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ABSTRACT
We demonstrate that highly accurate joint redshift–stellar mass probability distribution functions (PDFs) can be obtained using
the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available. As an example, we use
the Dark Energy Survey (DES), combined with the COSMOS2015 catalogue for redshifts and stellar masses. We build two
ML models: one containing deep photometry in the griz bands, and the second reflecting the photometric scatter present in the
main DES survey, with carefully constructed representative training data in each case. We validate our joint PDFs for 10 699
test galaxies by utilizing the copula probability integral transform and the Kendall distribution function, and their univariate
counterparts to validate the marginals. Benchmarked against a basic set-up of the template-fitting code BAGPIPES, our ML-based
method outperforms template fitting on all of our predefined performance metrics. In addition to accuracy, the RF is extremely
fast, able to compute joint PDFs for a million galaxies in just under 6 min with consumer computer hardware. Such speed
enables PDFs to be derived in real time within analysis codes, solving potential storage issues. As part of this work we have
developed GALPRO1, a highly intuitive and efficient PYTHON package to rapidly generate multivariate PDFs on-the-fly. GALPRO

is documented and available for researchers to use in their cosmology and galaxy evolution studies.

Key words: methods: data analysis – methods: statistical – galaxies: evolution – galaxies: fundamental parameters – software:
data analysis – software: public release.

1 IN T RO D U C T I O N

The next generation of photometric surveys such as the Rubin
Observatory Legacy Survey of Space and Time (LSST; LSST
Science Collaboration 2009) and Euclid (Laureijs et al. 2011) will
observe billions of galaxies. The sheer amount of data generated
will enable studies ranging from the cosmic large-scale structure,
to the formation and evolution of galaxies, to be conducted in

� E-mail: sunil.mucesh.18@ucl.ac.uk
1https://galpro.readthedocs.io/

unprecedented detail; ultimately leading to a transformation in our
understanding of the Universe. However, one of the key challenges
will be developing algorithms that can quickly and reliably extract
physical properties and redshifts of galaxies.

The success of many scientific analyses critically hinges on
redshift measurements. For example, redshifts are required in weak
lensing tomography (Hu 1999); one of the primary probes to unveil
the nature of dark energy. As a result, a large number of methods
now exist to estimate redshifts from photometric data (photo-zs) (see
Salvato, Ilbert & Hoyle 2019, for a review). In general, they are either
physically motivated or data driven.
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Template-fitting methods fall into the former category as they
require prior knowledge in the form of template spectral energy dis-
tributions (SEDs). These templates are fit to the observed fluxes, and
photo-zs are usually determined using chi-square minimization (e.g.
Bolzonella, Miralles & Pelló 2000). Baum (1962) originally applied
template-fitting to estimate photo-zs of elliptical galaxies. Since then,
a plethora of codes has been developed for the task such as HYPERZ

(Bolzonella et al. 2000), BPZ (Benı́tez 2000), LEPHARE (Arnouts
et al. 1999), ZEBRA (Feldmann et al. 2006), EAZY (Brammer, van
Dokkum & Coppi 2008), and BCNZ2 (Eriksen et al. 2019).

The fundamental principle behind data-driven methods is to learn
a mapping between photometry and redshift using training data.
Connolly et al. (1995) used a polynomial function for the mapping.
However, since the new millennium, machine learning (ML) methods
have become popular as they are able to learn more complex
mappings. Once trained, ML algorithms can make predictions on
‘new’ galaxies. As with template-fitting, a large number of ML
algorithms have been used to predict photo-zs. These include artificial
neural networks (ANN; Firth, Lahav & Somerville 2003; Collister
& Lahav 2004; Sadeh, Abdalla & Lahav 2016), support-vector
machines (SVM; Wadadekar 2005), self-organizing maps (Geach
2012; Way & Klose 2012; Carrasco Kind & Brunner 2014), Gaussian
process regression (Way & Srivastava 2006), genetic algorithms
(Hogan, Fairbairn & Seeburn 2015), k-nearest neighbours (kNN;
Ball et al. 2007), boosted decision trees (Gerdes et al. 2010), random
forests (RF; Carliles et al. 2008; Carrasco Kind & Brunner 2013; Rau
et al. 2015) and sparse Gaussian framework (Almosallam et al. 2016).
Furthermore, deep learning methods have also been implemented
(Hoyle 2016; D’Isanto & Polsterer 2018; Pasquet et al. 2019).

Galaxies are described by a wide range of physical properties, with
stellar mass, star formation rate, age, and metallicity being among
the most important. Template-fitting codes such as FAST (Kriek et al.
2009), CIGALE (Burgarella, Buat & Iglesias-Páramo 2005; Noll et al.
2009; Boquien et al. 2019), MAGPHYS (da Cunha et al. 2011), and
BMASTELLARMASSES (Palmese et al. 2020a) have been specifically
designed to output these quantities. Meanwhile, the application of
ML in this field has been fairly limited, but literature has now begun
to emerge (Acquaviva 2016; Stensbo-Smidt et al. 2016; Bonjean
et al. 2019; Delli Veneri et al. 2019).

While single-value (point) estimates are useful, probability
distribution functions (PDFs) have become increasingly important
in recent years as a full characterization of the uncertainties, beyond
a point estimate and an error bar, is required for accurate analyses.
This has been particularly true in the role of redshifts for weak
lensing cosmology (e.g. Bonnett et al. 2016), where it has been
shown that using distributions instead of point estimates can improve
the accuracy of cosmological measurements (Mandelbaum et al.
2008; Myers, White & Ball 2009). It is possible to extract redshift
PDFs using both template-fitting and ML methods. However, ML
methods have recently grown in use due to their efficiency. For
example, packages such as ARBORZ (Gerdes et al. 2010), TPZ

(Carrasco Kind & Brunner 2013), SOMZ (Carrasco Kind & Brunner
2014), SKYNET (Bonnett 2015), and ANNZ2 (Sadeh et al. 2016)
all have foundations in ML. To reach a consensus on the best
algorithm in terms of PDF accuracy, Schmidt et al. (2020) and
Euclid Collaboration: Desprez et al. (2020) have compared a dozen
or more popular algorithms from both approaches.

The redshift and physical properties of a galaxy, measured
via modelling its photometry, are correlated, and thus should be
described with a multivariate distribution. The commonly used
marginal distributions in redshift, stellar mass, etc., constitute a loss
of information and could potentially introduce biases into a scientific

analysis as a result. Consequently, a new class of template-fitting
codes has come to the fore such as BAYESED (Han & Han 2012,
2014, 2019), BEAGLE (Chevallard & Charlot 2016), and BAGPIPES

(Carnall et al. 2018). They utilize Bayesian statistical techniques such
as Markov chain Monte Carlo (Goodman & Weare 2010; Foreman-
Mackey et al. 2013) and nested sampling algorithms (Skilling 2006;
Feroz & Hobson 2008, Feroz, Hobson & Bridges 2009; Feroz et al.
2019) to generate multivariate posterior distributions of the most
important properties. By estimating redshift and physical properties
simultaneously, they allow for any uncertainties on redshift to prop-
agate to the statistical constraints on physical properties, whilst ac-
counting for any potential correlations (Chevallard & Charlot 2016).
The only drawback is that it is not feasible to obtain these distributions
for a large number of galaxies. For example, BAGPIPES takes on aver-
age a few minutes to fit each galaxy, making it prohibitively expensive
to fit modern data sets where sample numbers can exceed hundreds of
millions, let alone upcoming surveys where the numbers will exceed
a billion. Moreover, the results of the fit to each galaxy must somehow
be stored in a way that is accessible to scientific analysis routines.

Based on the speed and the competitive performance of ML
algorithms when used to estimate photo-zs, it is possible that an
ML approach to the problem could be promising. With this in
mind, we take a significant step towards realizing the ultimate goal
of extracting full posterior distributions of galaxy properties using
ML by first focusing on 2D posterior distributions of redshift and
stellar mass. We choose these properties as they are two of the most
important and accurate to predict (Walcher et al. 2011; Conroy 2013).
Furthermore, joint PDFs are straightforward to visualize and thus
ideal for uncovering any hidden correlations or degeneracies that
exist between the properties.

Joint redshift–stellar mass PDFs have many potential science
applications such as determining the evolution of the stellar mass
function (SMF; e.g. Papovich, Dickinson & Ferguson 2003; Mort-
lock et al. 2015; Capozzi et al. 2017), the cross-correlation function
between galaxies and galaxy groups (Yang et al. 2005), understand-
ing the connection between stellar mass and dark matter in galaxy
clusters (Palmese et al. 2016, 2020a), and the stellar-to-halo mass
relation (SHMR; see Wechsler & Tinker 2018, for an overview).
However, their storage remains a potential issue. Unless there is a
revolution in data storage, it will not be feasible to store a large
number of multivariate PDFs. To solve this dilemma, we have
developed GALPRO, a highly intuitive and efficient PYTHON package
for rapid, on-the-fly generation of n-dimensional PDFs. GALPRO

is documented and available for fellow researchers to use in their
analyses at https://galpro.readthedocs.io/.

An interesting application of GALPRO could be to generate
joint redshift – luminosity PDFs for measurements of the Hubble
constant from gravitational wave events that lack an electromagnetic
counterpart (Schutz 1986; Palmese et al. 2019; Soares-Santos et al.
2019). The use of full redshift PDFs rather than point estimates
is very important for standard siren measurements (Palmese et al.
2020b), and the inclusion of joint redshift–luminosity PDFs allows
one to correctly define the selection function of the galaxy sample at
the same time.

The outline of this paper is as follows. In Section 2, we give a
brief introduction to ML, describe the RF algorithm and outline the
method we use to extract point estimates, marginal and joint posterior
probability distributions of redshift and stellar mass. In Section 3,
we describe the pre-processing steps we perform to construct the
necessary data sets. In Section 4, we describe the different RF models
we train and explain the motivation behind them. We compare,
discuss, and validate our results in Section 5, and place them into a
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familiar context via a comparison to those achieved by BAGPIPES in
Section 6. Finally, we summarize this work in Section 7.

2 MAC H I N E L E A R N I N G

ML is a subset of artificial intelligence that focuses on the develop-
ment of computer algorithms that can learn to make predictions or
decisions without being explicitly programmed to do so. In general,
there are three types of ML algorithms: supervised, unsupervised,
and reinforcement learning. With supervised learning, the algorithm
is given labelled data (i.e. the correct answers), and it learns a
mapping between the input and target features. On the other hand,
unsupervised learning algorithms are not given any labelled data and
are left to their own accord to find structure and discover hidden
patterns within data. Lastly, reinforcement learning algorithms give
computers the ability to interact with a dynamic environment to
achieve a predefined goal.

The application of ML in astrophysics began as early as the 1990s
with the use of ANNs for star–galaxy separation (e.g Odewahn
et al. 1992) and morphological classification of galaxies (e.g Storrie-
Lombardi et al. 1992). With the advent of large-scale surveys such
as the Sloan Digital Sky Survey (SDSS; Gunn et al. 2006) and more
recently, the Dark Energy Survey (DES; The Dark Energy Survey
Collaboration 2005; Dark Energy Survey Collaboration 2016; Lahav
et al. 2020), ML algorithms have been widely adopted to cope with
the enormous influx of data and to do novel science (see Baron
2019, for a recent review). This trend is likely to continue with the
next generation of surveys such as the Rubin Observatory LSST
(LSST Science Collaboration 2009) and Euclid (Laureijs et al. 2011)
as they will produce an order of magnitude more data than the
previous. In the next section we describe the RF algorithm and
outline our method for estimating joint redshift–stellar mass posterior
probability distributions.

2.1 Random forest

RF (Breiman 2001) is a supervised learning algorithm based on
ensemble learning, as it utilizes many decision trees to make
predictions. These trees are a type of data structure, which allow
one to make a decision using a series of yes/no questions, and they
can be used for regression and classification. They are built using
a recursive algorithm that splits the data usually into two groups at
each step until some predefined threshold is achieved. The job of
the algorithm is to identify groups that have similar input and target
features and is therefore related to the kNN algorithm (Altman 1992).
The main components of the decision tree are the root, decision, and
leaf nodes. The root node defines the first and the most optimum
split. The decision nodes describe the subsequent splits, and the leaf
nodes contain the final groups.

The exact process of building a decision tree is as follows. At each
step, all possible splits are evaluated in all dimensions of the input
feature space. For classification, the data are split to best separate
different classes, and this is achieved by maximizing the information
gain, or in other words, minimizing the impurity using metrics such
as the information entropy, Gini entropy, and classification error
(Carrasco Kind & Brunner 2013). For regression, the data are split
such that the average values of the target variable are representative
of the groups. Usually, the variance is minimized to accomplish this
using the loss function:

S = 1

nm

∑
m

∑
iεm

(ỹi − ȳm)2, (1)

where nm is the number of data points in a group, m, ỹi are the values
of the target variable in the group, and ȳm is the group mean of the
target variable.

Once the decision tree is built or trained, it can be used to make
predictions. If the training data used to build the tree are complete
and representative, then a new datum will end up in a leaf node that
is representative of itself. The content of the leaf node can then be
used to make a prediction. For classification, the prediction is the
mode, and for regression, it is the mean of the leaf node.

The simplicity of the decision tree algorithm makes it one of the
most popular learning mechanisms. However, decision trees only
perform well on training data as they are prone to overfitting. The RF
algorithm solves this issue by constructing multiple decision trees
and by making a few adjustments. For example, when building the
decision trees, only a subset of the training data and features is used.
This technique is called feature bagging and injects randomness,
making RFs more flexible and better suited to make predictions on
data not encountered before. By using multiple decision trees in
combination with feature bagging, RF aims to preserve the low bias
of a single decision tree whilst simultaneously reducing variance to
successfully navigate the bias-variance trade-off. In summary, a RF
can be built using the following process:

(i) Create a bootstrapped data set by sampling randomly from the
training data with replacement.

(ii) Choose a random subset of input features when building a
decision tree using the bootstrapped data.

(iii) Repeat the process to build multiple decision trees, thus
creating a ‘forest’.

The process of predicting with a RF is similar to predicting with
a single decision tree. The only difference is that predictions from
all the decision trees are collated. For classification, the prediction
is the most predicted class, and for regression, it is the mean of all
the values predicted by the decision trees. As is the case with many
ML algorithms, RF has hyperparameters, which need to be specified
beforehand. These hyperparameters can be tuned to give the best
performance, and some of the most important are as follows:

(i) n estimators – The number of decision trees used to build
the RF determines its effectiveness. Each decision tree is built using
a subset of training data. As a result, if the number used is too
small, then the likelihood of complete coverage of the training data
decreases, resulting in poor performance. The performance improves
as the number of trees increases, but at a cost, which is the time taken
for training. The key is to find the right balance between performance
and training time because the gains become negligible after a certain
point.

(ii) max features – The maximum number of features con-
sidered at each step when building the decision trees controls the
correlation between them and hence, the flexibility of the RF. Usually,√

N features are sufficient to build each decision tree, where N is the
total number of input features.

(iii) max depth – The maximum depth defines the number of
levels in the decision tree, and it determines how finely or coarsely
the training data are grouped. A low depth leads to underfitting,
and if the depth is too high, it may lead to overfitting. In essence, the
maximum depth provides a stopping criterion. The minimum number
of training samples in a leaf node (min samples leaf), and the
minimum number of training samples in a leaf node before the data
are split (min samples split) also serve the same purpose.
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2.2 Joint PDF estimation method

The RF algorithm has previously been utilized to extract point
estimates (Carliles et al. 2008, 2010) and PDFs (Carrasco Kind
& Brunner 2013) of redshift. Recently, Bonjean et al. (2019) used
the algorithm to predict stellar masses and star formation rates of
galaxies. They built a single model to predict both target variables
simultaneously. The process of building decision trees to achieve this
is conceptually similar to building them to predict one target variable.
The only difference is that at each step, to decide the best split, the
average loss function for two or more variables is minimized. In
equation (1), ỹi and ȳm are now a vector of target variables and the
means, respectively. As this loss function is scale dependant, the
target variables must be transformed to place them on scales with
similar ranges otherwise the variance of one will dominate, resulting
in the algorithm expending more effort in getting one target variable
correct at the expense of others (Breskvar, Kocev & Džeroski 2018).
Once trained, the leaf nodes in the decision trees contain values of
the target variables.

We apply this methodology to predict redshift and stellar mass
simultaneously, thus preserving any correlation between the prop-
erties. As both variables are continuous, we use regression trees to
build the forest. However, it is entirely possible to use classification
trees as shown by Gerdes et al. (2010) and Carrasco Kind & Brunner
(2013). Another motivation for using regression trees is that they are
generally faster to train and better suited to non-uniform data. To
summarize the process,

(i) galaxies cluster together in n-dimensional space if they have
comparable values of input features.

(ii) the algorithm identifies these clusters by minimizing the loss
function (equation 1), with redshift and stellar mass being the target
variables.

(iii) these clusters end up in the leaf nodes of the decision trees. In
the end, the leaf nodes contain redshifts and stellar masses of similar
galaxies.

We extract point estimates of redshift and stellar mass by running
a ‘new’ galaxy down all the decision trees and using the mean of all
the predicted values. To build marginal posterior distributions, we
aggregate the values of redshift and stellar mass in the leaf nodes
across all the decision trees, respectively. Finally, we combine the
aggregated values to build joint posterior distributions. We would like
to point out that our method is flexible and can be adapted to generate
joint PDFs of any other combination of properties. However, we
chose redshift and stellar mass as they are two of the most important
and accurate properties to predict. Furthermore, the method is flexible
and can be applied to generate n-dimensional PDFs. We describe the
implementation of the RF in this work, and the input features in
Section 4.

3 DATA

We use data from two different surveys to train and test our RF
models. These are the DES (The Dark Energy Survey Collaboration
2005, 2016; Lahav et al. 2020) and the Cosmological Evolution
Survey (COSMOS; Scoville et al. 2007).

3.1 Cosmological Evolution Survey

The COSMOS observed a 2 deg2 equatorial field in the entire
spectral range from radio to X-ray with both ground and space-
based telescopes, collecting photometric and spectroscopic data. In

this field, ∼2 million galaxies were detected, spanning 75 per cent
of the age of the Universe (Scoville et al. 2007).

We use the COSMOS2015 (Laigle et al. 2016) catalogue from
the field for its photo-zs and stellar masses. Usually, to train an ML
algorithm to predict photo-zs, spectroscopic redshifts (spec-zs) are
used. However, the photo-zs in this catalogue have been shown to
be precise and accurate. Compared to photo-zs from surveys such
as the DES and the SDSS (Gunn et al. 2006), the COSMOS photo-
zs have been computed using more than 30 bands spanning a huge
portion of the electromagnetic spectrum, as opposed to four or five
optical bands. The most precise photo-zs have been estimated for
very bright, low redshift, star-forming galaxies, with a normalized
median absolute deviation (NMAD; Hoaglin & Mosteller 2000) of
0.007, of which 0.5 per cent are catastrophic outliers. Furthermore,
in the deepest regions of the survey, 90 per cent of galaxies with
stellar mass greater than 1010 M� at z = 4 have been detected. The
high photo-z precision and the overall completeness of the survey
in stellar mass makes this an exemplary data set to use in this
work.

3.2 Dark Energy Survey

The Dark Energy Survey (DES) is a visible and near-infrared survey
that has imaged ∼ 5100 deg2 of the South Galactic Cap 10 times in
grizY photometric bands using the Dark Energy Camera (DECam;
Flaugher et al. 2015) over a span of 6 yr, starting in 2013. It is expected
to have generated ∼310 million galaxies with photo-zs, once all the
data has been processed. In addition, the survey targeted a set of
four fields with a total of 10 DECam pointings over 27 deg2 for (SN)
science. This SN survey had an approximately weekly cadence and
thus many more epochs per pointing than the main survey (Neilsen
et al. 2019). We use two data sets from the DES survey, which are
discussed in the following sections.

3.2.1 DES deep fields

As part of the DES Year 3 (Y3) cosmology analysis, observa-
tions from the SN survey were combined with community data,
additional DES exposures (particularly in u band) and coincident
near-infrared data to form the DES deep fields (DF) catalogue
(Hartley et al. 2020). The principal aims of the DF project are
to improve calibration of redshift distributions in the main survey
and to act as a prior on the population of full multicolour images
for BALROG (discussed in the next section), to better understand
the systematics and selection function of the wide-field (WF)
survey. These goals rely on the fact that the DF represents a
statistically complete, yet effectively noiseless, population of the
galaxies that are found in the WF survey. Other motives include
conducting galaxy evolution studies, science with the faintest pos-
sible sources and the properties of the host galaxies of transient
events.

The Y3 DF catalogue consists of data from three SN fields
plus the COSMOS field, with a total coverage of 5.88 deg2 and
photometry of over 1.7 million objects (after masking for image
defects) in DECam ugriz and VIRCam JHK bands. We combine
the deep (∼1.25 mag fainter than the WF data) and precise griz
photometry in this catalogue with the accurate redshifts and stellar
masses from the COSMOS2015 catalogue to produce a ‘baseline’ DF
data set. Specifically, we utilize the bulge+disc model-fit magnitudes
computed using the Multi-Object Fitting (Drlica-Wagner et al. 2018)
algorithm.
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Our goal is to produce valid posterior PDFs of galaxies in the main
DES survey and to achieve this we require a suitable data set with
which to train a RF model. The photometric errors in the DF data set
would not reflect those in the WF and so would lead to biased results
if used directly as training data. Furthermore, the COSMOS field
does not overlap the main survey area and the redshifts and stellar
masses that could be derived from model fitting to the four-band WF
data are grossly imprecise compared to those in the COSMOS2015
catalogue. In essence, we require a catalogue of DF galaxies that
emulate galaxies in the WF to overcome these issues, and for this,
we take advantage of the BALROG algorithm.

3.2.2 Balrog

BALROG is a PYTHON package designed for the purpose of measuring
the selection function of imaging surveys (Suchyta et al. 2016;
Everett et al. 2020). The process by which it achieves this is as
follows. A realistic ensemble of fake stars and galaxies are generated
using GALSIM (Rowe et al. 2015), including survey characteristics
appropriate to their intended sky location, e.g. seeing FWHM.
The fake objects are then embedded into real survey images, thus
inheriting many of their properties. Finally, the objects are detected
and measured using SEXTRACTOR (Bertin & Arnouts 1996) in the
same way as the original survey images. The output catalogue
comprises a Monte Carlo sampling of the selection function and
measurement biases and naturally accounts for systematic effects
arising from the photometric pipeline, detector defects, seeing and
other sources of observational systematic errors.

The Balrog process requires a prior population of galaxies from
which to draw objects. The DES Y3 Balrog catalogue (Everett
et al. 2020) was produced by injecting model fits of galaxies drawn
randomly from the Y3 DF catalogue into DES Y3 single-epoch
images and then measuring their properties. This catalogue contains
true and measured griz photometry of nearly 4 million objects, and it
provides us with ready-made emulated galaxies that reflect our target
WF data set, the DES Y3 GOLD (Sevilla-Noarbe et al. 2020). By
combining the Y3 Balrog catalogue with COSMOS2015, we obtain
a data set that closely matches and is representative of the WF data,
capturing many of the details of the objects’ noise properties, but
with the addition of accurate redshifts and stellar masses. From the
catalogue, we use composite model magnitudes in this work. In the
next section we outline the pre-processing steps we perform to create
the DF and WF data sets.

3.3 Pre-processing

To construct the DF data set, we first cross-match galaxies in the Y3
DF and the COSMOS2015 catalogues using TOPCAT (Taylor 2005)
with a matching radius of 1 arcsec, and this serves the dual purpose of
enabling the use of accurate photo-zs (PHOTOZ) and stellar masses
(MASS BEST) in our analysis and removing galaxies in all the other
fields besides the COSMOS field. Next, we discard stars and any
galaxies with erroneous redshifts and stellar masses by ensuring 0 <

z < 9.99, and we produce a magnitude-limited sample by selecting
galaxies with i < 23.5. These cuts automatically remove saturated
objects and bad areas. We discover that there are some faint galaxies
with close to zero or even negative fluxes in the grz bands, resulting
in their magnitudes being undefined. To solve this issue, we convert
all galaxy fluxes into ‘asinh’ magnitudes or ‘luptitudes’ (Lupton,

Gunn & Szalay 1999), defined as

μ = μ0 − a sinh−1

(
f

2b

)
, (2)

where μ0 = m0 − 2.5log b, a = 2.5log e, f is the flux, b is an
arbitrary softening parameter, and m0 is the magnitude zero-point.
The authors state that the optimal value of b = √

aσ , where σ is
the standard deviation of the flux. We set the value of σ to be the
median of the standard deviations. Additionally, we transform flux
errors into luptitude errors using

σμ = aσ

2b
. (3)

Luptitudes behave like magnitudes for bright photometry and like
fluxes for faint photometry, with the turning point in the behaviour
determined by the softening parameter. By converting to luptitudes,
we avoid introducing an additional selection effect by not discarding
galaxies with negative fluxes.

To produce the WF data set, we start anew and match ‘WF’
galaxies in the Y3 Balrog catalogue to their counterparts in the
Y3 DF using the ID column. Next, we cross-match the galaxies
in the intermediate catalogue to the COSMOS2015 catalogue. There
are multiple scattered WF copies of each DF galaxy in the Balrog
catalogue to efficiently sample the DES selection function, and to
preserve this we keep all of the copies. This is an important aspect
of our set-up, as it captures the selection function through the galaxy
detection probability as a function of true photometry and light
profile, and the asymmetric scatter between photometry and galaxy
properties (redshift and stellar mass) that it induces. We remove any
galaxies with erroneous flux measurements by selecting all galaxies
with MEAS CM FLAG =0 (Everett et al. 2020). Finally, we repeat
all the aforementioned cuts and steps used in constructing the DF
data set, the only difference being that on this occasion, we apply
the i-band cut to the magnitudes of WF galaxies. Thus, we have
‘augmented’ a completely realistic target data set which effectively
replicates the systematics in the WF survey without compromising
on the accuracy of redshifts and stellar masses.

After all the pre-processing steps, there are 53 491 galaxies in
the DF data set and 393 276 galaxies in the WF data set. Each data
set contains the following information: griz luptitudes and luptitude
errors, photo-zs, and stellar masses. Additionally, we compute all the
relevant lupticolours; and the associated errors using the standard
error propagation formula:

σc =
√

σ 2
μ1

+ σ 2
μ2

, (4)

where σμ1 and σμ2 are the errors on the luptitudes, and σ c is the error
on the computed lupticolour. Fig. 1 shows the marginal and the joint
distribution of redshifts and stellar masses of galaxies in the DF data
set, and the distributions of griz luptitudes. The average redshift and
stellar mass is approximately 0.7 and 5 × 109 M�, respectively. For
the sake of brevity, we do not show a similar figure for the WF data
set as the distributions are broadly similar.

We perform an 80:20 split on the DF and WF data sets to create
their training and testing data sets, respectively. As there are multiple
copies of each galaxy in the WF data set, we ensure that there is no
admixture of unique galaxies in its training and testing data sets. In
other words, unique galaxies that exist in the training data set do
not appear in the testing data set, and vice versa. As a consequence,
there are 314 196 and 79 080 galaxies in the WF training and testing
data sets, respectively. Lastly, we randomly sample 10 699 galaxies
without replacement from the WF testing data set to construct its
final version. We do this to ensure that the number of galaxies in
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Joint redshift–stellar mass PDFs with RF 2775

Figure 1. Marginal and joint distributions of redshifts and stellar masses of galaxies in the DF data set and the distributions of griz luptitudes. The colours in the
joint distribution indicate the density of points. The DF data set is created by cross-matching galaxies in the DES Y3 Deep Fields (DF) and the COSMOS2015
catalogues. All galaxies with erroneous redshift and stellar masses are discarded from the data set, and a magnitude-limited sample is produced by selecting
galaxies with i < 23.5. The griz luptitudes in the data set are computed from fluxes in the Y3 DF catalogue, while the redshifts and stellar masses are from the
COSMOS2015 catalogue.

both the DF and WF testing data sets matches, thus enabling us to
make a fair comparison when testing our RF models.

The training data sets represent prior information that the RF
models utilize in order to make predictions on the test data sets. As a
result, one must construct a suitable and representative training data
set (as we have done) when using outputs from an ML model in their
scientific analysis. In the next section we describe the different RF
models, explain the motivation behind them, and the implementation
of the RF algorithm we use in this work.

4 MODELS AND IMPLEMENTATION

We train and test two different RF models, with redshift and stellar
mass as the target variables and the following as input features:

(i) griz luptitudes
(ii) griz luptitude errors
(iii) g − r, r − i, and i − z lupticolours, and their associated errors

We build the first model using the DF data set and refer to it
as DES-DF from here onwards. The high-precision photometry of
DF galaxies combined with the accurate redshifts and stellar masses
allows us to establish the baseline performance. We build the second
model to produce valid posterior PDFs of galaxies in our target data
set (the DES Y3 GOLD) by training on the WF data set. We refer to
this model as DES-WF.

To train and test our RF models, we use the implementation of the
algorithm in the PYTHON ML package SCIKIT-LEARN. In particular,
we use the RANDOMFORESTREGRESSOR module from the package,
which allows us to do regression. Before training, we do not perform
feature scaling as the RF algorithm is invariant under monotonic
transformations. Furthermore, we do not scale the target features
because redshift and stellar mass (in the logarithmic form) have
similar ranges. Besides, SCIKIT-LEARN automatically normalizes the
variances of individual target variables so that they contribute equally
to the loss function.

As previously discussed in Section 2.1, RF has hyperparameters
that can be tuned to increase the performance of a model. Therefore,
we tune our RF models before training using a combination of
random search and grid search. We first set-up a wide grid of hy-
perparameters and run the models using 100 different combinations.
Next, we use a grid search around the best hyperparameters found in
the previous searches. After tuning, we find that the performance
of the models, in terms of the root-mean-square error (RMSE),
only improves by 1–2 per cent. In principle, one could use metrics
associated with the validity of PDFs (described in Sections 5.2.1
and 5.3.1). However, we opted for the simple RMSE as we do not
believe that there exists a single metric that can fully characterize the
performance of a model. Given the insignificant improvements in
the performance of our models, we ultimately resorted to using the
following default SCIKIT-LEARN hyperparameters for training both
models:
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2776 S. Mucesh et al.

(i) n estimators: 100
(ii) max features: auto
(iii) max depth: none
(iv) min samples leaf: 1
(v) min samples split: 2
(vi) max leaf nodes: none
(vii) min impurity decrease: 0.0
(viii) min impurity split: none
(ix) min weight fraction leaf: 0.0

With these hyperparameters, the decision trees are fully grown,
until the training data can no longer be split. We set max features
toauto instead of

√
N , where N is the total number of input features,

to ensure that our models have sufficient prior information as we are
using a limited number of photometric bands to begin with. We
train and test both models on a 13" Macbook Pro (2.4 GHz Intel
Core i5, 16GB LPDDR3) using GALPRO, and it takes less than 1
and 5 min, respectively, to generate PDFs for 10 699 galaxies. In the
next section, we compare, discuss, and validate the point estimates,
marginal and joint posterior PDFs of redshift and stellar mass of test
galaxies estimated from the trained models.

5 R ESULTS AND DISCUSSION

5.1 Point estimates

We extract point estimates by averaging predictions from all the
decision trees in a given RF model. In order to quantify how the
models are performing, we use the NMAD metric for redshift and
stellar mass. The NMAD is defined as

σNMAD = 1.4826 × median | ŷi − ỹi |, (5)

where ŷi and ỹi are the predicted and ‘true’ values of redshift and
stellar mass of galaxies, respectively. For redshift, the bias ŷ − ỹ is
divided by 1 + ỹ.

Fig. 2 shows the redshifts and stellar masses of test galaxies versus
the predictions made by DES-DF and DES-WF. Most of the data
points lie close to the diagonal, which indicates that the predicted
redshifts and stellar masses are accurate. However, there are outliers
at low and high redshifts and low stellar masses. There is a lack
of training data available in these regions, as can be observed in
Fig. 1. Given the strong correlation between the accuracy of a RF
model and the abundance of training data, these outliers are to be
expected.

Moreover, the degradation in performance could be due to degen-
eracies that exist in the colour–redshift space. For example, at z <

0.2, there is a lack of strong spectral features that can be detected
in the griz bands. Using the u band can break the degeneracies.
However, we do not use it as an input feature as the band is not
available in the DES data. Furthermore, in the redshift range, 1.2 <

z < 2.2, there is a lack of strong spectral features in the visible
bands (Bolzonella et al. 2000). These degeneracies can lead to
incorrect clustering of training galaxies and thus inaccurate point
predictions.

Comparing the two models, the point-estimate performance of
DES-DF is better than DES-WF, with σ NMAD of 0.04 and 0.15 dex
for redshift and stellar mass, respectively. There is a visible increase
in the scatter in the DES-WF plots, and this is reflected in the
values of the performance metric doubling for redshift to 0.08
and increasing by ∼ 73 per cent to 0.26 dex for stellar mass. This
drop in performance is primarily due to the degraded photometric
precision, which makes it difficult for the RF to cluster galaxies,

resulting in inaccurate predictions. Nevertheless, DES-WF still
performs well for a significant portion of test galaxies as can be
observed. On a related note, we also explored the impact on the
performance when predicting one versus two variables. We built
two models each using the DF and WF data sets to predict redshift
and stellar mass separately and found that there was an insignificant
improvement in the performance, with σ NMAD decreasing by 0.001–
0.002.

5.2 Marginal probability distributions

The point estimates we extracted are not perfect. In general, inaccu-
racies can arise from

(i) Incomplete and incorrect information – The information pro-
vided to an ML algorithm may not be sufficient to learn the perfect
mapping between the input features and target variables. For exam-
ple, to estimate redshifts to a high degree of accuracy, spectroscopic
data are required. However, we use photometric data that only
provides a rough sampling of the underlying SED. Furthermore,
the data used for training and testing have to be accurate. In our case,
the redshifts and stellar masses we use to train our RF models may
contain some errors. They have been estimated using the template-
fitting code LEPHARE, which utilizes template SEDs and they may not
be a perfect representation of the true SED. Therefore, the mappings
learnt by the RFs may not be entirely accurate, and this could lead
to the observed errors in the estimates. Furthermore, we predict
redshifts and stellar masses using four band photometry while those
in the COSMOS2015 catalogue are computed using more than 30
bands. Consequently, there will be subtle differences between our
predictions and the ‘truth’.

(ii) Unrepresentative and incomplete training data – The lack of
representative and complete training data can also lead to errors.
In our case, the training data are highly likely to be representative.
However, in some regions, the data are sparse, and therefore do not
provide a complete sampling of the target population. For example, at
low and high redshifts, the number of galaxies available for training
reduces dramatically as can be observed in Fig. 1, and this causes
the performance of the algorithm to suffer. Furthermore, the effect
of sample variance from the small COSMOS area can lead to some
incompleteness.

(iii) ML algorithms and hyperparameters – Different ML algo-
rithms learn using different methods. As a result, predictions on the
same datum can be slightly different. Furthermore, the hyperparam-
eters can also have an effect, as discussed in Section 2.1. However,
the performance of ML algorithms suitable for a specific problem
generally converges given sufficient and good quality training data.

In order to characterize uncertainties associated with our point
estimates, we extract marginal posterior distributions of redshift
and stellar mass. We do this by aggregating the redshift and stellar
mass values in the leaf nodes of the decision trees in a RF that
are representative of the test galaxy in question. We extract the
distributions from the trained models and validate them using several
techniques and metrics described in the next section.

5.2.1 Marginal PDFs validation

Unlike point estimates, it is not possible to validate individual redshift
and stellar mass PDFs as the true distributions are not available.
Consequently, we aim to determine the validity of the marginal PDFs
as a whole. We use the framework developed by Gneiting, Balabdaoui
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Joint redshift–stellar mass PDFs with RF 2777

Figure 2. ‘True’ redshifts and stellar masses of test galaxies versus the predictions made by the DES-DF and DES-WF models. The colours indicate the density
of points. The normalized median absolute deviation (NMAD; Hoaglin & Mosteller 2000) metric values are stated for redshift and stellar mass respectively. For
redshift, the bias ŷ − ỹ is divided by 1 + ỹ in equation (5).

& Raftery (2007), which is founded on the paradigm of maximizing
the sharpness of the predictive distributions subject to calibration.
Sharpness refers to the concentration of predictive distributions and
is a property of the distributions only. The authors describe calibration
as the statistical consistency between the distributions and the truth.
We refer to this as validation as it better captures the essence of use
in our context. However, for consistency, we will use the former
when describing the authors’ work. In this paper, we focus on
calibration to validate the marginal PDFs produced by our models,
rather than sharpness, as the latter is useful when ranking competing
calibrated methods. Furthermore, as demonstrated by Bordoloi, Lilly
& Amara (2010), one could use the framework to empirically
recalibrate marginal PDFs. However, this can be challenging and
could potentially result in unforeseen issues.

Gneiting et al. (2007) introduce three modes of calibration:
probabilistic, marginal, and exceedance. The first two modes are the
most important, and they can be empirically assessed. As a result, we
focus on these to determine if the marginal PDFs produced by our
models are valid and exclude exceedance calibration in our analysis.
Probabilistic calibration can be assessed using the probability integral
transform (PIT; Rosenblatt 1952). It is the cumulative distribution
function (CDF) evaluated at its true redshift or stellar mass:

PIT ≡
∫ ỹ

−∞
f (y)dy, (6)

where ỹ is the ‘true’ redshift or the stellar mass and f(y) is the
marginal PDF. If the marginal PDFs are probabilistically calibrated,
then the true redshifts and stellar masses should be random draws
from their respective distributions. This statement is equivalent to
requiring that the CDF evaluated at the true redshift should not
have a preferred value. In this case, for an ensemble of galaxies,
the distribution of PIT values should follow the standard uniform
distribution (U(0, 1); Dawid 1984), i.e. one percent of galaxies should
have their spec-zs found within the first percentile of their CDFs, and
so on. Deviations from uniformity can be interpreted as follows. If
the marginal PDFs are overly broad, then fewer objects will have true
redshifts in the tails of their PDF, instead being closer to 0.5, and the
PIT distribution will be convex shaped. Conversely, if they are overly
narrow, then the PIT distribution will be concave shaped. Finally, if
the PIT distribution has a gradient, then this means that the marginal
PDFs are biased. In the past, the PIT distribution has been utilized
to determine the validity of redshift PDFs (e.g. Bordoloi et al. 2010;
Polsterer, D’Isanto & Gieseke 2016; Tanaka et al. 2018; Schmidt
et al. 2020; Euclid Collaboration: Desprez et al. 2020).

The uniformity of the PIT distribution is a necessary condition
for marginal PDFs to be valid. However, Hamill (2000) has shown
that uniformity can also arise from biased distributions. Therefore,
probabilistic calibration may not be sufficient in some cases, and
marginal calibration may be required to reach a concrete conclusion.
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2778 S. Mucesh et al.

Figure 3. Redshift and stellar mass PIT distributions for the DES-DF and DES-WF models. These distributions are used to assess the probabilistic calibration
of marginal PDFs of test galaxies produced by the models. They are overlaid with Q–Q plots to highlight deviations from uniformity. The black-dashed and
solid blue lines represent the quantiles of U(0, 1) and PIT distributions, respectively. The percentage of catastrophic outliers along with the values of the
Kullback–Leibler (KL) divergence, Kolmogorov–Smirnov (KS) test, and Cramér-von Mises (CvM) metrics are also stated to quantify uniformity of the PIT
distributions. We define a catastrophic outlier to be any galaxy with a redshift or stellar mass completely outside the support of its marginal PDF.

Figure 4. The difference between the average predictive CDF (F̂I ) and the true empirical CDF (G̃I ) of redshift and stellar mass plotted at different intervals
in their respective ranges. These diagnostic plots are used to assess the marginal calibration of marginal PDFs of test galaxies produced by the DES-DF and
DES-WF models.

Marginal calibration is associated with the equality of the predicted
and true distributions of redshift and stellar mass. Specifically, the
average predictive CDF (F̂I ) is compared to the true empirical CDF
(G̃I ).

F̂I (y) = 1

n

n∑
i=1

Fi(y), (7)

G̃I (y) = 1

n

n∑
i=1

1{ỹi ≤ y}, (8)

where n is the number of test galaxies, Fi is the predicted CDF, ỹi is
the true redshift or the stellar mass of a galaxy, and 1 is the indicator
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Joint redshift–stellar mass PDFs with RF 2779

function, defined as

1{ỹi ≤ y} =
{

1 if True

0 if False
. (9)

If the PDFs are marginally calibrated, then the average predictive
CDF should equal the true empirical CDF. To assess probabilistic
calibration, we check the uniformity of the PIT distributions visually
and use quantile–quantile (Q–Q) plots to highlight deviations. In a
Q–Q plot, the quantiles of one distribution are plotted against the
quantiles of another distribution. In our case, these are the PIT and
U(0, 1). If the two distributions are identical, then the quantiles match
and lie along the diagonal. Furthermore, we use several metrics
to quantitatively determine the uniformity of the PIT distributions
(Schmidt et al. 2020) such as the Kullback–Leibler (KL; Kullback
& Leibler 1951) divergence, Kolmogorov–Smirnov (KS; Shiryayev
1992) test and Cramér-von Mises (CvM; Cramér 1928) test. All
of these metrics measure the similarity between two distributions
in different ways. The KL divergence is defined by the following
integral:

KL ≡
∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx, (10)

where p(x) and q(x) are the reference (U(0, 1)) and target (PIT) PDFs,
respectively. The KS test is a non-parametric test and is the maximum
distance between the empirical distribution function (Fn(x)) and the
CDF (F(x)) of the reference distribution:

KS ≡ supx |Fn(x) − F (x)|, (11)

where supx is the supremum of the set of distances. The CvM is
an alternative to KS test and is more sensitive to the edges of a
distribution:

CvM ≡
∫ ∞

−∞
(Fn(x) − F (x))2dF (x). (12)

A value of zero for the different metrics indicates that there is a
perfect match between the two distributions.

Fig. 3 shows the redshift and stellar mass PIT distributions and Q–
Q plots for the models. The black-dashed line represents the quantiles
of U(0, 1), and the quantiles of the PIT distributions are shown using
the solid blue curves. The values of the metrics, along with the
percentage of catastrophic outliers, are also indicated. We define
a catastrophic outlier to be any galaxy for which the true value
of redshift or stellar mass is completely outside the support of its
marginal PDF.

Visually, the PIT distributions of DES-DF and DES-WF appear
to be uniform, and this is reinforced by the quantiles of the PIT
distributions lying close to the diagonal in the Q–Q plots, if not on
it. Consequently, at first glance, both models seem to be performing
equally well. However, on closer inspection, subtle differences can
be observed in the PIT distributions. The PIT distributions of DES-
DF are more uniform compared to those of DES-WF, and the main
difference arises at the edges. Specifically, the PIT distributions of
DES-WF are slightly concave shaped as indicated by the minor
deviations in the Q–Q plots at the extremes and quantitatively con-
firmed by the significantly larger CvM criterion values. Hence, the
marginal PDFs produced by DES-WF are somewhat overly narrow or
underdispersed. Taking into account the degraded photometry, DES-
WF is still performing admirably with only small increases in the
number of catastrophic outliers compared to DES-DF. Overall, both
models are producing probabilistically calibrated marginal PDFs and
performing at an unprecedented level.

To assess marginal calibration, we plot the difference between the
average predictive and true empirical CDFs of redshift and stellar
mass at regular intervals in their respective ranges. If the PDFs are
marginally calibrated, then only minor fluctuations about the zero
line are expected. Fig. 4 shows the redshift and stellar mass marginal
calibration for the models. There are negligible fluctuations about
the zero line, with maximum deviations of ∼0.005. Therefore, both
models are producing marginally calibrated redshift and stellar mass
PDFs, with DES-DF performing marginally better with a smaller
average deviation compared to DES-WF. To summarize, the marginal
PDFs are both probabilistically and marginally calibrated, thus giving
us confidence that they are valid. Finally, in the next section we
analyse and perform validation checks of the joint redshift–stellar
mass posterior distributions.

5.3 Joint probability distributions

In general, a joint PDF encompasses more information than its
marginals. Therefore, we extract joint redshift–stellar mass PDFs of
test galaxies from DES-DF and DES-WF. We build the distributions
by combining the aggregated values of redshift and stellar mass in the
leaf nodes across all the decision trees. Fig. 5 shows some examples
of the joint PDFs of the same test galaxies produced by the models.
The gold and white stars alongside the dashed lines indicate the
‘true’ and predicted redshifts and stellar masses, respectively. We
remind the reader that the predicted redshifts and stellar masses are
computed by averaging the predictions from all the decision trees in
a RF. Visually, the joint PDFs of the same test galaxy look alike and
occupy similar regions of the redshift–stellar mass space. However,
the joint PDFs produced by DES-WF are more spread out compared
to the ones produced by DES-DF, or in other words, the probability
is more dispersed. This is a reflection of the degraded photometry
in the WF data set. Overall, we do not expect the joint PDFs of the
same galaxy to resemble each other perfectly as both models have
been trained using different data sets.

5.3.1 Joint PDFs validation

It is more challenging to validate joint PDFs compared to marginal
PDFs as the relatively straightforward methods adopted to validate
the latter are no longer applicable. As a result, we use the multivariate
extensions of probabilistic and marginal calibration developed by
Ziegel & Gneiting (2014) to validate joint PDFs in our case. These are
probabilistic copula calibration and Kendall calibration, respectively.
Probabilistic copula calibration can be empirically assessed by using
the copula probability integral transform (copPIT):

copPIT ≡ KH (H (ỹ)), (13)

where H (ỹ) is the joint CDF evaluated at the true redshift and stellar
mass, and KH is the Kendall distribution function, defined as

KH (w) = P (H (y) ≤ w), (14)

where H(y) is the predicted joint CDF and w ∈ [0, 1]. Simply put, the
Kendall distribution function is the CDF of H(y). For marginal PDFs,
it corresponds to the standard uniform distribution and the copPIT
coincides with the PIT. To assess Kendall calibration, we compare
what we refer to as the ‘average Kendall distribution function’ (K̂HI

)
to the empirical CDF of the predicted joint CDFs evaluated at the
‘true’ redshifts and stellar masses (J̃I ):

K̂HI
(w) = 1

n

n∑
i=1

KHi
(w), (15)
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2780 S. Mucesh et al.

Figure 5. Examples of joint redshift–stellar mass PDFs produced by the DES-DF and DES-WF models of the same test galaxies (in rows). The gold and white
stars alongside the dashed lines represent the ‘true’ and predicted redshifts and stellar masses of the galaxies respectively. The predicted redshifts and stellar
masses are computed by averaging the predictions from all the decision trees in the individual RFs. The green circles indicate the values of redshift and stellar
mass in the leaf nodes that are representative of the test galaxies.
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Joint redshift–stellar mass PDFs with RF 2781

Figure 6. copPIT distributions for the DES-DF and DES-WF models. They are overlaid with Q–Q plots to aid in visually assessing the probabilistic copula
calibration of joint redshift–stellar mass PDFs of test galaxies. The black-dashed and solid blue lines represent the quantiles of U(0, 1) and copPIT distributions,
respectively. The percentage of catastrophic outliers along with the values of the Kullback–Leibler (KL) divergence, Kolmogorov–Smirnov (KS) test, and
Cramér-von Mises (CvM) metrics is also stated to quantify uniformity of the copPIT distributions. We define a catastrophic outlier to be any galaxy that is
completely outside the support of its marginal PDFs. Probabilistic copula calibration is the multivariate analogue of probabilistic calibration.

Figure 7. The difference between the ‘average Kendall distribution function’
(K̂HI

) and the empirical CDF of the predicted joint CDFs evaluated at the
‘true’ redshifts and stellar masses (J̃I ), plotted at regular intervals in the
probability space w ∈ [0, 1]. This diagnostic plot is used to assess the Kendall
calibration of the joint PDFs produced by the DES-DF and DES-WF models.
Kendall calibration is the multivariate analogue of marginal calibration.

J̃I (w) = 1

n

n∑
i=1

1{Hi(ỹi) ≤ w}. (16)

Probabilistic copula calibration and Kendall calibration can be
interpreted in the same manner as their univariate counterparts.
As such, probabilistic copula calibration ascertains if the ‘true’
redshifts and stellar masses of galaxies are random draws from
their corresponding joint PDFs, as they should be. If this is the
case, then for an ensemble, the copPIT distribution is uniform, and
the joint PDFs are probabilistically copula calibrated. On the other
hand, Kendall calibration probes how well the dependence structure
between redshift and stellar mass is predicted on average, and can
be understood as marginal calibration of the Kendall distribution.
If K̂HI

is comparable to J̃I , then the joint PDFs are Kendall
calibrated. Once again, if both modes of calibration are satisfied,
then we can claim with some conviction that the joint PDFs are valid
overall. Furthermore, we would like to point out that while we use
probabilistic copula calibration and Kendall calibration to validate

our joint redshift–stellar mass PDFs, they can be applied to validate
higher dimensional PDFs also.

Fig. 6 shows the copPIT distributions for the DES-DF and DES-
WF models. The distributions are uniform with minor deviations
that are more prominent for DES-WF. Overall, both models are
performing well with no substantial differentiation and producing
joint PDFs that are probabilistically copula calibrated. Furthermore,
in comparison to the PIT distributions in Fig. 3, the copPIT distribu-
tions of DES-WF are somewhat less uniform as primarily reflected
by the large CvM value. Hence, the marginal PDFs produced by the
model are better probabilistically calibrated than the joint PDFs.

Fig. 7 shows the difference between K̂HI
and J̃I at regular intervals

in the probability space w. For DES-WF, the fluctuations about
the zero line are smaller compared to those for DES-DF, thus
indicating that the joint PDFs produced by the former are better
Kendall calibrated. We believe that DES-WF is better capturing the
redshift–stellar mass dependence structure as it is trained using the
WF data set that contains multiple scattered copies of the same
DF galaxies, resulting in better incorporation of photometric errors
present in the data into the model. Collectively, the joint PDFs are
less marginal/Kendall calibrated compared to the marginal PDFs as
the deviations are larger in magnitude. However, we hypothesize that
the deviations in the Kendall calibration are not significant given the
complex nature of joint PDFs, and to prove this, we compare our
results to those achieved by the template-fitting code BAGPIPES in
the next section.

6 TEMPLATE-FI TTI NG C OMPARI SON

The different diagnostic plots and the metrics we utilize to validate
the marginal and joint PDFs produced by our RF models are difficult
to fully appreciate without familiar context. Consequently, we utilize
Bayesian Analysis of Galaxies for Physical Inference and Parameter
EStimation, or BAGPIPES (Carnall et al. 2018) to benchmark our
results. BAGPIPES is a PYTHON package that uses MultiNest
(Feroz & Hobson 2008, Feroz et al. 2009, 2019) nested sampling
algorithm to model the emission from galaxies and to fit these models
to any combinations of spectroscopic and photometric data in order
to output multivariate posteriors distributions of parameters such as
redshift and stellar mass, hence making it ideal for comparison.
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Table 1. List of 22 COSMOS bands used to build a ‘truth’
catalogue to validate the marginal and the joint PDFs of redshift
and stellar mass produced by BAGPIPES using the four-band (V, r,
i +, and z + +) Subaru photometry.

Instrument/Telescope (Survey) Band

UltraVista Y, J, H, Ks

CFHT u

Subaru B, V, r, i+, z++,
IA427, IA464, IA484, IA505
IA527, IA574, IA624, IA479
IA709, IA738, IA767, IA827

The photometry in the COSMOS2015 and DES Y3 DF catalogues
have been calibrated independently of one another. So, although
we can expect them to be broadly consistent, it is possible that
small differences in absolute calibration between the two remain.
Even minor offsets in the calibration baseline may have a significant
impact on the stellar mass posterior PDFs produced using BAGPIPES

with respect to COSMOS2015, and perhaps also some subtle effects
in redshift. Accordingly, validation of the PDFs using the point
predictions in the catalogue would not be appropriate. To solve
this dilemma, we run BAGPIPES on Subaru V, r, i +, and z + +
bands’ photometry from the catalogue in place of the DES DF griz
bands. We specifically choose these bands in order to imitate the
DES bands as far as possible and therefore allow for an adequate
comparison between the template-fitting method and our ML-based
method. Although this does not match exactly the degradation in
the information provided to the RF, it is nevertheless very similar
as we measure PDFs using four optical bands instead of the 30-plus
bands available in the catalogue. Importantly, however, we avoid
introducing any possible systematic effects that could arise from
inter-dataset calibration differences.

The model templates used by Laigle et al. (2016) cannot be
exactly reproduced in BAGPIPES. It is important for the validity of
our comparison that the four-band PDFs and the truth values are
constructed under the same set of model assumptions. Therefore,
we produce a new set of truth values using the 22 COSMOS bands
(including the four aforementioned) listed in Table 1. In both the
4-band and 22-band runs, we employ the same physical information
about the model as outlined in Table 2. These choices were made to
closely mimic the set-up adopted by Laigle et al. (2016) to compute
the redshifts and stellar masses in the COSMOS2015 catalogue,
so that we can make a fair comparison. There are, however, slight
differences that we cannot negate, and as such, a direct comparison is
not possible. Nevertheless, they are mostly similar, and the aggregate
metric results should be comparable. We compute total COSMOS
flux and flux errors from those measured in a 3 arcsec diameter
aperture, and correct for photometric and systematic offsets, and
foreground galaxy extinction, before initiating the runs. We define
the true values of redshift and stellar mass from the 22-band run to
be the mean predictions for each galaxy. Finally, we extract marginal
and joint PDFs of redshift and stellar mass from the four-band run
and validate them using these new ‘truth’ values. We utilize a total
of 14 nodes for both runs, with each node consisting of 12 Xeon
X5660 cores and 16GB of random-access memory. The runs take
approximately 900 and 1400 h to generate PDFs for 10 699 galaxies,
respectively. Naturally, we only run BAGPIPES on test galaxies in the
DF data set.

Template-fitting with four bands is known to be difficult due
to degeneracies in the parameter space (see Renzini 2006, for a
review). To compensate, authors sometimes restrict the parameter
space, for example, by neglecting dust extinction to improve results
(e.g. Capozzi et al. 2017), and this amounts to a hard prior in the
galaxy population. By design, RF includes an implicit prior built
from the training data. We approximate the effect of this prior by
applying a 2D population prior formed from the redshifts and stellar
masses in the ‘truth’ catalogue to the PDFs estimated by BAGPIPES

using the four-band photometry. To apply the prior, we fit a kernel
density estimate (KDE) to the ‘true’ redshifts and stellar masses. We
use 1 per cent of the total number of point predictions to fit this prior,
and this equates to ∼ 200 000 data points. Next, we compute the prior
probability density at each redshift–stellar mass sample point output
by the BAGPIPES nested sampling (with four-band photometry). We
produce a smoothed posterior of these points, weighted by the prior
probability, via another KDE. Finally, we draw 1000 importance
samples from this smoothed posterior. We repeat this process for all
the galaxies.

We explored the possibility of applying a full 6D prior because,
in principle, it should further improve the results. However, doing so
caused a large number of galaxies to become catastrophic outliers. It
is beyond the scope of this work to go through the painstaking process
of carefully optimizing a high-dimensional prior, as we simply want
a comparison that assists the reader’s intuition in interpreting the
result from our RF models. Nevertheless, we still had a considerable
percentage (6–7 per cent) of catastrophic outliers even with our 2D
prior. These outliers can skew the performance in terms of the metrics
we have chosen and can often be treated separately in scientific
analyses. Hence, we remove these outliers and then perform the
different calibration checks to better gauge the performance of the
population at large.

Fig. 8 shows the PIT and the copPIT distributions alongside the
marginal and Kendall calibration plots from the analysis, and for
comparison, they are overlaid with results from the DES-DF model,
labelled as GALPRO. The PIT distributions are not uniform and
indicate biased marginal PDFs for the galaxy population, and this
correlates well with the marginal calibration plots which have large
fluctuations about the zero line. Nevertheless, the marginal redshift
PIT distribution is competitive with template-fitting approaches used
in code comparison works, e.g. Schmidt et al. (2020, fig. 2) and Euclid
Collaboration: Desprez et al. (2020, fig. 7). However, these studies
use deeper data than in this work. Unsurprisingly, a small number of
joint PDFs are also biased as reflected by the non-uniform copPIT
distribution. Despite the biased PDFs, BAGPIPES does manage to
capture the dependence structure between redshift and stellar mass
on a similar level to that achieved by the RF. On the whole, RF
outperforms BAGPIPES on the metrics we have considered in our
analysis. Having said that, it should be possible for BAGPIPES to
match the performance of the RF through judicious use of priors and
great care in photometric calibration. A great advantage of the RF is
that the large effort that would be required to do so is not necessary.
An implicit prior is automatically applied, transferring information
from the rich training data set to our target data.

To summarize, we have benchmarked the performance of GALPRO

against BAGPIPES, and by doing so, we have been able to place
our results into context. We have found that our ML-based method
performs better in every aspect compared to a template-fitting method
that employs a fairly standard set-up. Thus, we have confidence
that our models are producing valid marginal and joint posterior
probability distributions, based on the different calibration modes
and metrics we have employed in our analysis.

MNRAS 502, 2770–2786 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2770/6105325 by U
niversity of O

slo Library. Library of M
edicine and H

ealth Sciences user on 12 N
ovem

ber 2021



Joint redshift–stellar mass PDFs with RF 2783

Figure 8. Comparison diagnostic plots for benchmarking the performance of GALPRO on test galaxies in the DF data set against that of BAGPIPES on a
comparable data set, which is composed of the same galaxies but with Subaru photometry in four bands (V, r, i +, and z + +) from the COSMOS2015 catalogue.
The marginal and joint PDFs of redshift and stellar mass produced by BAGPIPES are validated using a ‘truth’ catalogue constructed by running BAGPIPES on
photometry in 22 COSMOS bands listed in Table 1.

7 C O N C L U S I O N S

The emergence of template-fitting methods with the capability of
generating multivariate PDFs of redshift and physical properties
of galaxies represents a paradigm shift. These PDFs account for
potential correlations between different galaxy properties and fully
characterize uncertainties associated with point estimates of the
quantities. However, with their potential benefits, comes the task
of generating them quickly, which is difficult given their complexity.
For example, the template-fitting code BAGPIPES takes a few minutes
to fit each galaxy. While this may not seem significant, the amount of
time required to generate them for hundreds of thousands of galaxies,
let alone the billions that will be observed with the upcoming

photometric surveys such as the LSST and Euclid, quickly becomes
impractical. Coupled with the difficulty of storing such PDFs, a solu-
tion that enables on-the-fly production at speed is greatly desirable.

In this work, we tackle the problem by using an ML-based
approach. We introduce a novel method based on the RF algorithm
to generate joint PDFs. As an example, we generate PDFs for the
probability space in redshift and stellar mass, as they are two of the
most important to accurately predict. Our method can be generalized
to extract n-dimensional PDFs. However, we focus on this specific
two-dimensional space as it is easy to visualize and exhibits well-
known correlations between the properties.

To demonstrate the method, we train two RF models to produce
joint PDFs of galaxies in the DES DF and the main WF DES survey,
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Table 2. Fixed and fitted parameters with their associated priors for the delayed exponentially declining
(τ−2te−t/τ ) star formation history (SFH) model used in the BAGPIPES runs. The model is not readily
available in BAGPIPES, so we lightly modify the code to meet our requirements. We adopt the Calzetti
et al. (2000) attenuation curve, stellar population synthesis (SPS) models of Bruzual & Charlot (1993)
and a Kroupa & Boily (2002) initial mass function (IMF). AV is the attenuation in the V band, τ is the
star formation time-scale, Z is the metallicity, U is the ionization parameter, aBC is the lifetime of H II

regions and ε is a constant that controls the extra attenuation towards them.

Free parameter Prior Limits Fixed parameter Value

AV Uniform [0, 4] log10(U) −3
log10(M�/M�) Uniform [4, 13] aBC 0.01 Gyr
z Uniform [0, 10] ε 3
τ Uniform [0.3, 10] SPS models Bruzual & Charlot (2003)
Z Uniform [0, 2.5] IMF Kroupa & Boily (2002)

respectively. We separately combine the COSMOS2015 catalogue,
with the DES Y3 DF and the Y3 Balrog to construct the necessary
data sets, which contain 53 941 and 393 276 galaxies, respectively.
From the trained models, we extract point estimates, marginal and
joint PDFs of 10 699 test galaxies. We then proceed to determine the
validity of both sets of PDFs, and for this, we utilize the notions of
probabilistic copula calibration and Kendall calibration to validate
the joint PDFs and their univariate counterparts to validate the
marginals. We highlight in particular the advantage of incorporating
realistic photometric errors into the RF has on Kendall calibration.
We benchmark our results against those achieved by BAGPIPES, adopt-
ing a basic set-up and simple population-derived prior in redshift
and stellar mass, to provide some context to the metric values and
guide our intuition. We find that our ML-based method is producing
valid PDFs with only small calibration errors, and performs at a
superior level on every metric we consider in our analysis compared
to BAGPIPES. Despite the success of our method, template-fitting
approaches such as BAGPIPES undoubtedly still have a vital role to
play in building the training samples for ML-based codes.

To conclude, joint redshift–stellar mass PDFs have many potential
science applications from determining the evolution of the SMF, to
constraining the SHMR. Consequently, we have developed GALPRO, a
highly intuitive and efficient PYTHON package for rapidly generating
n-dimensional PDFs on-the-fly, thus solving the potential issue of
storage. We have trained and tested our RF models using GALPRO

on a 13" Macbook Pro (2.4 GHz Intel Core i5, 16GB LPDDR3) and
found that, at best, it takes on average a few milliseconds to generate
a PDF. Thus, GALPRO can potentially offer a 100 000x reduction in
run time compared to packages based on template-fitting methods,
making it ideal for the impending era of ‘big data’. Of course, one
must ensure that the training data set is representative and suitable
for their scientific analysis to fully reap the benefits of GALPRO.
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alogue can be accessed at https://ftp.iap.fr/pub/from users/hjmcc/C
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perform all the analysis in this paper and an example data set is
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2019, A&A, 622, A137
Bonnett C., 2015, MNRAS, 449, 1043
Bonnett C. et al., 2016, Phys. Rev. D, 94, 042005
Boquien M., Burgarella D., Roehlly Y., Buat V., Ciesla L., Corre D., Inoue

A. K., Salas H., 2019, A&A, 622, A103
Bordoloi R., Lilly S. J., Amara A., 2010, MNRAS, 406, 881
Brammer G. B., van Dokkum P. G., Coppi P., 2008, ApJ, 686, 1503
Breiman L., 2001, Mach. Learn., 45, 5
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Carliles S., Budavári T., Heinis S., Priebe C., Szalay A. S., 2010, ApJ, 712,
511

Carnall A. C., McLure R. J., Dunlop J. S., Davé R., 2018, MNRAS, 480,
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