: concepts, tools, and techniques to build intelligent systems. Sebastopol, CA:
O’Reilly Media, 2017 (cit. on pp. 1, 2, 12, 14, 19, 72).

[6] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-
Dickstein. On the Expressive Power of Deep Neural Networks. 2017. arXiv:
1606.05336 [stat.ML] (cit. on pp. 2, 50–52, 83, 85, 86).

[7] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
“Efficient BackProp.” In: Neural Networks: Tricks of the Trade: Second Edition.
Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 32–34 (cit. on pp. 2,
19, 49).

[8] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal Statistics of
Fisher Information in Deep Neural Networks: Mean Field Approach. 2019.
arXiv: 1806.01316 [stat.ML] (cit. on pp. 2, 48–50, 82, 99).

[9] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. 10th. USA: Cambridge University
Press, 2011 (cit. on pp. 2, 22, 27, 39).

[10] D. Deutsch. “Quantum theory, the Church–Turing principle and the universal
quantum computer.” In: Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences 400 (1985), pp. 117–97 (cit. on p. 2).

[11] Seth Lloyd. “Universal Quantum Simulators.” In: Science 273.5278 (1996),
pp. 1073–1078 (cit. on p. 2).

https://arxiv.org/abs/2002.05786
https://arxiv.org/abs/2002.05786
https://arxiv.org/abs/1606.05336
https://arxiv.org/abs/1806.01316

References 109

[12] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer.” In: SIAM Journal on Computing
26 (1997), pp. 1484–1509 (cit. on pp. 3, 35, 100).

[13] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. “Param-
eterized quantum circuits as machine learning models.” In: Quantum Science
and Technology 4 (2019), p. 043001 (cit. on pp. 3, 4, 35–37, 41).

[14] John Preskill. “Quantum Computing in the NISQ era and beyond.” In:
Quantum 2 (2018), p. 79 (cit. on pp. 3, 33).

[15] Abdullah Ash Saki, Mahabubul Alam, and Swaroop Ghosh. Study of Deco-
herence in Quantum Computers: A Circuit-Design Perspective. 2019. arXiv:
1904.04323 [cs.ET] (cit. on p. 3).

[16] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles.
“Cost function dependent barren plateaus in shallow parametrized quantum
circuits.” In: Nature Communications 12.1 (2021) (cit. on pp. 4, 35, 101).

[17] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli,
and Stefan Woerner. The power of quantum neural networks. 2020. arXiv:
2011.00027 [quant-ph] (cit. on pp. 4, 14, 36, 38, 40, 41, 43, 48, 50, 70, 72,
82, 98).

[18] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quan-
tum embeddings for machine learning. 2020. arXiv: 2001.03622 [quant-ph]
(cit. on pp. 4, 39, 40).

[19] Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. “Circuit-
centric quantum classifiers.” In: Physical Review A 101 (2020) (cit. on pp. 4,
36).

[20] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush,
and Hartmut Neven. “Barren plateaus in quantum neural network training
landscapes.” In: Nature Communications 9 (2018) (cit. on pp. 4, 43, 75, 98,
99).

[21] Andrea Skolik, Jarrod R. McClean, Masoud Mohseni, Patrick van der Smagt,
and Martin Leib. Layerwise learning for quantum neural networks. 2020.
arXiv: 2006.14904 [quant-ph] (cit. on pp. 4, 14, 44, 70, 79).

[22] Stian Bilek. Quantum Computing: Many-Body Methods and Machine Learning.
unpublished (cit. on pp. 4, 44, 47).

[23] Kristian Wold and Stian Bilek. Quantum Circuit Networks. In preparation.
(cit. on pp. 5, 98).

[24] Héctor Abraham et al. Qiskit: An Open-source Framework for Quantum
Computing. 2019. doi: 10.5281/zenodo.2562110 (cit. on pp. 6, 54).

[25] Michael A. Nielsen. Neural Networks and Deep Learning. 1st ed. Determination
Press, 2018. url: http://neuralnetworksanddeeplearning.com/ (cit. on p. 8).

[26] S. A. Vavasis. Nonlinear Optimization: Complexity Issues. New York: Oxford
University Press, 1991 (cit. on p. 11).

[27] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG] (cit. on pp. 12, 13, 72, 98).

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

https://arxiv.org/abs/1904.04323
https://arxiv.org/abs/2011.00027
https://arxiv.org/abs/2001.03622
https://arxiv.org/abs/2006.14904
https://doi.org/10.5281/zenodo.2562110
http://neuralnetworksanddeeplearning.com/
https://arxiv.org/abs/1412.6980

References 110

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python.” In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830 (cit. on pp. 14, 47, 70, 71, 106).

[29] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http ://papers . neurips . cc/paper/9015 - pytorch - an - imperative - style - high -
performance-deep-learning-library.pdf (cit. on pp. 14, 71).

[30] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Architecture
Schematics.” In: Journal of Open Source Software 4.33 (2019), p. 747 (cit. on
p. 15).

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Internal
Representations by Error Propagation.” In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1: Foundations. Cam-
bridge, MA, USA: MIT Press, 1986, pp. 318–362 (cit. on p. 16).

[32] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. “The
Modern Mathematics of Deep Learning.” In: CoRR abs/2105.04026 (2021).
arXiv: 2105.04026 (cit. on p. 17).

[33] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of
Gradient-Based Deep Learning. 2017. arXiv: 1703.07950 [cs.LG] (cit. on
p. 18).

[34] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regular-
izing Deep Neural Networks by Noise: Its Interpretation and Optimization.
2017. arXiv: 1710.05179 [cs.LG] (cit. on pp. 18, 96, 100).

[35] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White,
J. Mutus, A. G. Fowler, B. Campbell, and et al. “Superconducting quantum
circuits at the surface code threshold for fault tolerance.” In: Nature 508
(2014), pp. 500–503 (cit. on p. 33).

[36] Adam Holmes, Sonika Johri, Gian Giacomo Guerreschi, James S Clarke,
and A Y Matsuura. “Impact of qubit connectivity on quantum algorithm
performance.” In: Quantum Science and Technology 5 (2020), p. 025009 (cit.
on p. 34).

[37] Seth Lloyd. Quantum approximate optimization is computationally universal.
2018. arXiv: 1812.11075 [quant-ph] (cit. on p. 39).

[38] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran. “Evaluating analytic gradients on quantum hardware.” In: Physical
Review A 99 (2019) (cit. on p. 41).

[39] Patrick Huembeli and Alexandre Dauphin. “Characterizing the loss landscape
of variational quantum circuits.” In: Quantum Science and Technology 6.2
(2021), p. 025011 (cit. on p. 49).

[40] Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost Linear VC Dimension
Bounds for Piecewise Polynomial Networks.” In: Advances in Neural Informa-
tion Processing Systems. Ed. by M. Kearns, S. Solla, and D. Cohn. Vol. 11.
MIT Press, 1999 (cit. on p. 50).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2105.04026
https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/1710.05179
https://arxiv.org/abs/1812.11075

References 111

[41] IBM Q Team. IBM Q Santiago 5 Qubit Quantum Computer v1.0.3 (cit. on
pp. 57, 90, 92, 93, 95, 100).

[42] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks.” In: Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics. Ed. by Yee Whye
Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning Research.
Chia Laguna Resort, Sardinia, Italy: PMLR, 2010, pp. 249–256 (cit. on p. 71).

[43] D. Harrison and D.L. Rubinfeld. “Hedonic Housing Prices and the Demand
for Clean Air.” In: Journal of Environmental Economics and Management 5
(1978), pp. 81–102 (cit. on pp. 95, 100, 106).

[44] W Nick Street William H Wolberg and Olvi L Mangasarian. “Breast cancer
Wisconsin (diagnostic) data set.” In: Analytical and quantitative cytology and
histology 17 (1995), pp. 77–87 (cit. on pp. 95, 100, 106).

[45] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. “A rigorous and
robust quantum speed-up in supervised machine learning.” In: Nature Physics
(2021) (cit. on p. 101).

[46] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. “Effect of data
encoding on the expressive power of variational quantum-machine-learning
models.” In: Physical Review A 103 (2021) (cit. on p. 101).

	Abstract
	Acknowledgements
	Abbreviations
	Introduction and Objective of the Study
	Introduction
	Machine Learning
	Quantum Computing
	Quantum Machine Learning

	Objectives
	The Organization of the Thesis

	I Theoretical Background
	Supervised Learning
	Parametric Models
	Regression
	Classification

	Optimization
	Batch Gradient Descent
	Adam Optimizer

	Dense Neural Network
	Feedforward
	Backpropagation
	Activation Functions
	Saturated Activations and Vanishing Gradient

	Generalizability
	Pre-processing Data
	Scaling Features
	Principal Component Analysis

	Quantum Computing
	States in Quantum Mechanics
	The Qubit
	Multiple Qubits
	Measuring Qubits

	Quantum Circuits
	Single Qubit Operations
	Multi-Qubit Operators
	Observables
	Expectation Values
	Estimating Expectation Values

	Noisy Intermediate-Scale Quantum Computing
	Gate Fidelity
	Quantum Decoherence
	Coupling of Qubits
	Basis Gates

	Quantum Machine Learning
	Quantum Neural Networks
	Feature Encoding
	Qubit Encoding
	RZZ Encoding
	Latent Qubits

	Ansatz
	Model Output
	Optimization of PQC
	Analytical Gradient-Based Optimization
	Barren Plateus in QNN Loss Landscape

	Quantum Circuit Network
	Feed-Forward
	Backward Propagation

	Tools for Analysis
	Trainability
	Hessian Matrix
	Empirical Fisher Information Matrix

	Expressivity
	Trajectory Length

	II Implementation
	Implementation
	Qiskit
	Registers and Circuits
	Applying Gates
	Measurement
	Exact Expectation Value
	Simulating Real Devices

	QNN Example
	Encoding
	Ansatz
	Model Output
	Gradient
	Training

	Quantum Circuit Network
	Encoders, Ansatzes and Samplers
	QLayer
	Constructing QCNs from QLayers
	Backpropagation
	Training
	Single-Circuit Models
	Dense Neural Networks
	Hybrid Models

	Tools for Analysis
	Magnitude of Gradients
	Empirical Fisher Information
	Trajectory Length

	Numerical Experiments
	Initialization
	Pre-processing Data
	Optimization
	Configuring QCNs and DNNs

	III Results & Discussion
	Results and Discussion
	Vanishing Gradient Phenomenon
	Vanishing Gradient in QNNs
	Vanishing Local Gradient in QCNs
	Vanishing Total Gradient in QCNs
	Discussion

	Investigating the Loss Landscape
	Discussion

	Expressivity
	Untrained Models
	Trained Models
	Single Node Expressivity
	Discussion

	Training Models on Mixed Gaussian Data
	Ideal Simulation
	Noisy Simulation
	Discussion

	Real-World Data
	Discussion

	IV Conclusion & Future Research
	Summary & Conclusions
	Summary & Conclusions
	Future Research

	Appendices
	Data Sets
	Mixed Gaussian Data
	Real Data
	Boston Housing Data
	Breast Cancer Wisconsin Data
	Feature Reduction with PCA

	References

