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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of Professor
Karsten Trulsen and Dr. Odin Gramstad.

One experimental work was conducted at the Hydrodynamics Laboratory at
University of Oslo, studying the wave kinematics of regular waves propagating
over a shoal. The experimental result was then compared with the numerical
simulation.

The thesis is a collection of three papers and one report, presented in
chronological order of writing. The papers are preceded by an introductory
chapter that relates them to each other and provides background information
and motivation for the work. I am the first author of all papers, and carried out
all of the numerical simulations and the analysis.

Acknowledgements

The research presented in this dissertation has been carried out over the past 3
years in the Mechanics section, Department of Mathematics, University of Oslo.
I am very grateful for the research opportunities offered by University of Oslo.

First and foremost, I deeply appreciate the support and guidance from my
supervisor Prof. Karsten Trulsen. I enjoyed our discussions on extreme wave
statistics and i am thankful for the continuous support.

I also would like to express my sincere gratitude to my co-supervisor Dr. Odin
Gramstad for the attentive guidance. I am really thankful for his willingness to
teach me nonlinear waves.

I greatly appreciate Olav for the assistance during my experimental work,
Terje and Lucy for the assistance to run my simulation in the computer cluster.
Many thanks go to my friends for their support during this research.

I am grateful to my family especially my brothers: Albert and Teguh for
their support. I am trully grateful to my late father, Suyanto Tan, and my
mother, Susanti Wijaya for their unconditional love, prayer and support. I thank
Yemima for her love, patience and support. Finally, I thank God for all the
blessings.

Christopher Lawrence
Oslo, November 2021

iii





List of Papers

Paper I

C. Lawrence, O. Gramstad, and K. Trulsen “Variational Boussinesq model for
kinematics calculation of surface gravity waves over bathymetry”. In: Wave
Motion 100 (2021), 102665. DOI: 10.1016/j.wavemoti.2020.102665.

Paper II

C. Lawrence, K. Trulsen, and O. Gramstad “Statistical properties of wave
kinematics in long-crested irregular waves propagating over non-uniform
bathymetry”. In: Physics of Fluid 33 (2021), 046601. DOI: 10.1063/5.0047643.

Paper III

C. Lawrence, K. Trulsen, and O. Gramstad “Extreme wave statistics of surface
elevation and velocity field of gravity waves over a two-dimensional bathymetry”.
To be submitted.

Paper IV

C. Lawrence “Embedded wave generation for surface gravity waves in a periodic
domain”. In preparation.

v

https://doi.org/10.1016/j.wavemoti.2020.102665
https://doi.org/10.1063/5.0047643




Contents

Preface iii

List of Papers v

Contents vii

List of Figures ix

1 Introduction 1
1.1 Numerical method and validation . . . . . . . . . . . . . . 4
1.2 Present contributions . . . . . . . . . . . . . . . . . . . . . 11
1.3 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . 15

Papers 20

I Variational Boussinesq model for kinematics calculation of
surface gravity waves over bathymetry 21

II Statistical properties of wave kinematics in long-crested
irregular waves propagating over non-uniform bathymetry 39

III Extreme wave statistics of surface elevation and velocity
field of gravity waves over a two-dimensional bathymetry 55

IV Embedded wave generation for surface gravity waves in a
periodic domain 73

vii





List of Figures
1.1 The full time series of the Draupner wave, recorded at the

Draupner platform on January 1st, 1995 at 15.20 GMT. . . . . . 1
1.2 Linear superposition of independent wave components. Source:

Pierson et al. [1955] . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Layout of laboratory experiment of Trulsen with ultrasound probe

and ADV measurement. Figure is taken from Trulsen et al. [2020]. 3
1.4 Skewness and kurtosis of surface elevation (∗) and horizontal

velocity (+) from laboratory experiment by Trulsen et al. [2020]. 4
1.5 Sketch of computational domain with surface elevation η(x, t),

mean water depth h0 and bottom variation B(x). . . . . . . . . 5
1.6 Smooth functions χd for damping zones (solid line) and χnl for

spatial nonlinear adjustment (dashed line). . . . . . . . . . . . . 9
1.7 Sketch of laboratory experiment of run 1 from Trulsen et al. [2020]. 10
1.8 Correlation and variance quotient between simulation and experi-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Skewness and kurtosis of surface elevation from experiment (blue,

∗) and simulation (red, ∗). . . . . . . . . . . . . . . . . . . . . . 11
1.10 Surface elevation for the experiment (blue) and for the simulation

(red) before the shoal. . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11 Surface elevation for the experiment (blue) and for the simulation

(red) on top of the shoal. . . . . . . . . . . . . . . . . . . . . . . 13

ix





Chapter 1

Introduction
Ocean waves are fascinating to see but can be very dangerous. Freak ocean
waves, also known as rogue waves, are unexpected and unusually larger waves
than their surrounding. This phenomenon was introduced to the scientific
community by Draper [1964]. The first scientific evidence of rogue waves was
captured by a measuring instrument on January 1st 1995 in the North sea at
the Draupner platform. The instrument recorded a rogue wave with wave height
of 25.6 m where the significant wave height in the area was around 12 m. The
peak elevation above the still water level was 18.5 m. Figure 1.1 shows the 20
minutes record of the surface elevation from the Draupner platform. There is no
unique definition of rogue waves. The most common criteria are suggested by
Haver [2000]: within a 20 minutes time series,

H

Hs
> 2 and/or ηmax

Hs
> 1.25, (1.1)

the event is a possible rogue wave event. H is the distance from trough to crest,
ηmax is the distance from still water level to crest and Hs is the significant wave
height. From this criteria, the Draupner wave can be categorized as a rogue
wave event since its wave height is twice larger than the significant wave height.
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Figure 1.1: The full time series of the Draupner wave, recorded at the Draupner
platform on January 1st, 1995 at 15.20 GMT.

In the elementary model, ocean waves are modeled by linear superposition
of a large number of independent wave components. This concept is illustrated
in Figure 1.2 taken from Pierson et al. [1955]. By applying Central Limit
Theorem, the wave fields follow Gaussian distribution or known as Gaussian
sea. Rogue waves may occur within Gaussian seas, but such events are very
rare. For example, the Draupner platform was designed to survive a 1-in-10000
years wave with a predicted wave height of 20 m. In fact, an extremely rare
event with a wave height of 25.6 m was occurred and could give catastrophic
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1. Introduction

damage. Fortunately, there was no substantial damage and only minor damage
was reported. Since then, the rogue waves topic gained huge interest in the
scientific community.

Figure 1.2: Linear superposition of independent wave components. Source:
Pierson et al. [1955]

Rogue waves can be extremely dangerous for ships and offshore structures
since it can impact directly to the structures and cause severe damage. Extreme
weather has sunk hundreds of ships in the past decades and rogue waves are
believed to be the major cause. The recent catalogues by Didenkulova [2020]
compiled the occurrence of rogue waves reported in mass media and scientific
literature during 2011-2018. Previously, Didenkulova et al. [2006], Liu [2007]
and Nikolkina and Didenkulova [2011] also presented a collection of rogue wave
events. Apparently, rogue waves are not very rare and their probability of
occurrence can be higher under some circumstances. Several possible physical
mechanisms of rogue wave phenomenon are discussed in the review by Kharif
and Pelinovsky [2003] and annual review by Dysthe et al. [2008]. Book by Kharif
et al. [2008] covered study of rogue waves in the ocean by using fully nonlinear
hydrodynamic numerical models and included the analysis of real rogue wave
events.

Nonlinearity can modify the wave statistics that deviate from Gaussian since
the wave components are not independent hence the Central Limit Theorem is
invalid. The simplest indicators for deviation from Gaussian are the skewness
and the kurtosis. For the Gaussian sea, the skewness and the kurtosis are 0 and
3, respectively. A slight deviation from Gaussian statistics was noticed in the
second-order Stokes wave in deep water by Tayfun [1980].

In higher-order theory, modulational instability of nonlinear water waves is
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one of the mechanisms for rogue wave occurrence. This instability is also known
as Benjamin-Feir (BF) instability since Benjamin and Feir [1967] discovered the
instability of Stokes waves on deep water in the laboratory wave tank. Alber
[1978] showed that the BF instability is more pronounced in a narrow band
wave field. When BF instability is present, deviation from Gaussian statistics is
stronger which implies the population of rogue waves increases. For short-crested
waves, Gramstad and Trulsen [2007] showed the effect of BF instability is reduced
as the directionality increases.

Laboratory wave tank helps to understand better the theory of water waves.
Following the instability by Benjamin and Feir [1967], the effect of modulational
instability was pronounced in the experiment of bichromatic wave train in long
wave tank by Stansberg [1995]. Initially, the linear theory and the standard
Nonlinear Schrodinger Equation are unable to predict the wave evolution correctly
but Trulsen and Stansberg [2001] modified the Nonlinear Schrodinger Equation to
improve the model that can predicts both the evolution of individual wave crests
and the modulation of the envelope. Toffoli et al. [2013] showed experimentally
that an opposite current may affect the wave evolution to become modulationally
unstable. Guyenne [2017] found numerically that co-propagating current has a
stabilizing effect while a counter-propagating current promotes wave growth.

The field measurement of the Draupner wave attracted the scientific
community to analyze and reproduce it in the laboratory experiment. Recreation
of the Draupner wave in a wave tank has been made by Clauss and Klein [2011]
in 1D propagation and later by McAllister et al. [2019] in multi-directional
propagation.

Trulsen et al. [2012] showed laboratory evidence of rogue waves provoked
by a sloping bottom. For relatively long unidirectional waves propagating over
a sloping bottom, from deeper to shallower water, non-Gaussian statistics are
detected with a local maximum of skewness and kurtosis of surface elevation near
the edge of the shallower side of the slope. Numerical simulations reported by
Sergeeva et al. [2011], Gramstad et al. [2013], Viotti and Dias [2014] confirmed
the experimental results. However, Zeng and Trulsen [2012] did not find the
same peak of skewness and kurtosis of surface elevation on the shallower side
of the slope because their wave field belongs to the deeper regime and also the
bottom slope is long and mild.

Figure 1.3: Layout of laboratory experiment of Trulsen with ultrasound probe
and ADV measurement. Figure is taken from Trulsen et al. [2020].

Rogue waves not only occur in water waves, but also in other physical
science such as optics. Extensive review of rogue waves in water waves and
optics can be found in Dudley et al. [2019]. In oceanography, rogue waves are
mostly connected with the surface elevation, but they actually exist in the other
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1. Introduction

quantities, for example velocity field. Trulsen et al. [2020] reported laboratory
experiments of long-crested irregular waves propagating over a shoal (see Figure
1.3). They found a deviation from Gaussian statistics for both surface elevation
and horizontal velocity field. Furthermore, the kurtosis of surface elevation and
horizontal velocity is different. The peak kurtosis of surface velocity was found
on top of the shoal but the peak kurtosis of horizontal velocity was located
around the down slope of the shoal. Figure 1.4 shows the skewness and the
kurtosis of surface elevation and horizontal velocity.
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Figure 1.4: Skewness and kurtosis of surface elevation (∗) and horizontal velocity
(+) from laboratory experiment by Trulsen et al. [2020].

In the design of ships and offshore structures, estimating the wave-induced
forces on the structures are essential. Morison et al. [1950] proposed a formula
to estimate force on a body in an oscillatory flow, this formula has been widely
used to estimate the wave loads in the design of offshore structures and known
as the Morison equation. Horizontal velocity is involved directly in the Morison
equation. High kurtosis in horizontal velocity implies higher probability of
rogue wave occurrence in horizontal velocity. Hence, unexpected and unusually
large wave loads may occur frequently. New findings from Trulsen et al. [2020]
suggested that the kurtosis of surface elevation and horizontal velocity can have
local maximum at different locations. It means that even though the surface
elevation is strongly non-Gaussian but the horizontal velocity can be Gaussian
and vice versa. The possibility to have high kurtosis in the horizontal velocity
also suggests the best location of the offshore structures.

From these recent experiments, it is relevant to confirm the results by
numerical simulation and extend the study for different bottom topography
and wave fields. Accurate and reliable numerical simulation for nonlinear wave
propagation over non-uniform bottom including the wave kinematics calculation
is necessary.

1.1 Numerical method and validation

In this dissertation, nonlinear wave propagation model of High Order Spectral
Method has been extensively used. The model was programmed carefully over
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Numerical method and validation

the years with validation cases. Brief summary of the method is presented in
the following.

1.1.1 High Order Spectral Method

A 2D fluid domain, periodic in horizontal direction with length L and a Cartesian
coordinate system is considered. Let z = η(x, t) denote the free surface elevation
with z = 0 is the still water level and z = −h0 + B(x) the bottom topography
where h0 is the mean water depth and B(x) is the bottom variation. Figure 1.5
shows the sketch of computational domain.

Figure 1.5: Sketch of computational domain with surface elevation η(x, t), mean
water depth h0 and bottom variation B(x).

With the assumption of irrotational flow and incompressible fluid, the velocity
potential Φ satisfies the Laplace equation ∇·∇ϕ = 0. As pointed out in Zakharov
[1968], the dynamic equations for inviscid irrotational nonlinear water waves
satisfy Hamiltonian equations and can be written in terms of surface elevation
η(x, t) and surface potential ϕs = ϕ(x, z = η, t)

∂η

∂t
= W

(
1 + |∇η|2

)
− ∇ϕs · ∇η

∂ϕs

∂t
= −gη − 1

2 |∇ϕs|2 + 1
2W 2

(
1 + |∇η|2

) (1.2)

where g is the acceleration of gravity and W = ∂ϕ
∂z |z=η is the vertical velocity

at the surface. The surface vertical velocity W needs to be evaluated to solve
the system (1.2). An efficient pseudo spectral method to calculate the surface
vertical velocity W in terms of surface elevation η and surface potential ϕs was
initially introduced by Dommermuth and Yue [1987] and West et al. [1987] for
flat bottom, and has been known as High Order Spectral Method (HOSM). The
extension of HOSM to include the bottom variation is discussed comprehensively
in Gouin et al. [2016, 2017]. A brief summary of the High Order Spectral Method
for varying bottom is presented in the following.

5



1. Introduction

The velocity potential ϕ(x, z, t) and the surface vertical velocity W (x, t) are
expressed as a truncated power series

ϕ(x, z, t) =
M∑

m=1
ϕ(m)(x, z, t)

W (x, t) =
M∑

m=1
W (m)(x, t)

(1.3)

where m denotes the nonlinear order of ϕ(m), W (m) and M is the nonlinear order
of the method which can be freely chosen. Then, using Taylor expansion around
still water level z = 0 on ϕ(m) and W (m) gives

ϕ(m)(x, t) =
m−1∑
n=0

ηn

n!
∂nϕ(m)

∂zn
(x, z = 0, t),

W (m)(x, t) =
m−1∑
n=0

ηn

n!
∂n+1ϕ(m)

∂zn+1 (x, z = 0, t).
(1.4)

From Equation (1.3) and (1.4), the surface potential ϕs can be expressed as

ϕs(x, t) = ϕ(x, z = η, t) =
M∑

m=1

m−1∑
n=0

ηn

n!
∂nϕ(m−n)

∂zn
(x, z = 0, t). (1.5)

Rewrite the left hand side and right hand side of Equation (1.5) according to
the same order gives a triangular system:

m = 1, ϕs = ϕ(1)

m = 2, 0 = η
∂ϕ(1)

∂z
+ ϕ(2)

m = 3, 0 = η2

2!
∂2ϕ(1)

∂z2 + η
∂ϕ(2)

∂z
+ ϕ(3)

m = 4, 0 = η3

3!
∂3ϕ(1)

∂z3 + η2

2!
∂2ϕ(2)

∂z2 + η
∂ϕ(3)

∂z
+ ϕ(4)

m = M, 0 =
M−1∑
n=0

ηn

n!
∂nϕ(M−n)

∂zn
.

(1.6)

Rearrange Equation (1.6) gives the velocity potential solution at z = 0 for each
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Numerical method and validation

order explicitly:

ϕ(1) = ϕs

ϕ(2) = −η
∂ϕ(1)

∂z

ϕ(3) = −η2

2!
∂2ϕ(1)

∂z2 − η
∂ϕ(2)

∂z

ϕ(4) = −η3

3!
∂3ϕ(1)

∂z3 − η2

2!
∂2ϕ(2)

∂z2 − η
∂ϕ(3)

∂z

ϕ(m) = −
m−1∑
n=1

ηn

n!
∂nϕ(m−n)

∂zn
, for m > 1.

(1.7)

In the same way, the surface vertical velocity for each order W (m) is given as

W (1) = ∂ϕ(1)

∂z

W (2) = η
∂2ϕ(1)

∂z2 + ∂ϕ(2)

∂z

W (3) = η2

2!
∂3ϕ(1)

∂z3 + η
∂2ϕ(2)

∂z2 + ∂ϕ(3)

∂z

W (4) = η3

3!
∂4ϕ(1)

∂z4 + η2

2!
∂3ϕ(2)

∂z3 + η
∂2ϕ(3)

∂z2 + ∂ϕ(4)

∂z

W (m) =
m−1∑
n=0

ηn

n!
∂n+1ϕ(m−n)

∂zn+1 .

(1.8)

Dommermuth and Yue [1987] approximate the surface vertical velocity in the
dynamic equations (1.2) with

W
(

1 + |∇η|2
)

≈
M∑

m=1

[
W (m) (

1 + |∇η|2
)]

W 2
(

1 + |∇η|2
)

≈
M∑

m=1

[(
W (m)

)2 (
1 + |∇η|2

)]
.

(1.9)

Meanwhile, West et al. [1987] approximate these terms with consistent nonlinear
order,

W
(

1 + |∇η|2
)

≈ W (1) + W (2) +
M∑

m=3

(
W (m) + W (m−2) |∇η|2

)
W 2

(
1 + |∇η|2

)
≈

M∑
m=2

(
W 2)(m) +

M∑
m=4

(
W 2)(m−2) |∇η|2

(1.10)

with (
W 2)(m) =

m∑
n=1

WnWm−n. (1.11)
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1. Introduction

The latter method is preferred since it still maintain the Hamiltonian structure.
For clarity, the dynamic equations of High Order Spectral Method based on
West et al. [1987] up to fourth order are given as

∂η

∂t
= W (1) +

(
W (2) − ∇ϕs · ∇η

)
+

(
W (3) + W (1) |∇η|2

)
+

(
W (4) + W (2) |∇η|2

)
∂ϕs

∂t
= − gη +

(
−1

2 |∇ϕs|2 + W (1)W (1)

2

)
+

(
W (1)W (2)

)
+

(
W (2)W (2) + 2W (1)W (3)

2 + W (2)W (2)

2 |∇η|2
)

.

(1.12)

For varying bottom, the bottom boundary condition

∂ϕ

∂x

∂B
∂x

− ∂ϕ

∂z
= 0 at z = −h0 + B(x), (1.13)

needs to be satisfied. In order to satisfy the bottom boundary condition, an
additional velocity potential ϕB is introduced and expressed as a truncated
power series

ϕB =
M∑

m=1
ϕ

(m)
B and ϕ

(m)
B =

MB∑
l=1

ϕ
(m,l)
B (1.14)

where MB is the nonlinear order for bottom boundary condition which can be
different from M and can be freely chosen. Therefore, the velocity potential
ϕ(m) is expressed as the sum of two components

ϕ(m) = ϕ
(m)
0 + ϕ

(m)
B ,

ϕ
(m)
0 (x, z, t) =

∑
j

Aj(t)cosh kj(z + h0)
cosh kjh0

eikjx,

ϕ
(m)
B (x, z, t) =

∑
j

Bj(t) sinh kjz

cosh kjh0
eikjx,

(1.15)

where kj = (j − Nx

2 + 1)2π
L for j = 0, · · · , Nx − 1. Nx is the number of wave

components and it is chosen to be even number. Aj and Bj are the modal
amplitudes of ϕ

(m)
0 and ϕ

(m)
B , respectively. With velocity potential in Equation

(1.15) and bottom boundary condition in Equation (1.13), the modal amplitudes
Aj and Bj can be calculated by using Taylor expansion of the bottom boundary
condition around still water level z = 0 and truncate the series to order MB.
Once the modal amplitudes Aj and Bj have been known, the surface vertical
velocity is calculated through Equation (1.8).
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Figure 1.6: Smooth functions χd for damping zones (solid line) and χnl for
spatial nonlinear adjustment (dashed line).

1.1.2 Wave generation and damping zones

Pseudo spectral method requires the boundary condition to be periodic.
Therefore, the wave is generated inside the computational domain and damping
zones are used to ensure the periodicity. Embedded wave generation is
implemented with spatial nonlinear adjustment as discussed in Lie et al. [2014].
The dynamic equations of (1.2) become

∂η

∂t
= RHSlin + RHSnonlinχnl − cdηχd + Sx0

∂ϕs

∂t
= RHSlin + RHSnonlinχnl − cdϕsχd

(1.16)

where RHSlin and RHSnonlin are the linear and nonlinear part of right hand
side of the dynamic equations, cd is the damping coefficient, Sx0 is the source
term for wave generation at x = x0, and χnl, χd are smooth functions for
nonlinear adjustment and damping zones respectively. Illustration of the chosen
functions for nonlinear adjustment and damping zones are shown in Figure 1.6.

1.1.3 Validation

Trulsen et al. [2020] reported laboratory experiments of irregular waves
propagating over a shoal. Run 1 from Trulsen et al. [2020] is chosen as a
test case to validate the numerical method. The experiment was conducted in
the 24.6 m long and 0.5 m wide tank at the Hydrodynamic Laboratory of the
Department of Mathematics at the University of Oslo. The wave is generated by
wave maker at one end and absorbed at the other end by a damping beach. The
shoal has 0.42 m height, 1.6 m of front slope and back slope and a horizontal
section with length 1.6 m in the middle. The water depth is 0.5 m in the deeper
region and 0.08 m on top of the shoal. The distance from wave maker to the tip of

9



1. Introduction

the shoal is approximately 10.78 m. Surface elevation measurements were made
with 16 ultrasound probes with distance of 0.3 m from each other. The wave
probes can be moved along the tank. There were 4 sets of measurements: one
before the shoal and three on top of the shoal. The sketch of the experimental
setup is shown in Figure 1.7.

𝑥 = 0 𝑥 = 1.6 m 𝑥 = 3.2 m 𝑥 = 4.8 mWavemaker

0.42 m
0.5 m

∆𝑥 = 0.3 m ∆𝑥 = 0.1 m

Figure 1.7: Sketch of laboratory experiment of run 1 from Trulsen et al. [2020].

High Order Spectral Method with M = 3 and MB = 10 is employed for
this case. The length of computational domain is 50 m and the length of
damping zones are 15 m at both left and right boundaries. The wave generator
is embedded in the domain at x = −4.8 m. The first wave probe closest to the
wave maker is used for the wave generator in the simulation. The number of
wave components is Nx = 512. Correlation coefficient and variance quotient
between simulations and experiments are calculated as

corr = cov(ηsim, ηexp)
σηsim

σηexp

varquo =
σ2

ηsim

σ2
ηexp

(1.17)

where cov is the covariance and σ is the standard deviation. Figure 1.8 shows
the correlation coefficient and variance quotient of surface elevation between
simulation and experiment. Figure 1.9 shows the comparison of skewness and
kurtosis of surface elevation between simulation and experiment. All of these
quantitative information are calculated from sample t ∈ [100, 860] s. Figure
1.10 and 1.11 show comparison of surface elevation between experiment and
simulation at different locations.
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Figure 1.8: Correlation and variance quotient between simulation and experiment.
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Figure 1.9: Skewness and kurtosis of surface elevation from experiment (blue, ∗)
and simulation (red, ∗).

1.2 Present contributions

The dissertation is concerned with the non-Gaussian statistics of surface gravity
waves provoked by non-uniform bathymetry. The main developments and findings
in the papers are described in the following.

• Development of new numerical method for wave kinematics calculation from
information of surface elevation and surface potential based on Variational
Boussinesq model. The method is validated against Stokes waves, a solitary
wave and laboratory experiment of regular waves over a shoal.

• Statistical study of surface elevation and horizontal velocity field of long-
crested irregular waves over sloping bottom with different wave fields.
The effects of significant wave height, peak period and bottom slope are
discussed. Laboratory experiment by Trulsen et al. [2020] is confirmed in
this work. In deeper regime, this work is the first verification of Zeng and
Trulsen [2012] result.
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Figure 1.10: Surface elevation for the experiment (blue) and for the simulation
(red) before the shoal.
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Figure 1.11: Surface elevation for the experiment (blue) and for the simulation
(red) on top of the shoal.
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1. Introduction

• Statistical study of surface elevation and horizontal velocity field of long-
crested irregular waves over a two-dimensional bathymetry. The refraction
effect from the bathymetry can trigger non-Gaussian wave field. For long-
crested irregular waves propagating over a circular shoal, the kurtosis of
horizontal velocity field has two local maxima, different from the surface
elevation. This finding implies that the rogue wave occurrence in the
surface elevation and the horizontal velocity can be very different.

• Oblique wave generation is simulated and tested with waves propagating
over an elliptic shoal on a slope. This work is the fundamental theory for
multi-directional wave generation in the future work.

14



Summary of Papers

1.3 Summary of Papers

Paper I focuses on the numerical method for the calculation of wave kinematics
from information about surface quantities and also wave kinematics
measurement from laboratory experiment for the validation of the method.

Paper II presents the statistical properties of wave kinematics of long-crested
irregular waves over varying bathymetry with various bottom slope and
incoming waves.

Paper III investigates the statistical properties of surface elevation and velocity
field of long-crested irregular waves propagating over a two-dimensional
bathymetry.

Paper IV shows oblique wave generation in a periodic domain and its application
on waves propagating over an elliptic shoal on a slope.
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a b s t r a c t

Many of the widely used models for description of nonlinear surface gravity waves, in
deep or shallow water, such as High Order Spectral Method (HOSM) and Boussinesq-type
equations, rely on the elimination of the vertical coordinate from the basic three-
dimensional Euler equations. From a numerical point of view such models are often
computationally efficient, which is one of the main reasons that many such models are
frequently used in studies on nonlinear surface waves.

While surface-based models provide the time-evolution of surface quantities, typi-
cally the surface elevation η and velocity potential at the surface φ, they do not directly
provide the water particle kinematics in the fluid interior. However, in many practical
applications information about the water-particle kinematics is crucial.

The present paper presents a new method for the calculation of water-particle
kinematics, from information about surface quantities. The presented methodology is
a non-perturbative approach based on the fully nonlinear Variational Boussinesq model,
and can be applied to wave propagation over both constant and variable water depth.
The proposed method is validated on several cases, including Stokes waves, a solitary
wave, and irregular waves over flat bottom. We have carried out new laboratory
experiments of regular waves over a shoal with measurements of the horizontal velocity
specifically taken for validation of the method. We also employ recent laboratory
experiments for validation of statistical properties of wave kinematics of long crested
irregular waves propagating over a shoal.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The accurate modeling of ocean surface waves is gaining attention from marine industry. In engineering applications,
proper prediction of loads and responses of ships and offshore structures are essential. The wave loads acting on marine
structures are related to the water particle kinematics generated by the waves, hence the accurate calculation of the
kinematics is a crucial part of any wave model.

Conventionally, linear or second-order wave models are used by marine industry for ships or offshore structures design.
However, neither linear nor second-order wave models can describe very high and steep waves realistically. There is
therefore a need for more accurate wave models that are able to take higher-order nonlinear effects into account, and that
are able to describe steep and nonlinear waves. In recent years, Computational Fluid Dynamics (CFD) computations have

∗ Correspondence to: Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway.
E-mail address: karstent@math.uio.no (K. Trulsen).
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0165-2125/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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become increasingly used for wave-structure analysis. However, due to the computational cost of fully three-dimensional
CFD simulations, computationally efficient approximate wave models are still needed in many applications. Note also that
the computational domain, and consequently the computational cost of CFD simulations may be reduced by coupling CFD
codes with computationally cheaper models like potential flow models. Naturally, efficient and accurate wave kinematics
are needed for coupling to CFD codes.

The basic equations describing surface gravity waves on an ideal fluid are the Euler equations. Assuming potential
theory (irrotational flow) the basic equations can be reformulated in Hamiltonian structure with the surface elevation
η and velocity potential at the surface φ as canonical variables [1–4]. The elimination of the vertical dependence in the
Euler equations has the potential to greatly improve the efficiency of time marching procedures in numerical solutions
of the equations, due to the fact that a full discretization of the entire fluid domain can be replaced by a discretization of
the horizontal plane only. In the long-wave (shallow water) regime the reduction of the problem to the horizontal plane
leads to the Boussinesq and Korteweg–de Vries equations. In a modulational regime (deep and intermediate water depth)
one has perturbative methods for solving the Euler equations, under assumption of deep or intermediate water depth,
known as High Order Spectral Method (HOSM) [5,6] and equivalent methods [7,8], as well as more simplified models
such as nonlinear Schrödinger-type equations [2,9].

While such surface-based methods are often numerically efficient, and provide surface quantities such as the surface
elevation and velocity potential at the surface, they do not directly provide the water particle kinematics below the surface.
Hence, additional computations are needed in order to provide water particle kinematics in an arbitrary point in the fluid
domain. For linear waves in constant water depth an explicit solution of the Laplace boundary value problem is given by
linear Airy theory. A method for calculation of kinematics based on the nonlinear Schrödinger equation was presented
in [10], and was shown to give good agreement with laboratory measurements [11].

A fully nonlinear and direct solution for the wave kinematics, given a Fourier-representation of the wave field was
suggested by [12]. This method involves solving a system of equations of the same dimensions as the number of Fourier
components. Hence, in particular for short-crested sea states this method is typically too computationally expensive, and
is also prone to numerical instabilities. Alternative methods based on iterative expansion of the Dirichlet to Neumann
operators were presented in [13], often referred to as the H- and H2-operator methods. Essentially these methods are
natural extensions of the methodology employed in the original HOSM [5,6]. It was demonstrated in [13] that these
methods could accurately calculate kinematics in short-crested waves relatively efficiently. However, the original HOSM
with the H- and H2-operator methods are only valid for flat bottom.

In this paper we present a method for calculation of the water particle kinematics that can also handle variable
bathymetry. The proposed method is based on Variational Boussinesq model (VBM) [14,15], which is a non-perturbative
method that solves the Laplace boundary value problem via Dirichlet’s principle. Several works have been published on
validation of VBM with respect to wave propagation [16–18]. In this paper we apply the VBM formulation for calculation
of the water particle kinematics. Several validation tests are presented showing that the proposed method provides a
robust and efficient way to calculate wave kinematics in a surface wave model.

The proposed methodology can be applied to any surface wave model that provides the surface elevation η and surface
potential φ. In the present paper we have employed a HOSM with variable bottom topography for time evolution, as
suggested in [19,20]. Compared to HOSM for constant depth [5], this method considers an additional velocity potential at
the bottom and utilizes Taylor expansion to compute the modified surface vertical velocity with correct bottom boundary
condition. The interior kinematics of HOSM for uneven bottom has not yet been derived. Therefore, VBM is applied to
compute the interior kinematics after HOSM provides the information of the surface elevation η and surface potential φ.
We emphasize that the accuracy of wave kinematics calculation still depends on the dynamic solution itself.

For validation, the VBM is compared to known solutions of Stokes waves and solitary waves. The H- and H2-
operator methods which are valid for flat bottom case are also employed for comparison. For uneven bottom, we
conducted laboratory experiments of regular waves propagating over a shoal with surface elevation and horizontal velocity
measurements to validate the VBM. The statistics of wave kinematics of irregular waves propagating over a shoal is also
presented and compared with results from experimental data.

The organization of the paper is as follows. In Section 2, the Variational Boussinesq Model (VBM) is discussed in the
context of kinematics calculation. For comparison, the H- and H2- operator methods are also discussed briefly in Section 2.
Validation of the proposed methodology, including comparison with existing methods and our experimental results are
presented in Section 3. In Section 4 statistical properties of wave kinematics in random wave fields are investigated and
compared to results from laboratory experiments. Finally, conclusions and discussion are given in Section 5.

2. Numerical method for kinematics calculation

We propose a numerical method for kinematics calculation based on Variational Boussinesq Model which will be
discussed in Section 2.1. For comparison, we also describe briefly other numerical methods called the H- and H2- operator
methods in Section 2.2.

2
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2.1. Variational Boussinesq model

We consider a three-dimensional inviscid and incompressible fluid bounded by an impermeable bottom z = −h(x)
and a free surface z = η(x, t), where x = (x, y) are the horizontal coordinates, z is the vertical coordinate and t is time.
Let U = (u, v, w) = u + wiz be the fluid velocity, where u = (u, v) are the horizontal velocities and w is the vertical
velocity. By assuming irrotational flow, the fluid velocity can be written as U = ∇Φ where Φ(x, z, t) denotes the velocity
potential. For incompressible fluid, the continuity equation reduces to ∇ · U = 0. Consequently, the continuity equation
becomes the Laplace equation in the fluid domain

∇ · ∇Φ = 0.

The kinematic and dynamic boundary conditions are given as

ns · ∇Φ

√
1 + |∇η|2 = ∂tη, at z = η,

∂tΦ + gη +
1
2

|∇Φ|
2

= 0, at z = η,

nb · ∇Φ = 0, at z = −h,

(1)

where g is the acceleration of gravity, and

ns =
−∇η + iz√
1 + |∇η|2

and nb =
−∇h − iz√
1 + |∇h|2

are the unit normal direction vectors at the surface and at the bottom pointing out of the fluid, respectively.
Defining the surface potential φ(x, t) = Φ(x, z = η, t), it has been discovered by [2–4] that the dynamic Eqs. (1)

have a Hamiltonian structure when expressed in the surface elevation η and surface potential φ. The Hamiltonian can be
written as functional of the two canonical variables η and φ as a sum of the potential energy P(η) and kinetic energy
K(η, φ)

H(η, φ) = P(η) + K(η, φ)

=
1
2

∫
gη2dx +

1
2

∫ ∫ η

−h
|∇Φ|

2 dzdx.
(2)

where the following brief notation is used:∫
•dx =

∫∫
•dxdy

Consequently, the dynamics of the canonical variables η and φ are given by the Hamiltonian equations

∂tη = δφH(η, φ)
∂tφ = −δηH(η, φ)

(3)

where δφ and δη denote the variational derivatives with respect to φ and η respectively.
As introduced in [14], the velocity potential Φ(x, z, t) can be approximated by adding z-dependent functions so that

ΦVBM (x, z, t) = φ(x, t) + Fm(z; η, h)ψm(x, t) (4)

where m is a summation running from 1 to M according to Einstein notation and M is a small finite number of vertical
profiles. Fm are vertical shape functions and ψm are amplitude functions. The condition at the surface ΦVBM (x, z = η, t) =

φ(x, t) has to be fulfilled to keep the canonical structure of the Hamiltonian, and this can be achieved by requiring
Fm(z = η) = 0 for all m. The bottom impermeability condition requires that the normal velocity at the bottom is
zero.

The Variational Boussinesq Model (VBM) solves the Laplace equation ∇ · ∇Φ = 0 via Dirichlet’s principle. That is, the
solution of the Laplace equation is found as the unique minimizer of the kinetic energy (see [21]). The vertical profiles
Fm and the number of profiles M should be chosen in advance. Then the amplitude functions ψm are the subject of the
kinetic energy minimization. The kinetic energy of VBM is given by

KVBM (φ, η;ψm, κm) =
1
2

∫ ∫ η

−h
|∇ΦVBM |

2 dzdx

=
1
2

∫
(h + η) (∇φ)2 + αmn∇ψm · ∇ψn + (θmn + γmn) ψmψn

+ 2νmnψn · ∇ψm + 2∇φ ·
(
βm∇ψm + ξmψm

)
dx,

(5)

3
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where the integrals over z are defined by

αmn =

∫ η

−h
FmFndz; βm =

∫ η

−h
Fmdz; γmn =

∫ η

−h
∂zFm∂zFndz;

νmn =

∫ η

−h
Fm∇HFndz; ξm =

∫ η

−h
∇HFmdz; θmn =

∫ η

−h
∇HFm · ∇HFndz.

(6)

Here, (∇φ)2 means the inner product (∇φ) · (∇φ) and ∇H is horizontal gradient.
Various types of vertical profiles function were discussed in [15]. In this paper, we choose the normalized hyperbolic

cosine functions which is called Airy profile in [17,18]

Fm(z; η, h) =
cosh [κm(z + h)]
cosh [κm(η + h)]

− 1. (7)

Note that κm are not the actual wavenumbers but are just parameters that can be optimally chosen depending on the case.
For flat bottom, κm are constants. In general, the water depth h is a function of x. Inspired by Ray theory for slowly varying
bottom, we use a local linear dispersion relation ωm =

√
gκm tanh κmh(x) where ωm are constant along the bathymetry.

Since ωm are constant and h is a function of x then κm are functions of x for uneven bottom. In most cases, and in the cases
we consider, two or three Airy profiles are sufficient to obtain good dispersion properties over the range of wavenumber
of wave frequencies of interest. The optimal choice of κm will be described in detail in Section 2.1.1.

In [17], the variations of vertical profiles F with respect to x were neglected, i.e.

∂ηFm∇η, ∂hFm∇h, ∂κFm∇κ ≈ 0. (8)

They called this simplification weakly nonlinear VBM and showed that it gives good agreement with laboratory experi-
ments in bichromatic waves and irregular waves propagating over a 1:20 slope. As an improvement, [18] includes the
effects of ∂ηFm∇η, but the effects of the bed slope ∇h and parameter variations ∇κ were neglected. It turned out that
weakly nonlinear VBM gives unsatisfactory results for strongly nonlinear waves, e.g. a focusing wave group. For steep
slopes, this approximation does not perform well with respect to reflection and may introduce high frequency waves.
However, taking all the terms into consideration (‘steep slope’ models in [22]) gives good reflection characteristics up to
bottom slope 2:5, despite the usage of vertical shape functions with ∂zF = 0 at the bottom and the approximation based
on slowly varying bottom.

In this paper, the VBM is not used for wave propagation but only to compute the velocity potential in the fluid. Here,
the contribution from ∇Fm is fully taken into account. The difference with the previous approach [18] will be shown in
Section 3.4. The amplitude functions ψm are then obtained by minimizing kinetic energy, by requiring that δψnK = 0,
leading to a system of linear elliptic equations

− ∇ · (αmn∇ψn) + (θmn + γmn) ψn + νnm · ∇ψn − ∇ · (νmnψn) = ∇ · (βm∇φ)− ξm · ∇φ. (9)

When ψm are found from (9), the kinematics at any z can be easily obtained from (4).
The VBM approximation in (4) will give its own linear dispersion relation, which is described in the following.
One can show that the kinetic energy of linear VBM is obtained by taking η = 0 in (5)

K(lin)
VBM =

1
2

∫ [
h (∇φ)2 + ᾱmn∇ψm · ∇ψn + γ̄mnψmψn + 2β̄m∇φ · ∇ψm

]
dx, (10)

where the coefficients ᾱmn, β̄mn and γ̄mn are given by (6), but with the integration performed from z = −h to still water
level z = 0.

The linear dynamic equations of VBM are obtained by taking variations of H(lin)
VBM = P + K(lin)

VBM with respect to η, φ and
ψn. The linear VBM is given as

∂tη = −h∇ · ∇φ − β̄m∇ · ∇ψm

∂tφ = −gη
− ᾱmn∇ · ∇ψn + γ̄mnψn = β̄m∇ · ∇φ.

(11)

We find the dispersion relation of VBM by considering simple harmonic waves with frequency ω = ΩVBM (k) which
depends on the wave number k = |k|:

η = η̂ei(k·x−ωt), φ = φ̂ei(k·x−ωt), ψm = ψ̂mei(k·x−ωt). (12)

Substituting (12) into the linear system of VBM (11) will give matrix equation M(η̂, φ̂, ψ̂m)T = 0, where non-trivial
solutions exist when detM = 0. The resulting dispersion relation strongly depends on the parameters κm in (7), and
is given by

C2
VBM =

(
ΩVBM (k)

k

)2

= c20

(
1 −

k2

h
β̄m(ᾱmnk2 + γ̄mn)−1β̄n

)
(13)
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Fig. 1. Linear dispersion characteristics of VBM one-profile. Left: Comparison of normalized phase speed of VBM with one profile with κ1h = 2, 4, 8
to exact solution. Right: Relative error in the phase speed of VBM with one profile.

where CVBM is the phase speed of VBM, and c0 =
√
gh. For multiple profiles Fm, given by (7), we require the parameters

κm to have different values so that the matrix (ᾱmnk2 + γ̄mn) is invertible. The exact phase speed is given as

C2
ex =

(
Ωex(k)

k

)2

=
g tanh(kh)

k
. (14)

As pointed out in [16], the approximate phase speed of VBM, CVBM , is larger than or equal to the exact phase speed, Cex.
This is an implication from minimization of kinetic energy. For VBM with Airy profile in (7), VBM has exact phase speed
only for the wavenumbers k = κm.

CVBM (k) > Cex(k) for k ̸= 0, κm and CVBM (κm) = Cex(κm) for all m. (15)

For example, linear dispersion characteristics of VBM with one profile with different parameters κ are shown in Fig. 1.

2.1.1. Dispersion optimization
The flexibility to choose the number of vertical profiles M and the parameters κm means that VBM dispersion can be

optimized to approximate the exact linear dispersion depending on the problem. There are several optimization criteria
to choose parameters κm, e.g. minimize phase speed or group speed error over the range of the relevant wavenumbers
or wave frequencies, but the optimization criteria based on kinetic energy performs better than the others [23]. In [16],
these parameters were chosen by minimizing the kinetic energy based on the initial spectrum. However, in a nonlinear
simulation the initial spectrum will be deformed during the time evolution, especially in the tail of the spectrum when
strong nonlinear effects are present. Therefore, the optimization of the parameters κm should be based on the deformed
spectrum as in [18]. The optimization of the parameters κm based on kinetic energy minimization is discussed in the
following.

Let the Fourier transform pair be defined as

f (x) =

∫
f̂ (k)eikxdk and f̂ (k) =

1
2π

∫
f (x)e−ikxdx. (16)

The kinetic energy of the linear VBM can then be written as

K(lin)
VBM (φ; κ) =

2π
2g

∫
Ω2

VBM (k; κ)
⏐⏐⏐φ̂(k)⏐⏐⏐2 dk. (17)

By using Dirichlet’s principle, the optimal choice of parameters κm would be the minimizer of

argmin
κ1,...,κM

∫
Ω2

VBM (k; κ1, . . . , κM)
⏐⏐⏐φ̂ (k)⏐⏐⏐2 dk. (18)

Note that we here consider the kinematic calculation as post-processing, i.e. that η(x, t) and φ(x, t) are known. For
flat bottom, the weight function |φ̂(k)|

2
can be calculated for any time t . To give the best possible dispersion properties

over the desired k-range, we choose the broadest spectrum during the chosen time evolution as the weight function. For
uneven bottom, wavenumber-parameters κm are functions of x, but the corresponding parameters ωm =

√
gκm tanh (κmh)

are constant along the bathymetry which is inspired by Ray theory. Fig. 2 illustrates the relation between ΩVBM , Ωex and
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Fig. 2. Illustration for linear dispersion relation of VBM with two profiles.

parameters κm and ωm. We can modify the arguments of the minimization problem in (18) to the parameters ωm. In order
to do this, we have to express the kinetic energy in terms of time series s(t) = η(x = x0, t) where it has the broadest
spectrum in the entire domain. For linear unidirectional waves, the procedure will be given as follows.

The exact linear dispersion relation is given as Ωex(k) =
√
gk tanh (kh). Defining Ω−1

ex (ω) = k as the inverse function
of Ωex(k) = ω, and letting s̃(ω) denote the temporal Fourier transform of s(t), it holds that

η(x0, t) =

∫
s̃(ω)ei(Ω

−1
ex (ω)x0−ωt)dω =

∫
ŝ(Ωex(k))ei(kx0−Ωex(k)t)V (k)dk (19)

where V (k) = ∂kΩex(k) is the group speed of the exact linear dispersion relation.
Further, taking the Fourier-transform of the linear momentum equation ∂tφ = −gη yields iΩex(k)φ̂(k, t) = g η̂(k, t).

Since η(x, t) =
∫
η̂(k, t)eikxdk it follows that η̂(k, t) = ŝ(Ωex(k))e−iΩex(k)tV (k), so that

|φ̂(k, t)|
2

=

(
gŝ(Ωex(k))V (k)

Ωex(k)

)2

. (20)

Now the kinetic energy (17) can be rewritten as

K(lin)
VBM (φ;ω) = πg

∫ ⏐⏐ŝ(Ωex(k))
⏐⏐2 (

ΩVBM (k; κ)
Ωex(k)

)2

V (k)2dk

= πg
∫ ⏐⏐s̃(ω)⏐⏐2 (

ΩVBM (Ω−1
ex (ω);ω)
ω

)2

V (Ω−1
ex (ω))dω

(21)

and the minimization problem in (18) becomes

argmin
ω1,...,ωM

∫ (
ΩVBM (Ω−1

ex (ω);ω2, . . . , ωM )
ω

)2

V (Ω−1
ex (ω))

⏐⏐s̃(ω)⏐⏐2 dω. (22)

Here we choose the broadest spectrum
⏐⏐s̃(ω)⏐⏐2 to be solved in (22).

2.2. H- and H2- operator

Two wave kinematics calculation methods based on information from surface variables were presented in Dirichlet
to Neumann formulation by [13]. The first method is the so-called H- operator which transforms any information at the
surface to constant z-level. However, it has been shown that the H- operator can be divergent beneath large wave crests
since the accuracy itself is related to the convergence of Taylor series. As a remedy, the so-called H2- operator performs
the transformation to a second arbitrary surface therefore it allows the transformation from the surface to constant z-level
in several small steps. We give brief review of these two operators in the following.

Let τ (x, z, t) denote an arbitrary kinematic quantity. We assume τ (x, z, t) can be represented as

τ (x, z, t) =

∫
τ̂ (k)

cosh(k(z + h))
cosh(kh)

ei(kx−ωt)dk (23)

where ω(k) =
√
gk tanh(kh) is wave frequency, k is wavenumber, g is acceleration of gravity, and h is water depth. Eq. (23)

is suitable for kinematics quantities whose the vertical variation is described by the summation of cosh terms such as
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Fig. 3. Left: vertical profile of horizontal velocity of Stokes wave with ka = 0.3 and kh = 10 (VBM: red dashed line, reference solution: blue solid
line). Right: absolute error of the corresponding horizontal velocity presented in the left plot.

surface potential φ or horizontal velocity u = ∂Φ/∂x. For an alternative conjugate variable such as vertical velocity
w = ∂Φ/∂z, the numerator in Eq. (23) should be replaced by sinh.

For H- operator, the kinematic quantity τ is transformed to z = 0 by using Taylor series and perturbation approach
similar to HOSM [5,6]

τ (1)(x, 0, t) = τ (x, η, t)

τ (m)(x, 0, t) = −

m−1∑
n=1

ηn

n!
∂nτ (m−n)

∂zn
(x, 0, t), m ≥ 2,

(24)

where the superscript on τ indicate the nonlinearity order of τ . For instance τ (1) ≡ O(ϵ) where ϵ is the wave steepness.
For H2- operator, the kinematic quantity τ is transformed to a second arbitrary surface z = cη2 with c < 1.

Subsequently, the transformation is repeated to a new smaller arbitrary surface z = η2,new = cη2,old with c < 1. This
process is repeated until constant z-level. The difference with the H- operator is the transformation in H2- operator is
done with several small steps, meanwhile the H- operator transform only in a single step. Typically, H2- operator converges
with only ten number of steps. Note that H2- operator is equivalent to H- operator when the new arbitrary surface is zero
η2 = 0. The kinematic quantity τ at z = η2 is given by Taylor expansion as

τ (m)(x, z = η2, t) =

m−1∑
n=0

ηn2

n!
∂nξ (m−n)

∂zn
(x, 0, t). (25)

3. Validation

In order to test and validate the proposed methodology for kinematics calculation, several validation tests are presented
in the four subsections below. First we consider Stokes wave in deep water, comparing results with Fenton’s fifth order
solution [24]. In Section 3.2 we consider a solitary wave in constant depth, comparing the results with the high-accuracy
solution of the exact Euler equations given in [25], as well as results using the H2-operator method [13]. In Section 3.3
the case of irregular waves over flat bottom is presented and compared to results using the H2-operator method. Three
different non-dimensional depths are considered, and the influence of the number of parameters and optimization-
procedure in VBM is demonstrated. Finally, in Section 3.4, the case of regular waves over a shoal is considered and results
are compared with new laboratory experiments.

3.1. Stokes wave

We consider Stokes waves in deep water with ka = 0.3 and kh = 10, where a is the first-order amplitude, k is
the wavenumber and h is the water depth. The surface elevation η(x, t) and surface potential φ(x, t) are obtained from
Fenton’s fifth order solution [24]. The surface potential is found by evaluating the fifth order velocity potential as z = η,
retaining fifth order terms. Then the VBM proposed above was used to calculate the corresponding wave kinematics. In
this case, we use VBM with three profiles. Fig. 3 shows the horizontal velocity profile under the wave crest, compared
with Fenton’s solution. Fig. 4 shows the normalized horizontal velocity at kz = −0.5 as function of x. As seen from the
figures, the VBM reproduces the reference solutions to high accuracy.
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Fig. 4. Left: horizontal velocity of Stokes wave with ka = 0.3 and kh = 10 at kz = −0.5 (VBM: red dashed line, reference solution: blue solid line).
Right: absolute error of the corresponding horizontal velocity presented in the left plot.

Fig. 5. The initial wave elevation (left plot) and velocity potential at surface. (right plot) with a/h = 0.6.

Table 1
Root mean square error (RMSE) of horizontal velocity of solitary wave at z/h = −0.1 for x/h ∈ [−10, 10]
relative to reference solution.
Method Number of steps

5 10 15 20 30

5th order H2 5.0 · 10−2 7.6 · 10−3 6.0 · 10−3 5.3 · 10−3 4.7 · 10−3

7th order H2 1.1 · 10−2 9.0 · 10−4 6.8 · 10−4 6.0 · 10−4 5.3 · 10−4

9th order H2 5.9 · 10−4 2.2 · 10−4 1.8 · 10−4 1.6 · 10−4 1.4 · 10−4

VBM 1.1 · 10−4

3.2. Solitary wave

We consider the case of a nonlinear solitary wave in shallow water, with a/h = 0.6, where a is the amplitude and h is
the water depth. In [25], the solitary wave solution of the exact Euler equations was computed numerically, including the
wave kinematics in the bulk of the fluid. We used their code to compute the solitary wave solution as our reference. Using
the information of surface elevation and surface potential from the reference solution, we used the VBMwith three profiles
to calculate the kinematics, and compared the results to both the reference solution as well as to the corresponding results
obtained using the H2-operator method proposed in [13]. The surface elevation and surface potential of the solitary wave
are shown in Fig. 5, while Figs. 6 and 7 show the corresponding horizontal velocity for VBM compared to both the exact
solution of [25] and the results obtained with 5th order H2 operator with ten steps at z/h = −0.1 and x = 0, respectively.
In addition, Fig. 8 shows the Laplacian of VBM velocity potential for three different number of profiles.

Table 1 shows the root-mean-square error (RMSE) of the horizontal velocity at z/h = −0.1 for x/h ∈ [−10, 10] relative
to the reference solution, for VBM and for the H2-operator method using different nonlinear order and number of steps
(see [13] for details).

As seen from the table, the VBM reproduces the kinematics to high accuracy. Results are also in agreement with the
H2-operator method, but a quite high order and a large number of steps are needed for the H2-operator to give the same
accuracy as the VBM.
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Fig. 6. Left: horizontal velocity of solitary wave at offset z/h = −0.1. Right: absolute error of the simulated horizontal velocity with reference
solution in [25]. (VBM: red dashed line. H2 operator: blue solid line).

Fig. 7. Left: vertical profile of horizontal velocity of solitary wave. Right: absolute error of the simulated horizontal velocity with reference solution
in [25]. (VBM: red dashed line. H2 operator: blue solid line).

Table 2
Nondimensional optimal parameters ωm/ωp of VBM and root mean square error compared to H2-operator
results.
Case kph VBM one profile VBM two profiles VBM three profiles

RMSE ωm/ωp RMSE ωm/ωp RMSE ωm/ωp

1 1 0.0140 1.58 0.0008 1.31, 3.04 0.0006 1.21, 2.39, 4.00
2 3 0.0291 1.28 0.0060 1.06, 2.18 0.0010 1.00, 1.65, 3.09
3 10 0.0338 1.2 0.0099 1.00,1.97 0.0013 0.94, 1.40, 2.71

3.3. Irregular waves over flat bottom

In the following we consider irregular waves defined by a JONSWAP spectrum with peak enhancement factor γ = 3.3,
peak wavenumber kp = 1 m−1 and significant wave height Hs = 0.16 m. Three different water depths are considered:
h = 1 m, 3 m and 10 m, for cases 1, 2 and 3, respectively.

For simulating the evolution of the irregular wave fields we use the High Order Spectral Method (HOSM), as described
by [5]. For calculation of the water particle kinematics we use the VBM with one, two and three profile(s) as well as the
H2-operator method. Following recommendations given in [13], we have used 5th order H2-operator with ten steps. In
the following we present comparison of the horizontal velocity u at kpz = −0.2.

As discussed in Section 2.1.1, for flat bottom the parameter-optimization may be done in terms of κm directly, using
(18). However, as also discussed in Section 2.1.1, it is also possible do the optimization with respect to ωm. Here, we use
the latter option since it is more general and can be applied also for the uneven bottom case.

Figs. 9–11 show the corresponding linear dispersion fits of VBM, in terms of the relative error in phase-speed (left plot)
and the calculated horizontal velocity at nondimensional depth kpz = −0.2 (right plot). Table 2 summarizes the optimal
values for ωm as well as the RMSE of VBM relative to the corresponding solution using the H2-operator method.

For VBM with Airy profile, the dispersion relation is exact for ω = ωm (see [16]). Without any optimization procedure,
we expect the parameters ωm to be close to the peak frequency of the broad band waves. Nevertheless, for VBM with
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Fig. 8. Laplacian of VBM velocity potential for one profile (top), two profiles (middle) and three profiles (bottom).

Fig. 9. Irregular waves over flat bottom case 1, Left: the wave spectrum (black solid line, left axis) is plotted together with the phase speed error
for VBM with one, two and three profile(s) (red line with dots, dashed line, solid line, respectively). Right: Comparison between VBM with one
profile (black, solid), VBM with three profiles (red with dots) and H2 operator (blue, solid). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Same as Fig. 9 for case 2.

Fig. 11. Same as Fig. 9 for case 3.

one profile the optimal choice of parameter is not the peak frequency as shown in Table 2. For multiple profiles VBM,
the optimal parameters are distributed so that the VBM dispersion fits the exact dispersion relation for the relevant wave
spectrum as shown in Figs. 9, 10, 11.

It is observed that VBM gives good agreement with the H2-operator result. As seen in Fig. 9, VBM with two profiles
has excellent dispersion for the case with kph = 1. Hence, for shallow water depth, we are confident that two profiles
are sufficient to calculate the kinematics accurately. Larger kph, however, requires a larger number of profiles. However,
our results show that even for kph = 10, three profiles give excellent results.

3.4. Regular waves over a shoal

Several experimental studies of harmonic wave propagation over a shoal with different configurations are reported in
the literature (e.g. [26–28]). However, in all of these studies only the surface elevation was measured and reported. For
the present application of validating the VBM for calculation of kinematics, we also need the interior wave kinematics as
the waves propagate over the shoal.

Wave tank experiments were therefore carried out in the 24.6 m long and 0.5 m wide wave tank at the Hydrodynamical
Laboratory of Department of Mathematics at the University of Oslo. A shoal consisting of linear upslope and downslope
regions of lengths 1.6 m separated by a 1.6 m flat region, reaching 0.42 m over the bottom of the tank. The still water
depth away from the submerged bar was 0.53 m, corresponding to a water depth of 0.11 m at the top of the bar. At one
end of the tank there is a wavemaker, and at the other end there is a wave absorber. The distance from the wavemaker
to the center of the bar was 12.4 m. The shoal employed in these experiments was the same as that employed in [29].

Surface elevation measurements were made with four ultrasound probes from General Acoustics, while water velocity
measurements were made with a ‘‘Vectrino’’ Acoustic Doppler Velocimeter (ADV) from Nortek. An overview of the
experimental setup, with the installed measurement devices is shown in Fig. 12. The horizontal velocities were measured
at depth 0.05 m below the still water level.

The wavemaker generated harmonic waves with frequency 0.7 Hz, and the wave amplitude was tuned as high as
possible in order to have as nonlinear waves as possible, but without visible wave breaking. The experiments were
repeated 31 times, having the measurement rig at different locations. For each run, the surface elevation was recorded at
four locations, while the horizontal velocity was recorded at one location. Hence, in total the 31 runs provided the surface
elevation at 124 locations and the horizontal velocity at 31 locations. In all cases, the measurements were completed
before reflected waves arrived at the measurement-locations.
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Fig. 12. Lay out of experimental setup with installed wave probes and ADV on top of the shoal.

Fig. 13. Time series of surface elevation. Blue line: measurements. Red dashed line: HOSM simulation.

For validation of the kinematics calculations, numerical simulations corresponding to the experiments were carried out
using a High Order Spectral Method (HOSM) that was modified to allow for variable depth, as described by [19,20]. The
nonlinear order of the modified HOSM was set to third order on the surface and ninth order on the bottom (see [19,20]
for details). The harmonic waves with frequency 0.7 Hz and amplitude 1.35 cm were generated 5.5 m before the shoal in
numerical simulations using the embedded influxing method described in [30]. The wave amplitude was chosen so that
the surface elevation fits the experimental data in front of the shoal.

Examples of surface elevation time series from the experiments and the numerical simulations, at four different
locations, are shown in Fig. 13. Further, harmonic analysis of the surface elevation at different locations over the shoal is
shown in Fig. 14. As expected, higher harmonic bound waves are strongly amplified when waves propagate over the shoal.
Overall there is a good agreement between the experiments and the numerical simulations. However, some deviations
between the experimental and numerical results are observed, in particular at the top of the bar and in the downslope
region. This can likely be attributed to effects of bottom friction and dissipation from the sidewalls.

In this particular case, we show the difference of present VBM solution with previous method in [18]. It is shown in
Fig. 15 that the missing contribution of ∇F in the kinetic energy to calculate amplitude function ψ may lead to instabilities
around depth transition. It is also mentioned in [18] that for steep bottom slope, short waves were introduced in their
dynamic evolution and some filtering was necessary.

For validation of the kinematics calculations, we use the horizontal velocity at depth 0.05 m provided by the
experiments. The experimental results are then compared to the kinematics obtained by the VBM, which uses information
about the surface elevation η and surface potential φ at every time step of the HOSM simulations. Time series of the
horizontal velocity at four selected locations along the shoal are shown in Fig. 16. The corresponding evolution of the
amplitudes of the different harmonic components of the velocity is shown in Fig. 17.

It is observed that the numerical results overestimate the first harmonic of the horizontal velocity after the upslope
region. This may partly be explained by the fact that the measurement device interferes with the fluid flow. This has also
been observed in tests with Stokes waves, in which case ADV measurements were found to underestimate the horizontal
velocity compared to the analytical solution. However, for the second harmonic there is a good agreement, and overall
the VBM-results show good agreement with the experimental results.
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Fig. 14. Harmonic analysis of surface elevation.

Fig. 15. Snapshot of amplitude functions ψ at t = 20.8 s with contribution from ∇HF (blue, solid) and without contribution from ∇HF (red, dashed).

Fig. 16. Time series of horizontal velocity at depth 0.05 m. Blue line: measurements. Red dashed line: VBM simulation.
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Fig. 17. Harmonic analysis of horizontal velocity at depth 0.05 m.

Fig. 18. Convergence of ensemble-averaged kurtosis at center of shoal with respect to number of runs in the ensemble. Left: kurtosis for surface
elevation. Right: kurtosis for interior horizontal velocity at depth 0.04 m.

4. Statistical properties of irregular waves over a shoal

In this section we present an application of the VBM for kinematics calculations by investigating statistical properties
of wave kinematics in irregular wave fields propagating over a shoal as in Fig. 12, and comparing the results to recent
laboratory experiments [29].

It was reported in [29] that while the kurtosis of both surface elevation and interior fluid velocity experience an
increase when propagating over the shoal, the locations of maximum kurtosis were different for surface elevation and
wave kinematics. The laboratory setup for run 3 in [29] is similar to the one described in Section 3.4. However, in this case
the wavemaker generated an irregular wave field having a JONSWAP spectrum with peak enhancement factor γ = 3.3
and peak period Tp = 1.1 s. The significant wave height was tuned as high as possible without observing visible wave
breaking. The computed significant wave height before the slope was measured to Hs = 2.5 cm.

In the following we present numerical simulations corresponding to the experiments described in [29]. For the wave
evolution the HOSM-model modified to allow for variable water depth [19,20], as described above, was used, while the
VBM was used for the calculation of kinematics. As in the experiments the incoming waves were generated from a
JONSWAP spectrum with peak enhancement factor γ = 3.3, peak period Tp = 1.1 s and significant wave height Hs = 2.5
cm. The numerical simulations were repeated 100 times, using different phases of the incoming wave train each run.
For each run, time series of duration 200Tp were obtained. From these time series, the kurtosis and skewness of both
surface elevation and horizontal velocity u at three different depths z = −0.04 m, z = −0.06 m and z = −0.08 m were
computed by averaging over the time-series, and ensemble averaging over the 100 random repetitions. The convergence
of the estimated kurtosis at the center of the shoal, as a function of the number of random repetitions is shown in Fig. 18.
This indicates that 100 runs are sufficient to obtain relatively reliable estimates of the statistical quantities.

In Fig. 19, we show statistics of the surface elevation and the interior horizontal velocity at three different depths,
from the numerical simulation. The skewness of the surface elevation and the horizontal velocities at all three depths
show a similar evolution when propagating over the shoal. However, the magnitude of the skewness is decreasing with
increasing depth.

Different from the skewness, the evolution of kurtosis of the surface elevation and the horizontal velocities show
qualitatively different behavior when propagating over the shoal. The kurtosis of the horizontal velocity has a local
maximum on the lee side and a local minimum on top of the shoal, while the kurtosis of the surface elevation has its
local maximum at the top of the shoal. These results are in good agreement with the results of the laboratory experiment
in [29], as shown in Fig. 20.
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Fig. 19. Skewness (left) and kurtosis (right) of surface elevation (blue) and horizontal velocity at depth 0.04 m (red), 0.06 m (yellow), and 0.08 m
(purple) from numerical simulation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 20. Skewness (left) and kurtosis (right) of surface elevation (∗) and horizontal velocity (+) from laboratory experiment [29].

5. Conclusion

We have presented a new method for calculating water particle kinematics based on surface quantities. Typical
applications would be calculations of wave kinematics in surface wave models, that do not directly resolve the vertical
coordinate, such as HOSM or Boussinesq-type wave models.

The proposed method calculates the kinematics by solving the Laplace equation via Dirichlet’s principle with the
Variational Boussinesq Model (VBM). The resulting elliptic equation is simple since the highest spatial derivatives are
only of second order. The flexibility to choose the number of vertical profiles and the possibility to optimize parameters
κ in Airy profiles make VBM case dependent. The parameter optimization allows VBM to obtain the best possible
approximation over the relevant range of wavenumbers or wave frequencies.

The VBM has been validated extensively with Stokes waves, a nonlinear solitary wave, and irregular waves over flat
bottom. In addition, we have reported laboratory experiments of regular waves propagating over a shoal with surface
elevation and horizontal velocity measurements for validation. Comparison with other existing methods and laboratory
experiment shows that VBM is able to efficiently solve the kinematics to high accuracy. For all the validation cases
mentioned above, VBM only needs a small number of vertical profiles, typically two or three profiles are sufficient.

As an application of the developed numerical method, we have considered statistical properties of kinematics of
long crested irregular waves propagating over a shoal. We show that VBM is able to capture the essential behavior of
skewness and kurtosis of interior horizontal velocity reported in recent laboratory experiments [29]. Further investigation
of statistical properties of wave kinematics in irregular wave fields in variable bathymetry will be reported in the future.
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