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Preface

This thesis investigates different memory types for use as a synaptic
storage in a neuromorphic application for on-chip learning. After initial
investigation for a relevant implementation, no optimal solutions were
found, and we decided to test a new Multi-Level Static Memory (MLSM)
which is presented in this thesis. We will only give a brief introduction
to the different alternative memory types and concentrate on the imple-
mentation with the MLSM.

This thesis is divided into four chapters.

• Chapter 1: Introduction to basic theory and principles.

• Chapter 2: The main objective and the environment for the imple-
mentation are introduced.

• Chapter 3: The main part of this thesis introduces the circuit com-
ponents. The functionality and implementation of each component
are presented as well as test results.

• Chapter 4: Final words, where the implementation is discussed.
Furthermore, future work is proposed
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Chapter 1

Introduction

In this chapter, we explain some of the basic theory and principles used
in this thesis. We give an introduction to the neurvous system and neur-
omorphic electronics.

1.1 The neuron

The human body is made up of trillions of cells. Cells of the nervous
system, called nerve cells or neurons, are specialized to carry inform-
ation through an electrochemical process. The human brain has about
1011 neurons and they come in many different shapes and sizes. Some
of the smallest neurons have cell bodies that are only 4 µm wide, while
some of the biggest neurons have cell bodies that are 100 µm wide. A
sketch of a neuron can be seen in Figure 1.1.

The neuron connects with other neurons through synapses, where dend-
rites bring information to the cell body and an axon transmits inform-
ation away from the cell body. Information is transmitted with Action
Potentials (APs), or “spikes”, which is sent from the neuron when the
integrated input from all synapses exceeds a certain voltage threshold.
When a neuron receives an AP, a Post Synaptic Current (PSC) is sent
to the cell body. The size of this PSC is determined by a variable syn-
aptic weight. Thus, an input AP to one synapse may itself trigger an
output AP, while an input AP to a different synapse may completely be
ignored. These weights play an important part in the learning process
in the brain. It is believed that it is the weights that store the informa-
tion in the brain, and that they are locally adapted according to complex
interaction between neurons.
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Figure 1.1: A sketch of a nerve cell. A singe nerve cell can connect to as
many as 10.000 other neurons.

1.2 Neuromorphic systems

There has been extensive research on the human brain, but there are
yet many unsolved and unexplored parts of the central nervous system.
To understand the complex communication and interaction between the
neurons in the brain is in itself a difficult task, and to copy this com-
plexity to electronic circuits is even more difficult. Since neurons use
currents and voltages to communicate, electronic circuits can be used
efficiently to emulate real neurons and complex neural networks. There
have been proposed several models such as “The silicon neuron” [1],
the “Integrate-and-Fire neuron” [2] and “Perceptrons” (McCulloch Pitts
neurons) [3], which emulates the behavior of the nerve cell. These cir-
cuit models, amongst others, can be combined to construct a network
of neurons. Such a network is an example of a neuromorphic system,
a term that was first defined by Mead [4]. Neuromorphic systems are
artificial systems based on computational principles used by biological
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nervous systems. Neuromorphic engineering attempts to implement
devices in order to solve tasks that biological systems perform so eas-
ily, like visual and auditory perceptive processing, navigation and loco-
motion, classification, recognition, forecasting and prediction to men-
tion a few. An example is the success within the field of emulation of
peripheral sensory transduction and processing performed by biological
retinas [5,6] and cochleae [7,8].

1.3 Neural coding

In the nervous system, APs are the main form of information transmis-
sion. APs have a fixed amplitude (-70mV to +30mV) and a fixed duration
of approximately 1ms. The classical view is that information is transmit-
ted using a firing rate code, but resent experiments have shown that this
may not be the case in certain parts of the nervous system. Thorpe et.
al. [9], conducted a psychophysical experiment to show that the human
visual system can process complex natural images in roughly 150ms.
This would make very few cells able to fire more than one spike before
the next stage has to respond. Clearly, one or two spikes are not enough
to differentiate different frequencies. This indicates that there must also
be some finer temporal information in an AP sequence.

Markram et. al. [10] performed an experiment which further validates
that there are some temporal information in an AP. They observed that
when a depolarizing current was injected into a presynaptic neuron to
produce a presynaptic AP, no changes in the average excitatory post-
synaptic potential (EPSP) amplitude was seen in the postsynaptic cell.
However, when such an injection was followed by a similar injection in
the postsynaptic neuron to produce a postsynaptic AP, an increase in
the average EPSP amplitude was observed in the postsynaptic cell. Fig-
ure 1.2 illustrates this behavior. This indicates that the timing of the
presynaptic spike was crucial for the metabolic growth of the synaptic
connection.
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Figure 1.2: An illustration of the test setup used in [10]. Below, two graphs
show the behavior observed. To the left, the postsynaptic spike comes
before the presynaptic spike and the EPSP amplitude remains the same for
both stimulations. The weight is the synaptic efficacy which controls the
rate of PSC which reaches the postsynaptic neuron when the presynaptic
neurons sends an AP. We see that the weight decreases hence the effect of
a presynaptic AP to the postsynaptic neuron decreases. To the right, the
presynaptic AP comes first and an increase in the average EPSP amplitude
is observed. At the same time the synaptic efficacy is strengthened.



Chapter 2

Objective

We have now explained the basic principles of neuromorphic electronics.
In this chapter, we focus on various aspects which in some way affect
our implementation. We will introduce the environment and the primary
goals of this thesis.

2.1 Synaptic storage

In the human brain there are no external storage. Memory is distrib-
uted throughout the brain as weights stored in the connections between
neurons. In the field of neuromorphic electronics, distributed analog
or multi-valued memory is preferred to reflect this behavior, and it also
minimizes speed and space compared to an external digital memory.
Today, there exists several types of multi-level or analog memory which
can be categorized in three groups: Dynamic, static and non-volatile
memory.

2.1.1 Dynamic memory

Dynamic memory is a short term volatile memory, which is optimal for
storing data that will not be preserved for a long time. Usually a capa-
citor is used to store the value and this makes it space conservative and
easy to implement. Because of leakage, a refresh mechanism is needed
if the value is to be maintained over longer periods. This increases the
complexity and noise from digital components. Transmission lines will
also interfere with the analog signals and lower the signal-to-noise ratio.

In digital dynamic memory, there are only two values, high (Vdd) and low
(Vss). To preserve the stored value, memory has to be refreshed before
the value exceeds a certain threshold value, i.e. Vdd/2. For example, if the
leakage is 1mV per second and Vdd = 5V, then it is necessary to refresh
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every 2500 seconds (approximately 42 minutes) to preserve the stored
value.
In dynamic multi-level memory, the memory space is divided into slots.
In the same manner as digital memory, the capacitances value has to be
restored to its original value after a time t. This may be done using an ex-
ternal digital mechanism, such as a digital register with digital-to-analog
and analog-to-digital converters, and many such implementations have
been proposed for use in neural networks as synaptic storage [11–17].
How accurate you want this memory element to be, sets the spacing of
these slots and consequently the refresh frequency.

2.1.2 Multi-level static memory

Multi-level or analog static memory is memory where the values stored
are preserved through a local feedback path, e.g. latches and flip-flops.
Like dynamic memory, the stored value is not preserved when the power
is turned off, but since it preserves its own state, no external refresh al-
gorithm is needed. In digital static memory, the stored value switches
between two values, Vdd and Vss. This is a fairly easy task, and many dif-
ferent digital static memory elements exists. However, multi-level static
memory is a more complex task, and only a few implementations have
been proposed [18, 19]. The implementation by Cilingiroglu et. al. [19]
seemed to be the most promising for our purpose, where a multiple-
valued static CMOS cell has been proposed for synaptic storage. This
is the first and only implementation of this kind we could find, which
is used for synaptic storage. However, the proposed element has some
disadvantages which makes it unsuitable for our implementation. We
will discuss this further in Chapter 4.

2.1.3 Non-volatile analog memory

In non-volatile analog memory, the memory does not loose its stored
value even when the power is turned off. An example is analog EEP-
ROM (Electrical Erasable Programmable ROM). Here, the charge is kept
on electrically isolated conductances, i.e. floating-gates (FG), which can
be programmed on-chip [20]. Non-volatile memory is used to store para-
meters and constants, or values which do not change rapidly over time.
Since learning in neuromorphic circuits often depend on slow adaption,
non-volatile memory has been used to a wide extent as a storage element
in such models [21–28]. However, there are severe device property mis-
matches and specialized initialization and programming techniques are
required to alter the value stored.
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2.2 Learning

We perform the process of learning every day, but what is learning? One
definition is that learning is the search of a parameter space in order to
optimize performance. A more common definition is that learning is a
change in behavior as a result of experience.

Since we are able to learn, we can easily perform tasks that originally
require a high degree of concentration. Even more important, we can
adapt to new situations. So the process of learning is important since
we cannot be designed for every possible situation we encounter.

Modern integrated circuits (IC) can be very complex and powerful. But
most commercial ICs are designed for certain applications and tasks.
Therefore, they are not flexible and when conveyed with an unknown
task, it will not be able to determine what to do. This is of course a crude
generalization and there exists IC which can be programmed after fabric-
ation. But the programming usually needs to be supervised. Therefore,
we wish to use learning to create adaptable and flexible circuits which
can optimize themselves “on the fly”, specially where input is not pre-
cisely defined when designing the system. A future goal may be to create
a circuit that could adapt and function in all possible applications. But
there is still a long way to go before the “one-circuits-fits-all” is a reality,
so ICs manufactured today, which use the process of learning, needs an
application specific implementation and predefined parameters.

There exists many different approaches to learning, and each are cus-
tomized according to input, the environment and the desired accuracy
on the output. Learning rules can be categorized as reinforced, super-
vised and unsupervised.

2.2.1 Reinforcement and Supervised learning

The core in reinforcement and supervised learning is to optimize a per-
formance measure of a system according to feedback external to the
system. For supervised training, the optimal output of the neural net-
work D(I, t), is known for a subset of inputs I, which is the training set
of the learning algorithm. The performance measure P(I,O, t), where O
is the function to be optimized, is an error function where the goal is to
minimize this measure P [29]. For reinforcement learning, the perform-
ance measure is more vague, e.g. the system is rewarded when certain
outputs generates a wanted effect. The system will then tend to act the
same way with the same set of inputs the next time.
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2.2.2 Unsupervised learning

Unsupervised learning does not adapt according to external feedback.
Instead, it adapt its weight W to the statistical properties of the input.
The goal is to optimize the output, but unlike reinforcement and super-
vised learning, where the performance measure P should be minimized,
unsupervised learning usually tries to optimize the representation of a
huge amount of input data to a reduced set of output data. In the brain
it is believed that unsupervised learning is used in this way, to compress
and extract relevant data out of the huge amount of data that we per-
ceive.

Many of the unsupervised learning rules that are currently being used
today, is based on “a neurophysiological postulate” presented by D.O.
Hebb [30]:

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

2.3 The learning rule

The learning rule used in this thesis is based on a learning rule proposed
by Häfliger in [29]. It lets synapses compete for synaptic strength while
awarding causal relationship between inputs and outputs. It has the
form:

d
dt
wi = wi(αc̃i − βwiO) (2.1)

where wi is the weight, α and β are learning parameters, c̃i is a cor-
relation signal which reflects the activity level of the synapse, and O is
the output of the synapse. The wiαc̃i term is computed with the learn
up circuit presented in Section 3.4.1.2 and the w2

i βO term by the learn
down circuit presented in Section 3.4.1.1.

2.4 The learning neuron

This thesis is related to the Convolution Address Event Representation
(AER) Vision Architecture for Real-Time (CAVIAR) project [31], which is
a collaboration between the Institute of Informatics, University of Oslo
and three foreign participants, two resident in Sevilla, Spain and one in
Zürich, Switzerland. The research project is funded by the IST Program
of the European Union and its primary objectives are:
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• To develop a general AER infrastructure for constructing bio-
inspired hierarchically multi-chip systems for sensing + processing
+ actuation.

• To implement a particular perceptive-action demonstrator vision
system exploiting this infrastructure.

The AER infrastructure is used in this thesis and a thorough presenta-
tion is given in Appendix A.

The vision system intended to be designed during the CAVIAR project
is mounted on a stationary robot and will follow a specified object with
its optical lens. To make it easier for the robot to follow this object, e.g.
a ball, we want the robot to gradually learn to classify its trajectories.
For instance, if the ball hits a wall, it will quickly change direction. This
requires the robot to suddenly react and move its lens in the almost op-
posite direction with the same speed. If it can predict on beforehand
that the ball bounces back when hitting a wall, the robot’s movement
will be smoother and will not require the same amount of computational
power to perform the required action. If we think of humans, this is ex-
actly how we work. If a child is playing with a ball for the first time, or
watching other people playing with a ball, they will not be able to follow
the ball with such ease as adults. An analogy may be to watch a ball
in random movement. It is a tiresome view and requires concentration
and stamina. We know that when a tennis player hits a ball, it bounces
quickly back, and therefore we start to see the other way before the ball
bounces off the player’s racket. If we were not able to predict and to
learn this behavior, not many people would bother watching.

The visual field of the robot is perceived by it as a two dimensional pixel
array. Every time the ball is in a square, a spike is sent to the learning
circuit. An illustration is seen in Figure 2.1. This would give a pair of x
and y coordinates for a discrete period of time. Very little information
can be drawn from this since there are no temporal connection between
events. Therefore, we need to sample events over a period of time, and
simultaneously send that spike train to the learning circuit. This is done
using a delay line circuit. Such a circuit is designed, implemented and
tested. The circuit is implemented on the same test chip.

The previously mentioned learning circuits, or neuron, will therefore re-
ceive a certain amount of input spike trains. If the same spatio-temporal
spike pattern is presented to it several times, it should learn that pat-
tern, and react to it every time by sending an AP. How fast it learns
the pattern depends on the learning rule, the learning parameters and,
of course, the implementation. On the other hand, when a neuron has
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Figure 2.1: Trajectory of ball in a two dimensional grid.

learned a pattern, and a new and different pattern is presented, should
it then learn the new pattern immediately or just ignore it? We want
neither of the alternatives, but a combination of them. This is viewed
as the stability-plasticity dilemma. The neuron should hold its internal
states while stimulated by irrelevant pulses or noise, but still change its
internal states quickly if conveyed by new and relevant input [32].

The network of neurons will use competitive Hebbian learning. Compet-
itive learning networks learns by internally adjusting its weights based
on the input and local feedback signals. This means that it requires no
external feedback or guidance to adjust its weights. The network be-
haves as a classifier, where each neuron responds to an input vector
which closely matches the weight vector of that neuron. This can be bet-
ter explained by an example. Two neurons receive two inputs and store
two weights where both have a value of either one or zero. If we have
an input vector of [1,1] and weights for the two neurons [0,0] and [1,0]
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respectively, the second neuron will win and adjust its weights to [1,1].
After learning, when we have the same input vector to the two neurons,
neuron two will spike and neuron one remain inactive. Thus, the net-
work works as an adaptive winner-take-all network, since one neuron
will learn the input pattern stronger than others, or even hinder others
from learning at all.

We will focus on the functionality and implementation of the learning
neuron with the MLSM as synaptic weight, and describe and give test res-
ults of both its components and the neuron itself. We will also present
test results from a small neural network consisting of only two neurons.
The interaction between these two neurons can be expanded to an array
of neurons. We have implemented such an array on the chip. This array
consists of 32 neurons connected in parallel, and is used to test the AER
infrastructure and to observe how the single learning neuron behaves in
such a structure.
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Chapter 3

Neuromorphic circuit
components

We have given an introduction to the field of neuromorphic electronics
and presented the objective of this thesis. In this chapter we will present
the different circuit components. We start with the “fusing” transcon-
ductance amplifier, and continue hierarchically with each element until
we have constructed the final learning neuron. All measurements are
conducted on the single neuron if not stated otherwise.

3.1 “Fusing” transconductance amplifier

The central building block in the proposed MLSM is the “fusing”
transconductance amplifier (“fusing” transamp). We will only give a brief
introduction to the “fusing” transamp here. The details are presented in
the enclosed article [33], where the “fusing” transamp and the MLSM are
presented.

The “fusing” transamp consists of a normal transconductance amplifier
and a so called “bump circuit”. This “bump circuit” only delivers a cur-
rent if the two input voltages are close, i.e. within a range of about
100mV, and it provides the bias current for the transamp. Therefore,
the “fusing” transamp only works as a transconductance amplifier for
small differences of input voltages, while turning off if the voltages are
too widely spaced. A schematic of the “fusing” amplifier can be seen in
Figure 3.1 with its symbol in the upper right corner.

The “fusing” transamp is used to attract the weight to the stable weight
levels of the MLSM. Several “fusing” transamps are connected in parallel,
one for each stable level. We wish to minimize the attractor current
to maximize the time for the weight to settle on a steady weight level.
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Figure 3.1: A chematic of the “fusing” transconductance amplifier. The
“bump circuit” consists of the five pMOS transistors above the transcon-
ductance amplifier. The “fusing” transamp’s symbol is pictured in the
upper right corner.
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Furthermore, we wish to minimize the range of the “fusing” transamp,
such that the spacing between stable weight levels can be minimized.

Test results

In Figure 3.2, a plot of the current out of the “fusing” transamp is shown
for five different biases measured on-chip.
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Figure 3.2: Plot of output current from the output node of the “fusing”
transamp for five different biases. minus is fixed at 2.5V and plus is
sweeped from 0V to 5V. The maximum current increases for increased
bias voltage, both in and out of the transamp. The distance between
the two extrema along the input voltage axis also shows a slight increase
for higher bias voltage. The biases where, from highest to lowest curve,
4.00V, 4.05V, 4.10V, 4.15V and 4.20V. Distance between maximum and
minimum current at different biases are 147mV, 123mV, 106mV, 101mV
and 95mV.
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Figure 3.3: Simulated response of the “fusing” transamp. Settings as in
Figure 3.2.

Compared to the simulation results from [33], depicted in Figure 3.3, we
see that the current is somewhat smaller. This implies that the process
parameters used in simulation were not exact. This change can be ad-
justed with the bias voltage. Furthermore, the current seems to be more
symmetric than during simulation. The range of the amplifier is approx-
imately the same for both plots.

It is clear that an increased bias voltage will both minimize attractor
current and range of the “fusing” transamp. From simulations, we found
that the optimal bias was 4.3V. Above this voltage, the “fusing” transamp
could not deliver enough current to hold its stable weight level.
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3.2 Multi-level static memory

As with the “fusing” transamp, we will only give a brief introduction to
the MLSM and again refer to the paper enclosed. A schematic of the
MLSM is plotted in Figure 3.4.
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Figure 3.4: A schematic of the MLSM. level<1:5> is set by a local
voltage source. The memory capacitance Cmlsm stores the weight. The
transistors on the right controls the increment and decrement of the
weight. _up_bias and down_bias are external biases, while _learn_up
and learn_down are controlled by the learn up circuit (Section 3.4.1.2)
and the learn down circuit (Section 3.4.1.1), respectively.
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The MLSM consists of a capacitor which stores the actual weight and an
arbitrarily amount of “fusing” transamps. In this thesis, we use six “fus-
ing” transamps, which are set up as voltage followers. Therefore, they
will compete among eachother to attract the weight on the capacitor.
The input voltages to the voltage followers are set by voltage sources.
We have chosen to produce these voltage levels locally, to prevent ex-
tensive routing. It consists of eight so called “Toby elements”, which
are diode connected pMOS transistors, with the bulk tied to the source.
This gives nine evenly spaced voltage levels from upper level to ground,
where we use the upper six levels as voltage sources to the “fusing”
transamps. The weight value is adjusted by current sources set by in-
ternal control signals. A schematic of the voltage supply can be seen in
Figure 3.5.

level<0>

level<1>

level<2>

level<5>

level<3>

level<4>

level_bias

Figure 3.5: A schematic of the memory voltage supply.
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Test results

As we used six “fusing” transamps, we simulated with six discrete
voltage levels. After early simulations, we decides to work with stable
weight levels between 1.10V and 413mV. It turned out that the results
of testing the MLSM implemented on-chip would be different. When
measuring the stable weight levels on the memory capacitance, we only
achieved six discrete voltage level for a level_bias of 1.4V and five levels
for 1.3V and 1.2V (see Table 3.1).

Simulation(V) Measurements(V)
1.10 1.40 1.30 1.20
963m 1.11 1.00 930m
825m 800m 710m 620m
688 515m 430m 340m
550m 250m 170m 165m
413m 167m * *

Table 3.1: Stable weight levels used during simulations and measure-
ments.

This is clearly a setback, since we designed to work with six discrete
levels. And since we are supposed to operate in the sub threshold area,
an upper stable weight level of 1.4V is not desirable. We came to the
conclusion that, regardless of the loss, a level_bias of 1.2V was the best
solution under the given conditions, since the neuron later turned out
to behave as we wanted.

The reason for the difference between simulation and testing is not
completely clear. The voltage levels are created with diode connected
Toby elements, which would give evenly spaced voltage levels. We used
eight elements, using only the upper six for voltage sources to the “fus-
ing” transamp. The lower diodes are used to decrease the voltage span
between the individual weights and increase the lowest stable weight
level. Furthermore, the lowest stable weight level measured on chip for
an arbitrarily level_bias is approximately the same; 160-170mV. So it is
more likely that it is the “fusing” transamps that cause the shift in stable
weight levels. Since the range of the “fusing” transamp between the two
extrema is about 100mV for a transamp bias of 4.3V, and the spacing
between weights during simulation was approximately 150mV, there will
exist some overlap of attractor currents. This can be seen in Figure 3.6.
Also, offset currents in the transamp exist. This will changes the location
where the output current is zero from all “fusing” transamps. In Figure
3.7, the sum of all currents out of the “fusing” transamp is plotted.
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Figure 3.6: Output current from all six memory “fusing” transamps for
level_bias=1.2V. Transamp bias is 4.3V. The overlap is substantial and
neighboring transamps will affect eachothers behavior.
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Figure 3.7: Sum of all currents from the six memory “fusing” transamps.
Zero crossing with negative gradient are stable weight levels. Other
zero crossing points are non-attractive fixed points, since neighboring
transamps compete and one transamp will attract the voltage to its stable
state. Compared to the trace of single currents from each transamp in
Figure 3.6, we see that the stable levels are slightly shifted down wards.
There is very little difference in stable levels though, compared to the
change experienced in measurements on-chip. However, on-chip, the off-
set voltage is probably bigger and the transamp has a slightly differ-
ent characteristic, as described in the previous section. This may be the
reason that the change in stable weight levels are greater on-chip than
during simulations.
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In Figure 3.8, a plot of the basins of attraction of the memory cell in a
circuit simulation from [33] can be seen. We performed a similar test
on-chip, which is plotted in Figure 3.9.
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Figure 3.8: The simulated time to attract a voltage to a stable level is
found to be approximately 0.5ms.
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Figure 3.9: Plot of voltage attractors for level_bias=1.2V. The transamp
bias is 4.3V. The attractors work nicely and the time for the stable weight
levels to settle after injection or removal of current can be as long as four
seconds. We observe that a small increase in the voltage for the lowest
weight will cause a jump to the next level. This can be a positive feature,
since we experienced some reduced functionality with the learning, as
described in Section 3.4.1.1.
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3.3 The soma

The soma is responsible for integrating the current from the individual
synapses. The soma implemented is based on the integrate-and-fire
model proposed by Mead [2]. In this thesis, the learning synapses (sec-
tion 3.4.1) and the excitatory synapse (Section 3.4.3) draws a current
from the soma while the inhibitory synapse (Section 3.4.2) injects a cur-
rent. How much current that is removed or injected, is controlled by
the weights of the learning synapses and external biases, w+ and w-, for
the excitatory and inhibitory synapses, respectively. Thus, the resting
potential for the soma is at Vdd, while it triggers and AP for approxim-
ately Vdd/2, which is the switching point of the inverter. If we look at the
schematic of the soma in Figure 3.10, the current through the transistor
controlled by the _ap_leak adds charge to Csoma, and so pulls the voltage
Vsoma up.
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Figure 3.10: Schematic of the soma.

When sufficient current has been removed through the leftmost nMOS
transistor such that Vsoma < Vdd/2, the AP goes high, while node A goes
low. This causes a voltage drop over the capacitative feedback to the
soma. How big this voltage drop is, depends on the size of the capacitors
Cf and Csoma . According to the capacitative division, the voltage change
on Vsoma is

δVsoma = δVA
Vf

Vf + Csoma

= δVA
Vfeedback

Ctotal

(3.1)

We implemented the two feedback capacitors such that they would cause
the charge on Csoma to reach its rails, both Vdd and Vss, e.g. Cf = Csoma. The
length of the AP is controlled by the _ap_length bias. We have used an
AP length of about 2ms in this thesis. When the charge on Csoma rises
back to the switching point due to the current through the _ap_length
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transistor, the AP goes low, and node A goes high. In the same manner
as before, the capacitative feedback causes the charge on Csoma to reach
Vdd.

Test results

Figure 3.11 shows a plot of the current removed from the soma by the
learning synapses at different weights.
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Figure 3.11: Current removed from the soma for different weights in the
learning synapse. The current has a fine exponential characteristic, but it
remains approximately the same for the lower weights.

Previous work with the same soma, showed that due to parasitic capa-
citances, the capacitative feedback was not sufficient, where δVsoma =
δVA × 0.5. Thus the actual change is

δVsoma = δVA
Cfeedback

Cf + Csoma + Cparasitic
(3.2)
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Therefore we increased the size of Cf such that δVsoma = δ VA × 0.77. This
should give a change on Vsoma of 3.85V since the change on VA is 5V. Still
the charge on Csoma was not pulled to the rails. Figure 3.12 and 3.13 plots
traces of the voltage on the somatic capacitance Csoma measured on-chip.
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Figure 3.12: Trace of the somatic voltage. The voltage is pulled down to
around 2.1V where the inverter switches and the soma sends an AP.
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Figure 3.13: Trace of the the somatic voltage with a higher time resol-
ution. The voltage is pulled down to about 0.7V and up to about 3.2V.
This is approximately a change of 1.5V for both cases. The ratio of the
feedback capacitance to the total capacitance is 0.30, as compared to the
theoretical calculation of 0.77.
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3.4 Synapses

3.4.1 The learning synapse

The learning synapse seen in Figure 3.14, is the main part of the test
object in this thesis. It is derived from the synapse with FG storage [29].
It consists of a learn up circuit, a learn down circuit and the proposed
MLSM. The EPSC output seen to the right, goes to the soma, where the AP
is initiated. Each element has several biases, which are listed in Table E.1
in Appendix E. The extra buffer between the _learn_up output and the
_up input to the MLSM, makes the _learn_up pulse sharper. The voltage
follower before the W input on the learn down circuit will be discussed
in the following section.
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Figure 3.14: A schematic of the learning synapse. The plus box is the
learn up circuit and the minus box the learn down circuit. The weight
W of the MLSM is used to control the current to the soma and to set the
length of the down pulse.

3.4.1.1 The learn down circuit

A schematic of the learn down circuit is shown in Figure 3.15. The circuit
determines the length of the _learn_down pulse to the MLSM. The length
of the pulse, Tdown, is to be proportional to the weight in the specific
learning synapse. When its idle, while no APs are sent from the neuron,
the upper pMOS transistor is closed, and the capacitor Cdown is set to Vdd.
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ap
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W

_learn_down

Cdown

Figure 3.15: A schematic of the learn down circuit. w_max is an external
bias

The output of the NAND gate, _learn_down, is then high, which means
inactive. When an AP is initiated, the upper pMOS transistor is open,
and the charge on Cdown starts to fall since there goes a current Idown
through the lower nMOS branch. If Is = 2nβUt2, then

Idown = Ise
1
Ut
(Vw_max−Vw) (3.3)

Tdown is therefore the time for the voltage on Cdown to reach the switch-
ing point of the NAND gate (approximately Vdd/2).

Tdown =
(Vdd/2)Cdown

Idown
= (Vdd/2)Cdown

Ise
1
Ut
Vw_max

e
1
Ut
Vw (3.4)

From equation 3.4, we see that there is an exponential relationship
between the weight and the length of the down pulse.

The decrement of the weight on the memory cell can be calculated:

δw− = 1
Cmlsm

∫ Tdown
0

Irem ∂t = TdownIrem

Cmlsm

(3.5)
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where Irem comes from a current source located in the memory element
controlled by the learn_down bias.

Test results

Contrary to the theoretical calculations above, we saw from simulations
(Figure 3.16) that the pulse length is only exponential for the upper half
of the voltage range and does not distinguish between the lower weights.
This is not a major problem, but ideally, it should be increasingly diffi-
cult to increments the weight the higher the weight is.

During early simulations with the design without the follower in Figure
3.14, we experienced that current from the learn down capacitor Cdown,
gave a positive jump on the MLSM capacitance Cmlsm. This caused low
weights to rise a bit although they where supposed to decrease, even
though the size of Cdown is about 1/100 of the MLSM capacitance. We
therefore placed the voltage follower in front of the weight input W to
the learn down circuit to prevent a current flow to the MLSM capacitance.
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Figure 3.16: Length of the down pulse for the learn down circuit.
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The down signal for two synapses at different stable weight levels meas-
ured on-chip, can be seen in Figure 3.17 and 3.18. The length of these
pulses vary for the different synapses, but this is mostly due to the dif-
ferences in the actual stable weights levels for the two synapses, than
the learn down circuitry (see Table 3.2 in Section 3.5). As seen from the
plot, the length of the down pulses are as during simulation: Exponen-
tial decay for high weights, while there is very little or no difference in
pulse length for lower weights.
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Figure 3.17: Length of the down pulse for synapse one at different stable
weight levels in single neuron.
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Figure 3.18: Length of the down pulse for synapse four at different stable
weight levels in single neuron.
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3.4.1.2 The learn up circuit
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leak
pulse_length

AP

_threhold AP

_learn_up

Cup

Figure 3.19: A schematic of the learn up circuit.

The learn up circuit is, as with the learn down circuit, responsible for
adjusting the weight of the MLSM. But instead of using the weight as a
variable, the input activity to the learning synapse determines the incre-
ment in the weight. From Figure 3.19, one can see that for every input
(_rec_x AND _rec_y), an internal “correlation signal”, or the charge on the
capacitor Cup, is incremented. The value of the increment is controlled
by the _inc bias. When there are no input spikes present, the leak bias
controls the leakage from the capacitor. How large this leakage is, de-
pends on which learning algorithm that is used. In this thesis, a spike
based learning rule is used, not a rate based learning rule. Therefore,
the leakage is relatively high, and the charge on Cup is removed within
1-2ms. Since the value of the correlation signal determines the length
of the _learn_up signal, this clearly establishes a temporal dependence
between input spikes and APs. If the spike present is the one that trig-
gers an AP, then the synapse is awarded and can increment its weight.
If some spike prior or about 3ms later triggers an AP, the temporal de-
pendence is no longer and the weight is not incremented. If, on the
other hand, a rate based algorithm was to be used, the time to remove
the charge from Cup must increase. This will result in a correlation signal
dependent on several input spikes, hence frequency.
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If we analyze the circuit, we see that the current through the rightmost
nMOS transistor Icorr , must be larger than the upper rightmost pMOS
branch. When the AP is low, this is not true. But when the AP is high,
the current Icorr must be larger than the current through the pMOS
transistor controlled by _threshold, Ithresh, to ensure that the output
_learn_up goes active low. We try to keep this current as close to zero as
possible. The duration of the up pulse is then approximately the same
as the time it takes to remove all the charge on Cup, Tup, through the
reset branch controlled by pulse_length and AP.

Tup = VcorrIreset
Cup (3.6)

We find the increment of the weight in the memory cell:

δw+ = 1
Cmlsm

∫ Tup
0

Iinj ∂t =
IinjTup
Cmlsm

(3.7)

where Iinj is applied by a current source located in the memory element
controlled by the _up_bias.

Test results

Due to mismatch, there are some differences in amplitude and length of
the correlation signal for the different synapses as seen in Figure 3.20.
In tests so far, we made the pulse Tup to behave approximately binary by
having Ireset smaller than Ileak. If there was resent presynaptic activity,
Tup would be equal to the duration of AP, without recent presynaptic
activity Tup would be zero.
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Figure 3.20: Correlation signal for synapses one to four measured on chip
when stimulated with an AP.
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3.4.2 The inhibitory synapse

The inhibitory synapse injects a current to the soma when stimulated.
Thus it tries to prevent the soma from firing an AP. In a neural network,
this property can be used to prevent neighboring neurons from learn-
ing the same pattern. This is done by connecting its neuron’s AP to
the inputs of its neighboring neurons inhibitory synapses. When then
stimulated with a certain input pattern, the neuron that spikes first, will
hinder others from spiking, thus not be able to learn, partially or com-
pletely, the input pattern. This behavior is shown in Section 3.5.

We see in Figure 3.21 that the external bias w- controls the amount of
current injected to the soma, while shunt_duration determines the dura-
tion of the injection.
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Figure 3.21: A schematic of the inhibitory synapse.
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3.4.3 The excitatory synapse

The excitatory synapse, seen in Figure 3.22, removes a current from the
soma. How much current that is removed is controlled by the w+ bias. In
the same manner as the inhibitory synapse, this feature can be of use in
a neural network. The AP is connected with its neighboring neurons ex-
citatory inputs, in this way helping each other to learn similar patterns.
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Figure 3.22: A schematic of the excitatory synapse.

3.5 The neuron

We have in the previous sections described all the necessary compon-
ents for which is needed to construct the neuron. In this thesis, we have
decided to use six synapses: Four learning synapses, one inhibitory and
one excitatory synapse. Additionally, the soma is needed to complete
the structure of the neuron. In Figure 3.23, a schematic of the neuron is
depicted.
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Figure 3.23: A schematic of the neuron implemented. From bottom, the
inhibitory synapse, the excitatory synapse, four learning synapses and
finally the soma. Each elements has its own biases connected at the top
and bottom (left and right in figure) so that they can easily be connected
forming a multiple array. Common signals are situated at the side such
that the signals can be distributed to all elements and to make it possible
to construct a matrix of neurons.
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Test results

All measurements are conducted with a level_bias of 1.2V and a “fusing”
transamp bias of 4.3V. Other parameters are adjusted to fit the different
experiments based on input frequency.

In Table 3.2, we list the attractive stable weight levels measured on-chip
in the four learning synapses in the neuron.

Synapse 1 Synapse 2 Synapse 3 Synapse 4
1.20V 1.18V 1.19V 1.21V
975mV 913mV 930mV 895mV
675mV 645mV 641mV 625mV
408mV 355mV 418mV 365mV
182mV 150mV 150mV 160mV

Table 3.2: Attractive weight levels for neuron.

The task set to the neuron is to learn spike patterns and then react with
sending an AP when such a pattern is presented to it. After learning
the input pattern, when a different spike pattern is given, it should not
trigger an AP.

First, we tested the neuron on-chip with two different spike patterns. To
simplify, the spike patterns consisted of only one spike. The first pat-
tern stimulates learning synapse one and the second pattern stimulates
learning synapse two. We would expect the neuron to learn one of the
patterns and depress the other. For the test to work properly, we set
both synaptic weights to a maximum. The neuron would then, at first,
trigger an AP for each stimulation, thus activating the learning. This
means that the neuron already have learned both patterns and we ac-
tually monitor if the neuron can depress one pattern while maintaining
the other. Different traces can be seen in Figure 3.24, 3.25 and 3.26.
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Figure 3.24: Trace of weights for learning synapse one and two. The
individual spikes for a spike pattern have a spacing of approximately 5s,
where spike pattern synapse one is delayed 2.5s. We observe that the
neuron depresses spike pattern synapse one and maintains spike pattern
synapse two.
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Figure 3.25: Trace of weights for learning synapse one and two. Spike
patterns as in Figure 3.24. Again the neuron depresses spike pattern
synapse one and maintains spike pattern synapse two. But unlike the
previous trace, we see that spike pattern synapse one is not depressed
immediately and manages to increase its weight to the upper level when
stimulated the first time. At the same time it decrements the weight of
synapse two. When synapse two is stimulated again, it decrements the
weight of synapse one such that the neuron does not trigger an AP when
spike pattern synapse one comes next. Therefore depressing spike pattern
synapse one.



42 Neuromorphic circuit components

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

time[s]

w
ei

gh
t[V

]

Synapse one
Synapse two

Figure 3.26: Trace of weights for learning synapse one and two. Spike
patterns as in Figure 3.24. At first, seemingly spike patter synapse one
is depressed. But at the end of a “fierce battle”, spike pattern synapse
two is depressed. This scenario was more an exception than the rule. We
performed 20 test runs with the same initial conditions and spike patterns,
and only two times the synapse that was first stimulated, lost.
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Next, we wanted to test the inhibition signal. As described before, cross
inhibition is used to prevent different neurons learning the same input
pattern. In this way the network of neurons behaves as a winner-take-
all network, where each neuron specializes on one type of input pattern
or even one specific input pattern only. The inhibition signal is used
to decorrelate other neurons such that there will be little or no overlap
between input patterns learned. This means that for a specific spike pat-
tern, only one neuron will trigger an AP.

The degree of cross inhibition is set by the bias voltage w-. In the first
measurements we wanted to find this degree of cross inhibition for dif-
ferent values of w-. Therefore we set up two circuit boards, each with a
duplicate of the chip, and gave them the same input pattern. The AP of
the neuron was connected to the inhibition input signal of the adjacent
chip’s neuron. Again, for simplicity, the input spike pattern consisted of
only one spike. Traces of the weights can be seen in Figure 3.27, 3.28,
3.29 and 3.30.
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Figure 3.27: Trace of weights of learning synapse one for two different
neurons with active inhibition for w- = 850mV. Poisson distributed input
frequency of 10Hz to learning synapse one in both neurons. The degree
of inhibition is fairly strong at this value. The first neuron to spike quickly
learns the input pattern while the other neuron is unable to learn the
input pattern or even react at all. As the synaptic weight increases for
one neuron, it becomes increasingly difficult for the other neuron to learn
the same pattern.
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Figure 3.28: Trace of weights of learning synapse two for two different
neurons with active inhibition for w- = 450mV. Poisson distributed input
frequency of 10Hz to learning synapse two in both neurons. The degree
of inhibition is low and both neurons learns the input pattern. We observe
that one neuron learns with a small delay, which increases as the weights
increase. So there exists some degree of inhibition, but not enough to
decorrelate the two neurons.
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Figure 3.29: Trace of weights of learning synapse three for two different
neurons with active inhibition for w- = 550mV. Poisson distributed input
frequency of 10Hz to learning synapse three in both neurons. As expected,
the degree of inhibition is at an intermediate level. One neuron learns the
input pattern while the other partially learns the pattern. The neuron that
partially learns the input pattern, will remain unchanged until a new and
different pattern is presented. This is because it is prevented from spiking,
thus unable to activate the learning.
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Figure 3.30: Trace of weights of learning synapse four for two different
neurons with active inhibition for w- = 700mV. Poisson distributed input
frequency of 10Hz to learning synapse four in both neurons. Again we
obtain partial inhibition.
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Finally, we wanted to test the cross inhibition with two different input
patterns. We used the same test setup as in the previous measurements.
All weights in both neurons where set to a minimum. First, we stimu-
lated learning synapse one in both neurons for a second with Poisson
distributed input frequency of 100Hz. Then learning synapse two in
the same neurons for the same period of time with the same input fre-
quency. We repeated the stimulation over several runs, so that each
learning synapse was stimulated for 10s. In theory, this would make the
different neurons learn different patterns. In Figure 3.31, we see a plot
of the output frequency of the two different neurons when synapse one
and two are stimulated. Inhibition parameter w- = 550mV.
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Figure 3.31: Plot of output frequency for two neurons with active inhibi-
tion. Learning synapse one and two stimulated. In the upper graph, we
show the activity while learning synapse one is stimulated. Neuron one
slowly increases its output frequency while neuron two remains inactive
over the whole period. In the lower graph, where we show the activ-
ity during stimulation of learning synapse two, the opposite is the case
though neuron one shows some activity at start. It is clear that neuron
one learns input pattern one while neuron two learns input pattern two.
We observed the same behavior over several runs. A sudden drop in the
output frequency of neuron two is observed in this particular recording.
We do not know for sure why this happens, but the data file recording
the output spikes contained several spikes from an unknown source. It
may be other test objects on the same chip that spiked simultaneously
and therefore interfered with our signals.
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We performed the same test where input pattern one stimulated learn-
ing synapses three and input pattern two stimulated learning synapse
four for the same two neurons with same Poisson distributed input fre-
quency. The graph can be seen in Figure 3.32. Inhibition parameter w- =
550mV.
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Figure 3.32: Plot of output frequency for two neurons with active inhibi-
tion. Learning synapse three and four stimulated. The upper and lower
graph shows the activity when learning synapse three and four is stimu-
lated, respectively. As before, neuron one seemingly learns input pattern
one in the upper graph, though the output frequency is not as high as be-
fore. Surprisingly, neuron one also learns input pattern two as seen in the
lower graph. Neuron two is inactive during both stimulations. The output
frequency of neuron one is again lowered and it seems as neuron one is
not able to choose which pattern to learn. At the same time it prevents
neuron two from learning either pattern. Again we observed the same
behavior over several runs.
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From the two previous measurements, we conclude that the neuron
shows promising results, but exhibits some problems with the inhibi-
tion. We tried to adjust the inhibition parameter w-, but it had no effect
on the test results on the last experiment. We also increased the stimu-
lation time from 1s to 2s for each synapse without results.

When testing the neurons in the neural array implemented on-chip, we
observed clear and consistent variation in different learning synapses in
the same neuron. One learning synapse was stimulated with a Poisson
distributed input frequency of 100Hz for 10s. The output frequency was
approximately 10Hz. We repeated the same experiment with a different
learning synapse in the same neuron. There was zero activity. We had
to increase the input frequency to 500Hz to observe the same output
frequency of 10Hz. This shows that there was severe mismatch in the
synapse strength for different synapses. This is probably the explana-
tion for the lack of activity in neuron two in the latest experiment.
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Chapter 4

Final words

We have designed, implemented and tested a MLSM for on-chip learning
in a neuromorphic application. In the following sections we access a few
of the key elements.

4.1 Memory size

The size of the implemented MLSM may be a problem in future imple-
mentations. We used 128 memory elements which covered an area of
1700 × 1200 µm, where each memory capacitance is about 250 × 30 µm
in size. This nearly covered the entire available chip area of 2.2 × 2.2
mm. If an increased amount of memory elements are necessary, the size
of the memory capacitor has to be reduced. However, this will affect
the behavior of the MLSM and decrease its temporal analog behavior.
It will also be more vulnerable to noise, since the memory capacitance
capacitively shunts noise.

4.2 Functionality

The MLSM as a stand-alone application is flexible and robust. The voltage
levels, attractor currents and number of discrete levels can all be chosen
separately to optimize for a certain application. We operated in the sub
threshold area of the nMOS transistor with minimal spacing of attract-
ive voltage levels and minimal attractor current. We could easily have
altered the implementation and parameters of the MLSM to make it func-
tion in another application.

We have used the MLSM as a synaptic storage in a learning neuron. We
have shown that when the neuron is conveyed with two input patterns,
the neuron learns one patterns while depressing the other input pattern.
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Also, the neuron is able to interact with other neurons. We observed that
two different neurons were able to use cross inhibition to learn separate
and different input patterns . This is an important feature, which means
that neurons in a neural network can decorrelate each other and there-
fore be able to store all possible input patterns. For our purpose, the
MSLM showed promising results as a synaptic storage and will be a good
alternative for use in the vision system designed during the CAVIAR pro-
ject.

However, we experienced some problems throughout the process. The
poor differentiated down pulse was of one concern. This had no ser-
ious effect on the learning behavior, but a more exponentially shaped
curve would increase functionality of the MLSM. Furthermore, the sys-
tem must be designed for one type of input. In other words, knowing
the frequency of input spikes is essential for setting the proper bias
voltages. If, for example, there is a relatively low input frequency, say
of 1Hz, and the down_bias, which controls the current source in the
MLSM, is set to work under 100Hz, the weights will never reach the low-
est stable weight levels since they immediately will be attracted to its
present stable weight level after a few ms. We have previously shown
that the time to attract a weight to a stable weight level could be as long
as 4s. However this only occurs when the change in weight voltage is
at a maximum without directly jumping to the next stable weight level.
When high frequencies are involved, the increase and decrease in the
weight is much less, hence the time to attract is decreased.

We also experienced some reduced functionality in the MLSM itself since
the stable weight levels in the memory were not as expected. Throughout
the testing we were only able to use five stable weight levels, and the
spacing between levels were increased. We do not know for sure if it
was the voltage supply itself or the “fusing” transamp that shifted the
levels, since we only could monitor the voltage on the weight capacitor.
We have tried to given an explanation to the misbehavior, where we state
that it is likely that the problem is caused by the overlap of attractor and
offset currents in the “fusing” transamp.

4.3 Noise

Neuromorphic systems are, as previously defined, artificial systems
based on computational principles used by biological nervous systems.
And neurons are by nature noisy. Carver Mead states that [7],

Nerve pulses are by their very nature a horrible medium into
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which to translate sound. They are noisy and erratic, and can
work only over a limited range of firing rates

Moreover, according to Adams [34], neurons have three flaws that make
them noisy. APs are fixed in width an amplitude, independent of the
excitation. The timing of APs are poor and suffers from large amount of
time-based jitter. Last, the firing rate of a neuron is at max 500Hz, thus
severely limits the frequency band of the nerve cell. Despite this, the
nervous system is, as an example, capable of computing complex visual
and auditory signals with high accuracy. So it is clear that the nervous
system has found a way to compensate for its noisy parts which it is
constructed of. I will not address why the nervous system is so accurate
despite its problems, since it extends beyond this thesis, and more im-
portant, because only theoretical assumptions exist.

Therefore, our implementation will exhibit noise since it is an neur-
omorphic systems. If we examine signals from the chip, e.g. from Figure
3.25, the statement is validated. When we implemented the circuit we
did not consider utilizing noise reduction techniques. Digital and ana-
log signals lie close and without shielding. Nevertheless, the noise does
not affect the performance of the circuit, since there are no critical signal
paths or computations performed that require a “correct” answer. This
is coherent with the neural system, which is a fault tolerant and robust
system. If the down pulse is different for the same synapse where the
weight is held constant, it has no crucial effect on the overall behavior
of the neuron. This applies for every part of the neuron.

We have described that it is possible that the “fusing” transamp cause a
shift in stable weight levels. This affects the behavior of the MLSM, but
is an example of the flexibility of the circuit. We were able to adapt to
the new situation and operate with a fully functional circuit.

4.4 Future work

Cilingiroglu et. al. [19] proposes an alternative MLSM. For every stable
weight level N, it requires (N − 1) × 4 transistors excluding the voltage
supply. It is clear that the size of the memory will be drastically re-
duced. Moreover, the functionality of the memory is somewhat sim-
ilar to ours, where it exhibits an analog behavior over short periods of
time and holds stable voltage levels for longer periods. Furthermore, the
memory voltage can either be set directly through a pass transistor or
be adjusted by injecting or drawing a current. The voltage levels must
also be produced external to the memory, as in our case. But there is one
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drawback to the memory: The resolution is fairly poor. The maximum
stable levels for a voltage supply of 5V is six. So to operate in the sub
threshold area is not an option. But we will here propose an alternative
learn down circuit which can accommodate for this. If we replace the
present learn down circuit and the present MLSM with the alternative
MLSM and learn down circuit, we no longer have to operate in the sub
threshold region. If we look at our implementation, we use the weight to
set the down pulse length and control the current to the soma. In Figure
4.4, the alternative learn down circuit can be seen where the length of the
learn_down pulse is linearly dependent on the weight. The pulse could
also be used to control the current to the soma instead of the weight as
done now. However, this is not the case when the lowest weight is 0V,
since it then would not draw any current from the soma and hence never
be able to learn and increase its weight. As stated before, the depend-
ence on the weight should be exponential. But as simulations and test
results has shown, this is not exactly the case. The length of the down
pulse is merely exponential for the two highest weights, and the same
applies for the current to the soma. Therefore, it might be preferable to
use the linear dependence over the exponential since it works over the
entire voltage span.

The new proposed implementation changes the dependence on the
weight. Previously, the current to the soma was proportional to eVw .
Now, the current to the soma is proportional to the weight itself, Vw .
Therefore the learning rule used in this thesis is not longer valid (equa-
tion 2.1). In fact, the original local learning rule presented in [29] is valid
for the new implementation:

d
dt
−→w = α

−→̃
C − β−→̃wÕ (4.1)

The original learning rule lacks the extra multiplier wi, which made the
learning “accelerate” and more turbulent with higher weights.

One may wonder why we have not implemented these new elements in-
stead. The main reason is that we late in the process discovered the
alternative MLSM. As a result, we have not tested the alternative MLSM
itself and as a synaptic storage in such a degree as the MLSM we present
in this thesis. It may be that the alternative MLSM is not so suited as it
seems.
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Figure 4.1: The alternative learn down pulse shaper. Vdd = 5V. The first
inverter switches at approximately 0.5V. The switch _Sap is open (not con-
duction) and Sap closed (conducting) when AP is high. Therefore, when
an AP goes high, the charge on Cmlsm will start to flow through the leak
branch controlled by leak. Since Vleak > Vthn1 and Vdsn1 ≥ Vleak−Vthn1 for
all weights (Vleak ≈ 1V ), the transistor is saturated. Therefore the current
drawn is Ileak = IS(Vleak − Vthn1)2(1+ λnVmlsm) where IS = W

L µnCOX
1
2 .

The term (1 + λnVmlsm) modulates the early effect and is usually negli-
gible. All other parameters are constant. The length of the down pulse
is then Tdown = Vmlsm

Ileak
Cmlsm. Therefore we have a linear dependence on

the weight since the current will be constant for all values and the spa-
cing between weights are the same. The pulse from the inverter will have
a peak of 2V, so the second inverter assures that the value of the pulse
is from rail to rail (0V-5V). The nMOS transistor in the second inverter
should at least have two times the W/L-ratio compared to the pMOS tran-
sistor. This makes the pull down strength stronger, hence the inverter is
able to pull down at 2V. The length of the down pulse must be shorter
than the length of the AP to prevent the AP from setting an upper limit of
the learn_down pulse length.
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Appendix A

Address Event Representation

The neurons in the human brain are a part of a complex system, where
each neuron connects to approximately 104 other neurons [29]. In
present VLSI technology this is almost impossible to achieve, and even
more difficult if dealing with multi-chip configurations. So the need to
handle internal and external communication in another way is neces-
sary to make neuromorphic electronics reflect the actual behavior of the
brain. One of these approaches is Address Event Representation (AER) de-
veloped by M. Mahowald et. al. [35], which uses an asynchronous digital
multiplexing technique. In same manner as real neuronal AP, there is
only one type of event, a digital pulse where the interval between events
are analog. When a neuron spikes, it sends a request to the sender en-
coder which broadcast its unique digital address on the common com-
munication bus. On the receiver side, i.e. the input to a new chip with
a neural network, this address is decoded an distributed to the neurons
which it is logically connected to. Thus the protocol emulates directly
connected neurons with a single bus, a encoder and a decoder. This is
possible since the width of the events are small (down to 100ns) com-
pared to the with of the AP itself (approximately 1ms). Therefore the
chances of collisions are small. If they however do occur, that is, if there
are several neurons spiking close in time, events can be multiplexed on
the bus sequentially such that they loose very little of their temporal in-
formation. The AER has been used successfully in several neuromorphic
systems [36, 37]. An illustration of the basic concepts of AER is shown
in Figure A.1.

A.1 AER circuit components

The sender handles the output from the chip to an external bus. Figure
A.2 shows a schematic of the sender.
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Figure A.1: Address event representation.

The receiver handles the input to the chip from an external common bus.
A schematic of the AER receiver can be seen in Figure A.3.
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Figure A.2: AER sender. Takes as input spike<0-31> from the neural
network and sends a four bit address out on the common AER bus after a
request-acknowledge is performed. The bus_req and bus_ack are signals
for the off-chip handshake. The blocks on the left, the arbiter cells (AC),
controls the access to the AER bus if there are several spikes present. The
two rightmost outputs req and ack are directly connected. Therefore an
acknowledge is returned immediately if no other spikes are awaiting an
acknowledge. If there are several spikes present the one that sends a
request first is granted access, while the other spikes awaits their turn.
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Layout

Figure B.1: Chip layout.
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Figure B.2: MLSM layout.



Appendix C

Test setup

The chip’s schematic and layout where designed with Cadence version
4.4.5.100.10 and simulated with SpectreS under Analog Environment in
Cadence.

The chip was manufactured by Austria Micro Systems(AMS) in a 0.6µm
CMOS process.

Instrument Description
Hewlett Packard E3614A DC power supply
Keithley 213 Quad voltage source
Keithley 6512 Programmable Electrometer
Tektronix TDS 3052 Digital Phosphor Oscilloscope
Agilent 33250A Waveform generator

Table C.1: Instruments used during measurements.
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Figure C.1: Test setup. The AER interface connects to the chip through
a print-board where I/O from the PC is distributed. The Keithley 213
Quad voltage source is connected to the GPIB bus and was used to set
the minus and plus inputs when testing the "fusing” transamp while the
Keithley 6512 Programmable Electrometer measured the output current.
The Tektronix TDS 3052 Digital Phosphor Oscilloscope traced the output
voltages of the single neuron. Hewlett Packard E3614A supplied the
print-board and chip with DC power supply.
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Pin list

Pin name Pin Type
shunt_duration ANALOG<0> analog input(n bias)
w- ANALOG<1> analog input(n bias)
w+ ANALOG<2> analog input(p bias)
follower_padbias ANALOG<3> analog input(n bias)
amp_in- ANALOG<4> analog input(p bias)
_corr_threshold ANALOG<5> analog input(p bias)
w_bias ANALOG<6> analog input(n bias)
corr_pulselength ANALOG<7> analog input(n bias)
corr_leak ANALOG<8> analog input(n bias)
_corr_inc ANALOG<9> analog input(p bias)
w_max ANALOG<10> analog input(n bias)
_ap_length ANALOG<11> analog input(p bias)
_leak ANALOG<12> analog input(p bias)
sam_level_bias ANALOG<13> analog input
mem_down CONTROL<0> analog input(n bias)
_mem_up CONTROL<1> analog input(p bias
w_baseline CONTROL<2> analog input(gnd)
_sam_up_bias CONTROL<3> analog input(p bias)
sam_down_bias CONTROL<4> analog input(n bias)
sam_pbias CONTROL<5> analog input(p bias)
amp_in+ CONTROL<7> analog input(p bias)
y_bit<0:4> AER_IN<0:4> digital input

Table D.1: Pin list (1/2).



76 Pin list

Pin name Pin Type
_y_bit<0:4> _AER_IN<0:4> digital input
x_bit<0:2> AER_IN<5:7> digital input
_x_bit<0:2> _AER_IN<5:7> digital input
_rec_y _AER_IN<9> digital input
_rec_x+ _AER_IN<10> digital input
_rec_x- _AER_IN<11> digital input
_rec_x<0:3> _AER_IN<12:15> digital input
shunt DATA<0> analog output
ap DATA<1> digital output
corr<0:3> DATA<3,5,7,9> analog output
w<0:3> DATA<4,6,8,10> analog output
soma DATA<13> analog output
mem_out DATA<14> analog output
amp_out DATA<15> analog output(barepad)
_up<0:3> AER_OUT<0,2,4,6> digital output
down<0:3> AER_OUT<1,3,5,7> digital output
bit<0:4> AER_OUT<8:12> digital output
bus_req AER_OUT_REQ digital output
_bus_ack AER_OUT_ACK digital input
pd_bias AER_OUT_PD analog input(n bias)
pu_bias AER_OUT_PU analog input(p bias)
pulse_length AER_IN_PD analog input(n bias)

Table D.2: Pin list (2/2).
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Bias voltages

Bias name V
w+ 4.10
_sam_up_bias 4.24
w- x.xx
shunt_duration 1.50
sam_down_bias 920m
sam_level_bias 1.10
sam_pbias 4.29
w_max 2.10
_corr_inc 3.70
_corr_leak 600m
_corr_threshold 4.30
_corr_pulselength 570m
w_baseline 0.00
_leak 5.00
_ap_length 4.25
follower_padbias 1.19
w_bias 4.10

Table E.1: Bias voltage list.
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ABSTRACT

This paper introduces a static multi-level memory cell that
was conceived to store state variables in neuromorphic on-
chip learning applications. It consists of a capacitance that
holds a voltage and an array of ‘fusing’ amplifiers that are
connected as followers. These followers drive their output
towards the voltage level of the input like normal followers,
but only if the difference between input and output is smaller
than about 120mV. The inputs to this ’fusing’ follower array
determine the stable voltage levels of the memory cell. All
follower-outputs are connect to the storage capacitance and
thus the voltage is always driven to the closest stable level.
The cell content can be changed by injecting current into the
capacitance. This form of storage offers arguably a better
compromise between desirable and undesirable properties for
neuromorphic learning systems than alternative solutions (e.g.
non-volatile analog storage on floating gates or digital static
storage in combination with AD/DA conversion), as shall be
discussed in the following.

1. INTRODUCTION

A central problem in bringing learning to analog hardware
is the storage of the learning state. The state of learning in
neural network models is represented by the ’weights’, i.e.
the connection strengths between the neurons in the network.
In most models these weights are analog values that change
slowly as the system learns through experiences. Therefore
these values require to be preserved over long periods of time
but still they need to be easily changeable.

Engineers coming from a digital background would im-
plement such a memory by combining digital storage with
digital to analog conversion [7]. Such storage is reasonably
reliable and also easy to change. One disadvantage is the need
for a clock signal which is a drawback in continuous time sys-
tems inspired by the nervous system. And it is not real analog
storage.

The easiest form of real analog storage are capacitors.
Their voltage level can easily be changed by injecting cur-
rents. They are easy to use, also in continuous time circuits.

This work was supported by the EU 5th Framework Programme IST
project CAVIAR.

They are however not holding a stored voltage for long pe-
riods of time. Leakage currents decrease the voltage in the
order of millivolts per second. Some sort of refresh can be ap-
plied like in digital dynamic memory, but this requires quite
complex extra circuitry and also some digital control signals
which add extra noise to an analog circuit.

Another source of inspiration is digital non-volatile mem-
ory like magnetic memory or flash ROM (Also called EEP-
ROM or floating gate storage). Values that are thus stored are
not so easy and fast to change. But they require no form of
refresh and they can just as well be used in an analog way.
Especially promising is floating gate storage since it can be
implemented on the same VLSI chip as transistors and capac-
itors. Thus memory can be located just besides processing
elements, which makes it very attractive for neuromorphic
systems (’...systems that are based on the organizing princi-
ples of the nervous system...’ [9]): There is no spatial sep-
aration between storage and processing in the brain, i.e. no
centralized memory and no central processor. Therefore float-
ing gates begun to be used for analog storage some time back
[8, 3] and more recently also in dynamically changing sys-
tems, among them learning systems [2, 5, 4]. They are very
compact and offer non-volatile and real analog storage. Their
major drawback is bad property matching, especially of the
tunneling structures that are used to change the charge of the
floating gate. The efficacy of those tunneling structures di-
minishes with their use. Thus the mismatches among those
tunneling structures increase beyond what is normal for other
structures like transistors or capacitances. Also when used in
standard CMOS processes the writing to floating gates by tun-
neling requires high voltages beyond the supply voltage rails.

This paper offers another possibility, which we consider to
be an optimal compromise for analog neural network imple-
mentations. It operates like static digital memory that has not
just two attractive voltage levels but several. The voltage level
of the cell can be changed just like on a capacitor, by simple
current injections. In fact, on a short time scale it really is
nothing but a capacitance that holds an analog voltage. On a
long time scale its resolution is limited by a discrete number
of attractors.
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Figure 1: The ‘fusing’ transconductance amplifier. It only
works like a transconductance amplifier for small differences
(100mV-200mV) of the input voltages. The upper five tran-
sistors form a so called bump circuit. The middle branch is
only conductive, if the input voltages are close to each other.
It supplies the bias current to the below transconductance am-
plifier, such that it is turned off, if the inputs get too far apart.
The characteristics of this circuit is depicted in figures 2‘and
3, and expressed by formula (3)

2. METHODS

The central building block of the multi-level static memory
cell is a novel ‘fusing’ transconductance amplifier (figure 1).
The fusing transconductance amplifier is a combination of a
normal transconductance amplifier and a so called bump cir-
cuit. This bump circuit was originally put forward in [1]. It
issues an output current if two input voltages lie close to each
other, i.e. within a range of about 120mV. The formula given
in [1] is

Ibump =
Ib

1 + 4
S cosh2 κ∆V

2

(1)

whereκ is the slope factor,Ib is the bias current, and∆V
is in units of kTq . S is defined as

S =
(W/L)middle
(W/L)outer

(2)

where(W/L)middle is the width to length ratio of the tran-
sistors in the middle branch of the bump circuit,(W/L)outer
that of the two outer branches.S is the main factor deter-
mining the width (defined as the width whereIbump is but a
fraction 1

e of its maximum) of the ‘bump’ which scales ap-
proximately withlogS for S >> 1. The bias current on the
other hand does not influence the width of the bump in the
subthreshold regime.
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Figure 2: The characteristics of the ‘fusing’ amplifier for dif-
ferent bias voltages. The input ‘minus’ is 2.5V and the volt-
age of input ‘plus’ is drawn on the x-axis. The y-axis is the
current into the output node. All transistors were square with
W=L=1.4µm. The different traces are simulations with dif-
ferent bias voltages. It was set to be (from the flattest to
the steepest curve) 4.20V, 4.15V, 4.10V, 4.05V, and 4.00V.
The same as for transconductance amplifiers, the transcon-
ductance can be increased in the linear range by a bigger bias
voltage, which also slightly increases the distance of the char-
acteristic’s maximum and minimum. Those distances were:
104.3mV, 108.3mV, 119.4mV, 131.1mV, 150.4mV.
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Figure 3: The characteristics of the ‘fusing’ amplifier for dif-
ferent parametersS. The input ‘minus’ is 2.5V and the volt-
age of input ‘plus’ is drawn on the x-axis. The y-axis is the
current into the output node. The bias voltage was 4.1V. All
transistor widths and lengths were W=1.4µm with the excep-
tion of the middle branch of the bump circuit. The different
traces are simulations with different(W/L)middle. From the
flattest to the steepest curve it was: 0.25, 0.5, 1, 2, 4, 8. The
distance of the maxima was: 112.5mV, 116.6mV, 119.4mV,
152.9mV, 191.0mV, 226.0mV.
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Figure 4: The schematics of the multi-level static memory.
The target voltage levels can be produced globally or locally,
e.g. by diode connected transistors in series.

If one now uses that output currentIbump as the bias cur-
rent of a transconductance amplifier sharing its two inputs
with the bump circuit, the formula for the output current will
be

Iout = Ibump tanh(
κ∆V

2
) (3)

The result is a transconductance amplifier that only oper-
ates for small differences of input voltages, turning itself off
for big differences. Circuit level simulations of the character-
istics are shown in figures 2 and 3. In contrast to (3) they are
slightly asymmetric. This is mainly due to the offset of the
transconductance amplifier output which is slightly shifted to
the right relative to the bump circuit output. Thus the slight
asymmetry in the product of the two. This ‘fusing’ amplifier
characteristics is very similar to the one of the ‘resistive fuse’,
proposed in [6]. The difference is that the circuit in this paper
is not a resistive element: it does not draw any current from
the input, and the circuit is much simpler.

If now a capacitive storage cell is connected to an array
of those ‘fusing’ amplifiers, that are connected as followers
and that receive different target voltages as inputs (figure 4),
then the voltage level of the capacitor will on a long time-
scale always settle on the closest attractive target voltage (see
figure 6). If the attractors come close to Vdd, i.e. within the
subthreshold range of pFET transistors, the ‘fusing’ amplifier
can be changed to a nFET version (by exchanging all pFET
transistors with nFET transistors and vice versa and exchang-
ing Vdd and Gnd.)

The theoretical lower limit for the spacing of the attrac-
tors dmin is given by the distance of the maximum and the
minimum of the characteristics of the ‘fusing’ amplifier. The
total current flowing into the storage capacitanceItot is the
sum of all currents of the ‘fusing’ followers. If the attractors
are spaced to closely, such that the maximum and the mini-
mum current output of two neighbouring followers overlap,
then they will cancel out each other. This effect is illustrated
in figure 5. To achieve many attractors it is thus desirable to
have ‘fusing’ followers with a ‘narrow’ output characteristics.
How can this be achieved? The position of the two extrema
of this function (equation (3)) that definedmin are the zero
crossings of the derivative. According to (3), changing the
bias currentIb will not affect them, since it is only a con-
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Figure 5: An illustration of the effect of spacing the attractive
target voltages to tightly. The traces are computed from the
theoretical formula (3). They represent the total current from
the ‘fusing’ follower array to the capacitive storage cell in de-
pendency of the voltage on that cell. From the top the spacing
of the 5 intended attractors is1.2dmin, 1.0dmin, and0.8dmin.
The middle attractor is placed at 2.5V. The effective attractive
states of this example memory cell can be seen as the zero
crossings with negative gradient. Only in the top graph are all
intended attractors effective. In the middle graph all attractors
become weaker and the top most and bottom most are lost. In
the lowest graph only one attractor remains.

stant factor and will thus not influence the zero crossings of
the derivative. This statement is contradicted by circuit level
simulation which shows a slight dependency of this width on
the bias current (see figure 2) and to achieve a small width
a low bias current is advantageous. It cannot be chosen too
small though, otherwise the attractors become too weak and
leakage currents will be stronger. Another parameter that in-
fluences the characteristics width isS. Intuition may tell us
that if the ‘bump’ becomes narrower then also the width of the
‘fusing’ amplifier characteristics becomes narrower. It was al-
ready stated that changing the design parameterS influences
the width of the ‘bump’. And circuit level simulation confirm
that by havingS small, also the width of the amplifier charac-
teristics decreases (see figure 3). IfS should be smaller than
1 though the circuit layout grows proportionally in size.

3. RESULTS

Simulations have been conducted using simulation parame-
ters of the 0.6µm AMS process.S was chosen to be 1 and
the bias voltage was 4.1V. Thus from simulations of the ‘fus-
ing’ amplifier the minimal distance for the attractors would
be 119.6mV. The empirical limit from the simulations was
somewhat bigger just below 140mV. This would allow for
35 different attractors between 0V and 5V. In the simulation
that is shown in figure 6 the distance of the 6 attractors was
215mV and they were equally spaced between 1.29V and
0.215V. The initial condition of the output in the simulation



86 Publications

0 0.5 1 1.5

x 10
−3

0

0.5

1

1.5

time[s]

ou
tp

ut
 v

ol
ta

ge
 [V

]

Figure 6: The graph illustrates the basins of attraction of the
memory cell in a circuit simulation. The voltage traces are
measured on the capacitance in figure 4, starting from differ-
ent initial voltages.

were set to voltages between 0V and 1.4V with 100mV spac-
ing. The bias voltage of the ‘fusing’ followers was set to 4.1V.
The capacitance was 8.6 pF. All transistor used were square
with W=L=1.4µm. The voltages settle to the nearest attractor
within 500µs. The exception are the traces that starts at 0V
and 1.5V. They are outside the basin of attraction of the lowest
level and the topmost level. Thus they move only very slowly
and only start to approach their nearest attractor more rapidly
about 3ms later.

The speed at which the voltages settle can be adjusted by
adjusting the ratio between the bias current and the capaci-
tor size. Note though that by increasing the bias current the
distance between the maximum and the minimum of the am-
plifier characteristics and thus the minimal spacing of the at-
tractors is increased too.

4. CONCLUSION

A novel ‘fusing’ transconductance amplifier has been used to
design a multi-level static memory cell. This memory cell
has been conceived to be used for weight storage in a model
of a learning synapse where floating gate non-volatile storage
had been used before [5, 4]. The device is generally suited in
asynchronous applications that require easily changeable ana-
log storage on a short time scale, but that require only multi-
level storage on a long time scale. In comparison with floating
gate storage it offers better matching properties (especially no
change of write efficacy over time) and easier handling (i.e.
no high voltage is necessary). These improvements are traded
for a limited resolution for long term storage and a larger cir-
cuit. Also digital storage in combination with AD/DA conver-
sion would offer better voltage resolution. Advantages of the
multi-level static memory cell of this paper for the intended
applications are its continuous time mode of operation, with-
out need for any control signals, and real analog storage on a
short time scale.
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