
University of Oslo
Department of Informatics

MEADOW - A
Dataflow Language
for Modelling Large
and Dynamic
Networks

Cand. Scient. Thesis

Fredrik Seehusen

August 2003

Abstract

We address three main problems regarding the use of the traditional
dataflow language (TDL) for modelling large and dynamic networks:

• The problem of scalability. The concepts and notations of TDL
do not scale well. Thus TDL specifications may get large (space
consuming) and chaotic.

• The problem of generality. TDL does not have the expressibility
for specifying networks consisting of n (a general number) com-
ponents. We distinguish between five different network topolo-
gies consisting n components that can not be specified in TDL. For
point-to-point networks these are the star, ring and tree topologies,
for multipoint networks the ring and the bus topologies.

• The problem of expressing dynamic reconfiguration. TDL is not
well suited for the specification of dynamic networks. We distin-
guish between three kinds of dynamic networks: object-oriented
networks, ad hoc networks, and mobile code networks.

Based on an examination of three state-of-the-art modelling languages
(FOCUS, SDL-2000 and UML 2.0), we propose a language, MEADOW (Mod-
Elling lAnguage for DataflOW) that essentially is an extension of TDL.
Our hypothesis is that MEADOW successfully solves the problems men-
tioned above, and we argument by small examples and case studies.

iii

iv

Foreword

This thesis is submitted for the fulfilment of the Cand. Scient. degree in
Informatics at the Department of Informatics, University of Oslo (UIO).
The work on this thesis has been carried out at SINTEF Telecom and In-
formatics under supervision of Ketil Stølen.

I would like to thank Frode, Bjørn Håvard, Marit, Ole Andre, Ole Morten
and Øystein for being good friends and for doing some spell-checking.

Most of all I would like to thank my adviser, Ketil Stølen for being a
source of inspiration and for his skillful guidance and help throughout
the whole process.

v

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Overview . 3

2 Terminology 5
2.1 Network Terminology . 5

2.1.1 Network Architectures 6
2.1.2 Network Topologies . 7
2.1.3 Dynamic Networks . 8

2.2 A Conceptual Terminology Framework 9
2.2.1 Basic Conceptual Terms 9
2.2.2 Static, Dynamic and Mobile Networks 12

3 Problem Analysis 15
3.1 Purposes and Target Groups 15
3.2 Language Quality . 16
3.3 The Problem Domain . 17

3.3.1 The Traditional Dataflow Language (TDL) 18
3.3.2 The Problem of Scalability 18
3.3.3 The problem of Generality 19
3.3.4 The Problem of Expressing Dynamic Reconfiguration 22

3.4 Overall Hypothesis . 22
3.5 Scientific Methods . 22

3.5.1 Verifying the Success Criteria 24

4 State-of-the-Art 27
4.1 FOCUS . 27

4.1.1 Scalability . 27
4.1.2 Generality . 30
4.1.3 Dynamic Reconfiguration 31

4.2 SDL-2000 . 32
4.2.1 Scalability . 32
4.2.2 Generality . 34

vii

viii CONTENTS

4.2.3 Dynamic Reconfiguration 35
4.3 UML 2.0 . 36

4.3.1 Scalability . 37
4.3.2 Generality . 40
4.3.3 Dynamic Reconfiguration 42

4.4 Language Comparison . 43
4.4.1 Scalability . 43
4.4.2 Generality . 44
4.4.3 Dynamic Reconfiguration 45

5 MEADOW 47
5.1 Introduction . 47
5.2 Components . 47

5.2.1 Elementary and Composite Components 48
5.2.2 Types, Instances and Parts 49
5.2.3 Multiplicity on Parts . 50
5.2.4 Parts of Named Component Instances 51
5.2.5 Declarations and Assignments 52
5.2.6 Parameterised Components 54
5.2.7 Dynamic Parts . 56
5.2.8 Generalisation . 57
5.2.9 Regions . 58

5.3 Connectors and Channels . 59
5.3.1 Classification of Channels 59
5.3.2 Classification of Connectors 59
5.3.3 Deriving Channels from Connectors 60
5.3.4 Directed Connectors . 61
5.3.5 Bi-directed Connectors 64
5.3.6 Connectors Between Parts and Environments 65
5.3.7 Message Typed Connectors 66
5.3.8 Component Types as Message Types 67
5.3.9 Split Nodes . 67
5.3.10 Merge Nodes . 69
5.3.11 Merge-Split Nodes . 70
5.3.12 Identifier Constraints . 72
5.3.13 Cardinality Constraints 73
5.3.14 Constraint Functions . 74
5.3.15 Dynamic Connectors . 75

5.4 Diagrams and Views . 76
5.4.1 Views Diagrams . 76
5.4.2 Type Diagrams . 78
5.4.3 Snapshot Diagrams . 79
5.4.4 Generalisation Diagrams 81

CONTENTS ix

6 Case Studies 83
6.1 Configuration with N Components 83
6.2 ARDIS . 85
6.3 Ethernet . 86
6.4 Token Rings . 89
6.5 The NTN ATM Network . 90
6.6 An Object-Oriented Network Example 95
6.7 Battlefield Control System . 97
6.8 Mobile Code Network Example 99

7 Evaluation of MEADOW 105
7.1 Comprehensibility Appropriateness 105

7.1.1 Conceptual Basis . 105
7.1.2 External Representation 107
7.1.3 Conclusion . 108

7.2 Scalability . 108
7.2.1 Scalability Concepts . 108
7.2.2 Conclusion . 109

7.3 Generality . 110
7.3.1 Concepts . 110
7.3.2 Conclusion . 111

7.4 Dynamic Reconfiguration . 111
7.4.1 Concepts . 111
7.4.2 Conclusion . 112

8 Conclusions and Future Work 115
8.1 Summary . 115
8.2 Future Work . 117

x CONTENTS

List of Figures

2.1 Switched network. 6
2.2 Process communication over an abstract channel. 6
2.3 Example of a layered network system. 7
2.4 Basic conceptual terms. 10
2.5 O-O Net . 11
2.6 Classification of dynamic networks. 14

3.1 Example of a TDL diagram. 18
3.2 Black-box view (left). Glass-box view (right). 19
3.3 TDL specification (left). SDL specification (right). 20
3.4 Network Topologies. 21

4.1 Example of a FOCUS specification. 28
4.2 An example of specification replications. 29
4.3 An example of dependent replications. 31
4.4 Example of an SDL specification. 33
4.5 Example of a specification of a set of instances. 33
4.6 Specification of a set of channel instances. 34
4.7 Example of an SDL specification of the star topology. 35
4.8 Suggested specification of Ad Hoc Net. 37
4.9 Example of a UML 2.0 specification. 38
4.10 Connectors. 39
4.11 Multiplicities on connector ends. 40
4.12 Multiplicities on ports. 40
4.13 Example of template parameters. 41
4.14 Example of actual parameters. 41
4.15 Specification of a tree topology of depth three. 41
4.16 Underspecification of a ring topology. 42

5.1 Elementary and composite component specification. 49
5.2 Specification of a component type and parts. 50
5.3 Specification of parts with multiplicity. 51
5.4 Specification of named component instances. 52
5.5 Parts with identifiers and multiplicities. 53

xi

xii LIST OF FIGURES

5.6 Composite component with declarations and definitions. . 53
5.7 Specification of a parameterised composite component type. 54
5.8 Specification containing actual parameters. 55
5.9 Specification of a parameterised part. 55
5.10 Specification of static and dynamic parts. 57
5.11 Generalisation relationships. 58
5.12 Specification of a region. 59
5.13 Connectors and channels. 60
5.14 Illustration of a directed one to one relationship. 62
5.15 One to one relationship. 62
5.16 Illustration of a directed one to many relationship. 62
5.17 Specification of a directed one to many relationship. 63
5.18 Illustration of a many to many relationship. 64
5.19 Directed many to many relationship. 65
5.20 Specification of a bi-directed connector. 65
5.21 Connectors between internal parts and environment. 66
5.22 Specification of a message typed connector. 66
5.23 Specification of component type as message type. 67
5.24 Illustration of a split relationship 68
5.25 Split node associated with connectors. 68
5.26 Illustration of a merge relationship. 69
5.27 Specification with merge nodes. 70
5.28 Illustration of a merge-split relationship. 71
5.29 Specification containing a merge-split node. 71
5.30 Specification containing identifier constraints. 72
5.31 Specification containing cardinality constraints. 73
5.32 Specification containing a constraint function. 75
5.33 Specification containing a dynamic connector. 76
5.34 Views diagram for region type Net. 77
5.35 Views diagram for region type B. 78
5.36 Specification of type diagrams. 79
5.37 Specification of snapshot diagrams. 80
5.38 Specification of the snapshot diagrams for region type B. . 81
5.39 Specification of a generalisation diagram. 81

6.1 SIMD-Machine. 84
6.2 Alternative specification of SIMD-Machine for a fixed num-

ber of components. 85
6.3 ARDIS network topology. 86
6.4 ARDIS network topology with a constraint function. 87
6.5 Views diagram of Ethernet. 87
6.6 Specification of diagram g:Generalisation. 88
6.7 Specification of region type Ethernet. 88
6.8 Illustration of an Ethernet network. 89

LIST OF FIGURES xiii

6.9 Specification of a token ring network. 90
6.10 Alternative specification of a token ring network. 91
6.11 Specification of NTN ATM network. 91
6.12 Specification of LARGnet, alternative 1. 92
6.13 Specification of LARGnet, alternative 2. 93
6.14 Specification of LARGnet with identifier constraints. 94
6.15 Specification of LARGnet with constraint function. 94
6.16 Views diagram of ONet. 96
6.17 Specification of the potential configurations of ONet. 96
6.18 Specification of snapshot configurations of ONet. 97
6.19 Views diagram for region type BCS. 98
6.20 Specification of the potential structure of region type BCS. . 99
6.21 Specification of snapshot diagrams. 100
6.22 Views diagram of PdaNet . 101
6.23 Specification of type diagram. 102
6.24 Specification of PdaNet with respect to the physical view. . 103
6.25 Specification of PdaNet with respect to the logical view. . . 103

xiv LIST OF FIGURES

List of Tables

4.1 Classification of scalability concepts 43
4.2 Classification of topology examination results. 44

7.1 Classification of scalability concepts. 109
7.2 Classification of topology examination results. 111
7.3 Concepts for specifying potential reconfiguration. 112

xv

xvi LIST OF TABLES

Chapter 1

Introduction

A large number of modelling languages has been proposed for the de-
velopment of computerised systems in the past 20 years [27]. Different
modelling languages aid the specification of different system properties
such as system function, system behaviour and system communication.
In this thesis we aim to aid the specification of system communication
by proposing a new language, MEADOW (ModElling lAnguage for Data-
flOW), for modelling networks. Specifically we consider large networks
and dynamic networks.

In the following section we introduce central terms and put this thesis
into context by briefly describing the field of research in which we aim
to contribute. In sections 1.2 and 1.3 we motivate and give an overview
of the thesis.

1.1 Background

Inspired by [3], [20], [11], [19] and [9], we define a network to be a set
of components connected by channels over which the components can
communicate by sending and receiving messages. Components may
themselves consist of sub-components, thus making up a component
hierarchy. We distinguish between static and dynamic networks. A
static network is a network with a fixed structure that does not change
over time, whereas a dynamic network is a network that is not static.
Moreover, we consider three kinds of dynamic networks: (1) object-
oriented networks which are networks in which components act as ob-
jects in object-oriented languages; (2) ad hoc networks which are net-
works where components and channels do not constitute a fixed struc-
ture partly due to the fact that they may enter or leave the network dur-
ing computation; (3) mobile code networks which are networks where
sub-components may be sent from one component to another.

1

2 CHAPTER 1. INTRODUCTION

The field of research in which we aim to contribute is system engineer-
ing which according to [25] can be defined as “the activity of specifying,
designing, implementing, validating, deploying and maintaining systems
as a whole”. Several different system engineering methods have been
developed in order to achieve the goal of cost-effective development of
quality systems. A system engineering method is a structured approach
to system development, and all methods are based on the idea of de-
veloping models of a system which may be represented graphically, and
using these models as a system specification or design. Indeed, model-
ling has been the cornerstone in many traditional software development
methodologies for decades, and a large number of different languages
and approaches have been developed [14].

Examples of languages that can be used to model networks are con-
text diagrams, object communications diagrams, JSD system network
diagrams [27], SDL [11], FOCUS [3] and UML [19]. All these languages
can be seen as extensions of the traditional dataflow language (TDL). We
address limitations of TDL when used to model the structure of large
and/or dynamic networks. In particular, aiming to overcome these lim-
itations, we propose a new language, MEADOW (ModElling lAnguage for
DataflOW) which essentially is an extension of TDL. MEADOW has con-
cepts such as component types/instances, generalisation, parameterised
components for increasing scalability in a specification as well as a num-
ber of concepts for specifying relationships between components.

1.2 Motivation

Our overall motivation is the need for cost-effective development of
quality systems. Specifically, as mentioned previously, we want to over-
come limitations in TDL when used to model large and/or dynamic net-
works. There are three main problems that we wish to overcome: (1)
the problem of scalability, which is that TDL specifications can get space
consuming and chaotic when used to describe large networks; (2) the
problem of generality, which is that TDL cannot specify network topo-
logies consisting of an arbitrary number of components. We distinguish
between five topologies that TDL cannot specify in the general case: the
star, tree and ring topologies for point to point networks, and the bus
and ring topology for multipoint networks; (3) the problem of specifying
dynamic reconfiguration, which is that TDL does not include concepts
for specifying dynamic properties, and therefore is unsuited as a means
for specifying dynamic networks.

1.3. OVERVIEW 3

Our motivation is to improve and extend the concepts of current state-
of-the-art modelling languages (that may be seen as extensions of TDL)
with respect to the problems described above.

1.3 Overview

Chapter 2 introduces and explains terms and concepts that are central in
this thesis. In the first section we introduce network terminology, then
based on this introduction we define a conceptual terminology frame-
work. This framework will be the basis for describing our language do-
main.

Chapter 3 describes the purpose and the target group of MEADOW. A
brief discussion on language quality is presented, as well as a discussion
on the limitations of TDL for describing our language domain. On the
basis of these discussions we formulate four success criteria that can
be used in order to assess how successfully a given dataflow language
solves the three problems we address. Finally, we suggest how the suc-
cess criteria can be assessed.

Chapter 4 presents an evaluation of three state-of-the-art modelling lan-
guages, FOCUS [3], SDL [11] and UML [19], with respect to three of the
previously mentioned success criteria. In the end of the chapter we com-
pare the evaluation results.

Chapter 5 introduces the concepts of MEADOW, and explains these by
small examples.

Chapter 6 employs MEADOW in a number of small case studies.

Chapter 7 presents an evaluation of MEADOW with respect to the suc-
cess criteria that are defined in chapter 3.

Chapter 8 concludes and summarises the main results of the thesis and
suggests areas of future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Terminology

In the following we introduce and explain terms and concepts that are
central in this thesis. First we introduce central networking terms as
they are defined in literature, then we present a conceptual terminology
framework that allows us to define the language domain of MEADOW.

2.1 Network Terminology

According to [20], a computerised network is a collection of intercon-
nected computers or computerised equipment (components or nodes).
Network connectivity occurs at many different levels. At the lowest level,
a network can consist of two or more components directly connected by
some physical medium (often called a link). At higher levels, connectiv-
ity between two components does not necessarily imply direct physical
connection between them - indirect connectivity may be achieved among
a set of cooperating components. Figure 2.1 shows how indirect connec-
tion can be achieved. Here, the components that are attached to at least
two links run software that forwards data received on one link out on
another. The cloud in figure 2.1 distinguishes between the components
on the inside that implement the network (commonly called switches)
and the components on the outside of the cloud that use the network
(commonly called hosts). The cloud is one of the most important icons
of computer networking [20]. In general, a cloud can be used to repres-
ent any type of network.

We can also view the network as providing logical channels over which
application-level processes can communicate with each other. “In other
words, just as we use a cloud to abstractly represent connectivity among
a set of computers, we now think of channels as connecting one process
to another” [20]. Figure 2.2 shows a pair of application-level processes
communicating over a logical channel. The channel is in turn implemen-

5

6 CHAPTER 2. TERMINOLOGY

ted on top of a cloud that connects a set of hosts.

Figure 2.1: Switched network.

Host Host

HostHost

Host

Application

Application

Channel

Figure 2.2: Process communication over an abstract channel.

2.1.1 Network Architectures

To help deal with the complexity that often occurs when designing net-
works, network designers have developed general blueprints - usually
called a network architecture - that guide the design and implementa-
tion of networks. Network architectures often defines a partitioning of
network functionality into layers of abstraction. The general idea of this

2.1. NETWORK TERMINOLOGY 7

kind of abstraction is that you start with the services offered by the un-
derlying hardware, then add a sequence of layers that provide a higher
(more abstract) level of services. The services provided at the high layers
are implemented in terms of the services provided at the lower layers.
The abstract objects that make up the layers of a network system are
called protocols. A protocol defines two interfaces. First, it defines a
service interface to other objects (on the same computer for example)
that wants to use its communication services. Second, a protocol defines
a peer interface to its counterpart (peer). This second interface defines
the form and meaning of messages exchanged between protocol peers.

Using the terms introduced thus far, we can for example define four
network system layers: Hardware, host-to-host connectivity, process-to-
process channels and application programs. This is illustrated in figure
2.3.

The two most widely referenced architectures are the OSI architecture [6]
and the Internet architecture. For a more detailed description of these
we refer to [20].

Process-to-process channels

Host-to-host connectivity

Application programs

Hardware

Figure 2.3: Example of a layered network system.

2.1.2 Network Topologies

The network topology refers to the way in which components are con-
nected to each other [21]. If communication is established between two
components through a direct channel, one can speak of a point-to-point
channel; a network whose components communicate over point-to-point
channels is called a point-to-point network. On the other hand, if com-
munication is rather broadcasted from one component to several com-
ponents, it is a case of a multipoint channel; a network whose compon-
ents communicate via multipoint channels is called a multipoint network
[21].

Point-to-point networks can have a star, tree, ring or mesh topology. In a
star topology, all components are related by a point-to-point channel to

8 CHAPTER 2. TERMINOLOGY

a common central component called the star centre. In a tree topology,
the network is hierarchically structured with a top component called a
tree root. In a ring topology, all components are related to form a closed
ring. A mesh topology is formed by a number of channels such that each
component pair of the network is connected by more than one path.

Multipoint networks can have a bus or a ring topology. In a bus topology,
each component is set linearly on a channel. Messages are transmitted
by any component through the entire bus in order to reach the other
components of the network. In a ring configuration, all the components
are set on a closed circuit formed by a series of point-to-point channels.
These components form a ring.

2.1.3 Dynamic Networks

Networks may be static or dynamic. In the following we introduce terms
related to dynamic networks. We separate between three kinds of dy-
namic networks: object-oriented networks, ad hoc networks and mobile
code networks. We explain each of these in turn.

Object-oriented networks are networks in which components are im-
plemented by objects in the sense of object-oriented programming lan-
guages. There are many object-oriented programming languages today,
examples are Simula, Smalltalk, C++ and Java to name but a few. Im-
portant object-oriented concepts are objects, classes and inheritance.
Objects are basic uniquely identifiable run-time entities that can be dy-
namically created or destroyed during execution. An object can invoke
methods on other objects via references called pointers. A class defines
a set of possible objects, and from the point of view of a strongly typed
language, a class can be seen as a construct for implementing a user-
defined type [12]. “Inheritance is a relation between classes that allows
for the definition and implementation of one class to be based on that
of other existing classes” [12].

“An ad hoc network is a dynamically reconfigurable wireless network
with no fixed infrastructure or central administration” [1]. Components
in these networks move arbitrarily; thus, network topology changes fre-
quently and unpredictably. Current cellular networks rely on a wired
infrastructure to connect different cells. In ad hoc wireless networks,
however, a remote mobile component interconnection is achieved via a
peer-level multihopping technique [17]. Moreover, each component in an
ad hoc network is willing to forward packets to other components that
cannot communicate directly with each other [2]. A classic example of
ad hoc is a network of war fighters and their mobile platforms in battle-

2.2. A CONCEPTUAL TERMINOLOGY FRAMEWORK 9

fields.

Mobile code networks are networks which accommodate code mobility.
Despite the wide-spread interest in mobile code technology and applic-
ations, the field is still quite immature. A sound terminological frame-
work is still missing. However, according to [7], code mobility can be
defined informally as the capability to dynamically change the bindings
between code fragments and the location where they are executed. As
an example of an application area, the research work on distributed op-
erating systems is concerned with the ability to support the migration of
active processes and objects (along with their state and associated code)
at the operating system level. In particular, process migration concerns
the transfer of an operating system process from the machine where it
is running to a different one, and object migration makes it possible to
move objects among address spaces [7].

2.2 A Conceptual Terminology Framework

In order to define a conceptual terminology framework that captures all
network layers, we abstract from the distinction between physical and
logical layers. Hence forth, a network is a set of components and a set
of channels over which the components communicate. Components are
the interconnected entities that a network consists of, channels are the
connections between components that can occur at any level of commu-
nication.

Networks that consist of computers that are connected by fixed wires, or
networks that consist of application processes connected by TCP/IP, are
essentially represented in the same way. As we use the term component
to generalise the exact nature of the communicating entities a network
consist of, so do we use the term channel to generalise the exact nature
of how components are connected.

2.2.1 Basic Conceptual Terms

The UML class diagram depicted in figure 2.4 specifies the basic con-
ceptual terms. As specified in the diagram, we distinguish between two
types of components: elementary components and composite compon-
ents. Elementary components do not contain sub-components, while
the composite components contain sub-components and channels over
which they communicate. Looking at figure 2.4 again, we see that each
channel has exactly two ports. Components reference ports in order to
receive or transmit messages on channels. These references represent

10 CHAPTER 2. TERMINOLOGY

Elementary
component

*

2

*

*

*

1 belongs tois part of

references

Composite
component

sub-component connects

is part of contains

* *

Component

Channel

Port
referenced by

Figure 2.4: Basic conceptual terms.

interfaces between a component and its environment or between a com-
posite component and its sub-components.

In the following we define the terms in figure 2.4. The definitions are
inspired by [3], [11], [19] and [9].

Component Entity (such as for example a computer, a chip or an applic-
ation process) that communicates with its environment through a
set of referenced ports. A component may be created or killed
during computation and may be sent from one component to an-
other via channels. The duration of time from the creation of a
component to its death is called the lifetime of the component. A
component may have a behaviour which defines (1) how messages
that are received by its referenced ports may be handled and (2)
how messages are output on its referenced ports. A component
can be elementary or composite.

Elementary Component A component that does not contain internal
sub-components or channels.

Composite Component A component that contains sub-components. A
composite component may contain channels over which its sub-
components may communicate. The ports that are referenced by a
composite component represent (1) the interface between the en-
vironment of the composite component and its sub-components or
(2) the interface between the environment of the composite com-
ponent and its behaviour, i.e. messages received on these refer-
enced ports are not sent to sub-components directly. A composite
component may communicate with its sub-components.

Port Provides an interface between a component and its environment
or between a composite component and its sub-components. This

2.2. A CONCEPTUAL TERMINOLOGY FRAMEWORK 11

makes it possible to specify a component without any knowledge
of the environment it will be embedded in [19]. A port is either an
input-port or an output-port. The former receives messages from
a channel, whereas the latter transmits messages to a channel. By
convention, the name of an input-port is equal to the name of its
channel prefixed by the ’?’-character, and similarly the name of an
output-port is the name of its channel prefixed by the ’!’-character.
A port is created when its channel is created, and it is killed when
its channel is killed. A reference to a port may be sent from one
component to another via a channel.

Channel A channel represents the forwarding of messages from an output-
port to an input-port, hence a channel is directed. A channel is
shared if any of the ports it connects are referenced by more than
one component. A channel may or may not allow message over-
taking and message disappearance. A channel is created when its
containing composite component is created. A channel may also
be created or killed during computation.

Example: O-O Net

In the following example we demonstrate how the terminology intro-
duced above can be used to model a network called O-O Net. O-O Net
contains three objects, A, B and C. At the beginning of computation (time
0), B and C has no references to other objects, while A has a reference
!c1 to B and a reference !c2 to C. During computation, at time 1, object
A sends a copy of !c2 B. At time 2, A removes !c1 from its set of port
references.

A

B

C

A

B

C

A

C

B

c2

c1 c1
c2 c2

time=0 time=1 time=2

O-O Net O-O NetO-O Net

Figure 2.5: O-O Net

Figure 2.5 illustrates O-O Net at the three different points in time. In the
figure, the box represents a composite component, the circles represent
components and the directed edges represent channels. Ports are not

12 CHAPTER 2. TERMINOLOGY

shown because they can be derived from the configuration of the chan-
nels.

Time 0. The composite component O-O Net is created along with the
components and channels that are contained in O-O Net. From the con-
figuration of the channels we can derive that object A references two
output-ports, !c1 and !c2. Furthermore B references an input-port ?c1

and C references an input-port ?c2.

Time 1. Object A sends a copy of !c2 to object B. Channel c2 is modi-
fied accordingly. In the figure, the merging of the two lines from A and
B into a single directed line going to C illustrates the fact that A and B
reference the same output-port (!c2). How messages sent from A and B
along channel c2 are merged is not specified.

Time 2. Object A kills its reference !c1. Consequently channel c1 is
killed because its output-port is not referenced by any component. No-
tice that channel c1 would have formed a feedback connection if !c1 had
been referenced by B.

2.2.2 Static, Dynamic and Mobile Networks

Based on the terms introduced in the previous subsection, we define
static network and the different kinds of dynamic networks specified in
the UML class diagram in figure 2.6. Note that the following terms are
defined with respect to a model of a network. Consequently, whether
we say that a network is dynamic or not depends on the level of abstrac-
tion we choose to model it from, and not necessarily on the physical
infrastructure of the network for example.

Network A set of components and channels over which the components
may communicate.

Static network A network is static if the sets of references to ports
and sub-components of any of its components remain constant
throughout any computation. Hence, in a static network, compon-
ents and channels are neither created nor killed during computa-
tion.

Dynamic network A network that is not static.

Mobile network A network is mobile if it at some point in time contains
two components C1 and C2 such that C1 may enter or leave C2

during the lifetime of C1 and C2. In other words, a mobile network
is a network that contains a component that moves/migrates from

2.2. A CONCEPTUAL TERMINOLOGY FRAMEWORK 13

one composite component to another and thereby changing the set
of composite components it is a part of.

Object-oriented network A dynamic network in which: (1) channels and
components may be created and killed, (2) each component ref-
erences a single input-port and may reference many output-ports
and (3) references to output-ports may be sent along the channels.
In other words, a component represents an object, and the single
input-port contained by the component represents a unique object
identifier. The output-ports referenced by a component represents
object identifiers to other components. The fact that references to
output-ports may be sent along the channels represents the fact
that pointers/references may be passed on from one object to an-
other.

Ad hoc network A mobile network in which channels and components
are created or killed during computation. Ad hoc networks have
no fixed infrastructure and no central administration. Ad hoc net-
works are mobile in the sense that components may move from
one composite component to another. This allows us to model the
fact that a component (f.ex. a mobile telephone) may move from
the transmission radius of one component (f.ex. a base station) to
the transmission radius of another component (f.ex. another base
station). Ad hoc networks are not mobile code networks.

Mobile code network A mobile network where mobility is only due to
components being sent from one component to another via chan-
nels. The distinction between a mobile code network and a mobile
network is that a mobile network allows components to move from
one composite component to another without being transported
on a channel, but in a mobile code network component movement
must occur via channel transportation. A component that is sent
from one component to another may for example be an active pro-
cess at the operating system level.

14 CHAPTER 2. TERMINOLOGY

Mobile code networkAd hoc network

Object-oriented network

Dynamic network

Mobile network

Figure 2.6: Classification of dynamic networks.

Chapter 3

Problem Analysis

In this chapter we explain the purpose of MEADOW, then on the basis of
an introduction to language quality and a discussion of the problem do-
main of this thesis, we list four success criteria for modelling languages.
Our overall hypothesis is that MEADOW fulfils these criteria, and at the
end of this chapter we propose a strategy for how to provide evidence
for its validity.

3.1 Purposes and Target Groups

There is a need to clarify to what purpose MEADOW should be used and
what target group MEADOW is aimed at. This is necessary in order to
select the right balance between the level of understandability and the
level of expressibility that we want MEADOW to achieve.

MEADOW is a graphical language intended to aid the development as-
pects related to computerised networks by providing a way to model
computerised networks. For example, much research has been devoted
to the development of routing algorithms for ad hoc networks, and
MEADOW (in combination with other languages) could be used to test
these algorithms. Specifically however, MEADOW is intended to model:

• the infrastructure of static and dynamic networks;

Furthermore, MEADOW is intended to be used/understood by developers
of computerised networks as well as non-developers. This suggests that
the level of comprehensibility of MEADOW should be high.

For clarity, there are three specific aspects that MEADOW is not intended
to model:

• MEADOW is not intended to model the behaviour of components
in networks. This because many languages exist today that can

15

16 CHAPTER 3. PROBLEM ANALYSIS

specify behaviour, and because we want to limit the scope of this
thesis. Having said that, we do want MEADOW to be used in com-
bination with other languages for specifying behaviour.

• MEADOW is not intended to model distances in physical space.
This is abstracted away because of scalability issues.

• MEADOW is not intended to model communication between a com-
posite component and its sub-components, i.e. we focus on peer-
to-peer communication.

3.2 Language Quality

As mentioned in the previous section, we want MEADOW to have a high
level of comprehensibility appropriateness, but there are also several
other aspects of language quality that are worth taking into considera-
tion when developing a modelling language.

The paper [14] presents a quality framework for evaluating the qual-
ity of modelling languages. Further details on the framework can also
be found in [4], [13] and [15]. Five areas for language quality are iden-
tified, with aspects related to both the underlying (conceptual) basis of
the language and the external (visual) representation of the language:

Domain appropriateness. This area address to what extent the concep-
tual basis of a language is able to express the intended language domain.

Participant language knowledge appropriateness. This area relates the
participant (language user) knowledge to the language. The conceptual
basis of a language should correspond as much as possible to the way
individuals perceive reality.

Knowledge externalizability appropriateness. “This area relates the lan-
guage to the participant knowledge. The goal is that there are no state-
ments in the explicit knowledge of the participant that cannot be ex-
pressed in the language” [14].

Technical actor interpretation appropriateness. This area relates the
language to the technical actor/developer interpretations. “For the tech-
nical actors, it is especially important that the language lend itself to
automatic reasoning” [14].

Comprehensibility appropriateness. We describe this area in more detail
since we want MEADOW to have a high comprehensibility. According to

3.3. THE PROBLEM DOMAIN 17

[14], for the conceptual basis of a language the following aspects related
to comprehensibility are important:

• The phenomena of the language should be easily distinguishable
from each other.

• The phenomena must be general rather than specialised.

• The phenomena should be composable, i.e. one should be able to
group statements in a natural way.

• The language must be flexible in precision.

• The use of phenomena should be uniform throughout the whole
set of statements that can be expressed within the language.

• The language must be flexible in the level of detail.

The following aspects are important for the external representation of
the language:

• Symbol discrimination should be easy.

• It should be easy to distinguish which of the symbols in a model
any graphical mark is part of.

• The use of symbols should be uniform. This means that a symbol
should not represent one phenomenon in one context and another
one in a different context.

• One should strive for symbolic simplicity.

• The use of emphasis in the notation should be in accordance with
the relative importance of the statements in the given model.

• Composition of symbols should be made in an aesthetically pleas-
ing way. The language should not, for example, give rise to unne-
cessarily many line intersections.

3.3 The Problem Domain

We discuss the problem domain that we wish to address. The basis for
this discussion is the limitation of traditional dataflow language (TDL)
for describing the language domain that was described in section 2.2.
We consider three problems: the problem of scalability, the problem of
generality and the problem of expressing dynamic reconfiguration. We
describe each of them in turn, but first we explain what we mean by
TDLs.

18 CHAPTER 3. PROBLEM ANALYSIS

3.3.1 The Traditional Dataflow Language (TDL)

The use of the term dataflow diagram differs with respect to different
sources of literature. See [3] and [27] for example. The definition we will
use however, is based on [3]. Here, a dataflow diagram is simply a direc-
ted graph in which the nodes represent components, and the edges rep-
resent channels, i.e. possible component communication. The concepts
used in this basic diagram is what we refer to as the traditional dataflow
language. TDL diagrams show a set of possible communications without
indicating any sequence. Furthermore, it shows communication only,
and does not refer to a particular run of a system. [27]

A simple example is given in figure 3.1. Here each network component is
represented by a box. The interaction between the network components
is expressed by the arrows.

Figure 3.1: Example of a TDL diagram.

3.3.2 The Problem of Scalability

There are two scalability problems that may arise when TDL is used to
model large networks:

1. The models may get large (space consuming).

2. The models may get chaotic.

These problems occur for two reasons: (a) because TDL have few con-
cepts of abstraction and (b) because TDL lacks concepts of structuring
patterns in a specification that may increase scalability.

3.3. THE PROBLEM DOMAIN 19

The idea of an abstraction is to define a unifying model that can cap-
ture some important aspect of a system and hide irrelevant details. In
other words, one can use abstraction as a way to handle higher complex-
ity without being drowned in details. An example of abstraction is given
in figure 3.2, where the the composite component A is seen through a
black-box view on the left, and a glass-box view on the right. The in-
ternal structure is abstracted away in the specification on the left side.
The terms black-box and glass-box are used in FOCUS [3], in STATE-
CHARTS [10] they are known as clustering and refinement.

A

B

C

A

Figure 3.2: Black-box view (left). Glass-box view (right).

There are also ways of enhancing the scalability of specifications without
using abstraction. As mentioned, TDL lacks concepts of structuring pat-
terns in a specification. If one for example wants to specify 100 similar
components, one has to draw up 100 boxes. As an example of principle,
consider a network consisting of four similar computers that are (for
simplicity) not connected. This is specified on the left side of figure 3.3
with TDL notations. On the right side of figure 3.3, we have specified the
same network with SDL [11] notations. The label C(4):Computer means
that four instances of Computer is specified. If we compare the two spe-
cifications in figure 3.3, it becomes obvious that the specification on the
right side scales better than the one on the left side. Note that this is not
an example of abstraction, since both specifications in essence are equi-
valent, i.e. no information is abstracted away in the SDL specification.

3.3.3 The problem of Generality

In TDL, one may only specify a fixed number of components or channels.
However, it is sometimes necessary to specify networks that consist of

20 CHAPTER 3. PROBLEM ANALYSIS

Computer1

Computer4

Computer2

Computer3

C(4):Computer

Figure 3.3: TDL specification (left). SDL specification (right).

n components or n channels where n ∈ N. The problem is that it would
be impossible to specify such a network in TDL without introducing ad-
ditional concepts.

Some network topologies that do not consist of a fixed number of com-
ponents are easier to describe than others. To see this, compare the star
and the ring topology for example. On one hand, a star topology can eas-
ily be specified using the concept of a one-to-many relationship which is
supported by many specification languages such as for example FOCUS
[3], UML [19] and SDL ??. On the other hand, none of these languages
can specify (graphically) a ring topology with n components precisely.

As mentioned earlier in chapter two, network topologies can be classi-
fied into star, ring, tree and mesh for point-to-point networks, and ring
and bus for multipoint networks [21]. In figure 3.4 we have attempted
to illustrate these topologies in the general case, i.e for networks that
do not have a fixed number of components. We have left out the mesh
topology because the relationship pattern between the nodes of this to-
pology is too weak for a desirable generalisation. In the general case the
star, the bus and the two ring topologies all consists of n nodes that
are structured in a fairly straight forward manner. The tree topology is
a little different. Here the root node is connected to m sub-nodes, and
each of these sub-nodes are in turn connected to a different number of
sub-nodes of their own. We say that the tree is uniform if all nodes ex-
cept the leaf-nodes are connected to an identical number of sub-nodes.
Otherwise the tree is non-uniform. If for example the tree in figure 3.4
is uniform, then we would have that m = n = o = p. The depth of the
tree in figure 3.4 is 3, but in the truly general case we can imagine such
a tree having a depth of d.

3.3. THE PROBLEM DOMAIN 21

6

1

2

3

4

5

n

.

.

.

...

...1 2

1

1 2 n 1 2 1 2

.

.

.

1

2

3

5

6

n

4

Star Tree

. . .
.
.
.

1

2

3

4

5

6

n

1 2 3 n

m

o p

Ring (multipoint)Ring (point-to-point) Bus

Figure 3.4: Network Topologies.

22 CHAPTER 3. PROBLEM ANALYSIS

3.3.4 The Problem of Expressing Dynamic Reconfiguration

Components and channels specified in TDL are statically fixed, hence
TDL is not well suited to model dynamic networks where components
and channel may be created and killed. We separate between three dif-
ferent types of dynamic networks that TDL lacks concepts to specify.

1. Ad hoc networks.

2. Mobile code networks.

3. Object-oriented networks.

3.4 Overall Hypothesis

Having described (1) what we intended to model, (2) examined language
quality and (3) described the domain specific problems we wish to ad-
dress, we list four success criteria for a given dataflow language DL. Our
hypothesis is that MEADOW fulfils these success criteria.

Success Criteria

The success criteria for a given dataflow language DL are:

• DL should have a high comprehensibility appropriateness;

• DL should handle the problem of scalability;

• DL should handle the problem of generality;

• DL should be able to specify object-oriented networks, ad hoc net-
works and mobile code networks.

3.5 Scientific Methods

In this section we discuss different scientific methods that might be used
to argument that the success criteria are fulfilled.

According to [18], research evidence is gathered to maximise three things:
(A). The generalizability of the evidence over populations of actors.
(B). The precision of measurement of behaviours.
(C). The realism of the situation or context.

Eight research strategies that each have different strengths and weak-
nesses with respect to (A), (B) and (C) are summarised below. These

3.5. SCIENTIFIC METHODS 23

methods are taken from the book [18] where they are presented as a
way to study groups in social science, but they may also be used in com-
puter science.

- Field studies refer to efforts to make direct observations of ongoing
systems. “Field studies gain realism (C) at the price of low generaliz-
ability (A) and lack of precision (B)”[18] In a computer science setting,
these ongoing systems might be running software or hardware in a cer-
tain work setting. This method might for example be used to study the
usability of a groupware program in a work setting by observing how
users use the groupware.
- Laboratory experiments are attempts to create and maximise the “es-
sence” of some general class of systems by controlling the extraneous
features of the situation. This method is high on precision of measure-
ment, and might be used in a computer science setting to assess attrib-
utes of a class of networks, algorithms, hardware components et cet-
era. An example of a laboratory experiment is to create a computer net-
work and manipulate the traffic to study how new queueing algorithms
in routers effects latency in the network.
- Field experiments are similar to field studies, but with one major dif-
ference; the deliberate manipulation of some feature whose effects are
to be studied. This method might be carried out in a computer science
setting for example by observing the effects of deliberately increased
workload of the computer system in a certain workplace.
- Experimental simulations is a laboratory study in which an effort is
made to create a system that is like some class of naturally occurring
systems. In a computer science setting this method might be used to as-
sess certain attributes of software, hardware, algorithms, et cetera. One
might for example study the use of a particular groupware in a created
work environment in order to assess attributes of the groupware.
- Sample surveys are efforts to get information from a broad and well
devised sample of actors. This method is high on generalizability, and
might be used in computer science to assess how certain attributes of
something (f.ex. software, hardware, programming languages etc.) are
considered by a population as a whole.
- Judgement studies are efforts to get responses from a selected sample
of “judges” about a systematically patterned and precisely calibrated
set of stimuli. Judgement studies, as opposed to sample surveys, are
considered to be high on precision of measurement, but low on gener-
alizability. This method might be used in a computer science setting,
for example to study how a groupware has affected work effectivity by
getting precise response from a causally selected sample of users.
- Formal theory. Argumentation based on general formal theory is often
high on generalizability. It is not very high on realism of context. In a

24 CHAPTER 3. PROBLEM ANALYSIS

computer science setting, formal theory might be used for precise argu-
mentation, for example by using mathematics.
- Computer simulations are attempts to model a specific real life system
or class of systems. This method might be used in a computer science
setting by simulating a real computer network to study congestion in the
network.

3.5.1 Verifying the Success Criteria

In this section we describe how we assess the fulfilment of the success
criteria given previously with respect to a given dataflow language DL,
that can be seen as an extension of the traditional dataflow language
(TDL).

“DL should have a high comprehensibility appropriateness.”

The fulfilment of this criteria is assessed by evaluating both the un-
derlying concepts and the visual representation of DL with respect to
the comprehensibility appropriateness aspects that were listed in sec-
tion 3.2. This evaluation should ideally be based on empirical studies
such as sample surveys and judgement studies. However, this would
be too time consuming in the context of this thesis, so we argument by
examples (a form of field study) and explain in natural language how DL
relates to the comprehensibility appropriateness aspects.

“DL should handle the problem of scalability.“

In order to assess how well DL fulfils this criteria, we examine the scalab-
ility concepts of DL that constitutes the extension of TDL. In particular
this applies to concepts of abstraction and concepts for structuring pat-
terns that may make specifications expressed in DL more scalable than
specifications expressed in TDL. We then compare this examination with
similar examinations of other languages.

“DL should handle the problem of generality.”

To assess how well DL handles the problem of generality, we examine if
and how DL can specify networks consisting of n components that have
the following topologies: star, ring for point-to-point networks, and bus
and ring for multipoint networks. In addition to this we examine how
well DL can specify the tree topology in both uniform and non-uniform
situations, with or without fixed depth. We then compare the results of
this examination with the results of similar examinations of other mod-
elling languages.

3.5. SCIENTIFIC METHODS 25

“DL should be able to specify object-oriented, ad hoc, mobile code net-
works.”

In order to verify that a specification language DL fulfils this criteria, we
examine the concepts DL has for specifying dynamic properties. Then
we use DL to specify simple examples of ad hoc networks and mobile
code networks. This will give an indication as to how well DL is able
to describe these kinds of dynamic networks. We then compare the res-
ults of this examination with the results of similar examinations of other
modelling languages.

26 CHAPTER 3. PROBLEM ANALYSIS

Chapter 4

State-of-the-Art

We use the approach for verifying the success criteria that was described
in section 3.5.1 on the parts of three state-of-the-art modelling languages
that may be seen as an extension of TDL. These languages are FOCUS [3],
SDL-2000 [11] and UML 2.0 [19]. We do not evaluate the criteria regard-
ing comprehensibility appropriateness, since this is outside the scope of
this thesis.

Sections 4.1 through 4.3 examine FOCUS, SDL and UML, respectively. In
section 4.4 we compare the results of the examinations.

4.1 FOCUS

The FOCUS method [3] is a collection of specification techniques. Al-
though there are many different styles of specification in FOCUS, we ex-
amine the graphical style which is the style most relevant to this thesis.
In the graphical style, components and channels are described graphic-
ally in terms of dataflow diagrams. Each node in such a diagram repres-
ents a component specification.

An example of a FOCUS specification is given in figure 4.1. Here the com-
ponent C is specified as having n input channels and n output channels.

4.1.1 Scalability

We found the following scalability concepts in FOCUS:

27

28 CHAPTER 4. STATE-OF-THE-ART

i1 : I1

on : Ono1 : O1

in : In

...

...

C

Figure 4.1: Example of a FOCUS specification.

Hierarchy

Hierarchy is achieved in FOCUS through the concept of composition, i.e.
a component may consist of other components. The components that
contain other components are called composite components, while com-
ponents that do not consist of other components are called elementary
components.

A composite component specification can be seen through a black-box
or a glass-box view. When composite components are seen through a
black-box view, the internal structure of a specified component is hid-
den (abstracted away), while a glass-box view allows us to see inside the
component. These concepts provide a convenient way of abstracting
away details in a specification, thus making specifications expressed in
the language more scalable than specifications expressed in TDL.

Sheafs of Channels

A sheaf of channels can be understood as an indexed set of channels.
If for example Cid is a set of identifiers, then one may specify as many
channels s as there are elements in Cid by associating the label s[Cid]
with an arrow (which is the graphical representation of a channel/sheaf
of channels). This concept can obviously improve the scalability of chan-
nel specification, since it allows a specifier to specify sets of channels
instead of single channels.

Arrays of Channels

In addition to sheafs of channels, FOCUS provides another way of spe-
cifying channels. This concept, which is very similar to the concept of

4.1. FOCUS 29

sheafs of channels, is not named in FOCUS, but we name it arrays of
channels (for lack of a better term).

An array of channels, as the name suggests, may be understood as an ar-
ray of channels. Specifically, i1...in denotes the specification of n chan-
nels as illustrated in figure 4.1. An example of how sheafs of channels
and arrays of channels can be used in combination is illustrated in figure
4.2.

Specification Replications

Sometimes networks contain numerous instances of the same compon-
ent. Specification replications is a concept developed to exploit this in
order to make specifications more scalable.

A specification where this concept is used is illustrated in figure 4.2.
Here, C is a component specification uniquely defined by a constant,
Cid is a set of component identifiers and c ∈ Cid. The specification
contains exactly one instance of the component C for every identifier c.
Note that the concept of sheafs of channels is also illustrated in figure
4.2.

Specification replications may increase the scalability of a specification
because the concept enables a specifier to specify sets of components
instead of single components.

o1[c] : O1

i1[c] : I1 in[c] : In...

... om[c] : Om

c ∈ CidC

Figure 4.2: An example of specification replications.

Parameterised Specifications

Specifications can be parameterised explicitly by types and constants.
This makes it possible to describe components that are schematically

30 CHAPTER 4. STATE-OF-THE-ART

similar and differ only in minor details. This concept can be used in
combination with specification replications in order to overcome the lim-
itation that all components in a specification replication must have the
same internal structure. To see this, consider figure 4.3 that contains
exactly one specification of the component Server for every element
in the set Sid. Each Server component may take a different parameter,
thus each Server component may have a different internal structure. In
this way parameterised specifications may increase the flexibility of spe-
cification replications, thus making specifications in FOCUS more scal-
able.

Dependent Replications

Dependent replications of specifications in FOCUS are introduced to
handle nonuniform configurations. An example is given in figure 4.3,
where Server components are connected to Mmi components in a
nonuniform manner, that is, two different Server components can be
connected to a different number of Mmi components. The nonuni-
form relationship between servers and Mmis is specified by the aux-
iliary function f .

The concept of dependent replications increases the flexibility of sheafs
of channels which, as mentioned previously, provides a scalable way of
specifying connections between components.

4.1.2 Generality

It goes without saying that FOCUS has concepts that allow us to specify
certain network topologies consisting of n components. However, this
is not the case for all network topologies.

Point to Point Topologies

The star topology can be expressed using sheafs of channels and spe-
cification replications. If we look at figure 4.3 again, and ignore the Mmi
components and all the channels going to and from the Mmi compon-
ents, we see that a star topology is specified. Cnt would then be the star
centre.

The tree topology can be specified for a fixed depth. Again we can use
figure 4.3 as an example, because the network specified there may in
fact have a tree topology. The depth of the tree is fixed and equal to 3.
Furthermore, the tree can either be uniform or non-uniform depending
on the definition of the auxiliary function f . Trees of arbitrary depths

4.1. FOCUS 31

Mmi

Cnt(Sid)

Server(f (x))

y ∈ f(x)

s[Sid] : S

s[x] : S

r[Sid] : R

ls[f(x)] : S
x ∈ Sid

lr[y] : R ls[y] : S

i[y] : I o[y] : O

lr[f(x)] : R

r[x] : R

Figure 4.3: An example of dependent replications.

are not possible to specify in FOCUS.

The ring topology can not, in the general case, be specified in FOCUS.
The reason is that such a specification would involve internal commu-
nication between specification replications, and this is not possible to
specify in FOCUS.

Multipoint Topologies

It is possible to specify the bus or the ring topology for multipoint net-
works in FOCUS. But this can only be done for a fixed number of compon-
ents. Specification of these topologies in the general case in not possible,
since this would involve internal communications between specification
replications.

4.1.3 Dynamic Reconfiguration

It is possible to specify a snapshot of the structure of a dynamic network,
i.e the structure of a dynamic network at a given point in time. But
FOCUS has no concepts for graphically specifying how the structure of a
network may change over time.

32 CHAPTER 4. STATE-OF-THE-ART

4.2 SDL-2000

The Specification and Description Language (SDL) is a formal and visual
modelling language standardised by the International Telecom Union
(ITU), intended for unambiguous specification and description of tele-
com, distributed and embedded systems. The language is based on finite
state machines and includes concepts for behaviour and data descrip-
tion and concepts for complex system structuring in addition to a visual
action language and an execution model [16].

The language has been evolving since 1980 with updates in 1984, 1988,
1992, 1996 and 1999. Our examination is based on the update made in
1999, known as SDL-2000 [11].

SDL is used for the specification of systems. An SDL system consists
of:

• One or more agents. An agent may be of the kind system, block
or process. A block may contain other blocks or processes, while a
process can only contain other processes (not other block). System
is a special case of the outermost block.

• Gates that agents communicate through.

• Channels that connect gates.

An example of an SDL specification is given in figure 4.7, where three
block agents named Panel, Door and Controller are represented by boxes
with the appropriate labels. The channels connecting the blocks (actu-
ally the gates, but they are suppressed) are represented by the arrows.

In the following we examine in more detail how systems are are struc-
tured in SDL. We do not examine SDL concepts for specification of pro-
cess behaviour or other aspects of SDL, since this is outside the scope of
this thesis.

4.2.1 Scalability

The following scalability concepts were found in SDL:

Hierarchy

A block can be a container for a substructure of blocks connected by
channels. Each of these blocks may in turn consist of a substructure of
blocks or processes. This decomposition may be applied to any depth,
thus making it possible to specify a hierarchy of blocks.

4.2. SDL-2000 33

block type diagram

channelagent block

Panel Door

Controller

block type AccessPoint

C

d

gate

e

Figure 4.4: Example of an SDL specification.

Types, Instances and Sets

Agent types define the common properties of instances. It is possible to
specify sets of agent instances of the same type. This concept offers the
same scalability advantages as specification replications in FOCUS does.
Figure 4.5 gives an example of how a set of 100 block agent instances of
type AccessPoint may be specified in SDL.

AP(100):AccessPoint

Figure 4.5: Example of a specification of a set of instances.

Subtypes

In general, a type in SDL can be defined as a subtype of another type
(the supertype) and thereby inherit the properties specified for the su-
pertype. This concept may increase scalability of a specification because
it enables specification of sets of instances that are of different sub-
types, but share a common supertype. For example, if the type Access-
Point in figure 4.5 was a supertype, then the 100 specified instances may
not necessarily be of the same type, i.e. they can have different sub-
types. Hence the concept of subtypes increases the flexibility of the use

34 CHAPTER 4. STATE-OF-THE-ART

of agent sets.

Sets of Channels Instances

A channel connected to an agent set will actually represent a set of chan-
nel instances.

An SDL specification of a set of channels is illustrated in figure 4.6. The
line labelled C represents a set of 100 channel instances connecting each
instance of type AccessPoint to the instance of type CentralUnit.

The concept of sets of channel instances offers much of the same scalab-
ility advantages as the concept of sheafs of channels in FOCUS.

C
CentralUnit

ap(100):
AccessPoint

Figure 4.6: Specification of a set of channel instances.

Parameterised Agents

Agents may be parameterised. Parameters may be used in the the in-
ternal structure of agents, thus different instances of the same type may
have different internal structures. This increases the scalability in a spe-
cification, because one does not necessarily have to define a new type
for every agent that have a different internal structure as would be the
case if parameterised agents were not in the language.

Note that all instances contained in an agent set must take the same
parameter.

4.2.2 Generality

Point to Point Topologies

The general case of a star topology of processes and channels is pos-
sible to specify. This is because a set of process instances can be spe-
cified without a fixed cardinality as is illustrated in figure 4.7. The spe-
cification of a process set labelled N(0,):EndNode means that any given
number of process instances of type EndNode may be created during
computation. The arrow represents a set of channel instances that form
a star relationship between the process instances of type EndNode and

4.2. SDL-2000 35

the process instance of type StarCentre.

The general case of a tree topology for a fixed depth greater than two is
not possible to specify in SDL.

The general case of a ring topology can not be specified in SDL because
the languages lacks concepts this kind of specification.

N(0,):EndNode s:StarCentre

Figure 4.7: Example of an SDL specification of the star topology.

Multipoint Topologies

The general case of a bus or a ring topology for multipoint networks
can not be specified in SDL using the concepts of agents and channels.
Nor does SDL specifications containing a fixed number of instances scale
better for these topologies than the corresponding TDL specifications of
the same topologies.

4.2.3 Dynamic Reconfiguration

SDL has one concept for expressing dynamic configuration in a specific-
ation (remember that we only consider the structural concepts of SDL,
i.e. the concepts that may be seen as an extension of TDL).

Process agents can be created dynamically during computation. Process
sets in SDL are assumed to be dynamic in the sense that the number of
instances contained in these sets may change over time. Omitting to spe-
cify the number of instances a process set may contain implies that ini-
tially there is one instance, and that the maximum number of instances
is unbounded. One may also specify the cardinality of a process set ex-
plicitly. Such process sets define an initial number of process instances
that are created and a maximum number of process instances that may
be created. Thus one may specify an initial structure of a system and
constrain the potential number of configurations that the system may
exhibit at a later point in time.

SDL does not have special concepts for specifying mobile code networks.

36 CHAPTER 4. STATE-OF-THE-ART

In the following we suggest how the concept for specifying dynamic re-
configuration that is included in SDL can be used to specify a contrived
example of an ad hoc network. We do not give an example of an object-
oriented network, since such a network would be modelled in much the
same way as an ad hoc network with the additional constraint that pro-
cesses may only have one input gate. We do not give an example of
a mobile code network either, due to the lack of concepts SDL has for
describing such networks.

Example: Ad Hoc Net

Ad Hoc Net consist of three computers c1, c2 and c3 that may commu-
nicate with each other over a wireless network. That is, each computer
has a radio transmitter and a radio receiver and they may be connected
if and only if they are within transmission radius of each other. Assume:
(1) That all radio transmitters and receivers use the same radio fre-
quency. (2) A computer is considered to be a part of Ad Hoc Net if it
connected to one or more computers. Otherwise it is not part of the
network.
(3) c1 is always connected to c2 whenever c1 and c2 are within transmis-
sion radius of each other.
(4) c1 is always connected to c3 whenever c1 and c3 are within transmis-
sion radius of each other.
(5) That c2 and c3 may be connected if they are within transmission ra-
dius of each other.

The suggested SDL specification of Ad Hoc Net is illustrated in figure
4.8. Here, three process sets are specified. Initially there no computers
are part of the network, but each the process sets may contain zero or
one process instance as defined by the label “(0,1)” at some later point
in time. Thus the specification contains information of how the network
may be reconfigured by constraining the number of potential configur-
ations the network may exhibit over time. SDL has no concept for spe-
cifying that c2 and c3 may not always be connected when both instances
are part of the network.

4.3 UML 2.0

The Unified Modelling Language (UML) is specified by the Object Man-
agement Group (OMG). UML is broadly used in the modelling of all kinds
of systems and there are a large number of tools that support this lan-
guage [16].

4.3. UML 2.0 37

c1(0,1):Comp

c2(0,1):Comp c3(0,1):Comp

type AdHocNet

Figure 4.8: Suggested specification of Ad Hoc Net.

Our evaluation is based on UML 2.0. Since the final specification of UML
2.0 is not complete at the time of writing, the basis of our examination
of UML 2.0 is the draft specification [19].

We limit our examination of UML 2.0 to the parts that are relevant for
this thesis, specifically this means that we examine composite structures
of UML 2.0 which defines the following concepts:

• Structured classes that support the representation of classes which
are both encapsulated by ports and have an internal structure.

• Parts that are specified within the internal structure of a structured
class, and represents sets of instances.

• Connectors which represent a set of links over which instances in
an internal structure may communicate.

An example of a UML 2.0 specification is given in figure 4.9. Here the
structured class AccessPoint is specified as having three parts that rep-
resent instances of type Door, Panel and Controller. The lines that con-
nect the parts represent connectors. The small boxes on the boundaries
of the structured class represent ports.

4.3.1 Scalability

The following scalability concepts were found in UML:

Hierarchy

Classes may have an internal structure that contain parts and connect-
ors. These parts may represent instances of types that also have an
internal structure, thus constituting a hierarchy of parts.

38 CHAPTER 4. STATE-OF-THE-ART

AccessPoint

ConnectorPart

Structured class

:Panel

:Controller

:Doore

C

d

Figure 4.9: Example of a UML 2.0 specification.

Classes, Instances and Parts

UML distinguishes between classes and objects of classes. Classes define
the common features of a set of objects/instances.

Instances of the same type can be represented by parts. This concept
is similar to agent sets in SDL or specification replications in FOCUS,
and offers the same scalability advantages.

The cardinality of a part, i.e. the number of instances contained in a
part, can be defined using a so-called multiplicity. The graphical repres-
entation of a multiplicity on parts is a number written in the top right
corner of a part, or in brackets next to the label of a part. See for ex-
ample figure 4.16 where the number n defines the cardinality of the part
labelled b:.

Generalisation

UML distinguishes between subclasses and superclasses. A subclass may
inherit and specialise the properties defined in a superclass. Several
different subclasses can share the same superclass. Thus a part that
specifies instances of a supertype can represent instances of several sub-
types. This concept offers the same scalability advantages as the concept
of subtypes in SDL.

4.3. UML 2.0 39

Connectors

A connector may represent a set of links. For example, a connector con-
necting two parts that each consists of a number of instances, repres-
ents a link between every instances in the two parts. This is illustrated
in figure 4.10, where (i) illustrates a connector between two parts each
containing two instances as indicated by the number in the top right
corner of the parts. (ii) illustrates the same specification, only this time
the parts each contain only one instance. As can be seen from the illus-
trations, the top specification actually represents a set of four links.

/b:/a:

/a:

(i)

(ii)

/b:

2 2
a: b:

Figure 4.10: Connectors.

Multiplicity on Connector Ends

Multiplicities may be associated with connector ends. Such multiplicities
serve to restrict the number of initial links created. Links will be created
for each instance playing the connected roles until the connector end
multiplicity is reached for both ends of the connector. This concept in-
creases the flexibility of connectors.

Figure 4.11 illustrates the concept. Here the specification in (i), where
multiplicities on the connector ends is used, results in the specification
in (ii).

Multiplicity on Ports

Multiplicities on ports may define how many links that will be created
from connectors that attach to these ports. This concept is similar to
arrays of channels in FOCUS.

40 CHAPTER 4. STATE-OF-THE-ART

/b:/a:

/a:

(i)

(ii)

/b:

2 2
a: b:

1 1

Figure 4.11: Multiplicities on connector ends.

b:Ba:A

p[3] q[3]

Figure 4.12: Multiplicities on ports.

An example is given in figure 4.12, where two ports, each associated
with a multiplicity, are specified. The connector represents a many to
many relationship of links. This means that nine links, each connecting
part a and b, will be created upon instantiation.

Templates

The concept of templates is similar to the concept of parameterised com-
ponents in FOCUS and parameterised agents in SDL. Figure 4.13 gives an
example of a class with the template parameter CarEngine of class En-
gine and a so-called value template parameter n of type Integer.

Figure 4.14 shows a part of type Engine with actual parameters. Note
that both instances in the part take the same actual parameters.

The concept of templates offers much of the same scalability advant-
ages as the concept of parameterised agents in SDL.

4.3.2 Generality

Point to Point Topologies

The star topology may be specified in UML in a manner similar to the
SDL specification of this topology.

4.3. UML 2.0 41

Car

e:CarEngine dw:Wheel[n+1]

CarEngine:Engine, value n:Integer

Figure 4.13: Example of template parameters.

<CarEngine:: DieselEngine, n:: 2>
DieselCar: Car[2]

Figure 4.14: Example of actual parameters.

The general case of a non uniform tree topology can not be specified
in UML. However, the uniform tree topology can be specified for a fixed
depth. This is illustrated figure 4.15. Here the instance contained in the
part named a is connected to every instance in the part named b, which
each in turn are connected to i instances in c. Note that a uniform tree
topology of depth three is specified if m = i * n.

The general case of a ring topology can not be specified in UML. It can
however be underspecified as figure 4.16 illustrates. Here an unspe-
cified (indicated by the * in the top right corner of the part) number of
instances are represented by a part. The number 1 on the connector
specifies that there will be one link created for each instance in the part.
This gives rise to an infinite number of topologies, but one of these to-
pologies will be the ring topology.

a:A c:Cb:B
1

mn
i

Figure 4.15: Specification of a tree topology of depth three.

42 CHAPTER 4. STATE-OF-THE-ART

a:
1*

Figure 4.16: Underspecification of a ring topology.

Multipoint Topologies

The general case of a bus or a ring topology for multipoint networks
can not be specified in UML. They may however be underspecified. We
should also mention that there are ways in UML to refine an underspe-
cification of a bus topology (for example) to a precise specification of
a bus topology by specifying exactly how instances should be instanti-
ated in so-called class constructors. But this may not be done in the
specification diagram. Moreover, the latest UML 2.0 draft specification
[19] available at the time of writing is unclear on how exactly this may
be done.

4.3.3 Dynamic Reconfiguration

We found no concepts in UML for specifying dynamic reconfiguration.

A multiplicity can actually define a lower and an upper cardinality, so
one might think that this concept can be used for expressing dynamic
configuration, but this is not so because a multiplicity in UML only indic-
ates an initial number of instances that may be created. For example, a
part p associated with the multiplicity [0..3] (0 is the lower bound and 3
is the upper bound), will initially contain 0, 1, 2 or 3 instances. Thus the
multiplicity does not express anything about how many instances the
part may contain at some later point in time.

UML does not have any special concepts for specifying that an instance
may be transported on a link. Hence, this aspect of a mobile code net-
work cannot be specified in an UML model.

We do not give examples of UML specifications of dynamic networks,
due to the lack of concepts UML has for specifying these kinds of net-
works.

4.4. LANGUAGE COMPARISON 43

Concept FOCUS SDL UML
Hierarchy Composite

components
Agent sub-
structure

Internal class
structure

Component
sets

Specification
replications

Agent sets Parts

Generalisation Suptypes Generalisation
Dependent
replications

Dependent
replications

Parametrised
components

Parameterised
components

Parameterised
agents

Templates

Channel sets Sheafs of chan-
nels

Sets of channel
instances

Connectors

Channel arrays Arrays of chan-
nels

Multiplicities
on ports

Channel con-
strains

Multiplicities
on connector
ends

Table 4.1: Classification of scalability concepts

4.4 Language Comparison

In this section we compare the three languages with respect to the prob-
lem of scalability, generality and dynamic reconfiguration.

4.4.1 Scalability

Many concepts in the three languages we have examined are similar, al-
though the terms used to describe them are different. These concepts
are classified in table 4.1.

As can be seen from the table, all three languages have the concepts
of hierarchy, component sets, channel sets and parameterised compon-
ents. Both UML and SDL as opposed to FOCUS, have generalisation. But
the drawback of not having this concept is to some extent made up for
in that FOCUS allows different actual parameters to be given to each in-
stance contained in a component set (as was illustrated in figure 4.3).
This is not possible in SDL or UML.

Only FOCUS has the concept of dependent replications which offers
a scalable solution to the problem of specifying non-uniform relation-
ships. SDL and UML do not have any corresponding concept.

44 CHAPTER 4. STATE-OF-THE-ART

Topology FOCUS SDL UML
Star Yes Yes Yes
Tree (uniform) Yes∗ No Yes∗

Tree (non uni-
form)

Yes∗ No No

Ring (p-p) No No No∗∗

Ring (mp) No No No∗∗

Bus No No No∗∗
∗ For a fixed depth.
∗∗ Can be underspecified.

Table 4.2: Classification of topology examination results.

Another difference is that only FOCUS and UML have the concept named
channel arrays (in lack of a better name). This means for example that
n channels between two component instances (agent instances in SDL)
cannot be specified in SDL.

Finally, only UML has the concept we have named channel constraints.
This concept may increase the flexibility of the use of channel sets.

All in all we can conclude that the scalability concepts in the three lan-
guages are very similar, and that none of these languages has concepts
that offer a serious scalability advantage over the other languages. We
did however find 6 scalability concepts for FOCUS, 5 for SDL and 7 for
UML. This suggests that UML handles the problem of scalability slightly
better than the other languages.

4.4.2 Generality

In table 4.2, we summarise the results of the examination of the three
modelling languages with respect to the problem of generality.

The expressibility of the three languages with respect to specifying the
topologies listed in the table are pretty much similar. The exceptions are
(1) that only FOCUS and UML can specify uniform the tree topology for
a fixed depth greater than two, (2) that only FOCUS can specify the non
uniform tree topology for a fixed depth greater than two, and (3) that it
is possible to underspecify some of the topologies in UML.

4.4. LANGUAGE COMPARISON 45

4.4.3 Dynamic Reconfiguration

To give a yes or no answer to the question of whether a language can
model a dynamic network would be an oversimplification. It is possible
to specify a snapshot of the structure of a dynamic network at one point
in time in all three languages. However, only SDL has a concept for ex-
pressing something about the structure a system exhibits at more than
one point in time.

We should stress (again) that our examination is based on the structural
aspects of the languages, i.e. those aspects that may be seen as an exten-
sion of TDL. All three languages do in fact have concepts (state machines
for example) for specifying behaviour, but these are not considered in
the evaluation. Dynamic properties are traditionally not expressed in
structural specifications, and this suggests why all three languages have
so few “structural” concepts of specifying dynamic reconfiguration.

46 CHAPTER 4. STATE-OF-THE-ART

Chapter 5

MEADOW

5.1 Introduction

The main emphasis of this chapter is to introduce and explain, by nat-
ural language and small examples, concepts and features offered by
MEADOW. Exactly how these concepts should be implemented is not the
main focus of this chapter.

5.2 Components

In MEADOW, a component is an entity that communicates with its envir-
onment through its set of referenced ports. We distinguish between a
component type and a component instance. Each component instance is
of a specific component type. A component type describes a set of com-
mon features shared by all of its instances. Each component instance
has its own identity and its own set of properties that conforms to the
features defined by the type. Both component types and component
instances may be:

• composite or elementary,

• parameterised or unparameterised,

• named or unnamed.

A composite component contains internal components and it may con-
tain channels over which these internal components communicate. An
elementary component contains neither internal components nor chan-
nels.

A parameterised component type defines a set of formal parameters that
component instances of this type may take. Parameterised component

47

48 CHAPTER 5. MEADOW

instances are component instances with actual parameters substituted
for formal parameters.

A named component is identifiable within a specification, whereas the
specification of an unnamed component only defines the existence of a
component that may not necessarily be identifiable within a specifica-
tion.

In the following we describe these different component aspects in fur-
ther detail.

5.2.1 Elementary and Composite Components

As mentioned earlier, components can either be elementary or compos-
ite. A composite component contains (possibly) communicating internal
sub-components while an elementary component does not contain in-
ternal sub-components. The components and channels that are part of a
composite component constitute the internal structure of the composite
component.

A composite component may communicate with its sub-components,
but these channels of communication can not be specified explicitly in
MEADOW.

Both composite and elementary components are to be understood as
having a behaviour.

Exactly how sub-components within a composite component are created
or killed is a semantic variation point, i.e. we do not give rules for how
this may be done.

Example

Figure 5.1 presents a specification of one composite component Runtime-
Env, and two elementary components, Program1 and Program2. As shown
in the figure, Program1 and Program2 belong to the internal structure of
RuntimeEnv, thus they are sub-components of RuntimeEnv.

The components represented by RuntimeEnv, Program1 and Program2
are all to be understood as having some kind of behaviour, but (as men-
tioned previously) MEADOW has no constructs for specifying such beha-
viour.

Note that the component represented by RuntimeEnv may communicate

5.2. COMPONENTS 49

with its sub-components, i.e. the components represented by Program1
and Program2

Composite component

RuntimeEnv

Elementary component Internal structure

Program1 Program2

Figure 5.1: Elementary and composite component specification.

5.2.2 Types, Instances and Parts

We distinguish between types of components and instances of com-
ponent types (component instances). This is similar to the distinction
between the concept of classes and objects in object-oriented languages.
A component type describes a set common features shared by all its in-
stances. A component instance must have a type, and the properties of
a component instance must conform to the features defined by its type.

We distinguish between the specification of:

• component types, and

• component instances.

The specification of a composite component type T involves specifying
the internal structure that component instances of T have in common.
The elements of this internal structure constitute the features of T. All
composite component instances of the same type have the same internal
structure1.

Component instances are specified in parts. A part is a subset of the
set of all instances of a component type. Parts are always unnamed, but
the instances in a part may be named. The cardinality of a part may be
explicitly defined by a multiplicity. If the multiplicity is not specified,
then the part has a cardinality equal to 1.

1Unless the composite component is parameterised.

50 CHAPTER 5. MEADOW

We say that the lifetime of a part is equal to the lifetime of the com-
posite component instance that the part is associated with/contained
in.

Example

Figure 5.2 presents a specification of a component type RuntimEnv. The
fact that a component type is specified is indicated by the colon prefix-
ing the label in the top left corner of the specification.

The internal structure that all component instances of RuntimeEnv have
in common, consists of two internal parts labelled Program1 and Pro-
gram2. The first part contains one unnamed component instance of type
Program1, while the other part contains one unnamed component in-
stance of type Program2. These parts constitute the features of the com-
ponent type RuntimeEnv; all instances of component type RuntimeEnv
are each associated with such parts.

:RuntimeEnv

Composite component type Part

Program1 Program2

Figure 5.2: Specification of a component type and parts.

5.2.3 Multiplicity on Parts

A multiplicity is used in order to specify parts that contain more than
one component instance. A multiplicity may consist of (1) a single value
that defines the cardinality that a part must have at all times during its
lifetime (unless the part is dynamic) or (2) two values l and u that define
a lower bound and an upper bound for the cardinality of a part, respect-
ively. A part (that is not dynamic) that is associated with a multiplicity
of the latter kind must have a cardinality equal to exactly one number n,
where l ≤ n ≤ u, at all times during its lifetime. Moreover, a part that is
not dynamic must always contain the same component instances during
its lifetime.

5.2. COMPONENTS 51

A multiplicity associated with a dynamic part has a slightly different
meaning. Dynamic parts are presented in section 5.2.7.

Example

Figure 5.3 presents a specification that contains two parts. The part la-
belled ProgramA[2] contains two unnamed instances of component type
ProgramA. All instances of RuntimeEnv are associated with such parts,
i.e. they each contain two unnamed component instances of type Pro-
gramA. The other part in the specification must contain either two, three
of four instances of component type ProgramB during its lifetime. In
other words, each component instance ci of type RuntimeEnv must con-
tain either one, two or three component instances of type ProgramB at
all times during the lifetime of ci.

Note the overlapping effect on the representation of the parts. This ef-
fect is always used on parts that may contain more than one component
instance.

:RuntimeEnv

ProgramA[2] ProgramB[2..4]

Multiplicity

Figure 5.3: Specification of parts with multiplicity.

5.2.4 Parts of Named Component Instances

A part may be given an identifier that defines the names of the compon-
ent instances that are contained in the part. An identifier may either be
a:

• constant i ∈ T, or a

• type T.

A part whose identifier is a constant contains one component instance
whose name equals that constant. A part P whose identifier is a type T
contains component instances such that ∀e ∈ T: exactly one component
instance named e is contained in P.

52 CHAPTER 5. MEADOW

An identifier defines the cardinality of a part; a part associated with
an identifier type T contains as many instances as there are elements in
T.

If a part is associated with and identifier and a multiplicity, then the
multiplicity defines the cardinality of the part. In such cases the upper
bound of multiplicity cannot exceed the cardinality of the identifier.

If a part is associated with the an identifier T and a multiplicity that
defines an upper and a lower bound such that the upper bound is not
specified (denoted [l..]), then the upper bound equal the cardinality of T.
(See example 2 below).

Example 1

Figure 5.4 presents a specification of a composite component type RuntimeEnv.
Here, the part labelled id:ProgramA consists of one component instance
named id of type ProgramA. The other part labelled {id1,id2}:ProgramB
consists of two component instances named id1 and id2 of type Pro-
gramB.

:RuntimeEnv

{id1,id2}:ProgramB

Identifier constant Identifier type

id:ProgramA

Figure 5.4: Specification of named component instances.

Example 2

Figure 5.5 presents a specification of two parts that are associated with
identifiers and multiplicities. The part labelled {a,b,c}:ProgramA[1..] may
contain either 1, 2 or three component instances during its lifetime. The
other part, labelled {id1,id2}:ProgramB[1], may either contain a compon-
ent instance named id1 or a component instance named id2 during its
lifetime.

5.2.5 Declarations and Assignments

In a part or type specification, it is possible to specify:

5.2. COMPONENTS 53

:RuntimeEnv

{id1,id2}:ProgramB[1]{a,b,c}:ProgramA[1..]

Figure 5.5: Parts with identifiers and multiplicities.

• constant, type and function declarations;

• constant, type and function definitions.

Declared types and constants may be used in the internal structure of
the specification of a composite part or a composite type.

The area in which declarations, assignments and function definitions
are made in a composite component is called the header.

In MEADOW, there are two predefined types, N and S. N denotes the
set of all natural numbers and S denotes the set of all strings. Also, P
denotes a power-set. For example, P(N) denotes the power-set of N, i.e.
the set of all subsets of N.

Example

Figure 5.6 presents a specification of the composite component type
RuntimeEnv. In the header of the specification we have declared and
defined two types, PidA and PidB. These types are used as identifiers for
two of the parts in the internal structure. The part labelled PidA:ProgramA
contains three component instances named id1, id2 and id3. Simil-
arly, the part labelled PidB:ProgramB contains five component instances
named 1, 2, 3, 4 and 5.

:RuntimeEnv

type PidA = {id1,id2,id3}; type PidB = {1..5};

PidA:ProgramA PidB:ProgramB

Type declaration and definition Header

Figure 5.6: Composite component with declarations and definitions.

54 CHAPTER 5. MEADOW

5.2.6 Parameterised Components

In order to model components that are similar, but differ in some small
way, we allow components to be parameterised.

Parameter declarations are of two kinds:

• type T

• constant p ∈ T

The first declares a parameter of type T , the second declares a constant
p of type T . We also distinguish between:

• formal parameters and

• actual parameters.

A formal parameter may occur in a component type only. Actual para-
meters are associated with parts only. An actual parameter is substi-
tuted for a formal parameter.

Example 1

A specification of a parameterised composite component type RuntimeEnv
is presented in figure 5.7. As indicated in the figure, the specification
defines two formal parameters; one type named T, and one constant e
of type S. They are used as identifiers for the instances of the two parts
defined in the internal structure of RuntimeEnv.

:RuntimeEnv(type T, e : S)

T:ProgramA e:ProgramB

Formal parameters

Figure 5.7: Specification of a parameterised composite component type.

Example 2

Figure 5.8 presents a specification of a composite part of type Com-
puter (this is a specification of a part and not a type because there is
no ’:’-character prefixing the label in the top left corner of the specific-
ation). The (sub)part defined in its internal structure consists of one

5.2. COMPONENTS 55

instance of component type RuntimeEnv for each element in Rid. Each
of these instances has the same internal structure as the component
type RuntimeEnv (as specified in figure 5.7), except that the formal para-
meters T and c are substituted by the actual parameters {i1,i2} and i3,
respectively.

type Rid = {r1, r2, r3};

Computer

Rid:RuntimeEnv({i1,i2}, i3)

Actual parameters

Figure 5.8: Specification containing actual parameters.

Example 3

Another specification of a part of type RuntimeEnv is presented in fig-
ure 5.9. In the header we have declared a new function, f , that maps
elements of Rid to elements of S as defined. The part specified in the
internal structure of RuntimeEnv consists of three component instances.
The specification of this part defines that for each x ∈ Rid: the relevant
formal parameters of the instance named x of type RuntimeEnv are sub-
stituted by {i1,i2}, and f (x). For example, this means that the component
instance named r1 of type RuntimeEnv contains a component instance
of type ProgramB whose name is p1 (assuming the specification in figure
5.7).

Computer

type Rid = {r1, r2, r3}; f : Rid → S; f = {r1 → p1, r2 → p2, r3 → p3};

x∈Rid:RuntimeEnv({i1,i2}, f (x))

Figure 5.9: Specification of a parameterised part.

56 CHAPTER 5. MEADOW

5.2.7 Dynamic Parts

A dynamic part is a part that is dynamic in the sense that all component
instances that are contained in the part may be created or killed dur-
ing the lifetime of the composite component instance they are a part of.
Specifically, a dynamic part is part whose cardinality may change during
its lifetime. This is contrary the parts we have seen so far, that must
have a fixed cardinality at all times during their lifetime.

The maximum cardinality of a dynamic part denotes the cardinality value
that the part cannot exceed at any given point during its lifetime. Simil-
arly, the minimum cardinality of a dynamic part denotes the cardinality
value that must be less than or equal to the actual cardinality a part has
at any given time during its lifetime.

If a dynamic part is associated with a multiplicity containing an upper
and a lower bound, then the lower bound defines the minimum cardin-
ality of the part, and the upper bound defines the maximum cardinality
of the part.

If a dynamic part is associated with a multiplicity consisting of a single
value, then the maximum cardinality of that part is equal to this value,
and the minimum cardinality of the part is equal to zero.

If a dynamic part is associated with an identifier (and not a multiplicity),
then the maximum cardinality of that part is equal to the cardinality of
the identifier, and the minimum cardinality that the part is equal to zero.

If a dynamic part is associated with both an identifier and a multipli-
city, then the multiplicity defines the cardinality of the part. The upper
bound of the multiplicity may not exceed the cardinality of the identifier.

We say that a static part is a part that is not dynamic.

Example

Three dynamic parts and one static part are specified in figure 5.10. As
indicated, the notation of a dynamic part is a box with dashed outline.
The dynamic part of type B contains two component instances named a
and b that may or may not be part of the composite component instance
of type A during the lifetime of this composite component. We say that
the cardinality of the part of type B may change between 0, 1 or 2 during
its lifetime.

5.2. COMPONENTS 57

The cardinality of the dynamic part of type C may change between zero,
one or two during its lifetime. Similarly, the cardinality of the part of
type D may change between one and two during its lifetime.

The static part of type E, must have a fixed cardinality of either one
or two during its lifetime, i.e. its cardinality cannot change during com-
putation as the cardinality of dynamic parts can. Furthermore, the part
must either (1) contain a component instance named a at all times dur-
ing its lifetime, or (2) contain a component instance named b at all times
during its lifetime, or (3) contain both a and b at all times during its
lifetime.

A

{a,b}:B C[2] {a,b}:E[1..2]{a,b}:D[1..2]

Dynamic part Static part

Figure 5.10: Specification of static and dynamic parts.

5.2.8 Generalisation

A generalisation is a relationship between two component types, a su-
pertype and a subtype. The subtype of a supertype inherits all features,
i.e. the declarations and definitions and internal structure of the super-
type. This is similar to the concept of inheritance from object-oriented
programming languages.

A subtype A may refine a supertype B. This means that a specification of
A may include features (declarations, components and channels) in ad-
dition to the features that are inherited from B as long as the interface
between A and the environment of A is equal to the interface between
B and the environment of B. The interface between a component and
its environment is defined by the channels with which the component
communicates with its environment.

Example

Figure 5.12 presents a specification of two generalisation relationships.
Here the supertype Program has two subtypes ProgramA and ProgramB.

58 CHAPTER 5. MEADOW

As indicated in the figure, a line with a white arrowhead represents a
generalisation relationship.

Supertype

Subtype

:Program

:ProgramA :ProgramB

Generalisation relationship

Figure 5.11: Generalisation relationships.

5.2.9 Regions

A region is a special case of a composite component. The difference
between the concept of a region and the concept of a composite com-
ponent is that regions cannot have a behaviour, while composite com-
ponents may have a behaviour. Also, a region can not communicate with
its sub-components.

Regions are specified exactly like composite components with two ex-
ceptions: (1) the notation for a region differs from the notation for a
composite component and (2) a region may not be associated with in-
put or output channels that are not connected to its sub-components
or sub-regions within its internal structure. The latter constraint is due
to the fact that a region cannot output messages or process incoming
messages since it does not have a behaviour.

Example

Assume we want to model a network consisting of two computers. It
would be inappropriate to model the network itself as a composite com-
ponent, since a composite component is assumed to have a behaviour
of its own. Hence we use a region instead. Figure 5.12 presents a spe-
cification of a region of type Net. The internal structure of this region
consists of two component instances of type Computer. As can be seen
from the figure, the notation for a region is a box with rounded edges.

5.3. CONNECTORS AND CHANNELS 59

Net

Region

Computer Computer

Figure 5.12: Specification of a region.

5.3 Connectors and Channels

Channels are instances of connectors. Channels connect component in-
stances while connectors connect parts. In the following we describe the
different kinds of channels and connectors that we use in MEADOW.

5.3.1 Classification of Channels

Every channel has exactly one input-port and one output-port. A channel
represents the forwarding of messages from its output-port to its input-
port and may be:

• messaged typed,

• named and

• shared.

A channel c connecting two component instances C1 and C2 means that
C1 can forward messages on c (i.e. C1 has a reference to the output-port
of c) that are received by C2 (i.e C2 has a reference to the input-port of
c) or vice versa.

A shared channel is a channel that has a port that is referenced by more
than one component instance.

A messaged typed channel is a channel that may only forward messages
that are elements/instances of a specific type.

A named channel is uniquely identifiable within a specification, while an
unnamed channel may not necessarily be identifiable in a specification.

5.3.2 Classification of Connectors

A connector is a set of channels that connect component instances in
parts. The exact nature of the relationship of channels a connector con-

60 CHAPTER 5. MEADOW

tains depends on the cardinalities of the parts the connector connects.
We distinguish between three main types of relationships:

• one to one,

• one to many, and

• many to many.

A connector may also have a set of properties that may effect the rela-
tionship of its channels. A connector may be:

• named or unnamed,

• directed or bi-directed,

• split or merged,

• function constrained,

• cardinality constrained,

• identifier constrained.

A connector may also have a multiplicity, an identifier type and a mes-
sage type.

In the following we describe these kinds of connectors in more detail.

5.3.3 Deriving Channels from Connectors

Connectors connect parts, and channels connect component instances.
This is illustrated in figure 5.13.

Component instance Component instance

Connector

Channel

Part Part

Figure 5.13: Connectors and channels.

Channels are never specified explicitly; they are always derived from
connectors in a specification. Moreover, the names of channels may be
derived from the labels that are associated with connectors.

A connector may be associated with a multiplicity. Intuitively the mul-
tiplicity multiplies the relationship of channels that a connector would

5.3. CONNECTORS AND CHANNELS 61

consist of without the multiplicity. For example, a connector named c
that is associated with a multiplicity of n (we denote this c[n]) contains
exactly n relationships of channels.

A multiplicity that is associated with a connector may only contain a
single value.

A connector cannot be associated with both a multiplicity and an identi-
fier.
A connector may also be associated with an identifier. In general, a con-
nector named c that is associated with an identifier type T (we denote
this T:c) means that c contains exactly one channel for each element e
in T whose name is e. For example, a connector {i,j}:c means that a con-
nector named c consists of one channel named i and one channel named
j.

Throughout the rest of section 5.3, “a connector c” denotes a connector
named c that is not associated with a multiplicity or an identifier type.

5.3.4 Directed Connectors

A directed connector consists of channels going in one direction only.
As mentioned previously, the relationship of channels a connector con-
sists of depends on the cardinality of the parts the connector connects.
We distinguish between three main kinds of relationships of channels
that a connector can consist of: one to one, one to many and many to
many. In the following we describe these relationships in more detail.

Henceforth, “the cardinality of a relationship” denotes the number of
channels that constitute a relationship.

One to One

A directed connector c that connects two parts, each of cardinality equal
to one, means that c contains one channel connecting the component
instances in the two parts. We say that c consists of a one to one rela-
tionship. This relationship is illustrated in figure 5.14.

Example

Figure 5.15 presents a specification of a region of type LNet which con-
tains two parts labelled ole:Male and marit:Female. The arrows between
the two parts represent directed connectors. The connector i consists
of one unnamed channel. In other words i contains a single one to one

62 CHAPTER 5. MEADOW

����
����

Component instance of type A

Component instance of type B

Figure 5.14: Illustration of a directed one to one relationship.

relationship. The connector j[2] contains two one to one relationships,
i.e. two channels. The connector {a,b}:k consists of two channels named
a and b.

{a,b}:k

j[2]

i

LNet

marit:Femaleole:Male

Figure 5.15: One to one relationship.

One to Many

A directed connector connecting a part P1 of cardinality one and a part
P2 of cardinality greater than one, means that there is a one to one re-
lationship between each component instance in P2 and the component
instance in P1. This relationship, called a one to many relationship, is
illustrated in figure 5.16.

���
���
���

���
���
���

. . . .
1 n2 3

Component instance of type A

Component instance of type B

Figure 5.16: Illustration of a directed one to many relationship.

Let a connector c consist of a one to many relationship of cardinality n.
If an identifier is associated with c, then the cardinality of this identifier

5.3. CONNECTORS AND CHANNELS 63

must be equal to n.

Example

The connectors in the lowermost specification in figure 5.17 consist of
one to many relationships of channels. Specifically, the connector c con-
tains one unnamed channel going from ole to marit and another un-
named channel going from ole to guro. The connector named l contains
(1) one channel named a from ole to marit and one channel named b
from ole to guro or (2) one channel named b from ole to marit and one
channel named a from ole to guro. In this respect the lowermost spe-
cification in figure 5.17 is ambiguous since two different configurations
can be derived from it.

The topmost specification in figure 5.17 presents an alternative specific-
ation of LNet for the situation where channel a connects ole and marit
and channel b connects ole and guro.

Note that the cardinality of the identifier associated with the connector
l is equal to the cardinality of the one to many relationship that l would
have consisted of had it not been associated with an identifier. This is
a requirement (as stated previously). Note also that if the connector c
had been associated with a multiplicity of two (c:[2]), then c would have
contained two one to many relationships, i.e. four unnamed channels in
this case.

LNet

LNet

ole:Male

marit:Female

guro:Female

a:l

b:l

c

c

ole:Male {marit,guro}:Female

{a,b}:l

c

Figure 5.17: Specification of a directed one to many relationship.

64 CHAPTER 5. MEADOW

Many to Many

A directed connector c going from a part P1 to a part P2, each of cardinal-
ity greater than one, means there is a one to many relationship between
each component instance in P1 and the component instances in P2. We
say that c consists of a many to many relationship. This relationship is
illustrated in figure 5.18.

��

1 2

1 2

An instance of component type A

An instance of component type B

. . . .

. . . .
n

m

Figure 5.18: Illustration of a many to many relationship.

Let a connector c consist of a many to many relationship of cardinality
n. If an identifier is associated with c, then its cardinality must be equal
to n.

Example

The lowermost specification in figure 5.19 contains a connector named
l that connects two parts of cardinalities greater than one. Hence l con-
tains a many to many relationship of channels. Specifically, two channels
connect ole to ine and pia and two channels connect kim to ine and pia.
The names of these channels are a, b, c and d.

The topmost specification of figure 5.19 presents an alternative specific-
ation of LNet for the case where a connects ole and ine, b connects ole
and pia et cetera.

5.3.5 Bi-directed Connectors

A bi-directed connector consists of channels going in two directions.
Intuitively, we can think of a bi-directed connector as two directed con-
nectors containing channels that forward messages in opposite direc-
tions. An identifier cannot be associated with a bi-directed connector.

5.3. CONNECTORS AND CHANNELS 65

ole:Male

kim:Male

ine:Female

pia:Female

{ole,kim}:Male {ine,pia}:Female

LNet

LNet

a:l

b:lc:l

d:l

{a,b,c,d}:l

Figure 5.19: Directed many to many relationship.

Example

Figure 5.20 presents a specification containing one bi-directed connector
named c that connects the two parts labelled kim:Male and {ine,pia}: Fe-
male. This bi-directed connector consists of two channels going from
kim to ine and pia and two channels going from ine and pia to kim. In
other words, c contains one many to one relationship and one one to
many relationship. Note that the notation for a bi-directed connector is
a line with two arrow heads.

If the bi-directed connector c had been associated with a multiplicity
of two (denoted c[2]) for example, then c would have consisted of two
bi-directed one to many relationships, i.e. eight channels in this case.

c

LNet

{ine,pia}:Femalekim:Male

Figure 5.20: Specification of a bi-directed connector.

5.3.6 Connectors Between Parts and Environments

Thus far, we have only seen connectors between parts. It is however,
also possible to specify a connector going from a part P to the environ-

66 CHAPTER 5. MEADOW

ment of the containing composite component or region that P is part of.

In general, a directed connector connecting a part P and the environ-
ment of the composite component or region that P is part of contains
a one to one relationship between every component instance in P and
the environment. A bi-directed connector connecting P and the envir-
onment, consists of two one to one relationships (one in each direction)
between every component instance in P and the environment.

Example

The specification in figure 5.21 contains three connectors named k, l
and o that connect the environment of region type LNet to its internal
parts. Connector k contains two channels; one channel going from kim
to the environment and another going from the environment to kim.
The connector l[2] contains two channels going from the environment to
kim. The connector named o contains three channels, each connecting
an instance of component type Female to the environment.

c
k

kim:Malel[2]
o

Female[3]

LNet

Figure 5.21: Connectors between internal parts and environment.

5.3.7 Message Typed Connectors

A connector c that has a message type M means that all messages for-
warded on the channels that c consists of must be elements/instances
of type M.

LNet

{ine,pia}:Personkim:Person
c::M

Message type

Figure 5.22: Specification of a message typed connector.

5.3. CONNECTORS AND CHANNELS 67

Example

Figure 5.22 presents a specification that contains a connector named c
of message type M. This means that all four channels contained in c may
forward messages that are elements of type M.

5.3.8 Component Types as Message Types

A connector may be associated with a message type which contains com-
ponent instances. Channels derived from such a connector may forward
instances of component types.

Example

Figure 5.23 presents a specification that contains the declaration of a
type T. This type is defined as the component type B. The notation :B
denotes that B is component typed. T is associated with the connectors
in the internal structure of the specification. Hence the channels that
the connectors consist of may forward instances of component type B.

C D

A

type T = :B;

::T

::Tb:B[0..1] b:B[0..1]

Figure 5.23: Specification of component type as message type.

5.3.9 Split Nodes

Figure 5.24 illustrates a channel that is shared in the sense that it may
forward messages from exactly one component instance to more than
than one component instances. We that the channel constitutes a split
one to many relationship, and we use split nodes to model such rela-
tionships. We do not put any constraints on how a split node should be
implemented. Hence messages that are output on the channel constitut-
ing a split one to many relationship may or may not be received by all
component instances that reference the input-port of this channel.

A directed connector c consists of a split many to many relationship if

68 CHAPTER 5. MEADOW

. . . .
1 n2 3

Component instance of type A

Component instance of type B

Figure 5.24: Illustration of a split relationship

(1) it is associated with a split node and (2) it connects a part P1 (of car-
dinality greater than one) to a part P2 (of cardinality greater than one).
More precisely, c consists of channels such that there is a split one to
many relationship between each component instance in P1 and the com-
ponent instances in P2. If the cardinality of P1 had been equal to one,
then c would have consisted of one split one to many relationship. If c is
bi-directed, then it consists of two split relationships going in opposite
directions.

It is allowed to associated a split node with a connector d that connects
two parts of cardinality equal to one, but d would then have contained
exactly the same channel had it not been associated with a split node.

i

i

LNet

LNet

ole:Male

ole:Male

marit:Female

guro:Female

{marit,guro}:Female

l

l

l[2]

Figure 5.25: Split node associated with connectors.

Example

Figure 5.25 presents two alternative specifications of a region of type
LNet. The same component instance names and channel names can be

5.3. CONNECTORS AND CHANNELS 69

derived from both specifications, so in that respect they are equivalent.

The lowermost specification contains two directed connectors that are
associated with one split node each (as specified by the black circles).
The connector l[2] consists of two split one to many relationships, i.e. in
this case it contains two unnamed channels that ole may forward mes-
sages on and marit and guro may receive messages from. The other
connector named i consists of one channel that forwards the messages
received from the environment to marit and guro.

5.3.10 Merge Nodes

A channel that is shared in the sense that messages are forwarded from
several component instances to exactly one component instance consti-
tutes a merged many to one relationship. This is illustrated in figure
5.26. We do not put any constraints on how a merge node should be
implemented. Hence, how messages are merged in a merged many to
one relationship is always underspecified.

A directed connector c consists of a merged many to many relationship
if (1) it is associated with a merge node and (2) it goes from a part P1

(of cardinality greater than one) to a part P2 (of cardinality greater than
one). More precisely, c consists of channels such that for each compon-
ent instance ci in P2 there is a merged many to one relationship between
P1 and ci. If the cardinality of P2 had been equal to one, then c would
have contained one merged many to one relationship. If c had been bi-
directed, then it would have consisted of two merged relationships going
in opposite directions.

It is allowed to associated a merge node with a connector d that connects
two parts of cardinality equal to one, but d would then have contained
exactly the same channel had it not been associated with the merge node.

Component instance of type A

Component instance of type B

. . . .
2 3 n1

Figure 5.26: Illustration of a merge relationship.

70 CHAPTER 5. MEADOW

Example

Two alternative specifications of a region of type LNet is presented in
figure 5.27. The specifications are equivalent in the sense that the same
component instances and channels can be derived from them.

The upper specification contains four connectors that are associated
with merge nodes (represented by the white circles). The topmost con-
nector consists of a channel that (1) ole and kim may forward messages
on and (2) that ine may receive messages from. Similarly, the lowermost
connector for example, consists of a channel going from ole and kim to
pia.

If the bi-directed connector c in the lowermost specification had been
associated with a multiplicity of two (c[2]), then c would have consisted
of four (not two since the connector is bi-directed) merge many to many
relationships.

c

LNet

{ole,kim}:Male {ine,pia}:Female

LNet

kim:Male pia:Female

ole:Male ine:Female

c

c

c

c

Figure 5.27: Specification with merge nodes.

5.3.11 Merge-Split Nodes

A channel that (1) one or more component instance may forward mes-
sages on and (2) one or more component instance may receive messages
from, is illustrated in figure 5.28. We call this a merge-split relationship.
We use a merge-split node to model such relationships.

5.3. CONNECTORS AND CHANNELS 71

Component instance of type A

Component instance of type B

. . . .
2 3 n1

1 2 3 n

Figure 5.28: Illustration of a merge-split relationship.

Let c be a directed connector. A merge-split node associated with c
means that c contains a merge-split relationship. In other words, c con-
tains a channel that is merged and split.

A merge-split node associated with a bi-directed connector c contains
two merge-split relationship going in opposite directions.

Example

The two specifications is figure 5.29 are equivalent in the sense that the
same component instances and channels can be derived from them. The
lowermost specification contains one connector associated with a merge-
split node (represented by the grey circle). This connector contains two
channels that (1) ole and kim may forward messages on and (2) ine and
pia may receive messages from.

kim:Male

ole:Male

pia:Female

ine:Female

LNet

{ole,kim}:Male

LNet

{ine,pia}:Female
c[2]

c

c

Figure 5.29: Specification containing a merge-split node.

72 CHAPTER 5. MEADOW

5.3.12 Identifier Constraints

Identifiers constraints can be associated with connectors. Such identifi-
ers constrain the number of channels that a connector contains.

Let Id and I be two identifier types where I ⊆ Id. Let P1 be a part of com-
ponent type CT1 and P2 be a part of type CT2 that consists of exactly one
component instance for each element e in Id whose name equals e.

Let c be a connector that connects P1 and P2. If I is associated with
the endpoint of the representation of c that is attached to P2, then c
contains a relationship of channels between P1 and every component in-
stance in P2 whose name equals an element in I. The exact nature of the
relationship depends on the cardinalities of P2 and I, and whether c is
associated with a multiplicity.

A connector that is associated with an identifier constraint, can not be
associated with a (channel) identifier.

Example

As indicated in figure 5.30, an identifier constraint is placed on the en-
dpoint of the representation of a connector. Without the identifier con-
straint, the connector c would contain two channels connecting kim and
ine and two channels connecting kim and pia. With the constraint how-
ever, c only connects kim and ine, thus consisting of two channels only.
Similarly, without the identifier constraint, connector d[4] would con-
tain four one to many relationships between kim and {ine,pia}, i.e. eight
channels in this case. With the constraint however, d only consists of
the sub-set of channels that connect kim and pia, i.e. four channels.

LNet

kim:Male {ine,pia}:Female

Identifier constraint

{pia}

c

d[4]

{ine}

Figure 5.30: Specification containing identifier constraints.

5.3. CONNECTORS AND CHANNELS 73

5.3.13 Cardinality Constraints

Thus far we have only seen multiplicities that are associated with con-
nector labels. However, multiplicities can also be associated with the
endpoint of a connector.

Let c be a directed connector going from a part P1 to a part P2. A car-
dinality constraint, [n], associated with c and P1 means that c consists
of channels such that each component instance in P1 may output on n
channels.

Let c be a bi-directed connector going from a part P1 to a part P2. A
cardinality constraint, [n], associated with c and P1 means that c con-
sists of channels such that each component instance in P1 may output
on n channels and input on n channels.

A connector c that is associated with a cardinality constraint may also
be associated with a multiplicity (on the channel). The multiplicity will
then multiply the relationship of channels that c consists of without the
multiplicity.

A connector that is associated with a cardinality constraint can not be
associated with a channel identifier.

LNet

LNet

ole:Male

kim:Male

{ole,kim}:Male {ine,pia}:Female

pia:Female

ine:Female
c

c

c

[1][1]

Figure 5.31: Specification containing cardinality constraints.

74 CHAPTER 5. MEADOW

Example

The connector in the lowermost specification in figure 5.31 is associated
with the two cardinality constraints ([1]). Hence we derive that ole and
kim may output on one channel each and that ine and pia may input on
one channel each. There are two possible such configurations: (1) either
ole is connected to ine and kim is connected to pia or (2) ole is connected
to pia and kim is connected to ine. The former configuration is specified
in the topmost specification in figure 5.31.

If c had been associated with a multiplicity of two (c[2]), then c would
have consisted of four channels.

5.3.14 Constraint Functions

A constraint function maps single identifiers to (1) (possible empty) sub-
sets of identifiers. The function is declared and defined in the header of
the specification of a composite part, a composite component type or a
region, and it may be associated with a connector.

Let Id1 and Id2 be identifier types, T1 and T2 be component types, f be
a function of the definition Id1 → P(Id2), Id1:T1 and Id2:T2 be two parts,
and c be a connector connecting Id1:T1 and Id2:T2.

The specification of an association between f and c means that∀ x ∈Id1:
there is a one to many relationship of channels between the component
instance named x in T1 and each component instance in T2 whose name
equals an element in the subset f (x).

If a function f is declared such that it maps natural numbers (or a subset
of natural numbers) to natural numbers (or a subset of natural numbers),
then mathematical operations such as +, -, * or the modulo function may
be used in the definition of f .

A connector that is associated with a constraint function may be also
be associated with a multiplicity, but it may not be associated with a
channel identifier.

Example

Two alternative specifications LNet are presented in figure 5.32. Two
types M and F are declared and defined in the header of the lowermost
specification. Also, the function f , mapping instances of M to instances
of P(F), is declared and defined in the header. This function is associated

5.3. CONNECTORS AND CHANNELS 75

(as denoted by the label “f |c”) with the connector named c. The two
specifications in figure 5.32 are equivalent in the sense that the same
component instances and channels can be derived from them.

c

c

c

LNet

LNet

ole:Male

kim:Male

pia:Female

ine:Female

f | c
M:Male F:Female

f : M → P(F); f= {ole → {ine,pia}, kim → {pia}};
type M = {ole, kim}; type F = {pia, ine};

Figure 5.32: Specification containing a constraint function.

5.3.15 Dynamic Connectors

Up until now we have only dealt with connectors that contain channels
that always are a part of a composite component/region as long as (1)
one or more component instances may send messages on it and (2) one
or more component instances may receive messages from it. A dynamic
connector, however, is a connector that consists of channels that may
be created or killed during the lifetime of the component instances they
connect.

A static connector is a connector that is not dynamic.

Example

The specification in figure 5.33 contains two connectors. As indicated,
one of these is dynamic. The representation of a dynamic connector is
a dashed arrow. The static connector c consists of channels that will
always be a part of a region type LNet as long as the component in-
stances they connect are a part of this region. The dynamic connector d,
however, consists of channels that may be created or killed during the
lifetime of the component instances they connect.

76 CHAPTER 5. MEADOW

LNet

kim:Male {ine,pia}:Female

Dynamic connector

d

c

Figure 5.33: Specification containing a dynamic connector.

5.4 Diagrams and Views

In this section we (1) present concepts for classifying specifications into
views,(2) present a concept for specifying how diagrams are related in
time and (3) present the different types of diagrams that exist in MEADOW.

A network may be specified in one or more diagrams. In MEADOW, a
diagram is named or unnamed and it must have one of the following
types:

• views,

• generalisation,

• type or

• snapshot.

In the following we describe these types of diagrams in more detail.

5.4.1 Views Diagrams

A views diagram structures all the diagrams that specify a component
or a region type; it declares sub-diagrams and the classification of these
sub-diagrams into views. Like regions and composite components, a
views diagram may have a header that contains declarations and defin-
itions of constants, types and functions. These definitions and declara-
tions are shared by all sub-diagrams of the views diagram. In addition
to this, a views diagram may define how its sub-diagrams are related in
time.

All component instance identifiers and channel identifiers that are asso-
ciated with static parts and connectors must be unique within the same
diagram.

5.4. DIAGRAMS AND VIEWS 77

If two parts P1 and P2 are specified in two different diagrams, and both
parts are associated with the same component type and the same iden-
tifier, then P1 and P2 contain the same component instances. The same
principle applies for connectors.

If two dynamic parts P1 and P2 are specified in the same diagram or
in different diagrams, and both parts are associated with the same com-
ponent type and the same identifier, then P1 and P2 contain the same
component instances. The same principle applies for dynamic connect-
ors.

p2:Viewp1:View

:Generalisation

B:Views

Net:Type

:Net :Views

initial:Snapshotinitial:Snapshot

t2:Snapshot

t3:Snapshot

Figure 5.34: Views diagram for region type Net.

Example

Figure 5.34 presents a views diagram for a region type Net. This diagram
contains the declaration of one type , one generalisation and one views
sub-diagram. Moreover, two views named p1 and p2 are declared, each
of which contains the declaration of diagrams of type Snapshot. Notice
that the notation for a views diagram is a box with special edges. The
same notation is used on the sub-diagrams that are declared in the views
diagram.

78 CHAPTER 5. MEADOW

The snapshot diagrams specify the structure of Net at given points in
time with respect to the views they are contained in. The diagram name
initial is reserved, as diagrams so named define the initial structure of a
network. In this example, the diagrams named initial define the struc-
ture that the instance of type Net exhibits upon its creation.

The arrows in view p2 define exactly how snapshot diagrams are related
in time. In this example, when Net at some point in time exhibits the
structure defined in diagram initial, it may at some later point in time
during computation exhibit the structure specified in t2, then it may ex-
hibit the structure in t3, then it may exhibit the structure specified in
initial and so forth. However, Net may not go from exhibiting the struc-
ture specified in initial to exhibiting the structure specified in t3, without
first exhibiting the structure specified in t2. Similarly, Net may not go
directly from t2 to initial or from t3 to t2.

Figure 5.35 presents a views diagram for region type B. Notice that this
diagram is declared in figure 5.34.

In the following examples we specify most of the diagrams that are de-
clared in figure 5.34 and 5.35.

:B

initial:Snapshot

:Views

B:Type

i2:Snapshot

Figure 5.35: Views diagram for region type B.

5.4.2 Type Diagrams

Type diagrams contain the specification of a region or a component type.
It contains the specification of all legal potential configuration that all
instances of a component type or a region type may exhibit during their
lifetime.

Example

The topmost diagram (which was declared in figure 5.34) in figure 5.36
contains the specification of the region type Net. Here, both instances

5.4. DIAGRAMS AND VIEWS 79

of component type A and D may or may not be part of the network dur-
ing computation. Notice also that the connector l is dynamic, while the
connectors named p are not. This means that the channels contained in
the connectors named p are always part of the network as long as the
component instances they connect are part of the network. Connector c,
on the other hand, contains channels that may or may not be part of the
network even if both the component instances (c1 and c2) they connect
are part of the network.

The lowermost diagram in figure 5.36 contains the specification of a
region of type B. This diagram was declared in figure 5.35.

l::P2

p::P1 p::P1

:Type:Net

:B

f1:F f2:F
c

:Type

1:p 2:p

c1:C c2:C

b:B

{3,4}:p {3,4}:p

d:Da:A

Figure 5.36: Specification of type diagrams.

5.4.3 Snapshot Diagrams

A snapshot diagram the configuration that instances of a component
type or a region type may exhibit at a point in time. A snapshot diagram
must be a subset of a type diagram, i.e. it cannot contain configurations
that are not specified in the type diagram.

Snapshot diagrams named initial define the configuration that all in-
stances of a component type or a region type must have upon their cre-
ation.
Dynamic parts and dynamic connectors cannot be used in snapshot dia-
grams.

80 CHAPTER 5. MEADOW

Multiplicities that are used in snapshot diagrams define cardinalities
that a connector or a part may have at a point in time.

Example

The topmost specification in figure 5.37 presents a specification of the
diagram named initial that was declared in view p1 in figure 5.34. This
diagram specifies the initial structure that all instances of region type
Net exhibit upon their creation with respect to the view named p1. As
can be derived from the diagram; both the component instances a and
d are initially part of the region-. Please compare this diagram to the
diagram in figure 5.36 to see that a and d may not always be part of the
region.

The lowermost specification in figure 5.37 presents the diagram that
specifies the structure that all instances of region type Net exhibit upon
their creation with respect to view p2.

Figure 5.38 presents a specification of the snapshot diagrams that are
declared in figure 5.35. Initially, component instance f1 outputs on a
channel named 3, whereas the component instance named f2 outputs
on a channel named 4. Then, at some later point in time, as specified
in the snapshot diagram named i2, component instance f1 outputs on
the channel named 4 and component instance f2 outputs on the channel
named 3.

b:B

initial:Snapshot:p1Net

Net

l::P2

p::P1 p::P1

c1:C c2:C

initial:Snapshot:p2

a:A d:D

Figure 5.37: Specification of snapshot diagrams.

5.4. DIAGRAMS AND VIEWS 81

:B :B

l l

f2:F

1:p1:p

2:p 2:p

initial:Snapshot i2:Snapshot

3:p

4:p

4:p

3:p

f1:F

f2:F

f1:F

Figure 5.38: Specification of the snapshot diagrams for region type B.

5.4.4 Generalisation Diagrams

Diagrams of type Generalisation contain generalisation relationships between
component types.

Example

Figure 5.39 presents a specification of the generalisation diagram that
was declared in figure 5.34. Here, component type C is specified as su-
pertype for component types D and E.

:Net :Generalisation

:C

:D :E

Figure 5.39: Specification of a generalisation diagram.

82 CHAPTER 5. MEADOW

Chapter 6

Case Studies

The objective of this chapter is (1) to demonstrate the suitability of
MEADOW with respect to the success criteria given in section 3.4 and (2)
give an example-driven introduction to the central modelling constructs
of MEADOW.

Section 6.1 presents a case study of a network with arbitrary, but fixed
number of components. Sections 6.2 through 6.4 present case studies
of networks with tree, bus and ring topologies, respectively. These case
studies indicate the appropriateness of MEADOW with respect to the
success criteria related to the problem of generality and the problem of
scalability.

Section 6.5 gives a case study of a large network that has a topology
that is not strongly patterned. This case study indicates the appropri-
ateness of MEADOW with respect to the success criteria related to the
problem of scalability.

Sections 6.6 through 6.8 give case studies of object-oriented, ad hoc, and
mobile code networks, respectively. The purpose is to demonstrate the
appropriateness of MEADOW with respect to the problem of expressing
dynamic reconfiguration.

6.1 Configuration with N Components

In practise it is often necessary to specify networks of an arbitrary, but
fixed number of components N. In that case we know that N denotes a
natural number, but we do not know which one.

The task is to model the general architecture of a SIMD (single-instruction
stream-multiple-data stream) machine [24]. Typically, a SIMD machine

83

84 CHAPTER 6. CASE STUDIES

consists of a control unit, N processors, N memory modules, and an in-
terconnection network. The control unit broadcasts instructions to the
processors, and all active processors execute the same instruction at the
same time. As an example of the possible size of SIMD machines, one
constructed system includes 214 simple processing units [24].

ControlUnit

Interconnection Network

SIMD-Machine(n:N)

Proc[n]

Mem[n]

Figure 6.1: SIMD-Machine.

One way to view the physical structure of a SIMD machine is to position
the interconnection network between the processors and the memories.
Figure 6.1 presents a MEADOW specification of this structure. The SIMD
machine itself, is modelled as a parameterised composite component
of type SIMD-Machine. Notice that the a formal parameter n of type
N is declared in the top left corner of the composite component. This
parameter is used in the internal structure of SIMD-Machine to specify
the number of processors and memory units the SIMD machine consists
of. These processors and memory units are specified by component in-
stances of type Proc and Mem, respectively. ControlUnit represents the
control unit and Interconnection Network represents the interconnection
network. All connectors in the specification are bi-directed. Notice that a
merge-split node is associated with the connector that connects the part
of type ControlUnit to the part of type Proc. This connector consists of
two shared channels that each constitute a merge-split relationship.

For clarity, figure 6.2 presents a specification of a SIMD machine with
four Proc and Mem component instances. The network specified in fig-
ure 6.1 is equivalent to the network specified in figure 6.2 for n = 4.
Notice that two topmost connectors contain mere-split relationships of

6.2. ARDIS 85

channels. One of the relationships is actually equivalent to a split one to
many relationship, and the other is equivalent to a merged many to one
relationship of channels. This means that the topmost merge node and
the topmost split node in the figure 6.2 can be omitted.

Interconnection Network

Proc

Mem Mem Mem

Proc Proc Proc

Mem

:SIMD-Machine

ControlUnit

Figure 6.2: Alternative specification of SIMD-Machine for a fixed number
of components.

6.2 ARDIS

ARDIS is a two-way radio service developed as a joint venture between
IBM and Motorola and first implemented in 1983. The network consists
of four network control centres with 32 network controllers distributed
through 1250 base stations in 400 cities in the U.S. Remote users ac-
cess the system from laptop radio terminals which communicate with
the base stations. For a more detailed description of ARDIS, we refer to
[8].

The MEADOW specification of ARDIS, which is based on a description
of the ARDIS topology given in [8], is presented in figure 6.3. Here, the
four control centres are specified by four component instances of type
ControlCenter, the 32 network controllers are specified by the 32 com-

86 CHAPTER 6. CASE STUDIES

ponent instances of type Controller, and finally the 1250 base stations
are specified by the component instances of type BS.

The connector connecting the part of type ControlCenter and the part
of type Controller, contains channels that constitute a one to many and
a many to one relationship that connect all instances contained in these
parts.

The cardinality constraint ([1]) on the lowermost connector in figure 6.3,
specifies that each component instance of type BS is connected to ex-
actly one component instance of type Controller. The exact number of
instances of type BS that are connected to each component instance of
type Controller is not specified. This would however have been pos-
sible by using a constraint function. An example is presented in figure
6.4, where the relationship between component instances of type BS and
Controller is defined by the constraint function f . Specifically, f (x) = x
mod 32, where mod is a mathematical modulo function.

[1]

ControlCenter[4]

Controller[32]

BS[1250]

:ARDIS

Figure 6.3: ARDIS network topology.

6.3 Ethernet

The Ethernet has been one of the most successful local area networking
technologies [20]. The Ethernet is a multiple-access network, meaning
that a set of components send and receive messages over a shared chan-
nel. You can therefore think of the Ethernet as being like a bus that has
multiple stations plugged into it.

We model the topology of a simple Ethernet network to (1) show how

6.3. ETHERNET 87

Bid:BS

Cid:Controller

f |

ControlCenter[4]

:ARDIS

type Bid = {0..1249}; type Cid = {0..31}; f : Bid → Cid; f (x) = x mod 32;

Figure 6.4: ARDIS network topology with a constraint function.

MEADOW can be used to model a general bus topology and (2) show
how the concept generalisation may increase scalability in a specifica-
tion.

As declared in the views diagram presented in figure 6.5, the region type
Ethernet is specified in the two diagrams Ethernet:Type, and g:Generalisation.
Diagram g, presented in figure 6.6, specifies the generalisation associ-
ations between the components that constitute Ethernet. Here, we see
that component types Printer, Disc drive, Workstation and Mainframe all
share the common supertype Host.

:Views:Ethernet(n:N)

g:Generalisation

Ethernet:Type

Figure 6.5: Views diagram of Ethernet.

Figure 6.7 presents the type diagram of Ethernet that specifies the po-
tential internal structure of Ethernet. The connector in the specification
contains one merge-split many to many relationship. A connector such

88 CHAPTER 6. CASE STUDIES

:Generalisation

:Disc drive :Workstation :Mainframe:Printer

:Host

:Ethernet(n:N)

Figure 6.6: Specification of diagram g:Generalisation.

as this, that is associated with a merge-split node and that has both of
its ends attached to the same part, does by definition form a bus pattern.
Specifically the connector in the specification contains one channel that
all component instances in the part labelled Host[n] may send messages
on and receive messages from. Notice how the generalisation associ-
ations has helped increase the scalability in the specification since the
subtypes of Host are abstracted away.

:Ethernet(n:N)

Host[n]

:Type

Figure 6.7: Specification of region type Ethernet.

Figure 6.8 illustrates what the specification presented in figure 6.7 looks
like for a fixed number of components. Here the three topmost boxes
and the three lowermost boxes represent the same three components.
For example the two boxes labelled h1:Host represent the same com-
ponent.

The technique of specifying a bus topology that is presented in figure
6.7 has one apparent weakness. Looking at figure 6.8, is seems that
every message that is sent by a component instance on the bus, will also
be received by the same component instance. This weakness would have
to be addressed in the implementation of the merge and the split nodes.
But as previously stated, exactly how merge and split nodes should be
implemented is underspecified in MEADOW.

6.4. TOKEN RINGS 89

One way of avoiding the problem all together, is to use components that
act as merge and split nodes, and then connect these components in a
bus pattern with the help of a constraint function. A similar solution is
used in the specification of a ring topology in the next section.

h1:Host

h1:Host

h2:Host

h2:Host h3:Host

h3:Host

Figure 6.8: Illustration of an Ethernet network.

6.4 Token Rings

Alongside the Ethernet, token rings are the other significant class of
shared-media networks [20]. As the name suggests, a token ring network
consists of a set of components connected in a ring. Data always flows
in a particular direction around the ring, with each component receiving
messages from its upstream neighbour and then forwarding them to its
downstream neighbour. Two notable token ring standards are the FDDI
standard and the IEEE standard 802.5 [20].

The diagram presented in figure 6.9 specifies the topology of a token
ring network. Here, the formal parameter n is used to specify the num-
ber of hosts and nodes that are in the network. Note that n must be
greater than 1 in order for this specification to work.

The part labelled Nid:Node means that for each e ∈ Nid: exactly one
component instance whose name is e of type Node is specified. These
component instances are connected in a ring as specified by the con-
straint function named ring that is defined in the header. Recall that
a constraint function f (x) = y associated with a connector c, specifies a
channel between the component instances named x and y contained in
the parts connected by c. For example, in figure 6.9, a channel is spe-
cified between component instance 0:Node and 1:Node since ring(0) =

90 CHAPTER 6. CASE STUDIES

(0+ 1) mod (n− 1) = 1 (for n > 1).

Without its associated cardinality constraints ([1]), the connector between
the part labelled Nid:Node and the part labelled Host[n], would have rep-
resented two many to many relationships between the two parts. How-
ever, the multiplicities constrains the many to many relationships such
that each component instance in the parts connected by the connectors
may only have exactly one output channel and exactly one input chan-
nel.

Nid:Node

ring|

:RingNet(n:N)

Host[n]

type Nid = {0..n-1}; ring: Nid → Nid; ring(x) = (x + 1) mod (n-1);

[1]

[1]

Figure 6.9: Specification of a token ring network.

For clarity, figure 6.10 presents an alternative specification of the token
ring network for a fixed number of components. RingNet(4) (in figure
6.9) and RingNet2 (in figure 6.10) specify the same network.

6.5 The NTN ATM Network

The NTN network is a Canada-wide ATM National Test Network. We will
use MEADOW to model this network based on a simulation model of
the NTN ATM network [26]. “The simulated network topology has 54
ATM switches, and spans a geographic distance of approximately 3000
kilometres”[26].

The MEADOW specification of the NTN ATM network is presented in
figure 6.11. Here, the region NTN ATM is divided into five sub-regions
named Rnet, LARGnet, OCRInet, Wnet and RISQ. These sub-regions are
connected by component instances of type ATM Switch. The four types

6.5. THE NTN ATM NETWORK 91

0:Node

2:Node

:RingNet2
Host

Host

Host

Host1:Node 3:Node

Figure 6.10: Alternative specification of a token ring network.

EdTel:
ATM Switch

OCRInetLARGnet

OTT:
ATM Switch

MARK:
ATM Switch

Rnet

:NTN ATM

type TS, L, M, T;

i1::L i2::M io::T o::TS
[4][6] [6][4]

ATM Switch
UNI:

l

Wnet RISQ

Figure 6.11: Specification of NTN ATM network.

92 CHAPTER 6. CASE STUDIES

that are declared in the header of NTN ATM define the kind of messages
that can be communicated to and from the sub-region LARGnet and the
environment of NTN ATM. We have only labelled the connectors going to
and from the sub-region LARGnet, since LARGnet is the only sub-region
we intend to model in detail.

In the following, we present three alternative specifications of LARGnet.
We will not present detailed specifications of the other sub-regions that
NTN ATM consist of since their internal structure is in essence very sim-
ilar to the internal structure of LARGnet.

As can be seen from the specification presented in figure 6.12, the two
component types that LARGnet consist of are ATM Switch and End-node.
The labels associated with the connectors between component instances
of type End-node and the environment of LARGnet, correspond to the
connector labels in figure 6.11. The message type label is suppressed in
the figure 6.12, it can however be derived from figure 6.11. For example
that all channels derived from connectors named io must have a mes-
sage type T.

End-nodeEnd-node

End-nodeEnd-node End-node

i1

i2

io o oioi2i1 i1 i2 io o

ioo
i1

o
i1i2

o
i1

:LARGnet

End-node
2: 3: 4:

5: 1: 6:

1:ATM Swtich

2:ATM Switch 3:ATM Switch 4:ATM Switch

l

5:ATM Switch 6:ATM Switch

Figure 6.12: Specification of LARGnet, alternative 1.

Figure 6.13 presents an alternative specification of LARGnet. Here we

6.5. THE NTN ATM NETWORK 93

have used parts of cardinality greater than one. Specifically, we have
grouped the component instances named 2, 3 and 4 of types ATM Switch
and End-node in two parts, each of cardinality three. Comparing figure
6.12 and figure 6.13, we see that the number of parts used in the spe-
cification has been reduced from 12 to 8.

End-nodeEnd-node End-node

ioo
i1

1:{2,3,4}:

i2 i1 i1 oo io i2

{2,3,4}:
ATM Switch

1:
ATM Switch ATM Switch

[1]
[1]

l

:LARGnet

5:

5:

6:
ATM Switch End-node
6:

i1

o

Figure 6.13: Specification of LARGnet, alternative 2.

The third alternative specification of LARGnet is presented in figure 6.14.
Here we have used identifier constraints to reduce the number of parts
needed in the specification further. The component instances named 2,
3, 4, 5 and 6 have been grouped into two parts. Not all of these instances
are associated with the connectors named io and i2, that is why we have
associated these connectors with identifier constraints. Specifically, the
bi-directed connector io is associated with the identifier constraint {2..4}
because only the component instances named 2, 3 and 4 in the leftmost
part of type End-node are associated with the channels that may be de-
rived from connector io. Similarly, only component instances named
{2..5} in the left most part of type End-node may input messages on the
channels contained in the connector i2.

If we compare figure 6.12 and figure 6.14, we see that the number of
parts have been reduced from 12 to 4. Hence the latter specification
is less space consuming than the former, since it is the representation
of parts that take up most space. Moreover, it is easier to add/remove
components in the latter specifications, since this can be done by ma-
nipulating the identifier types and the identifier constraints instead of
adding/removing parts.

94 CHAPTER 6. CASE STUDIES

:LARGnet

io
{2..5}{2..4}

[1]
[1]

oio i1 i2 o i1

1:

ATM Switch
1:

ATM Switch
{2..6}:

End-node
{2..6}:

End-node

l

Figure 6.14: Specification of LARGnet with identifier constraints.

Note that the specification in figure 6.14 (actually also the specification
in figure 6.13) is a slight underspecification figure 6.12. From the con-
nector connector connecting the part labelled {2..6}:ATM Switch and the
part labelled {2..6}:End-node, we can only derive that one component in
the first part is connected to exactly one component in the second part.
We cannot know if the component instance named 2 of type ATM Switch
is connected to the component instance named 2 of type End-node as in
the specification in figure 6.12. This problem could be solved by associ-
ating the connector with a constraint function instead of the cardinality
constraints (labelled [1]). This specification is presented in figure 6.15.

io
{2..5}{2..4}

io i1 i2 o i1

1:

ATM Switch
1:

ATM Switch
{2..6}:

End-node
{2..6}:

End-node

l

f : N → N; f (x) = x;

:LARGnet

f |

o

Figure 6.15: Specification of LARGnet with constraint function.

6.6. AN OBJECT-ORIENTED NETWORK EXAMPLE 95

6.6 An Object-Oriented Network Example

In the following case study we model an object-oriented network called
ONet. ONet consists of three objects: two objects of type Sender and one
object of type Receiver. Each sender object always has a reference to the
other sender object, and one and only one sender object has a reference
to the receiver at any given time. The sender objects may exchange the
reference to the receiver with each other in order to send messages to it.

We model ONet as a region type named ONet. The views diagram of ONet
presented in figure 6.16, declares the diagrams that specify ONet. The
diagram declarations of type Type and Snapshot declares diagrams that
specify the internal structure of ONet. The diagram named initial specify
the initial structure of ONet, whereas the diagram named step2 specifies
the internal structure of ONet at some other point in time. The arrows
define exactly how the snapshot diagrams are related in time. According
to this definition, ONet must initially exhibit the structure specified by
diagram initial, then at some later point in time it may exhibit the struc-
ture specified in step2, then it may exhibit structure specified in initial
and so on.

The way in which one can specify the relationship in time between snap-
shot diagrams is rather basic in MEADOW. The reason is that these kinds
of dataflow diagrams are not within the focus of this thesis. Also, one
might use existing languages such as for example Activity Diagrams in
UML [19] for this kind of specification by replacing activities in these
diagrams with snapshot diagrams.

A formalism for relating snapshot diagrams in time is not only a way
of increasing the understandability appropriateness of specifications, it
also provides a basis for automatic model checking of specifications.
This can be done by comparing the specification of how snapshot dia-
grams are related in time with a specification of the behaviour of com-
ponents. For example, assume three snapshot diagrams initial, step2
and step3 that specify the internal structure of a region R. Assume fur-
ther that the three diagrams are related in time such that initial happens
before step2, step2 happens before step3 and step3 happens before ini-
tial and so on. If the network at some point during computation goes
from exhibiting the structure specified in initial to exhibiting the struc-
ture specified in step3 without first exhibiting the structure specified in
step2, then the behaviour of components that R consists of is inconsist-
ent with the specification of how the snapshot diagrams are related in
time.

96 CHAPTER 6. CASE STUDIES

The type diagrams may also be used as a basis for a similar kind of
model checking. One can check if a network exhibits a structure during
computation that is not specified in the type diagram. And if that is the
case, then the behaviour of the network is inconsistent with the specific-
ation of the type diagram.

step2:Snapshot

initial:Snapshot

ONet:Type

:ONet :Views

Figure 6.16: Views diagram of ONet.

The diagram presented in figure 6.17, specifies the legal potential struc-
ture of ONet. All three component instances specified in the diagram are
always part of ONet. The same applies for connector s and o. Both the
senders may or may not output on the channel r.

:ONet :Type

s2:Sender

s1:Sender

re:Receivers
o

r

r

Figure 6.17: Specification of the potential configurations of ONet.

The initial structure of ONet is specified in the initial:Snapshot diagram
presented in figure 6.18. Notice here that the lowermost sender in the
specification has an initial output channel to the receiver.

6.7. BATTLEFIELD CONTROL SYSTEM 97

Diagram step2 (presented in figure 6.18) is similar to diagram initial.
The difference is that the topmost component instance of type Sender
now has a second output channel instead of the lowermost component
instance of type Sender.

:ONet :ONet

re:
Receiver

re:
Receivers

o o
s

initial:Snapshot step2:Snapshot

s2:Sender

s1:Sender

r

r

s1:Sender

s2:Sender

Figure 6.18: Specification of snapshot configurations of ONet.

6.7 Battlefield Control System

In the following we model a network called the Battlefield Control Sys-
tem (BCS) described in [5]. The system is used to control the movement,
strategy and operations of troops in the battlefield.

BCS consists of commander component and a number of solider com-
ponents. The commander component acts as a server and the soldiers
components are its clients. One of the soldiers acts a backup. Upon
failure of the commander, the backup will take over as the new com-
mander. Communication between clients and the server is only through
encrypted messages sent via a radio modem. The radio modem uses a
shared communication channel; only one component can broadcast at
any moment.

BCS is similar to an ad hoc network in the sense that all components
and channels in the network may be created or killed during compu-
tation. However, BCS is not an ad hoc network because BCS has a so-
called central administration, i.e. one component always acts as a server
while the other components act as clients. An ad hoc network could be
modelled in MEADOW for example by modelling BCS without a central
administration. But in order to highlight the features of MEADOW, we
believe that it is more interesting to model BCS with a central adminis-
tration.

98 CHAPTER 6. CASE STUDIES

Our approach in this case study is not to give a full specification of BCS,
but the model what the network looks like before and after the (possible)
breakdown of the commander.

We model the system at a logical level (i.e. we do not consider the phys-
ical level) as a region type named BCS. The three diagrams that specify
the internal structure of BCS are declared in the views diagram presented
in figure 6.19. The diagram named BCS of type Type, specifies the poten-
tial internal structure of BCS. initial and breakdown are of type Snapshot
and specify the internal structure of BCS at given points in time. Specific-
ally, initial specifies the initial structure of BCS and breakdown specifies
the structure of BCS upon the breakdown of the commander.

Notice that three formal parameters are defined in the diagram: One
type named Rid and two constants named b and c of type S.

:Views

inital:Snapshot

breakdown:Snapshot

:BCS(type Rid, c:S, b:S)

BCS:Type

Figure 6.19: Views diagram for region type BCS.

The specification of the type diagram is presented in figure 6.20. The
commander which is modelled as a component instance named c of type
Commander, is contained in the part labelled c:Commander. This part
is dynamic, meaning that the component instance in the part may or
may not be part of the network at a given point in time. This models the
fact that the commander may disappear from the network. Similarly, the
part labelled Rid:Soldiers represents the soldiers of the network, and the
part labelled b:Backup represents the backup. These parts also dynamic,
hence the component instances of type Soldier and Backup may or may
not be part of the network at a given point in time. Notice that the num-
ber of potential soldiers that can be part of the network is equal to the
cardinality of the type Rid, and that an instance of region type BCS may
only contain one commander and one backup.

6.8. MOBILE CODE NETWORK EXAMPLE 99

The connector r represents the connection between the backup and the
commander. The leftmost connector c represents the connection between
the commander the soldiers whereas the rightmost connector c repres-
ents the connection between the component instance of type Backup to
the component instances of type Solider. This latter connector is dy-
namic, hence the channels contained in this connector may not always
be part of the network even if all the component instances that are con-
nected by the channels are part of the network.

r

:BCS(type Rid, c:S, b:S)

c:Commander b:Backup

Rid:Solider

c c

:Type

Figure 6.20: Specification of the potential structure of region type BCS.

Figure 6.21 presents the two snapshot diagrams declared in the views
diagram of BCS. The diagram named initial specifies the initial internal
structure of BCS. As can be seen from the diagram, there is no initial
connection between the backup and the soldiers.

Diagram breakdown specifies the internal structure of BCS upon break-
down of the commander. Here, a connection is established between the
soldiers and the backup as a result of the commander not being part of
the network anymore. The multiplicity ([0..]) associated with the part of
type Solider, specifies that part may contain zero to #Rid (where #Rid is
the cardinality of Rid) component instances at the time of breakdown.
Similarly, the multiplicity associated with the part of type Backup spe-
cifies that zero or one component instance of type Backup may be part
of the network at the time of breakdown.

6.8 Mobile Code Network Example

In this case study we model a framework for building context-aware ap-
plications in ubiquitous and mobile computing settings. The goal of the
framework is to offer a location-aware system in which spatial regions

100 CHAPTER 6. CASE STUDIES

b:Backup

breakdown:Snapshot

initial:Snapshot

c:Commander
cc

:BCS(type Rid, c:S, b:S)

:BCS(type Rid, c:S, b:S)

Rid:Soldier

Rid:Soldier[0..] b:Backup[0..1]
c

Figure 6.21: Specification of snapshot diagrams.

can be determined to within a few square feet, so that one or more por-
tions of a room or a building can be distinguished.

The framework consists of two parts: (1) mobile agents and (2) local in-
formation servers, called LISs. The former offers application-specific ser-
vices which are associated with physical entities and places. The latter
provide a layer between underlying locating systems and mobile agents.
Each LIS provides the agents with up-to-date information on the state of
the real world, such as the locations of people, places and things, and
the destinations that agents should migrate to. For a more detailed de-
scription of the framework, we refer to [23].

We model a simple network called PdaNet that is based on this frame-
work. The physical components that constitutes PdaNet are, a sensor,
a LIS, a computer associated with a tag and a personal digital assist-
ant (PDA) also associated with a tag. The tags makes it possible for the
sensor to locate the physical entities (the computer and the PDA). Each
tag periodically transmits a unique identifier via infrared light that can
be received by the sensor. The tag associated with the computer is al-
ways within the presence of the sensor, while the tag associated with the
PDA may or may not be within the presence of the sensor. The sensor
uses a radio frequency to notify the LIS of the tags that are within the
presence of the sensor at a given point in time. The LIS communicates
with the computer and the PDA via the same radio frequency.

At a logical level, both the computer and the PDA each have a run time

6.8. MOBILE CODE NETWORK EXAMPLE 101

system (the Java based mobile agent system Mobile Spaces [22] for ex-
ample). These run time systems can run a mobile agent we call app.
Moreover, app moves from the runtime system on the computer to the
runtime system on the PDA when both the previously mentioned tags
are within the presence of the sensor.

A views diagram of PdaNet is presented in figure 6.22. Here, two views
are defined, Physical and Logical. The type diagrams in these views spe-
cify the potential structure of PdaNet with respect to the views they are
contained in. Three types are declared and defined in the header of the
views diagram. These types are used as message types in the specific-
ation of the three diagrams that are declared in figure 6.22. “L = :MA”
means that the type L equals all instances of the component type MA.
Consequently, connectors associated with the message type L contain
channels that may transport component instances of type MA.

:PdaNet

Physical:View Logical:View

PdaNet:Type

type RF, IF; type L = :MA;

:Views

PdaNet:Type PdaNet:Type

Figure 6.22: Views diagram of PdaNet

The specification of the type diagram that is not contained in any view
is presented in figure 6.23. The region of type Cell models the infra
red transmission radius of the sensor. The region containing comp:AH
(the computer) and Tag (the tag associated with the computer) is always
contained within this transmission radius. However, the region contain-
ing pda:AH and Tag (the PDA and its associated tag) may or may not be
within the transmission radius at a given point in time.

The connector named if of message type IF represents the infrared com-
munication between the tags and the sensor. Similarly, the connector
named rf of message type RF represents the radio communication between
the computers, the sensor and the LIS. Both these connectors repres-
ent connectivity at the physical level. This is contrary to the connector
labelled ::L which represents connectivity between the two composite

102 CHAPTER 6. CASE STUDIES

component instances of type MS (the run time environments) at a logical
level. Moreover, since the message type L equals the component type
MA (as defined in figure 6.22), instances of type MA can be sent along
the channels contained in this connector. Specifically, the component
instance named app of type MA (the mobile agent) may be sent from one
instance of type MS to another via the channels contained in the con-
nector labelled ::L.

pda:AH

MS MSTagTag

::L

Sensor

rf::RF

if::IF

LIS

:PdaNet :Type

Cell

comp:AH

app:MA app:MA

Figure 6.23: Specification of type diagram.

Figure 6.24 presents a diagram containing the specification of PdaNet
with respect to the physical view. This diagram is essentially a subset of
the diagram specified in figure 6.23, where only the parts connected by
connectors of message types IF and RF are shown.

The diagram in figure 6.25 specifies PdaNet at a logical level, i.e. the
physical level is abstracted away. Note that the diagram in figure 6.23
may be derived from the two diagrams p and l.

6.8. MOBILE CODE NETWORK EXAMPLE 103

pda:AHTag Tag

Cell

LIS

Sensor

rf::RF

if::IF

:PdaNet

comp:AH

p:Type:Physical

Figure 6.24: Specification of PdaNet with respect to the physical view.

MS MS

::L

:PdaNet l:Type:Logical

comp:AH pda:AH

app:MA app:MA

Figure 6.25: Specification of PdaNet with respect to the logical view.

104 CHAPTER 6. CASE STUDIES

Chapter 7

Evaluation of MEADOW

The objective of this chapter is to evaluate MEADOW with respect to the
success criteria that are given in section 3.4.

7.1 Comprehensibility Appropriateness

In this section we argument that MEADOW fulfils the success criteria:
“MEADOW should have a high comprehensibility appropriateness”. The
aspects related to comprehensibility appropriateness that were given in
section 3.2 are used as input for the evaluation.

7.1.1 Conceptual Basis

The phenomena of the language should be easily distinguishable from
each other.

Almost all concepts of MEADOW are easily distinguishable from one
other in the sense that they do not result in construct redundancy. The
exception is the concept of a region (see section 5.2.9), which is a special
case of a composite component. Although the concept of a region does
not add semantics to MEADOW as such, it does represent a phenom-
ena in the real world that is substantially different from the phenomena
that a composite component represents. A composite component rep-
resents and entity, and this entity may be seen as being on a different
level of abstraction than the entities that are represented by the sub-
components of the composite component. This is contrary to the region,
which merely is a way to group sub-components and other sub-regions
at the same level of abstraction. This is why we have chosen to have
the concept of regions in the language even though the region is really a
special case of a composite component.

105

106 CHAPTER 7. EVALUATION OF MEADOW

The phenomena must be general rather than specialised.

All concepts in MEADOW are general rather than specialised in the sense
that none of the concepts are tailored to describe particular kind of com-
ponents, networks or topologies. For example, although it is possible to
specify the bus topology in MEADOW, the concepts used for this spe-
cification are not specialised for this purpose only.

The phenomena should be composable, i.e. one should be able to
group statements in a natural way.

Most concepts in MEADOW are ways of grouping components and chan-
nels. In particular this applies the concept of parts, connectors, com-
posite components and regions. In a addition, the concept of a views
diagram provides a way to group diagrams.

The language must be flexible in precision and in the level of detail.

According to [14], being flexible in precision means that large num-
bers of phenomena should be organised hierarchically and/or in sub-
languages, making it possible to approach the framework at different
levels of abstraction or from different perspectives. This is to some
extent realised in MEADOW through to the concepts of hierarchy and
views. Also, the use of named component instances and channels versus
unnamed component instances and channels provides a way of varying
the level of precision in a specification. This because specifications con-
taining named component instances and channels are in general more
precise than specifications with unnamed channels and component in-
stances. The same is true for constraint functions versus cardinality
constraints, since constraint functions are in general more precise than
cardinality constraints.

The use of phenomena should be uniform throughout the whole set
of statements that can be expressed within the language.

This aspect has, almost from the beginning, been considered during the
development of MEADOW. In particular this is reflected in the way in
which instances and types are handled in MEADOW. The two most im-
portant types are component types and connectors types. Instances of
these types can be specified in a uniform way, i.e. by using similar con-
cepts of multiplicities and identifiers.

7.1. COMPREHENSIBILITY APPROPRIATENESS 107

7.1.2 External Representation

Symbol discrimination should be easy.

Symbol discrimination in MEADOW is for the most part easy in the sense
that different symbols are used for different phenomena. The exception
that the same notation (a box) is used for both the specification of com-
ponent types and parts. But we do not believe that this is a big problem,
since similar languages like SDL and UML also use the same notation for
type and instance specification. Also, the same notation is used for a
region type and a region part.

The use of symbols should be uniform; i.e. a symbol should not rep-
resent one phenomenon in one context and another in a different con-
text.

The symbols in MEADOW do not represent different phenomenon in dif-
ferent contexts. For example, MEADOW has a uniform way of expressing
cardinality, instance names and type names for both parts and connect-
ors.

One should strive for symbolic simplicity.

The symbols of MEADOW essentially consist of a small set of boxes,
arrows and labels. Hence we believe that the symbols of MEADOW are
fairly simple.

The use of emphasis in the notation should be in accordance with the
relative importance of the statements in the model.

Emphasis on notation is not used at all in MEADOW, hence this aspect
cannot be evaluated.

Composition of symbols can be made in aesthetically pleasing way.

MEADOW has several concepts for addressing this aspect. (1) Compon-
ent instances can be grouped into parts, and various concepts for spe-
cifying the connection between parts are given. This reduces the number
symbols needed to specify component instances and channels. (2) The
concepts of composition, generalisation and parameterisation may re-
duce the number of symbols needed in a specification.

108 CHAPTER 7. EVALUATION OF MEADOW

7.1.3 Conclusion

The fact that we found no major deficiencies in MEADOW with respect
to the previously listed comprehensibility appropriateness aspects, in-
dicates that the comprehensibility appropriateness of MEADOW is high.
As for the conceptual basis of MEADOW, this is perhaps not surprising
because MEADOW is for the most part is based on well established, well
proved concepts that have existed for a long time. Also, in developing
the external representation, we have deliberately tried to use notations
that have been used in languages similar to MEADOW. This will make
MEADOW easier to understand for people with experience in similar lan-
guages.

7.2 Scalability

In the following we evaluate the success criteria “MEADOW should handle
the problem of scalability” according to the evaluation method described
in section 3.5.1.

We describe briefly the concepts of MEADOW that may increase the
scalability of specifications, then we relate these concepts to other lan-
guages.

7.2.1 Scalability Concepts

Hierarchy is achieved through the concept of composite components
which may be decomposed to any depth. Composite components may
be seen through a glass-box view where the internal structure of the
component is shown, or a black-box view where the internal structure of
the component is abstracted away.

Types, instances and parts. We distinguish between component types
and instances of component types. A number of component instances
of the same type may be specified in a part, thereby overcoming the need
to specify each component instance individually.

Generalisation. The distinction between supertypes and subtypes makes
it possible to use parts to specify a number of component instances that
may be of different types as long as they share the same supertype.

Parameterisation. Parameterisation of components makes it possible to
use parts to specify a number of component instances that may have
different internal structures.

7.2. SCALABILITY 109

MEADOW FOCUS SDL UML
Hierarchy Composite

components
Agent sub-
structure

Internal class
structure

Component
sets

Specification
replications

Agent sets Parts

Generalisation Suptypes Generalisation
Parametrised
components

Parameterised
components

Parameterise
agents

Templates

Connectors Sheafs of chan-
nels

Sets of chan-
nels

Connectors

Multiplicity on
connectors

Arrays of chan-
nels

Multiplicities
on ports

Constraint
functions

Dependent
replications

Cardinality
constraints

Multiplicities
on connector
ends

Identifier con-
straints

Table 7.1: Classification of scalability concepts.

Channels and connectors. The concept of connectors makes it possible
to specify sets of channels, thereby overcoming the need of specifying
every channel individually.

Connector constraints. Identifier constraints, cardinality constraints and
function constraints provides scalable techniques of increasing the flex-
ibility of connectors.

7.2.2 Conclusion

Table 7.1 classifies the concepts we have found that may increase scalab-
ility in a specification. FOCUS has six concepts, SDL has five, UML has
seven and MEADOW has nine, one of which is embodied in MEADOW
only (identifier constraints). It is also worth mentioning that MEADOW
has the concept of views. This concept makes it possible to divide a
specification into smaller more manageable parts (views) and to abstract
away aspects of a specification that is not related to a view. We have not
listed the views concept in table 7.1, because it is somewhat different
from the other concepts in that it is not directly related to components

110 CHAPTER 7. EVALUATION OF MEADOW

or channels.

We have not through-fully studied how well each concept increase the
scalability in a specification, hence we have not weighted each concept.
For example, the concept of multiplicity on connectors will probably in-
crease scalability in specification more than the concept of identifier
constraints. However, we can say that (1) we have found no scalabil-
ity concept in the other languages that is not included in MEADOW and
(2) that MEADOW has more scalability concepts than any of the other
languages. Therefore we conclude that MEADOW successfully fulfils the
success criteria regarding scalability.

7.3 Generality

In this section we evaluate MEADOW with respect to the success criteria
“MEADOW should handle the problem of generality”.

7.3.1 Concepts

All of the five topologies that were described regarding the problem of
generality are specifiable in MEADOW. In this section we describe the
concepts that make this possible with respect to each topology.

The star topology can be seen as a one to many relationship between
two parts. This relationship has been specified in numerous examples,
see for example figure 5.23.

A specification of a non-uniform tree topology for a depth of three is
presented section 6.2, figure 6.4. This topology is possible to specify
by virtue of (1) the concept of associating identifiers with parts, which
makes it possible to name all component instances in a part and (2) the
concept of constraint functions. Neither of these concepts are part of
UML or SDL.

We have not given an example of a MEADOW specification of a uniform
three topology. But this topology is possible to specify either by using
a constraint function, or by using the concept of cardinality constraints
in a manner similar to way the concept is used in the UML specification
illustrated in figure 4.15 in section 4.3.2.

A specification of a ring topology for multipoint network is presented
in figure 6.9, section 6.4. Here we have used component instances of
type Node to represent forwarding nodes on the ring. A ring topology

7.4. DYNAMIC RECONFIGURATION 111

Topology MEADOW FOCUS SDL UML
Star Yes Yes Yes Yes
Tree (uniform) Yes∗ Yes∗ No Yes∗

Tree (non-
uniform)

Yes∗ Yes∗ No No

Ring (p-p) Yes No No No∗∗

Ring (mp) Yes No No No∗∗

Bus Yes No No No∗∗
∗ For a fixed depth.
∗∗ Can be underspecified.

Table 7.2: Classification of topology examination results.

for a point to point network could have been specified by putting the
hosts on the ring itself, i.e. by removing the part labelled Host[n] and
modelling component instances of type Node as hosts.

A specification of a bus topology is presented in figure 6.7, section 6.3.
This topology can be specified by virtue of the concept of a merge-split
node. Neither FOCUS, SDL or UML has this concept.

7.3.2 Conclusion

Table 7.2 shows a classification of the topology examination results.
(The results applicable for the tree topology are for depths greater than
two). As can be seen from the table, MEADOW, contrary to the other lan-
guages may specify all topologies, and consequently we conclude that
MEADOW successfully fulfils the success criteria regarding generality.

7.4 Dynamic Reconfiguration

In the following we evaluate MEADOW with respect to the success cri-
teria “MEADOW should be able to specify object-oriented, ad hoc, and
mobile code networks”.

7.4.1 Concepts

There are essentially two techniques of specifying dynamic reconfigura-
tion in MEADOW. The first technique involves specifying legal potential
structure of a network, thereby constraining the possible configurations
a network may have during computation. In other words a specification
in MEADOW may contain information of how a network may change over

112 CHAPTER 7. EVALUATION OF MEADOW

MEADOW FOCUS SDL UML
Static/dynamic
parts

Cardinality
expansion on
process sets

Static/dynamic
connectors

Table 7.3: Concepts for specifying potential reconfiguration.

time. Such specifications are contained in type diagrams (see section
5.4.2). Specifically, the concepts of static and dynamic parts/connectors
in type diagrams enables a specifier to distinguish between parts of net-
works that may not change over time, and parts of the network that may
change over time.

The second technique of modelling dynamic reconfiguration in MEADOW,
involves specifying snapshot configurations that a network may have at
different points in time, and defining how these specifications are re-
lated in time. See sections 5.4.1 and 5.4.3.

7.4.2 Conclusion

Table 7.3 gives a classification of the concepts we have found that may
be used to specify the potential structure of a network. FOCUS and UML
has no such concepts, and SDL has one which we have named “cardin-
ality expansion of process sets”. The expressibility of this concept is
actually weaker than the concept of dynamic parts, because it only con-
strains the maximum cardinality that a process set may have (see section
4.2.3), whereas the concept of associating a multiplicity with a dynamic
part constraints the minimum and the maximum cardinality that a part
may have (see section 5.2.7). Also, the concept of a static part and a
static connector in type diagrams is not included in any of the other lan-
guages.

MEADOW makes a clear distinction between potential specification (made
in type diagrams) of a network and snapshot specifications (made in
snapshot diagrams) of a network (FOCUS and UML may only specify the
latter kind). We have not found this distinction on any of the other
languages. Moreover, MEADOW has the concept of relating snapshot dia-
grams in time, which is not included in any of the other languages either.

As stated previously, we distinguish between three kinds of dynamic
networks that we wish to be able to model. Examples of specifications

7.4. DYNAMIC RECONFIGURATION 113

of these kinds of networks are given in chapter 6. Specifically, a specific-
ation of

• an object-oriented network is given in section 6.6,

• a mobile code network is given in section 6.8.

We have also, in section 6.7, specified a network that is similar to an ad
hoc network and explained how an ad hoc network may be specified in
MEADOW.

In the specification of the mobile code network we have used the concept
of message typed connectors (see sections 5.3.7 and 5.3.8) to specify that
component instances may be forwarded over channels. This is not in FO-
CUS, SDL or UML.

Having given examples of specifications of the three kinds of dynamic
networks that we wanted to model, and indicated that MEADOW has
more concepts for specifying the dynamic reconfiguration of these kinds
of networks than FOCUS, SDL or UML, we conclude that the success cri-
teria regarding dynamic reconfiguration is successfully fulfilled.

114 CHAPTER 7. EVALUATION OF MEADOW

Chapter 8

Conclusions and Future Work

In this chapter we summarise the results of this thesis, and suggest areas
of future work.

8.1 Summary

We have defined a conceptual terminology framework which can be used
to describe a language domain. A network is defined to be a set of com-
ponents communicating over channels where components (composite
components) may themselves consist of other communicating compon-
ents (sub components).

We have addressed three problems regarding the use of the traditional
dataflow language (TDL) for modelling our language domain: (1) TDL has
few scalability concepts, hence specifications of large networks may get
space consuming and chaotic. (2) TDL cannot be used to specify net-
works consisting of a general number of components. We have distin-
guished between five network topologies consisting of a general com-
ponents that TDL is unable to specify. (3) TDL has no concepts for
specifying dynamic reconfiguration in networks. We have distinguished
between three dynamic networks which TDL is unsuited to specify: Object-
oriented networks, ad hoc networks and mobile code networks.

We have defined four success criteria that a language must fulfil in or-
der to successfully solve the problems mentioned above. Then we ex-
amined and evaluated, with respect to three success criteria, the parts
of three state-of-the-art modelling languages (FOCUS, SDL-2000 and UML
2.0) that may be seen an extension of TDL.

We have presented a new language MEADOW, and our hypothesis was
that MEADOW fulfils the success criteria, and at the end of this thesis (in

115

116 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

chapter 7) we have provided arguments for its validity.

The main findings with respect to the success criteria are are:

Scalability. Of the three state-of-the-art languages we examined, no single
language stood out as being particularly better equipped than the other
languages with respect to scalability. Although many concepts of the
languages were somewhat similar, there were also some differences.
Only FOCUS has the concept of dependent replications for example. All
the different scalability concepts we found are included in MEADOW. In
addition to this we suggested one new concept (identifier constraints)
that may increase scalability. We have also presented the concept of
views that provides a way of structuring diagrams and abstracting away
information.

Generality. Table 7.2 in section 7.3.2 summarised our topology examin-
ation results. MEADOW may specify all of the topologies, FOCUS three,
SDL one and UML two1. One of the reasons why MEADOW can specify
a larger set of topologies than the other languages, is that individual
component instances in parts may be named. Relationships between
components in a part may therefore be specified precisely by using the
concept of function constraints. Also, MEADOW has the concepts of
merge and split nodes which none of the other languages have. These
concepts are used to specify the bus topology.

Dynamic Reconfiguration. With respect to specifying potential recon-
figurations in a network, FOCUS an UML has zero concepts and SDL has
one. Two concepts that MEADOW has for specifying potential configur-
ations in a network are listed table 7.3. Additional concepts for specify-
ing dynamic reconfiguration that are not included in FOCUS, SDL or UML
were described in sections 7.4.1 and 7.4.2.

Regarding the comprehensibility appropriateness of MEADOW, we have
argued that this is high. The conceptual basis of MEADOW is essentially
based on well established, well proved concepts. We have tried to base
our external representation on notation that has been used in other lan-
guages. Also, the comprehensibility appropriateness aspects have not
only been used in the evaluation of MEADOW, they have also been con-
sidered during development of the external representation of MEADOW.

1Most of the topologies may be underspecified in UML

8.2. FUTURE WORK 117

8.2 Future Work

In order for MEADOW to be used for simulation purposes, it must be
used in combination with a language for modelling behaviour such as
(certain parts of) FOCUS or STATECHARTS for example. Hence, future
work on developing constructs for specifying behaviour, or alternatively
on how to combine MEADOW with existing such languages, would be
interesting. Such a combination would probably result in the identific-
ation of generic operations than can be associated with components.
Examples of such operations are send/receive message, migrate com-
ponent, send/receive port, create/kill/copy component et cetera.

The constructs for specifying how snapshot diagrams are related in time
(section 5.4.1) are rather basic. Further work could therefore be carried
out on expanding these constructs, or to combine MEADOW with an ex-
isting languages (such as activity diagrams in UML) for these kinds of
specifications.

Initial work was carried out on designing a metamodel and implementing
a prototype animation tool for MEADOW. However, this was considered
too time consuming and focus shifted to the concepts which MEADOW
is based on and on how these concepts may be used in case studies. But
it would be very interesting to continue the work on the metamodel, and
especially the prototype animation tool. The animation tool, as the name
suggests, could be used to animate models as well as model checking by
comparing MEADOW specification with behaviour specifications (as sug-
gested in section 6.6). The animation tool would then, obviously, have to
integrate MEADOW with a language for specifying behaviour. A simple
way of doing this, would be to have the animation tool generate a source
code shell from a MEADOW specification. A specifier could then modify
the code manually (presumably by making use some generic operations)
in order to specify component behaviour. This modified code could then
be used by the animation tool as a basis for animation and model check-
ing.

MEADOW does not include constructs for explicit specification of com-
munication between a composite component and its sub-components.
Further work in this area would also be interesting.

118 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] S. H. Bae, S.-J. Lee, W. Su, and M. Gerla. The design, implementaion,
and performance evaluation of the on-demand multicast rounting
protocol in multihop wireless networks. IEEE Network, 14(1):70–77,
2000.

[2] S. Basagni. A mobility-transparent deterministic broadcast mech-
anism for ad hoc networks. IEEE/ACM Transactions on Networking,
7(6):799–807, 1999.

[3] M. Broy and K. Stølen. Specification and developmnet of interactive
systems. Speringer-Verlag, New York, 2001.

[4] S. Carlsen, J. Krogstie, A. Sølvberg, and O. I. Lindland. Evaluating
flexible workflow systems. In J.F. Nunamaker and R.H. Sprague,
editors, Proceedings of the Thirtieth Annual Hawaii International
Conference on System Sciences (HICCS’97), Volume II Information
Systems- Collaboration Systems and Technology, pages 216–232,
1997.

[5] P. Clements, R. Kazman, and M. Klein. Evaluation software architec-
tures: methods and case studies. Addison-Wesley, 2001.

[6] J. D. Day and H. Zimmerman. The osi reference model. In Proc. of
IEEE, volume 71, pages 1334–1340. IEEE Computer Society, 1983.

[7] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility.
IEEE Transactions on software engineering, 24(5), May 1998.

[8] J. D. Gibson. The Mobile communications handbook. The Electron-
ical engineering handbook series. CRC Press, second edition, 1999.

[9] R. Grosu and K. Stølen. Stream-based specification of mobile sys-
tems. Formal Aspects of Computing, 13:1–31, 2001.

[10] David Harel. Statecharts: A visual formalism for complex systems.
Science of computer programming, 8:231–274, 1987.

119

120 BIBLIOGRAPHY

[11] ITU-T. Specification and description language (SDL), ITU-T Recom-
mendation Z.100, 1999.

[12] T. Korson and J. D. McGregor. Understanding object-oriented: A
unifying paradigm. Communications of the ACM, 33(9):40–90, 1990.

[13] J. Krogstie. Using quality function deployment in software require-
ments specification. In & E. Dubois A. L. Opdahl, K. Phol, editor,
Proceedings of the Fifth International Workshop on Requirements En-
gineering: Foundations for Software Quality (REFSQ’99), pages 171–
185. Heidelberg, Germany, 1999.

[14] J. Krogstie. Evaluating uml using a generic quality framework. SIN-
TEF Telecom and Informatics and IDI, NTNU, 2003.

[15] J. Krogstie and A. Sølvberg. Information systems engineering: Con-
ceptual modeling in a qualitive perspective. Draft of Book, Inform-
ation Systems Groups, NTNU, Trondhiem, Norway, 2000.

[16] P. Leblanc and I. Ober. Comparative case study in sdl and uml. In
Proc. Technology of Object-Oriented Languages (TOOLS’00), pages
120–131. IEEE Computer Society, 2000.

[17] S.-J. Lee, M. Gerla, and C.-K Toh. A simulation study of table-driven
and on-demand routing protocols for mobile ad hoc networks. IEEE
Network, 13(4):48–54, 1999.

[18] J.E. McGrath. Groups: Interaction and performance. Prentice-Hall,
1984.

[19] U2 Partners. Unified Modeling Language: Superstructure version 2.0,
2nd revised submission to OMG RFP ad/00-09-02, 2003.

[20] L. L. Peterson and B. S. Davie. Computer networks: a systems ap-
proach. Morgan Kaufman Publishers, second edition, 2000.

[21] S. Pierre and I. Gharbi. A generic object-oriented model for rep-
resenting computer network topologies. Advances in engineering
software, 32(2):95–110, January 2001.

[22] I. Satoh. Mobilespaces: A framework for building adaptive distrib-
uted applications using a hierarchical mobile agentsystem. In Pro-
ceedings of International Conference on Distributed Computing Sys-
tems (ICDCS’2000), pages 161–168. IEEE Computer Society, 2000.

[23] I. Satoh. Physical mobility and logical mobility in ubiquitous com-
puting environments. In N. Suri, editor, Proc. Mobile Agents: 6th
International Conference (MA 2002), number 2535 in Lecture Notes
in Computer Science, pages 186–201. Springer-Verlag, 2002.

BIBLIOGRAPHY 121

[24] H. J. Siegel. Interconnection networks for large-scale parellel pro-
cessing. McGraw-Hill Inc., 1990.

[25] I. Sommerville. Software Engineering. Addison-Wesley Publishers
Limited, Pearson Education Limited, sixth edition, 2001.

[26] B. Unger, Z. Xiao, J. Cleary, J-J Tsai, and C. Williamson. Par-
allel shared-memory simulator - performance for large atm net-
works. ACM Transactions on Modeling and Computer Simulation,
10(4):358–391, 2000.

[27] R. Wieringa. A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Surveys,
30(4), 1998.

