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Abstract
Publication bias and p-hacking are two well-known phenomena that strongly
affect the scientific literature and cause severe problems in meta-analyses. Due
to these phenomena, the assumptions ofmeta-analyses are seriously violated and
the results of the studies cannot be trusted. While publication bias is very often
captured well by the weighting function selection model, p-hacking is much
harder to model and no definitive solution has been found yet. In this paper, we
advocate the selection model approach to model publication bias and propose a
mixture model for p-hacking. We derive some properties for these models, and
we compare them formally and through simulations. Finally, two real data exam-
ples are used to show how the models work in practice.
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1 INTRODUCTION

Meta-analysis is the quantitative combination of informa-
tion from different studies. Aggregating information from
multiple studies brings higher statistical power, higher
accuracy in estimation and greater reproducibility. Unfor-
tunately, it is not always possible to believe in the results
of meta-analyses, as somemodel assumptions may be seri-
ously violated. In particular, a meta-analysis must not be
based on a biased selection of studies. Publication bias
(Sterling, 1959) and p-hacking (Simmons et al., 2011) are the
most common phenomena that violate these assumptions.
Depending on their magnitude, they may have a substan-
tial effect on the cumulative evidence (see, e.g., Friese and
Frankenbach, 2020).
Publication bias, also known as the file drawer prob-

lem (Rosenthal, 1979), denotes the phenomenon when a
study with a smaller p-value is more likely to be published
than a study with a higher p-value. Publication bias is a
well-known issue, and several approaches have been pro-
posed to tackle it. Two famous examples are the trim-and-
fill (Duval and Tweedie, 2000) and fail-safe 𝑁 (Becker,
2005) methods, but neither of them explicitly model the

publication selection mechanism. From a statistical point
of view, the most important class of models used to deal
with publication bias are the selection models. They were
first studied by Hedges (1984) for 𝐹-distributed variables
with a cutoff at 0.05, and extended to the setting of 𝑡-
values by Iyengar and Greenhouse (1988). Hedges (1992)
proposed a random effects publication bias model with
more than one cutoff, while Citkowicz and Vevea (2017)
used beta distributed weights. Other examples of selection
models include the non-parametric approach of Dear and-
Begg (1992), the sensitivity analysis of Copas and Shi (2000)
and the regression methods of Vevea and Hedges (1995).
McShane et al. (2016) is an accessible overview of selection
models in publication bias.
Publication bias is a well-known problem in several

research areas, and therefore various approaches to solve
the issue have been also proposed outside the statistical
literature. Hailing from economics, PET, PEESE and PET-
PEESE (Stanley and Doucouliagos, 2014) are models based
on linear regression and an approximation of the selec-
tion mechanism based on the inverse Mill’s ratio. From
psychology, the p-curve of Simonsohn et al. (2014a) is a
method that only looks at significant p-values and judges
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whether their distribution shows sign of being produced
by studies with insufficient power. The p-curve for esti-
mation (Simonsohn et al., 2014b) is a fixed effect selection
model with a significance cutoff at 0.05 estimated by mini-
mizing theKolmogorov–Smirnov distance (McShane et al.,
2016). Another method from the psychology literature is
p-uniform (van Assen et al., 2015), which is similar to the
p-curve. A recent study by Carter et al. (2019) compared
several approaches and showed that the selection model
works better than the others. However, not even the best
method works well in every considered scenario. For more
information on publication bias, we refer to Rothstein et al.
(2006) and Marks-Anglin and Chen (2020).
In contrast, p-hacking, sometimes also called question-

able research practices (Sijtsma, 2016) and fishing for sig-
nificance (Boulesteix, 2009), occurs when the authors of
a study manipulate results into statistical significance. p-
hacking can be done at the experimental stage, using, for
example, optional stopping, or at the analysis stage, for
instance, by changingmodels or dropping out participants.
Examples of p-hacking can be found in Simmons et al.
(2011). While publication bias, at least that based on p-
values, has been shown to be captured well by selection
models such as that of Hedges (1992), p-hacking is harder
to model (Carter et al., 2019). The aforementioned p-curve
approach by Simonsohn et al. (2014a) has been used for p-
hacking as well, but it has been shown to be not reliable
(Bruns and Ioannidis, 2016). Here, we advocate the selec-
tion model approach to model publication bias and pro-
pose a mixture model for p-hacking. We derive some prop-
erties for these models and argue they are best handled by
Bayesian methods.
The paper is organized as follows: In Section 2, we

define the framework and introduce themodels, which are
also theoretically compared. Further comparisons are pre-
sented through simulations in Section 3 and examples in
Section 4. We conclude with some remarks and possible
extensions in Section 5.

2 MODELS

2.1 Framework

The main ingredient of a meta-analysis is a collection of
exchangeable statistics 𝑥𝑖 . Each statistic 𝑥𝑖 has density
𝑓⋆(𝑥𝑖 ∣ 𝜃𝑖, 𝜂𝑖), where 𝜂𝑖 is a known or unknown nuisance
parameter and 𝜃𝑖 is an unknown parameter we wish to
make inference on. This paper corrects the bias due to the
transformation of the true data-generation model 𝑓⋆(𝑥𝑖 ∣

𝜃𝑖, 𝜂𝑖) into a new model 𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜂𝑖) by publication bias
and p-hacking. Our goal is to understand the latter model
and correctly estimate 𝜃𝑖 . Although our methodology only

requires the dependencies on 𝜃𝑖 and that statistical infer-
ence on 𝜃𝑖 is the goal of the analysis, here we mainly
focus on the most common case of Gaussian densities (i.e.
𝑓⋆(𝑥𝑖 ∣ 𝜃𝑖, 𝜂𝑖) = 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎

2
𝑖
)). Moreover, as usual inmeta-

analysis studies (vanHouwelingen et al., 2002), we assume
𝜎2
𝑖
as known.
The parameter 𝜃𝑖 is typically an effect size, such as

a standardized mean difference. In a fixed effects meta-
analysis, 𝜃𝑖 = 𝜃 for all 𝑖. In a random effects meta-analysis,
𝜃𝑖 is drawn from an effect size distribution 𝑝(𝜃) common
to all 𝑖, and the goal of the study is often to make inference
on the parameters of the effect size distribution, usually on
themean 𝜃0 and the variance 𝜏2 when 𝜃𝑖 ∼ 𝑁(𝜃0, 𝜏

2). If we
marginalize away 𝜃𝑖 we will end up with a density on the
form𝑁(𝜃0, 𝜎

2
𝑖
+ 𝜏2). This is possible in our framework, but

it turns out that an important property of the publication
bias model gets lost, as marginalizing out the 𝜃𝑖s can mask
the fact that the selection mechanism in the publication
bias has an effect both on the effect size distribution and
the individual densities 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎

2
𝑖
).

An overview of all quantities used in this paper can be
found in the Web Appendix A.

2.2 The selection model

Before introducing the publication bias and the p-hacking
models, let us define the selection model of which both
models are instances. Consider the statistic 𝑥𝑖 and its den-
sity 𝜙(𝑥𝑖), for the moment without dependencies on 𝜃𝑖 and
𝜎2
𝑖
. Let the selection variable 𝑠 be a binary stochastic vari-

able that equals 1 if and only if 𝑥𝑖 is observed, for instance,
if the paper containing 𝑥𝑖 has been accepted by an edi-
tor. When the selection only depends on 𝑥𝑖 , the density of
our observed statistic is 𝑓(𝑥𝑖) = 𝑝(𝑠 = 1 ∣ 𝑥𝑖)𝜙(𝑥𝑖)∕𝑝(𝑠 =

1). This is also known as aweighted distribution (Rao, 1985,
eq. 3.1), and can be interpreted as a rejection sampling
model (von Neumann, 1951).
The selection mechanism may depend on other quanti-

ties, such as the study-specific parameter 𝜃𝑖 and the study-
specific nuisance parameter 𝜎2

𝑖
. We will see that the selec-

tion mechanism can be changed by conditioning on 𝜃𝑖 in
the denominator, which is what we do with the p-hacking
model in Section 2.4.

2.3 The publication bias model

Imagine the publication bias scenario:

Alice is an editor who receives a study with
a p-value 𝑢𝑖 . She knows her journals will suf-
fer if she publishes many null-results, so she
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is disinclined to publish studies with large p-
values. Still, she will publish any result with
some p-value-dependent probability 𝑤(𝑢𝑖).
Every study you will ever read in Alice’s jour-
nal has survived this selectionmechanism, the
rest are lost forever.

In this story, the underlying model 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) is trans-

formed into a publication bias model

𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) ∝ 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎

2
𝑖
)𝑤(𝑢𝑖) (1)

by the selection probability𝑤(𝑢𝑖) ∈ [0, 1], which is a prob-
ability for each 𝑢𝑖 . Here, 𝑢𝑖 is a p-value that depends
on 𝑥𝑖 and maybe on something else, such as the stan-
dard deviation of 𝑥𝑖 , but does not depend on 𝜃𝑖 . We can
write the model using the selection variable 𝑠, as 𝑤(𝑢𝑖) =

𝑤(𝑢𝑖(𝑥𝑖, 𝜎
2
𝑖
)) = 𝑝(𝑠 = 1 ∣ 𝑥𝑖, 𝜎

2
𝑖
). Note that 𝑤(𝑢𝑖) cannot

depend on 𝜃𝑖 since the editor has no way of knowing the
parameter 𝜃𝑖; if she did, she would not have to look at the
p-values at all. The normalizing constant of model (1) is
finite for any probability 𝑤(𝑢𝑖), hence 𝑓 is a bona fide
density.
An argument against the publication bias scenario is

that publication bias does not act only through p-values,
but also through other features of the study such as lan-
guage (Egger and Smith, 1998) and originality (Callaham
et al., 1998).While this is true, the publication bias scenario
seems to completely capture the idea of p-value-based pub-
lication bias. Even if other sources of publication bias exist,
maybe acting through 𝑥𝑖 but not its p-value, publication
bias based on p-values is a universally recognized problem,
and a good place to start. The kind of model sketched here
is almost the same as the one of Hedges (1992), with the
sole exception that Hedges (1992) does not require𝑤(𝑢𝑖) to
be a probability. We demand it, as otherwise the intuitive
publication bias scenario interpretation of the model dis-
appears.
Even if we know the underlying 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎

2
𝑖
) of model

(1), we will need to decide on what p-value to use. Usu-
ally, the p-value will be approximately a one-sided normal
p-value, because most hypotheses have just one direction
that is interesting. For instance, the effect of an antidepres-
santmust be positive for the study to be publishable. A one-
sided p-value can also be used if the researchers reported
a two-sided value, since 𝑝 = 0.05 for a two-sided hypoth-
esis corresponds to 𝑝 = 0.025 for a one-sided hypothesis.
We will use the one-sided normal p-value in all examples
in this paper.
Provided we know the underlying distributions and p-

values 𝑢𝑖 , we only need to decide on the selection probabil-
ity to have a fully specified model. Hedges (1992) proposes

the discrete selection probability

𝑤(𝑢𝑖 ∣ 𝜌, 𝛼) =

𝐽∑
𝑗=1

𝜌𝑗1[𝛼𝑗−1,𝛼𝑗)(𝑢𝑖), (2)

where 𝛼 is a vector of cutoffs satisfying 0 = 𝛼0 < 𝛼1 < ⋯ <

𝛼𝐽 = 1 and 𝜌 is a non-negative vector with 𝜌1 = 1. The
interpretation of this selection probability is simple: When
Alice reads the p-value 𝑢𝑖 , she finds the 𝑗 that makes 𝑢𝑖 an
element of [𝛼𝑗−1, 𝛼𝑗) and accepts the study with probabil-
ity 𝜌𝑗 . Related to this view, Hedges (1992) proposed to use
the cutoffs 0.001, 0.005, 0.01 and 0.05, as these ‘have par-
ticular salience for interpretation’ (Hedges, 1992). In fact,
a publication decision often depends on whether a p-value
crosses the 0.05-threshold. Considering the bias-variance
trade-off heuristic, we would prefer to only use one split
point at 0.05, as done by Iyengar and Greenhouse (1988) in
their second weight function. Other reasons to prefer one
split are ease of interpretation and presentation. Despite
this, only using 0.05 as a threshold for one-sided p-values
is problematic, as many published results are calculated
using a two-sided p-value instead. For this reason, it is use-
ful to add a splitting point at 0.025. In our examples, wewill
use a two-step function selection probability 𝑤(𝑢𝑖 ∣ 𝜌) =

1[0,0.025)(𝑢𝑖) + 𝜌21[0.025,0.05)(𝑢𝑖) + 𝜌31[0.05,1](𝑢𝑖), where the
selection probability when 𝑢𝑖 ∈ [0, 0.025) is normalized
to 1 to make the model identifiable. Nevertheless we
present models in broad generality in order to allow for
an arbitrary number of cutoffs 𝐽. This possibility is already
implemented in the R package associated with this paper,
publipha (Moss, 2020b).
The following proposition shows the densities of the

one-sided normal step function selection probability pub-
lication bias models, with fixed effects and with normal
random effects, respectively. Here, the notation 𝜙[𝑎,𝑏)(𝑥 ∣

𝜃, 𝜎2
𝑖
) indicates a normal truncated to [𝑎, 𝑏).

Proposition 1. The density of an observation from a fixed
effects one-sided normal step function selection probability
publication bias model and parameters 𝜃, 𝜎2

𝑖
, is

𝑓(𝑥𝑖 ∣ 𝜃, 𝜎
2
𝑖
) =

𝐽∑
𝑗=1

𝜋⋆
𝑗
𝜙(𝑐𝑗,𝑐𝑗−1](𝑥𝑖 ∣ 𝜃, 𝜎

2
𝑖
), (3)

where 𝜋⋆
𝑗

= 𝜌𝑗
Φ(𝑐𝑗−1∣𝜃,𝜎

2
𝑖
)−Φ(𝑐𝑗∣𝜃,𝜎

2
𝑖
)

∑𝑁
𝑗=1 𝜌𝑗[Φ(𝑐𝑗−1∣𝜃,𝜎

2
𝑖
)−Φ(𝑐𝑗∣𝜃,𝜎

2
𝑖
)]
is the probability

that 𝑥𝑖 ∈ (𝑐𝑗, 𝑐𝑗−1] and 𝑐𝑗 = 𝜃 + 𝜎𝑖Φ
−1(1 − 𝛼𝑗). Here, 𝑢𝑖 =

1 − Φ(
𝑥𝑖−𝜃

𝜎𝑖

), so 𝑤(𝑢𝑖 ∣ 𝜌) = 𝜌𝑗 when 𝛼𝑗−1 ≤ 1 − Φ(
𝑥𝑖−𝜃

𝜎𝑖

) <

𝛼𝑗 .
The density of an observation from the one-sided normal

step function selection probability publication bias model
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with normal random effects and parameters 𝜎2
𝑖
, 𝜃0, 𝜏, is

𝑓(𝑥𝑖 ∣ 𝜃0, 𝜏, 𝜎
2
𝑖
) =

𝐽∑
𝑗=1

𝜋⋆
𝑗
(𝜃0, 𝜏, 𝜎

2
𝑖
)𝜙(𝑐𝑗,𝑐𝑗−1](𝑥 ∣ 𝜃0, 𝜏

2 + 𝜎2
𝑖
),

(4)
where

𝜋⋆
𝑗
(𝜃0, 𝜏, 𝜎

2
𝑖
) = 𝜌𝑗

Φ(𝑐𝑗−1∣𝜃0,𝜏
2+𝜎2

𝑖
)−Φ(𝑐𝑗∣𝜃0,𝜏

2+𝜎2
𝑖
)

∑𝐽
𝑗=1 𝜌𝑗[Φ(𝑐𝑗−1∣𝜃0,𝜏2+𝜎2

𝑖
)−Φ(𝑐𝑗∣𝜃0,𝜏2+𝜎2

𝑖
)]
.

Proof. Consider the fixed effects model. By definition ,

𝑓(𝑥𝑖 ∣ 𝜃, 𝜎
2
𝑖
) ∝

𝐽∑
𝑗=1

𝜌𝑗1[𝛼𝑗−1,𝛼𝑗)(𝑢𝑖)𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
). (5)

The normalizing constant is

𝐽∑
𝑗=1

𝜌𝑗 ∫ 1[𝛼𝑗−1,𝛼𝑗)(𝑢𝑖)𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)𝑑𝑥𝑖

=

𝐽∑
𝑗=1

𝜌𝑗

[
Φ(𝑐𝑗−1 ∣ 𝜃, 𝜎2

𝑖
) − Φ(𝑐𝑗 ∣ 𝜃, 𝜎2

𝑖
)
]
. (6)

Rewriting

𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)1[𝛼𝑗−1,𝛼𝑗)(𝑢𝑖)

Φ(𝑐𝑗−1 ∣ 𝜃, 𝜎2
𝑖
) − Φ(𝑐𝑗 ∣ 𝜃, 𝜎2

𝑖
)
= 𝜙(𝑐𝑗,𝑐𝑗−1](𝑥𝑖 ∣ 𝜃, 𝜎

2
𝑖
), (7)

we get Equation (3).
For the random effect model, we proceed similarly,

see Web Appendix B. Note that 𝑓(𝑥𝑖 ∣ 𝜃0, 𝜏, 𝜎
2
𝑖
) does not

equal ∫ 𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)𝜙(𝜃𝑖 ∣ 𝜃0, 𝜏

2)𝑑𝜃𝑖 , as might have been
expected. □

2.4 The p-hacking model

Imagine the p-hacking scenario:

Bob is an astute researcher who is able to
p-hack any study to whatever level of sig-
nificance he wishes. Whenever Bob does his
research, he decides on a significance level
to reach by drawing an 𝛼 from a distribution
𝜔. Then he p-hacks his study to this 𝛼-level,
for example by excluding particular observa-
tions, collecting new data ex-post, or selec-
tively excluding covariates.

In this scenario, the original density 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) is

transformed into the p-hacked density

𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) = ∫

[0,1]

𝜙𝛼(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)𝜔(𝛼)𝑑𝛼, (8)

where 𝜙𝛼 is 𝜙 truncated so that the p-value 𝑢𝑖 lies
inside [0, 𝛼], with 𝛼 ∈ [0, 1]. For instance, when using a
one-sided p-value, we get that 𝜙𝛼(𝑥𝑖 ∣ 𝜃𝑖, 𝜎

2
𝑖
) = 𝜙[𝑐𝑗,∞)(𝑥𝑖 ∣

𝜃𝑖, 𝜎
2
𝑖
), where 𝑐𝑗 = 𝜃𝑖 + 𝜎𝑖Φ

−1(1 − 𝛼𝑗). As described in the
p-hacking scenario, the p-hacking level 𝛼 is drawn from a
density 𝜔(𝛼), which might depend on covariates. On the
other hand, it should not depend on 𝜃𝑖 , as the researcher
cannot know the true effect size of his study. While pub-
lication bias model (1) is a selection model, the p-hacking
model (8) is a mixture model. Mathematically, the publi-
cation bias model could be written as a mixture model on
the same form as the p-hacking model, but then 𝜔 would
incorrectly depend on 𝜃𝑖 , see Web Appendix C. In our cur-
rent setting, where the original distributions are Gaussian,
it means that the publication biasmodel and the p-hacking
model differs in the random effect case, while are equal in
the fixed effect case (see Web Appendix D). Correspond-
ingly, the p-hacking model could be written as a selection
model (1), but the publication probability would then in
general depend on the true effect size, which violates an
obvious condition for a model to be considered a publica-
tion bias model. We stress therefore that the model (8) is
not a publication bias model.
Just as the publication biasmodel requires a choice of𝑤,

the p-hacking model requires a choice of 𝜔. A p-hacking
scientist is motivated to p-hack to the 0.05 level, or may be
to the levels 0.01 or 0.025, but never to a level such as 0.07
or 0.37. This motivates the discrete p-hacking probability
distribution

𝜔(𝛼 ∣ 𝜋) =

𝐽∑
𝑗=1

𝜋𝑗1(𝛼 = 𝛼𝑗) (9)

for some 𝑗-ary vector of cutoffs 𝛼 satisfying 0 < 𝛼1 < 𝛼2 <

⋯ < 𝛼𝐽 = 1, and 𝑗-ary vector of probabilities 𝜋. In our
example, it means that Bob will p-hack at a level 𝛼1 with
probability𝜋1,𝛼2with probability𝜋2 and so on. The result-
ing density is

𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) =

𝐽∑
𝑗=1

𝜋𝑗𝜙𝛼(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)1(𝛼 = 𝛼𝑗). (10)

Using reasoning analogous to that of Section 2.3, we sug-
gest to use an𝜔 only based on the two splitting points 0.025
and 0.05, that is, 𝜔(𝛼 ∣ 𝜋) = 𝜋11(𝛼 = 0.025) + 𝜋21(𝛼 =

0.05) + 𝜋31(𝛼 = 1), but themodel below is again presented
using the more general 𝐽 cutoffs.
The density of an observation from a fixed effects one-

sided normal discrete probability p-hacking model is
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𝑓(𝑥𝑖 ∣ 𝜃, 𝜎
2
𝑖
) =

𝐽∑
𝑗=1

𝜋𝑗𝜙[𝑐𝑗,∞)(𝑥𝑖 ∣ 𝜃, 𝜎
2
𝑖
), (11)

where 𝑐𝑗 = 𝜃 + 𝜎𝑖Φ
−1(1 − 𝛼𝑗). Compared to the corre-

sponding fixed effects publication bias model (3), where
𝑓(𝑥𝑖 ∣ 𝜃, 𝜎

2
𝑖
) =

∑𝐽

𝑗=1
𝜋⋆

𝑗
𝜙(𝑐𝑗,𝑐𝑗−1](𝑥𝑖 ∣ 𝜃, 𝜎

2
𝑖
), the main dif-

ference are the truncation intervals: [𝑐𝑗,∞) for the p-
hacking model and (𝑐𝑗, 𝑐𝑗−1] for the publication bias
model. We illustrate the fixed effects models further in
Web Appendix D, where we also show that models are
reparametrizations of each other. However, as already
mentioned, the two models differ in the random effect
case. In contrast to the publication bias model, there
is no closed form for the density of the random effects
variant of the one-sided normal discrete probability p-
hacking model.

2.5 The difference between the models
in the case of random effects

In the random effects publication bias model, a completely
new study is done whenever the last one failed to be pub-
lished. In the event that 𝑠 = 0 and the study fails to be
published, a new effect size 𝜃𝑖 is sampled from the origi-
nal effect size distribution 𝑝(𝜃𝑖), and then a new 𝑥𝑖 from
𝑁(𝜃𝑖, 𝜎

2
𝑖
). As a consequence, the modified effect size dis-

tributed 𝑝⋆(𝜃𝑖 ∣ 𝜎
2
𝑖
) will generally not equal the original

effect size distribution, as

𝑝⋆(𝜃𝑖 ∣ 𝜎
2
𝑖
)

= ∫
𝑝(𝑠 = 1 ∣ 𝑥𝑖, 𝜎

2
𝑖
)

𝑝(𝑠 = 1 ∣ 𝜎2
𝑖
)

𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)𝑝(𝜃𝑖)𝑑𝑥𝑖 ≠ 𝑝(𝜃𝑖).

(12)

The dependence on 𝜎2
𝑖
in 𝑝⋆(𝜃𝑖 ∣ 𝜎

2
𝑖
) cannot be removed.

In practice, the modified effect size distribution will be
skewed towards favourable 𝜃𝑖s, as the selectionmechanism
of the publication bias model penalizes studies for which
the effect sizes 𝜃𝑖s come from the least favourable part of
the support of 𝑝(𝜃𝑖). Even if we somehow knew all the 𝜃𝑖s
corresponding to our sample of 𝑥𝑖s, the mean of these 𝜃𝑖s
would be larger than themean of the underlying effect size
distribution. This implies that the modified effect size dis-
tribution 𝑝⋆(𝜃𝑖 ∣ 𝜎

2
𝑖
) cannot be used directly to predict the

value of a new draw from the true effect size distribution.
The p-hackingmodel does not modify the effect size dis-

tribution. The p-hacker will hack his study all the way to
significance, regardless of 𝜃𝑖 . In this case, there will not be
a new 𝜃𝑖 when 𝑠 = 0: The p-hacker will modify the study

until success (𝑠 = 1) given the sampled 𝜃𝑖 . The modified
effect size distribution equals the original effect size distri-
bution, that is,

𝑝⋆(𝜃𝑖 ∣ 𝜎
2
𝑖
)

= ∫
𝑝(𝑠 = 1 ∣ 𝑥𝑖, 𝜎

2
𝑖
)

𝑝(𝑠 = 1 ∣ 𝜃𝑖, 𝜎
2
𝑖
)
𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎

2
𝑖
)𝑝(𝜃𝑖)𝑑𝑥𝑖 = 𝑝(𝜃𝑖).

(13)

For an example that relates the selection biases to the
two models, see Web Appendix E.

3 SIMULATIONS

We want to answer these three questions about the p-
hacking and publication bias models: (1) Do they work
even in the absence of p-hacking and publication bias?
Although we know these phenomena are ubiquitous and
should always be corrected for, it is still important that the
models do not distort the results when there is no publica-
tion bias or p-hacking. (2) How do they behave in extreme
situations, in particular when 𝑛 is small and the hetero-
geneity is large? (3) Does the p-hacking model work under
the publication bias scenario and vice versa?

3.1 Settings

We generate data under three scenarios: (i) With no pub-
lication bias nor p-hacking, using the normal random
effect meta-analysis model. (ii) Under the presence of
publication bias, using model (4). (iii) Under presence
of p-hacking, using the random effects normal p-hacking
model. The study-specific variances 𝜎2

𝑖
are sampled uni-

formly from {20, … , 80}. The size of the meta-analyses are
𝑛 = 5, 30, 100, corresponding to small, medium and large
meta-analyses, while the means for the effect size distri-
bution are 0, 0.2, 0.8. The value 𝜃0 = 0 corresponds to no
expected effect, while the positive 𝜃0s are the cutoffs for
small and large effect sizes of Cohen (1988, pp. 24–27). The
standard deviations of the random effects distributions are
𝜏 = 0.1 and 𝜏 = 0.5. While 𝜏 = 0.1 is a reasonable amount
of heterogeneity, 𝜏 = 0.5 is a large amount of heterogeneity
that provides a challenge for themodels. The probability of
acceptance of a paper is simulated to be 1 if the p-value is
between 0 and 0.025, 0.7 if the p-value is between 0.025 and
0.05, and 0.1 otherwise. The p-hacking probabilities are 0.6,
0.3 and 0.1, for the threshold 0.025, 0.05 and 1, respectively.
In addition to the classical uncorrected model for meta-

analysis, for each parameter combination we estimate the
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TABLE 1 No publication bias, no p-hacking

True values p-hacking model Publication bias model Classical model
𝝉 𝜽𝟎 𝒏 𝜽𝟎 �̂� 𝜽𝟎 �̂� 𝜽𝟎 �̂�

0.1 0 5 −0.02 (0.07) 0.17 (0.06) −0.05 (0.07) 0.13 (0.05) 0.00 (0.08) 0.18 (0.07)
30 −0.02 (0.03) 0.08 (0.03) −0.02 (0.03) 0.07 (0.03) 0.00 (0.03) 0.10 (0.03)
100 −0.01 (0.02) 0.08 (0.03) −0.02 (0.02) 0.07 (0.03) 0.00 (0.02) 0.10 (0.03)

0.2 5 0.12 (0.09) 0.21 (0.08) 0.09 (0.06) 0.17 (0.07) 0.20 (0.08) 0.19 (0.08)
30 0.16 (0.03) 0.09 (0.04) 0.15 (0.03) 0.09 (0.04) 0.20 (0.03) 0.10 (0.04)
100 0.18 (0.02) 0.09 (0.03) 0.17 (0.02) 0.09 (0.03) 0.20 (0.02) 0.10 (0.02)

0.8 5 0.78 (0.09) 0.20 (0.10) 0.64 (0.14) 0.32 (0.13) 0.79 (0.08) 0.19 (0.08)
30 0.80 (0.03) 0.10 (0.04) 0.80 (0.03) 0.11 (0.04) 0.80 (0.03) 0.10 (0.04)
100 0.80 (0.02) 0.10 (0.03) 0.80 (0.02) 0.10 (0.03) 0.80 (0.02) 0.10 (0.02)

0.5 0 5 −0.05 (0.22) 0.57 (0.21) −0.22 (0.19) 0.51 (0.20) −0.01 (0.22) 0.59 (0.20)
30 −0.03 (0.09) 0.52 (0.07) −0.13 (0.10) 0.48 (0.07) 0.00 (0.09) 0.52 (0.07)
100 −0.02 (0.05) 0.50 (0.04) −0.08 (0.05) 0.48 (0.04) 0.00 (0.05) 0.50 (0.04)

0.2 5 0.14 (0.22) 0.59 (0.20) −0.08 (0.19) 0.56 (0.20) 0.19 (0.22) 0.59 (0.20)
30 0.17 (0.09) 0.52 (0.07) 0.05 (0.09) 0.50 (0.08) 0.20 (0.09) 0.51 (0.07)
100 0.18 (0.05) 0.51 (0.04) 0.11 (0.06) 0.50 (0.04) 0.20 (0.05) 0.50 (0.04)

0.8 5 0.71 (0.24) 0.63 (0.21) 0.37 (0.25) 0.75 (0.21) 0.74 (0.23) 0.59 (0.21)
30 0.77 (0.10) 0.53 (0.07) 0.59 (0.13) 0.60 (0.08) 0.79 (0.09) 0.51 (0.07)
100 0.79 (0.05) 0.52 (0.04) 0.69 (0.07) 0.56 (0.05) 0.80 (0.05) 0.51 (0.04)

Note: Posterior means and, between brackets, the corresponding standard deviations for 𝜃0 and 𝜏 from the p-hacking and publication bias models when the data
are simulated from the normal random effects meta-analysis model.

p-hacking model and the publication bias model using
Bayesian methods. While a frequentist approach is in the-
ory possible, it may lead to poor results if ad hoc penal-
izations or bias corrections are not implemented. See
McShane et al. (2016, Appendix, 1) and Moss (2020a) for
further details. All models have normal likelihoods and
normal effect size distributions. We use one-sided signif-
icance cutoffs at 0.025 and 0.05 for both the publication
bias and the p-hacking models. We use standard normal
priors for 𝜃0, 𝜃0 ∼ 𝑁(0, 1), a standard half-normal prior for
𝜏, that is 𝜏 = |𝜏⋆|, with 𝜏⋆ ∼ 𝑁(0, 1), and, in the p-hacking
model, a uniform Dirichlet prior for 𝜋, 𝜋 ∼ Dir(1). For the
𝜌 in the publication biasmodel, we use a uniformDirichlet
that constrains 𝜌1 ≥ … ≥ 𝜌𝐽 . That is, the publication prob-
ability is a decreasing function of the p-value.
All of these priors are reasonable. A standard normal

for 𝜃0 is reasonable because we know that 𝜃0 has a small
magnitude in prettymuch anymeta-analysis, andmost are
clustered around 0. A half-normal prior for 𝜏 is also rea-
sonable, as 𝜏 is much more likely to be very small than
very big. The priors for 𝜌 and 𝜋 are harder to reason about,
but a uniform Dirichlet seems like a natural and neu-
tral choice. These are the standard prior of the 𝚁 package
𝚙𝚞𝚋𝚕𝚒𝚙𝚑𝚊 (Moss, 2020b), which we used for all computa-
tions. 𝚙𝚞𝚋𝚕𝚒𝚙𝚑𝚊 uses 𝚂𝚃𝙰𝙽 (Carpenter et al., 2017) to esti-
mate the models, and each estimation uses eight chains.
As suggested by a reviewer, we also tried different priors

(uniform on [0,3] and the inverse gamma with shape = 2
and scale = 0.5) for 𝜏, because this quantity is critical in
Bayesian meta-analyses (see, e.g., Turner et al., 2012). The
results inWebAppendix F show that ourmodels are robust
to this choice.
The number of simulations is𝑁 = 1000 for each param-

eter combination. The code used to run the simulations is
available in the Online Supporting Information and in an
OSF repository (https://osf.io/tx8qn/).

3.2 Results

No publication bias, no p-hacking
The results under this scenario are reported in Table 1.
When the amount of heterogeneity is reasonable (𝜏 =

0.1) both the p-hacking and the publication bias perform
well. The publication bias model performs slightly worse
than the p-hacking model when the mean effect size is
large (𝜃0 = 0.8) and the number of studies small (𝑛 =

5), but it catches up as 𝑛 increases. With 𝜏 = 0.5, the p-
hacking model outperforms the publication bias model,
with the latter tending to underestimate the mean effect.
While increasing 𝑛 alleviates the problem, there is still
a substantial underestimation of 𝜃0 even in the case of
𝑛 = 100. In contrast, both models seem to estimate 𝜏

pretty well. Obviously, without any publication bias or

https://osf.io/tx8qn/
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TABLE 2 Publication bias

True values p-hacking model Publication bias model Classical model
𝝉 𝜽𝟎 𝒏 𝜽𝟎 �̂� 𝜽𝟎 �̂� 𝜽𝟎 �̂�

0.1 0 5 −0.01 (0.11) 0.24 (0.08) 0.00 (0.08) 0.18 (0.07) 0.13 (0.10) 0.24 (0.09)
30 0.02 (0.05) 0.12 (0.04) 0.01 (0.04) 0.10 (0.03) 0.14 (0.04) 0.16 (0.04)
100 0.02 (0.03) 0.12 (0.03) 0.00 (0.03) 0.10 (0.02) 0.13 (0.02) 0.16 (0.02)

0.2 5 0.14 (0.14) 0.28 (0.09) 0.11 (0.07) 0.21 (0.07) 0.33 (0.07) 0.15 (0.06)
30 0.22 (0.05) 0.12 (0.05) 0.19 (0.06) 0.10 (0.04) 0.33 (0.03) 0.06 (0.03)
100 0.24 (0.03) 0.10 (0.04) 0.20 (0.04) 0.09 (0.03) 0.33 (0.01) 0.04 (0.02)

0.8 5 0.78 (0.09) 0.20 (0.08) 0.63 (0.15) 0.32 (0.13) 0.79 (0.08) 0.19 (0.07)
30 0.80 (0.03) 0.10 (0.04) 0.80 (0.03) 0.10 (0.04) 0.80 (0.03) 0.10 (0.04)
100 0.80 (0.02) 0.10 (0.02) 0.80 (0.02) 0.10 (0.02) 0.80 (0.02) 0.09 (0.02)

0.5 0 5 0.32 (0.21) 0.54 (0.21) 0.04 (0.22) 0.56 (0.19) 0.41 (0.18) 0.47 (0.23)
30 0.36 (0.09) 0.47 (0.08) 0.01 (0.17) 0.50 (0.08) 0.43 (0.08) 0.42 (0.09)
100 0.36 (0.05) 0.47 (0.05) 0.00 (0.11) 0.50 (0.05) 0.43 (0.04) 0.42 (0.05)

0.2 5 0.46 (0.20) 0.52 (0.20) 0.16 (0.20) 0.58 (0.19) 0.54 (0.17) 0.44 (0.21)
30 0.51 (0.09) 0.43 (0.08) 0.18 (0.17) 0.51 (0.09) 0.56 (0.07) 0.38 (0.08)
100 0.51 (0.05) 0.43 (0.05) 0.18 (0.12) 0.50 (0.05) 0.56 (0.04) 0.38 (0.04)

0.8 0.84 (0.20) 0.54 (0.20) 0.49 (0.25) 0.71 (0.21) 0.87 (0.18) 0.50 (0.19)
30 0.91 (0.08) 0.45 (0.07) 0.67 (0.19) 0.57 (0.12) 0.93 (0.08) 0.42 (0.06)
100 0.91 (0.05) 0.44 (0.04) 0.75 (0.11) 0.53 (0.07) 0.92 (0.04) 0.41 (0.04)

Note: Posteriormeans and, between brackets, the corresponding standard deviations for 𝜃0 and 𝜏 from the p-hacking and publication biasmodels when the data are
simulated from the publication bias model with cutoffs at 0.025 and 0.05, with selection probabilities equal to 1, 0.7 and 0.1 in the intervals [0, 0.025), [0.025, 0.05)
and [0.5, 1].

p-hacking, the classical uncorrected model gives good
results.

Publication bias
Overall, the publication bias model outperforms the p-
hackingmodelwhen the data are generated from the publi-
cation biasmodel, but not bymuch (see Table 2).When 𝜏 =

0.5, the p-hacking model tends to overestimates 𝜃0 while
the publication bias model tends to underestimate it. The
overestimation of the p-hacking model is most extreme
when 𝜃0 = 0.2, but not as strong as the classical uncor-
rected model. When 𝜏 = 0.1, the publication bias and p-
hacking models produce almost indistinguishable results,
outperforming the uncorrected model (especially if the
effect 𝜃0 is null or small). Just as in the p-hacking scenario,
both models estimate 𝜏 reasonably well.

p-hacking
The simulation results for the p-hacking model are in
Table 3. As before, the largest differences are in the most
difficult case of 𝜏 = 0.5, while the twomodels tend to agree
in themore realistic case of 𝜏 = 0.1.When 𝜏 = 0.5, the pub-
lication bias model severely underestimates 𝜃0, even get-
ting the sign wrong in some instances. This should not
come as a surprise given the interpretation of 𝜃0 in the pub-
lication bias model, but shows that we should be cautious

in interpreting the 𝜃0 estimates. In basically all cases, the
p-hackingmodel outperforms the uncorrectedmodel, with
the latter surprisingly working better than the publication
bias model when the effect size 𝜃0 is large (0.8).

4 EXAMPLES

In this section, we apply the models on the two meta-
analyses of Cuddy et al. (2018) and Anderson et al. (2010).
As in the simulation study, we use normal models for each
effect size with one-sided significance cutoff at 0.025 and
0.05 for both models. We use the same priors as we did
in the simulation study. To compare the fit of the models,
we use the leave-one-out cross-validation information
criterion (LOOIC) (Vehtari et al., 2017), calculated using
the R package 𝚕𝚘𝚘 (Vehtari et al., 2018). LOOIC equals
−2 ⋅ elpdloo, where elpdloo is a leave-one-out cross
validation-based estimate of elpd. In turn, elpd is the
expected log pointwise predictive density for a new data
set. Just as the AIC, smaller values indicate better model
fit. As for the simulation study, the analyses have been
done with the 𝚁 package 𝚙𝚞𝚋𝚕𝚒𝚙𝚑𝚊 (Moss, 2020b), which
in turn uses STAN (Carpenter et al., 2017). Each model
has been estimated with eight chains. The code used to
run the examples can be found in the Online Supporting
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TABLE 3 p-hacking

True values p-hacking model Publication bias model Classical model
𝝉 𝜽𝟎 𝒏 𝜽𝟎 �̂� 𝜽𝟎 �̂� 𝜽𝟎 �̂�

0.1 0 5 −0.06 (0.15) 0.28 (0.06) 0.05 (0.06) 0.17 (0.05) 0.29 (0.06) 0.15 (0.08)
30 −0.01 (0.07) 0.13 (0.05) 0.02 (0.06) 0.07 (0.03) 0.29 (0.02) 0.05 (0.03)
100 0.00 (0.04) 0.10 (0.04) −0.01 (0.04) 0.05 (0.02) 0.28 (0.01) 0.03 (0.02)

0.2 5 0.12 (0.14) 0.28 (0.09) 0.10 (0.06) 0.20 (0.06) 0.35 (0.05) 0.13 (0.05)
30 0.19 (0.06) 0.12 (0.05) 0.16 (0.06) 0.09 (0.04) 0.34 (0.02) 0.04 (0.02)
100 0.20 (0.03) 0.09 (0.04) 0.16 (0.05) 0.08 (0.03) 0.34 (0.01) 0.02 (0.01)

0.8 5 0.78 (0.09) 0.20 (0.09) 0.63 (0.15) 0.32 (0.13) 0.79 (0.08) 0.19 (0.07)
30 0.80 (0.03) 0.10 (0.04) 0.80 (0.03) 0.10 (0.04) 0.80 (0.03) 0.09 (0.04)
100 0.80 (0.02) 0.09 (0.03) 0.80 (0.02) 0.10 (0.03) 0.80 (0.02) 0.09 (0.02)

0.5 0 5 0.07 (0.22) 0.48 (0.19) 0.00 (0.15) 0.37 (0.20) 0.36 (0.12) 0.29 (0.20)
30 0.07 (0.10) 0.43 (0.08) −0.25 (0.20) 0.35 (0.10) 0.36 (0.05) 0.24 (0.10)
100 0.06 (0.05) 0.44 (0.04) −0.36 (0.14) 0.37 (0.06) 0.37 (0.03) 0.25 (0.05)

0.2 5 0.20 (0.22) 0.52 (0.20) 0.04 (0.14) 0.45 (0.21) 0.43 (0.13) 0.33 (0.19)
30 0.24 (0.10) 0.47 (0.08) −0.19 (0.20) 0.46 (0.10) 0.45 (0.06) 0.29 (0.08)
100 0.23 (0.05) 0.47 (0.04) −0.29 (0.16) 0.47 (0.06) 0.45 (0.03) 0.28 (0.04)

0.8 5 0.73 (0.22) 0.61 (0.20) 0.36 (0.24) 0.74 (0.21) 0.80 (0.18) 0.52 (0.18)
30 0.80 (0.10) 0.50 (0.08) 0.39 (0.24) 0.66 (0.12) 0.85 (0.08) 0.43 (0.06)
100 0.80 (0.05) 0.50 (0.04) 0.43 (0.19) 0.64 (0.09) 0.85 (0.04) 0.43 (0.03)

Note: Posteriormeans and standard deviations from the p-hacking and publication biasmodels when the data are simulated from the p-hackingmodel with cutoffs
at 0.025 and 0.05, with p-hacking probabilities equal to 0.6, 0.3 and 0.1 for 𝛼 equal to 0.025, 0.05 and 1

Information and in an OSF repository (https://osf.io/
tx8qn/).

4.1 Power posing

Cuddy et al. (2018) conducted a meta-analysis of the effect
of power posing, an alleged phenomenon where adopt-
ing expansive postures has positive psychological feedback
effects. Their meta-analysis is not conventional, but a p-
curve analysis (Simonsohn et al., 2014a). A p-curve analysis
is not based on estimated effect sizes and standard errors,
but directly on p-values. The data from Cuddy et al. (2018)
can be accessed via the Open Science Framework (https:
//osf.io/pfh6r/). Here, we only consider studies with out-
come ‘mean difference’, design ‘2 cell’, and test statistic that
is either 𝐹 or 𝑡. The 𝐹-statistics are all with 1 denominator
degree of freedom, and the root of these are distributed as
the absolute value of a 𝑡-distributed variable. The 𝑡-values
and the roots of the 𝐹-statistics are converted to standard-
ized mean differences by using 𝑑 = 𝑡

√
2∕𝜈, where 𝜈 is the

degrees of freedom for the 𝑡-test. The standardized mean
differences are to the left in Figure 1. Note the outlier 𝑥12 =

1.72. As it has a large effect on all the models, we analyse
the data both with and without 𝑥12.
The estimates of the p-hacking model, the publication

bias model and the uncorrected meta-analysis models are

in Table 4. According to the LOOIC, the corrected mod-
els account much better for the data than the uncorrected
model. Both the p-hacking model and the publication bias
models estimate larger 𝜏s and smaller 𝜃0s than the classi-
cal model, with the publication bias model estimating the
surprising 𝜃0 ≈ 0. But recall the results of the simulation
study, where the publication bias model severely underes-
timates 𝜃0 when the p-hacking model is true.
The publication bias selection affects not only the

observed 𝑥𝑖s, but also the 𝜃𝑖s. As a consequence, the pos-
terior mean of the selected effect size distribution (this
equals 0.37, is not shown in the table, and equals the aver-
age of the posterior means for the 𝜃𝑖s) is much closer to
the uncorrected model’s estimate than the p-hacked esti-
mate. This effect can be most easily understood by looking
at a specific 𝜃, for example, the 𝜃2 reported in the right plot
of Figure 1, where 𝑥2 = 0.62. In this case, the publication
bias posterior for is close to the uncorrected posterior even
though 𝜃0 ≈ 0. On the other hand, the p-hacking model
pushes 0.62 down to 0.17, towards the meta-analytic mean
of 0.18.
Finally, the surprisingly low value for 𝜃0 obtained with

the publication bias model can be a side effect of the pres-
ence of the outlier 𝑥12 = 1.72. Its presence on the right
tail of an hypothetical true effect size distribution implies
unobserved low and negative effects not reported due to
publication bias. When the outlier is removed from the

https://osf.io/tx8qn/
https://osf.io/tx8qn/
https://osf.io/pfh6r/
https://osf.io/pfh6r/
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F IGURE 1 (Left) Effect sizes for the power posing example. The dotted black line is 1.96∕sd and the dashed black line is 1.64∕sd. The
ticks on the right-hand side are the meta-analytic means: 0.48 is from the uncorrected model, 0.17 is the mean of the selected effect size
distribution under the p-hacking model, while −0.06 is the mean under the publication bias model. (Right) Posterior densities for 𝜃2 in the
power posing example. The dashed density belongs to the p-hacking model, the dotted density to the publication bias model and the solid
density to the uncorrected model. The point 𝑥2 = 0.62 is marked for reference

TABLE 4 Power posing example

All studies
LOOIC 𝜽𝟎 𝝉 𝝅𝟏∕𝝆𝟏 𝝅𝟐∕𝝆𝟐

Uncorrected 16 (18) 0.48 (0.07) 0.27 (0.06)
p-hacking −18 (14) 0.18 (0.12) 0.45 (0.10) 0.62 (0.15) 0.23 (0.14)
Publication bias −5.1 (22) −0.06 (0.23) 0.37 (0.09) 0.39 (0.22) 0.03 (0.03)
Without outlier

LOOIC 𝜽𝟎 𝝉 𝝅𝟏∕𝝆𝟏 𝝅𝟐∕𝝆𝟐

Uncorrected −7.1 (5.7) 0.39 (0.04) 0.09 (0.05)
p-hacking −38 (10) 0.18 (0.07) 0.09 (0.07) 0.62 (0.15) 0.24 (0.15)
Publication bias −35 (11) 0.16 (0.09) 0.08 (0.06) 0.26 (0.17) 0.03 (0.03)

Note: Posterior means for LOOICs and parameters (mean effect 𝜃, standard deviation 𝜏, probabilities of p-hacking 𝜋/probabilities of being published 𝜌) of the
p-hacking, publication bias and classical meta-analysis (uncorrected) model estimated on the data by Cuddy et al. (2018). The results in the top table are obtained
with all studies, those in the bottom without the outlier 𝑥12. Posterior standard deviations are reported between brackets

analysis, the estimate of 𝜃0 goes up and agreeswith the esti-
mate from the p-hacking model, which does not change.
Once the outlier is removed, the fit of the publication bias
model increases tremendously, reaching a level close to
that of the p-hacking model. Moreover, the estimates of
𝜏 are strongly affected by the removal of 𝑥12. In particu-
lar, the estimate of 𝜏 decreases from 0.45 to 0.09 in the p-
hacking model.
In conclusion, the p-hacking and publication bias mod-

els suggest there is selection bias in these studies. Both
models have much better fit than the uncorrected one and
it is reasonable to accept their parameter estimates asmore
realistic. Nonetheless, both models agree on a value of 𝜃0

that is likely to be different from 0. The results of Table 4

supports Cuddy et al. (2018)’s conclusion that there is evi-
dence for some positive effect of power posing. The p-
hacking model does not suffer the presence of an outlier,
and, in contrast to the publication bias model, provides
similar results with and without 𝑥12 in the data.

4.2 Violent video games

Anderson et al. (2010) conducted a large meta-analysis
of the effects of violent video games on seven negative
outcomes such as aggressive behaviour and aggressive
cognition. As part of their analysis, they classified some
experiments as best practice experiments (formore details,
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F IGURE 2 Violent video games example with outcome variable aggressive behaviour. (Top-left) Effect sizes. The dotted black line is
1.96∕sd and the dashed black line is 1.64∕sd. The ticks on the right-hand side are the uncorrected meta-analytical means for each group: 0.29
for the best practices group, 0.08 for the rest. The outlier 𝑥 = 1.33 has been removed from the plot. (Top-right) Posterior densities for 𝜃0 with
all experiments included. The dashed density belongs to the p-hacking model, the dotted to the publication bias model and the solid to the
uncorrected model. (Bottom-left) Posterior densities for 𝜃0 from the publication bias model. The solid curve is the model with all experiments,
the dotted curve the model with the best practice experiments and the dashed line the model without the best experiments. The posteriors for
the p-hacking model are similar to this one. (Bottom-right) Posterior densities for 𝜃0 (solid line: all experiments; dotted line: best practice
experiments only and dashed line without the best experiments) from the uncorrected meta-analysis model

see tab. 2 of Anderson et al., 2010). Suspecting publication
bias, Hilgard et al. (2017) reanalysed the data using an array
of tools to detect and adjust for publication bias. For the
outcome variable aggressive cognition, Hilgard et al. (2017)
noted that ‘Application of best-practices criteria seems to
emphasize statistical significance, and a knot of experi-
ments just reach statistical significance’. The data can be
found on the web (Hilgard, 2017) and are visualized to the
top left in Figure 2. In the plot, the best practice experi-
ments are represented by solid circles, all other experi-
ments by hollow squares. An outlier 𝑥 = 1.33 has been
removed from the data set, and excluded from our anal-

yses. Its removal substantially improves the fit for all the
models.
In this example, we fit the three models (p-hacking,

publication bias and uncorrected models) to three data
subsets (all experiments, only best practice experiments,
without best practice experiments). The outcome variable
is aggressive behaviour. Our aim is to answer the follow-
ing: (1) What are the parameter estimates, in each subset,
for each model? (2) Which model has the best fit? (3) Do
we have a reason to believe the best practice experiments
are drawn from a different underlying distribution than
the other experiments, as Hilgard et al. (2017) and the top
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TABLE 5 Violent video games example

All experiments
LOOIC 𝜽𝟎 𝝉 𝝅𝟏∕𝝆𝟏 𝝅𝟐∕𝝆𝟐

Uncorrected −38 (11) 0.18 (0.02) 0.04 (0.03)
p-hacking −48 (13) 0.09 (0.04) 0.05 (0.04) 0.25 (0.11) 0.23 (0.11)
Publication bias −54 (13) 0.08 (0.03) 0.03 (0.02) 0.44 (0.18) 0.13 (0.07)
Only best practice experiments

LOOIC 𝜽𝟎 𝝉 𝝅𝟏∕𝝆𝟏 𝝅𝟐∕𝝆𝟐

Uncorrected −42 (6.2) 0.22 (0.02) 0.03 (0.02)
p-hacking −59 (12) 0.10 (0.05) 0.06 (0.04) 0.37 (0.17) 0.41 (0.17)
Publication bias −61 (11) 0.11 (0.04) 0.03 (0.02) 0.46 (0.21) 0.06 (0.05)
Without best practice experiments

LOOIC 𝜽𝟎 𝝉 𝝅𝟏∕𝝆𝟏 𝝅𝟐∕𝝆𝟐

Uncorrected −7.4 (5.7) 0.06 (0.04) 0.08 (0.05)
p-hacking −6.2 (5.1) 0.01 (0.05) 0.07 (0.05) 0.10 (0.07) 0.11 (0.08)
Publication bias −7.7 (5) 0.02 (0.04) 0.06 (0.04) 0.61 (0.23) 0.35 (0.19)

Note: Posterior means for LOOICs and parameters (mean effect 𝜃, standard deviation 𝜏, probabilities of p-hacking 𝜋/probabilities of being published 𝜌) of the
p-hacking, publication bias and classical meta-analysis (uncorrected) model estimated on the aggressive behaviour data from Anderson et al. (2010). Posterior
standard deviations are reported between brackets.

left plot of Figure 2 suggest? (4) Is there a large difference
between the posterior for 𝜃0 and the mean posterior for
the 𝜃𝑖s, as we saw in the previous example?
The first three questions can be answered by looking at

Table 5. The estimates of 𝜃0 are approximately the same
for the publication bias and p-hackingmodels, and roughly
half of the uncorrected estimate in all cases. In particular,
when all experiments or only the best experiments are con-
sidered, there is a noticeable difference. In these two cases,
the LOOICs suggest that some p-hacking or publication
bias is present, as they are smaller than the LOOIC for the
uncorrected models. Although the publication bias model
seems towork slightly better than the p-hackingmodel, we
can state that the two models agree and we have little rea-
son to prefer one to the other. Basically, we can interpret
this as converging evidence that the parameter estimates
obtained with these twomodels for 𝜃0 and 𝜏 are in the ball-
park of their true values.
Interestingly, whenwe exclude the experiments not con-

sidered best practice by Anderson et al. (2010), the differ-
ences between the estimates provided by the corrected and
uncorrectedmodels reduce and the LOOICs are almost the
same. The question is if the differences between best prac-
tice and non-best practice studies reflect a different under-
lying distribution or not. To answer this question, let us
take a look at the posterior densities for 𝜃0 when all exper-
iments are included, as reported in the top right plot of
Figure 2. In this case, the posterior distributions computed
with the p-hacking and publication biasmodels are similar
(dashed and dotted lines, respectively), which strengthens
the agreement seen in Table 5. There is no large difference
between the posterior for 𝜃0 and themean posterior for the

𝜃𝑖s as in the previous example. The answer to question (4)
is therefore no.
Back to question (3), we have good reasons to believe the

best practice experiments have been drawn fromadifferent
underlying distribution than the other experiments if there
is negligible overlap between the posteriors for the param-
eters 𝜃0. The uncorrected model supports this hypothesis
(bottom right plot of Figure 2), but the p-hacking and pub-
lication bias models to do not. See the bottom left plot of
Figure 2 for the posteriors for 𝜃0 in the publication bias
model (those obtained with the p-hackingmodel are indis-
tinguishable). In this case, the overlap between the poste-
riors for the different subsets is not negligible, and there
is no evidence against hypotheses of equal 𝜃0s in both
groups. The same conclusion can be reached from Table 5
by looking at the posterior standard deviations and poste-
rior means.

5 CONCLUDING REMARKS

In this paper, we studied two models to handle the
effect of p-hacking and publication bias. Although the
p-hacking model worked really well in the simulation
study, we have to admit that the p-hacking scenario
described in Section 2.4 is less plausible than the pub-
lication bias scenario of Section 2.3. The assumption of
Bob’s p-hacking omnipotence is strong. For while some
researchers are able p-hackers, most give up at some point.
Does truncation actually model p-hacking in the wild?
Analysing p-hacking is hard without serious simplifying
assumptions. The model we proposed is interpretable and
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implementable, and it appears to work well in practice, as
one can see in the examples of Section 4.
In this paper, we only considered normal densities, but

the theory holds more generally. A remaining concern is
identifiability, but we show in Web Appendix G that the
publication bias and the p-hacking models are identifiable
under weak conditions on 𝑓.
We are often interested in understanding andmodelling

the sources of heterogeneity in a meta-analysis (Thomp-
son, 1994). A way to do this is to let 𝜃𝑖 linearly depend on
covariates, in the meta-analysis context known as moder-
ators. If we extend the one-sided discrete models publica-
tion bias and p-hacking models to include covariates, we
will be able to estimate their effect while keeping the p-
hacking probability or the selection probability fixed, as
done by, for example, Vevea andHedges (1995) in the publi-
cation biasmodel. Another option is to allow the p-hacking
probability or the selection probability to depend on covari-
ates themselves. For instance, the difficulty of p-hacking
is likely to increase with 𝑛, the sample size of the study.
Similarly, the selection probability is also likely to be influ-
enced by 𝑛; for example, when 𝑛 is large, null-effects are
more publishable.
Although the common practice in meta-analysis studies

is to treat the standard deviations as nuisance parameter,
the actual tests usually contain an estimate of the standard
error and this can also influence the selection mechanism.
Further modifications to the models can be obtained by
allowing for this.
We saw in the simulations and in Example 4.1 that

the publication bias and the p-hacking models can give
remarkably different results even with similar priors and
the same cutoff vector. A way to react to this situation is
to choose the best-fitting model in terms of, for example,
LOOIC. To be safe, one can present the results of bothmod-
els and try to understand the differences between them, as
we did in the examples of Section 4. In the publication bias
model, it is especially important to be aware of the interpre-
tation of 𝜃0 as the mean of the underlying effect size distri-
bution, not the effect size distribution of the observed stud-
ies. Therefore, the best response to the question ‘Should
one use the p-hacking and publication biasmodel?’ is prob-
ably ‘Use both!’
Finally, it would be interesting tomodel publication bias

and p-hacking at the same time:

Bob p-hacks his research to a p-value drawn
from 𝜔 and sends it to Alice’s journal. Alice
accepts the paper with probability 𝑤(𝑢𝑖).
Every rejected study is lost.

In this scenario, the original density 𝜙(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) is

transformed twice: First by p-hacking, then by publication

bias. The resulting model is

𝑓(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
) ∝ 𝑤(𝑢𝑖)∫

[0,1]

𝜙𝛼(𝑥𝑖 ∣ 𝜃𝑖, 𝜎
2
𝑖
)𝑑𝜔(𝛼). (14)

This is a reasonable model, but its normalizing constant is
hard to calculate, even when 𝜔 is discrete and 𝑤 is a step
function. Additional work on this problem is required.
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