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Abstract

In this thesis we explore a Bayesian approach to the problem of unfolding, namely Fully

Bayesian Unfolding (FBU) [1]. With the overarching goal of providing an alternative method to

the default unfolding method in use by the nuclear physics group at the University of Oslo (the

folding iteration method [2]), we explain and use FBU for unfolding experimental γ-ray spectra.

We provide an explanation of the inner process in the PyFBU-package [3], in order to yield a better

understanding and confidence of the final results from FBU. This explanation is accompanied by

a few tests of assumptions, specifically finding that the likelihood function indeed takes the form

we assume, and is used in the way we expect. Furthermore, we formulate and implement a modi-

fication to the package, with the purpose of facilitating an essential part of Bayesian thinking, the

freedom of choice (of prior knowledge).

The experimental spectra in question are those of the 28Si(p,p’γ) and 146Nd(p,p’γ) reactions, the

second of which has not before been unfolded using FBU. For 28Si, our results have been compared

with earlier results produced by Valsdóttir [4]. We use a newer response matrix more closely repre-

senting the experimental conditions. Cutting out the low γ-energy area of the raw spectra, where

the simulated response matrix does not match the experimental conditions, leads to the attainment

of more accurate results. The results are evaluated using error metrics (R2-score and Mean Abso-

lute Error (MAE)) and comparisons between refolded spectra and observed data (raw spectra).

For 146Nd, we have unfolded both the first excited state, and a high excitation energy area, i.e. a

spectrum with a high degree of complexity. We compare both results with the folding iteration

method in the OMpy library [5]. We find that FBU is consistently more accurate, especially with

the mentioned cutting of low-energy bins associated with mismatches between response matrix

and data. Both refolded versus raw comparisons and error metrics are better for FBU for both

investigated spectra. Along with the uncertainty estimates built into the posterior distributions

and from calculated credibility intervals, the results make a good case for FBU as a powerful and

general unfolding method.



Acknowledgements

What a journey. I would like to extend my sincere gratitude to a multitude of people who

enabled me to complete this thesis.

First of all, thank you to my main supervisor Morten Hjorth-Jensen, who despite his

incredibly busy schedule, has approached my thesis with great enthusiasm and attention.

Thank you for your guidance and encouragement, and for assembling a dream team of

supervisors. All three, experts in their fields, their knowledge making sure any problems

are attacked from all sides.

Thank you to my co-supervisors, Ann-Cecilie Larsen and Anders Kvellestad.

Ann-Cecilie, for your insight, knowledge and ability to seemingly instantly recognize

what is incorrect in results I have stared at for hours. Your understanding of nuclear

physics and the experimental setup and data has been vital. Anders, for your count-

less great ideas and problem-solving abilities. Your vast knowledge of statistics and the

Bayesian way has given me an understanding and appreciation for these concepts that

I did not expect. I have very much enjoyed the multiple-hours long digital meetings of

debugging and interesting discussions about statistics. Thank you all again for sharing

your time, ideas and guidance, it has proven invaluable for me and this work.

Thank you to my family and friends who have all shown interest and provided en-

couragement in different ways.

Finally, thank you to my partner Cecilie for being a fantastic motivator. You helped me

push through in times I was stuck, and showed nothing but patience when my mind was

filled with this work. This would not be possible without your support.



Contents

Abstract 3

Contents 5

1 Introduction 7

I Theory 9

2 Bayesian statistics 10

2.1 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Methods 16

3 Unfolding Methods 17

3.1 The unfolding problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The folding iteration method . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Fully Bayesian Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Error metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

III Implementation 32

4 PyFBU and PyMC3 33

5



Contents Contents

4.1 Usage and modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Synthetic spectra 39

IV Results & Discussion 48

6 Experimental spectra 49

6.1 The 28Si spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 The 146Nd spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V Conclusion and future work 83

7 Conclusion 84

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

A GitHub repository 90

B One-dimensional likelihood testing 91

B.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Reproduction of results 100

C.1 The first excited state of 28Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.2 The first excited state of 28Si including background . . . . . . . . . . . . . . 104

C.3 All excited states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6



CHAPTER 1

Introduction

In this thesis, we will explore the realm of Bayesian thinking and its application to an

existing problem. The problem in question is that of unfolding, i.e. interpreting the output

from an imperfect detector and attempting to reconstruct the true signal. No detectors are

perfect, and determining the exact source of a specific output is of great interest for the

experimental analysis. More specifically, the aim is to investigate the unfolding of γ-ray

spectra using Fully Bayesian Unfolding (FBU) [1], and compare with the folding iteration

method. This is the current method used for unfolding by the nuclear physics group at the

University of Oslo [2]. This method does not have built-in uncertainty estimates, instead

relying on manual estimations or educated guesses. With FBU, the underlying elements

are probability distributions, by nature of which includes uncertainties. Such an intrinsic

property of the method would allow for the calculation of uncertainties which we know

are closely connected to the elements. This may allow for a confident uncertainty estimate,

of which is not possible in the current unfolding method.

FBU is a rather unexplored method on nuclear physics spectra. The first attempt was

done by Valsdóttir [4]. In her thesis, she performed FBU on spectra from the 28Si(p,p’γ)

reaction using the PyFBU package [3] and observed similar results to the folding itera-

tion method. When including the background data, it was found that FBU showed some

improved accuracy versus the folding iteration method which requires a background-

subtracted input, as compared to the built-in background handling in FBU.

In the present work we explore the method of FBU further. Firstly, we dive into the

inner workings of the PyFBU package in order to make the unfolding process more trans-

parent and the results more understandable. We identify the Bayesian terms, particularly

the likelihood, which may be the most abstract concept of Bayes theorem, see eq. (2.3).

Secondly, we perform modifications to PyFBU in order to increase its flexibility towards
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Chapter 1. Introduction Chapter 1. Introduction

a larger variety of problems. This is mainly done by giving the user the ability to directly

define the prior distribution, an essential part of Bayesian statistics.

Continuing on to actual unfolding of experimental spectra, we take a look at two dif-

ferent sources of data. First, we utilize a new response matrix for the first excited state of

the 28Si spectrum and compare the corresponding FBU results with Valsdóttir’s. The new

response matrix is found in the OMpy library [5] and represents the actual experimental

conditions more closely than the previous matrix used by Valsdóttir. Secondly, we per-

form FBU on new data from the 146Nd(p,p’γ) reaction. This data contains spectra which

exhibit more complex structures than the first excited state of 28Si and will test the gener-

ality of FBU. The results are directly compared with the folding iteration method, visually

and numerically.

The different parts of the thesis are presented as follows:

• In part I, the general theory of Bayesian statistics is described, including the funda-

mental Bayes’ theorem and related concepts.

• In part II, firstly the folding iteration method and its components is described. There-

after, we describe FBU and its application of Bayes’ theorem, with a discussion of the

Bayesian terms. From there, we discuss how to summarize and visualize the results

from FBU and lastly how to evaluate their accuracy with certain error metrics.

• Next, we show the implementation of FBU in part III, with our suggested modi-

fications to PyFBU in order to increase its flexibility and thus, possibly better its

accuracy. Here, we also perform some investigative tests in order to verify our as-

sumptions about the package, more specifically about the relatively mysterious like-

lihood.

• Part IV shows the results on the experimental spectra. First we present the results

of using the new response matrix on the 28Si first excited state, and we compare this

with the result from Valsdóttir. Then, we focus on the 146Nd data and evaluate the

results from unfolding both the first excited state, as well as higher energy levels. We

compare the results with the folding iteration method in OMpy using the mentioned

error metrics.

• Finally, in part V, we summarize our discussion and make our conclusions, as well

as discuss possible future work related to the topics in the thesis.
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Part I

Theory
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CHAPTER 2

Bayesian statistics

Probability theory is nothing

but common sense reduced to

calculation.

Pierre-Simon Laplace [6]

Sivia’s book Data Analysis - a Bayesian tutorial [6] is a great read, and provides the

theoretical foundation for the majority of the topics discussed in this chapter.

2.1 Bayes’ theorem

The realm of probability is commonly considered to be split into two main camps of inter-

pretation:

• The frequentist view, which defines probability as a number representing the rela-

tive frequency of which an outcome occurs, after performing an infinite amount of

experiments. This view only considers probability of the data given a hypothesis,

and does not allow talking about a probability of the hypothesis itself.

• The Bayesian view, which defines probability as a degree of belief. Applying a

Bayesian probability means to make a statement about what the outcome of an ex-

periment will be, and how certain we are. We are able to use whatever prior knowl-

edge and experience (or lack thereof) we possess to make this statement, as well

as making any changes depending on the result. Frequentists can only base such a

statement on the result of the experiment itself, infinitely repeated to be certain.
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Chapter 2. Bayesian statistics 2.1. Bayes’ theorem

As one might guess from the titles, we will be assuming the second interpretation, the

Bayesian view, and explore how it is used to describe the happenings of nature. First, we

consider probability theory and its basic algebra which includes the sum rule

P(X|I) + P(X|I) = 1 (2.1)

and the product rule

P(X, Y|I) = P(X|Y, I)× P(Y|I). (2.2)

Here P stands for probability, the bar ”|” means ”given” and X means ”not X”. Lastly, we

have the symbol I, meaning all relevant background information. The sum rule can then

be stated as ”the probability of X being true plus the probability of X not being true, both

given all relevant background, equals 1”.

Using the product rule, and the fact that P(X, Y|I) = P(Y, X|I) we get the following.

P(X|Y, I)× P(Y|I) = P(Y|X, I)× P(X|I).

Rearranging this leads to Bayes’ theorem

P(X|Y, I) =
P(Y|X, I)× P(X|I)

P(Y|I) . (2.3)

To get a clearer picture of the significance of Bayes’ theorem, we can replace X and Y with

hypothesis and data. P(hypothesis|data, I) is then given the formal name posterior proba-

bility, P(data|hypothesis, I) is called the likelihood and P(hypothesis|I) is called the prior

probability, representing our knowledge about the truth of the hypothesis before any data

has been analysed. The term in the denominator, P(data|I), often called the evidence, is in

many cases not shown, due to it often being absorbed by a normalization constant. We

can then replace the equality sign with a proportionality.

P(hypothesis|data, I) ∝ P(data|hypothesis, I)× P(hypothesis|I) (2.4)

In summary, Bayes’ theorem describes a learning process, showing how a probability

should be augmented by the introduction of data.

Another useful result from using the sum and product rule is the marginalization equa-

tion

P(X|I) =
∫ ∞

−∞
P(X, Y|I)dY, (2.5)
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with a normalization condition ∫ ∞

−∞
P(Y|X, I)dY = 1. (2.6)

The marginalization equation gives us the ability to integrate out so-called nuisance pa-

rameters, that is parameters of no interest to the question we are investigating, such as pa-

rameters describing experiment backgrounds and measurement byproducts. These rules

of probability are generally applicable and provide a strong foundation for tackling data

analysis problems [6].

2.2 Parameter estimation

We will now look at the act of estimating a single parameter using Bayes’ theorem, such as

the mass of a planet, or the charge of the electron. We will firstly go through the example

of deducting the fairness of a coin. This can be represented by the bias-weighting H. A

fair coin is represented by H = 1/2, while H = 1 and H = 0 means the coin is showing

only heads or tails every flip. This value is continuous on the range [0, 1], and P(H|data, I)

describes how much we believe H to be true. For a range of H-values, P(H|data, I) is a

probability density function (PDF). To find this, we use Bayes’ theorem.

P(H|data, I) ∝ P(data|H, I)× P(H|I) (2.7)

We can, if needed, find the normalization constant using equation (2.6). To express igno-

rance, we can assign a flat PDF for the prior.

P(H|I) =

1 0 ≤ H ≤ 1

0 otherwise,
(2.8)

meaning we assume every value of H to be equally probable. Assuming each flip is an

independent event, the likelihood function takes the form of the binomial distribution,

P(data|H, I) ∝ HR(1− H)N−R, (2.9)

where R is the number of heads and N is the number of flips.

Plugging eqs. (2.8) and (2.9) into Bayes’ theorem results in the posterior probability,

the shape of which varies significantly for the first few data points. When the number of

data increase however, the PDF becomes sharper and converges to the most likely value.

The choice of prior becomes almost irrelevant when we have a large of number of data, as

the majority will converge to the same solution, but the speed of convergence may vary.

A very confident, but wrong prior will often approach the correct solution more slowly

than an ignorant one.
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2.2.1 Summarizing distributions

One way to summarize the posterior PDF is with two quantities: The best estimate and its

reliability. The best estimate is given by the maximum value of the PDF,

dP
dX

∣∣∣∣
XO

= 0, (2.10)

where XO denotes the best estimate. To make sure we have a maximum, we also need to

check the second derivative

d2P
dX2

∣∣∣∣
XO

< 0. (2.11)

This is assuming X is continuous. If not, the best estimate will still be the value corre-

sponding to the maximum of the PDF.

The reliability of the best estimate is found by considering the width of the PDF about

XO. We take the logarithm of the PDF as this varies more slowly with X, making it easier

to work with.

Pln = ln[P(X|data, I)]. (2.12)

Doing a Taylor expansion about XO and using the condition

dPln
dX

∣∣∣∣
XO

= 0, (2.13)

which is equivalent to (2.10), leads to

P(X|data, I) ≈ A exp
[

1
2

d2Pln
dX2

∣∣∣∣
XO

(X− XO)
2
]

. (2.14)

Here, we only show the dominating quadratic term of the expansion, with A being a

normalization constant. We have now approximated our PDF by the normal distribution,

typically expressed in the form

P(x|µ, σ) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
, (2.15)

with µ being the mean value. The parameter σ describes the width of the distribution and

is related to Pln through

σ =

(
− d2Pln

dX2

∣∣∣∣
XO

)−1/2

. (2.16)

13



Chapter 2. Bayesian statistics 2.2. Parameter estimation

Figure 2.1: The normal distribution with a maximum at x = µ and a full width at half
maximum (FWHM) of 2.35σ. (Taken from Sivia, 2006, p. 22) [6]

Combining this with the best estimate allows us to summarize the distribution:

X = XO ± σ. (2.17)

In this context, σ is often called the error-bar. By calculating the integral of the normal

distribution in this range, we get approximately a 68% chance that X lies within XO ± σ

and approximately 95% within XO ± 2σ.

2.2.1.1 Asymmetric PDFs

The error-bar needs a symmetric PDF to be valid, something that is often not the case. This

is solved by replacing the error-bar with a credible interval as a measure of reliability. It is

defined as the shortest interval that encloses a given percentage of the total probability,

conventionally set to 68% or 95%. In the case of 95%, we find X1 and X2 such that

P(X1 ≤ X ≤ X2|data, I) =
∫ X2

X1

P(X|data, I)dX ≈ 0.95, (2.18)

assuming the PDF is normalized.

In the case of an asymmetric PDF, we may consider using the mean or expectation as the

best estimate. This quantity takes the skewness of the PDF into account, and is given by

〈X〉 =
∫

XP(X|data, I)dX. (2.19)

If the PDF is not normalized, we also need to divide the right-hand side by
∫

P(X|data, I)dX.

If the PDF is multimodal, meaning it has multiple maxima, it becomes more difficult

to calculate a best estimate and its reliability. If one maximum is much greater than the

others, we can ignore those other contributions and focus on the largest. However, if

multiple peaks are of similar size, we would be better off displaying the PDF itself.
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Chapter 2. Bayesian statistics 2.3. Notation

2.3 Notation

The terms in eq. (2.3) are notationally very similar, forcing us to keep track of vertical bars

and the order of parameters. Thus, for ease of reading, the following notation will be used

for the Bayesian terms from now on:

• The posterior distribution: P(H|D)

• The likelihood: L(H)

• The prior distribution: π(H)

Bayes’ theorem then takes the following form:

P(H|D) ∝ L(H)× π(H). (2.20)
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CHAPTER 3

Unfolding Methods

3.1 The unfolding problem

Unfolding is the act of reconstructing a true signal, based on observations made by an

imperfect detector. It can be described as an inverse problem, where the observed data, or

folded spectrum, is given by:

DDD = RRRTTT, (3.1)

where DDD and TTT are vectors containing count values for corresponding channels of the de-

tector. DDD and TTT represent the observed data and the unfolded spectrum (expected true

spectrum), respectively. The distortion of the data by the detector imperfections is repre-

sented by the response matrix RRR. The solution is not straightforward, as multiplying with

RRR−1 leads to artificial fluctuations because we cannot assume the observed data equals the

expectation values for the data. Statistical fluctuations in the data is assumed to come from

a real structure in the true spectrum and will be magnified [7]. We will now discuss two

different methods for unfolding, firstly the default method in use at the nuclear physics

group at the University of Oslo [2]. Secondly, we jump into the focus of this thesis, Fully

Bayesian Unfolding.

3.1.1 Data source

The data used in this thesis is produced from γ-ray spectra measured with the OSCAR

detector array [8]. The detector array consists of 30 LaBr3(Ce) detectors which detect γ-

rays through different interactions [9]. A detailed description of the experimental setup is

given by Valsdóttir [4]. The resulting data is on the form of a ’raw’ matrix, with binned

γ-energies on the x-axis, and corresponding source excitation energies on the y-axis. The

17



Chapter 3. Unfolding Methods 3.2. The folding iteration method

raw matrices used in this thesis are provided by Ann-Cecilie Larsen through private com-

munication.

3.1.2 The response matrix

The response matrix represents the detector response, i.e. describing how the detector

may redistribute counts to other areas in the energy range. The response matrix has ele-

ments given by:

Rtr = P(distributed in bin r | true in bin t) (3.2)

[10]. This can be read as the probability of observing an event in energy bin r, given the

true event in bin t. In a nutshell, the response matrix describes how a signal is smeared

over the other bins in the spectrum. The response matrices used in this thesis are found

in the OMpy library [11, 12].

3.2 The folding iteration method

The following section describes the methods developed by Guttormsen et al. [2].

The folding iteration method can be described in four steps.

• First we use the observed spectrum DDD as an initial guess for a trial spectrum u0,

u0 = DDD

• We then fold this with the response matrix,

f0 = RRRu0

• The difference between the observed and the folded spectrum is calculated and

added to the initial guess, and we end up with the next trial spectrum,

u1 = u0 + (DDD− f0)

• This is then repeated according to the following iteration scheme,

ui+1 = ui + (DDD− fi)

This method is performed until fi ≈ DDD within the experimental uncertainties [2]. It is

important to note that for each new iteration, the oscillations between channels increase,

as the solution approaches the inverted matrix solution u = RRR−1DDD, which exhibits large

oscillations [2, 10].

18



Chapter 3. Unfolding Methods 3.2. The folding iteration method

3.2.1 The Compton subtraction method

As the resulting spectrum from the folding iteration method often contains rather large

fluctuations, the Compton subtraction method is performed to obtain a significantly more

stable unfolding procedure [2].

The first step is to define a new spectrum v as the observed data excluding the Comp-

ton contribution:

v = p f u + w , (3.3)

where u is the spectrum obtained from the folding iteration method, which multiplied

with p f gives the full-energy contribution (representing a complete absorption of a γ-ray).

The remaining contributions are contained in w = us + ud + ua = psu + pdu + ∑ p511u,

representing single escape, double escape and annihilation (note the missing Compton

contribution ”uc”). These other possible contributions to the spectrum represent phenom-

ena which may hinder a full photon absorption, like pair production, scattering and the

mentioned annihilation. To match the observed energy resolution, each contribution is

then smoothed with a Gaussian function. Next, we subtract this from the raw spectrum

to obtain the Compton background spectrum:

c = DDD− v . (3.4)

This spectrum may exhibit significant oscillations, and is thus further smoothed. This

smoothing carries a low risk of loss of important information due to the nature of the

spectrum not containing any sharp, narrow peaks. After this smoothing procedure on the

individual contributions, we now ”return” to the unfolded spectrum:

u =
DDD− c− w

p f
. (3.5)

Finally, to get closer to the true number of events, we correct for the relative detector

efficiency:

U =
u

εtot
. (3.6)

This final spectrum shows better stability compared to the result of the folding iteration

method, because the statistical fluctuations in the raw spectrum are preserved using this

method [2].
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Chapter 3. Unfolding Methods 3.3. Fully Bayesian Unfolding

3.3 Fully Bayesian Unfolding

Choudalakis created the method of Fully Bayesian unfolding (FBU) by applying Bayesian

thinking to the problem of unfolding. He states that the method provides the ability to

observe all possible answers to a given unfolding problem via the posterior distribution,

as opposed to other methods which result in point estimates of one of the possible an-

swers through iteration. Below, we describe FBU and its components as developed by

Choudalakis [1].

Bayes’ theorem succinctly describes what we are asking for in the problem of unfold-

ing, showing the relation between the expected truth spectrum TTT, and the data we have

obtained DDD,

P(TTT|DDD) ∝ L(TTT)× π(TTT). (3.7)

The expected truth spectrum TTT and the raw spectrum DDD are binned with Nt and Nr bins,

respectively. In this thesis we operate with Nt = Nr = N as we do not expect the number

of energy bins to change during an experiment, but the mathematics do permit such a

difference either way. Each bin in TTT is assigned a prior probability distribution π(TTT),

describing our belief of the number of events expected to be present. We assume the data

follows a Poisson distribution [1], meaning

L(TTT) =
Nr

∏
r=1

f Dr
r

Dr!
e− fr , (3.8)

where

fr =
Nt

∑
t=1

Tt × Rtr. (3.9)

This fr parameter represents the expectation value for the number of reconstructed counts

in bin r. Here, Rtr is the element of the response matrix RNt×Nr , corresponding to the

probability that an event produced in the truth bin t is observed in the reconstructed bin

r: P(r|t). If we wish to include the background spectrum, all we have to do is add it to the

sum:

fr = Br +
Nt

∑
t=1

Tt × Rtr. (3.10)

With the likelihood function defined, the next step is to numerically sample the Nt-dimensional

parameter space of possible truth spectra TTT, usually with a Markov Chain Monte Carlo
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Chapter 3. Unfolding Methods 3.3. Fully Bayesian Unfolding

(MCMC) algorithm [1], to obtain samples from the posterior distribution P(TTT|DDD) ∝ L(TTT)π(TTT).

By histogramming these TTT samples in different ways, we can visualize the final result in

terms of one- or two-dimensional marginal posterior distributions. In particular, we will

present our main results in terms of 1D posterior distributions, one for each bin in the

truth spectrum.

3.3.1 Priors

As mentioned above, we assign a prior π(Tt) for the truth expectation Tt in each bin of

the spectrum. This means we are choosing the exact probabilities of Tt values we believe

to be possible for that bin, independent of other bins. In fact, since the prior has to equal 0

outside its defined range, we say that Tt values beyond these boundaries are impossible.

Since we are dealing with physical experiments, these boundaries need to be finite, and

thus we are forced to restrict the realm of possibilities to whatever we deem reasonable.

There is practically an infinite number of choices one can make for assigning a prior, de-

pending on what knowledge one has beforehand. We will now take a look at two possible

prior distributions.

3.3.1.1 Uniform prior

If one wishes to make only weak assumptions about the truth, a uniform prior is suitable.

The PDF of the uniform distribution is given as:

π(x) =

 1
b−a for a ≤ x ≤ b

0 otherwise.
(3.11)

This flat distribution, shown in figure 3.1, assigns equal probability to every outcome in

the space of possibilities. The only assumption to be made here is determining the bound-

aries on this space. Complete ignorance would strictly be represented with a uniform

prior without any boundaries. This would mean we believe all numbers on the inter-

val (−∞, ∞) to be equally likely in a one-dimensional space. Such a space is of course

not possible to explore completely, and otherwise extremely large limits will be compu-

tationally unfeasible. This is especially true considering the fact that many problems are

complex and demand multidimensional parameter spaces. One thing to note is that un-

folding in physics is often related to physical experiments pertaining to the counting of a

number of events measured by a detector. In these cases, the existence of negative counts

is unphysical, meaning a lower prior limit can safely be set to 0.
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Choosing the upper limit is not as straightforward. The ideal choice would be the

largest possible limit that still allows for reasonable computational performance. Of course,

if we have some knowledge about the size and location of the domain of the possible

truth-values, there is no need to pick a limit located significantly beyond this domain.

Computational resources are wasted if spent on exploring a region we strongly believe

will not improve our estimate. When we have assigned prior limits to all bins, a good

check can be to fold the resulting vector with the response and make sure all raw data is

contained within the folded limits.

In this thesis, an upper prior limit of 10 times the raw data will be used for the uniform

prior. In other words, we believe that the true spectrum must be contained within limits

dependent on the observed spectrum.

Figure 3.1: The uniform distribution, given by a constant value between a and b, and 0
otherwise.
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3.3.1.2 Log-uniform prior

Another prior distribution we will use is the log-uniform distribution, also called the re-

ciprocal distribution [13]. This distribution has the characteristic that its logarithm is uni-

formly distributed. What this means for our prior belief is that each order of magnitude

is given equal probability. In the case of a logarithm with base 10, we say that it is equally

probable for our value of interest to lie between limits a = 100 and b = 101, as between

a = 106 and b = 107, even though the second range is much larger. The PDF of the

log-uniform distribution is defined as:

π(x) =
1

x ln (b/a)
for a ≤ x ≤ b and a > 0. (3.12)

The log-uniform distribution is shown in figure 3.2.

Figure 3.2: The log-uniform distribution given by eq. (3.12). The distribution has its
greatest value at x = a, and approaches zero as x increases.

Using the log-uniform distribution allows us to define a very large range of possible

truth-values while keeping a high probability for values close to 0. The number of counts

per experiment is finite, and in cases with significant differences between peaks and val-

leys, we do not want to ’dampen’ these by probabilistic distribution of counts into bins
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which should be containing none. Say we know there exists one or multiple peaks in our

truth-spectrum consisting of a very large number of counts, i.e. ∼1010. If we also know

that other bins in the spectrum should have close to 0 counts, how do we make sure both

of these conditions are met? If we were to use a uniform prior between 0 and 1010, we

would firstly have an incredibly large space to explore. Secondly, the probability of sam-

pling a value close to 0 would be very small. Let’s say that any value between 0 and 10000

is considered ’close’ to 0, which itself seems very imprecise. According to the uniform

prior, the probability of the true value being ’close’ to 0 is thus:

P(0 ≤ Tt ≤ 104) =
∫ 104

0

1
1010 − 0

dTt =
104

1010 = 10−6 = 0.0001%, (3.13)

and the same result holds for values equally ’close’ to the maximum of 1010. This low

probability means we might run out of computational resources long before our algorithm

gets to explore those areas.

Now, if we instead use the log-uniform distribution as our prior, the probability of a

value close to 0 is much higher, while still allowing for those tall peaks.

P(1 ≤ Tt ≤ 104) =
∫ 104

1

1
Tt ln (1010/1)

dTt = 0.4 = 40%. (3.14)

Note here that we integrate from a count value of 1 instead of 0, as the distribution is

undefined at Tt = 0. Since the logarithm of this function is uniformly distributed, looking

at the exponents of the limits of the investigated probability interval, divided with the

exponents of the prior limits, will give a good indication of the probability value. In the

simple case above, the exponents of the probability interval are 4 and 0: (4− 0)/(10− 0) =

0.4 = 40%. Similarly, we can estimate the probability of the area between 106 and 1010 to

be (10 − 6)/(10 − 0) = 0.4 = 40%, the same result as in eq. (3.14), even though this

range is much larger. The estimation turns out to be correct when we perform the proper

calculation:

P(106 ≤ Tt ≤ 1010) =
∫ 1010

106

1
Tt ln (1010/1)

dTt = 0.4 = 40% (3.15)

In summary, when we believe the truth spectrum to exhibit a very large difference

between minima and maxima, the log-uniform distribution is a good candidate for the

prior. This way, we increase the chance of reaching the proper relation between peaks

and valleys, at the price of lower precision for higher values. The high probability for

values close to 0 will also allow for less distribution of counts into bins where there should
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be almost none, due to the nature of probability. Should the true spectrum instead be

composed of peaks with similar magnitudes and smaller differences, a uniform prior may

be better suited.

For the cases examined in this thesis, similar limits to the uniform distribution have

been chosen as the range has been sufficiently wide. We have found extended limits to not

make a significant impact on the unfolded results, but different spectra may warrant such

changes. The lower limit cannot be set to zero for which the distribution is not defined,

thus we set it to 10−1 to be close enough. The upper prior limit is set to the following:

upper = max(10× raw, 100× lower = 100× 10−1 = 10). (3.16)

This makes sure the upper limit is never smaller than the lower limit in cases with low

raw values. The implementation of the prior distributions is discussed in part III.

3.3.2 Likelihood

As mentioned above, the likelihood used in FBU is given by the product of Poisson distri-

butions in eq. (3.8). It is important to note that the likelihood is simply a function of the

parameter T, not a PDF, meaning it does not necessarily integrate to 1.

When we assign the prior probability for our problem, we do so on a per-bin basis,

meaning we end up with a set of N independent distributions, represented by histograms,

each describing the probability of possible truth-values for one bin. The same applies to

the posterior probability, the only difference being the histograms having different shapes,

due to the fact that we have been provided new knowledge from the data. This reshaping

stems from the multiplication of the prior with the likelihood. One might then be tempted

to construct a one-dimensional Poisson distribution for a given bin, multiply with the

prior and call this product the posterior. This would be incorrect since the likelihood is

an N-dimensional function dependent on the total collection of data as well as the entire

response matrix. For a given bin, a one-dimensional Poisson distribution based on that

data does not equal the contribution from the actual likelihood in that bin (this has been

illustrated in appendix B), unless our spectrum consists of only one bin. This also means

we have no easy way of plotting the likelihood, should we wish to compare with the prior

and posterior in a model test, unless we restrict the spectrum to contain a maximum of

N = 3 bins and plot the complete multidimensional function. Most experiments are con-

ducted with many more bins than this, however there is still some value to be had from

performing such a visualization. Mainly, this will help us achieve an increased under-
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standing of the process of Fully Bayesian Unfolding, its components, as well as the inner

workings of the PyFBU-package.

Due to its sparse documentation and several layers of abstraction, both in itself and

through PyMC3 and Theano, the important elements of PyFBU are not immediately ap-

parent. The symbolic variables and objects, while computationally efficient, do not allow

for simple printing or plotting during intermediate steps. Understanding why the results

appear as they do is therefore not straightforward, but we are able to use what we know

about the prior and likelihood. The prior is defined by the user, but the likelihood is not.

In fact, there is no simple multiplication of prior and likelihood performed in the source

code of PyFBU at all. This is due to the way Bayes’ theorem is being implemented. In

the analytical formula, eq. (3.7), we see the posterior as a rescaled version of the prior,

through multiplication with the likelihood. In the code, there is instead of this product,

a definition of the space for which a sampling algorithm explores. This space is defined

as an object of the class ’Poisson’ from the PyMC3 package, with the prior (folded with

the response) and data as arguments. This differs significantly from how we write Bayes’

theorem and attempting to find direct connections may be a futile effort. This, and further

differences between analytical formulae and code makes debugging difficult, so we have

tested and verified our comprehension of the process and results by doing the following:

To make sure this definition of a ’Poisson’ object constitutes using a Poisson distribu-

tion as a likelihood, we will want to compare the resulting posterior with a Poisson dis-

tribution we construct ourselves, multiplied with the prior. If the posterior has the same

shape and location as this product, we have verified our knowledge of the likelihood and

its parameters. As mentioned above, we will have to plot the entire multidimensional

Poisson distribution to show a correct picture. Therefore, a two-bin constructed spectrum

will be used for this purpose. We are then able to visualize the prior, likelihood and pos-

terior completely. This implementation will be discussed in part III.

3.3.3 Sampling

There are several sampling methods possible for the problem of unfolding, a common

example being Markov Chain Monte Carlo (MCMC) algorithms such as the Metropolis-

Hastings algorithm. In the PyFBU-package, a variant of a Hamiltonian Monte Carlo

(HMC) Markov Chain Monte Carlo algorithm is the default sampler. HMC aims to be

much more efficient than regular MCMC algorithms by avoiding both sensitivity to cor-

related parameters and random walk tendencies [14]. A drawback to this is a signifi-

cant sensitivity to step size as well as the number of steps, requiring manual tuning of
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these parameters. To circumvent this, Hoffman and Gelman created the No U-turn Sam-

pler (NUTS), a variant of HMC which bypasses having to specify the number of steps.

They also implemented an adaptive step size, meaning no manual tuning is necessary

for running NUTS. Furthermore, they observed similar to better performance than other

fine-tuned HMC algorithms [14]. The NUTS algorithm is implemented in the PyMC3

package [15] and is the default sampling algorithm in PyFBU. Several methods for initial-

izing NUTS are available in PyMC3, the default being named ’jitter+adapt diag’. Another

initialization method which will be used in this thesis is called Automatic Differentiation

Variational Inference (ADVI) [16]. In some cases, the use of this initialization will help

when PyFBU would otherwise crash. This might be due to the ’jitter’ part of the de-

fault method, which according to PyMC3, applies a ”uniform jitter in [-1,1] as a starting

point in each sampling chain” [15]. Negative numbers have shown to cause some issues

in PyFBU, perhaps connected to the unphysicality of allowing negative counts. The re-

sults in this thesis have been produced with the ADVI initialization, due to no observed

instances of the code crashing, and no discernible differences in results.

3.3.4 Posterior inference

Now that the unfolding has been performed, how do we interpret the resulting posterior

distribution? FBU allows us to directly look at the final distribution per bin, and thus ob-

serve the result and its corresponding degree of belief. Of course, we are able to quantify

these concepts in multiple ways. Here, we take a look at some of the methods for posterior

inference.

3.3.4.1 Point estimates

Since we are dealing with one-dimensional raw spectra with counts on the y-axis, and

energy (bins) on the x-axis, it is desirable to represent the unfolded result the same way.

The final output from FBU is a set of posterior samples from the N-dimensional T-space.

We can create a 1D histogram for bin Tt by aggregating the Tt-component of each sample,

resulting in N 1D histograms representing the respective posterior distribution in each

bin. One can then simply stack these histograms to form a band through the entire energy

range, where higher probabilities can be shown with higher color intensities. However,

it is customary to operate with point values for the unfolded spectrum when performing

further analysis, like the results OMpy supplies. Point estimates will also allow us to

directly compare performance with the folding iteration method, of which point values
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are the only output. Finally, error metrics are evaluated on point values, and allows for a

quantitative measure of performance. Since we have N posterior distributions, we create

N point estimates which we aggregate and represent as the unfolded spectrum. We can

use this to directly compare the folded representation with the original raw spectrum, as

well as the regular representation with the true spectrum, should we possess it.

It is important to remember that a point estimate does not summarize an entire distri-

bution, and may in many cases paint a wrong picture. In these cases, the fact that we can

access and look at the complete posterior at any time may be the greatest advantage of

using FBU.

We will consider two different point estimates, the posterior mean and median:

• Posterior mean: The mean of the posterior distribution which minimizes the mean

squared error (MSE) [17].

• Posterior median: The median of the posterior distribution which minimizes the

expected absolute error [17].

• A final possibility is the posterior mode. This represents the most likely value for the

parameter in question, but does not take into account any skewness of the posterior

nor the existence of multiple modes of similar magnitudes. Furthermore, the mode

may be computationally expensive to calculate, often requiring approximation algo-

rithms which may not always be correct [18].

3.3.4.2 Credible intervals

The credible interval is the Bayesian version of the frequentist confidence interval. It de-

pends on the posterior and is defined as any interval that encompasses a certain percent

of the posterior density. The difference between confidence and credible intervals is sub-

tle, but not negligible. In the case of frequentist inference, the parameter in question, lets

say θ, is treated as an unknown, but fixed value. The limits of the confidence interval

are treated as random variables. Therefore, a confidence level of 95% means that if the

experiment is repeated many times, we expect 95% of the resulting confidence intervals

to contain θ. Note that this does not mean there is a 0.95 probability of finding θ in every

confidence interval. [19, 20]

For bayesian inference however, the random-trait is switched, with the credible inter-

val limits being fixed, and θ treated as the random variable. The credible interval takes

our prior belief into account, while the confidence interval relies only upon the data. A
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95% credible interval covers 95% of the posterior and can then be said to contain θ with a

probability of 0.95. [19, 20]

There are many types of credible intervals, the only requirement being that it covers a

certain amount of area of the posterior. Some examples of ways of constructing credible

intervals are:

• Using the posterior mean as the interval center.

• Making sure the probability of being outside the interval is equal on all sides (equal

tailed).

• Making the interval as narrow as possible, the Highest Posterior Density interval

(HPD). This will include the most likely values, as well as the mode of the posterior

if it is unimodal.

In this thesis we use HPD intervals, together with the point estimates mentioned above.

3.3.4.3 Variance

For each energy bin t we have a set of posterior Tt samples. We calculate the variance of

these samples for each bin and take the mean, to represent a mean posterior spread for

the whole unfolded spectrum.

3.4 Error metrics

Now that we have a candidate unfolded spectrum consisting of expectation values for the

counts in each bin, we need to assess the accuracy. If we should possess the true spectrum,

we can directly compare our unfolded result with this. Usually however, we do not have

the true spectrum, only the observed data. The solution is to refold our result with the

response matrix, generating a candidate for the observed spectrum. Doing this assumes

the response matrix perfectly represents the detector attributes, which will likely lead to

some errors. Keeping this in mind, we use the following error metrics for comparing our

model with the observed data.
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3.4.1 Mean absolute error (MAE)

Given an estimated spectrum fff and an observed spectrum DDD, the mean absolute error is

given by:

MAE =
1
N

N

∑
r=1
|Dr − fr| (3.17)

[21]. In our context, fr is an element of fff , i.e. the unfolded result refolded with the re-

sponse matrix to estimate the observed data Dr. MAE is a simple measure of average

error, allowing us to see how many counts we expect to be off the mark per bin. The

lower this value, the better model, with 0 signifying a perfect match. Note that this does

not take scale into account, as it does not measure relative difference. A model may output

a value of fr = 90 where the observed value is Dr = 100, while also outputting fr = 900

for an observed value Dr = 1000. While the relative differences are the same, the MAE

of the second case is 10 times larger than the first, falsely pointing to a worse accuracy.

Therefore, we must take care to not blindly trust the MAE when comparing model ac-

curacy on different scales. The MAE remains a good metric as long as we make sure to

examine it within the context of scale.

3.4.2 R2-score

Another metric of how well our estimated spectrum fits with the observed data is the

R2-score, also called the coefficient of determination. It is given by:

R2 = 1− ∑N
r=1 (Dr − fr)2

∑N
r=1 (Dr −DDD)2

, (3.18)

[22] where DDD is the mean of the observed spectrum. The R2-score is a measure of the

overall similarity between the estimate and the observed, a perfect match resulting in a

score of 1. The R2-score is scale invariant, meaning the mentioned limitation of MAE does

not apply. This allows for direct comparison of model accuracy on different data sets,

without the need to worry about scale differences. What constitutes as a ’good’ R2-score

depends on the case and data, but in general the closer to 1, the better.

3.4.3 Residual plots

The MAE and R2-score are summarizing metrics, boiling all errors down to a single num-

ber. They do not describe the actual error for each bin in the spectrum, nor if the total
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error is spread out over many bins, or focused around a few. To directly observe the er-

ror for each bin, we plot the residuals, which is simply given by the difference Dr − fr.

This way, we can determine the per-bin model accuracy and assess if there are any local

dependencies affecting the total result.

3.4.4 Relative uncertainty plots

An interesting way to assess the uncertainty of the results can be by plotting the relative

uncertainties for the unfolded spectrum. Since we expect a statistical variation already

present in the data, we can investigate the systematic discrepancies by calculating the

following:

DDD− fff − BBB
σtot

, (3.19)

where fff is the mean of all fr (the unfolded result refolded with the response), and σtot =√
(σ2

stat + σ2
fff + σ2

BBB). These are then the following uncertainties: σstat =
√

DDD (expected sta-

tistical variation for Poisson-distributed data), σfff is the standard deviation for the output

samples from FBU, folded with the response, and σBBB is the uncertainty in the background

estimate. This last uncertainty is unavailable through the supplied background matrices

at the time of writing, and will be set to 0 (this may however be estimated by generating

many background matrices from the data). The final plot shows the discrepancy between

raw and expectation measured in the number of standard deviations. Pure statistical vari-

ations should then result in swings of a couple standard deviations, while systematic dis-

crepancies will more significantly affect this number.
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Implementation
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CHAPTER 4

PyFBU and PyMC3

For the implementation of Fully Bayesian Unfolding (FBU), we utilize the PyFBU package,

made by Gerbaudo, Helsens and Rubbo [3]. It is directly based on the original FBU article

by Choudalakis [1], and it is made to receive the observed data, response matrix and

prior limits as inputs. Using these and other optional inputs such as the background

spectrum or a specified number of sampling steps, it performs the modeling and sampling

with the PyMC3 package [15]. PyMC3 is a statistical modeling library which has built-in

probability distributions usable for both priors and likelihoods, e.g. Uniform, Normal,

Poisson etc., as well as truncated versions of some distributions. PyMC3 leverages the

Theano package for array operations and linear algebra with the use of symbolic variables

[23].

A significant effort has been made attempting to fully understand the packages used

in this thesis. Externally, they (PyFBU and PyMC3) are moderately simple to learn and the

experience of using them is quite pleasant, should you be content with the limits they pose

and the results you receive. Due to the multiple layers of class-references and abstraction,

it is not immediately apparent how the code relates to the analytical procedure of FBU, and

hence, why the results look as they do. Now, the authors may never have intended for the

direct manipulation of their source code, and to expect them to facilitate the possibility

would be unfair, seeing as the likely intended use is completely functioning. However,

we are in a search of a greater understanding of the process and the results. If we should

receive a result we do not expect, we want to know how it came to be, as well as the ability

to fine-tune the individual elements in the name of improvement. This chapter focuses on

how PyFBU and PyMC3 are modified to achieve an increased versatility of the unfolding

process, by enabling more direct control over the individual Bayesian terms.

The following sections are based on the source code of the PyFBU and PyMC3 pack-
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ages, as well as the documentation available for PyMC3 [3, 15].

4.1 Usage and modification

We start by describing the general setup of PyFBU and how PyMC3 comes into play with

the unfolding process. In practice, PyFBU can be said to be used in the following way:

• Create an object of the PyFBU class

• Supply the necessary variables, i.e. observed data, response matrix and the upper

and lower prior limits

• Optionally supply parameters such as background data, systematic uncertainties,

number of sampling chains and steps, etc.

• Run unfolding

Many things happen behind the scenes which the user does not see, of which the main

parts will be discussed here, starting with the prior distribution.

4.1.1 Creating the prior

An important part of the process is how the prior is defined. The user only has to supply

the limits for the prior, not the distribution itself. This is due to the fact that the uniform

distribution is the default prior in PyFBU, and we have some ability to change that by

supplying a string with the name of a different distribution. This string is then used to

collect one of the built-in distribution classes in PyMC3. There is a good variety of these

classes representing many popular distributions used in statistics. Unfortunately, there

are only four of these that accept the lower and upper limits as parameters, namely the

classes Uniform (default), DiscreteUniform, Triangular and TruncatedNormal. If we are

to attempt to input the name of any other distribution, we will be met by errors due to

the lower and upper parameters. PyMC3 does however include a class Bound that takes

the limit parameters and constrains any of the built-in distributions. The resulting dis-

tribution is not normalized anymore, and we are still restricted to using the distributions

included in PyMC3, unfortunately ruling out the log-uniform distribution (part II, sub-

section 3.3.1).

Another possibility is the DensityDist class, made for supporting custom distribu-

tions. This requires supplying a function returning the log-probability of the distribution
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you want to use, as well as a random method if the distribution is to be sampled from.

These functions are not straightforward to implement, as complex distributions may not

easily be represented as analytical formulas, and attempts to use this class have not been

successful by the author of this thesis.

It is possible to create an entirely new distribution class that mimics the function-

ality of the other classes, which of course requires some effort to correctly implement

the underlying methods, Theano logic and inheritance to parent classes. Luckily, we

can avoid this due to the final possibility for implementing custom distributions; the

Interpolated class. This class belongs to the collection of continuous distributions in

PyMC3 and allows for a higher degree of user influence. The parameter inputs are two

arrays, one containing a lattice of x points (counts) and one containing the corresponding

pdf points (probability densities). The distribution is then generated by linear interpola-

tion of these probabilities. The Interpolated class can be found on the PyMC3 GitHub

page: https://github.com/pymc-devs/pymc3/. Now we are free to design whichever

distribution shape we want, by directly controlling the probability height for each count

in our assigned prior range. Furthermore, the prior limits are collected from the first and

last element of the x points array, meaning the previously mentioned lower and upper

arguments are unnecessary. Lastly, the resulting distribution is automatically normalized

by PyMC3, allowing for the direct use as a prior in PyFBU. The Interpolated class is very

promising, and the integration of this class into PyFBU will now be described.

When the run() method is called, a PyMC3 model is created, wherein the main math

and sampling is performed. The prior distribution is created here, using an external

wrapper method which returns a PyMC3 object representing a stack of N tensors, a prior

distribution for each bin. The important part is found inside this wrapper, where the

type of distribution is determined by the priorname parameter. Originally, this creates

a new distribution object from PyMC3 for each bin in the spectrum, assuming there ex-

ists one for the current priorname, and that it can take the lower and upper arguments.

All these distributions are then stacked and passed on to the main PyFBU program. The

suggested changes to this method is including an alternative creation of distribution ob-

jects if priorname = Interpolated, where lower and upper are not used. The x points

and pdf points arguments are passed through to the other args dictionary by assigning

them to the priorparams variable accessible in PyFBU. The original code and suggested

changes are shown in figure 4.1 and 4.2, respectively.
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Figure 4.1: The original prior-creation function in PyFBU [3], which returns a stack of N
prior distributions, one for each bin in the data. The file has been renamed from priors.py

to priors original.py to distinguish from the modified file in figure 4.2.
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Figure 4.2: Modified version of the priors.py file in PyFBU [3], shown in figure 4.1. The
changes are shown in blocks enclosed by comment borders, allowing for the use of the
Interpolated class in PyMC3. This enables a much greater freedom in designing the
shape of the prior distribution, done by determining prior range and corresponding PDF-
values in the users code and passing to PyFBU.

The user is now able to externally define the exact shape of the prior distribution which

makes it possible to use an endless variety of distributions like the log-uniform distribu-

tion discussed in part II, subsection 3.3.1.
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4.1.2 The likelihood

Picking up the thread from the creation of the prior, the next step in PyFBU is to incor-

porate the likelihood function. By PyMC3 convention this is done by creating another

distribution object, from the Poisson class in our case, and evaluating it on the folded

prior object. The reason for this can be understood by considering the spaces where our

Bayesian terms are defined. The prior π(TTT) is an assumption of the truth, meaning it is de-

fined in the truth-space, it represents what we believe the true count-value can be in each

bin. However, the Poisson distribution we define lives in the folded space, along with

the observed data, as it is dependent on the folded parameter fr, see eq. 3.8. This means

it describes the spread of possible observed values given the already supplied observed

values. We can transform this to a function in the truth space by specifying a truth-range

and making the fr-parameter dependent on that range, see eq. 3.9. Evaluating the likeli-

hood on this truth-dependent range makes it describe the spread of possible truth-values

that can lead to the given observed data. This Poisson distribution object evaluated on the

folded prior will then represent a space of likelihood-weighted prior-values, which when

sampled will result in the posterior distribution. After this, the next step in PyFBU is

running the NUTS sampling algorithm, which when finished, outputs the final posterior

samples for each bin in the spectrum.
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Synthetic spectra

Here, we perform unfolding on a raw spectrum consisting of two bins, to display all

Bayesian terms and their relation. Even though experimental spectra usually consist of

a much larger amount of bins, we have chosen two bins to be able to show the likelihood

properly. As mentioned in part II, the likelihood is an N-dimensional function which is

not easily decomposed into one-dimensional contributions (an attempt is shown in ap-

pendix B). Using two bins allows us to plot the likelihood in its entirety on the plane and

compare with the posterior. We do this to firstly, display and compare the complete prior

and posterior distributions, and the effect of the response matrix. Secondly, we wish to

confirm what we believe to be correct of the built-in, symbolized likelihood, by comparing

the posterior with an independent, externally constructed Poisson distribution. If we are

correct, we expect our Poisson distribution to overlap and exhibit a similar shape as the

posterior distribution from PyFBU.

We choose a simple true spectrum TTT = (120, 120) and construct a 2× 2 response ma-

trix with arbitrary values and normalized rows (preferably not the identity matrix, as no

changes would happen when folding, i.e. a perfect detector):

R2×2 =

[
1 0

0.5 0.5

]
. (5.1)

The response matrix is visualized in figure 5.1.
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Figure 5.1: The constructed two-bin response matrix. Note that when plotting the re-
sponse, the origin for the indices is at the bottom left corner, as opposed to a mathematical
matrix which has indices starting at the top left.

Next, we generate an ’observed’ spectrum by folding the true spectrum with the re-

sponse:

DDD = TTTRRR =
[
120 120

] [ 1 0

0.5 0.5

]
=

[
180

60

]
. (5.2)

Note that by generating the data this way, we take away the inherent randomness of the

response matrix. Since it consists of probabilities of an event being reconstructed in bin

r given that it originated in truth-bin t, the data would not remain constant for repeated

experiments; flipping 10 fair coins does not result in 5 tails and 5 heads every time. A

more realistic generation of observed data can be performed by randomly sampling a

value in each bin according to the given probabilities. The mean value of these samples

will be the same as the result we get from direct multiplication with the response. That is

sufficient in this case, where the focus is on investigating the Bayesian terms and verifying

our knowledge of the likelihood, for which the actual values of the observed data does not

matter. For both bins, we assign a uniform prior in the range [0, 200] since we know the

true values, and perform the unfolding. The resulting posteriors, together with priors and

true values are shown in figure 5.2.
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Figure 5.2: Prosterior distributions after unfolding a two-bin constructed spectrum, along
with corresponding priors and true values. Both posteriors point to the true value being
located around 120, which is correct. The spread of the posteriors represents the uncer-
tainty. We can also see that our uniform priors were suitable choices, as the true values
are located within, and the posteriors are not truncated.

The plotted priors and posteriors are histograms consisting of samples from their re-

spective distributions, and we may combine both bins to show the complete two-dimensional

histograms with one bin per axis. The complete prior is shown in figure 5.3.
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Figure 5.3: Two-dimensional complete prior distribution for both bins in the spectrum,
consisting of random samples from the uniform distribution in the range [0, 200].

Next, we plot our two-dimensional Poisson distribution in the truth-bin space and see

that it belongs to the same domain as the combined prior. This is shown in figure 5.4.

42



Chapter 5. Synthetic spectra Chapter 5. Synthetic spectra

Figure 5.4: Two-dimensional Poisson distribution in the truth-bin space, dependent on the
observed data and our defined ranges of possible true values. Note that this, as opposed to
the prior and posterior, is a function defined over both dimensions, rather than a collection
of samples.

With these pieces in place we can examine whether our Poisson distribution corre-

sponds to the likelihood that is built into PyFBU. We do this by combining the posteriors

in the same way we did with the priors (figure 5.3) and plot this together with the Poisson

distribution, shown in figure 5.5.

43



Chapter 5. Synthetic spectra Chapter 5. Synthetic spectra

Figure 5.5: Two-dimensional complete posterior distribution for both bins, output from
PyFBU, as well as contour lines from the two-dimensional Poisson distribution shown in
figure 5.4. Remember that the contours belong to a function we have defined based only
on our available data and assumptions, meaning there is no connection to PyFBU. Yet,
the contours exhibit a similar shape and location of the Poisson distribution as the poste-
rior, indicating that our externally constructed function matches the internal likelihood of
PyFBU. As mentioned in part II, subsection 3.3.2, we strictly have to compare the posterior
with Poisson×prior. However, since our prior is a uniform distribution, neither the shape
nor the location of the posterior is affected by the prior, meaning we can directly compare
with the likelihood candidate.

We see that our assumption about the likelihood was correct, and we have gained a

better understanding of how the PyFBU-package is built up. This reduction of the black-

box trait lets us have a greater confidence in future results, and how they actually are

produced. Next, in figures 5.6 - 5.9, we examine the corresponding plots of the distribu-

tions in the folded-bin space, i.e. the space where the observed data is contained. This is

where the likelihood function is originally defined, i.e. being dependent on the variable

fr in eq. (3.9) and eq. (3.8), and we will see the effect of the response matrix on the prior

and posterior.
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Figure 5.6: Posterior and prior distributions from figure 5.2 folded with the response ma-
trix, along with the observed data, in folded-bin space. We see the smearing effect, how
counts can be redistributed due to the detector response. The range for the prior for bin
0 is seen to have been resized from [0, 200] to [0, 300], and to [0, 100] for bin 1. The corre-
sponding heights have thus changed, preserving the total probability of 1 for both priors.
The posteriors are centered around their respective observed counts, and show the spread
for which possible observed values can lead to the true counts of 120 in this case.
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Figure 5.7: The complete two-dimensional prior distribution from figure 5.3 in folded-
bin space. We see that the prior has been skewed and occupies a smaller area than in
the truth-bin space. We can also see that the prior heights, shown in color, are larger to
compensate.

Figure 5.8: The two-dimensional Poisson distribution from figure 5.4 in the folded-bin
space, corresponding to the likelihood in PyFBU. We see a more concentrated peak here
than in the truth space.
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Figure 5.9: The two-dimensional complete posterior distribution from figure 5.5, as well
as contour lines from the likelihood function, in folded space. Here too, the likelihood
and posterior shapes and locations match very well, confirming again our assumption
about the likelihood. The narrower distribution, especially for bin 1, shows that there are
less possible observed counts leading to a truth count of 120, than possible truth counts
leading to the observed value from the detector.
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Part IV

Results & Discussion
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CHAPTER 6

Experimental spectra

6.1 The 28Si spectrum

Here we take a look at the unfolded result using FBU with the new response matrix (2020)

from the OMpy library, which should more closely match the original experimental con-

ditions than the response matrix used by Valsdóttir (2017). First, we present the complete

raw matrix as well as the background matrix in figure 6.1. These have been rebinned with

a factor three, the same as done by Valsdóttir, to reduce computation time. Both new and

old response matrices are then shown in figure 6.2.
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(a)

(b)

Figure 6.1: Raw spectrum for 28Si, showing the observed γ-ray spectra for each excitation
energy Ex, as well as the corresponding background, received from Ann-Cecilie Larsen
via private communication. These have both been rebinned with a factor three on the Eγ

axis.
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(a)

(b)

Figure 6.2: The new response matrix from 2020 (a), and the old response matrix from 2017,
both from the OMpy library [11, 12]. The axes Ex and Eγ represent excitation (true) energy
and gamma energy (observed), respectively.
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6.1.1 The first excited state

The projected spectrum unfolded by Valsdóttir is the first excited state of the 28Si data,

i.e the projection of all counts in the interval Ex = [1400, 2200] keV. We use the same

projection in order to achieve a direct comparison. This is shown in figure 6.3.

Figure 6.3: Projection of the raw spectrum and background for the first excited state, i.e.
between Ex = 1400 keV and 2200 keV, see figure 6.1, showing observed counts in each
energy bin. Note the background being higher than the raw spectrum at the very start.
This is due to increasing the supplied background data by 20% in order to more closely
match the actual, unknown background, as discussed by Valsdóttir [4].
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(a)

(b)

Figure 6.4: The aggregated estimates for the posterior distributions in each bin, represent-
ing an estimated unfolded spectrum, for all bins (a) and zoomed between bin 50 and 70
(b). We see that almost all counts have been redistributed to a single peak around bin
59 for our expectation. This result is then refolded and compared with the raw spectrum
(figures 6.5 and 6.6 and table 6.1). Lastly, we compare with Valsdóttir’s results in figure
6.7.
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(a)

(b)

Figure 6.5: Refolding of the unfolded results compared with the background-subtracted
raw data. The first plot (a) shows the result of folding the truth-sample estimates (HPD,
point estimates) shown in figure 6.4. The second plot (b) shows the same result for the
first 70 bins. The background subtraction is performed to match the presentation of
Valsdóttir’s results [4]. When unfolding the new spectra (146Nd) below, we instead add
the background to the estimates and compare directly with the raw data, see figure 6.16.
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(a)

(b)

Figure 6.6: Residual plots showing the difference between the observed raw spectrum and
the point estimates from FBU (figure 6.5a), first for all bins (a), then zoomed to the first 70
bins (b).
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(a) (b)

(c)

Figure 6.7: Zoomed version of the refolded result (figure 6.5a) for the first 70 bins (a).
We have also included a corresponding result for the old response matrix from 2017 (b).
Lastly, Valsdóttir’s result with the old response (c) [4]. Surprisingly, the new response
leads to a larger discrepancy for the leftmost area, as well as the tall peak being slightly
lower. This may seem to imply that the new response is a worse match to the experimental
conditions than the old, when the opposite should be true. The error metrics shown in
table 6.1 tell a similar story.
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Table 6.1: Error metrics for refolded results (with decimals rounded) in figure 6.7. We
see again that the old response matrix appears to lead to a better accuracy than the new.
As mentioned in figure 6.7, the low-energy area shows the most apparent discrepancy.
Both response matrices are known to have mismatches with the data for the low-energy
bins (due to a firmware problem in the digital electronics of OSCAR, leading to some
incorrectly recorded data points), and we will investigate what happens when we cut the
first ten bins from the data before unfolding in the next subsection.

Median Mean
New response Old response New response Old response

MAE 1428 1130 1427 1128
R2-score 0.864 0.902 0.864 0.902

6.1.2 The first excited state - Cutting the first ten bins

Due to the apparent reduction in accuracy from switching to the new response matrix,

which should be a better fit to the raw data, we now perform FBU on the data with the

ten first bins cut. This area is as mentioned associated with mismatches for the response

matrices, which seem to be larger in the new response. Removing this area should reduce

the impact of the erroneous data on the unfolded spectrum, leading to a better result. The

projection of the first excited state with the cut bins is shown in figure 6.8. Now we do

the same unfolding process as previously, this time using the cut raw data. The unfolded

spectrum is shown in figure 6.9.

57



Chapter 6. Experimental spectra 6.1. The 28Si spectrum

Figure 6.8: The projected raw spectrum for the first excited state of 28Si shown in figure
6.3, with the ten first bins removed. This is done to avoid the negative impact of response
matrix mismatches for the low-energy area.
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(a) (b)

Figure 6.9: The unfolded spectrum for the first excited state of 28Si, with the first ten bins
cut, in the area between bin 50 and 70. Figure (a) shows the result using the new response,
while figure (b) shows the corresponding result for the old response. The peaks are very
similar to their uncut versions, but lower than in figure 6.4, due to the cut leaving fewer
available counts to redistribute. Even though these structures both look similar, the peak
in (a) is taller by roughly 58 000 counts (approximately 782 000 (a) versus 725 000 counts
(b)). The new response has thus contributed to a greater redistribution of counts into the
peak. These results are then refolded with their corresponding response matrices and
compared with the raw spectrum in figure 6.10
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(a) (b)

Figure 6.10: Refolding of the unfolded results from figure 6.9 compared with the
background-subtracted raw data. The first plot (a) shows the result of refolding the re-
sults using the new response matrix. The second plot (b) shows the corresponding results
for the old response. We observe a significant improvement for both plots compared to
figure 6.5, with the peak and values in other bins being more closely approximated. We
see that, especially for the peak, the new response has allowed FBU to get closer to the
raw spectrum by roughly 8000 counts (approx. 225 000 versus 217 000, the correct raw
value being approx. 235 000). The corresponding error metrics are shown in table 6.2.

Table 6.2: Error metrics for refolded results (with decimals rounded) in figure 6.10. We
see that the scores have significantly improved from table 6.1 by cutting the first bins of
the raw data. The biggest improvement is seen in the results using the new response
matrix, further implying that the low-energy area mismatches in the new response are
larger than in the old. We see that the new response now in fact scores better for both
metrics, signifying that it, as mentioned, is a better match for the 28Si data (at least for all
bins above bin 10). Even though we now observe a consistent improvement from using
the new response, there may yet be other factors, like the now removed low-energy bins,
limiting further improvement. One such factor may be the rebinning of the raw data and
background, mentioned in figure 6.1. E.g. if the new response has improvements that
only come into play at higher resolutions, rebinning may reduce the impact.

Median Mean
New response Old response New response Old response

MAE 210 272 209 272
R2-score 0.997 0.995 0.997 0.995
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6.2 The 146Nd spectrum

Now we perform FBU on a brand new dataset from the 146Nd(p,p’γ) reaction and com-

pare the results with the folding iteration method in OMpy. This time, we use the old

response matrix from 2017, see figure 6.13, as it should most closely match the experimen-

tal conditions for 146Nd. The raw data and background is shown in figures 6.11 and 6.12.

No rebinning has been performed this time, as computation time was deemed reasonable

(usually no more than 2 hours).

Figure 6.11: Complete raw spectrum for 146Nd, showing the observed γ-ray spectra for
each excitation energy Ex, received from Ann-Cecilie Larsen via private communication.
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Figure 6.12: The background present in the raw data in figure 6.11, received from Ann-
Cecilie Larsen via private communication.

Figure 6.13: The complete 2017 response matrix from the OMpy library [11, 12].
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6.2.1 The first excited state

We begin with the first excited state of 146Nd, projecting all counts between Ex = 300 keV

and 600 keV. We do know that the response matrix contains some mismatches for the first

few Eγ-bins, but we start with unfolding the complete uncut projection before comparing

with a version with the first three bins cut. The raw projection is shown in figure 6.14, and

the following unfolded spectrum is shown in figure 6.15.

Figure 6.14: Projection of the raw spectrum and background for the first excited state, i.e.
between Ex = 300 keV and 600 keV, see figure 6.11, showing observed counts in each
energy bin.
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(a) (b)

Figure 6.15: The aggregated estimates for the posterior distributions in each bin, repre-
senting an estimated unfolded spectrum, for all bins (a) and zoomed to the first 25 bins
(b). We observe a single peak by the low energy bins, showing that the double peak in the
observed spectrum, figure 6.14, has almost been completely combined in our truth esti-
mate. Further analysis is performed on this spectrum and shown in figures 6.16 and 6.17.
The results from OMpy and subsequent comparisons are shown in figures 6.18, 6.19 and
in table 6.3.

As seen in figure 6.16, we have presented two different ways to view the refolded

results. The first is done by folding the truth-sample estimates in figure 6.15, and the

second is done by calculating new estimates on the folded truth-samples. Mathematically:

mean(TTTsampl.) × RRR versus mean(TTTsampl. × RRR). The difference between the two is subtle,

and the right choice might not be clear. In the first case (6.16a), we have a direct relation

between the estimates in truth-space (figure 6.15) and folded space through the response.

Folding the estimates might be deceiving however, as they are not direct samples of the

truth-posterior, meaning they may in some cases take a value that is not a probable event

(i.e. the mean of [0,0,0,10,10,10] being five, even though a value of five has not happened

at all). In the second case (6.16b), we instead perform the refolding on the truth-samples

themselves, as they are our actual representation of possible true data, thereby emulating

a real experiment. New estimates are then calculated on these folded truth-samples. We

take the second case to be the right choice, but will present both in the following figures,

for comparison. Another thing to note is that we now compare the observed data with
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(a) (b)

Figure 6.16: Refolding of the unfolded results compared with the raw observed data, in
two ways. The first plot (a) shows the result of folding the truth-sample estimates (HPD,
point estimates) shown in figure 6.15. The second plot (b) has been made by directly fold-
ing the truth-samples, and afterwards calculating a new HPD interval and point estimates
based on the folded samples. The corresponding residual plots are shown in figure 6.17.

the refolded spectrum with the background added (raw versus refolded + background),

as opposed to in figure 6.5. There, the comparison is between a background-subtracted

observed data and the calculated estimates, essentially moving the background to the

other side of the ’equation’ (raw - background versus refolded). Its a matter of preference,

but the former avoids falsely showing any negative counts from a subtraction, and is what

will be presented in the following figures.
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(a) (b)

(c) (d)

Figure 6.17: Residual plots showing the difference between the observed raw spectrum
and the point estimates from FBU, first for all bins, then zoomed to the first 50 bins. Plots
(a) and (b) pertain to the folded truth-sample estimates from figure 6.16a. Plots (c) and (d)
are connected to the folded-sample estimates from figure 6.16b. These are very similar,
but some differences appear in figure 6.19 and table 6.3.
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(a) (b)

(c)

Figure 6.18: Result from unfolding using OMpy for all bins (a) and zoomed to the first 25
bins (b), as well as the subsequent refolded result compared with the observed spectrum
(c). These results look similar to those from FBU, and a closer look will be shown in figure
6.19.
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(a) (b)

(c)

Figure 6.19: Zoomed versions of the refolded results (figures 6.16a 6.16b and 6.18c) com-
paring FBU with OMpy for the first 25 bins. First, we see one effect of folding the truth-
samples estimates (a), the HPD interval has become larger than the interval calculated on
the folded samples (b). Overall, all three plots are visually quite similar, with small vari-
ations per bin. We see a very similar discrepancy between refolded results and observed
data for all three plots at the lower energy bins. This is due to the previously mentioned
low-energy mismatches between the response matrix and data. With the correct infor-
mation compensating for these mismatches, we would be able to adjust the results and
observe an even closer match. Alternatively, the first few bins can be cut from the raw
spectrum before unfolding, this will be done in subsection 6.2.2. The error metrics for
these results are shown in table 6.3. 68
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Table 6.3: Error metrics for refolded results (with decimals rounded). We see all estimates
score very well with low mean absolute errors, and R2-scores all above 0.95. As seen
in figure 6.19, the largest discrepancies are located at the lowest energy bins, however
these are not large enough to have a big impact on the overall scores, since all bins are
weighted equally in the metrics. There is an argument to be made about weighting these
bins more, as this is where the most interesting structures are located. Doing so would
require a manual definition of what is deemed the most interesting area on a case-by-
case basis. Since we either way have the residual plots to directly show local errors, we
are content to leave the MAE and R2-score as summarizing error metrics for the entire
spectrum. These scores would be even better if we were to remove the mismatch in the
response matrix for low energies, see figure 6.19, or if we cut the first few bins of the raw
spectrum, which will be done in subsection 6.2.2. The results from both FBU and OMpy
are very close, with a slightly higher R2-score for the FBU estimates, signifying a very
slightly overall better match with the observed data. Furthermore, we see a very small,
almost negligible improvement in the FBU results when using the estimates calculated on
the folded samples (figure 6.16b, here abbreviated to Fold. sampl. and what we deemed to
be the right choice), over the folded truth-sample estimates (6.16a, Fold. est.).

FBU Median FBU Mean OMpy
Fold. est. Fold. sampl. Fold. est. Fold. sampl.

MAE 30.8 28.9 30.8 29.2 26.0
R2-score 0.968 0.968 0.968 0.968 0.955

Table 6.4: The mean variance for both the truth-samples output from FBU, and the same
samples folded with the response. By folding the samples, the subsequent variance is
significantly smaller.

True samples Folded samples
Mean variance 966.9 92.4
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(a)

Figure 6.20: Relative uncertainty plot, showing in the number of standard deviations, the
level of relative uncertainty for each bin in the spectrum. We see that the very first bins
have a significant discrepancy, pointing to systematic errors in the model. This is likely
due to the mentioned response matrix mismatches.
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6.2.2 The first excited state - Cutting the first three bins

Now we cut the first three bins of the spectrum in order to mitigate the discrepancies

from the response matrix mismatches. As opposed to the first excited state of 28Si, the

peak is much closer to the first bins, meaning we cannot cut as many without removing

the peak entirely. The largest discrepancies are seen in the first three bins, so such a cut

should have a positive impact. The cut projected raw spectrum and background is shown

in figure 6.21. Then we do the same unfolding process as previously, this time using the

cut raw data. The unfolded spectrum is shown in figure 6.22.

Figure 6.21: The projected raw spectrum for the first energy state shown in figure 6.14,
with the three first bins removed. This is done to avoid the negative impact of response
matrix mismatches for the low-energy area.
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(a) (b)

Figure 6.22: The unfolded spectrum for the first excited state of 146Nd zoomed to the first
25 bins. The left plot (a) shows the result using the cut raw spectrum, while the right (b)
shows the result using the uncut spectrum, see figure 6.15. The peaks are very similar, but
lower in (a), due to the cut leaving fewer available counts to redistribute.

The following refolded result in figure 6.23 shows only the estimates calculated on

the folded truth-samples in figure 6.16b. We also focus on the zoomed plots to compare

between the results for the cut and uncut spectra.
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(a) (b)

(c) (d)

Figure 6.23: Zoomed versions of the refolded results comparing FBU with OMpy for the
first 25 bins. The top plots show the FBU results using the cut (a) and uncut (b) raw spec-
tra, respectively. The bottom plots, (c) and (d), show the corresponding OMpy results. We
see that cutting the raw spectrum has a very positive effect on the unfolding performance,
with a much closer match between raw and refolded. Furthermore, FBU sees a greater
improvement than OMpy, with FBU now showing a clear upper hand with regards to
accuracy. The error metrics are shown in table 6.5.
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Table 6.5: Error metrics for refolded results (with decimals rounded). The columns named
’Uncut’ are the results from table 6.3, while columns named ’Cut’ contain the metrics for
the refolded results in figure 6.23. We see all estimates have improved substantially for
the cut raw spectrum, with R2-scores all above 0.99. The error metrics also confirm that
FBU has a better accuracy than OMpy for the cut spectrum.

FBU Median FBU Mean OMpy
Cut Uncut Cut Uncut Cut Uncut

MAE 8.3 28.9 8.1 29.2 12.5 26.0
R2-score 0.999 0.968 0.999 0.968 0.993 0.955

Table 6.6: The mean variances for cut and uncut spectra. These are calculated on both
the truth-samples output from FBU, and the same samples folded with the response. We
see that cutting the spectrum reduces the variance for the truth-samples while not really
impacting the variance for the folded samples.

True samples Folded samples
Cut Uncut Cut Uncut

Mean variance 561.8 966.9 95.3 92.4

(a) (b)

Figure 6.24: Relative uncertainty plot, showing in the number of standard deviations, the
level of relative uncertainty for each bin in the spectrum. The first plot (a) corresponds to
the uncut raw spectrum (figure 6.20), with the second (b) to the cut spectrum. We see that
the cut has significantly reduced the systematic discrepancies, while still showing some
impact around bins 150-200, maybe due to further mismatches with the response.
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6.2.3 High excitation energies (6.0-6.2 MeV)

We now investigate an area with more complex structures, i.e. a projection of the counts

between Ex = 6000 keV and 6200 keV of the raw matrix in figure 6.11. As cutting the

first three bins proved to greatly improve the previous results, we do the same for this

spectrum.

Figure 6.25: Projection of the raw spectrum and background for the high-energy area, i.e.
between Ex = 6000 keV and 6200 keV, see figure 6.11, showing observed counts in each
energy bin, with the first three bins cut.
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(a) (b)

Figure 6.26: The estimated unfolded spectrum from the raw spectrum in figure 6.25, for
all bins (a) and zoomed to the first 40 bins (b). Here we see a more complex composition
of peaks than for the first excited state. Further analysis is performed on this spectrum
and shown in figures 6.27 and 6.28. The results from OMpy and subsequent comparisons
are shown in figures 6.29, 6.30 and in table 6.7.
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(a) (b)

Figure 6.27: Refolding of the unfolded result in figure 6.26 compared with the raw ob-
served data, for all bins (a) and zoomed to the first 40 bins (b). We see that FBU keeps up
with the added complexity and is able to match the spectrum closely.

77



Chapter 6. Experimental spectra 6.2. The 146Nd spectrum

(a) (b)

Figure 6.28: Residual plots showing the difference between the observed raw spectrum
and the point estimates from FBU, first for all bins (a), then zoomed to the first 40 bins
(b). We still observe the largest discrepancies for the first bins. This might be due to a
combination of the mentioned response matrix mismatches and spectrum complexity.
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(a) (b)

(c)

Figure 6.29: Result from unfolding using OMpy for all bins (a) and zoomed to the first 40
bins (b), as well as the subsequent refolded result compared with the observed spectrum
(c). These results look similar to those from FBU, and a closer look will be shown in figure
6.30.
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(a) (b)

(c) (d)

Figure 6.30: Zoomed versions of the unfolded (figures 6.26 and 6.29b) and refolded results
(figures 6.27 and 6.29c) comparing FBU (a,c) with OMpy (b,d) for the first 40 bins. We see
that FBU has redistributed more counts into the tallest peak through unfolding. We also
see that for the refolded results, there is a sizeable discrepancy for the leftmost bin, likely
another result of the response matrix imperfections. Still, we observe a slightly better
accuracy by FBU, with the spectrum being more closely approximated than by OMpy.
The following error metrics are shown in table 6.7.
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Table 6.7: Error metrics for refolded results (with decimals rounded). Compared with the
results for the simpler spectrum of the first excited state, table 6.5, we see a slight drop
in accuracy. This is expected due to the increased complexity of the spectrum, however
the accuracy remains very good with no R2-scores below 0.99. Again, we see slightly
better scores for FBU than OMpy, showing that FBU is a powerful method worthy of
consideration.

FBU Median FBU Mean OMpy
MAE 14.9 14.9 20.4

R2-score 0.995 0.995 0.994

Table 6.8: The mean variance for both the truth-samples output from FBU, and the same
samples folded with the response. As can be expected, the increased complexity of this
raw spectrum has lead to an increase in variance for both sets of samples.

Truth-samples Folded samples
Mean variance 2570.4 244.5
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(a)

Figure 6.31: Relative uncertainty plot, showing in the number of standard deviations, the
level of relative uncertainty for each bin, corresponding to the cut raw spectrum. From
figure 6.24, we saw that the cut removed the by far largest contribution to uncertainties,
and the same is expected to be the case here. We see again some oscillations around bins
150-200, maybe due to further mismatches with the response than what has been removed
by the cut.
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Conclusion and future work

83



CHAPTER 7

Conclusion

In this thesis we have explored Bayesian statistics applied to the case of unfolding in

nuclear physics, with data from the OSCAR detector array [8]. We have gained a more

thorough understanding of the inner workings of the PyFBU package and how to inter-

pret its results. Possible changes have been formulated and implemented, which give the

user increased flexibility by allowing for the creation of completely custom prior distri-

butions. We have bypassed the previous requirement to supply prior bounds in keyword

arguments, limiting the options to either uniform, truncated normal or triangular dis-

tributions, by including the possibility to use the Interpolated class from the Bayesian

modeling package PyMC3 [15]. The user may then completely control the shape and loca-

tion of the distribution by defining the range of x-values (counts) and the corresponding

PDF-values, the result of which is automatically normalized and having prior bounds be

determined from the given x-values. Using this, we have successfully implemented and

used the log-uniform distribution, currently not a part of PyMC3, for FBU. Some testing

with FBU has been done with the uniform distribution, while all FBU results presented

in this thesis have been obtained with log-uniform distribution. This change facilitates an

essential part of Bayesian thinking, the freedom to choose and define our prior in accor-

dance with our existing knowledge.

Using Fully Bayesian Unfolding, we have investigated the 28Si and 146Nd γ-ray spectra

and produced unfolded spectra in the attempt to reconstruct the actual true energies. For

the 28Si spectrum, we have used the new response matrix available in the OMpy library,

which is a closer match to the experimental conditions for this spectrum than the old

response used by Valsdóttir [4]. Using this and, to our knowledge, otherwise as equal a

setup to Valsdóttir as possible, we originally find FBU to produce worse results with the

new response. However, after cutting out ten bins of the lowest energies of the observed
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spectrum, where there is a known mismatch between response matrices and observed

data, we find the new response to lead to results which are not only much better, but also

outperform the results from using the old response matrix.

The 146Nd spectrum has not been unfolded using FBU before, which allows this work

to be a further test of the performance and adaptability of FBU compared to the standard

method of unfolding by the nuclear physics group at the University of Oslo, the fold-

ing iteration method [2]. The first projected spectrum, i.e the first excited state, has been

unfolded using both FBU and OMpy (folding iteration method) [5]. We find that the un-

folded and subsequent refolded results are very similar for both methods, with good error

metrics, FBU scoring slightly better. When cutting the first three bins of the observed spec-

trum, we find that the accuracy is much higher for both methods, leading to R2-scores all

above 0.99, and very low mean absolute errors. FBU profits more of this cut, with a closer

match between refolded and observed than OMpy. The second projected spectrum we

investigate is one located higher on the Ex-scale, meaning more complex structures with

fewer clear peaks and a higher spread of counts. Even with that, we find that FBU again

performs very well, achieving a closer match between refolded and observed than OMpy,

as well as better error metrics. Both methods have some accuracy loss due to the increased

complexity, yet the performance is still very good. This result is a good testament to the

accuracy of FBU and its ability to handle more advanced spectra, as well as maybe the

most important part: The ability to directly observe and calculate uncertainties through

the posterior distributions and credible intervals.

7.1 Future work

Several avenues are available for further exploration on the subjects included in this thesis.

One of these regards the choice of prior distribution. There is, as mentioned, an uncount-

able number of possible priors, and the extensions to PyFBU implemented here facilitates

the ease of creation and thus testing of different priors adapted to different cases. In the

same spirit, investigating other spectra, experimental and synthetic, is of interest to fur-

ther map out the accuracy and adaptability of FBU.

Another example of future work considers the response matrix. As discussed, an mis-

match between response matrix and data will be misleading to FBU, which assumes the

given matrix to be fully correct. An interesting extension would be one that includes un-

certainties on different areas of the response matrix. These would be considered extra

(nuisance) parameters, increasing the dimensionality of the problem. However, the re-
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sulting posteriors would then be marginalized over the extra parameters and take such

uncertainties into account. This may then be taken further by using e.g. machine learn-

ing to determine the best response matrix and other elements like the prior, and thereby

achieve even greater accuracy, and possibly automation of the entire process.

Computational performance is another area of interest. The sampling process of PyFBU

usually needs a longer run time than the folding iteration method in OMpy. Introducing

parallelization, GPU-utilization or further modification of the underlying PyMC3/Theano

logic may prove to increase the performance of PyFBU. Other probabilistic libraries or

sampling algorithms may be worth considering as well.
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APPENDIX A

GitHub repository

The code produced for this thesis is contained in the following GitHub repository:

https://github.com/jensbd/Thesis-FBU
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APPENDIX B

One-dimensional likelihood testing

Here follows a set of tests attempting to determine the one-dimensional contribution of

the likelihood by erroneously assuming it to take the form of a one-dimensional Poisson

distribution. This is included to show how attempting to decipher and decompose the

outputs to their base terms without the sufficient understanding, can lead to frustration.

B.1 Synthetic data

For easier and more predictable testing, a synthetic data set is used for the raw spectrum.

It consists of 3 excited states, a simplified representation of a physical case. For the fol-

lowing tests, we use the lowest state.
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Appendix B. One-dimensional likelihood testing B.1. Synthetic data

Figure B.1: Synthetic raw Eγ − Ex matrix. Supplied by Ann-Cecilie Larsen via private
communication.

B.1.1 Bayesian terms

An interesting aspect to look at is the terms in Bayes’ theorem after unfolding has been

performed. We should be able to reproduce the shape of the resulting posterior samples

by multiplying the prior and likelihood. As the likelihood depends on fr, rather than

the truth-values t, direct comparison between this and the other terms is not easy at first

glance. To arrive at comparative foundation, we perform the following modifications to

the prior and the posterior to achieve fr-dependence:

P(TTT|DDD) fr = TTTRRR, (B.1)

P(TTT) fr = SSSRRR, (B.2)

where SSS is a matrix containing random samples between the upper and lower prior limits,

with shape corresponding to the output TTT. There is no easy way of extracting the likeli-

hood from the PyFBU package, nor its corresponding fr-values. However, as we know

that it is a Poisson distribution (Note: Here is where the incorrect assumption of the likeli-

hood being composed of one-dimensional independent Poisson distributions, was made.

The full, multidimensional Poisson distribution is the correct representation of the likeli-
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hood.), we are able to define a range of fr-values determined by the prior and posterior,

and use these as input to equation (3.8).

B.1.2 Response matrices

Here, different trial response matrices are tested for examining the impact on the final

result, as well as the convergence of the implemented FBU method. As the response ma-

trix is a vital part of the procedure, significant differences are expected when changes

are made. In the end, the experimentally determined response should provide the best

unfolded spectrum. It is however interesting to see the effect on the resulting Bayesian

terms. If our assumption about the likelihood is correct, we should be able to see the pos-

terior shape and location equal that of the product likelihood×prior. Note that below, the

response matrices are shown with the origin in the top left corner, when conventionally

they are represented with the origin in the bottom left.
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Appendix B. One-dimensional likelihood testing B.1. Synthetic data

B.1.2.1 Normalized response from OCL

The following figures are results from running FBU using the response matrix from OCL,

with normalization performed on each row. The bayesian terms do not match up like

expected.

(a) Response matrix

(b) The components of Bayes’ theorem after unfolding, for the bins chosen above. Included is also a
L(DDD|TTT)× P(TTT)-function, which should have the same shape and position as the posterior, only differing by a

normalisation constant.
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B.1.2.2 Response from OCL with normalized columns

The following figures are results from running FBU using the response matrix from OCL,

with normalization performed on each column instead. The bayesian terms do not match

up like expected.

(a) Response matrix

(b) The components of Bayes’ theorem after unfolding, for the bins chosen above. Included is also a
L(DDD|TTT)× P(TTT)-function, which should have the same shape and position as the posterior, only differing by a

normalisation constant.
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B.1.2.3 Symmetrized response from OCL

The following is produced using a symmetrized version of the OCL response matrix, that

is

R =
ROCL + RT

OCL
2

(B.3)

The bayesian terms do not match up like expected.

(a) Response matrix

(b) The components of Bayes’ theorem after unfolding, for the bins chosen above. Included is also a
L(DDD|TTT)× P(TTT)-function, which should have the same shape and position as the posterior, only differing by a

normalisation constant.
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B.1.2.4 Response as a normalized matrix of ones

Now, the response is a normalized matrix of ones:

RN×N =


1/N 1/N . . .

1/N . . .
... . . .

 (B.4)

The bayesian terms do not match up like expected.

(a) Response matrix

(b) The components of Bayes’ theorem after unfolding, for the bins chosen above. Included is also a
L(DDD|TTT)× P(TTT)-function, which should have the same shape and position as the posterior, only differing by a

normalisation constant.
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B.1.2.5 Response as the identity matrix

The results below are produced using an identity response matrix.

R = I (B.5)

(a) Response matrix

(b) The components of Bayes’ theorem after unfolding, for the bins chosen above. Included is also a
L(DDD|TTT)× P(TTT)-function, which should have the same shape and position as the posterior, only differing by a

normalisation constant.

Suddenly the Bayesian terms match up, maybe leading one to think that the response

matrix is the culprit for the mismatches earlier. This is incorrect, the match here is due

to the total likelihood in this specific case, actually being composed of one-dimensional
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independent Poisson distributions. The identity matrix lead to no cross-bin dependencies

after all, in fact it represents a 100% perfect detector, always reproducing the true spectra.
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APPENDIX C

Reproduction of results

Under follows an early reproduction of the results achieved by Valsdóttir [4]. This proce-

dure is done to verify the results using the same methods.

The figures presented as reproductions are outputs of the publicly available Jupyter

notebooks on Valsdóttirs GitHub repository [24]. Some discrepancies are seen, pointing

to the possibility that the results in Valsdóttirs thesis may stem from newer, locally stored

versions of the files that have not been made accessible on the repository. Therefore, the

below sections contain only the results for which corresponding output was found to be

produced in the mentioned Jupyter notebooks.
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Appendix C. Reproduction of results C.1. The first excited state of 28Si

C.1 The first excited state of 28Si

(a) Valsdóttir (b) Reproduction

Figure C.1

(a) Valsdóttir (b) Reproduction

Figure C.2
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(a) Valsdóttir (b) Reproduction

Figure C.3

(a) Valsdóttir (b) Reproduction

Figure C.4
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(a) Valsdóttir (b) Reproduction

Figure C.5

(a) Valsdóttir (b) Reproduction

Figure C.6
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Appendix C. Reproduction of results C.2. The first excited state of 28Si including background

C.2 The first excited state of 28Si including background

(a) Valsdóttir (b) Reproduction

Figure C.7

C.3 All excited states

(a) Valsdóttir (b) Reproduction

Figure C.8
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Appendix C. Reproduction of results C.3. All excited states

(a) Valsdóttir (b) Reproduction

Figure C.9

(a) Valsdóttir (b) Reproduction

Figure C.10
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(a) Valsdóttir (b) Reproduction

Figure C.11
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