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ABSTRACT

In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in

the spatial directions. This leads to a seismic wavefield consisting of irregularly and

sparsely populated traces with large gaps between consecutive sail-lines especially

in the near-offsets. The problem of reconstructing the complete seismic wavefield

from a subsampled and incomplete wavefield, is formulated as an underdetermined

inverse problem. We investigate unsupervised deep learning based on a convolutional

neural network (CNN) for multidimensional wavefield reconstruction of irregularly

populated traces defined on a regular grid. The proposed network is based on an

encoder-decoder architecture with an overcomplete latent representation, including

appropriate regularization penalties to stabilize the solution. We proposed a combi-

nation of penalties, which consists of the `2-norm penalty on the network parameters,

and a first- and second-order total-variation (TV) penalty on the model. We demon-

strate the performance of the proposed method on broad-band synthetic data, and

field data represented by constant-offset gathers from a source-over-cable data set

from the Barents Sea. In the field data example we compare the results to a full

production flow from a contractor company, which is based on a 5D Fourier inter-

polation approach. In this example, our approach displays improved reconstruction

of the wavefield with less noise in the sparse near-offsets compared to the industry

approach, which leads to improved structural definition of the near offsets in the

migrated sections.
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INTRODUCTION

In marine seismic acquisition, the data are not sampled uniformly in the spatial direc-

tions, having a much coarser sampling along the crossline direction. The reasons for

this are: large streamer separation, narrow source distribution, and large separation

between consecutive sail-lines. The data recorded closest to the source array typically

exhibit irregular and sparsely populated traces with large gaps. Some modern marine

seismic acquisition solutions introduce close to zero-offset data and wide-azimuths by

utilizing a split-spread, source-over-cable configuration (Vinje et al., 2017). However,

this further complicates the reconstruction problem because the trace distribution

becomes even sparser with the smaller distance to the source array.

Interpolation and regularization of the subsampled wavefield is an important and

necessary processing step since coarse and irregular sampling of the seismic wave-

field affects migration quality and analysis of amplitude variations with offset and

azimuth (Trad, 2009). Several techniques have been developed for tackling the in-

terpolation problem, such as frequency-space domain methods (Spitz, 1991; Porsani,

1999; Crawley, 2000; Naghizadeh and Sacchi, 2007), minimum weighted norm inter-

polation (MWNI) (Liu and Sacchi, 2004), projection onto convex sets (POCS) (Abma

and Kabir, 2006), shaping regularization (Fomel, 2007), rank reduction based (Trick-

ett et al., 2010, 2013), spectral analysis (Ghaderpour et al., 2018; Ghaderpour, 2019),

common reflection surface (CRS) attribute-based (Hoecht et al., 2009; Xie and Gajew-

ski, 2016; Zhao et al., 2020), Fourier based (Xu et al., 2005; Zwartjes and Sacchi, 2007;

Schonewille et al., 2009; Naghizadeh and Sacchi, 2010b), Radon based (Ibrahim et al.,

3
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2015), Curvelet (Naghizadeh and Sacchi, 2010a; Herrmann and Hennenfent, 2008),

Seislet (Gan et al., 2015) and Focal transform (Kutscha et al., 2010). Amongst the

popular techniques for multidimensional interpolation, such as 5D interpolation, are

(Trad, 2014): MWNI, POCS, Anti-Leakage Fourier Transform (ALFT) (Xu et al.,

2005), and rank reduction of Hankel tensors (Trickett et al., 2013). Methods such as

CRS have also shown promising results compared to industry-standard methods in

the multidimensional case (Zhao et al., 2020).

Recently, data-driven approaches have drawn significant attention for solving the

interpolation and reconstruction problem. This includes techniques such as dictionary

learning (Liang et al., 2014; Yu et al., 2015; Zhu et al., 2017; Turquais et al., 2018),

support vector regression (Jia and Ma, 2017; Jia et al., 2018) and CNN-based deep

learning such as Residual network (Wang et al., 2019), encoder-decoder networks

(Wang et al., 2020), wavelet domain CNN (Larsen Greiner et al., 2020), generative

adverserial network (Oliveira et al., 2018) and hybrid CNN/POCS-based method

(Zhang et al., 2020). The use of CNN’s have also drawn considerable attention in other

processing applications, such as interference noise attenuation (Sun et al., 2020a),

deblending (Sun et al., 2020b) and inversion (Das et al., 2018). So far, existing deep

learning approaches have exclusively been applied and trained in a supervised fashion

in 2D (image-based). In this case, a labeled data set is available to train the CNN, and

traces must be in close proximity in order to be handled adequately in 2D. For filling

in large gaps between traces it is necessary for the interpolation or reconstruction

method to handle multiple dimensions simultaneously (Trad, 2014). In addition, in

4
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geophysical reconstruction problems, labeled training data are limited and needs to

be provided from either interpolation using a conventional technique or trained in a

representative domain where labeling is possible. By extending the reconstruction

problem into 4D (inline, crossline, time, offset) —or higher dimensions—, the extra

dimensions carry information in different spatial locations, thus the distance between

traces becomes smaller.

A few studies have shown promising results in unsupervised learning applied to

seismic data reconstruction in 2D (Hu et al., 2019; Shi et al., 2020) and 3D (Kong

et al., 2020). In Shi et al. (2020) and Kong et al. (2020), the authors makes use

of the deep image prior (DIP) approach (Ulyanov et al., 2018), which exploits the

ability of the network to capture low-level statistics of the data without learning

from a specific input pattern. At first glance, the DIP approach looks like a basic

autoencoder. However, while the network of an autoencoder is trained to reconstruct

an approximation of its input, the DIP approach trains the CNN as a generator

network to predict the observed data from a fixed random tensor. Liu et al. (2019)

further improved the DIP approach on natural images by introducing an explicit total-

variation (TV) regularizer on the model. A downside of the DIP approach is that the

network needs to be reparameterized (retrained) for every new prediction. Thus, DIP

does not generalize to a specific input pattern —as is the case with autoencoding—,

which becomes computationally demanding with large data sets.

We introduce a regularized convolutional autoencoder (RCAE), as a solution to

the multidimensional seismic wavefield reconstruction problem, i.e., we solve for the

5
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inverse problem directly using deep learning methodology. This is accomplished by

extending the deep learning approach from 2D/3D to 4D, by using a 3D CNN where

the fourth dimension is represented by offset-classes. Thus, the offset dimension is

treated as a feature space and is non-convolutional. The network architecture used in

this study consists of an encoder-decoder network with an overcomplete latent repre-

sentation constrained by three different regularization penalties. Similar to Liu et al.

(2019), we propose an explicit regularizer to the model, but extend it to include both

the first- and second-order TV norm, to properly fit the seismic data reconstruction

problem. In addition, we include an `2-norm penalty on the network parameters. We

demonstrate the methodology on densely sampled broad-band synthetic data and a

field data set from the Barents Sea (Vinje et al., 2017). Both the synthetic and field

data sets are represented by constant-offset gathers from a source-over-cable survey

design. Both data sets pose challenges at near-offsets due to a sparse distribution

of traces and large gaps in the crossline direction caused by the distances between

consecutive sail-lines, as illustrated from the field data in Figure 1.

First, we introduce unsupervised deep learning through the use of autoencoders

for multidimensional seismic wavefield reconstruction. The differences between super-

vised and unsupervised learning in such settings are also discussed. The performance

of the proposed methodology is then demonstrated on synthetic data, followed by the

field data example. Finally, a discussion part and a set of conclusions are given.

6
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UNSUPERVISED DEEP LEARNING FOR SEISMIC

WAVEFIELD RECONSTRUCTION

Autoencoders

Traditionally, autoencoders were used for dimensionality reduction, aiming to find

hidden representations of an input vector d on a lower dimensional Hilbert space, and

are therefore referred to as undercomplete (Goodfellow et al., 2016). Dimensionality

reduction with autoencoding is accomplished by first mapping a vector d to a lower

dimensional latent representation ζ through a functional ζ = φ(d) —also known

as the encoder—, followed by a mapping back to an approximation d̂ of the input,

through another functional ψ(φ(d)) —also known as the decoder. A shortcoming of

undercompleteness in reconstruction applications is that valuable information may be

lost. To address such limitations, some encoder-decoder architectures include by-pass

connections with concatenating layers to retain details, such as the U-Net architecture

(Ronneberger et al., 2015). The advantage of multi-resolution architectures is that

they increase the receptive field of the network, i.e., increasing the effective kernel

size due to downsampling of features, while retaining high frequencies. However, as

discussed by Ye et al. (2018) the U-Net architecture leads to an over-emphasis on

the low frequencies since pooling with by-pass connections does not guarantee perfect

reconstruction. Ye et al. (2018) therefore proposed the use of wavelet expansions as

a generalized pooling operation in order to separate low frequencies from the high

frequencies.

7
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Alternative to by-pass connections, are encoder-decoder architectures with over-

complete latent representation, i.e., the latent representation lies on a higher di-

mensional Hilbert space relative to its input. When downsampling in overcomplete

networks, strided convolutions can be employed as an alternative to pooling. This

avoids the low-pass filtering from pooling, but adds additional complexity since the

downsampling operations are learned instead of being fixed operators. A simplified

illustration of an undercomplete and overcomplete autoencoder is presented in Figure

2. However, overcomplete autoencoders are susceptible to overfitting without proper

regularization. Frequently employed regularizers in deep learning includes the `2-norm

penalty to the network parameters and sparseness constraints (Ranzato et al., 2007)

including penalties to derivatives such as contractive autoencoders (Rifai et al., 2011).

In addition, TV regularization (Rudin et al., 1992) has recently received attention in

the field of deep learning for image inpainting problems (Liu et al., 2018, 2019). The

TV-norm is a traditional and popular regularizer for solving inverse problems and

has a wide range of applications, such as image inpainting (Shen and Chan, 2002),

image restoration (Strong and Chan, 2003), video restoration (Chan et al., 2011) and

seismic inversion (Gholami, 2015; Kolbjørnsen et al., 2019; Esser et al., 2018). In im-

age inpainting, the introduction of higher-order TV-norms has also shown the ability

to fill in large gaps and to reduce stair-casing artifacts with the price of some blur

(Papafitsoros et al., 2013; Papafitsoros and Schönlieb, 2014). Multidimensional wave-

field reconstruction of irregularly distributed traces defined on regular grids can be

considered analogous with these types of computational inverse problems for natural

images.

8
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Supervised vs. unsupervised reconstruction

In the context of wavefield reconstruction, the inverse problem is the task of recov-

ering the complete wavefield, which we will denote by m, from the subsampled and

observable wavefield, which we will denote by ds, by solving an equation on the form

ds = S
(
m
)

+ εεεs, (1)

where S(·) is the direct operator, which describes how the complete wavefield gives rise

to the observed wavefield, and where εεεs represents the observation noise. The main

difference between supervised and unsupervised deep learning for solving equation 1,

is what we consider known a priori. This leads to two different strategies for training

the neural network.

To solve for the inverse problem in a supervised fashion, we need a labeled data

set that consists of many patches of input-target pairs D = {(d[i]
s ,m[i])}Pi=1 where

the ith example d
[i]
s and m[i] are commonly referred to as the input label and target

label, respectively. The labeled training data are then used to estimate a functional

representation of the complete wavefield

mf = f
(
ds; Θ

)
, (2)

where the parameters Θ are learned through solving an optimization problem. A

common approach is to minimize a misfit function in a least-squares sense, by includ-

ing a penalty to the network parameters. This leads to the following optimization

9
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problem

min
Θ

{ 1

2P

P∑
i=1

∥∥m[i] −m
[i]
f

∥∥2

2
+Rλ

(
Θ
)}
, (3)

where ‖ · ‖2 denotes the `2-norm and λ ≥ 0 denotes the regularization parameter that

defines the trade-off between the data misfit error and the regularization penalty. In

deep learning, the `2-norm is commonly used as penalty to the network parameters,

which reduces overfitting by dampening the size of the parameters and spreading

them more evenly over the hidden units (Hastie et al., 2009). Now, given an example

of an unseen and representative wavefield du, we can predict the complete wavefield

from the trained function m̂f = f̂
(
du; Θ̂

)
where Θ̂ denotes the learned parameters.

In many circumstances, we do not have access to a set of input-target pairs, and

therefore need to turn to unsupervised approaches. In this case, assuming S(·) is

known, we can use the unlabeled data ds to train a functional representation of the

complete wavefield by minimizing an objective function of the form

min
Θ

{1

2

∥∥ds − S(mf

)∥∥2

2
+Rλ

(
Θ
)

+Rα

(
mf

)}
, (4)

where Rα

(
mf

)
denotes an explicit regularization penalty applied to the functional

representation mf . From a Bayesian point of view, the formulation in expression 4

can be seen as a maximum a posteriori estimate using a prior on mf (Getreuer, 2012).

Thus, expression 4 includes a priori information on the likelihood of the solution mf .

The minimization of the objective function in expression 4 leads to an approximation

10
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of the input ds by S
(
mf

)
. This is a typical autoencoder setup, where S(·) can be

seen as a final layer with fixed weights. Both expressions 3 and 4 attempt to solve

for the inverse problem in equation 1. Whereas the former considers the observed

data ds and the complete data m as known variables, the latter considers the direct

operator S(·) and observed data ds as known.

Wavefield reconstruction problem

We will consider the reconstruction problem in relation to expression 4. Let the

observed and incomplete wavefield be defined by the vector ds ∈ RM×1, which is

modeled as the output of a sampling operator S : RN×1 → RM×1 acting on the

complete wavefield m ∈ RN×1. That is, we want to solve the inverse problem

ds = Sm + εεεs. (5)

Equation 5 defines an underdetermined system of equations with infinite number of

solutions. To illustrate the action of the sampling operator, let the unknown data

consist of six consecutive samples

m = [m0,m1,m2,m3,m4,m5]T, (6)

with observed samples in index position S = {0, 2, 4, 5}. In this case equation 5

becomes

11
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

ds0

ds1

ds2

ds3


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1





m0

m1

m2

m3

m4

m5



+



εs0

εs1

εs2

εs3


. (7)

Because of the zero column, the sampling operator in equation 7 is singular and has

no inverse. Since we will consider the reconstruction problem of irregularly distributed

traces defined on a regular grid, it implies the introduction of another type of operator,

also known as a masking operator. The masking operator can be defined from the

sampling operator as M = STS, where M : RN×1 → RN×1 is represented by ones at

sampled traces and zeros everywhere else. After introducing the masking operator,

equation 5 becomes

d = Mm + εεε, (8)

where d = STds and εεε = STεεεs. Using the example introduced above, equation 7

correspondingly transforms to

12
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

d0

0

d2

0

d4

d5



=



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1





m0

m1

m2

m3

m4

m5



+



ε0

0

ε2

0

ε4

ε5



.

(9)

A simplified illustration of the inverse problem from a masked wavefield is il-

lustrated in Figure 3. Since the operator M is known and well-defined it is easily

extracted from the observed data and can therefore be used to solve for the inverse

problem. However, the matrix M is only used for illustration of the problem. In prac-

tice, the diagonal structure of M implies that it can be represented by its diagonal

elements for computational considerations.

Convolutional autoencoder for multidimensional reconstruc-

tion

In the case of 4D wavefield reconstruction, consider the observed wavefield d as a

4D binned wavefield. The observed wavefield can then be represented by a four-

dimensional function d(x, y, t, h) where (x, y) denotes the spatial directions (crossline

and inline), t denotes the temporal direction and h denotes a scalar representation

of the offset-class. Suppose each offset-gather has Nx crosslines, Ny inlines, Nt tem-
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poral samples and Nh offset-classes, then the discrete samples of d(x, y, t, h) form a

4D tensor. To ease the discussion of the multidimensional wavefield reconstruction

problem we will, as before, represent the observed wavefield as a vector according to

its lexicographic order of size N × 1, where N = NxNyNtNh. Now, let the relation

between the observed- and reconstructed wavefield have the form of a multi-layer

CNN, which can be expressed by the functional relationship

mf = f(d; W,b), (10)

where W and b represent the convolutional kernels and biases, respectively. Here, the

function in equation 10 is a 3D CNN where offset-classes are represented as different

features in the input space. In this case, the convolutional kernels are represented

by the 5D tensors Wl+1 ∈ Rf×f×f×cl×cl+1 and biases by the vectors bl+1 ∈ Rcl+1

where f× f× f denotes the kernel size and cl denotes the number of features in layer

l ∈ {0, 1, ..., L − 1}. A deep CNN consists of L feature layers —including input

and output layer— with L − 1 linear convolutions and non-linear transforms. The

computational transition from an arbitrary layer to the next one consists of computing

a set of convolution operations on the input values al to give the linear output zl+1,

where al and zl+1 can be considered as 4D objects consisting of 3D features. The

linear transition from one layer to the next is defined as

zl+1 = Wl+1al + bl+1, (11)
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where al represents the non-linear output from the previous layer

al = σ(zl) = σ(Wlal−1 + bl). (12)

where a0 = d for the input layer l = 0. In equation 12, σ(·) represents a component

wise non-linear activation function. Here, we employ the rectifier linear unit (ReLU),

which is defined as

σ(zl) = max(0, zl), (13)

where the output layer is in our case not bounded by a non-linearity; it is given by

the linear transition from the last hidden layer

mf = zL−1 = WL−1aL−2 + bL−1. (14)

Since the training of the CNN is done in an unsupervised fashion, it is commonly

referred to as a convolutional autoencoder (CAE). As an example, consider a CAE

with a single hidden layer, i.e., L = 3 layers. The CAE then consists of two functional

transitions: the encoder φ : d→ ζ, and the decoder ψ : ζ →mf , where ζ ∈ RK×1 de-

fines the K-dimensional latent representation of the input. The CAE, parameterized

by {Wl,bl}2
l=1, gives the following encoder

φ(d) = σ
(
W1d + b1

)
, (15)

and decoder
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mf = ψ(φ(d)) = W2φ(d) + b2, (16)

where W1 represents the input-to-hidden K × N dimensional weight matrix, W2

represents the hidden-to-output N × K dimensional weight matrix, and b1 and b2

are the biases. Multiplying the masking operator with the output from the decoder

gives an approximation of the input Mmf . In our case, we seek an approximate

function f̂(·) : d ∈ RN×1 → m̂f ∈ RN×1 where m̂f denotes the predicted wavefield

from the learned function f̂(·) represented by the 3D CNN.

Before we explain the network used in this study we want to emphasize on the

role of downsampling of features and at the same time retaining overcompleteness.

The main goal of downsampling is that the effective kernel size increases, i.e., smaller

kernels captures larger regions in the lower levels of the network. The ability of the

network to correlate over larger regions is especially important for diffracted energy

due to large Fresnel zones. On the other hand, the main goal of overcompleteness is

to ensure that the network manages to preserve most of the relevant signal structure.

Overcomplete autoencoders also promotes sparse feature representations (Goodfellow

et al., 2016), and as shown by Papyan et al. (2017) if the ReLU non-linearity is

employed, the neural network can be interpreted as a sparse coding algorithm. The

role of overcompleteness in relation to the perfect reconstruction condition is further

discussed in Ye et al. (2018).

In our experiments, we have found that by employing large kernels in the first lay-

ers gives improved reconstruction performance. Increased performance by employing
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large kernels, typically in the first layer(s), has also been reported in both single-

image super-resolution (Dong et al., 2015) and in super-resolution application within

in seismic reconstruction (Greiner et al., 2019). For downsampling of features we

employed 3D strides of size k × k × k, which implies a downsampling ratio of k3. To

ensure overcompleteness in this case, it is necessary to increase the number features

in the next layer by a factor greater than k3. This implies that the number of kernels

increases by k3, which increases the computational cost significantly and therefore

limits the number of downsampling layers in practice.

In this study, the 3D CNN, summarized in Table 1, has nine layers in total —

input, output and seven hidden layers — and consists of a basic feed-forward ar-

chitecture, employing strided convolutions and strided transposed convolutions to

downsample and upsample the features, respectively. The first hidden layer is com-

puted by strided convolutions with kernels of size 7× 7× 7 with Nh number of input

features and 90 output features and with a stride of 2×2×2, which gives a downsam-

pling ratio of 8 in the first layer. We have used Nh = 10 which ensures redundancy in

this case. The second hidden layer is computed by strided convolutions with kernel

sizes of 5× 5× 5 and stride of 2× 2× 2, giving features of 1/64th the size of the input

features. This layer is followed by a regular convolution with kernel size of 3× 3× 3.

To upsample back to the original input size, we employed transposed convolutions

with strides of 2 × 2 × 2, using kernel sizes of 3 × 3 × 3, followed by two layers of

regular convolution with kernel sizes of 3× 3× 3.
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Pre-interpolation of input features

Some supervised CNN-based techniques introduce pre-interpolation of the input, such

as bicubic interpolation (Wang et al., 2019), to upsample the input to equal size as the

output. The CNN is then trained to remove the unwanted effects from the sub-optimal

interpolation. Binning of the data into a regular grid using zero-padding could be seen

as a special case of interpolation where data are interpolated —and extrapolated—

with zero values. However, a particular challenge for the CAE approach arise when

zero-padding introduces large gaps in all spatial directions; crossline, inline as well

as offset, as displayed in Figure 1b-e. For the less sparse locations, i.e., close to

the source array, this can be compensated by using large kernels in the first layers.

However, using kernel sizes appropriate for the largest spatial gaps —up to 20 grid

points in some locations—, increases the computational complexity significantly. Al-

ternatively, one can compensate by adding more offsets to the input layer, but this

comes at a cost of increasing the number of features within the hidden layers to ensure

overcompleteness. Another alternative is to increase the regularization strength until

the gaps in the near-offsets are filled adequately. However, in our experience this

yields overly smooth results in the prediction. To overcome the near-offset challenge,

we found that a simple nearest neighbor interpolation by interpolating smaller offsets

using higher offset-classes balances the amplitudes and improves signal continuity in

the large gaps. In our case, we used only a single observation as the nearest neighbor.

Thus, we find the observation closest to the offset h in the input space to interpolate

the smaller offsets. Since we are using only the input space as observation, this is
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easily implemented as part of the forward pass within the network and does not add

any significant additional complexity to the method or computational cost. Also, the

pre-interpolated data is not used as the observed data in the data misfit within the

objective function. It serves only as information about the wavefield pattern instead

of zero values.

Regularization strategy

To stabilize the solution towards a desired solution, appropriate regularization is

therefore introduced. Here, we propose a combination of regularization penalties,

which includes the `2-norm on the CNN kernels and a first- and second-order TV-

norm on the model mf . Thus, we want to minimize an objective function of the

form

min
W,b

{1

2

∥∥d−Mmf

∥∥2

2
+
λ

2

∥∥W∥∥2

2
+ TV(mf )

+TV2(mf )
}
,

(17)

where TV(mf ) and TV2(mf ) denote the first- and second-order TV-norm, respec-

tively. The regularization parameters for the TV-norms are implicitly defined within

the two terms. These norms can be defined from discrete approximations of deriva-

tives. Thus, the first-order approximation is given by the gradient of the functional,

which gives the following ensemble of first-order derivatives
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∇mf =
(
Dxmf ,Dymf ,Dtmf ,Dhmf

)
. (18)

The second-order approximation can be defined from the gradient of the model

gradients, which gives the symmetric Hessian distribution of second-order derivatives

∇2mf =



Dxxmf Dxymf Dxtmf Dxhmf

Dyxmf Dyymf Dytmf Dyhmf

Dtxmf Dtymf Dttmf Dthmf

Dhxmf Dhymf Dhtmf Dhhmf


. (19)

where Di and Dij are finite difference operators along the spatial and temporal di-

rections. We employ the anisotropic version of the norms, which is defined as the

`1-norm on the individual first- and second-order gradients. The definitions of the

two norms then become

TV(mf ) =
1

N

N∑
i=1

(
α1|[Dxmf ]i|+ α2|[Dymf ]i|

+α3|[Dtmf ]i|+ α4|[Dhmf ]i|
) (20)

for the first-order, and
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TV2(mf ) =
1

N

N∑
i=1

(
β1|[Dxxmf ]i|+ β2|[Dyymf ]i|

+β3|[Dttmf ]i|+ β4|[Dhhmf ]i|

+β5|[Dxymf ]i|+ β6|[Dxtmf ]i|

+β7|[Dxhmf ]i|+ β8|[Dytmf ]i|

+β9|[Dyhmf ]i|+ β10|[Dthmf ]i|
)

(21)

for the second-order. The scaling factors (αj, j = 1, . . . , 4) and (βj, j = 1, . . . , 10) are

introduced to add more flexibility to the impact of each individual operator on the

regularization penalty. Consider data sorted in common-offset 3D cubes. From such a

data cube, subsets of data can be formed by extracting either horizontal (time) slices

or vertical slices. The former type of data are typically characterized by stronger

structural features and with weaker texture as fill in. In case of vertical data, geolog-

ical structures will dominate but with superimposed wave patterns associated with

diffracted energy. The use of a first-order TV-norm will promote sparse gradients, i.e.,

it penalizes oscillations and promotes discontinuities. This fits well with geological or

structural features present in the horizontal slices. However, in order to preserve the

weaker texture as well as the vertical wave patterns, an additional use of a second-

order TV-norm is essential. This norm promotes sparse second-order gradients, thus

it puts emphasis on patterns with higher curvature, such as waves.

Introducing the TV-norms adds 14 additional hyperparameters. From our ex-

periments, we found that it is sufficient to set αj≥2 and βj≥1 values relative to α1,

which reduces the complexity to only one hyperparameter. In our case we have
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used α2 = α1, α3 = 0.1α1, α4 = 10α1, β1 = β2 = β3 = β4 = 0.001α1 and

β5 = β6 = β7 = β8 = β9 = β10 = 0.0001α1.

Training and implementation details

Minimizing expression 17 and learning the parameters Θ ∈ {Wl,bl}L−1
l=1 , is achieved

by solving an optimization problem. First, the observed data are divided into smaller

overlapping patches, with P as the number of training examples D = {d[i]}Pi=1. These

patches are then grouped into batches of size B, such that the input to the opti-

mization algorithm consists of randomized mini batches of training examples. During

training, we apply a stochastic corruption of the input. This is done by forcing a num-

ber of traces to zero, such that the model learns to fill in these corrupted patterns.

Stochastic corruption of the input is also a known approach in denoising autoencoders

for manifold learning (Vincent et al., 2008). For the minimization of the objective

function, we employed a first-order stochastic gradient descent algorithm known as

decoupled weight decay (Loshchilov and Hutter, 2017). In this case, let L
(
d[i]; Θ

)
denote the data misfit including the two TV-norms and let R

(
W
)

denote the `2

penalty on the kernels. The decoupled weight decay algorithm for update of Θ for

one mini batch is then defined as

Θl,n = Θl,n−1 − η
( 1

B

B∑
i=1

∇Θl
L
(
d[i]; Θ

)
n

+∇Wl
R
(
W
)
n−1

)
,

(22)
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where η is the fixed learning rate, n denotes the iteration number and ∇Θl
L
(
d[i]; Θ

)
are the partial derivatives with respect to the parameters in the l’th layer using the

Adam update rule (Kingma and Ba, 2014) and ∇Wl
R
(
W
)

are the partial derivatives

of the `2 penalty on the kernels. Initialization of the weights was done using He-

initialization (He et al., 2015), which is particularly designed for handling ReLU

non-linearity, and the biases were initialized to zero values. For model selection,

we experimented by trial and error for a range of values for the learning rate, `2

regularization and TV-norms. We found η = 0.0001, λ = 10−7, α1 = 0.0001 to be

a good choice of hyperparameters. Neural network implementation and training was

performed in Python using the NumPy (Harris et al., 2020) and Tensorflow (Abadi

et al., 2016) libraries.

SYNTHETIC DATA EXAMPLE

To evaluate the 4D reconstruction approach using unsupervised deep learning, we

test the proposed approach on densely sampled synthetic broadband data, employing

a 2D survey, modeled on a 6.25 × 6.25 m2 grid and with an offset spacing of 12.5

m. The temporal sample rate was set to 4 ms. The 3D model, displayed in Figure

4, is represented by a complex water bottom of bathymetry data from the Barents

Sea, and a series of equally spaced diffraction lines beneath. The synthetic data

were modeled by the diffraction modeling method (Jaramillo and Bleistein, 1999)

with a constant background velocity of 1480 m/s. A subset of the modeled data was

employed for training, which consists of 400 inlines, 400 crosslines and 200 temporal
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samples, and a total of 10 offset classes decimated to a constant offset interval of 50

m (from 12.5-462.5 m offset). The observed data was constructed by first applying

white noise to the fully sampled offset gathers, and then by removing traces with a

masking operator extracted from the field data employed in the field data example

in the next section. In this case, we have a noise-free and densely sampled data set,

which we will refer to as the ground truth. This data set serves as testing data which

we only use for comparison and estimation of model performance. The masked and

noisy data, i.e., the observed data, is used to train the model.

To fit the model to the observed data, the offset-gathers were randomly split into

overlapping patches of size 44 × 44 × 44 × 10 (crosslines, inlines, temporal samples

and offsets) and grouped into batches of size 4. With this setup, training the model

took approximately 4 min for each epoch on a fairly modern GPU (NVIDIA Tesla

V100 SXM2 32GB), where we used a total of 250 epochs. The patches defines the

observed data examples D = {d[i]}Pi=1 for P = 3456 number of examples.

The 12.5 m offset from the diffraction modeled data, the prediction and difference

plot, along with their respective f − k plots are displayed in Figure 5. Figure 5a

shows that the geological model from Figure 4 sets up a complex wavefield with

numerous diffraction events. Figure 5b displays the gather in 5a with white noise

and the masking operator applied. Figure 5c and Figure 5d display the predicted

wavefield from the RCAE, and the difference between the ground truth and predicted,

respectively. Figure 5e-h display the ground truth, observed, predicted and difference

plot in the f − k domain, respectively.
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The strong events from the waterbottom reflections in the reconstructed wavefield

are relatively accurate compared to the ground truth. These events display less

reconstruction error compared to the weaker diffraction events beneath. In the wiggle

plot in Figure 6, we observe that the RCAE approach struggles with conflicting dips

from weaker events and where the amplitude of the events display different amplitude

strengths. This is prominent at the weaker diffraction events annotated by the red

arrows in Figure 6c. The weaker diffraction events from the reconstruction show

in general slightly weaker amplitude compared to the ground truth. Figure 7 show

examples from the 12.5 m offset on time-slices through the water bottom reflection,

where the RCAE reconstruction manages to fill in the with similar patterns as the

ground truth, as implied by the low difference displayed in Figure 7d.

FIELD DATA EXAMPLE

The field data in this study consists of a 3D source-over-cable seismic acquisition,

with 14 streamers and 3 source arrays, from the Barents Sea. The available data for

this study consists of 255 inlines, 3172 crosslines and 1000 temporal samples with

a sampling rate of 4 ms. The size of the 4D binning grid was set to 6.25 × 8.33

m2 (inline×crossline), and a scalar offset interval of 50 m with 25 m as the nearest

absolute offset. We extracted a subset of the data consisting of 10 offset-classes, from

25-475 m, for training and demonstration. Binning of traces was done by keeping

only the trace nearest to the bin-center. To fit the model to the observed data we

used the same number of batches and the same patch size as in the synthetic study.
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The patches define the observed data examples D = {d[i]}Pi=1 for P = 5184 number of

examples. With this setup, training took approximately 7 minutes for each epoch for

a total of 150 epochs. The computed mean squared error (MSE) of the data misfit

during training is displayed in Figure 8. After training, reconstruction of the input

data of size 255× 2000× 400× 10 took approximately 2 min.

We compare the proposed RCAE to a full production flow from a contractor

company. Their approach is based on a 5D interpolation approach employing the

ALFT algorithm (Xu et al., 2005). We will refer to this approach as the industry-

standard processing (ISP). We will in this example, visually assess the quality of the

two approaches. We also asses the results after migration to compare the structural

definition of the geology after imaging. Both approaches, ISP and the RCAE, include

normal-moveout (NMO) correction in their workflows.

Figure 9 shows examples from the 25 m offset on time-slices, where the observed

data (Figure 9a-b) display a challenging interpolation setting. We observe that the

RCAE reconstruction (Figure 9c-d) and the ISP interpolation (Figure 9e-f) manage

to fill in data with slightly different characteristics. The ISP is noisier with hori-

zontally aligned striped artifacts. In the center of the zoomed sections Figure 9d

and f we observe a feature dipping at 45deg downwards from left to right in the

RCAE reconstruction. This feature is not present in the ISP. However, the feature is

observable in the 125 m offset-class in both ISP and RCAE, as displayed in Figure

10d and f. This implies that the feature does not represent a false structure in the

reconstructed 25 m offset from RCAE. On the other hand, we observe slightly more
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dipping structures in the ISP, which is prominent in the crossline direction displayed

in Figure 11a, b and c. From the f − k domain displayed in Figure 12 it is difficult

to compare the overall difference between the two approaches.

To compare the ability of the two approaches to preserve the structural definition

of the geology, we migrate the results from the RCAE reconstruction and the ISP

interpolation using 3D pre-stack Kirchhoff time migration. The migrated sections

from the 25 m offset are displayed as time-slices in Figure 13 and as stacked offsets

from 25-475 m in Figure 14. We see that the RCAE reconstruction (Figure 13a-b)

shows fewer migration artifacts and clearer structural definition in the near-offset

compared to the ISP (Figure 13c-d). We also observe that the general structural

definition in the migrated 25 m offset-class from the RCAE (Figure 13a-b) is closer to

the stacked offset section (Figure 14a-b), than what is displayed by the ISP (Figure

13c-d) when compared to its corresponding stacked section (Figure 14c-d). This

implies improved reconstruction of wavefield patterns using RCAE in the sparse near-

offsets. This is also prominent on the crossline sections displayed in Figure 15, where

the RCAE (Figure 15a) display a more similar character to the stacked offset (Figure

15b) and more prominent fault patterns and fewer migration artifacts, than what is

displayed by ISP in the migrated 25 m (Figure 15c). However, we observe that the

RCAE and ISP display similar characteristics in the offset stacked migrated sections.
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DISCUSSION

The multidimensional wavefield reconstruction by inversion is complex by nature due

to the natural ill-posedness of the problem. To solve the inverse problem directly

using a deep learning-based methodology, we extend the typical 2D approaches into

4D. This has advantages over the aforementioned image-based approaches due to

the additional dimensions that allow for more trace contribution for learning local

correlations. In addition, in the absence of labeled training data we have shown that

the RCAE offers a promising alternative to the supervised deep learning techniques

and compares with state-of-the-art processing from the industry.

The proposed method may also be considered as a more general approach for in-

verse problems, where the masking operator implies that we solve a special case of

noise pattern, i.e., multiplicative noise by forcing parts of the data to zero. Therefore,

the proposed method offers greater range of applications over pure interpolation algo-

rithms. For instance, if the masking operator in expression 17 is equal to the identity

operator this would be a deep learning-based TV regularized optimization problem

for additive noise suppression. In addition, the TV-norms implemented here are also

well established in super-resolution theory, which implies an even broader use of the

proposed methodology.

The bottleneck for inversion by deep learning, is the training stage. Training the

model can take a few hours or up to days, which depends on the network architecture,

available computational power and convergence rate of the optimization algorithm.

The main advantage of the unsupervised compared to the supervised approach is
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that there is no need for a labeled data set. However, as shown in the synthetic

example, the current methodology struggles with conflicting dips. A possible solution

to this problem would be to use a semi-supervised approach, by augmenting the data

set with a few labeled input-target pairs with these patterns, such that the model

learns to reconstruct conflicting dips more accurately. In addition, if the trained

model does not generalize well to different data sets, i.e., different wavefield character,

frequency content and binning setup, then a transfer learning approach could be

employed. In this case, the initial model corresponds to the learned parameters

from this data set, rather than model parameters initialized to small random values.

This may save computational time in the optimization stage due to the model being

closer to an optimal local minimum. Comparing the DIP approach to the RCAE,

DIP actually benefits from having more uniform energy in the input compared to

irregularly sampled data with many zero-traces. As we experienced, using the sparse

data as input caused problems and was susceptible to overfitting with overly smooth

results in the interpolated traces. In our case, this was simply fixed by introducing a

nearest-neighbor like interpolation, i.e., a non-convolutional layer, within the forward

pass of the network. Compared to traditional techniques, the RCAE automatically

tries to learn an optimal set of kernel functions, which are representative of the

wavefield patterns in the observable data. Once the RCAE is learned, reconstruction

of the 4D wavefield is achieved automatically.

Another issue that complicates the multidimensional reconstruction using CNNs,

is that binning is necessary because the convolutions are applied to regular grids.
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First, large bin sizes cause many traces to overlap within bins, which implies that

traces need to be excluded or averaged. On the other hand, small bin sizes leads to

sparser offset cubes and makes the reconstruction problem more challenging. Second,

jittering effects —or saw tooth patterns— appears and increases with offset, which

causes problems for learning an accurate wavefield pattern in the shallow part of the

record. Since jittering increases with offset, this limits the number of offsets as input

to the RCAE. Thus, there is a trade-off between bin size and the jittering introduced

by increasing the number of offsets as input to the CNN. This changes from data

set to data set and depends on the data- and regularization setup. Also, since the

methodology proposed here is a 4D approach, we give up azimuth information. One

possible extension to 5D, would be to bin the data to separate azimuth volumes.

However, this would further complicate the problem, since the number of offset cubes

increases and with a sparser distribution of traces. Many of the issues pointed out here

have not been explored in the synthetic study, and is therefore something that should

be enlightened in future studies using CNNs for the multidimensional reconstruction

problem.

In the case of CNN architecture, the focus of this study is not finding an optimal

architecture for the multidimensional reconstruction problem. As mentioned in the

section ”Convolutional autoencoder for multidimensional reconstruction”, downsam-

pling of features is advantageous since smaller kernels captures larger regions, but the

exponential increase in the number of features puts a limit on the number of down-

sampling layers. Adding additional complexity to the network is not trivial, since

30

Page 30 of 60GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/1

6/
21

 to
 7

7.
24

1.
96

.1
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
09

9.
1



this may increase the difficulty of training a robust model, and because the 3D CAE

approach is by itself computationally demanding.

CONCLUSION

In this paper, we investigated the potential of unsupervised deep learning as a tool

for multidimensional wavefield reconstruction. The proposed method is based on a

4D approach employing a 3D CNN with offset-classes as the input feature space. The

network architecture is based on an encoder-decoder network with an overcomplete

latent representation. To stabilize the solution, we proposed a combination of three

explicit regularization penalties including `2-norm penalty on the network parame-

ters and a first- and second-order TV-norm on the model. We tested the proposed

method on synthetic broadband data and a field data set from the Barents Sea rep-

resented by a 3D source-over-cable acquisition. We visually assessed the results and

compared them with an industry-standard Fourier based processing flow, both af-

ter reconstruction and in the migrated domain. In the near-offsets, our approach

showed in general a less noisy character, improved structural definition compared

to the industry-standard approach. In the migrated sections, our approach showed

improved structural definition and fewer migration artifacts in the near-offsets com-

pared to the industry-standard approach. However, the results from the two methods

display similar structural definition after stack of migrated offsets. The unsupervised

deep-learning approach proposed in this paper has shown to be an effective tool for

multidimensional wavefield reconstruction. For further improvements and robustness
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of the model more inline sections should be included. A more sophisticated binning

strategy along with other type of network designs should also be considered in future

research.
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List of figures

Figure 1: This figure shows an illustration of a a source-over-cable survey employing

both a streamer vessel and source vessel, and time-slices of a 4D binned wavefield from

this type of survey with bin centers at b 25 m and c 125 m and their zoomed sections

d-e, respectively. Adding near-offsets increases the complexity of the interpolation

problem due to an even sparser distribution of traces, where the largest distances are

≈160 m in the 25 m offset section.

Figure 2: An autoencoder consists of two functional transitions from input d ∈ RN

to the output d̂ ∈ RN . The encoder transition φ : d → ζ takes the input and

transforms it to a latent feature space ζ ∈ RK , followed by the decoder transition

ψ : ζ → d̂, where the output represents an approximation of the input. In case of a

undercompleteness we have N > K where the input data is represented on a lower-

dimensional space. For b overcompleteness we have N ≤ K and thus represents the

data on a higher-dimensional space.

Figure 3: In the direct problem, the transformation S(·) is applied to a com-

plete wavefield m. The inverse problem aims to obtain an approximation m̂f of the

complete wavefield m from the observed wavefield d. Here, we show the wavefield

reconstruction case where S(·) is represented by a masking operator M.

Figure 4: Water bottom model of bathymetry data from side-scan sonar, in ad-

dition to a set of diffraction lines beneath. The model is defined on a grid size of

6.25× 6.25 m2. The red rectangle depicts the modelling area.
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Figure 5: A crossline section from a the ground truth, b the observed wavefield, c

the predicted wavefield, d the difference between a and c, and e-h shows the ground

truth, observed, predicted and difference in the f − k domain, respectively. The red

and yellow boxes indicates the zoomed sections in the wiggle plots shown in Figure

6.

Figure 6: Zoomed section from the a,d ground truth, b,e predicted wavefield and

c,f difference from the crossline section in Figure 5 marked by the red and yellow

boxes.

Figure 7: Time-slices from the 12.5 m offset-class, with a the ground truth, b the

observed wavefield, c predicted wavefield and d the difference between a and c.

Figure 8: The computed MSE from the data misfit function L(d,Lmf ) during

training.

Figure 9: Time-slices from the 25 m offset-class, where a-b the observed data

show a challenging interpolation setting with large gaps between traces. From c-d

the RCAE reconstruction and e-f the ISP interpolation we observe in general a noisier

character within the ISP. In addition, the feature observed within d the zoomed RCAE

section annotated by the red arrow, is not present in f the zoomed ISP section.

Figure 10: Time-slices from the 125 m offset, where a-b displays the observed

data. From c-d the RCAE is less noisy compared to e-f the ISP. However, the ISP

interpolation display parts of the feature that was not present in the 25 m offset. The

RCAE display this feature in both the 25 m offset and in the 125 m offset.
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Figure 11: A crossline section from a the observed data, b the RCAE reconstruc-

tion and c the ISP. Here, we observe slightly more dipping energy in the ISP compared

to the RCAE.

Figure 12: The crossline sections from Figure 7 displayed in the f − k domain

where a is the observed data, b the RCAE reconstruction and c the ISP.

Figure 13: Time-slices after migration of the 25 m offset, where a show the RCAE

reconstruction and c show the ISP, with b and d as their corresponding zoomed

sections, respectively.

Figure 14: Time-slices of the offset stacked migrated from 25-475 m, where a show

the RCAE reconstruction and b show the ISP, with c and d as their corresponding

zoomed sections, respectively.

Figure 15: Crossline sections after migration from the 25 m offset and offset

stacked from 25-475 m. The migrated 25 m offset from a the RCAE reconstruction

and b from the ISP. The offset stack from 25-475 m are shown in c and d from the

RCAE and ISP, respectively.

List of tables

Table 1: The example CNN used in this study. The number of input features, i.e.,

offset-classes is given by Nh, where we have used Nh = 10.

Table
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Figure 1: This figure shows an illustration of a a source-over-cable survey employing both a streamer vessel 
and source vessel, and time-slices of a 4D binned wavefield from this type of survey with bin centers at  b 

25 m and c 125 m and their zoomed sections d-e, respectively. Adding near-offsets increases the 
complexity of the interpolation problem due to an even sparser distribution of traces, where the largest 

distances are ∼160 m in the 25 m offset section. 
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Figure 2: An autoencoder consists of two functional transitions from input d∈RN to the output d  ∈RN. The 
encoder transition Φ:d → ζ takes the input and transforms it to a latent feature space ζ∈RK, followed by the 

decoder transition Ψ:ζ → d  , where the output represents an approximation of the input. In case of a 
undercompleteness we have N > K where the input data is represented on a lower-dimensional space. For b 

overcompleteness we have N ≤ K and thus represents the data on a higher-dimensional space. 

97x73mm (300 x 300 DPI) 

Page 46 of 60GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/1

6/
21

 to
 7

7.
24

1.
96

.1
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
09

9.
1



 

Figure 3: In the direct problem, the transformation S(·) is applied to a complete wavefield m. The inverse 
problem aims to obtain an approximation m  of the complete wavefield m from the observed wavefield d. 

Here, we show the wavefield reconstruction case where S(·) is represented by a masking operator M. 
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Figure 4: Water bottom model of bathymetry data from side-scan sonar, in addition to a set of diffraction 
lines beneath. The model is defined on a grid size of 6.25×6.25 m2. The red rectangle depicts the modelling 

area. 
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Figure 5: A crossline section from a the ground truth, b the observed wavefield, c the predicted wavefield, d 
the difference between a and c, and e-h shows the ground truth, observed, predicted and difference in the 
f-k domain, respectively. The red and yellow boxes indicates the zoomed sections in the wiggle plots shown 

in Figure 6. 
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Figure 6: Zoomed section from the a,d ground truth, b,e predicted wavefield and c,f difference from the 
crossline section in Figure 5 marked by the red and yellow boxes. 
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Figure 7: Time-slices from the 12.5 m offset-class, with a the ground truth, b the observed wavefield, c 
predicted wavefield and d the difference between a and c. 
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Figure 8: The computed MSE from the data misfit function L(d;θ) during training. 
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Figure 9: Time-slices from the 25 m offset-class, where a-b the observed data show a challenging 
interpolation setting with large gaps between traces. From c-d the RCAE reconstruction and e-f the ISP 
interpolation we observe in general a noisier character within the ISP. In addition, the feature observed 

within d the zoomed RCAE section annotated by the red arrow, is not present in f the zoomed ISP section. 
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Figure 10: Time-slices from the 125 m offset, where a-b displays the observed data. From c-d the RCAE is 
less noisy compared to e-f the ISP. However, the ISP interpolation display parts of the feature that was not 
present in the 25 m offset. The RCAE display this feature in both the 25 m offset and in the 125 m offset. 
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Figure 11: A crossline section from a the observed data, b the RCAE reconstruction and c the ISP. Here, we 
observe slightly more dipping energy in the ISP compared to the RCAE. 
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Figure 12: The crossline sections from Figure 7 displayed in the f-k domain where a is the observed data, b 
the RCAE reconstruction and c the ISP. 
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Figure 13: Time-slices after migration of the 25 m offset, where a show the RCAE reconstruction and c show 
the ISP, with b and d as their corresponding zoomed sections, respectively. 
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Figure 14: Time-slices of the offset stacked migrated from 25-475 m, where a show the RCAE reconstruction 
and c show the ISP, with b and d as their corresponding zoomed sections, respectively. 

80x89mm (300 x 300 DPI) 

Page 58 of 60GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2022 Society of Exploration Geophysicists

D
ow

nl
oa

de
d 

11
/1

6/
21

 to
 7

7.
24

1.
96

.1
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
09

9.
1



 

Figure 15: Crossline sections after migration from the 25 m offset and offset stacked from 25-475 m. The 
migrated 25 m offset from a the RCAE reconstruction and b from the ISP. The offset stack from 25-475 m 

are shown in c and d from the RCAE and ISP, respectively. 
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Table 1: The example CNN used in this study. The number of input features,
i.e. offset-classes is given by Nh, where we have used Nh = 10.

Layer Kernel Convolution Stride
l=1 7 × 7 × 7 ×Nh × 90 Regular 2 × 2 × 2
l=2 5 × 5 × 5 × 90 × 810 Regular 2 × 2 × 2
l=3 3 × 3 × 3 × 810 × 810 Regular 1 × 1 × 1
l=4 3 × 3 × 3 × 810 × 90 Transposed 2 × 2 × 2
l=5 3 × 3 × 3 × 90 × 64 Transposed 2 × 2 × 2
l=6 3 × 3 × 3 × 64 × 32 Regular 1 × 1 × 1
l=7 3 × 3 × 3 × 32 ×Nh Regular 1 × 1 × 1
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