
LSTM Models Applied on
Hydrological Time Series

And Their Potential Physical Implications

Bernhard Nornes Lotsberg

Thesis submitted for the degree of
Master in Computational Science: physics

60 credits

Department of Physics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2021

LSTM Models Applied on
Hydrological Time Series

And Their Potential Physical Implications

Bernhard Nornes Lotsberg

© 2021 Bernhard Nornes Lotsberg

LSTM Models Applied on Hydrological Time Series

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Today’s process-driven hydrological models struggle to accurately model the
complex large scale physical systems the field of catchment hydrology con-
sists of. As others before us, we exploit newly released large-sample datasets
that combine hydrological time series and static basin attributes. We show
that LSTM models are able to generalize and make satisfactory predictions
on ungauged basins, also when trained on two different datasets at the same
time. An LSTM trained on CAMELS and CAMELS-GB datasets achieves
a median validation NSE of 0.66 and 0.78 respectively, compared to the
NWM, which scores a median of 0.55 on CAMELS alone. We currently
know no publicly available NWM benchmarks performed on CAMELS-GB.
In addition to this, we rank the basin attributes using permutation feature
importance. The attributes deemed most important by the LSTM models
are mostly attributes derived directly from the time series the model already
has access to. This indicates that there is potential to improve the long term
memory of our machine learning models. Our hope is that improving this
in the future could lead to attribute rankings that indicate which attributes
could be important for use in existing process-driven models. This either
through adding new processes to existing models, or by guiding the tun-
ing of model parameters through observable data instead of optimization
schemes.

1

Acknowledgements

First of all I would like to thank my girlfriend for keeping me company during
these last semesters. Writing a thesis in lockdown during a pandemic is not
the most optimal scenario, but having here by my side writing her own thesis
in the same situation has helped immensely.

I want to thank my main supervisor Simon Wolfgang Funke for our
weekly discussions and his uplifting spirit. I also want to thank Matt Felix
from Statkraft who has been heavily involved with this thesis.

The research presented in this paper has benefited from the Experimen-
tal Infrastructure for Exploration of Exascale Computing (eX3), which is
financially supported by the Research Council of Norway under contract
270053.

2

Contents

Contents 3

Acronyms 5

List of Figures 6

List of Tables 7

1 Introduction 8

1.1 Goals . 9

1.2 Our contribution . 9

1.3 Thesis structure . 9

2 Theory 11

2.1 Rainfall-Runoff modelling . 11

2.1.1 SACramento Soil Moisture Accounting 11

2.1.2 The Variable Infiltration Capacity model 12

2.1.3 Drawbacks . 16

2.2 Machine Learning . 16

2.2.1 Linear regression . 16

2.2.2 Bias-Variance trade-off 17

2.2.3 Gradient Descent . 19

2.2.4 Neural Networks . 20

2.2.5 Recurrent Neural Networks 23

2.2.6 Long Short-Term Memory 25

2.2.7 Implementing static attributes along with time series . 28

2.2.8 Addressing common criticisms of Machine Learning . 29

3 Data 30

3.1 The CAMELS dataset . 30

3.2 The CAMELS-GB dataset . 32

3

4 CONTENTS

4 Method 34
4.1 Code available as Python package: CamelsML 34
4.2 Training algorithm . 34
4.3 Preprocessing and combining datasets 40
4.4 Basin attribute ranking . 42
4.5 Hardware . 44

5 Results 46
5.1 Models trained on CAMELS-GB 46

5.1.1 Performance . 46
5.1.2 Importance . 48

5.2 Models trained on CAMELS 51
5.2.1 Performance . 51
5.2.2 Importance . 52

5.3 Models trained on CAMELS and CAMELS-GB 54
5.3.1 Performance . 54
5.3.2 Importance . 54

5.4 Models trained for transfer learning 59
5.4.1 Performance . 59

5.5 Test performance and summary. 61

6 Discussion 65
6.1 Model Selection . 65
6.2 Performance and Importance Analysis 66

6.2.1 CAMELS-GB . 66
6.2.2 CAMELS . 68
6.2.3 Mixed model . 68
6.2.4 Transfer learning . 69

6.3 Comparison to traditional models 71

7 Outlook 72

8 Conclusion 75
8.1 Summary . 75
8.2 Future work . 76

Bibliography 77

A CamelsML documentation 82
A.1 Installation . 82
A.2 Usage . 83

Acronyms

CAMELS Catchment Attributes and MEteorology for Large-sample Stud-
ies.

CNN Convolutional Neural Network.

CV Cross Validation.

LSTM Long Short-Term Memory.

MSE Mean Squared Error.

NSE Nash–Sutcliffe model Efficiency coefficient.

NWM National Water Model.

RNN Recurrent Neural Network.

SAC-SMA SACramento Soil Moisture Accounting.

VIC Variable Infiltration Capacity.

WRF-Hydro Water Research and Forecasting model Hydrological mod-
elling system.

5

List of Figures

2.1 The bias-variance tradeoff. 18
2.2 A neural network. 21
2.3 An RNN cell. 23
2.4 An LSTM cell. 26

4.1 A mini batch. 35
4.2 Attribute boxplots CAMELS and CAMELS-GB. 43

5.1 CDF plot of CAMELS-GB models. 47
5.2 The Highest scoring CAMELS-GB prediction. 48
5.3 CDF plot of CAMELS models. 51
5.4 Highest scoring CAMELS prediction. 52
5.5 CDF plot of mixed models. 55
5.6 Highest scoring mixed prediction. 56
5.7 Rainfall-runoff ratio scatter plot 58
5.8 CDF of transfer models. 60
5.9 Training progress TransferUS, lstm, none 61
5.10 Highest scoring transfer learning predictions. 62
5.11 Refit models testing performance. 63

7.1 Potential simple hybrid model. 73

6

List of Tables

4.1 All LSTM models trained. 37
4.2 All basin attribute subsets. 38
4.3 Common attributes and timeseries CAMELS and CAMELS-

GB. 41

5.1 Top 20 overfit CAMELS-GB attributes. 49
5.2 Top 20 CAMELS-GB attributes. 50
5.3 Ranking CAMELS attributes. 53
5.4 Common CAMELS and CAMELS-GB attributes ranked. . . 57
5.5 Summary NSE table of best models. 64

7

Chapter 1

Introduction

Rainfall-runoff modelling is a very important problem for scientists and com-
panies in the field of hydrology. Improving the prediction of runoff/streamflow
based on historic data could lead to more accurate prediction of power gen-
eration in hydro power plants, flood forecasting and general water resource
management.

Today there exists several models for this usage, some with less focus
on physics: conceptual models, and some with a larger focus on physics:
process-driven models. A drawback of these models is that they have many
parameters that have to be calibrated for each basin individually [Newman
et al., 01 Aug. 2017; Mendoza et al., 2015; Kratzert et al., 2019a]. This
leads to the models failing to generalize, as well as leading to the reduction of
physical interpetability. Process-driven models with physical interpretations
of their parameters have been shown to perform better once one forgoes the
expected values of said parameters, and instead callibrate these as well [e.g.
Newman et al., 01 Aug. 2017; Mendoza et al., 2015]. This is mostly due to
the fact that the models are are not purely based on the underlying physics in
a system, such as for conceptual models, and due to the otherwise excessive
need to do on-site data collection for use in more heavily process-driven
models.

With the explosive increase of observational data in recent years (mostly
from improvement in sensor and satellite techniques) and the increase in
computational power, new methods for streamflow forecasting can be ex-
plored. The new data could lessen the need to do on-site probing to model
the complex physical system that is subsurface flow. Implementing new data
in existing mdoels is hard, a simpler way to implement it is instead to use
purely data-driven models. Machine learning models have shown potential
for predicting on catchments described in the CAMELS dataset [Kratzert
et al., 2018; Addor et al., 2017]. The potential for using this dataset in
addition to several, newer datasets from other regions of the world to train
generalizable machine learning models is higher. Being able to perform un-

8

1.1. GOALS 9

gauged prediction (predictions on a basin without callibrating on it) could
yield the benefit of getting approximate prediction of a catchment where no
streamflow measurements have been performed.

The downside of using machine learning models (as well as other purely
data-driven models) is that the models are less interpretable. Even con-
ceptual models, being less physically based than process-driven models, are
somewhat consistent with how a catchment works in the real world. This,
for instance, makes it easier to discover when a model is predicting non-
physicaly consistent results, as one can look at the outcome of each indi-
vidual process in the model. For machine learning models, there is no such
structure, making this a much harder task. Despite this, machine learn-
ing models can still be used to gain an understanding of which attributes
contained in large scale datasets carry the most information, therefore nar-
rowing down the process of using them to improve process-driven models.

1.1 Goals

There are two main goals in this thesis: Analysing static attributes to get
a further indication of which (if any) attributes can be used to improving
the understanding of the underlying physics in rainfall-runoff modelling, as
well as discovering whether existing machine learning models can generalize
across more than one dataset spanning several regions. Attribute importance
ranking across several datasets is also of interest.

1.2 Our contribution

We show that our model performs better using the extra information in the
static catchment features in the CAMELS-GB [Coxon et al., 2020] dataset
than if it were trained only on timeseries, as well as being able to perform
well on ungauged basins.

We are able to do an analysis on the importance of these attributes
and give a brief indication where to begin using these attributes to improve
conceptual and process-driven models.

For further analysis we also provide the main bulk of the code used in
this thesis as a python package released under the Apache 2.0 license. This
code is originally based on the code released by Kratzert et al. [2019b].

1.3 Thesis structure

This thesis is divided into eight chapters:

1. The introduction. Here we explain the importance of this work and
briefly summarize what has been done by others before us.

10 CHAPTER 1. INTRODUCTION

2. Theory. This chapter is divided into two parts:

(a) Rainfall-runoff modelling. This section describes the relevant the-
ory for understanding the physics captured in today’s popular
rainfall-runoff models. We give a brief overview of a popular con-
ceptual model known as SACramento Soil Moisture Accounting
(SAC-SMA), and the process driven model Variable Infiltration
Capacity (VIC), as well as briefly mentioning the National Wa-
ter Model (NWM), along with drawbacks and limitations of these
models.

(b) Machine learning. Here we try to give a overview of the concepts
needed to understand the machine learning models we employ in
this thesis.

3. Data. Here we give a brief explanation of how the CAMELS and
CAMELS-GB datasets are structured, so that the Method and Results
chapters are more easily followed.

4. Method. Here we describe in detail how we structure our models, what
programming frameworks we use and how we analyse our results.

5. Results. Here we present our most interesting results and state initial
observations.

6. Discussion. This chapter presents analysis of our results. We try to
find potential ways to connect our results to the goals of this thesis.

7. Outlook. We briefly present a simple concept for a hybrid model, a
potential physically based regularization scheme, as well as a simple
CNN-based modification to our model structure.

8. Conclusion. A short summary of our most interesting findings along
with what we believe are the next steps for further research.

In addition, the appendix contains documentation of the code used in this
thesis.

Chapter 2

Theory

2.1 Rainfall-Runoff modelling

In this section we introduce and give brief explanations of two types of
rainfall-runoff models. These two types are

1. Conceptual models: This type of model is designed to work in a similar
manner to the system it is used to model, without being based on the
physical laws actually governing said system. To properly model a
system, a conceptual model usually has a large amount of parameters
that need to be optimized.

2. Process-based models: These models are in a larger degree based on
physical laws. They still have parameters, some of which have to be
optimized, but they should ideally be given physical interpretations.

Because they attempt to predict runoff using physically modelled processes,
process based models have been referred to as the models of choice when
predicting runoff in ungauged (meaning basins where there is no streamflow
data available for calibration) basins. Kratzert et al. [2019a] argues that
this is not necessarily the case and data driven machine learning models
can also give state of the art predictions. While this may be the case, the
ideal scenario would be having a well performing process-based model. This
is because all models are likely to have a selection of outlier basins where
they perform exceptionally poorly. A model incorporating physics is in this
case likely to be more interpretable, leading to the possibility of being able
to know whether one can trust a specific prediction or not. For ungauged
basins this is a clear benefit, as this means one can evaluate the plausibility
of a result without prior data.

2.1.1 SACramento Soil Moisture Accounting

The SACramento Soil Moisture Accounting (SAC-SMA) rainfall-runoff model
is a widely used hydrological and serves the purpose of being a conceptual

11

12 CHAPTER 2. THEORY

model in this thesis. Originally introduced in 1973 by Burnash et al. [1973],
the model has since been modified and improved by several others [Koren
et al., 2014]. A thorough explanation of the model can be found in Geor-
gakakos [1986].

The model focuses on conceptually modelling streamflow, using either
real or modelled precipitation and evapotranspiration data as input. As well
as needing evapotranspiration, the model also needs to be coupled with a
snow (and frozen soil) model to be able to function in colder regions. The
conceptual snow model known as Snow-17 can be used for this [Anderson,
1973; Newman et al., 01 Aug. 2017].

This is not derived from any physical equation, but can instead be de-
scribed as a ”bucket model”, i.e. it treats different layers of soils as buckets
with holes in the bottom. This allows some streamflow even when the soil
layer is not saturated, but once saturated, most if not all water is allowed
to flow past the layer. To correctly model a given basin, SAC-SMA needs
parameters such as drainage coefficients to be optimized This behaviour is
in many ways consistent with the real world. What differentiates SAC-
SMA and other conceptual models from process-driven models is that the
equations guiding the behaviour of the model aren’t directly derived from
physical laws. Conceptual models model the behaviour of a physical system
by being designed to act similarly to said system, without actually being
governed by the system’s physical laws.

2.1.2 The Variable Infiltration Capacity model

The Variable Infiltration Capacity (VIC) model [Liang et al., 1994] is a
process driven model with emphasis on simulating the physical process of
water running through soil.

The name stems from the equation for variable infiltration capacity

i = im
î
1− (1−A)1/bi

ó
(2.1)

where

im = (1 + bi)θs|z|. (2.2)

[Liang et al., 1996] The terms in (2.1) and (2.2) are as follows:

• i: Infiltration capacity [m]

• im: Maximum infiltration capacity

• A: Fraction of soil area where i < im

• bi: Infiltration shape parameter. Often found using calibration.

• z: Soil depth.

2.1. RAINFALL-RUNOFF MODELLING 13

• θs: Soil porosity. Related to maximum soil water content with W c =
θs|z|

The model was created to be used in a GCM (General Circulation
Model), but can also instead used for rainfall-runoff modelling using real-
world data instead of the inputs from a circulation model [Newman et al., 01
Aug. 2017]. The rainfall-runoff modelling aspect of the model is presented
in short here for context. It works by splitting the catchment area into N
land coverage categories and the ground (vertically) into several soil layers.
One thin upper soil layer and two lower soil layers. This is an attempt at
physically representing underground streamflow1

The runoff modelling is split into several parts. Some of which are:

1. Evapotranspiration.

2. Surface/direct runoff from bare soil.

3. Subsurface runoff/baseflow from bare soil.

4. Covered surfaces (Types of land cover, vegetation).

5. Snow and frozen soil representations.

The volumetric water content of soil layer i is defined as

θi =
1

zi − zi−1

∫ −zi−1

−zi
θdz. (2.3)

To obtain the direct runoff Qd [mm/day], Richard’s equation, which is
defined as

∂θ

∂t
=

∂

∂z

Å
D(θ)

∂θ

∂z

ã
+
∂K(θ)

∂z
(2.4)

where D(θ) is the soil water diffusivity and K(θ) is hydraulic conductivity
[mm/day], is used. Richard’s equation describes the flow of water in unsat-
urated flow, and is the central physical law in VIC. The use of Richard’s
equation as a physical basis for modelling is what separates VIC, being a
process-driven model, from conceptual models such as SAC-SMA. Richard’s
equation is numerically integrated from −z2 to 02 This gives

∂θ2

∂t
z2 = I − E −K(θ)|0−z2 −D(θ)

∂θ

∂z
|0−z2 (2.5)

1While Liang et al. [1994] originally used a two layer setup, later versions of the VIC
model have introduced more layers. Liang et al. [1996] for instance showed that adding a
smaller layer on top improved performance significantly. This three layer structure is also
what has been used by Newman et al. [01 Aug. 2017], which is the reason we include VIC
as an example of a process-driven model in this thesis.

2Liang et al. [1996] argues that calculating direct runoff separately for layer 1 and 2 is
not beneficial.

14 CHAPTER 2. THEORY

[Liang et al., 1996]. Here I = P−Qd is the infiltration rate and θ2 according
to (2.3) is θi = 1

z2

∫ 0
−z2 θdz. Using this value for θi, direct runoff Qd is then

modelled as

Qd [N + 1] ·∆t =


P ·∆t− z2(θs − θ2), i0 + P∆t ≥ im
P ·∆t− z2(θs − θ2)

+z2θs
î
1− i0+P ·∆t

im

ól+bi
, i0 + P ·∆t ≤ im

(2.6)

where θs = W i
c
zi

and θi = Wi
zi

[Liang et al., 1996].

The baseflow Qb is defined as

∂θ3

∂t
(z3 − z2) = K(θ)|−z2 +D(θ)

∂θ

∂z
|−z2 −Qb (2.7)

[Liang et al., 1996].

Summing direct runoff and baseflow gives total runoff Q = Qd+Qb. For
other ground covers than bare soil the model is slightly modified. We do not
present the details of this in this thesis as the point isn’t to implement VIC,
but rather to give a general idea of the physical effects it employs to model
rainfall-runoff processes. We therefore instead shift our focus to another
challenge to the VIC: Frozen soil modelling.

The original VIC did not account properly for frozen soil, the effect of
which is important in cold climates. The newest version of VIC [Hamman
et al., 2018] uses a modification from Cherkauer and Lettenmaier [1999] to
model frozen soil.

The frozen soil model is based on the heat equation for frozen soil, which
is defined as

Cs
∂T

∂t
=

∂

∂z

Å
κ
∂T

∂z

ã
+ ρiLf

Å
∂θi
∂t

ã
. (2.8)

From (2.8), Cherkauer and Lettenmaier [1999] then uses an explicit first
order finite difference scheme to solve this one dimensional partial differential
equation, discretizing ∂t ≈ ∆t and ∂z ≈ ∆zi. For the top two layers it is
then easy to rewrite the equation on numerical form as

Cs
T ti − T t−1

i

∆t
=

Ç
κti+1 − κtt−1

α

åÇ
T tt+1 − T 2

t−1

α

å
+ κti

ñ
2Ti + 1t + 2T tt−1 − 4T ti − 2γf ′(z)

β

ô
+ ρiLf

(θi)
t
i − (θi)

t−1
i

∆t
. (2.9)

The terms in (2.8) and (2.9) are as follows:

• CS : Soil volumetric heat capacity [J/(m3K)]

2.1. RAINFALL-RUNOFF MODELLING 15

• T : Temperature [K]

• z: Depth [m]

• κ: Soil thermal conductivity [W/(mK)]

• ρi: Ice density [kg/m3]

• Lf : Enthalpy of fusion [J/kg]

• θi: Ice fraction in soil [-]. When θi = 1 there is no frozen soil and the

term ρiLf
Ä
∂θi
∂t

ä
in (2.8) is defined as zero (the gradient of 0 is 0).

• α = (∆z1 + ∆z2)

• β = (∆z2
1 + ∆z2

2)

• γ = (∆z1 −∆z2)

• f ′(z) = (T ti+1 − T ti−1)/α

Again we see the use of physical equations to model a phenomenon. If this
were a conceptual model, it would instead try to model the behaviour of
frozen soil using equations that act like frozen soil in the real world, without
basing them directly on physical equations such as (2.8).

The unfrozen water content of layer i when ice is present is then described
as

Wi = W c
i

ïÅ
1

gψe

ãÅ
LfT

T + 273.16 K

ãò−Bp

. (2.10)

• ψe: Air entry potential [m]

• Bp: Pore-size distribution [-]

• g: Surface average gravitational acceleration [m/s2]

Obtaining θ for use in (2.6) and (2.7) is then done using (2.10) for cases
where frozen soil is present (though not for drainage).

While Liang et al. [1994] included a simple way to model snow, which
treated snow coverage as a special land coverage feature where it was as-
sumed that all the land was covered by a uniformly divided snow layer,
many updates later down the line by users of VIC have added to and im-
proved these representations. The reason we explain this model in such
detail here is to show that while it generally seems to be physically moti-
vated, it still has a non-trivial amount of parameters that need to be set.
Many of these parameters are given an a-priori physical meaning, but ex-
periments have shown that the model actually performs significantly better
when more parameters are optimized instead of using physically motivated

16 CHAPTER 2. THEORY

values [Newman et al., 01 Aug. 2017; Mendoza et al., 2015]. This could
imply that the model does not account for several important physical phe-
nomena. Speaking in the language of machine learning, the fact that adding
more ”learnable” parameters improves performance implies a lack of model
complexity, ”complexity” in this scenario meaning the ability of a model to
fit a given training dataset.

Other, more widely used and developed process-driven also exist. One
of which is the National Water Model (NWM). The NWM is a coupled
meteorological forecast model, the hydrological component of which is known
as the Weather Research and Forecasting Hydrological modelling system
(WRF-Hydro) [Gochis and Chen, 2003; Gochis et al., 2020]. In this thesis
we refer to WRF-Hydro when mentioning the NWM. As a process-driven
model, the NWM is more constrained than SAC-SMA, but known to better
generalize than conceptual models.

2.1.3 Drawbacks

The reason we briefly describe several traditional models in this chapter is
to give proper motivation for why it is of interest to see whether the infor-
mation contained in easily obtainable new data has the potential to improve
our physical understanding of the relationship between rainfall and runoff.
It has been shown by Kratzert et al. [2019a] that one can, using machine
learning, extract useful information from these attributes. Understanding
the limitations of process driven models is important if one is to try finding
a meaningful relationship between the physics not currently described fully
in today’s process-driven models and new types of data.

2.2 Machine Learning

We give a brief explanation of the basics in Machine Learning here for bet-
ter context before elaborating on the LSTM model central to this thesis.
Machine Learning is a type of frequentist approach to statistical analysis
where one creates a statistical model, often with several million parameters
and finds the value of each parameter that makes the model approximate
the data in the most accurate manner. How to find these parameters and
how they are used differ for each model type.

2.2.1 Linear regression

In the simple case of the Ordinary Least Squares (OLS) model we have a
model on the form

ŷ = βX (2.11)

This assumes that the outcome ŷ can we represented as a linear combination
of some fitted parameters β and the input features X. The goal here is then

2.2. MACHINE LEARNING 17

to find the minimum of the mean squared error (MSE) of this. The MSE is
defined as

MSE = |y − ŷ|2 (2.12)

Here y is the observed outcome, in many cases called the ground truth. ŷ
is the prediction made by (2.11). The goal is to find the β that minimizes
(2.12). For this there is an analytical solution as long as the matrix in
(2.11) is reversible. In other words: This can be solved analytically as long
as there are more data points than there are variables (features, inputs).
The solution to the equation can be written as

β = (XTX)−1XTy (2.13)

2.2.2 Bias-Variance trade-off

When training any kind of machine learning model, one usually divides the
data into at least two parts: The training dataset and the testing dataset.
The training dataset is for training a given model, while the testing dataset
is to be kept separate from the training process so as to not make the
performance metrics of the model too optimistic. By ”optimistic” what
is meant is that the error, for scalar values (2.12) is lower on the data the
model is trained on than on data the model has not seen under training. The
function that is minimized under machine learning is called a cost function,
and while (2.12) is very commonly used for scalar outcomes, there exist
many other cost functions all with different characteristics. To explain why
this is important we need to have a quick look at what is known as the bias
variance trade-off. In the case of the OLS model the MSE can be rewritten
into four parts:

MSE = Bias2 + Variance + σ2 (2.14)

For a full derivation of this, see Vijayakumar [2007]. When selecting and
configuring machine learning models this trade-off is essential. The following
is a qualitative explanation of what each term in (2.14) represents:

• Bias: The bias is the part of the error that comes from a model’s lack
of complexity. If one were to try and represent a non-linear system on
the form of (2.11) for instance one would struggle to model the more
complex interactions between input and outcome.

• Variance: In many ways this error is the opposite of bias. It comes
from a given model having too much complexity. This could come
from the model having too many parameters to train compared to
how much data is available for training.

• σ2: This is known as the irreducible error. It is the inherent error
in the data that is used for training. The model cannot reduce the

18 CHAPTER 2. THEORY

Model complexity

E
rr

or

Higher complexityLower complexity

Bias

Variance

Testing error

Training error

Figure 2.1: Illustration of the bias-variance tradeoff. The concept and func-
tion form is in part inspired by Figure 2.11 in Hastie et al. [2009]. For real
world data the effect is not guaranteed to be this drastic.

error below this value as it is independent from the model. To reduce
this error one would have to gather more accurate data using better
instruments for instance.

The aim of training a machine learning model is to find the best trade-
off between model complexity and stability in search of the minimum of
(2.14). This concept also generalizes to other types of modelling than ma-
chine learning. In Newman et al. [01 Aug. 2017] the concept of model
flexibility is mentioned. This is analogous to a model with high variance,
making it able to predict well in more scenarios, but possibly losing per-
formance (overfitting) and interpretability if taken too far. In traditional
rainfall-runoff modelling we could call a purely process-driven model biased,
while a more data driven conceptual model would have higher variance.

The concept of the bias-variance tradeoff concept is illustrated in Figure
2.1. When a model is to simple it fails to properly capture the behavior
of a given system and the error increases. When a model is too complex
it starts fitting the train set perfectly and loses all generalizability, the test
error therefore increases.

There are many ways to combat this issue. The most obvious solution
is to increase the amount of data a model is trained on. This reduces the
amount of model parameters compared to the model of data points and
makes the model less likely to overfit. Another way is to forcefully increase

2.2. MACHINE LEARNING 19

the bias of a model with high complexity through a process known as regu-
larization. Regularization comes in many forms, often specific to the models
that are being regularized.

2.2.3 Gradient Descent

While the simple case of linear regression has an easily attainable analytical
solution as seen in (2.13), more advanced models may not. A generic com-
putational optimization algorithm known as Gradient Descent can therefore
be beneficial to employ in such a case [Hastie et al., 2009] [Géron, 2019].
The fundamental concept of Gradient Descent is to calculate the gradient
∆F (x) of the loss function F (x). In the case of regression this function
would be the MSE as described in (2.12) while the variable x would be the
regression coefficients β. After calculating ∆F (x) one then does a gradient
descent step, which is defined as

xi+1 = xi − λ∆xF (xi). (2.15)

Here the subscript i denotes the epoch. An epoch is defined as the point
when the optimization algorithm has seen all the data in your training set
once. λ is called the learning rate and is known as a hyperparameter. A
hyperparameter is a model parameter that is not trained in the training
process and has to be optimized in a different way. More on this in chap-
ter ?? A problem with (2.15) is that one is never guaranteed to find the
absolute minimum of F (x), the algorithm often converges at local minima
[Hastie et al., 2009]. The solution to this is to introduce stochasticity to the
optimization algorithm. Stochastic Gradient Descent is a modification of
(2.15) which iterates over minibatches of your dataset instead of the entire
dataset at once. This has two main benefits:

1. It adds stochasticity by shuffling the batches for each epoch.

2. It significantly reduces the amount of RAM needed to run the calcu-
lations on a computer.

Introducing minibatches yields another hyperparameter in form of the batch
size. This is the amount of datapoints to be used in each iterations. An
iteration is defined as when the optimizer has seen all data points in a mini-
batch, and there are therefore several iterations in an epoch. Adding more
complexity to Stochastic Gradient Descent (SGD) we get to the optimizer
known as Adaptive Moment EstimAtioN (Adam) [Kingma and Ba, 2014].
The ADAM optimizer is an optimizer which uses minibatches and also what
is known as a momentum based approach. As a slight simplification from
what is written in Hjorth-Jensen [2020] the ADAM algorithm in terms of

20 CHAPTER 2. THEORY

equations looks like:

gi = ∆xE(x) (2.16)

mi =
β1mi−1 + (1− β1)gi

1− βi1
(2.17)

si =
β2si−1 + (1− β2)g2

i

1− βi2
(2.18)

xi+1 = xi − ηi
mi√
si + ε

(2.19)

Following the same naming scheme as (2.15), x is the learning parameter
of the model and the subscript i denotes the epoch (except for βi1/2, where

it means power). β1 and β2 are two constants usually set to β1 = 0.9 and
β2 = 0.999. ε is a regularization constant to avoid numerical instability in
the fraction and is usually ε = 1E− 83. m and s are known as the first and
second momentum of the gradient g respectively. The learning rate ηi
is here subscripted with the epoch i. This is to allow for non-constant
learning rates which is often beneficial The benefits of the ADAM optimizer
is that it has low memory requirement and it calculates individual learning
rates for for different parameters of a learning algorithm. This makes the
learning rate λ a bit more ambiguous as it is weighed differently for each
parameter.

2.2.4 Neural Networks

Previously we used Ordinary Least Squares to introduce simple concepts in
Machine Learning. As the model we use to do our analysis in this thesis is
a type of Recurrent Neural Network, we now give a short introduction to
ordinary neural networks before working us up to describing more advanced
models like Recurrent Neural Networks (RNNs). A neural network is a
non-linear machine learning model that can be used for both regression
and classification. In this thesis we focus on the regression case and will
therefore stick to describing that. The concept of the neural network was
first described in Rosenblatt [1958]. Mathematically, a neural network can
be written in this form:

yli = f l

Ñ
Nl−1∑
j=1

ωlijy
l−1
j + bli

é
4 (2.20)

3These values for β1, β2 and ε are mentioned in Kingma and Ba [2014] and seem
to be used in practice in most cases. They are also the default values of the ADAM
implementation in the Machine Learning Framework Pytorch [Paszke et al., 2019].

4While the concept is cited to Rosenblatt [1958], this equation was taken from Morten
Hjorth-Jensen’s great lecture notes Hjorth-Jensen [2020] from the Universuty of Oslo
course Fys-Stk4155 as this is the author’s favorite mathematical description of a neural
network

2.2. MACHINE LEARNING 21

...

...
...

x0

x1

x2

xn

a0

an

y0

yn

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: A multilayer perceptron model as described in Rosenblatt [1958].
Figure taken and modified from Wibrow [2014].

There are a lot of variables, subscripts and superscripts here, going through
them systematically so as to not overwhelm the reader:

• l denotes what layer in the neural network we are in. Look at Figure
2.2 to understand what is meant by a layer.

• i denotes what ”neuron” in layer l we are looking at.

• yli means the output of neuron i in layer l. At the output layer l = L,
it denotes the model output.

• f l is the activation function in layer l. An activation function is a
function that is used to make the neural network non-linear. Some
common activation functions are the Sigmoid function (2.21) and tanh.
For the output layer l = L the activation function is often different
depending on whether we are doing classification or regression. For
regression fL is often just fL(x) = x.

• ωlij is the weight corresponding to the output yl−1
j from neuron j in

layer l − 1 when sent to neuron i in layer l

• bli is known the bias term. It is a constant that is added to all inputs
in neuron i in layer l.

22 CHAPTER 2. THEORY

• The input to f l (the weighted sum plus the bias) can also be denoted
as zlj

Figure 2.2 gives a visual representation of (2.20). The parameters b and ω
are trained using an optimizer. In the case of this thesis that would be the
ADAM optimizer. To get gradients to use in the optimizer an algorithm
known as backpropagation is used. Backpropagation is an algorithm that
takes the gradient at the output layer L, which usually is easily derivable and
uses the chain rule to find the gradient of the loss function with respect to
all the weights and biases in the network. We mention the sigmoid function,
it is defined as

σ(x) =
1

1 + e−x
(2.21)

For a normal feed forward neural network, the backpropagation algorithm
can be written as

δLj =
dfL(z)

dz

Ä
zLj
ä ∂C
∂yLj

(2.22)

δlj =
∑
k

δl+1
k ωl+1

kj

df l(z)

dz

Ä
zlj
ä

(2.23)

as shown by Hjorth-Jensen [2020]. The first equation (2.22) is for the special
case of the output layer, where l = L. This needs to be calculated first for
us to be able to use (2.23) to calculate δlj for the neurons in the rest of the

layer. The term δlj is then used to get gradients for the weights ωlj and biases

blj in this manner:

∂C

∂ωlj
= δljy

l
j (2.24)

∂C

∂blj
= δlj (2.25)

Applying an optimizer step on all weights and biases using 2.24 and 2.25 will
then ideally make the model reduce the cost function of the training data.
There is more to this than that though, hyperparameters, model complexity
(often referring to the amount of parameters. In the case of a neural network
that would be the amount of nodes and layers) dictate how well the model
can fit the training data. As we discuss in chapter 2.2.2 we do not always
want the model to perfectly predict the training data as that can make
the model perform worse on data is has not seen during training. There
is also the problem of the optimization algorithm not necessarily hitting a
global minimum then converging. The parameter-loss space is a complex
high dimensional space often with infinitely many local minima that can
lead the model to a worse fit than would be possible otherwise [Hastie et al.,
2009].

2.2. MACHINE LEARNING 23

tanh

f(x) = x

ht−1

Prev Hidden State

xtNew Input

ht

New Hidden State

ytNew Output

Figure 2.3: Illustration of an RNN cell. The squared tanh indicates a neural
network layer with tanh as the activation function. Lines meeting indicate
concatenation while lines splitting means copying. The squared f(x) = x
is a neural network layer with no activation function. The Tikz code for
creating this figure is released under the permissive Beerware license and is
a modified version of the figure in Leon [2018].

2.2.5 Recurrent Neural Networks

A normal feed forward neural network is only sufficient at learning the re-
lationship between non-structured inputs and outputs. This means that it
is not well suited for image analysis, where each pixel’s position relative to
other pixels is important. It also means that it is not sufficient for time se-
ries data where you ideally want a model than can sequentially run through
the data and use information about the past to better predict the future.

A Recurrent Neural Network (RNN) is a neural network that takes timed
inputs sequentially, changing modifying the ”state” of the network while
using the same parameters for all future time-steps. In simple terms the
algorithm goes like this:

1. The model takes an input xt

2. Using trained parameters it updates a hidden state vector ht

3. The model gives an output based on the parameters and the hidden
state yt.

24 CHAPTER 2. THEORY

For an ordinary RNN the state updates and outputs are defined as: 5

ht = tanh (ωhhht−1 + ωxhxt + bh) (2.26)

yt = ωhyht + by (2.27)

Here the variables are as follows:

• yt: The output vector (remember that there can be several output
time series) at time step t.

• ht: The hidden state vector at time step t.

• xt: The input vector at time step t.

• ωhh: The weight vector used for the previous hidden state to affect
the new.

• ωxh: The weight vector that decides how much the input xt affects
the state of the RNN.

• ωhy: The weight vector that decides how much the hidden state ht
affects the output yt.

• bh: A bias term that adds constant change to the hidden state.

• by: A bias term used when calculating the next time step yt.

In Figure 2.3 we see that the output at time step t is represented as equal
to the hidden state fed through a neural network layer with no activation
function. This is what is done in (2.27).

The backpropagation algorithm for an RNN is quite a bit different al-
though the underlying concept is the same. We argue it is not necessary
to include the algorithm in this thesis, but if the reader is interested they
should read this source: Werbos [1990]. The important takeaway from the
backpropagation algorithm used for RNNs (called Backpropagation Through
Time), is that it uses high amounts of memory because it needs to store
values for every time step to be able to get proper gradients for the model
parameters. Because of this, it is common to instead use an algorithm called
Trunctated Backpropagation Through Time, where one stops saving values
after a pre-defined time sequence. This saves memory but makes the model
unable to learn dependencies further in time than the cutoff. It also leads
to the introduction of a new hyperparameter which we will refer to as the
sequence length.

5Note that this describes only a single RNN cell. When dealing with RNNs we often
use the term ”cell” instead of ”layer”. There is nothing stopping us from creating a model
architecture with multiple RNN cells. Also, keep in mind that there are many ways of
sending in inputs and getting out outputs from RNN cells. Here we only present what is
relevant for the model setup in this thesis.

2.2. MACHINE LEARNING 25

2.2.6 Long Short-Term Memory

The Long Short-Term Memory (LSTM) model is the type of RNN we employ
in all our experiments in this thesis work. In this section we therefore also
spend some time arguing why the way an LSTM model works fits the Physics
we wish to simulate and is not just chosen by random.

The LSTM is a more advanced type of recurrent neural network that
exists because of a major drawback with the ordinary RNN. An RNN as
described in the previous section struggles to learn long-term dependen-
cies as the Backpropagation Through Time algorithm starts to downplay
the importance of previous time-steps the further one advances in time.
The fenomenon that causes this is known as the vanishing gradient prob-
lem [Bengio et al., 1994] [Graves, 2012] 6. The LSTM model is designed
to fix this, hence the name. This is the reason we use the LSTM model
and not a normal RNN in this thesis even though an RNN would be less
computationally expensive to train, many of the dependencies in traditional
rainfall-runoff modelling are long term. The most obvious case is the mod-
elling of snow. Not the melting itself, but for the model to remember that
snow accumulation can lead to lower discharge when it happens and more
discharge once the snow starts to melt.

As opposed to the case of the vanilla RNN, trunctating the Backpropaga-
tion Through Time algorithm actually doesn’t break long-term dependencies
in an LSTM as the model architecture itself is designed to keep track of these
[Graves, 2012]. This means that the LSTM has two clear advantages:

1. An LSTM does not suffer from the same vanishing gradient problem
that the RNN does.

2. An LSTM is less sensitive to trunctating the Backpropagation Through
Time algorithm.

To understand how an ordinary LSTM works we need to have a look
at Figure 2.4. In the figure lines meeting means concatenation, the boxes
represent neural network layers. The boxed σ for instance indicates a neural
network layer with the Sigmoid function as the activation function. Circles
indicate a pointwise operation. The biggest mathematical difference between
a normal RNN and an LSTM is the introduction of the cell state ct. The
cell state is only affected twice per time step by relatively simple operations
(pointwise multiplication and addition). This ensures that the gradients
related to the cell state get simplified and therefore suffer less from the
vanishing gradient effect that hinders ordinary RNNs from learning long

6Mentions of vanishing and exploding gradients are common in Machine Learning and
are not exclusive to Recurrent Neural Networks. Historically the popularity of activation
functions in normal neural networks has also been dictated by these issues. The Sigmoid
function (2.21) can lead to vanishing gradients as the gradient approaches 0 when x→ ∞.

26 CHAPTER 2. THEORY

σ σ tanh σ

f(x) = x

× +

× ×

tanh

ct−1

Prev Cell State

ht−1

Prev Hidden State

xtNew Input

ct

New Cell State

ht

New Hidden State

ytNew Output

Figure 2.4: A single basic LSTM cell as proposed in Hochreiter and Schmid-
huber [1997]. Visually we see the point of the Cell State C here is to not
retain more information by being affected less over time than the hidden
state h. This is how the LSTM avoids the gradient issues regarding long
term dependencies that the RNN suffers from.The squared tanh indicates a
neural network layer with tanh as the activation function, sigma indicated
a sigmoid activation function andf(x) = x indicates no activation function.
The Tikz code for creating this figure is released under the permissive Beer-
ware license and is a modified version of the figure in Leon [2018].

2.2. MACHINE LEARNING 27

term dependencies. The three connections between the hidden state h and
cell state c are often called ”gates”.

1. The first (from left to right) is often called the ”forget gate”. This
is because σ(x) ∈ 〈0, 1〉, making the forget gate either not affect the
hidden state at all or lower the values in the ct−1-vector.

2. The second gate is called the ”input gate”. This is where new infor-
mation is added to the cell state through multiplying the output from
two neural network layers, one with Sigmoid activation and one with
tanh activation and then adding that product to the cell state.

3. The third gate is called the ”output gate” and it dictates the flow of
information from the cell state to the hidden state. It is defined as
the pointwise product of tanh ct and the output of the concatenated
previous hidden state and current input [ht−1,xt]. The output of this
gate is both used as the updated hidden state ht and as the output7.

Now that we have a qualitative explanation of the LSTM model, we lay it
down in mathematical terms as well:

ft = σ (ωf · [ht−1,xt] + bf) (2.28)

it = σ (ωi [ht−1,xt] + bi) ◦ tanh (ωii [ht−1,xt] + bii) (2.29)

ct = ct−1 ◦ ft + it (2.30)

ht = σ (ωo [ht−1,xt] + bo) ◦ tanh(ct) (2.31)

[Hochreiter and Schmidhuber , 1997] [Gers et al., 1999].
The terms are as follows:

• σ: The Sigmoid function (2.21).

• ft: Forget gate at time step t.

• ωi and fi: Neural network weights and bias in the forget gate.

• ◦: Hadamard product.

• it: Input gate at time step t.

• ωi and i: Neural network weights and bias in the Sigmoid activated
neural network in the input gate.

• ωii and ii: Neural network weights and bias in the tanh activated
neural network in the input gate.

• ct: Cell state at time step t.

7At least in the model configuration we use, there are many variants of the LSTM
model [Graves, 2012].

28 CHAPTER 2. THEORY

• ht: Hidden state at time step t.

• ωo and bo: Neural network weights and bias in the output gate.

• xt: Input vector at time step t.

There are several ways to use an LSTM for prediction. The method relevant
for this thesis is the one we present here. To predict the output yt at time
step t:

1. Take a subset of the input vector xt−sequence length:t.

2. Feed it through the LSTM cell, saving the hidden vector ht.

3. Feed ht through an ordinary neural network layer. This is essentially
to do a weighted sum of the elements in ht so that we get an output
vector of the same dimensions as the output yt. With only one output
as with rainfall-runoff modeling this means summing all the values ht
into a single scalar yt.

2.2.7 Implementing static attributes along with time series

The description of the LSTM model we give in the above section only con-
tains information for how to implement time series, not static attributes
that do not vary with time. There are multiple ways to implement this. An
obvious choice here is to naively treat each static feature as a time series that
does not change. This seems counter-intuitive as it makes the model not see
any difference between time series and static features, but it is very easily
implementable and memory-wize does not affect the training algorithm too
much8. This way we train the exact same type of model and do not need to
modify anything.

Recently a small modification to the LSTM model was proposed for this
purpose: The Entity Aware LSTM (EA-LSTM) [Kratzert et al., 2019b].
Mathematically, an EA-LSTM is very similar to an LSTM. We only need to
change the input gate described in (2.29):

it = σ (ωixs + bi) ◦ tanh (ωii [ht−1,xt] + bii) (2.32)

This way the part of the input gate is affected by the static features, making
the static features able to affect the cell state. This makes the model able
to change how it views long-term dependencies based on information from
the static features. The paper indicates that this modified LSTM performs
worse than the naive approach, going from a median NSE of 0.76 to 0.74 on
the CAMELS dataset [Addor et al., 2017]. This may not always be the case,
though. The EA-LSTM has fewer model parameters than an ordinary LSTM
and can therefore be described as less complex. This may lead to better
generalization in some cases, as it could function as a form of regularization.

8Memory is often the bottleneck of training machine learning models.

2.2. MACHINE LEARNING 29

2.2.8 Addressing common criticisms of Machine Learning

There are several common criticisms of machine learning and other data
driven approaches to physical modelling. Two common ones are:

1. Machine learning models are hard to analyze as they essentially are
just a collection of arbitrary parameters that are optimized based on
a dataset. It is therefore difficult to say whether a machine learning
model actually ”learns” any physics9.

2. Machine learning models are unable to include the a-priori knowledge
already present in most scientific fields.

We believe both these criticisms are valid and need to be addressed. First
off: While analysing machine learning models can be very difficult, that is
not necessarily always the case. It depends greatly on how complex the
model is how much different data the model uses among other things. A
linear regression model is easy to interpret, but it becomes much less easy
to interpret if it needs several thousand different inputs [Hastie et al., 2009].
This is the reason we employ feature selection here in this thesis. Our goal
is not to just get the highest performing model, but rather to use the model
as a tool for physical discovery and as a supplement to traditional models.
This also addresses point 2: We are in fact not looking to use LSTM models
as replacements for physical models, but instead we look to explore options
for improving traditional models. It is important to remember that the
best performing classical rainfall-runoff models also include many optimized
parameters that do not necessarily represent any physical phenomena. We
agree with Karpatne et al. [2017] that the power of machine learning when
it comes to leveraging data should be used in a way that improves our
understanding of the underlying system we are modelling.

9Though this is a question of definition. What does ”learning physics”actually mean?

Chapter 3

Data

In this chapter we briefly describe the two datasets used to get all results
in this thesis. We introduce the Catchment Attributes and Meteorology for
Large-sample Studies (CAMELS) dataset [Addor et al., 2017] first, as it is
the older dataset and is used as the basis for the analysis of Kratzert et al.
[2018, 2019b, a], and then the CAMELS-GB dataset Coxon et al. [2020].

3.1 The CAMELS dataset

The CAMELS dataset [Addor et al., 2017] is a dataset compiled from several
previous hydrological datasets in an attempt to improve the availability of
data for large-scale hydrological modelling. It includes data for 671 basins
across the United States, with time series spanning from approximately the
year of 1980 to 2008.

We choose to focus on the time series data used by Kratzert et al. [2019b].
This selection of data consists of an extension of the original Maurer dataset
contained in CAMELS provided by Kratzert [2019b]. The time series pro-
vided by the extended Maurer dataset that we use as inputs are the following:

• Precipitation [mm/day]

• Shortwave Radiation [W/m2]

• Maximum air temperature [C◦]

• Minimum air temperature [C◦]

• Water vapor pressure [Pa]

The streamflow data corresponding to the meteorological forcing data men-
tioned above stems from the United States Geological Survey (USGS). It
contains streamflow for all the basins in the dataset.

In addition to time series, CAMELS contains several static basin at-
tributes describing location and topography, climatic indices, hydrological

30

3.1. THE CAMELS DATASET 31

signatures, soil characteristics, geological characteristics and land cover char-
acteristics for each basin. Attributes describing location and topography
are derived from the USGS part of the dataset described in Newman et al.
[2015], and are basin-wise averaged. The attributes of interest here are
the topographic ones, as location is not beneficial to physical modelling 1.
The climatic indices are directly derived from the time series provided by
Daymet, another forcing time series dataset contained in CAMELS. The cli-
matic index frac snow is derived from the fraction of rainfall during subzero
temperature, for instance. The hydrological signatures are derived from the
streamflow data provided by USGS. These attributes contain info such as
the average daily discharge q mean. The land cover statistics describe land
cover such as the forest fraction and the dominant land cover class. There is
only a land cover fraction for the dominant land cover class for each basin.
The land cover data is derived from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) data, except for forest frac, which is derived from
USGS data. MODIS data comes from satellites, making it possible to gather
equivalent data from other regions of the world without having to perform
on-site measurements. The soil characteristics describe the soil properties
of each basin in the dataset. These attributes are derived from Miller and
White [1998]. There are two attributes for soil depth. One is from the pa-
per just mentioned, and one is defined differently and stems from Pelletier
et al. [2016]. In this thesis we use the attribute soil depth pelletier, as
it stems from the same data source as in CAMELS-GB [Coxon et al., 2020].
For a complete list of attributes in CAMELS, see Table 1 - 6 in Addor et al.
[2017]. All attributes used in this thesis are shown in the upcoming chapter,
in Table 4.2.

Complementing the CAMELS dataset are several hydrological model
benchmarks provided by Kratzert [2019a]. These are calibrated and run on
the time series data contained in CAMELS or the data it is derived from.
In this thesis we include the benchmark of the VIC model we briefly de-
scribe in Section Liang et al. [1994]. Additionally Kratzert et al. [2019a]
used and provided a preprocessed benchmark of the NWM [NOAA, 2018;
Salas et al., 2018]. This benchmark is known as the NOAA (National
Oceanic and Atmospheric Administration) NWM reanalysis. The bench-
mark is released with no license and can as of April 2021 be found at
https://registry.opendata.aws/nwm-archive/. The preprocessed ver-
sion is available on Kratzert et al. [2019a]’s Github page: https://github.
com/kratzert/lstm_for_pub/blob/master/data/nwm/nwm_daily.pkl.

1Though it could in theory improve the performance of a statistical model

https://registry.opendata.aws/nwm-archive/
https://github.com/kratzert/lstm_for_pub/blob/master/data/nwm/nwm_daily.pkl
https://github.com/kratzert/lstm_for_pub/blob/master/data/nwm/nwm_daily.pkl

32 CHAPTER 3. DATA

3.2 The CAMELS-GB dataset

As per the Open Government License v3 the dataset is distributed under, we
are required to include the statement ”Contains data supplied by Natural
Environment Research Council.” The CAMELS-GB dataset [Coxon et al.,
2020] is inspired by the CAMELS dataset and is aimed to be the equivalent
to the CAMELS dataset for basins in Great Britain, as opposed to North
American (United Stated) basins in the CAMELS dataset. The dataset
is the same in size, also containing 671 basins. The time series span from
1970-2015, though, making it span roughly 15 more years than the CAMELS
dataset.

The forcing time series we use in this thesis are

• Precipitation [mm/day]

• Average temperature [C◦]

• Wind speed [m/s]

• Humidity [g/kg]

• Shortwave radiation [W/m2]

• Longwave radiation [W/m2]

In addition there are two more time series which we exclude that describe
potential evapotranspiration for well-watered grass. We exclude these as
they are derived features and not measured, and they would make the com-
parison to CAMELS more difficult.

The static attributes in CAMELS-GB are structured similarly to those
in CAMELS. There are location and topographic attributes, which describe
the geographical location of each basin, as well as the giving a description
of the topography. As stated above, the geographical attributes are not of
interest to a physical model, and are therefore not used here. The topogra-
phy attributes are provided by Morris et al. [1990]. The climatic indices are
derived from the forcing time series, similarly to CAMELS. They contain
average precipitation, aridity, snow fraction and other attributes. Hydro-
logic signatures are derived in the same manner, being processed informa-
tion derived from the streamflow time series for each basin. The land cover
attributes are provided by Rowland et al. [2017]. The classes have been de-
rived using a random forest classifier on satellite images, meaning they suffer
from uncertainty from the classification and the original data source. As op-
posed to CAMELS, there is land cover percentage for each class, not just the
dominant class in each basin. root depth is, like in CAMELS, taken from
Pelletier et al. [2016]. All other soil attributes are provided by Hiederer
[2013a, b]. The soil attributes are limited to the top 1.3 meters of soil.

3.2. THE CAMELS-GB DATASET 33

CAMELS-GB contains three attribute categories not present in CAMELS:
hydrogeological attributes, hydrometry and discharge uncertainty, and hu-
man influence attributes. These three categories are not used in this thesis.
For a complete list of all the static attributes in CAMELS-GB, see Table 2
in Coxon et al. [2020]. As stated above, all attributes used in this thesis are
also shown in Table 4.2.

The meteorological time series and static attributes in CAMELS-GB
are not all equivalent with CAMELS. This makes it difficult to combine
the datasets for a universal model, as one has to remove and/or modify a
significant amount of static attributes to get overlapping datasets.

As far as we know there is no currently available traditional model bench-
mark dataset akin to Kratzert [2019a] for CAMELS-GB. The creation of
such a dataset would likely be a challenge because of the time series con-
tained in CAMELS-GB. There is for instance not enough information avail-
able to run VIC (see section 2.1.2) on the dataset.

Chapter 4

Method

In this chapter we discuss the implementation of the LSTM models described
in Chapter 2.2.6. The goal is to use the hydrological data from the datasets
described in Chapter 4 to predict runoff. We describe how we preprocess
and combine the datasets and how the predictions of these models are used
to try and gain insight into what physical processes our models deem the
most important.

4.1 Code available as Python package: CamelsML

Originally a fork of the code in Kratzert et al. [2019b] with a few modifi-
cations, the machine learning code of this thesis is now implemented to be
a fully fledged Python package. As the original code it is forked from, it is
released under the Apache 2.0 license and anyone is therefore free to modify
and implement the code into their own experiments in the future. We dub
this package CamelsML (CAMELS Machine Learning).

See Appendix A.1 for documentation on how to use the python package
as well as a minimal running example.

4.2 Training algorithm

The training algorithm, excluding the mathematical details shown in Chap-
ter 2.2.6 is shown here:

1. Split the training data basin-wise into five parts of equal size.

2. Repeat the following five times, each time using a different 1/5 of the
split data as the validation set:

(a) Initialize LSTM model with random weights and zero biases, ex-
cept for the bias of the forget gate bf , which is initialized as
bf = 5.

34

4.2. TRAINING ALGORITHM 35

. . .

. . .

.

.

.

xi,t

xi+b,t

xi,t+1

xi+b,t+1 xi+b,t+s−1

xi,t+s−1

xi+b,t+s

xi,t+s

. . .

. . .xi+1,t

xi+b−1,t

xi+1,t+1

xi+b−1,t+1 xi+b−1,t+s−1

xi+1,t+s−1

xi+b−1,t+s

xi+1,t+s

Figure 4.1: A mini batch. xi,t represents the input parameters x at time
step t for time series i ∈ [0, b] where b is the batch size. A mini batch consists
of b× t FP32 numbers.

(b) Split each training time seres into several parts, the length of
which is decided by the sequence length variable s. A mini batch
consists of a batch size b amount of these s long time series. This
structure is shown in Figure 4.1.

(c) For each mini batch:

i. Use the model to predict the outcomes of each time series in
the mini batch. This can be done in parallel.

ii. Use the average loss of all predictions in the mini batch to
update the model parameters using ADAM (see (2.16-2.19)).

(d) Evaluate on the validation set without updating the model pa-
rameters.

We evaluate models using the Nash–Sutcliffe model efficiency coefficient
(NSE) [Nash and Sutcliffe, 1970]. This metric is essentially a hydrologi-
cal interpretation of the well known R2 score. It is defined as

NSE = 1−
∑T

t=0

(
yt − ŷt

)∑T
t=0

(
yt − ¯̂y

) . (4.1)

Here T is the amount of time steps in a time series, yt is the observed
runoff used as the ground truth at time step t ∈ [0, T], ỹt is the predicted
runoff at time step t ∈ [0, T] and ˆ̃y is the average predicted runoff.

Kratzert et al. [2019b] argues that using MSE as the cost function is not
ideal for generalized hydrological modelling, as errors on basins with higher

36 CHAPTER 4. METHOD

absolute runoff will contribute more to the total MSE than those with lower
runoff. To circumvent this they use what they dub the NSE loss function.
It is defined as

NSE∗basin =
|ybasin − ŷbasin|2

(σbasin + ε)2 , (4.2)

where ybasin is the observed runoff of a given basin, ŷbasin is the predicted
runoff of a given basin and σbasin is the standard deviation of a given basin’s
observed runoff. ε is a very small number included for numerical stability.

As we employ cross validation, we end up with 5 different models for each
training run. These models do not necessarily converge to the same model
parameters as each other, making them potentially quite different from one
another. To test the actual performance of a model (not just relative to other
model configurations) we therefore need to train a new model with the same
configuration (using the same features, hyperparameters, etc.) on the entire,
undivided training set and test that model on the test set. This test result
cannot be used to determine relative performance between different model
configurations, but it can give an indication of the actual, real-world per-
formance of a final selected model. Statistically, this is due to the fact that
optimizing model configuration using the test set would mean overfitting on
said test set. See Hastie et al. [2009] for a more detailed explanation.

For models used to validate transfer learning between CAMELS and
CAMELS-GB, we cross validate on one dataset and use all five models from
the cross validation to make ensemble predictions on the validation split of
the other dataset. This way we can get more robust statistics also in these
results, as Kratzert et al. [2019b] showed that there often is a non-trivial
performance difference between a single model and a model ensemble. In
our case we assume this effect to be even higher because of the nature of
training and validating on different datasets.

4.2. TRAINING ALGORITHM 37

Table 4.1: Table containing all models trained in this thesis along with
their given labels and configuration. All models are trained with a sequence
length of 270 days and are initiated with the seed 19970204. The attribute
subsets a-e are shown in Table 4.2.

Label attribute subset batch size dropout

GBea-lstm, all a 1152 0
GBlstm, all a 1024 0
GBea-lstm, chosen b 1536 0
GBlstm, chosen b 1280 0
GBnone - 1280 0
USKratzert c 1024 0.4
USnone - 2048 0.4
Mixedea-lstm d 1024 0.4
Mixedlstm d 1024 0.4
Mixednone - 1024 0.4
TransferGB, ea-lstm d 1024 0.4
TransferGB, lstm d 4096 0.4
TransferGB, none - 1024 0.4
TransferUS, ea-lstm d 4096 0.4
TransferUS, lstm d 4096 0.4
TransferUS, none - 4096 0.4
TransferUS, ea-lstm 2 e 2048 0.4

3
8

C
H
A
P
T
E
R

4.
M
E
T
H
O
D

Table 4.2: Table containing all basin attribute subsets. Subset e is equal to subset d but without organic perc and gvf max.

a b c d e

num reservoir reservoir cap area soil depth pelletier soil depth pelletier soil depth pelletier
dwood perc ewood perc elev 10 soil depth statsgo frac forest frac forest
grass perc shrub perc elev 50 soil porosity gvf max
crop perc urban perc elev 90 soil conductivity p mean p mean
inwater perc bares perc dwood perc max water content pet mean pet mean
p mean pet mean ewood perc sand frac p seasonality p seasonality
aridity p seasonality grass perc silt frac frac snow frac snow
frac snow high prec freq shrub perc clay frac aridity aridity
high prec dur low prec freq crop perc frac forest high prec frec high prec freq
low prec dur inter high perc urban perc lai max high prec dur high prec dur
inter mod perc inter low perc inwater perc lai diff low prec frec low prec freq
frac high perc frac mod perc bares perc gvf max low prec dur low prec dur
frac low perc no gw perc sand perc gvf diff area area
low nsig perc nsig low perc silt perc p mean porosity cosby porosity cosby
gauge lat gauge lon clay perc pet mean conductivity cosby conductivity cosby
gauge easting gauge northing organic perc p seasonality sand perc sand perc
gauge elev area bulkdens frac snow silt perc silt perc
elev min elev 10 tawc aridity clay perc clay perc
elev 50 elev 90 porosity cosby high prec frec organic perc
elev max sand perc porosity hypres high prec dur
silt perc clay perc conductivity cosby low prec frec
organic perc bulkdens conductivity hypres low prec dur
tawc porosity cosby root depth elev mean
porosity hypres conductivity cosby soil depth pelletier slope mean
conductivity hypres root depth inter high perc area gages2
soil depth pelletier inter high perc carbonate rocks frac

inter mod perc geol permeability
inter low perc
frac high perc
frac mod perc
frac low perc
no gw perc
low nsig perc
nsig low perc

4.2. TRAINING ALGORITHM 39

Table 4.1 shows all trained models from which results are presented in
this thesis. The largest differences between these models are which basin
attributes are included in the training process. Other relevant hyperparam-
eters are set equal to the model configuration in Kratzert et al. [2019b]. For
CAMELS-GB, the dates included in the training process are time daily time
steps from October 10th 1971 to September 30th 2015. For CAMELS, the
dates used are January 1st 1980 to December 31st 2008. The models in
Table 4.1 are split into four categories, one for each experiment (hence the
names GB, US, Mixed and Transfer). This way we can measure and anal-
yse the performance of LSTM models on CAMELS-GB, CAMELS (recreat-
ing the results of Kratzert et al. [2019a] with a differently configured cross
validation), Mixed (both CAMELS and CAMELS-GB at the same time)
and Transfer (training on CAMELS-GB and predicting on CAMELS, and
vice-versa). One should be able to reproduce the results of this work us-
ing CamelsML, Table 4.3, 4.1 and 4.2. Alternatively one could find all the
needed model configurations along with seeds on the Github page of this
thesis: https://github.com/bernharl/Master-Thesis. Doing exhaustive
validation to decide which subset of attributes to use is not feasible with the
amount of attributes present in the data of interest. What we instead do
to end up with the subsets in Table 4.2 is a mix of a priori knowledge and
validation: First we manually check which attributes to include based on
perceived importance in accordance to known physical processes related to
rainfall-runoff modelling. After training a model on a subset, we evaluate it
using cross validation as mentioned earlier in this chapter. To give further
context for the chosen subsets a-e we present this short summary:

• a : This is a subset using all numerical static attributes in CAMELS-
GB [Coxon et al., 2020] that are not derived from the outcome (runoff).

• b: This is a smaller subset of the static attributes contained in CAMELS-
GB. This subset was created with emphasis on perceived importance
with respect to known physical processes. As many process-driven
models (see Section 2.1.2) have high emphasis on radiation (from veg-
etation), soil types and land cover we have included all attributes
related to soil, water content, vegetation and general land cover. The
geographical layout of a basin is also of interest and elevation attributes
are therefore included. The inclusion of the feature p mean (mean pre-
cipitation) is however not physically motivated and merely stems from
the fact that it was recognized as one of the most important features
in Kratzert et al. [2019b]’s analysis using LSTMs on CAMELS [Addor
et al., 2017]. Mean precipitation should in theory be information al-
ready given in the precipitation time series, but our models do not have
access to the entire precipitation time series while training because of
the limited sequence length.

https://github.com/bernharl/Master-Thesis

40 CHAPTER 4. METHOD

• c: This attribute selection is taken from Kratzert et al. [2019a] and is
used to reproduce the results of said paper with a different cross vali-
dation setup to better fit with the rest of our analysis. Kratzert et al.
[2019a] used 12-fold cross validation while we use the more commonly
employed 5-fold cross validation.

• d : This is an attribute selection used for training models on both
CAMELS and CAMELS-GB at the same time in addition to transfer
learning. The attribute names stated in Table 4.2 are based on the
attribute names in CAMELS-GB. CAMELS and CAMELS-GB have
different attributes and different names for the same attributes. Which
attributes we deem to be equivalent are shown in Table 4.3.

• e : The attributes organic perc and gvf max are excluded in this sub-
set, otherwise it is identical to subset e. We exclude these two fea-
tures because of uncertainty of whether our synthetic attribute cre-
ation works.

4.3 Preprocessing and combining datasets

In statistical models it is important to have all inputs and outputs in unit-less
form. A common way to achieve this is to normalize each input feature and
outcome feature [Hastie et al., 2009]. We split the data basin-wise into train
(75%) and test (25%) sets. Five-fold cross validation is used on the training
set to evaluate model performance. For each fold in the cross validation
run, the data is normalized based on the current training set, excluding the
chosen validation set in each cross validation iteration. Mathematically this
can be written as

anorm =
a− ātrain

σatrain

. (4.3)

Here a represents any variable, input or output, âtrain is the average of
said variable in the train set and σatrain is the standard deviation of said
variable in the train set. If a is a time series, the averaging is still done for
all time steps in all basins in the training set, not individually per basin.
This normalization is implemented in CamelsML by saving the standard
deviations and averages of each feature in the training set to the disk and is
implemented by us. Kratzert et al. [2019a] has likely also implemented this
in a different way, but this code is not used here.

When using a combination of CAMELS and CAMELS-GB we are limited
in both which time series and which basin attributes we can use. As seen
in Chapter 3 there are only two overlapping time series: precipitation and
shortwave radiation. CAMELS-GB only has average daily temperature,
while CAMELS has both minimum and maximum temperature per day. To

4.3. PREPROCESSING AND COMBINING DATASETS 41

Table 4.3: Timeseries and attributes in CAMELS and CAMELS-GB that we
treat as equivalent. The names are taken directly from Addor et al. [2017]
and Coxon et al. [2020].

Camels-US Camels-GB

time series:

prcp(mm/day) [mm/day] precipitation [mm/day]
tmax+tmin

2 [K] temperature [K]
srad(W/m2) [W/m2] shortwave rad [W/m2]

attributes:

elev mean [m] elev mean [m]
area gages2 [km2] area [km2]
p mean [mm/day] p mean [mm/day]
pet mean [mm/day] pet mean [mm/day]
p seasonility p seasonality
frac snow frac snow
high prec freq [days / yr] high prec freq [days / yr]
high prec dur [days] high pref dur [days]
low prec freq [days / yr] low prec freq [days / yr]
low prec dur [days] low prec dur [days]
aridity aridity
forest frac dwood frac + ewood frac
root depth 50 [m] root depth 50 [m]
soil depth pelletier [m] soil depth pelletier [m]
soil porosity porosity cosby
soil conductivity [cm/h] conductivity cosby [cm/h]
sand frac sand perc / 100
silt frac silt perc / 100
clay frac clay perc / 100
organic frac organic perc / 100

gvf max 1− urban perc+inwater perc
100

42 CHAPTER 4. METHOD

include temperature as a feature we therefore make the assumption that

t̄daily ≈
tmin, daily + tmax, daily

2
(4.4)

where t̂daily is the day-averaged temperature, tmin, daily is the day-minimum
temperature and tmax, daily is the day-maximum temperature. The assump-
tion in (4.4) only holds when the daily temperature maxima and minima
vary symmetrically around an equilibrium. Most of the basin attributes we
include in the combined dataset have natural equivalents in both datasets,
but there are two exceptions. We get an equivalent of the attribute for-
est frac in CAMELS in CAMELS-GB by assuming that

forest fracGB ≈ dwood frac + ewood frac. (4.5)

As described in Coxon et al. [2020] dwood perc is the percentage of decidu-
ous woodland and ewood frac is the percentage of evergreen woodland. Our
reasoning for (4.5) is that dwood frac and ewood frac are the only forest
attributes in CAMELS-GB and it should therefore be safe to assume that
adding these together yields the total percentage of wood cover.

For the CAMELS attribute gvf max we make a less safe assumption.
Addor et al. [2017] describes this attribute as ”maximum monthly mean of
the green vegetation fraction”. It could then follow that the if we subtract
all land covers without vegetation we end up with something similar. In
CAMELS-GB the two land covers not covered in vegetation are urban perc
(percentage of suburban or urban land) and inwater perc (the percentage
covered by inland water). This yields

gvf maxGB ≈ 1− urban perc + inwater perc

100
. (4.6)

A full overview of attributes deemed equivalent in CAMELS and CAMELS-
GB is shown in Table 4.3.

Figure 4.2 shows boxplots of the training data of all attributes in at-
tribute subset d (see Table 4.2) for both CAMELS and CAMELS-GB. In
each subplot CAMELS-GB is on the left and CAMELS is on the right. We
see that most attributes have higher variance in CAMELS than in CAMELS-
GB. Exceptions to this are organic perc and gvf max. We therefore include
transfer learning models both with and without these two features. This
also implies that the assumption made in (4.6) may not be of use.

4.4 Basin attribute ranking

One of the criticisms of machine learning models is that they are not easily
interpretable. This is especially true if one wants to train a model on a
dataset with an overwhelming amount of features. To interpret our models

4.4. BASIN ATTRIBUTE RANKING 43

0

50
soil depth pelletier

0

1
frac forest

0.5

1.0
gvf max

2.5

5.0

7.5

p mean

2.5

5.0

7.5

pet mean

−1

0

1
p seasonality

0.0

0.5

frac snow

0

2

aridity

10

20

30

high prec freq

1

2

high prec dur

200

300

low prec freq

10

20

30
low prec dur

0

10000
area

40

60
porosity cosby

0

10

conductivity cosby

0.25

0.50

0.75

sand perc

0.25

0.50

silt perc

0.0

0.5
clay perc

0.00

0.25

organic perc

Figure 4.2: Boxplots of the basin attributes in CAMELS and CAMELS-GB
compared. In each subplot CAMELS-GB is on the left, CAMELS is on the
right. The basins included in this figure are the basins contained in the full
training set used by all models in this analysis. The orange line indicated
the median, the green dashed line indicates the average.

44 CHAPTER 4. METHOD

we implement a way to determine feature importance. There are many algo-
rithms to determine feature importance, we choose to use the permutation
feature importance algorithm for its simplicity, and ability to be used on
any type of trained model. Given a feature j, the permutation importance
ij is equal to

ij = s− 1

K

K∑
k=1

sk,j (4.7)

[Scikit-Learn developers, 2020; Breiman, 2001]. Here K denotes how many
permutations we average over for each feature, s is the model’s score on the
original data and sk,j is the score of permutation number k of the feature
j. In essence (4.7) describes how much the performance of a model varies
when scrambling the information contained in a feature, therefore explaining
the importance of the feature according to the current model. It is then
important to remember that this is not the true importance of the feature,
only the importance the model thinks the feature has. The scoring method
s can be any model scoring statistic, often the R2. score for regression. In
our case we employ (4.1) as the scoring metric and we only consider basins
with an NSE of at least 0.5, as an NSE / R2 score indicates that a model’s
prediction is at least as good as always predicting the average outcome.

A major problem for this method is that (4.7) could give unrealistically
low significance to features that are highly correlated to other features. In
this case the feature may very well be important, but the information con-
tained in it is also contained in one or more other correlated features, mean-
ing the model doesn’t lose as much information as one may think. Essentially
the rule of thumb is that the feature importance is the feature’s importance
as learned by the model, not the actual real world importance.

To validate that this method is implemented correctly and gives mean-
ingful results in our case we train a model on CAMELS-GB that in addition
to the attributes in attribute subset a of Table 4.2 has access to attributes
directly derived from the runoff. This model cannot be used for anything
but to validate the permutation importance algorithm, as it having access to
parts of the outcome as an input compromises it’s ability to do predictions
on ungauged basins. The attributes in question are stated in Table 2 in
Coxon et al. [2020] under the ”Hydrologic signatures” class. One of them is
for instance q mean, which is the mean daily discharge (runoff).

4.5 Hardware

The models are run on three different hardware configurations. The im-
portant difference between these hardware configurations is the amount of
available VRAM. As LSTM models are recurrent neural networks they are
not as parallelizable as other machine learning models (see Section 2.2.5 and

4.5. HARDWARE 45

2.2.6). This means that the only way for us to fully exploit an increase in
VRAM is to parallelize data-wise. To do this we increase the batch size.
The three hardware configurations are listed as follows 1:

1. Nvidia®GTX™980 ti: This has 6 GB of VRAM. We find a batch size
of b ∈ 1024, 1536 depending on the model size to be a sweet spot here.

2. Nvidia®GTX™1660 ti: This GPU is similar to the GTX 980 ti and
has the same amount of VRAM. Therefore the same batch sizes apply
here too.

3. Nvidia®Tesla™V100 (Provided by Simula’s eX3 cluster): This has 32
GB of VRAM. We find a batch size of b ∈ [2048, 4096] depending on
the model size to be a sweet spot. Anything more leads to a downgrade
in speed because of limitations in transferring data from the storage
device to the GPU. This is still not ideal and leads to an approximate
30% utilization of the GPU.

We acknowledge that the inconsistent use of batch sizes across models may
somewhat impact the model performance, as previously stated in Section
2.2.3. However, as long as the amount of mini batches is sufficiently smaller
than the number of data points we still get an acceptable amount of stochas-
ticity in the training process. As an increase in batch size is often directly
correlated to the speed of training, the batch size usually set as high as the
hardware supports. This is in most cases fine as long as the total size of
training data is much larger than the available RAM (if training on CPU)
or VRAM (if training on GPU). Still, in an ideal situation we would use the
same hardware for all training runs.

1Note that we only state the graphics card used, as this is the only important difference.
We run no calculations on CPU and do not use a significant amount of ordinary RAM.

Chapter 5

Results

In this chapter we present the results divided into five main sections:

1. Models trained on CAMELS-GB [Coxon et al., 2020].

2. Models trained on CAMELS [Addor et al., 2017] in addition to tradi-
tional models provided by Kratzert [2019a] and NOAA [2018].

3. Models trained on a dataset comprised of both CAMELS and CAMELS-
GB.

4. Models trained on CAMELS and validated on CAMELS-GB (notated
as US→GB) and vice-versa.

5. Models refit on the full train set and validated on the previously ex-
cluded test set.

5.1 Models trained on CAMELS-GB

In this section we present the results related to model selection and feature
importance when training and predicting on CAMELS-GB [Coxon et al.,
2020]. To act as a proof of concept of the feature importance method de-
scribed in Chapter 4.4, we also include results from an additional model
which is trained on a superset of attribute subset a which includes attributes
directly derived from the observed outcome. We label this model ”Overfit
model”. By ”attributes”, we are referring to the static attributes included
in CAMELS and CAMELS-GB.

5.1.1 Performance

Figure 5.1 shows the performance of GBlstm, all, GBea-lstm, all, GBlstm, chosen,
GBea-lstm, chosen and GBlstm, none trained on CAMELS-GB [Coxon et al.,
2020]. For an overview of these LSTM models, see Table 4.1. The overfit

46

5.1. MODELS TRAINED ON CAMELS-GB 47

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NSE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

b
as

in
s

in
va

li
d

at
io

n Overfit model

GBlstm, all

GBea-lstm, all

GBlstm, chosen

GBea-lstm, chosen

GBnone

Figure 5.1: Cumulative distribution function of the NSE score of LSTM
models trained on CAMELS-GB [Coxon et al., 2020]. ”Overfit model” is
a model deliberately trained using static basin attributes derived from the
runoff time series of the basins. The other models are described in Table
4.1.

48 CHAPTER 5. RESULTS

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

0

10

20

30

R
u

n
off

[m
m

/d
ay

]
Basin 50001
NSE ≈ 0.96

Obs Sim

Figure 5.2: Highest scoring prediction on the validation set made using
GBlstm, all compared to the observed outcome. ”Obs” is observed runoff,
”Sim” is predicted runoff. The basin data is taken from CAMELS-GB
[Coxon et al., 2020].

model is trained on attribute subset a in Table 4.2 in addition to attributes
directly derived from the observed outcome. The overfit model significantly
outperforms all other models. Of the other models there seems to be gen-
erally two levels of performance. The models using attribute subsets a and
b perform similarly, although in the favour of attribute subset a , while the
models trained with no attributes in general perform worse. There seems
to be little overall difference in performance between EA-LSTM and LSTM
models, apart from GBlstm,all which performs with a negative NSE value for
a smaller fraction of the basins. All other ungauged models perform with a
negative NSE value for approximately 10% of the basins.

The highest scoring validation set prediction made using GBlstm, all is
shown in Figure 5.2. It has an NSE score of ≈ 0.96. Most of the peaks are
undervalued by the prediction made by the model.

5.1.2 Importance

Table 5.1 shows 5th, 25th, 50th, 75th and 95th percentiles of the impor-
tances of the top 20 basin attributes of the overfit model according to the
permutation algorithm described in Chapter 4.4. We observe that the at-
tribute with the highest importance in all quantiles is Q95, which is the 95th
percentile runoff derived from the observed runoff time series. Q95 has an

5.1. MODELS TRAINED ON CAMELS-GB 49

Table 5.1: Top 20 (ranked by median importance) attributes of the overfit
model described earlier in this section according to the permutation feature
importance algorithm. The columns are percentiles.

95% 75% Median 25% 5%

Q95 9.97 0.42 0.12 0.04 -0.01
baseflow index ceh 1.22 0.21 0.08 0.02 -0.01
p mean 0.33 0.11 0.04 0.01 -0.02
aridity 0.10 0.04 0.01 0.00 -0.02
Q5 0.61 0.06 0.01 0.00 -0.03
p seasonality 0.12 0.02 0.00 -0.00 -0.02
area 0.11 0.01 0.00 -0.00 -0.01
inwater perc 0.12 0.02 0.00 -0.00 -0.02
elev 10 0.10 0.02 0.00 -0.00 -0.02
low prec dur 0.06 0.01 0.00 -0.00 -0.02
gauge easting 0.05 0.01 0.00 -0.00 -0.03
low prec freq 0.04 0.01 0.00 -0.00 -0.02
elev 90 0.05 0.01 0.00 -0.00 -0.02
elev 50 0.09 0.01 0.00 -0.00 -0.02
conductivity hypres 0.05 0.01 0.00 -0.00 -0.03
grass perc 0.05 0.01 0.00 -0.00 -0.02
urban perc 0.11 0.01 0.00 -0.00 -0.01
elev max 0.04 0.01 0.00 -0.00 -0.02
high prec freq 0.04 0.01 0.00 -0.00 -0.02
pet mean 0.05 0.01 0.00 -0.00 -0.02

50 CHAPTER 5. RESULTS

Table 5.2: Top 20 (ranked by median importance) attributes of GBlstm, all

according to the permutation algorithm. The columns are percentiles.

95% 75% Median 25% 5%

low prec dur 0.25 0.09 0.02 0.00 -0.04
low prec freq 0.35 0.06 0.02 0.00 -0.04
tawc 0.10 0.03 0.01 -0.00 -0.04
no gw perc 0.08 0.03 0.01 -0.00 -0.04
grass perc 0.15 0.02 0.01 -0.00 -0.04
high prec freq 0.09 0.02 0.01 -0.00 -0.04
elev 90 0.11 0.02 0.01 -0.00 -0.03
elev 10 0.16 0.03 0.01 -0.00 -0.03
p seasonality 0.14 0.03 0.00 -0.00 -0.03
aridity 0.09 0.02 0.00 -0.00 -0.03
root depth 0.22 0.02 0.00 -0.00 -0.03
crop perc 0.15 0.03 0.00 -0.00 -0.05
inwater perc 0.28 0.03 0.00 -0.00 -0.03
frac snow 0.18 0.02 0.00 -0.00 -0.02
elev 50 0.12 0.02 0.00 -0.00 -0.04
p mean 0.09 0.02 0.00 -0.00 -0.03
conductivity hypres 0.15 0.02 0.00 -0.00 -0.04
area 0.13 0.02 0.00 -0.00 -0.02
high prec dur 0.11 0.02 0.00 -0.00 -0.04
inter mod perc 0.13 0.02 0.00 -0.00 -0.05

importance of at least 0.05 for 75% of the basins in the training set. At the
second spot we have baseflow index ceh. This attribute has median and
25th percentile importances similar to those of Q95, but is significantly less
important for 25% of the basins in the training set.

The top 20 importances found by USlstm, all (cross validated) using the
permutation algorithm are shown in Table 5.2. The top two attributes are
low prec dur and low prec freq. These have significantly higher 75th per-
centile and upward importances than all other attributes. The third most
important attribute is tawc and has a 75th percentile importance that is
roughly half of the above ranked attribute. The highest ranked attribute
has an importance of 0.09 for 25% of the basins in the training set. Of
these 20 attributes seven (low prec dur, low prec frec, high prec frec,
p seasonality, frac snow, p mean, high prec dur) are climatic indices de-
rived from the time series the model is trained on. The attribute aridity

is also a climatic indice, but is not based on any time series accessed by the
model. Three attributes (grass perc, crop perc, inwater perc) are land
cover attributes. Three attributes (tawc, root depth, conductivity hypres)
are soil attributes. Four attributes (elev 90, elev 10, elev 50, area) are

5.2. MODELS TRAINED ON CAMELS 51

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NSE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
o
f

b
as

in
s

in
va

li
d

at
io

n USKratzert

USnone

SAC-SMA (per basin)

VIC (per basin)

NWM

Figure 5.3: Cumulative distribution function of the NSE score of models
trained on CAMELS [Addor et al., 2017]. The LSTM models USKratzert and
USNone are described in Table 4.1 and are based on the models originally
trained by Kratzert et al. [2019a]. The SAC-SMA and VIC benchmarks
are provided by Kratzert [2019a], NWM by NOAA [2018]; Kratzert et al.
[2019a].

topographic. Two attributes (no gw perc and inter mod perc) are hydro-
geologic attributes. Details of these attributes can be found in Table 2 in
Coxon et al. [2020] and references therein.

5.2 Models trained on CAMELS

In this section we present the results related to model selection and feature
importance when training and predicting on CAMELS [Addor et al., 2017].
This section is meant to show whether we are able to produce results similar
to those of Kratzert et al. [2019a] in a way that is comparable to the rest
of our experiments. In addition, we present apparent feature importance of
these trained models.

5.2.1 Performance

Figure 5.3 shows the performance of our reimplementation of the LSTM
models created by Kratzert et al. [2019a] along with three traditional hydro-
logical models. Table 4.1 contains more details on the LSTM models. ”VIC”
is the Variable Infiltration Capacity model calibrated on CAMELS. ”SAC-

52 CHAPTER 5. RESULTS

1980 1984 1988 1992 1996 2000 2004 2008

Year

0

20

40

60

80

100
R

u
n

off
[m

m
/d

ay
]

Basin 14301000
NSE ≈ 0.92

Obs Sim

Figure 5.4: Highest scoring prediction on the validation set made using
USKratzert compared to the observed outcome. ”Obs” is observed runoff,
”Sim” is predicted runoff. The basin data is taken from CAMELS [Addor
et al., 2017].

SMA” is the SACramento Soil Moisture Accounting model calibrated on
CAMELS. These benchmarks are provided by Kratzert [2019a] and are orig-
inally created by Newman et al. [01 Aug. 2017], and are trained per-basin as
opposed to the other models. ”NWM” is a benchmark of the National Water
Model run on CAMELS. This benchmark is available without any licensing
at NOAA [2018] and we use an already preprocessed version provided by
Kratzert et al. [2019a]. The results here indicate that the process-driven
models VIC and NWM perform similarly, SAC-SMA and USnone perform
similarly and better than the process-driven models and that there is a clear
performance gap in favour of USKratzert. The LSTM models (USKratzert and
USnone) both perform with NSE values below zero for approximately five
percent of the basins during cross validation.

The highest scoring validation set prediction made using USKratzert is
shown in Figure 5.4. It has an NSE score of ≈ 0.92. As in the previous
section we observe that the peak discharges are often either overestimated
or underestimated.

5.2.2 Importance

The permutation importances of the static basin attributes used by USKratzert

ranked by median importance are shown in Table 5.3. Three out of the four

5.2. MODELS TRAINED ON CAMELS 53

Table 5.3: Permutation importance of all static basin attributes used by
USKratzert (same model configuration as in Kratzert et al. [2019a] refit to the
cross validation split used in this thesis), ranked by median importance.

95% 75% Median 25% 5%

area gages2 0.42 0.09 0.02 0.00 -0.02
frac snow 0.26 0.06 0.02 0.00 -0.02
aridity 0.33 0.10 0.02 0.00 -0.03
elev mean 0.25 0.06 0.02 0.00 -0.02
gvf diff 0.13 0.04 0.01 -0.00 -0.04
low prec freq 0.15 0.04 0.01 -0.00 -0.03
geol permeability 0.12 0.04 0.01 -0.00 -0.05
slope mean 0.19 0.04 0.01 -0.00 -0.03
clay frac 0.17 0.05 0.01 -0.00 -0.04
high prec freq 0.15 0.04 0.01 -0.00 -0.03
soil porosity 0.12 0.04 0.01 -0.00 -0.03
p mean 0.23 0.05 0.01 -0.00 -0.04
sand frac 0.13 0.04 0.01 -0.00 -0.04
p seasonality 0.11 0.03 0.01 -0.00 -0.03
low prec dur 0.17 0.04 0.01 -0.00 -0.02
frac forest 0.14 0.03 0.01 -0.00 -0.03
gvf max 0.16 0.03 0.01 -0.00 -0.03
pet mean 0.11 0.03 0.01 -0.00 -0.06
lai diff 0.12 0.03 0.01 -0.00 -0.03
silt frac 0.14 0.03 0.01 -0.01 -0.04
lai max 0.11 0.02 0.01 -0.00 -0.03
max water content 0.09 0.02 0.01 -0.00 -0.02
high prec dur 0.08 0.02 0.00 -0.00 -0.03
soil depth statsgo 0.08 0.02 0.00 -0.00 -0.03
soil depth pelletier 0.15 0.04 0.00 -0.00 -0.03
soil conductivity 0.09 0.01 0.00 -0.00 -0.02
carbonate rocks frac 0.12 0.01 0.00 -0.00 -0.02

54 CHAPTER 5. RESULTS

top ranked attributes are also ranked in the top four by Kratzert et al.
[2019b] using the same attribute subset, but a different ranking method.

5.3 Models trained on CAMELS and CAMELS-
GB

In this section we present results related to model selection and feature im-
portance when training and validating using both CAMELS and CAMELS-
GB as a combined dataset. This section is meant to show whether we can
obtain satisfactory performance on ungauged basins from both datasets with
the same model.

5.3.1 Performance

Figure 5.5 shows the cross validated performance of Mixedlstm, Mixedea-lstm

and Mixednone trained on a dataset consisting of both CAMELS and CAMELS-
GB. See Table 4.1 for information on these LSTM models. On CAMELS-
GB the models with basin attributes perform significantly better than the
model trained without them. This also applies to the performance on
CAMELS, but here the difference is smaller. The EA-LSTM and LSTM
models with basin attributes perform similarly, having a median NSE of
0.77 on CAMELS-GB and 0.65 on CAMELS. Compared to the best per-
forming models in Figure 5.1 and 5.3 the performance of the mixed model
is comparable, although lower.

Figure 5.6 shows the best predictions made by Mixedlstm on CAMELS-
GB and CAMELS. The best performing basin by USKratzert is the same as
for Mixedlstm. For CAMELS-GB we also include a prediction made on basin
50001 as that is the best performing basin for GBlstm, all. For CAMELS the
best prediction of the combined model performs with an NSE 0.01 higher
than that of the model trained on CAMELS. For CAMELS-GB it performs
0.02 lower.

5.3.2 Importance

Table 5.4 shows the attributes used by Mixedlstm ranked by median im-
portance as found using the permutation algorithm. Sorted by median im-
portance on basins from CAMELS-GB. The highest median importance at-
tribute on basins from CAMELS is pet mean, the highest on CAMELS-GB
is aridity.

As a summary of our importance analysis we include the performances
of GBlstm, all, USKratzert, SAC-SMA trained basin-wise, VIC trained basin-
wise, NWM and Mixedlstm plotted against runoff-ratio (An attribute not
used by any of the models. It is the full time series averaged ratio between
precipitation and runoff.) in an effort to analyze whether our LSTM models

5.3. MODELS TRAINED ON CAMELS AND CAMELS-GB 55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
o
f

b
a
si

n
s

in
va

li
d

at
io

n

CAMELS-GB

Mixedea-lstm

Mixedlstm

Mixednone

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NSE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

b
as

in
s

in
va

li
d

at
io

n

CAMELS

Mixedea-lstm

Mixedlstm

Mixednone

Figure 5.5: Cumulative distribution function of the NSE score of LSTM
models trained on a dataset consisting of both CAMELS Addor et al. [2017]
and CAMELS-GB [Coxon et al., 2020]. The models are described in Table
4.1. The top figure shows the performance of the models on CAMELS-GB
and the bottom figure shows the performance on CAMELS. The top figure
is the cross validated performance on CAMELS-GB, the bottom figure on
CAMELS.

56 CHAPTER 5. RESULTS

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

10

R
u

n
off

[m
m

/
d

ay
] Basin GB 54029

NSE ≈ 0.95

Obs Sim

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

20

40

R
u

n
off

[m
m

/d
ay

] Basin GB 50001
NSE ≈ 0.94

1980 1984 1988 1992 1996 2000 2004 2008

Year

0

50

R
u

n
o
ff

[m
m

/d
ay

] Basin US 14301000
NSE ≈ 0.93

Figure 5.6: Best predictions by Mixedlstm on CAMELS-GB (top) [Coxon
et al., 2020] and CAMELS (bot) [Addor et al., 2017] including catchment
IDs and NSE.

5.3. MODELS TRAINED ON CAMELS AND CAMELS-GB 57

Table 5.4: Attribute importance ranked by median importance on
CAMELS-GB [Coxon et al., 2020] as found using the permutation algo-
rithm on Mixedlstm. Each percentile column is split into two subcolumns,
one for CAMELS [Addor et al., 2017] and one for CAMELS-GB.

95% 75% Median 25% 5%
GB US GB US GB US GB US GB US

aridity 0.66 0.35 0.22 0.06 0.06 0.01 0.01 -0.00 -0.04 -0.05
high prec freq 0.43 0.22 0.14 0.07 0.04 0.02 0.00 -0.00 -0.05 -0.06
low prec freq 0.73 0.14 0.14 0.05 0.04 0.01 0.01 -0.00 -0.04 -0.05
p seasonality 0.50 0.33 0.15 0.08 0.03 0.02 0.00 -0.00 -0.04 -0.05
area 0.38 0.39 0.10 0.10 0.03 0.02 0.00 -0.00 -0.04 -0.06
gvf max 0.48 0.22 0.11 0.06 0.03 0.02 0.00 -0.00 -0.04 -0.04
pet mean 0.84 0.30 0.12 0.13 0.02 0.05 0.00 0.01 -0.02 -0.06
clay perc 0.35 0.18 0.09 0.07 0.02 0.02 -0.00 -0.00 -0.07 -0.05
silt perc 0.42 0.27 0.08 0.07 0.02 0.01 -0.00 -0.01 -0.06 -0.07
p mean 0.36 0.19 0.06 0.04 0.01 0.01 -0.00 -0.00 -0.07 -0.05
frac forest 0.41 0.36 0.08 0.12 0.01 0.04 -0.00 0.00 -0.04 -0.04
sand perc 0.31 0.21 0.07 0.06 0.01 0.01 -0.00 -0.00 -0.06 -0.06
high prec dur 0.31 0.19 0.06 0.05 0.01 0.01 0.00 -0.00 -0.04 -0.04
porosity cosby 0.22 0.15 0.06 0.04 0.01 0.01 -0.00 -0.00 -0.07 -0.05
low prec dur 1.28 0.27 0.06 0.04 0.01 0.01 -0.00 -0.00 -0.04 -0.04
conductivity cosby 0.55 0.11 0.09 0.03 0.01 0.00 -0.00 -0.00 -0.05 -0.05
organic perc 0.21 0.10 0.04 0.01 0.00 0.00 -0.01 -0.00 -0.06 -0.02
frac snow 0.32 0.41 0.06 0.10 0.00 0.02 -0.00 0.00 -0.03 -0.03
soil depth pelletier 0.28 0.25 0.02 0.03 0.00 0.00 -0.00 -0.00 -0.05 -0.02

58 CHAPTER 5. RESULTS

0.0

0.5

1.0

N
S

E

GBlstm, all

P: 0.07, p < 1e− 01
S: 0.40, p < 5e− 21

0.0

0.5

1.0

N
S

E

USKratzert

P: 0.04, p < 4e− 01
S: 0.46, p < 2e− 19

0.0

0.5

1.0

N
S

E

SAC-SMA (per basin)
P: 0.27, p < 4e− 07
S: 0.31, p < 3e− 09

0.0

0.5

1.0

N
S

E

VIC (per basin)
P: 0.33, p < 3e− 10
S: 0.46, p < 6e− 20

0.0

0.5

1.0

N
S

E

NWM
P: 0.24, p < 7e− 06
S: 0.53, p < 2e− 27

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Runoff ratio

0.0

0.5

1.0

N
S

E

Mixedlstm

P: 0.07, p < 3e− 02
S: 0.46, p < 3e− 46

Figure 5.7: Rainfall-runoff ratio scatter plotted against NSE values per
basin. Pearson (P) and Spearman (S) correlation coefficients as well as
their respective p-values are shown in the figure.

5.4. MODELS TRAINED FOR TRANSFER LEARNING 59

interact differently with low rainfall-runoff ratio basins. Figure 5.7 shows
that all models have Spearman correlations ∈ (0.33, 0.53) with significant
p-values. Only the traditional models show linear correlation, implying a
less direct relationship between the rainfall-runoff ratio and expected per-
formance for LSTM models.

5.4 Models trained for transfer learning

In this section we present results related to model selection and feature
importance when training on CAMELS-GB and validating on CAMELS
(GB→US) and vice-versa. This section is meant to show whether we can
use information in one dataset to be able to satisfyingly make predictions
on the other.

5.4.1 Performance

Figure 5.8 shows the cross validated performance of all models trained on
CAMELS and validated on CAMELS-GB and vice-versa. These models are
denoted as TransferGB/US, model-type For more information on the models,
see Table 4.1. No models trained on CAMELS-GB perform at a satisfactory
level on basins from CAMELS. The models trained on CAMELS all perform
at a lower level on CAMELS-GB than models that are trained on CAMELS-
GB. The best performing transfer model is TransferUS, none, it has a median
NSE of 0.52 on CAMELS-GB. Compared to TransferGB, lstm, which has a
median NSE of 0.77, this performance is significantly lower. The transfer
models also perform worse than expected on the dataset they are trained
on as the chosen epoch is based on the performance on both datasets. This
is illustrated in Figure 5.9, which shows boxplots of the performance per
epoch of TransferUS, none and TransferGB, none per training epoch on both
CAMELS-GB (top) and CAMELS (bottom). We observe that the per-
formance of TransferUS, none increases on CAMELS-GB up until epoch 5
and then gradually decreases while it increases steadily and converges on
CAMELS around epoch 14. The epoch optimized for both datasets which
is shown in Figure 5.8 is epoch 9. For TransferGB, none this is more appar-
ent. Epoch 1 is the best epoch for the performance on CAMELS, while
the performance on CAMELS-GB seems to increase for every epoch. The
optimized epoch found for this model on both datasets is epoch 24.

The best predictions made by TransferUS, lstm, none on CAMELS and
CAMELS-GB are shown in Figure 5.10. In addition, predictions on basins
50001 from CAMELS-GB and 14301000 from CAMELS are included in the
figure to compare with the performance of GBlstm, all shown in Figure 5.2
and USKratzert shown in Figure 5.4. The model performs worse on CAMELS
than USKratzert, worse on CAMELS and CAMELS-GB than Mixedlstm and
worse on CAMELS-GB than GBlstm, all.

60 CHAPTER 5. RESULTS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

b
a
si

n
s

in
va

li
d

a
ti

o
n

CAMELS-GB

TransferUS, ea-lstm

TransferUS, lstm

TransferUS, none

TransferUS, ea-lstm 2

TransferGB, ea-lstm

TransferGB, lstm

TransferGB, none

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NSE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

b
as

in
s

in
va

li
d

at
io

n

CAMELS

TransferUS, ea-lstm

TransferUS, lstm

TransferUS, none

TransferUS, ea-lstm 2

TransferGB, ea-lstm

TransferGB, lstm

TransferGB, none

Figure 5.8: Cumulative distribution function of the NSE score of LSTM
models trained on CAMELS [Addor et al., 2017] and validated on a valida-
tion part of CAMELS as well as the entirety of CAMELS-GB [Coxon et al.,
2020]. The top figure shows the performance of the models on CAMELS-GB
and the bottom figure shows the performance on CAMELS.

5.5. TEST PERFORMANCE AND SUMMARY. 61

0.0

0.5

1.0

N
S

E

TransferUS, none TransferGB, none

5 10 15 20 25

Epoch

0.0

0.5

1.0

N
S

E

5 10 15 20 25

Epoch

Figure 5.9: Cross validated performance per epoch of TransferUS, none and
TransferGB, none on CAMELS-GB (top) and CAMELS (bottom). The or-
ange lines indicate the median NSEs, while the green lines indicate the mean
NSEs.

As both cases (GB→ US and US→ GB) show that the transfer learning
works better without static attributes, we do not include an analysis of the
importance in the transfer learning case.

5.5 Test performance and summary.

In this section we present test results from the models we choose from Section
5.1-5.4 in this chapter and compare with the cross validation performance.
We use the test set performance to get an expected level of real world per-
formance, in contrast to cross validation, which is used to compare models
and optimize hyperparameters.

The top plot in Figure 5.11 shows GBlstm, all refit on the full training set,
trained for the optimal amount of epochs found via cross validation and val-
idated on the test set. This is compared to the cross validated performance
of the same model. We observe that cross validated and testing performance
are similar.

Second from the top in Figure shows USKratzert refit on the full training
set compared to the cross validated performance. The performance is simi-
lar, although notably lower between the 40th and 70th percentile performant
basins.

Third from the top we see the test set performance of Mixedlstm refit

62 CHAPTER 5. RESULTS

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

20

40

R
u

n
o
ff

[m
m

/d
ay

]

Basin GB 60010
NSE ≈ 0.82

Obs Sim

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

20

R
u

n
o
ff

[m
m

/d
ay

]

Basin GB 50001
NSE ≈ 0.82

1980 1984 1988 1992 1996 2000 2004 2008

0

50

R
u

n
off

[m
m

/d
ay

]

Basin US 14301000
NSE ≈ 0.88

1980 1984 1988 1992 1996 2000 2004 2008

Year

0

10

R
u

n
off

[m
m

/d
ay

]

Basin US 07083000
NSE ≈ 0.88

Figure 5.10: Best predictions by TransferUS, lstm, none on CAMELS-GB (top)
[Coxon et al., 2020] and CAMELS (bot) [Addor et al., 2017] including catch-
ment IDs and NSE.

5.5. TEST PERFORMANCE AND SUMMARY. 63

0.0

0.5

1.0

F
ra

c
of

b
a
si

n
s. GBlstm, all, test

GBlstm, all, val

0.0

0.5

1.0

F
ra

c
o
f

b
as

in
s. USKratzert, test

USKratzert, val

0.0

0.5

1.0

F
ra

c
of

b
as

in
s. Mixedlstm, test

Mixedlstm, val

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NSE

0.0

0.5

1.0

F
ra

c
of

b
as

in
s. TransferUS, none, test

TransferUS, none, val

Figure 5.11: From the top: GBlstm, all, USKratzert, Mixedlstm and
TransferUS, lstm, none refit on their respective full train datasets and vali-
dated on their test sets compared with the cross validated performance on
their train sets.

64 CHAPTER 5. RESULTS

Table 5.5: Summary table showing median validation and test NSE values of
the best models chosen from Section 5.1-5.4 as well as the epoch optimized
using cross validation.

Median NSE CV Median NSE Test Epoch
GB US GB US

Model

GBlstm, all 0.82 - 0.80 - 15
USKratzert - 0.68 - 0.65 13
Mixedlstm 0.78 0.66 0.78 0.67 15
Transfernone 0.52 0.57 0.54 0.59 9

on the full training set and validated on the test set. The graphs overlap
almost perfectly.

The bottom plot is the test set performance of TransferUS, lstm, none re-
fit on the full CAMELS training set. This is compared to the cross vali-
dated performance on CAMELS merged with the ensemble performance on
CAMELS-GB. The graphs are similar in shape, although a notably higher
amount of basin predictions have a negative NSE value. Finally, the valida-
tion and test performances as well as optimized epochs of the best models
from Section 5.1-5.4 are shown in Table 5.5. For the models validated and
tested on Both CAMELS and CAMELS-GB the median NSE values are
shown separately. The optimized epochs are also shown. For more details
on the models in question see Table 4.1.

Chapter 6

Discussion

In this chapter we discuss the performance of our LSTM models. We discuss
the implications our results and the results of similar works may have on
the physical understanding of rainfall-runoff modelling. In addition we dis-
cuss potential ways to improve machine learning models for rainfall-runoff
modelling, with focus on performance and interpretability.

6.1 Model Selection

The results presented in Section 5.1-5.3 all agree that performance is in-
creased when introducing static attributes. In addition to this, we see that
the ordinary LSTM models that treat the static attributes as time series
are the highest performing models. We find it likely that this is due to
the decrease in model complexity in an EA-LSTM compared to an LSTM.
For example, Mixedea-lstm has 205057 trainable parameters (weights and bi-
ases), Mixedlstm has 285953 and Mixednone has 266497. The EA-LSTM is
a less complex model than an ordinary LSTM trained without static at-
tributes. The EA-LSTM’s performance coming close to that of an LSTM,
while only using 72% of the trainable parameters is notable, however. It
could imply that even a less complex model benefits from the additional
information contained in the attributes. In all cases but the case of transfer
learning, our best performing models are the most complex model with the
highest amount of static attributes possible. For prediction on CAMELS-
GB that means GBlstm, all, for CAMELS the best model is USKratzert, for
the datasets mixed the best model is Mixedlstm, and for transfer learning:
TransferUS, none.

We do not spend significant time in this thesis tuning hyperparameters.
Instead, we choose to use the hyperparameters derived by Kratzert et al.
[2019b]. The one exception to this is for models trained on CAMELS-GB,
shown in Section 5.1. We found that using dropout in this case at best
makes no difference and at worst slightly decreases performance. In some

65

66 CHAPTER 6. DISCUSSION

cases we also tested whether increasing the sequence length from 270 days
to 365 days increases performance, but our results indicate that this leads
to no performance difference. To save memory and decrease training time
we therefore keep the lower sequence length of 270 days.

We acknowledge that it may be possible to further increase the perfor-
mance by doing a thorough hyperparameter tuning experiment. The tuning
done by Kratzert et al. [2019b] is a simple grid search with few points, and
is not guaranteed to be a good basis, especially since this tuning was done
for gauged basin prediction. Hyperparameters are likely to have different
optimal values for our case of ungauged prediction. A very thorough hyper-
parameter tuning would be hard to brute force, due to the computationally
expensive nature of our models, therefore one would have to implement a
more sophisticated method than mere exhaustive grid searching. This be-
comes even more computationally expensive if one wants to tune using cross
validation.

We find no clear signs of overfitting in our selected models when com-
paring cross validated performance to test performance. Table 5.5 indicates
similar performance between the cross validated models and the refit models
validated on the test set. There are some discrepancies in the CDF plot of
the performance of the models trained on CAMELS shown in Figure 5.11
(second from top), leading to a median NSE of 0.65 on the test set as op-
posed to 0.68 in the cross validated case. This small deviation could perhaps
be explained by the findings of Kratzert et al. [2019b], which found that an
ensemble of LSTM models performs better than a singular LSTM because
of nontrivial differences in performance caused by randomness in the train-
ing process. For computational reasons we have chosen not to use model
ensembles anywhere in this thesis.

6.2 Performance and Importance Analysis

6.2.1 CAMELS-GB

Table 5.1 shows among others Q95 as the most important attribute for the
overfit ”proof of concept” model. This attribute is the 95th percentile runoff
value for the full runoff time series for a given basin, which is information
directly derived from the expected outcome. Figure 5.1 also shows that the
overfit model drastically outperforms all other models. Because of this, we
believe it is safe to assume that an LSTM model can learn which static
attributes are the most important in CAMELS-GB, at least in the most
obvious case. In addition, it also indicated that the permutation feature
importance algorithm succeeds at deciding the most important static at-
tribute in this case. These assumptions are therefore used to strengthen our
confidence in the results from our other, non-overfit models.

Looking again at Figure 5.1 along with Table 5.5, we see that the median

6.2. PERFORMANCE AND IMPORTANCE ANALYSIS 67

NSE value of GBlstm, all is approximately 0.82 cross validated, with a test
score of 0.80. This performance is vastly superior to that found by Kratzert
et al. [2019a], and is even better than gauged prediction on CAMELS, such as
Kratzert et al. [2019b]. This makes sense when one considers the relatively
low variance in climate in Great Britain, compared to the United States.
CAMELS-GB consists of the same amount of basins as CAMELS, but with
less variance this means the basins in the validation sets will be more similar
to the ones in the training set, making it less critical for the model to
generalize. As far as the author knows, there are no published benchmarks
using traditional models on CAMELS-GB. Creating such a benchmark in
the future is necessary for us to properly assess model performance.

In Figure 5.2, we see that at least for the best performing prediction, the
high NSE score does in fact transfer to a visually impressive performance.
Despite some peaks not being correctly simulated, the LSTM model manages
to replicate the observed runoff in a very acceptable manner.

As the results presented in Table 5.2 indicate that the many of the im-
portant static attributes in CAMELS-GB (as perceived by GBlstm, all) are
derived directly from the input time series (the most important attribute
being low prec dur, for instance), it is likely that we cannot extract much
new information from these, as this information should be available in the
time series already used by the models. If this were the case for CAMELS-
GB only, one could perhaps assume it being caused by CAMELS-GB having
more similar basins, but later we see that this is also the case for models pre-
dicting on CAMELS. The reason for this being the case is likely connected
to the nature of the LSTM training process and the sequence length. Ways
to further improve the long-term memory of an LSTM should be further
explored in the future. The biggest examples of this type of attribute are
the top two ranked attributes: low prec freq and low prec dur. These
severely outrank all other static attributes, especially for the 75th percentile
of importances, and they are directly derived from the precipitation time
series. They are defined as the frequency of days with ≤ 1 mm/day precip-
itations, and the average duration of these dry periods respectively. Other
than derived features, the model ranks the other attributes relatively sim-
ilarly for the upper 75th percentile. These other attributes mostly contain
information about land cover and elevation levels, which is information an
LSTM cannot access through the time series contained in CAMELS-GB.
Process-driven models such as VIC use information such as land coverage
and elevation by splitting the catchment into a spatial grid, it is there-
fore unlikely that any of these attributes can contribute to any major im-
provements for process-driven models for predicting on CAMELS-GB. To
summarize: Our model tends to mostly prefer static attributes containing
information already available in the time series, it is therefore hard to ar-
gue that the static attribute ranking found here can be used to improve
traditional models, which already use this information via the time series.

68 CHAPTER 6. DISCUSSION

6.2.2 CAMELS

Looking at Figure 5.3 and Table 5.5, the performance of USKratzert coin-
cides with the results of Kratzert et al. [2019a], which is what we wanted to
replicate. The performance is generally lower than that of GBlstm, all, which
makes sense when one considers how much more diverse the United States
climate is, compared to the climate of Great Britain.

The best prediction made by USKratzert is very accurate and has an NSE
of 0.92. This is lower than for the best prediction on CAMELS-GB. Similarly
to the previous section, we here too see that the prediction fails to predict
the higher peaks of runoff. This is also something observed by Kratzert et al.
[2018].

Table 5.3 shows that the permutation algorithm yields different results
than the feature ranking done by Kratzert et al. [2019b]. Said paper averaged
the normalized sensitivity (derived by what they call the explicit Morris
method) of each basin, while we present percentiles and rank based on the
median 1. Looking at our median scores, we see that the majority of basins
do not benefit from the inclusion of static attributes. Looking at the upper
percentiles, the most important attributes in our case still somewhat agree
with those of Kratzert et al. [2019b]. Topological information and climatic
indices are important. By far the most important attributes for the 75th
percentile are aridity and catchment area. Our results do however favour
land coverage types and soil types more than the results of Kratzert et al.
[2019b], and the attribute deemed the most important by said paper, p mean,
is only significantly important for the 95th percentile of basins. As expected,
frac snow is much more important for CAMELS than for CAMELS-GB,
as there is more snow in certain regions in the United States than in Great
Britain. This is also reflected in the fact that frac snow is important for
a small portion of British basins (the 95th percentile), while it is more
important both for the 75th and 95th percentile in the US.

6.2.3 Mixed model

Our best model trained on both CAMELS and CAMELS-GB seems to find
static attributes more important than the models trained on the datasets
individually. Table 5.4 shows that the model also ranks the attributes dif-
ferently. Figure 5.5 shows that the addition of static attributes is of sig-
nificantly higher benefit for prediction on CAMELS-GB than for CAMELS
although the performance per dataset is not very far off the individually
trained models (see Figure 5.5). This could be consistent with the impor-
tance rankings, as the median importances, and especially the 75th per-
centile and above importances, are significantly higher on CAMELS-GB

1Also note that we predict on ungauged basins, in contrast to said paper. This could
differentiate important attributes.

6.2. PERFORMANCE AND IMPORTANCE ANALYSIS 69

than those on CAMELS. There is a chance that this is due to the model
learning to use the attributes to differentiate between the two datasets,
without actually extracting important information. This could also be be-
cause CAMELS-GB is more homogeneous, and shuffling the attributes in
CAMELS-GB therefore has a lesser effect than shuffling those of CAMELS.

An interesting detail is that the permutation algorithm yields negative
importance for some basins. This happens for all models mentioned in this
section. This implies that our LSTM models actually perform worse on
some basins because of the inclusion of static attributes, perhaps due to
a lack of training data representing similar basins in the dataset. This is
likely alleviated by introducing more data. We believe other ways to rank
attributes should also be attempted in the future. Kratzert et al. [2019b]
used a robustness test which involves gradually adding Gaussian noise to
a feature and evaluating how it affects model performance. Addor et al.
[2018] uses a different method altogether, the results of which Kratzert et al.
[2019b] agree with. To our knowledge there exists no feature ranking results
on CAMELS-GB apart from what is shown in this thesis, so these two
other methods should also be attempted on CAMELS-GB in addition to
the permutation feature importance algorithm employed in this thesis to
get further context and comparability.

6.2.4 Transfer learning

The results in Section 5.4 show that the models trained for transfer learning
do not benefit from adding static attributes. Therefore, we do not include
a permutation algorithm for this case, We also see that the case of US→GB
significantly improves when removing attributes. This makes sense as Great
Britain has much smaller climatic variance than the United States (see for
instance Figure 4.2). We believe these two phenomena could be related. It
is likely that the relatively lower performance from using static attributes
comes from the fact that the datasets have different climatic conditions.
There could also be room for improvement in how we preprocess both the
attributes and the time series. As seen in Table 4.3 we assume that the tem-
perature time series of CAMELS behave like symmetrical periodic functions,
therefore leading to

Taverage ≈
Tmin + Tmax

2
. (6.1)

Ideally, we need to have temperature as a time series for a given model to
be able to properly model snow and frozen soil accumulation, which is very
important for hydrologic models. The fact that models trained on both
datasets still perform comparably to models trained on only one dataset
seems to suggest that (6.1) is not entirely destructive, however. In the
later stages of this thesis it was discovered that the average temperature is
actually present in CAMELS. The older forcing data [Maurer et al., 2002]

70 CHAPTER 6. DISCUSSION

contains this information stored as duplicates in the maximum and minimum
temperature time series. Due to time constraints, we are unable to train
models utilizing this. This is likely a good start for those looking to improve
transfer learning performance. The best outcome is likely to come from
finding maximum and minimum temperatures for CAMELS-GB, however.

It seems to us that there are several angles to further tackle the issue
of transfer learning between these datasets. One of which we stated above:
Find maximum and minimum time series for CAMELS-GB. A second way
is to improve the preprocessing of static attributes to the point where one
would hopefully see better performance with attributes than without.

While we stated earlier in this chapter that we see no clear signs of
overfitting, this is not the case for transfer learning. Figure 5.9 indicates
that TransferGB, none and TransferUS, none start overfitting on their respective
training datasets at epoch one and five respectively. This overfitting is not
apparent when validating on basins from the same dataset as they are trained
on, but very quickly manifests when validating on the other dataset. While
improved pre-processing, regularization and the gathering of more cross-
compatible data could alleviate this problem, it is likely that this overfitting
is unavoidable using the current datasets. More data, both in quantity and
in diversity, is likely needed for the model’s training process to be able to
successfully predict on a dataset not included during training.

There now exist several other similar datasets to the two used for this
study. The easiest way to improve any machine learning model is often to
provide more data for training. A Chilean dataset consisting of 515 catch-
ments by the name CAMELS-CL [Alvarez-Garreton et al., 2018] was stud-
ied early in this thesis work, but the quality of the data was deemed worse
than that of CAMELS and CAMELS-GB. With some initial preprocessing
it could be of interest to see whether it is feasible to use this dataset. In
addition we know of two other datasets. One goes by the name CAMELS-
BR, and is a Brazilian dataset consisting of 897 catchments [Chagas et al.,
2020]. The other is CAMELS-AU, and is an Australian dataset consisting
of 222 catchments [Fowler et al., 2021]. Especially CAMELS-BR seems to
be of interest due to the amount of catchments. Combining datasets is a
non-trivial, time consuming task, which we expect will become increasingly
hard the more datasets one tries to combine. It is not unlikely that one
has to discard almost all static attributes to make the datasets compati-
ble. We therefore expect that some effort to gather new data would also be
necessary. It is of course also of interest to see how well machine learning
models perform on one or more of these datasets in isolation. We see this
as a possible candidate for the start of a new master thesis.

6.3. COMPARISON TO TRADITIONAL MODELS 71

6.3 Comparison to traditional models

We are able to reproduce the results of Kratzert et al. [2019b, a]. Our models
trained on CAMELS perform significantly better than traditional models.
In this thesis we compare to two process-driven models, VIC and NWM,
and one conceptual model, SAC-SMA.

What we additionally show in this thesis is that models trained on both
CAMELS and CAMELS-GB also perform better on CAMELS than the
addressed traditional models. This could be because the models are complex
enough to recognize which dataset a given basin is from based on underlying
signatures in either the time series or the static attributes. Perhaps this
differentiation could stem from differences in data collection practice.

One of many reasons why LSTM models perform better than traditional
models on CAMELS in general could be that the LSTM models are better
at modelling basins with special conditions leading to a rainfall-runoff ratio
different from 1. When the rainfall-runoff ratio is lower than one it usually
implies that the rainfall is either stored as snow or frozen soil, that it is
vaporized through photosynthesis in local vegetation, or that there is some
difficult to model complexity to the subsurface flow in the area. These
processes are difficult to model compared to runoff directly caused by rainfall
[Paniconi and Putti , 2015]. Our results may indicate that this could be the
case. Figure 5.7 shows that only the traditional models have a statistically
significant linear relationship between performance and rainfall-runoff ratio.
The relationships are generally weak, with a Pearson correlation between
0.24 and 0.33, but they are more apparent than for the LSTM models, where
there exists no such linear relationship. The impact of this discovery is quite
uncertain, however, as there is significant Spearman correlation (nonlinear
correlation) for all the models, ranging from 0.31 to 0.53.

The LSTM models are, as briefly mentioned earlier, much less complex
spatially. While process-driven models need to grid the spatial dimension
to properly model the physical system, an LSTM model finds relationships
between input and output data in a one-dimensional manner. This could
make LSTMs and other machine learning methods valuable models to use
when there is not enough data available to properly set up a traditional
model such as the NWM.

Chapter 7

Outlook

Aside from dropout in the final layer, we employ no regularization methods
on our models. Kratzert et al. [2019a] argue that there is evidence that
adding so-called ”physical constraints” to models used on CAMELS could
be helpful. This is argued because the LSTM models underperform com-
pared to SAC-SMA on some basins. Here the paper compares SAC-SMA to
an LSTM trained on all basins, training and validation split time series-wise
and not basin-wise. SAC-SMA is a conceptual model and is therefore not
usually seen as a purely ”physical” model, but it is based more on physical
arguments than a generalized machine learning method, as it is ”concep-
tually” based on the real world. Still, both SAC-SMA and the LSTM are
essentially parameter based models, without clear physical interpretations
of most parameters. Because of this, we are unsure whether the argument
that this is evidence for physical constraints is sufficient. More research is
needed on the topic. Regularization in the form of physical constraints may
yield several benefits, some of which could be [Karpatne et al., 2017]:

• Interpretability: Physical constraints could improve the physical in-
terpretability of the LSTM.

• Improved generalization: The goal of most machine learning regular-
ization is to improve performance by increasing bias and decreasing
variance (see Figure 2.1). Increasing bias using physical laws would
fit well into the narrative of Mendoza et al. [2015] and Newman et al.
[01 Aug. 2017], although from the opposite angle. These papers argue
that process-driven models are often too statistically constrained, due
to them being driven almost entirely by interpretable physical pro-
cesses. Newman et al. [01 Aug. 2017] showed that VIC performs at
a higher level when tuning more parameters than usual, as these pa-
rameters are often pre-set based on physical a-priori knowledge. This
is analogous to the bias-variance trade-off in machine learning. An
LSTM is much less constrained and therefore performs better, agree-
ing with the results of the aforementioned papers. Making LSTM

72

73

Traditional model output

LSTM

+ Cost function

Figure 7.1: Sketch of how a simple hybrid model could be implemented. The
traditional model and the LSTM model are completely separate, making it
unnecessary to calculate gradients for the traditional model. The idea here
would be for the LSTM model to learn the phenomena lacking in traditional
models.

models slightly more constrained (as worded by Mendoza et al. [2015])
could then make them generalize successfully to more basins while still
being powerful enough to learn necessary relationships between input
variables.

In the spirit of Karpatne et al. [2017]’s argument for increasing the physical
consistency of models, we propose a simple semi-physical constraint:

ŷ = LSTM(x), (7.1)

where ŷ now consists of three outputs: ydischarge, yfrost and yradiation. These
represent runoff, frost/snow and radiated water respectively. Only ydischarge

would be treated as the actual input when calculating the original cost
function (4.2). We then introduce a long term frost storage variable W t

frost.
For each time step this storage variable is updated by

W t+1
frost = W t

frost + yfrost, (7.2)

where t is the current time step. When calculating the loss function, we now
add a new term to (4.2):

L = NSE∗ + γ |(ydischarge − xprecipitation − yradiation − (yfrost −Wfrost))| .
(7.3)

Here γ is a hyperparameter that needs to be tuned. Our reasoning behind
(7.3) is that this cost function penalizes models for making predictions where
there is more runoff than available precipitation, snow and frost. Our hy-
pothesis is that this penalty should lead to less complex models that are less
likely to predict unphysical behaviors, leading to fewer NSE scores below
zero. It could also improve interpretability of the model’s output. Whether
this or a similar constraint behaves as intended remains to be seen.

Sticking to the topic of increased generalizability and interpretability, we
believe it to be of interest to implement a hybrid model, i. e. a machine

74 CHAPTER 7. OUTLOOK

learning model implemented alongside or as part of a traditional model.
The machine learning model either replaces parts of or supplements the
predictions of a traditional model. A very simple implementation of this is
shown in Figure 7.1. This model would take the same inputs as the models
trained in this thesis, but the cost function would be calculated on the sum
of the output of the traditional model and the machine learning model. This
means that the machine learning model learns to correct the errors of a given
traditional model instead of doing actual prediction.

This thesis and earlier research done by Kratzert et al. [2018, 2019b, a]
are all limited to simple LSTM models. LSTM models are, due to their re-
current nature, notoriously slow. Graphics cards and similar highly parallel
computational devices are not optimized for recurrent calculation. A rela-
tively simple way to surpass this could be to implement a one-dimensional
Convolutional Neural Network (CNN) layer as the first layer of our model.
This layer could then be used to reduce the time resolution of the data,
still retaining information. The usage of CNNs for time series prediction is
becoming increasingly widespread [Zhao et al., 2017]. We still argue that
LSTM models fit the type of physical system modelled in this thesis very
well and is logically consistent with the way rainfall-runoff models are typi-
cally structured, but using a CNN layer to improve performance should not
detract from this.

Chapter 8

Conclusion

8.1 Summary

We have shown that LSTM models perform well on CAMELS-GB as well as
CAMELS, and also that a single model can perform well on both datasets
when trained on them at the same time, even with less than optimal pre-
processing of the mixed dataset. In all cases models trained and validated
on subsets of the same dataset perform approximately equally during cross
validation and on the test sets. The models struggle to model the highest
peaks and lowest valleys of streamflow, however.

Training on CAMELS and validating on CAMELS-GB and vice-versa
yielded disappointing, though not surprising results. We deemed this to be
because the datasets cover domains that are too different from one another,
as well as lacking equivalent attributes.

Our static attribute analysis yielded no obvious ways to improve the per-
formance of process-driven models, as our models preferred static attributes
containing information already used by process-driven models. Better per-
forming machine learning models which are able to extract more information
from the time series alone could perhaps alleviate this in the future, by em-
phasising on more meaningful attributes than those derived directly from
the time series.

From the fact (shown first by Kratzert et al. [2019a] and recreated in this
thesis) that LSTM models outperform traditional models at generalization
on CAMELS (0.15 median NSE improvement over the NWM), as well as the
fact that we have shown that they perform well on CAMELS-GB, we believe
it is possible to claim that machine learning models have the potential to
vastly improve the understanding of the physics behind hydrological models.
In the future we hope this leads to both improved physical understanding, as
well as model quality, in several fields of the physical sciences. Hydrological
systems are highly complex, and the need to use large scale data analysis to
obtain a better understanding of the underlying physical processes has yet

75

76 CHAPTER 8. CONCLUSION

to be fulfilled.

8.2 Future work

In the previous chapters we mentioned several ways to improve the results
of this thesis. Here we give a brief summary.

One of the simplest ways to improve the performance of a machine learn-
ing model is to give it more and higher quality training data. To our knowl-
edge there now exists three additional CAMELS-like datasets we have not
used in this dataset [Alvarez-Garreton et al., 2018; Fowler et al., 2021; Cha-
gas et al., 2020]. Training LSTM models on these datasets, as well as at-
tempting to combine them with CAMELS and CAMELS-GB is something
we believe could improve the generalizability of machine learning models
trained for hydrological modelling.

There are likely several ways to improve the performance of our machine
learning model through modifying the model architecture. A simple modi-
fication to start with could be to implement an LSTM based model with a
one-dimensional CNN input layer. This is intended to reduce the number
of time steps needed, thus reducing the computational cost of training the
model.

Another way to improve the performance of a machine learning model is
to improve the hyperparameter tuning. This could be especially important
for transfer learning, as the reduction of variance is often important for
generalization [Hastie et al., 2009]. This could be a more manageable task
if the aforementioned CNN layer is implemented to decrease training time.

A more experimental approach would be to implement a physics based
penalty term in the cost function. A simple example of this is described in
the previous chapter. This could improve the interpretability of an LSTM
and also increase the consistency of the output, as put by Karpatne et al.
[2017].

A similar, but more advanced approach than stated above, is to employ
an LSTM as part of a traditional model in a hybrid approach. This could
lead to better generalizability and interpretability. There are several ways
to do this, one approach could be to implement an LSTM instead of a given
process in a process-driven model. This could then be used to compare to the
output of said process in the ordinary model versus the hybrid model. This
is likely very computationally expensive, as the process-driven models are
more expensive than pure LSTM models. A simpler hybrid model discussed
in this thesis is a setup where the LSTM is trained to correct the error of
the output of a traditional model. This way one could leverage the already
existing model benchmarks on CAMELS [Kratzert , 2019a].

Bibliography

Addor, N., A. J. Newman, N. Mizukami, and M. P. Clark, The camels
data set: catchment attributes and meteorology for large-sample studies,
Hydrology and Earth System Sciences (HESS), 21 (10), 5293–5313, 2017.

Addor, N., G. Nearing, C. Prieto, A. Newman, N. Le Vine, and M. P. Clark,
A ranking of hydrological signatures based on their predictability in space,
Water Resources Research, 54 (11), 8792–8812, 2018.

Alvarez-Garreton, C., et al., The camels-cl dataset: catchment attributes
and meteorology for large sample studies-chile dataset, Hydrology and
Earth System Sciences, 22 (11), 5817–5846, 2018.

Anderson, E. A., National Weather Service river forecast system: Snow
accumulation and ablation model, vol. 17, US Department of Commerce,
National Oceanic and Atmospheric Administration . . . , 1973.

Bengio, Y., P. Simard, and P. Frasconi, Learning long-term dependencies
with gradient descent is difficult, IEEE transactions on neural networks,
5 (2), 157–166, 1994.

Breiman, L., Random forests, Machine learning, 45 (1), 5–32, 2001.

Burnash, R. J., R. L. Ferral, and R. A. McGuire, A generalized stream-
flow simulation system: Conceptual modeling for digital computers, US
Department of Commerce, National Weather Service, and State of Cali-
fornia . . . , 1973.

Chagas, V. B., P. L. Chaffe, N. Addor, F. M. Fan, A. S. Fleischmann, R. C.
Paiva, and V. A. Siqueira, Camels-br: hydrometeorological time series and
landscape attributes for 897 catchments in brazil, Earth System Science
Data, 12 (3), 2075–2096, 2020.

Cherkauer, K. A., and D. P. Lettenmaier, Hydrologic effects of frozen soils
in the upper mississippi river basin, Journal of Geophysical Research:
Atmospheres, 104 (D16), 19,599–19,610, 1999.

77

78 BIBLIOGRAPHY

Coxon, G., et al., Camels-gb: hydrometeorological time series and landscape
attributes for 671 catchments in great britain, Earth System Science Data,
12 (4), 2459–2483, 2020.

Fowler, K. J., S. C. Acharya, N. Addor, C. Chou, and M. C. Peel, Camels-
aus: Hydrometeorological time series and landscape attributes for 222
catchments in australia, Earth System Science Data Discussions, pp. 1–
30, 2021.

Georgakakos, K. P., A generalized stochastic hydrometeorological model for
flood and flash-flood forecasting: 1. formulation, Water Resources Re-
search, 22 (13), 2083–2095, 1986.

Géron, A., Hands-on machine learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, tools, and techniques to build intelligent systems,
O’Reilly Media, 2019.

Gers, F. A., J. Schmidhuber, and F. Cummins, Learning to forget: Continual
prediction with lstm, 1999.

Gochis, D., et al., Wrf-hydro® v5.1.1, doi:10.5281/zenodo.3625238, 2020.

Gochis, D. J., and F. Chen, Hydrological enhancements to the community
noah land surface model, Tech. rep., University Corporation for Atmo-
spheric Research, 2003.

Graves, A., Long short-term memory, in Supervised sequence labelling with
recurrent neural networks, pp. 37–45, Springer, 2012.

Hamman, J. J., B. Nijssen, T. J. Bohn, D. R. Gergel, and Y. Mao, The
variable infiltration capacity model version 5 (vic-5): infrastructure im-
provements for new applications and reproducibility, Geoscientific Model
Development, 11 (8), 3481–3496, doi:10.5194/gmd-11-3481-2018, 2018.

Hastie, T., R. Tibshirani, and J. Friedman, The elements of statistical learn-
ing: data mining, inference, and prediction, Springer Science & Business
Media, 2009.

Hiederer, R., Mapping soil properties for europe—spatial representation of
soil database attributes, Luxembourg: Publications Office of the European
Union, 2013a.

Hiederer, R., Mapping soil typologies-spatial decision support applied to
european soil database, EUR25932EN Scientific and Technical Research
Series, pp. 1831–9424, 2013b.

Hjorth-Jensen, M., Week 40: From stochastic gradient descent to neural net-
works, https://compphysics.github.io/MachineLearning/doc/pub/

week40/html/week40.html, accessed: 2021-07-01, 2020.

https://compphysics.github.io/MachineLearning/doc/pub/week40/html/week40.html
https://compphysics.github.io/MachineLearning/doc/pub/week40/html/week40.html

BIBLIOGRAPHY 79

Hochreiter, S., and J. Schmidhuber, Long short-term memory, Neural com-
putation, 9 (8), 1735–1780, 1997.

Karpatne, A., G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee,
A. Ganguly, S. Shekhar, N. Samatova, and V. Kumar, Theory-guided
data science: A new paradigm for scientific discovery from data, IEEE
Transactions on Knowledge and Data Engineering, 29 (10), 2318–2331,
2017.

Kingma, D. P., and J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980, 2014.

Koren, V., M. Smith, and Z. Cui, Physically-based modifications to the
sacramento soil moisture accounting model. part a: Modeling the effects
of frozen ground on the runoff generation process, Journal of Hydrology,
519, 3475–3491, 2014.

Kratzert, F., Camels benchmark models, hydroshare, doi:https://doi.org/
10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1, 2019a.

Kratzert, F., Camels extended maurer forcing data, hydroshare, doi:https:
//doi.org/10.4211/hs.17c896843cf940339c3c3496d0c1c077, 2019b.

Kratzert, F., D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger, Rainfall–
runoff modelling using long short-term memory (lstm) networks, Hydrol-
ogy and Earth System Sciences, 22 (11), 6005–6022, 2018.

Kratzert, F., D. Klotz, M. Herrnegger, A. K. Sampson, S. Hochreiter, and
G. S. Nearing, Toward improved predictions in ungauged basins: Exploit-
ing the power of machine learning, Water Resources Research, 55 (12),
11,344–11,354, 2019a.

Kratzert, F., D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Near-
ing, Towards learning universal, regional, and local hydrological behav-
iors via machine learning applied to large-sample datasets, Hydrology and
Earth System Sciences, 23 (12), 5089–5110, 2019b.

Leon, J., How do I draw an LSTM cell in Tikz?, TeX Stack
Exchange, uRL:https://tex.stackexchange.com/questions/432312/
how-do-i-draw-an-lstm-cell-in-tikz/432344 (version: 2021-01-12),
2018.

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, A simple hy-
drologically based model of land surface water and energy fluxes for gen-
eral circulation models, Journal of Geophysical Research: Atmospheres,
99 (D7), 14,415–14,428, 1994.

https://tex.stackexchange.com/questions/432312/how-do-i-draw-an-lstm-cell-in-tikz/432344
https://tex.stackexchange.com/questions/432312/how-do-i-draw-an-lstm-cell-in-tikz/432344

80 BIBLIOGRAPHY

Liang, X., E. F. Wood, and D. P. Lettenmaier, Surface soil moisture param-
eterization of the vic-2l model: Evaluation and modification, Global and
Planetary Change, 13 (1-4), 195–206, 1996.

Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen,
A long-term hydrologically based dataset of land surface fluxes and states
for the conterminous united states, Journal of climate, 15 (22), 3237–3251,
2002.

Mendoza, P. A., M. P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego,
G. Abramowitz, and H. Gupta, Are we unnecessarily constraining the
agility of complex process-based models?, Water Resources Research,
51 (1), 716–728, 2015.

Miller, D. A., and R. A. White, A conterminous united states multilayer
soil characteristics dataset for regional climate and hydrology modeling,
Earth interactions, 2 (2), 1–26, 1998.

Morris, D., R. Flavin, and R. Moore, A digital terrain model for hydrology,
1990.

Nash, J., and J. Sutcliffe, River flow forecasting through conceptual models
part i — a discussion of principles, Journal of Hydrology, 10 (3), 282 –
290, doi:https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Newman, A., et al., Development of a large-sample watershed-scale hydrom-
eteorological data set for the contiguous usa: data set characteristics and
assessment of regional variability in hydrologic model performance, Hy-
drology and Earth System Sciences, 19 (1), 209–223, 2015.

Newman, A. J., N. Mizukami, M. P. Clark, A. W. Wood, B. Ni-
jssen, and G. Nearing, Benchmarking of a physically based hydrologic
model, Journal of Hydrometeorology, 18 (8), 2215 – 2225, doi:10.1175/
JHM-D-16-0284.1, 01 Aug. 2017.

NOAA, National water model reanalysis, aws, accessed: 2021-07-01, 2018.

Paniconi, C., and M. Putti, Physically based modeling in catchment hy-
drology at 50: Survey and outlook, Water Resources Research, 51 (9),
7090–7129, 2015.

Paszke, A., et al., Pytorch: An imperative style, high-performance deep
learning library, in Advances in Neural Information Processing Systems
32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, pp. 8024–8035, Curran Associates, Inc., 2019.

Pelletier, J. D., P. D. Broxton, P. Hazenberg, X. Zeng, P. A. Troch, G.-Y.
Niu, Z. Williams, M. A. Brunke, and D. Gochis, A gridded global data set

BIBLIOGRAPHY 81

of soil, intact regolith, and sedimentary deposit thicknesses for regional
and global land surface modeling, Journal of Advances in Modeling Earth
Systems, 8 (1), 41–65, 2016.

Rosenblatt, F., The perceptron: a probabilistic model for information stor-
age and organization in the brain., Psychological review, 65 (6), 386, 1958.

Rowland, C., D. Morton, L. Carrasco Tornero, G. McShane, A. O’Neil, and
C. Wood, Land cover map 2015 (1km percentage aggregate class, gb),
2017.

Salas, F. R., et al., Towards real-time continental scale streamflow simulation
in continuous and discrete space, JAWRA Journal of the American Water
Resources Association, 54 (1), 7–27, 2018.

Scikit-Learn developers, Permutation feature importance, https://

scikit-learn.org/stable/modules/permutation_importance.html,
accessed: 2020-30-11, 2020.

Vijayakumar, S., The bias–variance tradeoff, University Edinburgh, 2007.

Werbos, P. J., Backpropagation through time: what it does and how to do
it, Proceedings of the IEEE, 78 (10), 1550–1560, 1990.

Wibrow, M., Drawing neural network with tikz, TeX Stack Ex-
change, uRL:https://tex.stackexchange.com/questions/153957/
drawing-neural-network-with-tikz/153974 (version: 2021-01-29),
2014.

Zhao, B., H. Lu, S. Chen, J. Liu, and D. Wu, Convolutional neural net-
works for time series classification, Journal of Systems Engineering and
Electronics, 28 (1), 162–169, 2017.

https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://tex.stackexchange.com/questions/153957/drawing-neural-network-with-tikz/153974
https://tex.stackexchange.com/questions/153957/drawing-neural-network-with-tikz/153974

Appendix A

CamelsML documentation

A.1 Installation

Requirements:

• Cuda if using an Nvidia GPU. ROCm should in theory also work
if using an AMD Radeon GPU, but needs a specialized version of
Pytorch called Pytorch-ROCm. The author has not been successful
when trying to run this on an AMD Radeon RX 6800 XT graphics
card.

• GNU/Linux (Other operating systems have not been tested)

• Python 3.8

• It is also possible to run machine learning algorithms on CPUs, there-
fore bypassing the need for CUDA or equivalents, but this is not rec-
ommended as it is significantly slower and computationally inefficient
to do so.

In the terminal, run:

pip install camelsml

NB: The author recommends using a dependency resolver better suited
than pip. Pipenv (https://pypi.org/project/pipenv/) is what is being
used in this thesis. For a Pipfile that is confirmed to work on Ubuntu >=
20.04, as well as an updated installation of Arch Linux at the time this
thesis was submitted, see the root of the github repository for this the-
sis at https://github.com/bernharl/Master-Thesis. CamelsML itself is
stored at https://github.com/bernharl/camelsml If you want to install
the package using Pipenv, run:

pipenv install camelsml --python 3.8

82

https://pypi.org/project/pipenv/
https://github.com/bernharl/Master-Thesis
https://github.com/bernharl/camelsml

A.2. USAGE 83

1 from camelsml import load_config, train

2

3 cfg = load_config(cfg_file="run_config.txt", device="cpu",

num_workers=24)↪→

4 train(cfg)

Listing A.1: Minimal running example of CamelsML

If you run into an error message mentioning Black, try running:

pipenv lock --pre

pipenv sync

This is caused by the package Black as of the submission date of this
thesis not having a stable release that is resolvable with the other packages.
Locking with --pre allows the use of pre-releases.

A.2 Usage

Here we show a minimum example of how to train an LSTM with CamelsML.
The minimal code needed to train an LSTM model is shown in Listing A.1.
As seen here, the CamelsML package needs a variable called ”cfg”, which is a
dictionary containing the model configuration, how the train-validation-test
split is defined, and so on. A simple example of a configuration file could
be this, which trains an ordinary LSTM for 30 epochs using a batch size of
1024 is shown in Listing A.2

For more examples, all the models trained in this thesis, along with
scripts for setting up train-test splits and cross validation are contained in
the ”runs” directory on the Github page for this thesis (https://github.
com/bernharl/Master-Thesis/tree/master/runs). If you are reading this
some time after the thesis was submitted, there may be updated documenta-
tion for CamelsML on the Github page (https://github.com/bernharl/
camelsml). As of thesis submission, the released version of CamelsML is
version 2.0.2

https://github.com/bernharl/Master-Thesis/tree/master/runs
https://github.com/bernharl/Master-Thesis/tree/master/runs
https://github.com/bernharl/camelsml
https://github.com/bernharl/camelsml

84 APPENDIX A. CAMELSML DOCUMENTATION

1 run_dir: <path> # Folder to save runs in

2 camels_root: <path> # Root folder of dataset

3 train_start: 01101971 # Date to start training period of

timeseries↪→

4 train_end: 30092015 # Date to end training period of

timeseries↪→

5 val_start: 01101971 # Date to start validation period of

timeseries↪→

6 val_end: 30092015 # Date to end validation period of

timeseries↪→

7 epochs: 30 # Number of epochs

8 learning_rate: 1e-3 # Initial learning rate

9 seq_length: 270 # Sequence length

10 batch_size: 1024 # Batch size

11 hidden_size: 256 # Amount of nodes in neural network layers

in the LSTM gates↪→

12 initial_forget_gate_bias: 5

13 log_interval: 50 # How often to log

14 clip_norm: True # Whether to clip gradients

15 clip_value: 1 # Max of gradient norm

16 dropout: 0 # Dropout rate

17 seed: 19970204 # Seed, for reproducability

18 cache_data: False # Whether to cache all training data in RAM

19 no_static: True # No static features

20 evaluate_on_epoch: True # Run evaluation after each epoch

21 train_basin_file: <path> # Plain text list of basins to use

for training↪→

22 val_basin_file: <path> # Plain text list of basins to use

for validation↪→

23 test_basin_file: <path> # Plain text list of basins to use

for testing↪→

Listing A.2: Example configuration file of an LSTM model trained on
CAMELS-GB without using static features.

	Contents
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Goals
	Our contribution
	Thesis structure

	Theory
	Rainfall-Runoff modelling
	SACramento Soil Moisture Accounting
	The Variable Infiltration Capacity model
	Drawbacks

	Machine Learning
	Linear regression
	Bias-Variance trade-off
	Gradient Descent
	Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Implementing static attributes along with time series
	Addressing common criticisms of Machine Learning

	Data
	The CAMELS dataset
	The CAMELS-GB dataset

	Method
	Code available as Python package: CamelsML
	Training algorithm
	Preprocessing and combining datasets
	Basin attribute ranking
	Hardware

	Results
	Models trained on CAMELS-GB
	Performance
	Importance

	Models trained on CAMELS
	Performance
	Importance

	Models trained on CAMELS and CAMELS-GB
	Performance
	Importance

	Models trained for transfer learning
	Performance

	Test performance and summary.

	Discussion
	Model Selection
	Performance and Importance Analysis
	CAMELS-GB
	CAMELS
	Mixed model
	Transfer learning

	Comparison to traditional models

	Outlook
	Conclusion
	Summary
	Future work

	Bibliography
	CamelsML documentation
	Installation
	Usage

