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Abstract 

Background:  Mitral annular plane systolic excursion (MAPSE) and left ventricular (LV) early diastolic velocity (e’) are 
key metrics of systolic and diastolic function, but not often measured by cardiovascular magnetic resonance (CMR). Its 
derivation is possible with manual, precise annotation of the mitral valve (MV) insertion points along the cardiac cycle 
in both two and four-chamber long-axis cines, but this process is highly time-consuming, laborious, and prone to 
errors. A fully automated, consistent, fast, and accurate method for MV plane tracking is lacking. In this study, we pro‑
pose MVnet, a deep learning approach for MV point localization and tracking capable of deriving such clinical metrics 
comparable to human expert-level performance, and validated it in a multi-vendor, multi-center clinical population.

Methods:  The proposed pipeline first performs a coarse MV point annotation in a given cine accurately enough to 
apply an automated linear transformation task, which standardizes the size, cropping, resolution, and heart orienta‑
tion, and second, tracks the MV points with high accuracy. The model was trained and evaluated on 38,854 cine 
images from 703 patients with diverse cardiovascular conditions, scanned on equipment from 3 main vendors, 16 
centers, and 7 countries, and manually annotated by 10 observers. Agreement was assessed by the intra-class cor‑
relation coefficient (ICC) for both clinical metrics and by the distance error in the MV plane displacement. For inter-
observer variability analysis, an additional pair of observers performed manual annotations in a randomly chosen set 
of 50 patients.

Results:  MVnet achieved a fast segmentation (<1 s/cine) with excellent ICCs of 0.94 (MAPSE) and 0.93 (LV e’) and a 
MV plane tracking error of −0.10 ± 0.97 mm. In a similar manner, the inter-observer variability analysis yielded ICCs of 
0.95 and 0.89 and a tracking error of −0.15 ± 1.18 mm, respectively.

Conclusion:  A dual-stage deep learning approach for automated annotation of MV points for systolic and diastolic 
evaluation in CMR long-axis cine images was developed. The method is able to carefully track these points with high 
accuracy and in a timely manner. This will improve the feasibility of CMR methods which rely on valve tracking and 
increase their utility in a clinical setting.
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Background
The mitral valve (MV) is a fibrous region that separates 
the left ventricle  (LV) and the left atrium with two leaf-
lets. In the normal heart, the MV remains closed during 
systole and the MV plane rapidly descends with contrac-
tion of the ventricles; in early diastole the MV opens, 
and the MV plane quickly springs back to an equilib-
rium plane where it pauses during diastasis, and then 
ascends further during the left atrial kick in late diastole. 
The analysis of MV plane motion provides structural 
and functional systolic and diastolic information  [1]. Its 
measurement yields peak displacement of the plane dur-
ing systole, known as mitral annular plane systolic excur-
sion (MAPSE), and the LV early diastolic velocity, known 
as LV e’, which is itself a key metric of diastolic function 
in echocardiography [2].

Cardiovascular magnetic resonance (CMR)  is a repro-
ducible imaging modality and is considered the reference 
standard for cardiac volume assessment. Its accuracy and 
reliability hold promise for serial examinations of MAPSE 
and LV e’, as already reported in our previous work  [3]. 
These metrics were obtained by tracking the MV inser-
tion points in every frame in long-axis cine images. MV 
plane tracking has also been used to enable slice-follow-
ing for assessment of valvular flow with a phase-contrast 
sequence, either retrospectively  [4] or prospectively  [5], 
where it allows an evaluation of mitral regurgitation, 
which would not be possible without valve tracking. The 
MV plane location can assist any automated segmenta-
tion of the LV or left atrium, as it demarcates these cham-
bers [6], and its tracking can provide an estimate of global 
longitudinal strain [7]. Finally, MV plane dynamics could 
be useful in providing information on the timing of the 
cardiac rest-periods, which is important in CMR [8–10].

Even with significant improvements in semi-automated 
tracking methods of the MV points in cine CMR [11–16], 
and validation of clinical metrics against echocardiog-
raphy  [3, 16], MV plane tracking still requires a manual 
initialization and refinement. A fully automated, fast 
and accurate method for tracking the MV points using 
standard clinical CMR images is lacking. The rapid evolv-
ing field of deep learning has great potential to provide 
such method. In CMR deep learning applications [17], 
and deep learning in general, it is strongly suggested to 
have a large cohort of training data coming from differ-
ent centers, vendors, pathologies, and manually labeled 
by different experts. Such diversity in the data leads to a 
consistent, robust method to perform a determined task.

In this study, we develop MVnet, a dual-stage deep 
learning approach for MV tracking using residual neu-
ral networks, trained and tested in a multi-center, multi-
vendor population of 703 patients, with a wide range of 
pathologies, and manually labeled by 10 experts. Addi-
tionally, we show the importance of using a rich training 
dataset by structurally analyzing two main scenarios with 
direct impact on the learning and application: a single-
center, single-vendor, single-expert dataset compared to 
a multi-center, multi-vendor, multi-expert dataset. We 
also evaluate the derived clinical parameters (MAPSE 
and LV e’) in contrast with their counterpart by experts. 
Finally, with this dual-stage pipeline, we present techni-
cal novelty by applying an automated linear transforma-
tion to the images after the first stage, which substantially 
reduces variance and boosts performance in accuracy.

Methods
Imaging data
A multi-center, multi-vendor population of 703 sub-
jects (226 females, 51±19 years old) for diverse clini-
cal indications were retrospectively enrolled, as part 
of IRB approved chart-review studies. The reported 
pathologies  (Table  1) included subjects with myocardial 
infarction (n  =  169), chronic heart failure (n  =  130), 
arrhythmia - mostly atrial fibrillation (n = 63), heart fail-
ure with reduced LV  ejection fraction (n =  54), endur-
ance athletes (n =  39), pulmonary arterial hypertension 
(n = 25), atrial septal defect (n = 19), hypertrophic car-
diomyopathy (n =  14), other cardiac diseases (n =  13), 
sarcoid (n  =  6), myocarditis (n  =  6), and healthy vol-
unteers of all ages (n = 165). All subjects were scanned 
on a 1.5T (n = 661) or a 3T (n = 42) conventional clini-
cal CMR scanners from Philips Healthcare  (Best, the 
Netherlands;  n  =  419), Siemens Healthineers  (Erlan-
gen, Germany;  n =  250), and General Electric Health-
care  (Chicago, Illinois, USA;  n  =  34). Inclusions were 
performed in 16 different centers and 7 countries, and 
included standard two-chamber and four-chamber long-
axis cine exams, according to clinical practice. Typi-
cal image parameters were breath-hold with repetition 
time of 2.8 to 3.0 ms, echo time of 1.4 to 1.5 ms, and flip 
angle of 50 to 60°. Imaging data of both chamber views 
had a spatial resolution ranging from  1.3 ×  1.3  mm2 
to  1.7 ×  1.7  mm2 (after zero-filling), slice thickness of 8 
mm and typically 30 (25 to 50) temporal frames per car-
diac cycle were reconstructed. The final dataset com-
prised a total of 38,854 images (703 sets of time-resolved 
images) analyzed in previous studies at Yale University 
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(Yale dataset) [3, 6, 18, 19] and at Lund University (Lund 
dataset) [20–33].

Manual annotation
Using an analysis tool, freely available in the software 
Segment  [34], 10 trained human observers with differ-
ent backgrounds and levels of CMR experience, ranging 
from 4 to 20 years, performed these annotations in all 
temporal frames of 458 subjects and only at end-diastolic 
and end-systolic frames of 245 subjects (belonging to 
the Lund dataset). The experts placed the MV insertion 
points in two-chamber view data, as anterior and inferior 
points, and in four-chamber view data, as lateral and sep-
tal points, at each phase in the cardiac cycle, resulting in 
two points for each view in each image (Fig. 1a).

With no society recommendations on how to annotate 
and track the MV points, the Yale and Lund datasets were 
annotated according to two different principles. A single 
observer at Yale University (Yale observer) placed the MV 
points in the intersection between the MV and the LV 
myocardium, whereas the 9 observers at Lund University 

(Lund observers) placed the MV points at the most basal 
part of the compact LV myocardium. Both ways yielded 
similar MV motions but with a different reference point. 
However, due to the inherent observer bias and the high 
number of Lund observers, these annotations presented 
more variability. Such differences in manual annotation 
are very common in deep learning applications.

Dual‑stage residual neural network
Based on our recent work to track the tricuspid valve 
[19] as proof of principle, we adapted and expanded our 
dual-stage residual neural network to track the MV. The 
proposed framework (Fig. 2) involved two stages for each 
chamber view. The first stage uses a trained network to 
track the MV points with sufficient accuracy to define 
the MV plane, and the second stage uses these points to 
perform a linear transformation on the original images 
to standardize the images regarding location and orien-
tation of the valve plane. The second network then pre-
dicts the MV points in the automatically preprocessed 
image with higher accuracy. Each stage uses an artificial 

Table 1  Multi-vendor, multi-center database (n = 703) description by pathology, gender and age

The mean ± standard deviation are reported for age.

Subjects were scanned at 1.5T magnetic resonance scanners (n = 661).
†  25 patients with pulmonary arterial hypertension and 17 healthy young adult volunteers were scanned at 3T magnetic resonance scanners.

* CHILL-MI study comprised 85 patients, MITOCARE study comprised 80 patients. Note that some subjects were excluded compared to the original trials as long-axis 
images were missing. Duplicates with data from Skåne University Hospital were removed as this was one of the centers

Dataset Vendor Center Pathological group n Female Age

Yale (n = 150) Siemens (n = 150) Yale New Haven Hospital (USA) Arrythmia 63 18 54 ± 15

Pulmonary arterial hypertension† 25 18 62 ± 14

Hypertrophic cardiomyopathy 14 4 51 ± 15

Sarcoid 6 5 52 ± 15

Myocarditis 6 3 41 ± 15

Myocardial infarction 4 1 43 ± 13

Other cardiac diseases 13 7 51 ± 13

Healthy adult volunteers 19 5 51 ± 14

Lund (n = 553) Philips (n = 419) CHILL-MI and MITOCARE* (4 centers, 
3 countries)

ST-elevation myocardial infarction 57 14 53 ± 19

Skåne University Hospital (Sweden) Chronic heart failure 130 28 60 ± 13

Heart failure with reduced ejection 
fraction

54 11 68 ± 9

Atrial septal defect 19 13 50 ± 18

Endurance athletes 39 11 39 ± 18

Healthy adolescent volunteers 39 21 13 ± 2

Healthy young adult volunteers† 57 25 26 ± 5

Healthy senior adult volunteers 24 10 53 ± 8

Siemens (n = 100) CHILL-MI and MITOCARE* (13 centers, 
4 countries)

ST-elevation myocardial infarction 74 19 50 ± 2

Skåne University Hospital (Sweden) Healthy young adult volunteers 7 2 27 ± 2

Healthy senior adult volunteers 19 6 56 ± 5

General Electric (n = 34) MITOCARE* (2 centers, 2 countries) ST-elevation myocardial infarction 34 5 62 ± 9



Page 4 of 15Gonzales et al. Journal of Cardiovascular Magnetic Resonance          (2021) 23:137 

neural network with a residual framework of 50 layers, 
ResNet-50 [35], adapted to predict a series of four num-
bers (representing two pairs of coordinates {x, y} ) on an 
individual grayscale cine image  (Fig. 3).

Stage 1
The first stage only involves the use of one network to 
perform a coarse annotation in all temporal frames. 
The network was trained on manually annotated images 
resized to 160 × 160 with cubic interpolation, leading to 
anisotropic pixel dimensions. This initial coarse anno-
tation serves to localize the MV plane and follow its 
motion.

Stage 2
The second stage uses the output coordinates of the pre-
vious stage to apply a linear transformation task, i.e., 
standardize the cine, by (i) interpolating each image 
to a spatial isotropic resolution of 0.75 mm, (ii) rotat-
ing each image such that the MV is oriented horizon-
tally with the apex pointing down and with the anterior 
and lateral points placed on the left and the inferior and 

septal points placed on the right, for two-chamber and 
four-chamber views, respectively, and (iii) cropping each 
image around the MV center for a size of 118 × 162.

Pipeline
As an overview, a given input cine of a chamber view 
with different parameters (Fig.  2a) is fed into the first 
stage with a fixed size for the network to read (Fig. 2b). 
The first trained network (Fig. 3) outputs the predicted 
points with acceptable accuracy. The coarse annota-
tion on the first temporal frame is used as a reference 
to determine the orientation and centering tasks, i.e., to 
horizontally orient the MV in the center, whereas the 
coarse annotation on the remaining temporal frames 
determine the motion direction, i.e., to ensure the apex 
points down. The automated linear transformation task 
from the second stage standardizes the spatial resolu-
tion, the heart orientation and positioning and the 
type of cropping (Fig. 2c). The second network (Fig. 3), 
trained on linearly transformed images, is then used 
to track the MV points with high accuracy (Fig.  2d). 
These new predicted points are readjusted, with an 

Fig. 1  a MV point annotation illustration at end-diastole and end-systole in 2-chamber view, with anterior and inferior points, and 4-chamber 
view, with lateral and septal points, and b the clinical-metric derivation as an output of the time-resolved annotation. The MV displacement was 
measured as the average of the perpendicular distances from the MV initial plane, defined at end-diastole in each view, to every MV point at every 
temporal frame, and the MV velocity was measured as its time-derivative. MAPSE was calculated as the maximum displacement, and LV s’, e’ and a’ as 
the first, second and third global velocity peak. MV mitral valve, MAPSE mitral annular plane systolic excursion, LV left ventricle
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inverse standardization transformation, to match the 
original input cine images (Fig.  2e). This stage can be 
performed in an iterative manner as indicated, i.e, the 
points predicted by the second stage can initialize again 
the second stage (linear transformation task and second 
network) to yield a more accurate annotation.

Network training
Both networks were trained with the same process but 
independently for each stage and chamber view. Transfer 
learning for weights initialization was applied to reduce 
convergence time and aid the learning process, using a 
ResNet-50 pretrained on more than one million images 
from the ImageNet database [36] for a classification task 
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into 1000 different categories of objects and animals 
photographs. Standard data preparation involved pixel 
distribution normalization by the median and interquar-
tile range to ensure generalizability [37]. Training data 
was augmented 10 times by scaling ±10%, rotating ±10◦ 
and translating ±3 pixels to add more inherent vari-
ability in the first stage, and to compensate for any error 
introduced from the first stage to the second stage, i.e., 
a slight misalignment of the MV plane center from the 
ground truth. The mean square error loss function was 
optimized by the Adam method [38] with a learning rate 
of 1× 10−4 , for 20 epochs and mini-batch size of 8. The 
pipelines were developed on MATLAB R2019b (Math-
works, Natick, MA) with a NVIDIA Titan RTX GPU.

Clinical metric derivation
The MV plane displacement was calculated for each 
chamber view as the average perpendicular distance 
of the MV points to the initial plane set in end-dias-
tole  (Fig.  1b). The resultant MV plane displacement 
was measured as the average from both chamber views. 
MAPSE was derived from the maximal MV displacement 
and LV e’ was the second global peak of the time-deriva-
tive of the displacement curve.

Evaluation
Data variability analysis
Both Yale and Lund datasets were trained and tested 
separately and collectively to assess the influence of 
employing a single-center, single-vendor, single-expert 
dataset (Yale) and a multi-center, multi-vendor, multi-
expert dataset (Lund). This analysis was performed in 

three different pipelines: MVnetYale , MVnetLund and 
MVnetMixed , for the Yale dataset, Lund dataset, and both 
mixed, respectively. Each MVnet comprised of 4 net-
works in total, i.e., 2 networks for the first and second 
stage of the two-chamber view and other 2 networks for 
both stages of the four-chamber view. For MVnetYale , 
the training and testing sets were partitioned into 6948 
images (118 subjects) and 1886 images (32 subjects), 
respectively. For MVnetLund , the training and testing sets 
were partitioned into 26,072 images (118 subjects) and 
3948 images (111 subjects), respectively. For MVnetMixed , 
the same distribution set for each dataset was used and 
mixed. Such distributions  (Table  2) were randomly per-
formed with a constraint to have an homogeneous repre-
sentation of the reported cardiovascular diseases.

Spatial annotation accuracy
The test set of each MVnet was evaluated against 
manual annotation. The spatial annotation error was 
measured in each chamber view with: (i) the Euclid-
ean distance, which measured in millimeters the dis-
tance error between the ground-truth and predicted 
annotations, (ii) the angular distance, which measured 
in degrees the inner intersection angle of the ground-
truth and automated planes defined by both MV points, 
and (iii) the MV displacement, which measured in mil-
limeters the difference in the MV plane displacement 
in every temporal frame between the ground-truth and 
automated displacement curves. All metrics were cal-
culated comparing the ground-truth with the predicted 
annotations on the original input images.

Clinical‑metric accuracy
Clinical metric (MAPSE and LV e’) comparisons were 
performed using linear regression analysis, Bland-Alt-
man plots, and the intra-class correlation coefficient 
(ICC) between the automated and manual measures. 
As 47 subjects (out of 111) from the Lund test set were 
only annotated at end-diastole and end-systole, mini-
mum amount of temporal frames required for MAPSE, 
LV e’ comparisons were not performed in that subset. 
The threshold for statistical significance was considered 
to be p<0.05 for this study.

Dual‑stage influence
Both spatial annotation and clinical-metric accuracy 
evaluations were performed for the results of the first 
stage (stage 1), both stages (stage 1 +  2) and an addi-
tional iteration (stage 1 + 2 + 2), to show the influence 
of the additional stage (Fig. 2c, d).

Table 2  Distribution of training and test sets of annotated cine 
images from each dataset

2Ch two-chamber view, 4Ch four-chamber view 

Dataset Division Training set Test set Total

Yale Subjects 118 32 150

2Ch cine images 3498 943 4441

4Ch cine images 3450 943 4393

Total cine images 6948 1886 8834

Lund Subjects 442 111 553

2Ch cine images 13,018 1974 14,992

4Ch cine images 13,054 1974 15,028

Total cine images 26,072 3948 30,020

Mixed Subjects 560 143 703

2Ch cine images 16,516 2917 19,433

4Ch cine images 16,504 2917 19,421

Total cine images 33,020 5834 38,854
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Inter‑observer variability analysis
For inter-observer variability analysis, an additional 
pair of observers performed manual annotations in a 
randomly chosen of 50 subjects. Specifically, a second 
observer of Yale dataset (Yale observer 2) and Lund 
dataset (Lund observer 2) manually annotated a subset 
of 25 subjects each on its corresponding dataset and 
the same evaluation was assessed.

Results
Implementation
MVnet was implemented in the medical image analy-
sis software Segment v3.1 R8109 [34] (http://​segme​nt.​
heibe​rg.​se), which is freely available for research pur-
poses, and uploaded to https://​github.​com/​ra-​gonza​
les/​MVnet. Total training time, including each stage 
and chamber view, took 108, 260 and 420 hours for 
MVnetYale , MVnetLund and MVnetMixed , respectively. 

For each MVnet , on the GPU, testing time took 5.2 sec-
onds per patient, whereas on a CPU, it took 10.8 sec-
onds per patient, including data I/O time, compared 
to an average manual annotation time from 8 to 20 
minutes. Batch processing reduces the average time to 
under 1 second on the GPU.

Dual‑stage influence
The annotation accuracy of each MVnet after the first 
stage (stage 1), the second stage (stage 1+2) and an itera-
tion of the second stage (stage 1+2+2) is reported in 
Fig. 4, in terms of spatial annotation and clinical-metric 
accuracy, between every ground-truth and predicted 
measures of an MVnet with its corresponding test set.

In terms of Euclidean and angular distance agreement 
(Fig.  4a, b), the mean percentage error of both metrics 
from the first to the second stage decreased 34%, 14%, 
and 10% for MVnetYale , MVnetLund and MVnetMixed , 
respectively. In a similar manner, the overall error from 

Fig. 4  Accuracy of each model (MVnet) trained and evaluated on its own dataset, by the mean a Euclidean and b angular distance error, and the 
agreement with ICC in c MAPSE, d LV e’ and e MV displacement, stratified by the output of the first stage (stage 1), second stage (stage 1+2), and an 
iteration of the second stage (stage 1+2+2). For (a, b), each bar represents the mean, and error bar the standard deviation of each accuracy metric. 
For (c, d, e), each bar represents the ICC, and error bar the confidence interval (95%) of each accuracy metric. The output of the iteration (stage 
1+2+2) achieved the best accuracy and was chosen for the proposed workflow. ICC intra-class correlation coefficient, MAPSE mitral annular plane 
systolic excursion, LV left ventricle, MV mitral valve

http://segment.heiberg.se
http://segment.heiberg.se
https://github.com/ra-gonzales/MVnet
https://github.com/ra-gonzales/MVnet
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the first stage to the second iteration of the second stage 
decreased 41%, 15%, and 11%, respectively. Accuracy 
and agreement were consistently improved after each 
stage. No substantial differences were found in a specific 
MV point and chamber view (Fig.  5), meaning they all 
achieved a similar accuracy. However, the angular dis-
tance error on the four-chamber view was larger with a 
higher discordance in the septal point placement from 
the difference in the two annotation principles.

Regarding MV displacement, MAPSE and LV e’ agree-
ment (Fig.  4c–e), with the addition of the second stage, 
the mean percentage error decreased 42%, 29%, and 
11% for MVnetYale , MVnetLund and MVnetMixed , respec-
tively, whereas the iteration of the second stage reduced 
the initial error 39%, 32%, and 18%. This iteration 
improved the agreement with clinical metrics, except for 
MVnetYale which showed a small reduction in agreement. 
Although the improvement of the iteration was moder-
ate in the spatial annotation accuracy for MVnetLund and 
MVnetMixed , the clinical-metric accuracy was further 
improved.

Dataset variability influence
With the output of each MVnet considered to be the 
predictions after an iteration of the second stage (stage 
1+2+2), the accuracy of every model evaluated on 
every test set (the Yale, Lund and mixed test sets) is 
reported as a heatmap for each metric in Fig.  6, where 
the best performance among the models is highlighted 
in blue and the worst in red. Although both MVnetYale 
and MVnetLund performed well on their corresponding 
datasets, with generally superior performance for Lund, 
the accuracy was noticeably reduced when the Yale (or 
Lund) network was applied to Lund (or Yale) test data-
set, with Lund (or Yale) annotations. Then there was a 2 
to 3 times-fold error increase in Euclidean and angular 
distances, mainly as a result of difference in annotation 
pattern. The MV displacement metric, however, achieved 
a better agreement in this scenario, but still with lower 
performance.

While MVnetYale achieved the lowest Euclidean dis-
tance error (although trained on less data), its error 
on the Lund test set was 3.3 times higher. Vice versa, 

Fig. 5  Accuracy of each model (MVnet) trained and evaluated on its own dataset, by the mean Euclidean distance error (first two columns) and 
angular distance error (third column), stratified by the output of the first stage (stage 1), second stage (stage 1+2), and an iteration of the second 
stage (stage 1+2+2). Accuracy assessed for 2Ch in its a anterior and b inferior point distance error, and c angular distance error; and for 4Ch in its 
d left ventricular lateral and e septal point distance error, and f angular distance error. Each bar represents the mean, and error bar the standard 
deviation of each accuracy metric. 2Ch two-chamber view, 4Ch four-chamber view
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MVnetLund on the Yale test set was also notably higher 
(2.4 times). Similarly, the clinical-metric agreement 
of a model tested in a different test set was markedly 
decreased. In the case of LV e’, MVnetLund failed on pre-
dicting the same clinical values as the manual measures 
with an ICC of 0.47. In contrast, MVnetMixed performed 
with the same consistency, and overall it achieved a bet-
ter, more robust agreement with both groups of human 
experts.

Clinical‑metric accuracy
Choosing MVnetMixed as the proposed pipeline, the 
accuracy of clinical metrics for MAPSE and LV e’ of the 
automated method compared against the manual met-
rics, evaluated in the mixed test set, are shown in Table 3. 
The model estimated both metrics with excellent agree-
ment with a mean error of −0.2±1.3 mm (ICC =  0.94) 
and 0.0±1.5 cm/s (ICC =  0.93), for MAPSE and LV e’, 
respectively. The regression and Bland-Altman plots for 
the MV parameters between the automated and manual 

measurements are presented in Fig. 7, where an excellent 
correlation and good agreement were observed for each 
of the three parameters, including the MV displacement. 
All reported correlation values are significant (p<0.0001).

Inter‑observer variability analysis
The inter-observer clinical-metric agreement is shown 
in Table  4. The results were on par with the auto-
mated predictions, with a mean error of −0.3±1.2 mm 
(ICC = 0.95) and 0.3±1.7 cm/s (ICC = 0.89), for MAPSE 
and LV e’, respectively. In a similar manner, the regres-
sion and Bland-Altman plots for the clinical parameters 
between the second and first group of observers are pre-
sented in Fig. 8. All reported correlation values are also 
significant (p<0.0001).

Spatial annotation accuracy comparison
The spatial annotation agreement of the automated 
annotations by MVnetMixed against manual annota-
tions as well as the inter-observer spatial variability are 
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Fig. 6  Accuracy heatmap of each model (MVnet) trained on each training set and evaluated on each test set by the mean a Euclidean and b 
angular distance error, and the agreement with ICC in c MV displacement, d MAPSE, and e LV e’. The output of MVnetMixed consistently achieved the 
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presented in Table  5. Interestingly, while the Euclidean 
and angular distance errors seem to lower the pipeline 
performance, the automated reproducibility of clinical 
metrics is very high resulting in a very low MV displace-
ment error. This shows that tracking the motion is more 
reproducible, and more relevant, than tracking the spatial 
location of each individual point. Therefore, the individ-
ual distance errors are not necessarily a good metric for 
evaluating the performance of a valve plane movement 
and may be misleading when the accuracy of the annota-
tion model is very high. This discrepancy was also pre-
sent in the studied inter-observer variability analysis as 
the Yale observer 2 yielded a Euclidean distance error of 
2.7 ± 2.6 mm against ground truth, whereas the error of 
the Lund observer 2 was 3.9 ± 3.0 mm. Although this dif-
ference may flag a potential pitfall in the manual annota-
tion, the clinical-metric agreement showed the opposite 
as the latter achieved an average ICC = 0.97, whereas the 
former an average ICC = 0.82, indicating that annotation 
consistency along temporal frames prevails above a spe-
cific annotation pattern.

Additional movie files demonstrated MV tracking in 
cines from the Yale test set (Additional file 1) and in the 
Lund data set (Additional file  2), using the automated 
annotations by MVnetMixed . Additional files also show 
further analysis of the inter-pipeline variability (Addi-
tional file 3) and clinical-metric agreement of LV s’ and 
LV a’, compared with the inter-observer variability (Addi-
tional file 4).

Discussion
In this work, we proposed a dual-stage residual learn-
ing framework, MVnet, for time-resolved annotation of 
the MV in two-chamber and four-chamber views from 
standard long-axis cine CMR images. The proposed 
method was fast, fully automated and showed excellent 
agreement with manual annotation by expert readers 
in term of valve points positioning as well as with the 
subsequently extracted LV function parameters. Tedi-
ous manual labor is not needed, reducing the processing 
time from 8  to  20 minutes to 5 or 1 second with batch 
processing. This enables fully-automated, accurate, fast, 

Fig. 7  Clinical-metric agreement of a MV displacement, b MAPSE and c LV e’ between an expert manual annotation and the automated method 
( MVnetMixed ). The first row of each analysis shows the regression plots whereas the second shows the Bland-Altman plots. In each scatter plot the 
black line denotes the identity line, whereas in each Bland-Altman plot, the red line denotes the mean difference (bias) and the two light dotted 
lines denote ± 1.96 standard deviations from the mean. MV mitral valve, MAPSE mitral annular plane systolic excursion, LV left ventricle
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and reproducible assessment of LV function in clinical 
routine. Moreover, this method can be applied retrospec-
tively to any two and four-chamber image acquisition, 
which are routinely acquired in a standard CMR exam. 
Additionally, we have systematically shown the advan-
tages and pitfalls of using a single-center, single-vendor, 
single-expert dataset compared with a multi-center, 
multi-vendor, multi-expert dataset.

The technical contribution of this work includes the 
accuracy improvement provided by the second stage. 
While both networks were trained under the same 
domain and task, meaning each of them predicts two 
pairs of coordinates in a given image, the second network 
processes only highly standardized images, obtained 
by applying the proposed linear transformation. We 
showed how much each additional stage, up to one 
iteration (stage 1+2+2), improved the overall perfor-
mance. While this assessment could be performed with 
more iterations (e.g., 1+2+2+2), the accuracy does not 
further improve, as evaluated in our proof-of-principle 
work [19]. This adoption of a dual-stage deep learning 

pipeline in biomedical applications has recently gained 
some interest to compensate for the technical limita-
tion of one single model, even when trained with a large 
amount of data. For instance, some dual-stage pipelines 
with a segmentation task [39, 40] first localize the region 
of interest with a bounding box and then segment the 
bounded image, which improved the accuracy from sin-
gle models. One limitation for an approach consisting 
of two different tasks is that an error for the localiza-
tion task can hamper the performance. In our case, we 
employed the same annotation task for both stages, with 
a good accuracy on the first stage and an increased per-
formance with the second one. The first stage is enriched 
by the large-scale study, from different centers, vendors 
and observers, and data augmentation to further increase 
the sample diversity [41] allowing model generalization 
[42]. This approach is commonly employed by one-stage 
deep learning applications where it is believed that data 
diversity will solve the image processing task. The spe-
cific technical contribution of our work is that we used 
the benefit of data diversity but also further increased the 

Fig. 8  Clinical-metric agreement of a MV displacement, b MAPSE and c LV e’ between an expert manual annotation (observer 1) and a pair of 
second observers (observer 2). One observer from the Yale dataset and another from the Lund dataset annotated 25 subjects from each test set. The 
first row of each analysis shows the regression plots whereas the second shows the Bland-Altman plots. In each scatter plot the black line denotes 
the identity line, whereas in each Bland-Altman plot, the red line denotes the mean difference (bias) and the two light dotted lines denote ± 1.96 
standard deviations from the mean. MV mitral valve, MAPSE mitral annular plane systolic excursion, LV left ventricle
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accuracy by using these results to standardize the images 
in a novel way.

Our proposed method achieved human-level per-
formance with high robustness and consistency across 
centers, vendors and observers in a diverse range of 
conditions. The value of including images from different 
centers, vendors and conditions aids the generalization 
of the trained model through seeing all potential varia-
tions of the images in a real case scenario [42], whereas 
including different observers reduces the bias of a single 
observer [43]. Although this is not the first data diversity 
study in  CMR, as another multi-vendor, multi-center 
study [44] also evaluated the incremental training strat-
egy for a LV segmentation task with a thorough assess-
ment, our work additionally assessed the annotation 
pattern diversity. We showed how a model trained on 
one center could yield a high accuracy in its own dataset 
but underperformed in datasets from different centers, to 
achieve generalizable multi-center development [37], and 
how a different annotation pattern generated discord-
ance against another pattern, even with diverse training 
inputs.

We evaluated the performance against ground truth 
with a wide range of parameters including the Euclidean 
distance, angular distance, MV displacement, MAPSE 
and LV e’. We showed that the proposed pipeline yielded 
high reproducibility in a very demanding task with excel-
lent ICC for MV displacement, MAPSE and LV e’, and 
how the Euclidean distance error may be misleading. 
This error discrepancy between training labels and clini-
cal metrics has been noted by others. A recent learning-
based approach for myocardial segmentation on T1 maps 
[45] achieved a near-perfect accuracy on estimating T1 
values of LV myocardium, even while the segmentation 
accuracy only yielded a Dice similarity coefficient [46] of 
0.85. Although this metric could be misleading, the clini-
cal-metric agreement prevails over image processing per-
formance, as the most important metric. In our study, we 
showed how a Euclidean distance error could be higher, 
but the MV plane displacement error was lower.

Limitations
One limitation of our study is the lack of consensus on 
how to annotate the MV points as a specific pattern 

Table 3  Automated clinical metric accuracy of mitral valve derived parameters

The mean ± standard deviation are reported for manual and automated measures and their error, evaluated on the mixed test set with the proposed model 
( MVnetMixed ). MAPSE mitral annular plane systolic excursion, LV left ventricle, ICC intra-class correlation coefficient, CI confidence interval

Clinical agreement n subjects Manual measures Automated measures Error measures ICC (CI 95%)

MAPSE (mm) 143 12.3 ± 4.0 12.1 ± 3.9 −0.2 ± 1.3 0.94 (0.92–0.96)

LV e’ (cm/s) 96 6.6 ± 4.1 6.6 ± 3.7 0.0 ± 1.5 0.93 (0.90–0.95)

Table 4  Manual inter-observer clinical metric accuracy of mitral valve derived parameters

The mean ± standard deviation are reported for manual and automated measures and their error, evaluated with MVnetMixed on the mixed test set. MAPSE mitral 
annular plane systolic excursion, LV left ventricle, ICC intra-class correlation coefficient, CI confidence interval

Clinical agreement n subjects Manual measures Observer 2 measures Error measures ICC (CI 95%)

MAPSE (mm) 50 11.1 ± 3.8 10.8 ± 3.9 −0.3 ± 1.2 0.95 (0.91–0.97)

LV e’ (cm/s) 50 6.1 ± 3.6 6.4 ± 3.5 0.3 ± 1.7 0.89 (0.81–0.93)

Table 5  Automated and manual inter-observer spatial annotation agreement

The mean error ± standard deviation are reported for Euclidean and angular distances, and mitral valve displacement error between ground-truth and automated 
( MVnetMixed ) or a pair of second observers manual annotations. MV mitral valve

Spatial agreement n images Euclidean distance error (mm) Angular distance error 
(º)

MV displacement error (mm)

MVnetMixed 5834 3.31 ± 2.55 3.69 ± 3.89 −0.10 ± 0.97
Inter-observer 2960 3.29 ± 2.90 4.05 ± 4.22 −0.15 ± 1.18
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would have homogenized the bias and yielded a lower 
error. However, our thorough analysis demonstrated that 
the difference in the annotation patterns did not hamper 
the performance but instead the MVnet reduced such 
biases and learned a consensual pattern from the diverse 
observers, confirming the value of multiple observers 
for a deep learning application [43]. Another limitation 
of our study is the missing benefit from incorporating 
a recurrent neural network architecture to learn spati-
otemporal dependencies across the cardiac cycle instead 
learning from one temporal frame at a time. However, 
the technical contribution of this work relies on the auto-
mated image standardization algorithm to boost both 
image processing performance and clinical metric agree-
ment, implementing this pipeline to a recurrent neural 
network architecture may also benefit its learning.

The clinical value of this work is that it provides an 
automated method for MV plane motion, including 
established metrics such as MAPSE and LV e’, and also 
utility for slice-following applications, automated cardiac 
rest-period identification, among others. Additionally, it 
does not need any added work in the clinical routine and 
the post-processing cost is negligible.

Conclusion
MVnet is a deep learning approach for automated deline-
ation of MV points for MV plane displacement evalua-
tion in CMR long-axis cine images. The method is able to 
track the MV points, accurately, rapidly and consistently. 
This will improve the feasibility of CMR methods which 
rely on valve tracking, such as measurement of e’, or slice-
following phase-contrast, and increase their utility in a 
clinical setting.
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